12 research outputs found

    Utilization of cloud RAN architecture with eCPRI fronthaul in 5G network

    Get PDF
    With increased reliability, massive network capacity, and extremely reduced latency, 5G expands the mobile ecosystem into new realms. 5G impacts every industry and innovation, making transportation and conveyance safer, remote healthcare, accuracy agriculture, digitized logistics, and much more. In this age, 5G calls for new levels of flexibility and broadness in architecting, scaling, and deploying telecommunication networks, which need a further step ahead in technology and enter Cloud Technology. Cloud technology provides fascinating possibilities to complement the existing tried and tested technologies in the Radio Access Network (RAN) domain. Cloud RAN (CRAN) refers to relying on RAN functions over an inclusive platform instead of a purpose-built hardware platform. It represents a progression in wireless communication technology, leveraging the Common public radio interface (CPRI) standard, Dense Wavelength Division Multiplexing (DWDM) innovation, and millimeter wave (mmWave) propagation for extended-range signals. A CRAN network comprises of three fundamental elements. The initial element is the Distant Wireless Unit (DRU) or Remote Radio Component (RRH), utilized within a network to link wireless devices to entry points; these units are equipped with transceivers for transmitting and receiving signals. Next, a Baseband Unit (BBU) centre or hub serves as a centralized site functioning as a data processing hub. Separate BBU modules can be assembled independently or interconnected to distribute resources, adapting to the network's changing dynamics and needs. Communication among these modules boasts remarkably high bandwidth and exceptionally low latency. The BBU can be further segmented into DU (Distributed Unit) and CU (Centralized Unit). The third crucial component is a fronthaul or conveyance network – the connecting layer between a baseband unit (BBU) and a set of RRUs, utilizing optical fibres, cellular links, or mmWave communication. The goal of this thesis is to find a way to utilize the 5G RAN Architecture as efficiently as possible and for this purpose, Enhanced Common Public Radio Interface (eCPRI) or enhanced CPRI fronthaul is adopted instead of CPRI as it is a manner of splitting up the functions performed by baseband unit and putting some of that in the RRU so it can reduce the burden on the fibre. Enhanced CPRI makes it possible to send some data packets to a virtual Distributed Unit (vDU) and others to a virtual Centralized Unit (vCU) which results in reduced data traffic on fibre. The first part of this research paper focuses on considering and learning about the 5G Cloud RAN architecture's main components, some cloud RAN history, and important components included in the 5G Cloud RAN. In the second part, research goes in depth about the fronthaul gateway technology that is eCPRI structure, its functional split, its difference from CPRI in structure and functionality, and how it is enhanced and developed. Considering CRAN specifications, it will also include some eCPRI protocol delay management and timing studies. Finally, Test cases are developed that can authenticate the low latency and high throughput of data with eCPRI fronthaul in 5G Cloud RAN as compared to CPRI fronthaul. The inspiration behind this is to recreate the model with substantial changes that work with an ideal behaviour of a subsystem, with this a tool or an environment can be obtained that maximizes the efficiency of 5G CRAN. It will also permit network architects and designers to experiment with new features, which can reduce costs, save time, improve latency. It can also provide a tool to verification engineers that will help them to generate optimal replies of the system necessary for evaluating the practical realization of that system

    Convergence of Wireless and Optical Network in Future Communication Network

    Get PDF
    The requirement of data increases many-fold in recent years to support the newest technologies in B5G and 6G. Wireless is the last mile solution as access with an optical network as the backbone in future communication systems. Over the years in every new generation, the distance between the base station and the user is decreasing and the optical node is coming closer to the user. There are several technologies like AR/VR, AI, holographic communication, holographic telepresence, etc. are the main candidates in B5G and 6G, which are required high-speed connection with low latency. To support these services, it is almost mandatory that transmit data across the network should be smooth and seamless to provide successful communication. Providing a successful and appropriate wireless link among the users simultaneously to achieve the requirements is becoming more complex, hence challenging. The optical backbone of all wireless access networks requires supporting these user’s requirements, needs to evolve continuously with wireless network evolution. This chapter will study the evolution of both networks to understand their cooperation, alignment, and support

    Analysis of Bandwidth and Latency Constraints on a Packetized Cloud Radio Access Network Fronthaul

    Get PDF
    Cloud radio access network (C-RAN) is a promising architecture for the next-generation RAN to meet the diverse and stringent requirements envisioned by fifth generation mobile communication systems (5G) and future generation mobile networks. C-RAN offers several advantages, such as reduced capital expenditure (CAPEX) and operational expenditure (OPEX), increased spectral efficiency (SE), higher capacity and improved cell-edge performance, and efficient hardware utilization through resource sharing and network function virtualization (NFV). However, these centralization gains come with the need for a fronthaul, which is the transport link connecting remote radio units (RRUs) to the base band unit (BBU) pool. In conventional C-RAN, legacy common public radio interface (CPRI) protocol is used on the fronthaul network to transport the raw, unprocessed baseband in-phase/quadrature-phase (I/Q) samples between the BBU and the RRUs, and it demands a huge fronthaul bandwidth, a strict low-latency, in the order of a few hundred microseconds, and a very high reliability. Hence, in order to relax the excessive fronthaul bandwidth and stringent low-latency requirements, as well as to enhance the flexibility of the fronthaul, it is utmost important to redesign the fronthaul, while still profiting from the acclaimed centralization benefits. Therefore, a flexibly centralized C-RAN with different functional splits has been introduced. In addition, 5G mobile fronthaul (often also termed as an evolved fronthaul ) is envisioned to be packet-based, utilizing the Ethernet as a transport technology. In this thesis, to circumvent the fronthaul bandwidth constraint, a packetized fronthaul considering an appropriate functional split such that the fronthaul data rate is coupled with actual user data rate, unlike the classical C-RAN where fronthaul data rate is always static and independent of the traffic load, is justifiably chosen. We adapt queuing and spatial traffic models to derive the mathematical expressions for statistical multiplexing gains that can be obtained from the randomness in the user traffic. Through this, we show that the required fronthaul bandwidth can be reduced significantly, depending on the overall traffic demand, correlation distance and outage probability. Furthermore, an iterative optimization algorithm is developed, showing the impacts of number of pilots on a bandwidth-constrained fronthaul. This algorithm achieves additional reduction in the required fronthaul bandwidth. Next, knowing the multiplexing gains and possible fronthaul bandwidth reduction, it is beneficial for the mobile network operators (MNOs) to deploy the optical transceiver (TRX) modules in C-RAN cost efficiently. For this, using the same framework, a cost model for fronthaul TRX cost optimization is presented. This is essential in C-RAN, because in a wavelength division multiplexing-passive optical network (WDM-PON) system, TRXs are generally deployed to serve at a peak load. But, because of variations in the traffic demands, owing to tidal effect, the fronthaul can be dimensioned requiring a lower capacity allowing a reasonable outage, thus giving rise to cost saving by deploying fewer TRXs, and energy saving by putting the unused TRXs in sleep mode. The second focus of the thesis is the fronthaul latency analysis, which is a critical performance metric, especially for ultra-reliable and low latency communication (URLLC). An analytical framework to calculate the latency in the uplink (UL) of C-RAN massive multiple-input multiple-output (MIMO) system is presented. For this, a continuous-time queuing model for the Ethernet switch in the fronthaul network, which aggregates the UL traffic from several massive MIMO-aided RRUs, is considered. The closed-form solutions for the moment generating function (MGF) of sojourn time, waiting time and queue length distributions are derived using Pollaczek–Khinchine formula for our M/HE/1 queuing model, and evaluated via numerical solutions. In addition, the packet loss rate – due to the inability of the packets to reach the destination in a certain time – is derived. Due to the slotted nature of the UL transmissions, the model is extended to a discrete-time queuing model. The impact of the packet arrival rate, average packet size, SE of users, and fronthaul capacity on the sojourn time, waiting time and queue length distributions are analyzed. While offloading more signal processing functionalities to the RRU reduces the required fronthaul bandwidth considerably, this increases the complexity at the RRU. Hence, considering the 5G New Radio (NR) flexible numerology and XRAN functional split with a detailed radio frequency (RF) chain at the RRU, the total RRU complexity is computed first, and later, a tradeoff between the required fronthaul bandwidth and RRU complexity is analyzed. We conclude that despite the numerous C-RAN benefits, the stringent fronthaul bandwidth and latency constraints must be carefully evaluated, and an optimal functional split is essential to meet diverse set of requirements imposed by new radio access technologies (RATs).Ein cloud-basiertes Mobilfunkzugangsnetz (cloud radio access network, C-RAN) stellt eine vielversprechende Architektur für das RAN der nächsten Generation dar, um die vielfältigen und strengen Anforderungen der fünften (5G) und zukünftigen Generationen von Mobilfunknetzen zu erfüllen. C-RAN bietet mehrere Vorteile, wie z.B. reduzierte Investitions- (CAPEX) und Betriebskosten (OPEX), erhöhte spektrale Effizienz (SE), höhere Kapazität und verbesserte Leistung am Zellrand sowie effiziente Hardwareauslastung durch Ressourcenteilung und Virtualisierung von Netzwerkfunktionen (network function virtualization, NFV). Diese Zentralisierungsvorteile erfordern jedoch eine Transportverbindung (Fronthaul), die die Antenneneinheiten (remote radio units, RRUs) mit dem Pool an Basisbandeinheiten (basisband unit, BBU) verbindet. Im konventionellen C-RAN wird das bestehende CPRI-Protokoll (common public radio interface) für das Fronthaul-Netzwerk verwendet, um die rohen, unverarbeitet n Abtastwerte der In-Phaseund Quadraturkomponente (I/Q) des Basisbands zwischen der BBU und den RRUs zu transportieren. Dies erfordert eine enorme Fronthaul-Bandbreite, eine strenge niedrige Latenz in der Größenordnung von einigen hundert Mikrosekunden und eine sehr hohe Zuverlässigkeit. Um die extrem große Fronthaul-Bandbreite und die strengen Anforderungen an die geringe Latenz zu lockern und die Flexibilität des Fronthauls zu erhöhen, ist es daher äußerst wichtig, das Fronthaul neu zu gestalten und dabei trotzdem von den erwarteten Vorteilen der Zentralisierung zu profitieren. Daher wurde ein flexibel zentralisiertes CRAN mit unterschiedlichen Funktionsaufteilungen eingeführt. Außerdem ist das mobile 5G-Fronthaul (oft auch als evolved Fronthaul bezeichnet) als paketbasiert konzipiert und nutzt Ethernet als Transporttechnologie. Um die Bandbreitenbeschränkung zu erfüllen, wird in dieser Arbeit ein paketbasiertes Fronthaul unter Berücksichtigung einer geeigneten funktionalen Aufteilung so gewählt, dass die Fronthaul-Datenrate mit der tatsächlichen Nutzdatenrate gekoppelt wird, im Gegensatz zum klassischen C-RAN, bei dem die Fronthaul-Datenrate immer statisch und unabhängig von der Verkehrsbelastung ist. Wir passen Warteschlangen- und räumliche Verkehrsmodelle an, um mathematische Ausdrücke für statistische Multiplexing- Gewinne herzuleiten, die aus der Zufälligkeit im Benutzerverkehr gewonnen werden können. Hierdurch zeigen wir, dass die erforderliche Fronthaul-Bandbreite abhängig von der Gesamtverkehrsnachfrage, der Korrelationsdistanz und der Ausfallwahrscheinlichkeit deutlich reduziert werden kann. Darüber hinaus wird ein iterativer Optimierungsalgorithmus entwickelt, der die Auswirkungen der Anzahl der Piloten auf das bandbreitenbeschränkte Fronthaul zeigt. Dieser Algorithmus erreicht eine zusätzliche Reduktion der benötigte Fronthaul-Bandbreite. Mit dem Wissen über die Multiplexing-Gewinne und die mögliche Reduktion der Fronthaul-Bandbreite ist es für die Mobilfunkbetreiber (mobile network operators, MNOs) von Vorteil, die Module des optischen Sendeempfängers (transceiver, TRX) kostengünstig im C-RAN einzusetzen. Dazu wird unter Verwendung des gleichen Rahmenwerks ein Kostenmodell zur Fronthaul-TRX-Kostenoptimierung vorgestellt. Dies ist im C-RAN unerlässlich, da in einem WDM-PON-System (wavelength division multiplexing-passive optical network) die TRX im Allgemeinen bei Spitzenlast eingesetzt werden. Aufgrund der Schwankungen in den Verkehrsanforderungen (Gezeiteneffekt) kann das Fronthaul jedoch mit einer geringeren Kapazität dimensioniert werden, die einen vertretbaren Ausfall in Kauf nimmt, was zu Kosteneinsparungen durch den Einsatz von weniger TRXn und Energieeinsparungen durch den Einsatz der ungenutzten TRX im Schlafmodus führt. Der zweite Schwerpunkt der Arbeit ist die Fronthaul-Latenzanalyse, die eine kritische Leistungskennzahl liefert, insbesondere für die hochzuverlässige und niedriglatente Kommunikation (ultra-reliable low latency communications, URLLC). Ein analytisches Modell zur Berechnung der Latenz im Uplink (UL) des C-RAN mit massivem MIMO (multiple input multiple output) wird vorgestellt. Dazu wird ein Warteschlangen-Modell mit kontinuierlicher Zeit für den Ethernet-Switch im Fronthaul-Netzwerk betrachtet, das den UL-Verkehr von mehreren RRUs mit massivem MIMO aggregiert. Die geschlossenen Lösungen für die momenterzeugende Funktion (moment generating function, MGF) von Verweildauer-, Wartezeit- und Warteschlangenlängenverteilungen werden mit Hilfe der Pollaczek-Khinchin-Formel für unser M/HE/1-Warteschlangenmodell hergeleitet und mittels numerischer Verfahren ausgewertet. Darüber hinaus wird die Paketverlustrate derjenigen Pakete, die das Ziel nicht in einer bestimmten Zeit erreichen, hergeleitet. Aufgrund der Organisation der UL-Übertragungen in Zeitschlitzen wird das Modell zu einem Warteschlangenmodell mit diskreter Zeit erweitert. Der Einfluss der Paketankunftsrate, der durchschnittlichen Paketgröße, der SE der Benutzer und der Fronthaul-Kapazität auf die Verweildauer-, dieWartezeit- und dieWarteschlangenlängenverteilung wird analysiert. Während das Verlagern weiterer Signalverarbeitungsfunktionalitäten an die RRU die erforderliche Fronthaul-Bandbreite erheblich reduziert, erhöht sich dadurch im Gegenzug die Komplexität der RRU. Daher wird unter Berücksichtigung der flexiblen Numerologie von 5G New Radio (NR) und der XRAN-Funktionenaufteilung mit einer detaillierten RF-Kette (radio frequency) am RRU zunächst die gesamte RRU-Komplexität berechnet und später ein Kompromiss zwischen der erforderlichen Fronthaul-Bandbreite und der RRU-Komplexität untersucht. Wir kommen zu dem Schluss, dass trotz der zahlreichen Vorteile von C-RAN die strengen Bandbreiten- und Latenzbedingungen an das Fronthaul sorgfältig geprüft werden müssen und eine optimale funktionale Aufteilung unerlässlich ist, um die vielfältigen Anforderungen der neuen Funkzugangstechnologien (radio access technologies, RATs) zu erfüllen

    Optimization of 5G Second Phase Heterogeneous Radio Access Networks with Small Cells

    Get PDF
    Due to the exponential increase in high data-demanding applications and their services per coverage area, it is becoming challenging for the existing cellular network to handle the massive sum of users with their demands. It is conceded to network operators that the current wireless network may not be capable to shelter future traffic demands. To overcome the challenges the operators are taking interest in efficiently deploying the heterogeneous network. Currently, 5G is in the commercialization phase. Network evolution with addition of small cells will develop the existing wireless network with its enriched capabilities and innovative features. Presently, the 5G global standardization has introduced the 5G New Radio (NR) under the 3rd Generation Partnership Project (3GPP). It can support a wide range of frequency bands (<6 GHz to 100 GHz). For different trends and verticals, 5G NR encounters, functional splitting and its cost evaluation are well-thought-out. The aspects of network slicing to the assessment of the business opportunities and allied standardization endeavours are illustrated. The study explores the carrier aggregation (Pico cellular) technique for 4G to bring high spectral efficiency with the support of small cell massification while benefiting from statistical multiplexing gain. One has been able to obtain values for the goodput considering CA in LTE-Sim (4G), of 40 Mbps for a cell radius of 500 m and of 29 Mbps for a cell radius of 50 m, which is 3 times higher than without CA scenario (2.6 GHz plus 3.5 GHz frequency bands). Heterogeneous networks have been under investigation for many years. Heterogeneous network can improve users service quality and resource utilization compared to homogeneous networks. Quality of service can be enhanced by putting the small cells (Femtocells or Picocells) inside the Microcells or Macrocells coverage area. Deploying indoor Femtocells for 5G inside the Macro cellular network can reduce the network cost. Some service providers have started their solutions for indoor users but there are still many challenges to be addressed. The 5G air-simulator is updated to deploy indoor Femto-cell with proposed assumptions with uniform distribution. For all the possible combinations of apartments side length and transmitter power, the maximum number of supported numbers surpassed the number of users by more than two times compared to papers mentioned in the literature. Within outdoor environments, this study also proposed small cells optimization by putting the Pico cells within a Macro cell to obtain low latency and high data rate with the statistical multiplexing gain of the associated users. Results are presented 5G NR functional split six and split seven, for three frequency bands (2.6 GHz, 3.5GHz and 5.62 GHz). Based on the analysis for shorter radius values, the best is to select the 2.6 GHz to achieve lower PLR and to support a higher number of users, with better goodput, and higher profit (for cell radius u to 400 m). In 4G, with CA, from the analysis of the economic trade-off with Picocell, the Enhanced multi-band scheduler EMBS provide higher revenue, compared to those without CA. It is clearly shown that the profit of CA is more than 4 times than in the without CA scenario. This means that the slight increase in the cost of CA gives back more than 4-time profit relatively to the ”without” CA scenario.Devido ao aumento exponencial de aplicações/serviços de elevado débito por unidade de área, torna-se bastante exigente, para a rede celular existente, lidar com a enormes quantidades de utilizadores e seus requisitos. É reconhecido que as redes móveis e sem fios atuais podem não conseguir suportar a procura de tráfego junto dos operadores. Para responder a estes desafios, os operadores estão-se a interessar pelo desenvolvimento de redes heterogéneas eficientes. Atualmente, a 5G está na fase de comercialização. A evolução destas redes concretizar-se-á com a introdução de pequenas células com aptidões melhoradas e características inovadoras. No presente, os organismos de normalização da 5G globais introduziram os Novos Rádios (NR) 5G no contexto do 3rd Generation Partnership Project (3GPP). A 5G pode suportar uma gama alargada de bandas de frequência (<6 a 100 GHz). Abordam-se as divisões funcionais e avaliam-se os seus custos para as diferentes tendências e verticais dos NR 5G. Ilustram-se desde os aspetos de particionamento funcional da rede à avaliação das oportunidades de negócio, aliadas aos esforços de normalização. Exploram-se as técnicas de agregação de espetro (do inglês, CA) para pico células, em 4G, a disponibilização de eficiência espetral, com o suporte da massificação de pequenas células, e o ganho de multiplexagem estatística associado. Obtiveram-se valores do débito binário útil, considerando CA no LTE-Sim (4G), de 40 e 29 Mb/s para células de raios 500 e 50 m, respetivamente, três vezes superiores em relação ao caso sem CA (bandas de 2.6 mais 3.5 GHz). Nas redes heterogéneas, alvo de investigação há vários anos, a qualidade de serviço e a utilização de recursos podem ser melhoradas colocando pequenas células (femto- ou pico-células) dentro da área de cobertura de micro- ou macro-células). O desenvolvimento de pequenas células 5G dentro da rede com macro-células pode reduzir os custos da rede. Alguns prestadores de serviços iniciaram as suas soluções para ambientes de interior, mas ainda existem muitos desafios a ser ultrapassados. Atualizou-se o 5G air simulator para representar a implantação de femto-células de interior com os pressupostos propostos e distribuição espacial uniforme. Para todas as combinações possíveis do comprimento lado do apartamento, o número máximo de utilizadores suportado ultrapassou o número de utilizadores suportado (na literatura) em mais de duas vezes. Em ambientes de exterior, propuseram-se pico-células no interior de macro-células, de forma a obter atraso extremo-a-extremo reduzido e taxa de transmissão dados elevada, resultante do ganho de multiplexagem estatística associado. Apresentam-se resultados para as divisões funcionais seis e sete dos NR 5G, para 2.6 GHz, 3.5GHz e 5.62 GHz. Para raios das células curtos, a melhor solução será selecionar a banda dos 2.6 GHz para alcançar PLR (do inglês, PLR) reduzido e suportar um maior número de utilizadores, com débito binário útil e lucro mais elevados (para raios das células até 400 m). Em 4G, com CA, da análise do equilíbrio custos-proveitos com pico-células, o escalonamento multi-banda EMBS (do inglês, Enhanced Multi-band Scheduler) disponibiliza proveitos superiores em comparação com o caso sem CA. Mostra-se claramente que lucro com CA é mais de quatro vezes superior do que no cenário sem CA, o que significa que um aumento ligeiro no custo com CA resulta num aumento de 4-vezes no lucro relativamente ao cenário sem CA

    5G Mobile Phone Network Introduction in Colombia

    Get PDF
    This research received support from the AUIP (Iberoamerican University Association for Postgraduate Studies).The authors would like to thank the following members of Ericsson and Nokia Company for their valuable technological support in relation to the deployment of 5G networks in Colombia and Latin America. To Ericsson Company: Fabian Monge, Head of Networks & Managed Services Sales LATAM North—Ericsson, Andrés Quintero Arango, Country Manager Colombia— Ericsson, Camilo Beltrán, RAN Sales Domain Manager—Ericsson, Tatiana Dimian, Technical & Solution Sales Colombia—Ericsson. To Nokia Company: Juan Gabriel Mariño Pedroza, Presales Director & Business Development Colombia—Nokia.The deployment of the 5G mobile network is currently booming, offering commercially available services that improve network performance metrics by minimizing network latency in countries such as the USA, China, and Korea. However, many countries around the world are still in the pilot phase promoted and regulated by government agencies. This is the case in Colombia, where the assignment of the first 5G band is planned for the third quarter of 2021. By analyzing the results of the pilot phase and the roadmap of the Colombian Ministry of Information and Communication Technologies (MinTIC), we can determine the main issues, which contribute to the deployment of 5G mobile technology as well as the plans to achieve a 5G stand-alone network from 4G networks. This is applicable to other countries in Latin America and the world. Then, our objective is to synthesize and share the most important concepts of 5G mobile technology such as the MIMO (multiple input/multiple output) antenna, RAN (Radio Access Network), C-RAN (Centralised-RAN), and frequency bands, and evaluate the current stage of its introduction in Colombia.AUIP (Iberoamerican University Association for Postgraduate Studies

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    5G New Radio Fronthaul Network Design for eCPRI-IEEE 802.1CM and Extreme Latency Percentiles

    Get PDF
    Packet-switched fronthaul networks are often designed following the rule that the worst-case network delay must be below a given target end-to-end network latency budget. However, the theoretical maximum delay can be too pessimistic in particular scenarios, where the latency budget needs to be a very small or there is a need to stretch the distance between the radio heads and the baseband units. In this paper, we propose to use a very high packet delay percentiles as an alternative to the maximum theoretical delay in order to stretch the range of the fronthaul links at the expense of a higher frame loss ratio (FLR), within the limits established by eCPRI and the IEEE 802.1 CM. Several methods to estimate the percentiles for the I U /II D eCPRI functional splits are analyzed. Namely, G/G/1 and N*D/D/1 queueing models are tested and compared with simulation as dimensioning tools. The results support that the N*D/D/1 queue is able to model the behavior of a packet-switch fronthaul aggregator using the eCPRI standard for 5g New Radio (NR) Fronthaul streams and can be used as a tool to dimension the length of the links. The experiments show that the fronthaul links' lengths can be increased by 60% and 10% for 50- and 100-MHz NR channels, respectively, while keeping the latency budget and frame loss ratio within the IEEE 802.1 CM limits.This work was supported in part by the Spanish National TEXEO Project under Grant TEC2016-80339-R and in part by the H2020 EU-Funded BlueSpace Project under Grant 762055. The work of G. Otero PĂ©rez was supported by the Spanish Ministry of Education, Culture and Sport through the FPU Grant under Grant FPU16/01760. The work of G. Otero PĂ©rez was supported by the Spanish Ministry of Education, Culture and Sport by means of the FPU under Grant FPU16/01760.Publicad
    corecore