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ABSTRACT Packet-switched fronthaul networks are often designed following the rule that the worst-case
network delay must be below a given target end-to-end network latency budget. However, the theoretical
maximum delay can be too pessimistic in particular scenarios where the latency budget needs to be very
small or there is a need to stretch the distance between the radio heads and the baseband units. In this paper,
we propose to use very high packet delay percentiles as an alternative to the maximum theoretical delay in
order to stretch the range of the fronthaul links at the expense of a higher frame loss ratio (FLR), within the
limits established by eCPRI and IEEE 802.1CM. Several methods to estimate the percentiles for the IU / IID
eCPRI functional splits are analyzed. Namely, G/G/1 and N*D/D/1 queueing models are tested and compared
with simulation as dimensioning tools. The results support that the N*D/D/1 queue is able to model the
behavior of a packet-switch fronthaul aggregator using the eCPRI standard for 5G New Radio (NR) fronthaul
streams and can be used as a tool to dimension the length of the links. Experiments show that the fronthaul
links’ lengths can be increased by 60% and 10% for 50 MHz and 100 MHz NR channels, respectively, while
keeping the latency budget and frame loss ratio within the IEEE 802.1CM limits.

INDEX TERMS 5G, C-RAN, Delay percentiles, eCPRI, Fronthaul Networks, G/G/1, IEEE 802.1CM,
N*D/D/1, New Radio (NR), Time-Sensitive Networking (TSN).

I. INTRODUCTION

THE Cloud Radio Access Network (C-RAN) architecture
proposed as an implementation option for 5G Mobile

Networks introduces the concept of cloud-based processing
of radio signals. In C-RAN, the radio signals received by the
Remote Radio Heads (RRHs) are digitized and transported
over the fronthaul (FH) network to a pool of shared remote
Baseband Units (BBUs) where the processing takes place.

On the one hand, this scheme reduces the complexity of
the base stations, enabling the sharing of signal processing
capacity by several antennas. Since the signal processing
is performed in a centralized facility, adding new features
such as Coordinated Multi-Point (CoMP) [1], [2] has become
easier. On the other hand, these advancements come at the
expense of a higher bandwidth utilization in the fronthaul
network. Since a great deal of processing is offloaded from
the base stations, the C-RAN architecture poses stringent

delay and jitter requirements for the transport of FH data.
Until recently, the Common Public Radio Interface (CPRI)
[3] specification has been used as the most popular RRH-BBU
interface1. However, CPRI requires very high-capacity and
ultra-low latency links for the digitized RF signal. Therefore,
more efficient schemes that rely on other functional splits of
the radio processing chain are necessary to support 5G. In
addition, the demand for a packet-switching-based fronthaul
network [4] has led to an enhanced version of CPRI (eCPRI
[5]), which is designed for packet networks, namely Ethernet
and IP.

With the aim of cost reduction, hardware reuse, and back-
wards compatibility, Ethernet-based packet-switch networks

1In CPRI terminology, the terms employed for RRH and BBU are RE (Radio
Equipment) and REC (Radio Equipment Control) respectively; eRE and eREC
if eCPRI is supported. Finally, 3GPP RAN architecture uses the terms DU
(Distributed Unit) and Central Unit (CU).
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are being taken into account for the implementation of such
FH networks. Given the potential of this solution to exploit
the statistical multiplexing of variable-rate fronthaul and
backhaul traffic, there exists an intense research and stan-
dardization effort in this field. Particularly, the IEEE 802.1CM
standard published in 2018 [6] includes important recom-
mendations for the configuration of Ethernet for the transport
of fronthaul traffic and specifies relevant QoS targets for such
transport. These parameters include the end-to-end latency
budget and the maximum Frame Loss Ratio (FLR) for each
type of fronthaul traffic, which are used as design targets
in this article. We shall review the aspects of IEEE 802.1CM
relevant to this paper in Section III-B.

Finally, all the above-mentioned aspects are affected by the
planned data rate growth for 5G New Radio (NR). In Decem-
ber 2017, the numerology for the New Radio air interface for
5G was released by 3GPP in TS38.104 [8] as Release 15. This
document defines two frequency ranges: FR1 (below 6 GHz)
with component bandwidths ranging 5-100 MHz and sub-
carrier spacings 15/30/60 KHz; and FR2 (24-86 GHz) with
component bandwidths ranging 50-400 MHz and sub-carrier
spacings 60/120 KHz. Additionally, eight possible functional
split options are further defined in TR38.801 [9]. This leads
to a wide range of very-high-rate fronthaul traffic patterns
with different QoS requirements which require cost-efficient
transport solutions given the size and economic impact of the
access network in the telecommunication business. We study
the optimization of the fronthaul network for transporting 5G
NR signals in Section VI.

The remainder of this article is organized as follows.
Section II makes a review of the related literature, including
theoretical, simulated, and experimental works concerning
the modeling of the FH network. Section III describes the C-
RAN architecture and gives a short overview of eCPRI and its
functional splits in order to identify the traffic patterns. Addi-
tionally, we highlight the transport requirements established
by eCPRI and how IEEE 802.1CM proposes to implement
them on an Ethernet switched network. The section includes
a description of the main design parameter and sets the goal
of this paper. Section IV identifies a number of options
to compute the queuing delay percentiles for an eCPRI-
driven 5G New Radio fronthaul, which are later compared
in Section V. Finally, Section VI describes a concrete use
case of application of N*D/D/1 using, as a target percentile,
the one corresponding to the maximum FLR allowed for
HPF packets according to 802.1CM. The practical gain, in
terms of distance (link length), of using very high latency
percentiles is assessed for the particular transport of 5G New
Radio signals with eCPRI. Section VII concludes this paper,
summarizing the findings and contributions of this work.

II. RELATED WORK IN FRONTHAUL MODELING
The fronthaul network appears to be a vital part of the
future 5G C-RAN architecture. The performance of CPRI over
Ethernet has been evaluated in the past in several research
efforts [10]. However, to the best of our knowledge, no previ-

ous standard-oriented works analyzing the tradeoff between
delay and FLR have been published, and few contain 5G NR
transport results.

Studies performed with several standards [11]–[13] pro-
pose frame preemption and traffic scheduling to alleviate
end-to-end latency and jitter. In [14] and [15], the authors
investigate the effects of different queuing regimes (weighted
round robin and strict priority) on the mean and standard
deviation of the frame inter-arrival delay of LTE traffic in
the presence of background Ethernet traffic. The authors
of [16] address the dimensioning problem of next generation
fronthaul networks from a different perspective. They com-
pare multiple fronthaul architectures in terms of bandwidth
requirements, delay budgets, deployment costs, complexity
of the RRHs, and the ability to support advanced wireless
functions. In order to do so, they set up a mathematical
framework to solve an optimization problem that takes into
account deployment costs, distances, capacity, coverage, etc.
Then, they give insights into the modeling of future optical
transport networks.

Waqar et al. study in [17] the impact of jitter on the perfor-
mance of CPRI over Ethernet and propose a fronthaul archi-
tecture with two algorithms that enforce constant inter-packet
delay by transmitting the packets at pre-calculated timing
values and use buffering to avoid rescheduling. Simulations
confirm that the algorithms are able to maintain the jitter
within reasonable limits. The authors of [18] examine the
different packet switching mechanisms for Time Sensitive
Networks proposed in standardization, focusing on solutions
using inter-packet gap detection and scheduling.

Among simulation-based studies, it is worth mentioning
the following: Chang et al. [19] evaluate different packe-
tization strategies for a number functional splits and user
densities. They provide insights on the feasibility of each
combination via simulations and theoretical analysis assum-
ing worst-case peak rates. Simulations in [20] further study
the impact of packetization by computing the optimal pay-
load sizes. The 95th percentile queueing delay is used as
the dimensioning tool to decide the maximum number of
supported RRHs. The analysis carried out in [21] presents a
packet-based 5G transport network that includes a scheduler
to exploit inter-packet gaps. The authors of [22] present an
R package called Simmer for simulating 5G scenarios and
show its applicability in [23]. Finally, [24] compares the
throughput and cost of distributed versus centralized RAN via
simulation.

Regarding our previous work, in [25], we study the delay
constraints imposed by the CPRI protocol in ring-star topolo-
gies used by mobile operators. We derived the theoretical ex-
pressions for the propagation and queueing delays, adjusting
a G/G/1 queueing model to our scenario. We showed that this
estimation is an upper bound on the simulation output and
is accurate under certain conditions. Also, based on these
results, a packetization strategy is proposed to reduce the
average aggregated queueing delay.

In [26], we extended the previously mentioned work by
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studying the behavior of the Cloud Radio Access Network
(C-RAN) architectures with eCPRI protocol. To that end,
we derived the p-th percentile queueing delay expression
based on the Kingman’s Exponential Law of Congestion.
Simulations revealed that it provides accurate estimates on
such delays (90th, 99th percentiles) for the particular case
of aggregating a number of eCPRI fronthaul flows, namely
functional splits IU and IID. Nevertheless, meeting the ex-
treme percentiles required in 802.1CM is not supported by
this approach.

In the practical experimentation side, we should note
several studies. In [27], the authors experimentally evaluate
the fronthaul latency and how the virtualization affects the
latency budget in an experimental 5G testbed [28]. They
focus on the intra PHY split (Option 7-1 defined by 3GPP [9]).
Their results suggest that virtualization further decreases the
latency budget.

The authors of [29] study the Ethernet-based fronthaul as
an alternative to the expensive deployment and use costs of
CPRI. They present this option as a cost-efficient and more-
easily reconfigurable alternative. They investigate the delay
and jitter requirements from a more practical perspective by
making use of FPGA-based Verilog experiments and further
propose a scheduling policy, based on [11] and [13], to cope
with the jitter introduced by encapsulation. In [30], both
size- and time-based Ethernet encapsulations are considered.
Results show that time-based encapsulation is preferable to
avoid jitter upon CPRI line bit rate reconfiguration. In [31],
they use the an OpenAirInterface (OAI) setup to characterize
the traffic of different functional splits as a guide for choosing
the appropriate transport network.

III. PRELIMINARIES AND STANDARDS
In this section, we give an overview of the C-RAN architecture
envisioned for the fronthaul network. In addition, we review
the standardization efforts that will shape the future FH,
i.e., 5G New Radio, eCPRI, and IEEE 802.1CM, and their
practical implications, while paying special attention to the
constraints that they pose in terms of latency and bandwidth
consumption.

A. 5G NEW RADIO AND ECPRI IN C-RAN
The C-RAN approach for cellular networks advocates for
splitting the radio processing chain in order to simplify base
stations and share baseband processors. The scenario ad-
dressed by this paper is the single-hop case, a frequent setting
where a single Ethernet switch is employed to multiplex a
number of fronthaul flows coming from different RRHs (see
Fig. 1). These flows are then aggregated and forwarded to
a centralized pool of baseband processing units over a fiber
access network. In this scheme, a flexible distribution of the
radio processing functions enables the network designer to
trade off RRH complexity, fronthaul rate, and distance. A low-
level functional split means simpler RRHs but higher fron-
thaul rates, ultra-low latency requirements, and, therefore,
distance limitations. Thus, it is important to properly identify

FIGURE 1. Target fronthaul network scenario.

the split, as it determines a particular traffic pattern and delay
budget. Fig. 2a plots the envisioned functional splits in the
eCPRI specification, similar to the ones in 3GPP 5G New
Radio specification [8].

As noted in Fig. 2a, Functional Split E is equivalent to
the CPRI functional split. It consists of the quantization and
digitalization of the down-converted radio waveform in the
time domain [33]. Since no further processing is performed
at the RRH side, information, such as the Cyclic Prefix (CP),
is transmitted towards the BBU as overhead. In this case,
complex processing devices are no longer needed at the RRH
because all the functions required to decode the signal are
centralized at the BBU. Since the fronthaul bitrate that has to
be provisioned to give support to this functional split is too
high (see Table 1), we focus our study in the next functional
split, as suggested by eCPRI.

If we apply further processing to the radio signals by
removing the cyclic prefix, performing the Fast Fourier
Transform, removing guard band subcarriers and demapping
the resource blocks, a large amount of overhead data is elimi-
nated and, therefore, the bandwidth requirements are relaxed.
At this point (Split IU), the generated data rate depends on
the fraction of radio resource blocks that are being used (i.e.,
fronthaul data rate is proportional to cell load).

Let us analyze the shape of the generated traffic in a given
RRH. Assuming a worst-case utilization scenario –that is, all
the resource blocks are being utilized (η = 1) – the traffic at
the output of the RRH can be expressed as

RSplit IU = Nsc · 0.9 · (Ts)−1 · η · 2 ·Nbits ·Nant (1)

where Nsc is the total number of subcarriers in the channel.
Assume that 5% are used as guard bands [34] (10% for
LTE [35]). Ts is the symbol duration, and Nbits and Nant
stand for the number of quantization bits and the number of
antennas, respectively. Finally, the 2-factor accounts for the
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(a)eCPRIvisionof5Gprocessingchain(see[5]).

(b)PacketizedSplitIUbursts:exampleforTs=66.6µs.

FIGURE2. Fronthaulnetworkandtrafficpattern.

complexnatureofsignals,i.e.,in-phaseandquadrature(IQ)
components.

Numericalexample:ConsideringaMIMO systemwith2
antennas,50MHzchannels,and15KHzsubcarrierspacing;
50MHz/15KHz=3333.3subcarriersareavailableinside
thatbandwidth.Inordertomaintainorthogonality,asymbol
rateofTs=66.6µsisneeded.Finally,assuming15bitsto
representeachIQsample,wehaveabitrateof2,851Mbit/s,
thatis,aburstof 23,753bytesevery66.6µsthateachRRH

periodicallysendstotheBBU.Applyingthesamemethodol-
ogyfordifferentNR channelconfigurations,weobtainthe
numbersincludedinTable1.Subcarrierspacingsaswellas
theburst’speriodsandsizesareincluded.

Dependingonthesizeofthepacketsusedtotransport
theFH bursts,theperformance maychange,asstudied
in[25].However,forthesakeofbackwardscompatibility,
weconsiderapayloadsizeof1,500bytessoastomeetthe
maximumpayloadlengthdefinedintheIEEE802.3Ethernet
standard.ThisiscompliantwithIEEE802.1CM (Standard
Sections8.1.1,8.2.1).Accordingly,itwouldtakeanumber
ofback-to-backframestotransporteachburstfromtheRRH,
asdepictedinFig.2b.Regardingtheframeoverhead,wetake
intoaccountan8-bytepreamble,a14-byteEthernetheader,4
bytesforthechecksum,12bytesfortheinterpacketgap,and,
finally,a4-byteeCPRIheader,addingupto1,542bytesper
burstpacket.EachRRHperiodicallysendsburstsofpackets

thatcontainthedigitizedI/QforOFDMsymbols.

ItisratherimportanttoobservethatthedifferentFH

flowsmayoverlapindifferentwaysattheaggregationpoint,
leavingsilenceperiodsorcausingimportantqueueingdelays.
Inthefollowing,weassumethattheoffsetofeachflowwith
respecttothefirstone(referenceflow)followsauniform
distributionbetween0andtheburstperiod,U(0,Ts).

Inadditiontothesenumbers,theeCPRIstandarddefines
theReal-TimeControlInformationmessages.Thesearesent
beforethetransmissionoftheuserdataburststoinformthe
remotenodeabouthowtoprocessthedatacontainedinthem.
Thismessagetypeincludesinformationforcontrol,configu-
ration,andmeasurement.Nevertheless,atthetimeofwriting,
eCPRI doesnotprovidea waytocomputethegenerated
Real-TimeControldatarate.Thereasonisthatthepayload
includedinthesemessagesisvendor-specificanddependson
theparticularfunctionalsplitandimplementation[5].This
trafficmaybetransportedasIEEE802.1CMMediumPriority
Fronthaul(seeTable2).Inthiscase,thistrafficdoesnotalter
thedelaycalculationsofthispaper.

B.LATENCYBUDGETING:ECPRIANDIEEE802.1CM

TheIEEEStandardforlocalandmetropolitanareanetworks,
IEEE802.1CMTime-SensitiveNetworkingforFronthaul[6],
definesasetofprofilesusabletoconfigureEthernetnetworks
totransporttime-sensitivefronthaulstreams.Thestandard

4 VOLUME4,2016
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SplitE SplitIU(η=1)

ChannelBandwidth 50MHz 100MHz 50MHz 100MHz 200MHz 400MHz
SubcarrierSpacing 60KHz 60KHz 15KHz 60KHz 60KHz 120KHz

BurstSize[B] 120 240 23753 11880 23753 23753
Period[µs] 0.260416 66.6 16.6 16.6 8.3

Bitrate[Mb/s] 3686 7372 2851 5702 11401 22802

TABLE1.Functionalsplitstrafficprofilesfor5GNewRadiouserplane;Nant=2MIMO,Nbit=15 bit/sample,5%guardband.

802.1cm
Fron-
thaul
Class

DataType 802.1cm
Strict
Priority
Configura-
tion

Maxi-
mum
One-
way
Delay

Maxi-
mum
One-
way
FLR

HPF Class1IQdata
(CPRI)andClass2
(eCPRI)UserPlane
fastdata

Highest 100µs 10 7

MPF Class2(eCPRI)
UserPlaneslow
dataandC&Mfast
data

Second
Highest

1ms 10 7

LPF Classes1,2C&M
data

Third
Highest

1ms 10 6

TABLE2.Per-flowtransportrequirementsforsplitsE,ID,IID,andIU.

coverstwoclassesoffronthaulinterfaces:

•Class1referstointerfacesinwhichthefunctional
decompositionofanE-UTRAbasestationisdoneac-
cordingtoCPRIV7.0;alsopresentineCPRIassplit
optionE.

•Class2referstoeCPRIinterfacesinwhichthefunc-
tionaldecompositionofanE-UTRAbasestationisintra-
PHY,i.e.,SplitsIU/IID[5].E-UTRAsplitsabovePHY
donothavesuchstringentQoSconstraintsandarenot
addressedbyneitherIEEE802.1CMnoreCPRI.

Inaddition,IEEE802.1CMsuggestsdifferenttimingdistri-
butionschemestofulfillthesynchronizationrequirementsof
thefourtimingcategoriesidentifiedin[7]toimplement3GPP
features(handovers,MIMO,CoMP,etc.).Table2summarizes
theper-flowtransportrequirementsintegratinginformation
fromeCPRIv1.1[7]andIEEE802.1CM.Insummary,the
threetypesoffronthaulflowsidentifiedinCPRIandeCPRI
areasfollows:

a)HighPriorityFronthaul(HPF):includesClass1IQdata
andClass2UserPlanedata,bothwith100µsmaximum
end-to-endone-waylatency.

b)MediumPriorityFronthaul (MPF):includesClass2
UserPlaneslowdataandClass2Control&Manage-
ment(C&M)fastdata,with1msofone-waylatency
budget.

c)LowPriorityFronthaul(LPF):carriesClass1and
Class2C&Mdata.

Thestandarddefinessuchprofilestoconfigureabridged
networkforthetransportoffronthaultraffic.Furthermore,

differentprofilesaredefinedwiththeaimofhandlingeach
fronthaulflowproperly.ProfileAmakesuseofstrictpriority
queueingandrecommendssettingthehighestpossiblepri-
oritytoHPFtraffic.Subsequentlowerprioritiesshouldbe
assignedtoMPF andLPF,inthisorder.ProfileBextends
ProfileAwithframepreemptioninordertoreducethe
impactofbackgroundtrafficonjitter[23].However,the
extralatencysavingofthisprofileislimitedgiventhehigh
interfacedatarates(and,hence,smallframetransmission
times)requiredtotransportfronthaultraffic,especiallywith
theadventof5GNR.
ThenetworklatencyinIEEE802.1CMandIEEE802.1
standardsisdefinedasthetimeelapsedbetweenthereception
ofaframe’sfirstbitattheingressswitchandthemomentthat
thelastbitleavestheegressswitchoftheaccessnetwork.
Fig.3aisagraphicalrepresentationofthenetworklatency
definition.
Asreviewedin[6],thenetworklatencytnetworkcomprises
anumberofdifferentcomponents.Ingeneral,thesecanbe
consideredeitherasfixed(orbounded)orvariable.Onthe
onehand,thevariabletermsthatweconsiderinourdesign
problemaretheself-queueingdelay(queueingtimedueto
flowsofthesameHPFclasscompetingforthesameoutput
ports)andthepropagationdelay.Ontheotherhand,the
termsthatcanberegardedasfixedareasfollows:(a)the
frametransmissiontime;(b)thewaitingtimeuntilthetrans-
missionofthecurrentpacketisfinished(ifProfileA,i.e.,no
preemptionisused)or,alternatively,the"preemptiontime",
ifProfileBisusedandweneedtoseizetheoutputlink.This
isnamedasqueuingdelayin802.1CM;(c)theswitchstore-
and-forwardlatency.Latencyterms(a)and(b)arebounded
bythetransmissiontimeofthemaximumframesizeallowed
byIEEE802.1CMattheingress(2,000bytes).Finally,(c)
isboundedbytheswitch’shardwarecharacteristics,whichis
constantandintheorderofafewmicroseconds,typicallybe-
tween200nsand5µs[6],[40].Consequently,excludingthe
smallfixeddelaytermsfromtnetwork,weconsidertheoverall
latencybudgettnetworkthatincludesthevariablelatencyterms
usedfornetworkplanning,as:

tnetwork=t
Worst-case
self-queueing+tpropagation. (2)

C.TARGETFRONTHAULDESIGNPARAMETERS

Insingle-hoparchitecturesastheoneshowninFig.3bonly
oneswitchisrequiredtoaggregatetrafficfrommanydistant
RRHsanddistributeitamongthepoolofBBUsallocatedin
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Packet
switch
1

Packet
switch
2

Packet
switch
M

tnetwork< 100 μs   

BBU

BBU

BBU

BBU

…

Sector 1

Sector n

RRH

Ethernet frames

Packet
switch
1

tnetwork< 100 μs

BBU

BBU

BBU

BBU

…

RRH

RRH

Antenna 1

Antenna n Ethernet frames

(a)Genericfronthaulnetwork. (b)One-hopfronthaulnetwork:trytomaximizetheaccesssegmentrange.

FIGURE3.Maximumnetworklatencybudgetforhigh-priorityfronthaultraffic:(a)eCPRIandIEEE802.1CM[6];(b)eCPRIlatencybudgetintheone-hopscenario.

thecloud.Thisisparticularlysuitablefornetworkvirtual-
izationscenarios,wherevirtualBBUsandtechnologieslike
EdgeComputing[38]coexist.Thehighdatarateintendedfor
5Gaswellastheabove-mentionedlinkcapacitiesneededto
support5GNewRadiogenerallydemandtheuseofshorter
transmissiondistances.Inthiscontext,afronthaulnetwork
featuringareducednumberofhopsalsoseemstobeawise
choice[10],[39].Ideally,inaC-RANarchitecture,theBBUs
aredynamicallyallocatedandsharedbyalargenumberof
RRHsthatmayormaynotbegeneratingtrafficatagiven
time.Inallthesecontexts,verylowlatencyandfewhopsto
reachthefinaluserareparamounttoensureapropersystem
operation.

AsreviewedinTable2,IEEE802.1CMallocatesanetwork
latencybudgetof100µsforHPFtrafficsoastobealigned
withtherequirementsestablishedbyeCPRI[36],[37].Unlike
IEEE802.1CM,eCPRI[7]includestheingressandegress
linksinthelatencybudget.Thus,themostrestrictivedef-
inition(i.e.,eCPRI)istakenintoaccount.Havingthisin
mind,amaximumpropagationdistanceof20Kmcould
besupported(assuming5µs/Km).Inatypicalscenario,
roughlyhalfofthedelaybudget(50µs)isallocatedfor
propagationdelay,whichallowsatargetRRH-BBUdistance
ofupto10Km.Theremaining50µsshouldbeenoughto
copewiththerestoftheswitchingdelay,thatis,processing
andqueueingdelays.However,giventhestringentdelayre-
quirementsofC-RAN,thedimensioningusuallyconsidersthe
maximumtheoreticalqueueingdelay(see(2)and802.1CM).

Sinceourdesignobjectiveistostretchtherangeofthe
fronthaullinksasmuchaspossible,weproposetoloosethis
requirementandapplythemaximum(one-way)FrameLoss
Ratio(FLR)definedin802.1CMforeCPRIHPF(seeTable2)
insteadoftheworst-casedelay.TheFLRcriteriaincludesall
causesofframedrops(transmissionerrors,congestion,etc.)
andframesexperiencinglatedelivery.TheIEEE802.1CM
standard(seeSection6.2.3.2)explicitlyexcludesservice
unavailabilityfactorinthedefinitionofFLR.Providedthat

thebuffersforIQdatahavebeendimensionedtotheworst-
casesituation–allIQburstsarrivingatthesametimeto
theswitch–thecongestioneffectonFLRcanbeconsidered
null.Additionally,FLRcausedbytransmissionserrors,as-
suming1,500bytespacketsandalinkBERof10−12,is
1.2·10−8[41],whichisalmostanorderofmagnitudesmaller
thanthemaximumFLR.
Therefore,assumingthatmostofthelatencybudgetcanbe
spentonlatedeliveredpackets,itisacceptabletouseFLRas
adesignrule.Thefronthaullinksaredimensionedsuchthat
onlyoneoutofevery107packetislostduetolatedelivery,
i.e.,FLR=10−7.Thisimpliesfindingtherightconfiguration
oflinklengthsandFHnetworksuchthatthe99.9999999th
networkdelaypercentileremainsbelowtheHPFlatencylimit
of100µs.Thus,contrarytowhatwewoulddofortheworst-
case,weusethe99.9999999thpercentile,and(2)maybe
expressedas

tnetwork=t
99.9999999th
self-queueing +tpropagation. (3)

Thisallowsustomaximizethepropagationdelaybudget
and,hence,thetotalfiberlengthandservicecoverage.Next,
wefocusonfindingtheappropriatetoolstomodelthebehav-
ioroftheaggregationofeCPRIHPFflowsinIEEE802.1p.For
thesakeofsimplicity,self-queuingdelaywillbereferredto
asqueueingdelayintheremainderofthepaper.Withtheaim
ofmodelingthe99.9999999thqueueingdelaypercentile,we
considerbothanalyticalandsimulationsolutionsandassess
itssuitabilityfordifferent5GNewRadiosettings.

IV.QUEUINGLATENCYMODELINGANDSIMULATION

OPTIONSFORHIGHPRIORITYFRONTHAULTRAFFIC

Inthissection,wereviewthedifferentoptionsweidentified
tomodelandcomputethevaluesofthequeueingdelay
percentilesforHPF.Inallcases,weshallassumethatRRHs
andBBUssendOFDMsymbolsasburstsofback-to-back
frames,asspecifiedinSectionIII.
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A.THEG/G/1MODEL

Firstly,westudiedtheapplicabilityofageneralizedqueueing
model G/G/1byadaptingitto modelthetargetscenario.
ThereasonforchoosingG/G/1isthefollowing. Markovian
models,likethewell-knownM/M/1andM/G/1models,are
widelyusedduetotheexistenceofclosed-formexpressions
forthemeanwaitingtimeinqueue.However,theassumption
ofexponentiallydistributedtimebetweenarrivalsinthis
scenarioisnotrealistic,asshownin[25][26].Therefore,
theG/G/1 modelbasedontheAllen-Cunneenapproxima-
tion[42]waschosen.Unfortunately,contrarytotheprevious
one,thismodeldoesnotprovideclosed-formformulas;in-
stead,itoffersanupper-bound(see(4))forthemeanwaiting
timeinqueuethatdependsontheloadofthesystem(ρ)
andthe meanservicetime(E[S]). Additionally,itcanbe
particularizedforourscenarioviathesquaredcoefficientof
variationofthearrivals(C2[T])andservicetimes(C2[S]).

E[Wq]≤E[S]·
ρ

1−ρ
·

C2[T]+C2[S]

2
(4)

Notethat,forexponentiallydistributedtimebetweenarrivals
andservicetimes,equation(4)canbesimplifiedtotheM/M/1
modelsinceC2[T]=1=C2[S].

Sinceweareinterestedinthe99.9999999thpercentile,we
mayderiveanexpressionforthe pthpercentile,asshown
in[26],whereprepresentsthepercentileofinterest:

W(p)
q =max 0,E[S]

1

1−ρ

C2[T]+C2[S]

2
ln

ρ

1−p
.

(5)

B. DISCRETEEVENTSIMULATIONOFEXTREME

PERCENTILES

InadditiontovalidatingtheaccuracyoftheG/G/1queueing
modelviasimulation[26], weevaluatethepotentialofa
simulationtooltofindthevalueoftheextremepercentiles
that weareinterestedinasacomplementaryparttothis
theoretical models.Tothisend,we makeuseofacustom
discrete-eventsimulatorspecificallyprogrammedtosimulate
theaggregationofthefronthaulflowsinapacketswitch,
thatis,toemulatethearrivalofoverlappingSplitIU bursts
comingfrom manyRRHs.Ineachrepetition,wechoosea
randomalignmentoftheflows(seeOffsetinFig.2b)ranging
from0toT.

C. N*D/D/1QUEUEINGMODEL

OurthirdoptionistheN*D/D/1analyticalmodeldeveloped
in[43].Itmodelsthedelayinafirst-in/first-outqueueand
single-resourcesystem. Weassumethatthearrivalsarea
superpositionofN streams(RRHs) withareferenceflow
(N+1flows)followingadeterministicpatternandaconstant
servicetimeinthesystem’sresource(thepacketaggrega-
tor),i.e.,N flowsfollowingaD/D/1profile.Clearly,the
worst-casescenariooccurs whenallthe RRHs’burstsare
synchronizedandarriveatthepacketaggregatoratthesame
time. Nevertheless,suchscenarioisveryunlikelyanda

moreaccurateestimationcanbemadebyusingthismodel.
AssumingRRH’sburstlengthsofMbits andanoutputlink
rateofCbits/s,theservicetimeisdeterministicforeach
burstandequaltoτ= M/C.Consequently,forthesystem
tobestable,(6)musthold

(N+1)·τ <T, (6)

whereTistheburstperiodofeachRRH–thatis,thetime
elapsedbetweenconsecutiveRRH’sOFDM symbolsship-
ments.Themainresultofthen*D/D/1 modelistheCCDF

ofthewaitingtimeinqueue,F(x)=P(Wq>x).Forany
waitingtimeinqueuex≥0,thisfunctionisoftheform

F(x)=T−NPN(T,x). (7)

Inaddition,forfixedx≥0andn≥0,thefunctionPn(t,x)
isapolynomialofdegree(n−1)int.

Pn(t,x)=
n−1

l=0

qn,l(x)(t−nτ+x)l. (8)

ThismeanstotreatN andTasvariablestoobtainthedis-
tributionoftheexactdelayforthesystem.Thepolynomial’s
coefficientscanbecomputedbystartingatq0,l(x) =0and
continuingwith

qn,0(x)=[(nτ−x)+]n

qn,k(x)=n
k

n−2
l=k−1

l
k−1 τl−k+1qn−1,l(x)

. (9)

LetusconsideragenericC-RAN architecturethatisusing
apacketswitchinordertoaggregateN fronthaulflows.
Thesystemcanbecharacterizedintermsoftheloadρ=
(N+1)·τ

T ,asshownin[43]. Normalizingtheproblemby
usingT =1,thesurvivorfunctionforthewaitingtimein
queuecanbecomputedbysolving(7),(8)and(9).Fig.4a
showstheCCDFofthewaitingtimeinqueueinthepacket
switchthataggregatesallthefronthaulflowscomingfrom
theRRHs,accordingtothenetworktopologyshowninFig.1,
fordifferentnumberofremoteradioheads(5,10,15,20).

Usingthesesurvivorfunctions,wemaycomputetheper-
centilevaluesthatwedesireforanynumberofmergingRRHs
atthepacketaggregationpoint.Asshowninthefollowing
sections,thiscanbeaveryusefulparameterinorderto
properlydimensionthecapacityandsizeofthefronthaul
network.

D. WORST-CASEDELAYDIMENSIONINGMODEL

Forthepurposeofclarification,wepresenttheworst-case
dimensioningofthefronthaulnetwork;however,notethat
thisistheoption wetrytoavoidandimprove.Inthis
approach,thegeneralfunctioninganddimensioningofthe
fronthaulnetworkisconditionedbytheworst-casequeueing
delay–thatis,allIQburstsarrivingalignedandatthe
sametimetotheswitch.Amongotherthings,thisincludes
providingbuffersoftheappropriatelengthaswellassetting
amaximumrangeforthefronthaulopticallinkssothatthe
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FIGURE4.N*D/D/1delaydistributionandcomparisonofestimators.

totaldelaybudgetremainsuncompromisedinanysituation,
includingtheworstcase.
FollowingthenumericalexampledevelopedinSectionIII,

inwhicha2-antenna,40MHzchannelMIMO systemwas
studied,assumethatthesamesystemisoperatinginSplit
IUmodewitha100%occupancyofradioresources(η=1).
ThesenumbersledtoaSplitIUburstsizeof18,000bytes
every66.6µs.Consideringapayloadsizeof1,500bytes
andanoverheadof42bytesperpacket,theburstcanbesent
using12packets.Thisaddsuptoatotalof 18,500bytes
perburstandRrrh=2,220Mbit/s.Then,assumingalink
capacityofC =10Gb/sandtargetingasystemloadof
ρ=0.8,themaximumnumberofRRHs(MaxRRHs)thatcan
beaggregatedinthesamelinkisgivenby,

MaxRRHs= ρ·
C

RRRHs
=3. (10)

ThismeansthatamaximumofthreeRRHscanbemulti-
plexedusingthisopticallink.Takingintoaccountthevalue
of MaxRRHs,wecancomputethemaximumtheoretical
worst-casequeueingdelaysufferedbyanyburstthathasto
waitfortheothers,astWorst-casequeueing =(MaxRRHs−1)·

BurstSize
C

14.8µs,whichisunrealisticfromthepracticalpointof
viewandcanbesignificantlyimproved,asweshowinthe
upcomingsections.

V.EXPERIMENTS:COMPARISONOFESTIMATORS

Inthissection,weevaluatetheaccuracyofeachofthees-
timationapproachespresentedabove.Wedothisforseveral
operationregimesanddifferentpercentilevalues.Inaddition,
weassesstheprecisionofeachmethodfordifferentvaluesof
thelinkload(ρ).

A.GENERALOVERVIEW:SMALLPERCENTILES

Forthesakeoftheexample,considerthattheoutputlink’s
capacityoftheaggregationpacketswitchisC=10Gb/s.

Additionally,assume20MHzchannelsand1,500bytes
packetstotransporttheRRHs’SplitIUbursts.Thismeansa
9,000-bytebursttransmissionevery66.6µs,plusoverheads.
Fig.4bplotstheobtainedresultsfordifferentpercentile
valuesofthewaitingtimeinqueuewhileincreasingtheload
oftheaggregationpointbymultiplexingmoreRRHs(4,6,
7,and9,respectively).Inviewofthefigure,itisworth
highlightingseveralfacts.
First,notethattheestimationbasedontheG/G/1model
is,ingeneral,agoodupperboundtothepercentileofthe
waitingtimeinqueue.Thelowerthepercentile,thebetter
theestimation.However,itisclearthatitoverestimatesthe
delayforhigh-loadscenarios,sometimesevenexceedingthe
maximumtheoreticaldelay(seethelinewithstarmarkers)
computedusing(6).Havinginmindthatweaimateven
higherpercentiles,theG/G/1queueisnotapreciseenough
toolforourtargetdespitethefactthatitisusefulformore
conservativepercentiles[26],asshowninFig.4b.
Secondly,welookintothepossibilityofusingacustom
discreteeventsimulatortoevaluatethestateofthequeue.
CloseinspectionofFig.4brevealsthatsimulationsgive
promisingresultsthatremainunderthemaximumtheoretical
queueingvalues,whichwilloccurwheneverallburstsarrive
synchronouslytotheaggregationpoint.Thissimulatorhas
alreadybeenvalidatedin[25]and[26].Nevertheless,the
higherthepercentilewearelookingforinasimulation
process,themoretrials(andtime)weneedtoachieveresults
withtheappropriatesignificancevalues.Duringthesesimu-
lations,99%confidenceintervalswerecomputed.Theyare
sufficientlysmalltobeconsiderednegligibleand,therefore,
arenotplotted.
Finally,theN*D/D/1results(seedottedlinesinFig.4b)
matchalmostperfectlythesimulationoutputsforallsystem
loads,evenforheavyloadscenarios.Itisimportanttonote
thatcomputingthepolynomialtogetherwithitscoefficients
using(8)and(9)isarecursivetaskthatcanpotentiallybe
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FIGURE5.Comparisonofestimationapproaches.

verytime-consumingforhighvaluesofN–thatis,foralarge
numberofRRHsbeingaggregatedatthepacketswitch.

B.EXTREMEPERCENTILES

Figures5aand5bjustifythefinalmodelelectionchosento
dimensionthefronthaulnetwork.Particularly,Fig.5adepicts
thebehavioroftheG/G/1estimationinthecontextofextreme
percentiles.Namely,99.99th,99.9999th,and99.9999999th
percentilesareshown.NotethattheG/G/1boundforthese
percentilesisalwaysabovethetheoreticalmaximumvalue
forallsystemloads,whichmakesitauselesstoolforextreme
percentiles.
Ontheotherhand,Fig.5bcompares N*D/D/1results
againstthesimulationoutputsforextremepercentiles.We
includethe99thqueueingdelaypercentileasareference
pointwherebothapproachesproducesimilarresults.How-
ever,aswelookformoreextremepercentiles,thisdoesno
longerhold.Weobservethatsimulationestimationssaturate
atacertainpointandconvergetoacertainvalue(seeover-
lappingredandbluedottedlinesthatrepresentthesimulated
99.9999999thand99.9999thpercentiles,respectively).
Onthecontrary,N*D/D/1estimationkeepsapproaching
themaximumtheoreticalvalueasthepercentilegrows.This
meansthatthenumberofsimulationsisnotenoughtograsp
thedesiredpercentilevalue,andevenanarrowconfidence
intervalcanbedeceptive.
Increasingthenumberofrepetitionsinthesimulation

isunaffordablefromapracticalpointofview.Givena
99.9999999thpercentilevaluex,itisclearthat,onaverage,
onlyoneoutofevery1,000,000,000packetswouldsuffer
fromaqueueingdelayhigherthanx.Forthesakeofstatis-
ticalsignificance,letusseek100occurrencesofthatevent,
whichwouldmean,onaverage,tosimulate100·109packets.
Consideringtheaggregationof9RRHs,eachonetrans-
mitting9,000bytesburstsandusing1,500bytespackets,
6·9 = 54packetsaregeneratedperperiod.Averag-

ing2,000simulations,whichisthevalueusedtoobtain
theabovefigures,weareabletosee2,000simulations·
54packets/simulation=108·103packets.Hence,weneed
1000timesmorepackets.Havinginmindthateach

batchof2,000simulationstakes,onaverage,12seconds
tocomplete2,thewholeprocesswouldtakeapproximately
11·106seconds.Thisrepresentsaround128daysofcom-
putationtime,makingthesimulationaslowtoolforthe
mostextremepercentiles.However,notethatthesimulation
outputsandN*D/D/1estimationsmatchfor99.99th,99th,
90th,75thorlowerpercentiles,asshowninFig.4b.

VI.APPLICATION:N*D/D/1DIMENSIONINGFOR5GNR

Oncethatwehaveweightedtheprosandconsofeach
approach,theN*D/D/1queuingmodelisselectedasthetool
todimensionthetotallengthofthefronthaullinks.The
FLRspecifiedbythe802.1CMstandardcanbemetunder
theassumptionsexplainedinSectionIVbyconsideringthe
99.9999999thqueueingdelaypercentile(1−FLR)insteadof
theworst-casedelay.
Letusconsiderthesamescenariobut,thistime,with

thenumbersofthenewairinterfacedevelopedforthenext
generationmobilenetworks:5GNewRadio(NR)[8].Since
futureservicesareenvisionedtobedata-intensive(e.g.,video
streaming,immersiveapplications,virtualreality),thereis
agrowingneedforhighend-userdatarates.Consequently,
thecapabilitiesofthefronthaulnetworkmustscaleaccord-
ingly.InTable1,weshowedthenumerologyforthe5G
NRinterfaceregardingdifferentfunctionalsplitsandchannel
bandwidths.Particularly,wefocusourstudyonthreeuse
cases:50MHz,100MHz,and200MHzchannels,soasto
showthepatternthatarisesasweincreasethedemandinthe
fronthaulnetwork.

2IntelXeonProcessorE3-1505Mv6,8MCache,3.00GHz
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FIGURE6.Distancegainedduetotheuseof(1-FLR)%packetlatencypercentileinsteadofworst-casedelay.

A.SCENARIOI:5GNEWRADIO(50MHZCHANNEL)

ConsidertheaggregationofSplitIUfronthaulflowscoming
fromanumberofRRHs.Assumethatthesesupport50MHz
channelswith15KHzsubcarrierspacing[8].Theaggregator
outputisdrivenbya100Gb/sopticaltransceiver.Also,
wemakeuseof1,500bytesEthernetpacketsinorderto
transportSplitIUflows.Next,wecomputethevalueofthe
99.9999999thqueueingdelaypercentile,bymodelingour
systemasaN*D/D/1queueandcomparetheresultswiththe
maximumtheoreticalqueueingdelay.Bytakingthediffer-
encebetweenthesetwovalues,weobtaintheextradelay
budgetavailablethatisgainedbyusingthe99.9999999th
percentileinsteadoftheworstcaseasthedimensioning
reference.Thisextratimecanbespentatourdiscretion
–eithertoincreasethereachofthefronthaullinksorto
aggregatemoreRRHs.
Assuminga5µs/kmpropagationdelayintheFH’soptic
fiber,wecancomputetheextrapropagationdistancethatis
gainediftheadditionallyavailabledelaybudgetisspenton
propagation.Fig.6aillustratestheaforementionedcompari-
sonfordifferentnumberofaggregatedRRHs,i.e.,forvarious
aggregator’sloadconditions.Namely,weplottheresultsfor
systemloadsequaltoρ=0.4,0.6,0.75and0.9.Thenumber
ofRRHs,i.e.,SplitIUflowsthatweareabletomultiplexis
givenby(10),reworkedas

Numrrhs=
ρ·C

BitrateSplitIU
, (11)

which,for100Gb/slinks,meansaggregatingroughly14,
21,26,and31eCPRISplitIUflows,respectively.Inview
oftheresults,therearetwointerestingfactsthatareworth
highlighting:

1)Thehighertheloadofthesystem,thebiggerthegap
betweenthemaximumtheoreticalqueueingdelayand
theN*D/D/1solution.

2)Consequently,themoreextralatencybudgetcanbe
spentonpropagation,withrespecttotheworst-case
solution.

Forinstance,underheavyloadconditions(ρ=0.9),in-
cludingoverheads(eCPRI andEthernet)andusing(10),
wegetthatthe maximumtheoreticalqueueingdelayis
tWorst-casequeueing 63.16µs(seethesolidlinewithstarmarkers
inFig.6a).However,ifwechoosetodimensionaccordingto
the99.9999999thqueueingdelaypercentile:

a)W99.9999999q 31.8µs(seethesolidlinewithcircle
markersinFig.6a).

b) Wesaveanextra:tWorst-casequeueing −W
99.9999999
q 31.36µs,

whichrepresentsa 30%ofthe100µsdelaybudget.

Additionally,thistranslatesintoanadditionalpropagation
distancebudget,i.e.,theseextra31.36µsenableusto
extendthelinkuptonearly6.3Km.Thisgainisachieved
byusingthe99.9999999thqueueingdelaypercentilegiven
bytheN*D/D/1model.Itwouldrepresentanapproximately
60%increaseinthemaximumdistancewithrespecttothe
10Km-baselinementionedinSectionIII-Bunderheavy
loadconditions(ρ=0.9).Alternatively,wemaychoose
torelaxthe99.9999999thpercentileruleanduselower
percentiles.Note,inFig.6a,thatthe99.99thpercentileis
obviouslyfartherfromthemaximumqueuingdelaythanthe
99.9999999thpercentile.Thisenablesustotakeadvantage
ofadditionalpropagationdelaybudget.Now,forthesame
systemload(ρ=0.9),asupplementary 8.6Kmwould
beavailableifwechoosetodimensionusingthe99.99th
percentile.Bydoingso,weachievelargerpropagationdis-
tancesattheexpenseofhigherFLR.Thiscouldbetackled
bymakinguseofdifferenttechniques,suchasForwardError
Correction(FEC)protocols,networkcoding,etc.However,
itsimpactonthefinaldelay[44]shouldbestudiedindetail
infuturework.
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FIGURE7.Distancegainsforthe90th,99th,99.99th,99.9999th,99.9999999thpercentiles;100MHzand200MHzchannels.

Followingthesamereasoningforotherpercentiles,Fig.6b
showsthepropagationdistancegainsachievedfordifferent
systemloads,dependingonwhichpercentileweuseinthe
dimensioningprocess.Itisworthhighlightingthatthedelay
budgetsavingsforρ=0.9spanfromaround6.3Km
usingthe99.9999999thqueueingdelaypercentiletoroughly
10.95Kmthe99thpercentileisused,whichrepresentsa
differenceofnearly4.6Km.

B.SCENARIOII:5GNEWRADIO(100MHZCHANNEL)

Consider,again,thesameoutputratefortheaggregation
point,thatis,100Gb/s.Thistime,each RRH supports
100MHzchannelswith60KHzsubcarrierspacing.Again,
1,500bytespacketsareusedtotransportthebursts.For
100Gb/slinks,aggregating7,10,13,and15eCPRISplit
IUflowsleadstosystemloadsofρ=0.4,0.6,0.75,and
0.9,respectively(apply(10)withthenumbersprovidedin
Table1).

Byrepeatingthesameprocedure,weobtaintheextra
propagationdelayavailablebudgetbytakingthedifference
betweenthemaximumtheoreticalqueueingdelayandthe
99.9999999thpercentilecomputedwiththeN*D/D/1esti-
mation.CloseinspectionofFig.7arevealsthattheoverall
gainisworsethanthatobtainedfor50MHzchannels.Under
heavyloadconditions–thatis,whenρ=0.9–thedistance
gainusingthe99.9999999thqueueingdelaypercentileasthe
dimensioningreferenceisnear1Km.Thisgainissmaller
incomparisontowhatweobtainedforsmallerchannel
bandwidths,butitisnotnegligiblesinceitrepresentsan
approximate10%lengthgaininthefronthaullinks.

Again,relaxingthereferencepercentile,wemayobtain
roughly1.3Km,1.7Km,2.1Km,and2.5Kmlength
gainsforthe99.9999th,99.99th,99th,and90thpercentiles,
respectively,assumingheavyloadconditions.

C.SCENARIOIII:5GNEWRADIO(200MHZCHANNEL)

Inthisthirdexperiment,weassessthedimensioningresults
forhigh-bandwidth-demanding5GNRchannels.Namely,
200MHzchannelswith60KHzsubcarrierspacing.This
representseCPRISplitIUburstsof 23,753bytesev-
ery16.67µs,whichrequiresatransportcapacityofupto
11.4Gb/s.Theseburstsarethensplitandpacketizedinto

1,500bytesEthernetpackets.
Inordertocopewiththistrafficload,weassume100Gb/s
linksthatarecarrying3,5,6,and7RRHflowssimultane-
ouslyand,therefore,achievinglinkoccupanciesofρ=0.4,
0.6,0.75,and0.9,respectively.Fig.7bconfirmsthatthe
distancegainkeepsdecreasingasweincreasethechannel
bandwidth.Inthiscase,only 0.2Km aregainedfor
the99.9999999thpercentileatρ=0.9.Asfortherestof
percentiles(99.9999th,99.99th,99th,and90th), 0.6Km,
1.1Km, 1.8Km,and 2.3Km areachieved,

respectively.
Itisworthhighlightingthattheburstsizeinthisexample

(200MHz;60KHzspacing)isthesameasthatofSubsec-
tionVI-A(50MHz;15KHzspacing).Themainreasonwhy
thedistancegainishamperedinthiscaseisthattheI/Q
symbolperiodisfourtimessmaller,whichmakesafavorable
alignmentoftheflowsmoreunlikely,asthereislessroomfor
themtoavoidoverlappingintheaggregationpoint.

VII.SUMMARYANDCONCLUSIONS

Inthiswork,weproposetheuseofextremelatencyper-
centilesasadesignparameterratherthanmaximumend-to-
endone-waydelay.Theaimofthisapproachistostretch
theRRH-BBUdistancebyusingtheavailableFLRbudgetfor
scenariosinwhichsuchrangeextensionisnecessary.
Tothisend,wecomparedseveraloptionsforcomput-

ingextremequeueingdelaypercentilesforfronthaultraffic.
Namely,weassessedthesuitabilityofdiscrete-eventsimula-
tions,G/G/1andN*D/D/1queueingmodels.Weconcluded
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that, while the G/G/1 model and simulations can produce
satisfactory results for moderate percentiles, both saturate in
the context of high system loads and extreme percentile val-
ues. Only the N*D/D/1 queue is appropriate for the extreme
percentiles.

A better modeling of these percentiles enables us to com-
ply with the defined FLR in IEEE 802.1CM. We may interpret
the gap between this estimation and maximum worst-case
delay as an extra delay budget. This extra budget becomes
relevant at high loads. Experiments revealed that additional
propagation can be gained at 100 Gb/s under the appropriate
conditions, as discussed in Section VI. The rule of thumb is
that the higher the load, the more extra latency budget we
can obtain, proportionally to the maximum worst-case delay,
since the gap between the percentiles and the maximum
theoretical queueing delay becomes wider.

Taking into consideration that the envisioned distance for
the fronthaul links is up to 10 Km, we find that we are
able to extend the fronthaul links up to around 60% for
50 MHz channels, 10% for 100 MHz channels, and 2% for
200 MHz channels. Alternatively, this extra budget could
be used to aggregate more RRHs at the same aggregation
point, or we could even think about dynamically switching to
more resource-demanding functional splits on certain RRHs,
if needed.
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