15 research outputs found

    A study of existing Ontologies in the IoT-domain

    Get PDF
    Several domains have adopted the increasing use of IoT-based devices to collect sensor data for generating abstractions and perceptions of the real world. This sensor data is multi-modal and heterogeneous in nature. This heterogeneity induces interoperability issues while developing cross-domain applications, thereby restricting the possibility of reusing sensor data to develop new applications. As a solution to this, semantic approaches have been proposed in the literature to tackle problems related to interoperability of sensor data. Several ontologies have been proposed to handle different aspects of IoT-based sensor data collection, ranging from discovering the IoT sensors for data collection to applying reasoning on the collected sensor data for drawing inferences. In this paper, we survey these existing semantic ontologies to provide an overview of the recent developments in this field. We highlight the fundamental ontological concepts (e.g., sensor-capabilities and context-awareness) required for an IoT-based application, and survey the existing ontologies which include these concepts. Based on our study, we also identify the shortcomings of currently available ontologies, which serves as a stepping stone to state the need for a common unified ontology for the IoT domain.Comment: Submitted to Elsevier JWS SI on Web semantics for the Internet/Web of Thing

    4W1H in IoT semantics

    Get PDF
    International audienceIoT systems are now being deployed worldwide to sense phenomena of interest. The existing IoT systems are often independent which limits the use of sensor data to only one application. Semantic solutions have been proposed to support reuse of sensor data across IoT systems and applications. This allows integration of IoT systems for increased productivity by solving challenges associated with their interoperability and heterogeneity. Several ontologies have been proposed to handle different aspects of sensor data collection in IoT systems, ranging from sensor discovery to applying reasoning on collected sensor data for drawing inferences. In this paper, we study and categorise the existing ontologies based on the fundamental ontological concepts (e.g., sensors, context, location, and more) required for annotating different aspects of data collection and data access in an IoT application. We identify these fundamental concepts by answering the 4Ws (What, When, Who, Where) and 1H (How) identified using the 4W1H methodology

    Towards End-User Development for IoT: A Case Study on Semantic Parsing of Cooking Recipes for Programming Kitchen Devices

    Full text link
    Semantic parsing of user-generated instructional text, in the way of enabling end-users to program the Internet of Things (IoT), is an underexplored area. In this study, we provide a unique annotated corpus which aims to support the transformation of cooking recipe instructions to machine-understandable commands for IoT devices in the kitchen. Each of these commands is a tuple capturing the semantics of an instruction involving a kitchen device in terms of "What", "Where", "Why" and "How". Based on this corpus, we developed machine learning-based sequence labelling methods, namely conditional random fields (CRF) and a neural network model, in order to parse recipe instructions and extract our tuples of interest from them. Our results show that while it is feasible to train semantic parsers based on our annotations, most natural-language instructions are incomplete, and thus transforming them into formal meaning representation, is not straightforward.Comment: 8 pages, 1 figure, 2 tables. Work completed in January 202

    Spatial Data Quality in the IoT Era:Management and Exploitation

    Get PDF
    Within the rapidly expanding Internet of Things (IoT), growing amounts of spatially referenced data are being generated. Due to the dynamic, decentralized, and heterogeneous nature of the IoT, spatial IoT data (SID) quality has attracted considerable attention in academia and industry. How to invent and use technologies for managing spatial data quality and exploiting low-quality spatial data are key challenges in the IoT. In this tutorial, we highlight the SID consumption requirements in applications and offer an overview of spatial data quality in the IoT setting. In addition, we review pertinent technologies for quality management and low-quality data exploitation, and we identify trends and future directions for quality-aware SID management and utilization. The tutorial aims to not only help researchers and practitioners to better comprehend SID quality challenges and solutions, but also offer insights that may enable innovative research and applications

    A Survey on Understanding and Representing Privacy Requirements in the Internet-of-Things

    Get PDF
    People are interacting with online systems all the time. In order to use the services being provided, they give consent for their data to be collected. This approach requires too much human effort and is impractical for systems like Internet-of-Things (IoT) where human-device interactions can be large. Ideally, privacy assistants can help humans make privacy decisions while working in collaboration with them. In our work, we focus on the identification and representation of privacy requirements in IoT to help privacy assistants better understand their environment. In recent years, more focus has been on the technical aspects of privacy. However, the dynamic nature of privacy also requires a representation of social aspects (e.g., social trust). In this survey paper, we review the privacy requirements represented in existing IoT ontologies. We discuss how to extend these ontologies with new requirements to better capture privacy, and we introduce case studies to demonstrate the applicability of the novel requirements

    Ontology-based context-aware model for event processing in an IoT environment

    Get PDF
    The Internet of Things (IoT) is more and more becoming one of the fundamental sources of data. The observations produced by these sources are made accessible with heterogeneous vocabularies, models and data formats. The heterogeneity factor in such an enormous environment complicates the task of sharing and reusing this data in a more intelligent way (other than the purposes it was initially set up for). In this research, we investigate these challenges, considering how we can transform raw sensor data into a more meaningful information. This raw data will be modelled using ontology-based information that is accessible through continuous queries for sensor streaming data.Interoperability among heterogeneous entities is an important issue in an IoT environment. Semantic modelling is a key element to support interoperability. Most of the current ontologies for IoT mainly focus on resources and services information. This research builds upon the current state-of-the-art ontologies to provide contextual information and facilitate sensor data querying. In this research, we present an Ontology to represent an IoT environment, with emphasis on temporal and geospatial context enrichment. Furthermore, the Ontology is used alongside a proposed syntax based on Description Logic to build an Event Processing Model. The aim of this model is to interconnect ontology-based reasoning with event processing. This model enables to perform event processing over high-level ontological concepts.The Ontology was developed using the NeOn methodology, which emphasises on the reuse and modularisation. The Competency Questions techniques was used to develop the requirements of this Ontology. This was later evaluated by domain experts in software engineering and cloud computing. The ontology was evaluated based on its completeness, conciseness, consistency and expandability, over 70% of the domain experts agreed on the core modules, concepts and relationships within the ontology. The resulted Ontology provides a core IoT ontology that could be used for further development within a specific IoT domain. IIThe proposed Ontology-Based Context-Aware model for Event-Processing in an IoT environment “OCEM-IoT”, implements all the time operators used in complex event processing engines. Throughput and latency were used as performance comparison metrics for the syntax evaluation; the results obtained show an improved performance over existing event processing languages

    Query Interface for Smart City Internet of Things Data Marketplaces: A Case Study

    Get PDF
    Cities are increasingly getting augmented with sensors through public, private, and academic sector initiatives. Most of the time, these sensors are deployed with a primary purpose (objective) in mind (e.g., deploy sensors to understand noise pollution) by a sensor owner (i.e., the organization that invests in sensing hardware, for example, a city council). Over the last few years, communities undertaking smart city development projects have understood the importance of making the sensor data available to a wider community – beyond their primary usage. Different business models have been proposed to achieve this, including creating data marketplaces. The vision is to encourage new start-ups and small and medium-scale businesses to create novel products and services using sensor data to generate additional economic value. Currently, data are sold as pre-defined independent datasets (e.g., noise level and parking status data may be sold separately). This approach creates several challenges, such as (i) difficulties in pricing, which leads to higher prices (per dataset), (ii) higher network communication and bandwidth requirements, and (iii) information overload for data consumers (i.e., those who purchase data). We investigate the benefit of semantic representation and its reasoning capabilities towards creating a business model that offers data on-demand within smart city Internet of Things (IoT) data marketplaces. The objective is to help data consumers (i.e., small and medium enterprises (SMEs)) acquire the most relevant data they need. We demonstrate the utility of our approach by integrating it into a real-world IoT data marketplace (developed by synchronicity-iot.eu project). We discuss design decisions and their consequences (i.e., trade-offs) on the choice and selection of datasets. Subsequently, we present a series of data modeling principles and recommendations for implementing IoT data marketplaces

    A Survey on Smartphone-Based Crowdsensing Solutions

    Get PDF
    © 2016 Willian Zamora et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.[EN] In recent years, the widespread adoption of mobile phones, combined with the ever-increasing number of sensors that smartphones are equipped with, greatly simplified the generalized adoption of crowdsensing solutions by reducing hardware requirements and costs to a minimum. These factors have led to an outstanding growth of crowdsensing proposals from both academia and industry. In this paper, we provide a survey of smartphone-based crowdsensing solutions that have emerged in the past few years, focusing on 64 works published in top-ranked journals and conferences. To properly analyze these previous works, we first define a reference framework based on how we classify the different proposals under study. The results of our survey evidence that there is still much heterogeneity in terms of technologies adopted and deployment approaches, although modular designs at both client and server elements seem to be dominant. Also, the preferred client platform is Android, while server platforms are typically web-based, and client-server communications mostly rely on XML or JSON over HTTP. The main detected pitfall concerns the performance evaluation of the different proposals, which typically fail to make a scalability analysis despite being critical issue when targeting very large communities of users.This work was partially supported by the Ministerio de Economia y Competitividad, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant TEC2014-52690-R, the "Universidad Laica Eloy Alfaro de Manabi-ULEAM," and the "Programa de Becas SENESCYT de la Republica del Ecuador."Zamora-Mero, WJ.; Tavares De Araujo Cesariny Calafate, CM.; Cano Escribá, JC.; Manzoni, P. (2016). A Survey on Smartphone-Based Crowdsensing Solutions. Mobile Information Systems. 2016:1-26. https://doi.org/10.1155/2016/9681842S126201

    Trust Evaluation Mechanism for User Recruitment in Mobile Crowd-Sensing in the Internet of Things

    Get PDF
    Mobile Crowd-Sensing (MCS) has appeared as a prospective solution for large-scale data collection, leveraging built-in sensors and social applications in mobile devices that enables a variety of Internet of Things (IoT) services. However, the human involvement in MCS results in a high possibility for unintentionally contributing corrupted and falsified data or intentionally spreading disinformation for malevolent purposes, consequently undermining IoT services. Therefore, recruiting trustworthy contributors plays a crucial role in collecting high quality data and providing better quality of services while minimizing the vulnerabilities and risks to MCS systems. In this article, a novel trust model called Experience-Reputation (E-R) is proposed for evaluating trust relationships between any two mobile device users in a MCS platform. To enable the E-R model, virtual interactions among the users are manipulated by considering an assessment of the quality of contributed data from such users. Based on these interactions, two indicators of trust called Experience and Reputation are calculated accordingly. By incorporating the Experience and Reputation trust indicators (TIs), trust relationships between the users are established, evaluated and maintained. Based on these trust relationships, a novel trust-based recruitment scheme is carried out for selecting the most trustworthy MCS users to contribute to data sensing tasks. In order to evaluate the performance and effectiveness of the proposed trust-based mechanism as well as the E-R trust model, we deploy several recruitment schemes in a MCS testbed which consists of both normal and malicious users. The results highlight the strength of the trust-based scheme as it delivers better quality for MCS services while being able to detect malicious users. We believe that the trust-based user recruitment offers an effective capability for selecting trustworthy users for various MCS systems and, importantly, the proposed mechanism is practical to deploy in the real world
    corecore