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ABSTRACT 

The Internet of Things (IoT) is more and more becoming one of the fundamental sources of 

data. The observations produced by these sources are made accessible with heterogeneous 

vocabularies, models and data formats. The heterogeneity factor in such an enormous 

environment complicates the task of sharing and reusing this data in a more intelligent way 

(other than the purposes it was initially set up for). In this research, we investigate these 

challenges, considering how we can transform raw sensor data into a more meaningful 

information. This raw data will be modelled using ontology-based information that is 

accessible through continuous queries for sensor streaming data. 

Interoperability among heterogeneous entities is an important issue in an IoT environment. 

Semantic modelling is a key element to support interoperability. Most of the current ontologies 

for IoT mainly focus on resources and services information. This research builds upon the 

current state-of-the-art ontologies to provide contextual information and facilitate sensor data 

querying. In this research, we present an Ontology to represent an IoT environment, with 

emphasis on temporal and geospatial context enrichment. Furthermore, the Ontology is used 

alongside a proposed syntax based on Description Logic to build an Event Processing Model. 

The aim of this model is to interconnect ontology-based reasoning with event processing. This 

model enables to perform event processing over high-level ontological concepts.  

The Ontology was developed using the NeOn methodology, which emphasises on the reuse 

and modularisation.  The Competency Questions techniques was used to develop the 

requirements of this Ontology. This was later evaluated by domain experts in software 

engineering and cloud computing. The ontology was evaluated based on its completeness, 

conciseness, consistency and expandability, over 70% of the domain experts agreed on the core 

modules, concepts and relationships within the ontology. The resulted Ontology provides a 

core IoT ontology that could be used for further development within a specific IoT domain. 
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The proposed Ontology-Based Context-Aware model for Event-Processing in an IoT 

environment “OCEM-IoT”, implements all the time operators used in complex event 

processing engines. Throughput and latency were used as performance comparison metrics for 

the syntax evaluation; the results obtained show an improved performance over existing event 

processing languages. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

The Internet of Things (IoT) is characterised by an ever-increasing number of Things 

embedding sensing, actuating, processing and communication capabilities. The IoT paradigm 

represents numerous things connected to the Internet (Atzori et al., 2010). The interactions with 

these connected things could help reach specific goals in various domains. The data generated 

by these things originate from numerous heterogeneous sources, each sensing a part of the 

environment. Combining the transmitted data from multiple sources facilitates applications to 

support context awareness (Su et al., 2015, Barnaghi et al., 2012). This empowers applications 

to analyse and understand the given situation. For example, a fire detection system could 

combine the historical room temperature, smoke level, light intensity with various sensor 

readings such as temperature sensor, smoke detector, and light intensity sensor in order to 

detect fire.  

The IoT aims at building intelligent systems that can provide support to people during their 

daily activities. In order to achieve this awareness, understanding the raw sensor data is 

necessary. Collection, modelling, reasoning, and distribution of context in relation to sensor 

data plays a critical role in order to tackle this challenge (Perera et al., 2014). 

Context-aware computing has proven to be successful in understanding sensor data. Context-

aware systems can acquire, interpret and use context information to adapt their behaviour to 

the current context (Byun and Cheverst, 2004). Context-aware systems have played an essential 

role in tackling this challenge in previous paradigms. Their proven past success makes them a 

strong candidate solution that is ought to be successful in the IoT paradigm as well (Perera et 

al., 2014). 
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According to Perera et al. (2014), one of the important design principles for context-aware 

systems is scalability and extensibility. Nodrum in Gartner (2016) expects 20 billion connected 

things to be in use worldwide by 2020 (Nordrum, 2016). Thus, it should be straightforward to 

add new sensors and devices to a context-aware system. Additional sensors and devices 

produce new data that might need to be processed differently. Consequently, it should be 

possible to easily add extra processing services to extract high-level knowledge. Following this 

thought, the number of services and applications handling the produced IoT data will increase 

rapidly. Consequently, context-aware platforms for the IoT should be easily extensible (Bonte 

et al., 2017, Gray et al., 2011b). 

According to Strang and Linnhoff-Popien (2004), semantics are the preferred mechanism of 

managing and modelling context  Semantics can aid in the integration of the generated 

heterogeneous IoT data by enabling interoperability between different sources and providing a 

uniform model (Strang and Linnhoff-Popien, 2004)  (Bergamaschi et al., 2001, Nagib and 

Hamza, 2016). 

Semantic reasoning allows to compute logical consequences defined in the semantic model. 

For example, the model could define an alarming fire detection as a sensor reading from a 

smoke detector sensor with an accuracy above a certain threshold (e.g., 80%) resulting from a 

sensor in a room in a certain building. When such a sensor reading is detected by the reasoner, 

it will know it has detected fire, and someone should be called to attend to the situation, even 

when it is not explicitly stated in the sensor data. Utilising semantic reasoning enables 

transforming the integrated low-level data into high-level knowledge, allowing accurate and 

intelligent decisions (Bonte et al., 2017). 

The research community faces the following challenges: (a) A heterogenous environment, at 

all levels; data structures, devices, data schemas, and data formats provided by the sensors, this 

aspect makes it difficult to make use of the data provided and integrate it with various data 
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sources. (b) The high dynamicity of data streams, presents significant challenges for data 

management and query processing. The challenges of data volume and velocity are intrinsic in 

such scenarios, besides the data variety at such environments. These three challenges have been 

studied since the emergence of the Big Data concept and are referred to as the ‘Three V’s’. 

(Laney, 2001). 

This thesis addresses some of these challenges, by considering the transformation of raw data 

into more meaningful concepts based on ontologies, thus making it accessible by implementing 

continuous queries for the streaming data. The usage of ontologies as a method to provide 

explicit semantics for data has been adopted by many researchers, in order to faciliate reuse, 

integration and reasoning over it. Furthermore, recent research in this field has developed 

continuous querying and event processing, besides the traditional database systems, which 

depended on relational and transactional principles. These two querying systems are important 

in order to develop methods and techniques that can coherntly combine them.  

This thesis studies methods to access and query streaming data based on high-level ontological 

concepts. Stored and static data are available in various forms, for example XML files, 

databases, webpages, etc., streams of data nowadays are accessible on the Web, using various  

schemas and formats. Moreover, the technologies employed make it extremely difficult to 

reuse, integrate and reason about these data streams within an IoT environment. This thesis 

investigates some essential extensions for ontology-based querying, it also investigates 

semantic technologies in order to support streaming data, and methods to link or map this type 

of data to higher-level ontological concepts that represents a particular domain. Sensor meta-

data can be represented and enriched using semantics. Querying data streams make it necessary 

to provide models that reflect higher-level domain concepts. Bearing in mind the high 

heterogeneity at IoT, and the inconsistency and misleading meta-data. This thesis studies the 
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classification and characterisation of sensor data, which enables providing a richer data 

descriptions based on ontological concepts. 

1.2 Research Problem 

Applications based within an IoT environment  attempt to solve the challenge of heterogeneity 

and interoperability (Bonino et al., 2015, Jin et al., 2014). There has been made significant 

advances in this field, however, much work and investigation are still needed in order to 

achieve the level of integration required to truly unlock the value of advanced applications in 

these domains (Manyika, 2015, Sheth, 2016). Specifically, while the Internet of Things is 

achieving communication layer interoperability, this does not consider the use of this data at 

the application layer (Wang et al., 2013),(Su et al., 2015). This has recently been observed in 

research and has led to a new field of studying application layer interoperability, which has 

been termed the Semantic Web of Things, owing to its grounding in semantic technologies 

(Zhang et al., 2016), (Pfisterer et al., 2011). 

 Now, a significant effort is required to accelerate progress in this field by developing and 

applying Semantic Web of Things processes and artefacts (Gyrard et al., 2014a). This includes 

the development, adoption, and standardisation of relevant ontologies, but also knowledge 

surrounding their lifecycle processes and accompanying software (Gyrard et al., 2015). 

Regardless of application layer interoperability, how can organisations derive value from the 

‘rising tide’ of big data? Ongoing big data and ICT intervention research should go side by side 

with the rapidly growing Semantic Web of Things, in order to best capitalise on artificial 

intelligence (Vázquez Salceda et al., 2014), optimisation (Kuznetsova et al., 2014), simulation 

(Nguyen et al., 2014), and advanced applications in general. It is critical that IoT systems 

integrate data effectively and efficiently, and user interfaces apply business semantics 

intelligently, in order to best empower decision makers and organisations (Aufaure et al., 
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2016). This leads to the challenge of capturing complex semantics, then using them to better 

support advanced applications, built on the technology of the Internet of Things (Chianese et 

al., 2017, Baars and Ereth, 2016). Again, this requires significant research around the Semantic 

Web of Things and emphasises the need for a pragmatic mindset of using semantic 

technologies to provide business value in real-world contexts. 

Two main research issues were identified by analysing the state of the art, the two research 

issues are concerned with sensor data streams. The first one focuses on the data enrichment, 

raw data observations could be used to extract and mine information that is more useful, the 

second one explores how semantic technologies can be used to query these observations. 

First Issue: Enriching streaming data by using context information and providing events 

capabilities. Inferring events and context is highly essential, especially in the case of data loss 

which is highly probable in an IoT environment. 

With regard to this issue, concerning the characterisation of semantic properties of sensor data, 

the following research questions are addressed: 

How can ontologies be used to represent the semantic properties of sensor data? 

How can sensor data be enriched using context? 

By using the temporal and geospatial module, the data stream can be enriched with 

semantic properties such as time and location. 

Second Issue: Accessing streaming data by using description logic based queries and the usage 

of ontological models to represent the sensors’ observations. With an emphasis on time 

operators to characterise sensor data and facilitate event processing on a higher level. 

Regarding this issue, this thesis aims to address the following research questions: 

How ontologies can be used to query sensor data streams?  
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Is it possible to develop SPARQL event processing extensions suitable for querying 

sensor data?  

It is possible to integrate Complex Event Processors and sensor data through the use 

of ontologies as a data model? 

1.3 Research Aim and Objectives 

The aim of this thesis is to develop an Ontology-Based Context-Aware model for Event-

Processing in an IoT environment for accessing, enriching and querying data streams from 

heterogeneous sources, by adopting the use of ontologies to represent the data captured by 

sensors. This thesis originates from the research on ontology-based event query techniques, the 

extensions for sensor data streams operators and the use of descriptive logic to capture data and 

extract relevant properties sources. It aims to make sense of the raw sensor data in real time of 

multiple, heterogeneous, gigantic and inevitably noisy sensor data streams. Specific objectives 

are: 

1. Comparison of existing IoT ontologies 

2. Review of current methodologies for ontology development in software engineering. 

3. To develop an architectural model. This model interconnects ontology-based reasoning 

with event processing. 

4. To develop an ontology-based access and enrichment. An Ontology for IoT, which 

could deal with all Things in an IoT environment, tags, sensors, actuators, and software 

and add context to observations. 

5. To develop a time-aware event processing syntax based on description logic to facilitate 

event processing. 

6. Evaluating the proposed ontology using a survey questionnaire. 
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7. Evaluating the proposed event processing syntax by comparing it to existing models 

1.4 Research Contributions 

In this thesis, we present the OCEM-IoT mode “an Ontology-Based Context-Aware model for 

Event-Processing in an IoT environment”. It is developed to provide semantic enrichment and 

reasoning on IoT data. OCEM-IoT uses ontologies to represent sensor data and context 

information as events and then apply different kinds of reasoning to derive high-level 

knowledge. 

The main contribution of this research is the development of a generic IoT ontology based on 

the reuse of existing ontologies and modules. Ontology development in software engineering 

does not provide standards for devising ontologies, this research contributes by studying the 

existing methodologies and guidelines and outlines an approach to reuse the core modules and 

concepts for a generic application in an IoT environment. The approach presented in this thesis 

is superior to existing IoT ontologies, mainly because it covers the core modules and concepts 

and can be used within any field in IoT, since it is built on a modular basis and this can easily 

be modified and built upon.  

Another contribution of this research is providing a novel method to access and query sensor 

data from a wide range of heterogeneous sources. This work is based on the investigation of 

ontology based querying and providing extensions for streaming operators. The thesis 

contributes within this field by the development of an event processing syntax based on 

description logic, which combines both complex event processing and description logic in 

order to provide stream reasoning. The novelty of this syntax is combing the semantic web and 

complex event processing, this combination of the two fields, facilitates the stream reasoning, 

firstly by defining events over high level concepts (provided by the ontology) and secondly by 

supporting the time operators used by existing complex event processors. 
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1.5 Hypothesis 

Hypothesis 1: Sensor data streams could be defined as instances of comprehensive ontological 

model concepts. 

Hypothesis 2: The SPARQL language queries could be extended with various time operators 

in order to query sensor data streams in real time, with reference to the ontological concepts 

and properties. 

Hypothesis 3: Ontology-based queries for sensor data can be denoted as concrete expressions 

based on description logic and complex event processing, and the results of a query would be 

described as instances of the ontological concepts. 

1.6 Research Methodology 

This research aims to investigate the research issues identified in section 1.2, and to propose 

an Event Processing Architecture Model based on ontologies for IoT, in order to tackle the 

identified challenges. Scientific experimental research strategy has been adopted for our 

research. This study uses qualitative and quantitative methods, as the research problem 

formalisation uses historical data (documents analysis), while the final results were produced 

quantitatively using experiments and quantitative user study. The research strategy followed is 

scientific experimental. According to (Novikov and Novikov, 2013), scientific research 

includes three main phases: 

Design of Scientific Research: This phase comprises determining the problem domain, 

formalising the research problem and identifying research aim and objectives. 

Technology of Scientific Research: This phase includes preparing the required theory, 

developing the proposed system and finally applying the evaluation methods. 
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Reflexion in Scientific Research: This phase is related to finalising the results and preparing 

the final guidelines, then presenting them to the research community. Each phase has been 

divided into a number of stages; a brief description of each stage can be found below, and 

Figure 1-1 shows the research stages as a flowchart.

 

Figure 1-1 Research Main Stages 
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1) Design of Scientific Research Phase 

A. Data Representation and Event Processing in the Internet of Things (IoT): This was the 

first stage in our research: identifying semantic models and event processing in IoT as the 

primary research domain. 

B. Reviewing Literature: Investigate earlier researchers’ work about Semantic Models and 

Event Processing in IoT in order to get a good understanding and to know the state of the 

art of IoT; furthermore, to highlight the drawbacks of the current approaches. 

C. Formalising the Research Problem: This stage identified the needs of IoT for new 

techniques to represent and access data in an IoT Environment, recognising the urgent 

need to define a reference semantic model to enable heterogeneous devices to interact 

(sharing information and processing), moreover to facilitate a higher event processing 

based on the defined semantics. In accordance with these findings, the research aim has 

been addressed as establishing a new semantic model and a new event processing syntax 

based on DL as an extension to SPARQL for the IoT domain. 

2) Technology of Scientific Research Phase 

A. Investigate the Existing Semantic Models in IoT and Event Processing query 

languages: This stage was achieved by investigating and analysing previous works in 

this field, and highlighting their limitations. 

B. Develop and Architectural Model: This stage was about identifying an architectural 

model that interconnects an IoT semantic model with complex event processing.  

C. Develop an Ontology that represents the primary modules and concepts in an IoT 

domain, and their logical relationships. By analysis the current state-of-the-art IoT 

ontologies, as well as the methodologies used for ontology development, methods, and 

techniques proposed by the research community to define requirements and best design 

practices. 
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D. Define Event Processing Syntax based on Description Logic (EPS-DL): This stage was 

defining the required parameters for an event processing language that can deal with 

temporal aspects. EPS-DL syntax and semantics.  

E. Evaluating the Proposed Ontology: The assessment and verification of the IoT-Ont was 

done using a survey questionnaire targeting domain experts in IoT and Software 

Engineering. 

F. Evaluating  OCEM-IoT Model: The assessment and verification of the whole model 

are crucial to this research, where its usability and functional suitability should be 

ensured. Many use-cases were applied and compared to other event processing models 

in IoT. The tests were carried out after defining an evaluation plan. 

G. IoT-Ont and OCEM-IoT Revision: According to the findings and outputs of the 

evaluation plan, amendments and modifications were applied to OCEM-IoT. This stage 

helps to enhance the results that are produced by this research. 

3) Reflexion in Scientific Research Phase 

A. The final conclusions and recommendations: The last phase of this research is to reflect 

on the final findings and recommendations. 
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1.7 Approach 

Event Abstraction Layer: Enrichment and Inference

Property Extraction Layer(SPARQL Query Layer)

Event Processing Layer(Processing using ESPER, Apply Filters, 

Join using extracted properties)

Data Layer(RDF)

 

Figure 1-2 OCEM-IoT Architecture 

OCEM-IoT architecture is presented in Figure 1-2. It consists of three main layers: 1) Event 

Abstraction Layer, 2) Property Extraction Layer and 3) Event Processing Layer.  

OCEM-IoT supports complex event processing within an IoT environment by applying queries 

over the high level ontological concepts abstracted from RDF stream data.   

1.8 Thesis Overview 

The thesis is presented as follows: Chapter 2 provides the State of the Art and background 

knowledge in areas related to this research, including an introduction to IoT frameworks, 
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context awareness in IoT, streaming data processing, sensor data classification, Ontology data 

access, RDF streams and Complex Event processing. 

Chapter 3 studies the methodologies used in developing ontologies in software engineering and 

deduces a set of guidelines to follow in this work. 

Chapter 4 describes the IoT-ONT ontology and provides a detailed description of its’ modules 

and concepts. And presents the “EPS-DL” an Event Processing Syntax using Description 

Logic, its syntax, semantics, and its representation and provide a use case using the Syntax. 

Chapter 5 formally introduces the OCEM-IoT model of this thesis. 

Chapter 6, presents the evaluation method and the evaluation of OCEM-IoT divided into two 

main sections, the evaluation of the IoT-Ont ontology and the event processing syntax. This 

chapter introduces the accomplished experimentation results and evaluation. 

Chapter 7 presents the overall conclusions and future research directions. 
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CHAPTER 2: BACKGROUND KNOWLEDGE AND 

LITERATURE REVIEW 

2.1 Introduction 

The dissertation will focus on the use of sensor data sources, and proposes methods for 

querying them using semantic representations. This research explores the various background 

research areas, and the methods that have been suggested in recent years to address the research 

challenges.  

This section presents the challenges faced by the research community in the field of IoT: 

 A heterogenous environment, at all levels; data structures, devices, data schemas, and 

data formats provided by the sensors, this aspect makes it difficult to make use of the 

data provided and integrate it with various data sources. 

 The nature of sensor data streams: the high dynamicity of this data poses essential 

challenges for today’s query processing. 

The challenges of data volume and velocity are intrinsic in such scenarios, besides the data 

variety in such environments. These three challenges have been studied since the emergence 

of the Big Data concept and are referred to as the ‘Three V’s’ (Laney, 2001). This research 

addresses some of these challenges, with regard to the transformation of raw sensor data into 

meaningful information. This data will be modelled using the IoT-Ont ontology and will be 

accessed by queries based on the ontological concepts. The usage of ontologies as a method to 

provide explicit semantics for data has been adopted by many researchers to faciliate reuse, 

integration and reasoning over it. Furthermore, recent research in this field has developed 

continuous querying and event processing, besides the traditional database systems, which 

depended on relational and transactional principles. These two querying systems are important  
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to develop methods and techniques that can coherently combine them. By employing structured 

semantics on the data, adopting ontologies as a model for representing both sensor data and the 

metadata that describes it, is the basis of the research presented in this thesis.  

State-of-the-art solutions in the sensor data processing context, model time relations to a certain 

limit; However, it does not address the data variety neither it addresses the domain complexity. 

Advancement in Semantic technologies made it possible to describe the aforementioned 

aspects. However, existing methodologies either do not provide a unified syntax to model the 

full processing or have restricted expressiveness (Taylor and Leidinger, 2015).  

This chapter is organised as follows: Section 2.2 presents a general  introduction to the Internet 

of Things (IoT) and its main characteristics. Section 2.3 introduces the context-awareness 

model for IoT. Section 2.4 introduces existing frameworks within an IoT environment.  

Section 2.5 presents an introduction to Sensor Ontology Modelling, a background to the main 

ontology in this field the Semantic Sensor Network Ontology (SSN), and extended ontologies 

based on the SSN to accommodate an IoT environment and a comparison between these. 

Section 2.6 introduces Event Processing and how it is used to detect changes in a highly 

dynamic environment with Big Data, Section 2.7 presents various Event Processing Models 

used for Big Data processing.  

Section 2.8 introduces Semantic Based models that represent and query sensor data in terms of 

ontologies including the Resource Description Framework (RDF) and streams reasoning 

approaches using event processing languages such as SPARQL. 
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2.2 Internet of Things  

2.2.1 What is Internet of Things?  

Internet of Things is characterised by an ever-increasing number of Things embedding sensing, 

actuating, processing and communication capabilities. The most critical challenge for 

applications development in this field is dealing with a large scale number of users and Things 

while providing interoperability across the heterogonous things. Rivera and Goasduff in 

Gartner (2014) predicts that the number of connected things in the world will have a thirtyfold 

increase between 2009 and 2020.the Internet (Rivera and Goasduff, 2014). 

Research on Internet of Things is in its infancy stages, there is no standard definition available 

yet for the term since it could be viewed from different perspectives: Internet-oriented, Things 

oriented and Semantic oriented. The term was first used in a presentation by MIT’s Kevin 

Ashton in 1999, where he suggested adding Radio Frequency Identification RFID tags to 

objects would create the Internet of Things. This suggestion has already become a reality, 

though now it goes far beyond this concept. The integration of an ever-soaring number of 

objects connected to the internet. With the main aim of turning high-level interactions with the 

physical world into a simple interaction with a virtual equivalent and ultimately blending both 

worlds together (Hachem et al., 2014). 

The literature review has shown that there is a number of definitions used to represent the IoT 

vision, as discussed below: 

 The definition provided by the European Research Cluster of IoT is (Vermesan and 

Friess, 2014): 

“A dynamic global network infrastructure with self-configuring capabilities based on standard 

and interoperable communication protocols where physical and virtual “things” have identities, 
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physical attributes, and virtual personalities and use intelligent interfaces, and are seamlessly 

integrated into the information network.” 

 

Figure 2-1 IoT Definition by IERC (Vermesan and Friess, 2014) 

 The definition provided by the International Communication Union is (Union, 2012): 

“Internet of things (IoT): A global infrastructure for the information society, enabling advanced 

services by interconnecting (physical and virtual) things based on existing and evolving 

interoperable information and communication technologies. 

NOTE 1 – Through the exploitation of identification, data capture, processing and 

communication capabilities, the IoT makes full use of things to offer services to all kinds of 

applications, whilst ensuring that security and privacy requirements are fulfilled. 

NOTE 2 – From a broader perspective, the IoT can be perceived as a vision with technological 

and societal implications." 

 The definition provided by Future Internet Assembly: 

“The IoT concept was initially based around enabling technologies such as Radio 

Frequency Identification (RFID) or wireless sensor and actuator networks (WSAN), 

but nowadays spawns a wide variety of devices with different computing and 
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communication capabilities – generically termed networked embedded devices (NED). 

While originating from applications such as supply chain management and logistics, 

IoT now targets multiple domains including automation, energy, e-health etc. More 

recent ideas have driven the IoT towards an all-encompassing vision to integrate the 

real world into the Internet – The Real World Internet (RWI).” 

These definitions reveal that IoT makes use of a number of collaborating technologies ranging 

from networking to sensing. The advancement of numerous technologies for sensors, actuators 

and cloud computing, and the emergence of a new generation of cheap and small wireless 

devices, most objects used in our daily life could become wirelessly interoperable by attaching 

a low powered and passive wireless device such as RFID tags. By easing the access and 

interaction with a wide variety of things, IoT will promote the development of applications in 

many domains, such as industrial and agricultural automation, medical aids and emergencies, 

mobile healthcare, traffic management and many others. 

2.2.2 Characteristics of an IoT Infrastructure 

This section briefly discusses the main characteristics of an IoT infrastructure: 

 Heterogeneity: IoT aims to interconnect large numbers of heterogeneous devices to 

provide advanced applications. The heterogeneity does not come only from differences 

in the capacity and the features of the things but from many other reasons such as multi-

vendors’ products and application requirements (Bellavista et al., 2013). Heterogeneity 

in IoT could be at any level of functionality within the IoT platform, it could be at the 

Internet or cloud level, at the high, middle and low-end computing hardware, besides 

the wireless sensors and actuators (Teixeira et al., 2011). 
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 Resource-constrained: Embedded sensors need a small device; this factor limits their 

processing, memory, and communication capacities. RFID tags may not have any 

processing capacities, whereas devices in the cloud are larger and more expensive and 

with high capacities (computational, connectivity, and memory) (Want, 2004). 

 Spontaneous interaction: As objects move around and come into other objects 

communication range, sudden interactions can take place which leads to spontaneous 

generation of events (Razzaque et al., 2016). 

 Extremely large scale network: Thousands of devices could interact with each other at 

the same time, and in one local place, these interactions between this enormous numbers 

of nodes will lead to the generation of an enormous number of events which could cause 

different problems such as congestion and a reduced event processing speed. 

 Dynamic network and no infrastructure: Mobile nodes within an IoT infrastructure 

could leave and join the network at any time. Also, some nodes could get disconnected 

for lack of power. This leads to a very dynamic network infrastructure, and hence the 

nodes would need to cooperate in order to keep the network in working order (Razzaque 

et al., 2016). 

 Context-aware: The large number of sensors in an IoT environment will generate a big 

amount of data, this data would not be useful unless analysed and interpreted correctly. 

Context awareness would help minimise the human interaction and the automation of 

the process, which is of a vital role in machine to machine communication (Cristea et 

al., 2013). 

 Location-aware: The location of the objects and sensors are of a vital importance for 

context-aware computing. Interactions of the sensors are highly dependable on their 

location and the presence of other things. 
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 Distributed: IoT is distributed at both scales, globally like the internet and locally within 

the application domain (Banerjee et al., 2011). 

 Intelligence: Intelligence is a key element in IoT, in this dynamic and ultra large 

network entities will be interoperable and should act independently based on the 

context, surroundings and environment (Kortuem et al., 2010, Kyriazis and Varvarigou, 

2013). 

Table 2-1 summarises the main characteristics of the IoT infrastructure. 

Table 2-1 IoT Infrastructure Characteristics 

Spontaneous Interactions Location-Aware 

Heterogeneity  Big Data 

Distributed Increased Security Risks 

Ultra Large Network Resource Constrained 

Dynamic Large Number of Events 

No infrastructure Intelligence 

2.3 Context-Aware Internet of Things  

A context includes any information that could be used to characterise the environment’s 

situation, the place, the person and any object considered relevant to the interaction between 

the user and the application, including the user and the application itself. Context-aware IoT 

systems use context information to adapt their operations without an explicit user intervention 

and thus aim to increase usability and efficacy in order to provide users with better and more 

adapted services. This section, introduces the formal definitions of contexts and contextual 

reasoning. 
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Definitions of Context 

Many researchers have defined the term ‘context’. Dey et al. (2001) assessed the weaknesses 

of the definitions provided by researchers. They claimed that the definition provided by Schilit 

and Theimer (1994) was based on examples and could be used to identify new context. Dey et 

al. (2001), further claimed that definitions of Brown (Brown, 1995) Franklin and Flachsbart 

(Franklin and Flaschbart, 1998), Rodden et al. (Rodden et al., 1998) and Hull et al. (Hull et al., 

1997), used synonyms for context, such as situation and environment (Dey et al., 2001).  

Consequently, these definitions cannot be used  to identify new context. According to Abowd 

and Mynatt (2000) identified the five W’s (Who, What, Where, When, Why) as the minimum 

information needed to understand context (Abowd and Mynatt, 2000). The term context was 

also defined by Schilit et al. (Schilit et al., 1994) and Pascoe (Pascoe, 1998). Dey claimed that 

these definitions were too specific and could not be used in a generic sense to identify context 

and provided the following context definition (Dey et al., 2001): 

“Context is any information that can be used to characterise the situation of an entity. An entity 

is a person, place, or object that is considered relevant to the interaction between a user and 

an application, including the user and applications themselves” (Dey et al., 2001) 

The definition of context provided by Dey et al. (2001) is widely used in the literature and is 

used in this thesis because this definition could be used to identify context from data in general. 

By considering a data element, we can determine whether the data element is context or not 

using this definition. The word context has also been defined and explained by a number of 

dictionaries as a circumstance, situation, phase and set of facts surrounding a situation or event. 

In addition, the difference between raw data and context information has been explained by 

Sanchez et al. (2006) as follows: 
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 Raw (sensor) data: The unprocessed data which is collected directly from the data 

source, such as sensors. 

 Context information: Is produced after the processing of raw sensor data. Consistency 

will be checked and then metadata will be added to it. 

For example, the sensor readings produced by temperature sensors can be considered as raw 

sensor data. Once we put the temperature sensor readings in such a way that it represents a 

temperature reading with units, we call it context information. The raw data values generated 

by sensors can therefore generally be considered as data. These data are identified as context 

only if it can be used to generate context information. Thus, most data that is captured from 

sensors is raw data and not the context information. 

The notion of context is at the centre of IoT solutions. On the one hand, sensor data collection 

is used to obtain this contextual information. On the other hand, once the context is derived, 

events could be detected and reasoned about. However, it is not easy to represent and derive 

context in IoT. This is primarily because of the continuous aspect of the physical sensed data 

and the distributed and heterogeneous nature of IoT things. 

2.3.1 Main Architectures within an IoT Environment 

There are several approaches to achieving context-aware systems. These approaches depend 

on the system’s requirements and conditions, such as the location of sensors (local or remote), 

the number of possible users (one or several users), the available resources of the devices used 

(small mobile devices or high-end-PCs). Chen et al. identifies three different methods to 

contextual information acquisition (Chen et al., 2003): 

1. Direct sensor access: This method is often used in devices with locally integrated 

sensors. The client software collects the required information from these sensors 
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directly, i.e., there is no additional layer  available to collect and process sensor data. It 

is therefore not suitable for distributed systems because of its direct access nature, 

which lacks a component capable of handling multiple simultaneous sensor accesses. 

2. Middleware infrastructure: Modern software system uses encapsulation methods to 

separate graphical user interfaces and business logic. The middleware approach 

introduces a layered architecture to context- aware systems  to conceal low-level 

sensory details. 

3. Context server: The following logical step is to allow several clients access remote 

data sources. By introducing a component to manage remote access this distributed 

approach extends the middleware based architecture. The collection of sensor data is 

transferred to this so-called ‘context server’ which make multiple access easier. In 

addition to sensors reuse, the use of a context server removes the resource-intensive 

operations from the client’s side. 

2.3.2 Contextual Reasoning Challenges in IoT 

The purpose of reasoning about context in an IoT environment is to make full use of raw 

context data; to process, combine and eventually translate the sensor low-level data into useful 

information. Based on which the system could determine the state of its context and react 

appropriately to certain context changes. 

The imperfection and uncertainty of context information and the unique characteristics of the 

entities that function in IoT environments presents numerous challenges. Sensor or 

connectivity failures (which inevitably occur in wireless connections) lead to situations where 

not all context data is available at any time. When data on a context property comes from 

various sources, the context can then become ambiguous. Lack of precision is prevalent in 

sensor-derived information, while incorrect contexts arise as a result of hardware or human 



24 | P a g e  

 

errors. The entities operating within an IoT environment will have different objectives, 

experiences and perceptive capabilities. They might be using different vocabularies. Because 

of the dynamic and open nature of the IoT environment, many entities join and leave the 

environment at random times. In addition, the unreliability and the range restrictions of 

transmitters and wireless communications. IoT things do not typically know a priori all other 

entities present at a particular time nor can it communicate directly with all of them.  

Overall, according to the literature, the role of reasoning about context includes (Perera et al., 

2014, Bikakis and Antoniou, 2010): 

1. To detect possible errors in the context information available. 

2. To handle missing values. 

3. To Evaluate the quality and the validity of the data sensed. 

4. To transform the low-level raw context data into higher level meaningful information 

so that it can later be used in the application layer. 

5. To make decisions about the system’s behaviour when certain changes are detected in 

the system’s context. 

With regard to these particular characteristics of context reasoning in an IoT environment, the 

three main challenges, are to enable (Bikakis and Antoniou, 2010): 

1. Reasoning with the highly dynamic and imperfect context. 

2. Managing the potentially huge piece of context data, in a real-time fashion, considering 

the restricted computational and storage capabilities of some mobile devices, and the 

constraints imposed by wireless communications. 

3. Collective intelligence, by supporting heterogeneous information sharing, and 

distributed reasoning with all the available context information. 
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2.4 Ontology based IoT Frameworks  

In order to provide connectivity for sensors and actuators to the Internet several IoT 

frameworks were proposed to serve as a middleware solution. Many IoT frameworks exist 

nowadays, they mostly focus sensors and devices integration, there is very little attention given 

to a more intelligent IoT data processing (Barnaghi et al., 2012). 

This section discusses the latest attempts to process data in an IoT environment, mainly through 

the use of semantics. 

LinkSmart platform (Kostelnik et al., 2011) was developed in order to facilitate the integration 

of various devices, sensors and services and to support interoperability. It provides an 

abstraction of the devices and sensors as normal programming objects toward the application 

layer. It enables to compose workflows using business rules to optimise the service 

composition. 

Patkos et al. (Patkos et al., 2010) propose an ambient intelligence framework that combines 

rule-based reasoning with causality-based reasoning, to reason about actions and causalities. 

The proposed framework does not provide capabilities to annotate raw IoT data. Gray et al. 

(Gray et al., 2011b) propose a system to annotate and integrate heterogeneous streaming data 

with stored data, through the use of ontologies. Their approach focuses on the discovery and 

integration of data sources, both static and streaming data. Reasoning and service collaboration 

techniques are not presented. 

Sense2Web (De et al., 2012) is a multi-layer platform which enables the annotation and 

integration of sensor data as Linked Data, and makes it available to other Web applications via 

SPARQL endpoints. In Sense2Web the data source layer is modelled using expressive 

ontologies in order to retrieve high-level data. However, for the service and application layer, 

service collaboration and advanced reasoning capabilities are not provided. 
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XGSN (Calbimonte et al., 2014) is an end-to-end, semantically enabled IoT platform which 

enables semantic annotation of sensors, and processes the resultant sensor stream utilising the 

Linked Sensor middleware (LSM). The stream can be stored or processed using stream 

processors. External application may query the context through the use of Web Services. These 

applications, however, cannot share conclusions back to the context layer. 

Ali et al. (Ali et al., 2015) propose an IoT-enabled communication system that enables sensory 

data annotation using the XGSN middleware and the continuous analysis of data streams using 

stream query processing modules for events’ detection. These events can then be further 

processed in the Stream Reasoning component which can deduce implicit semantic statements. 

Applications can subscribe to events generated in the centralised stream processing and 

reasoning layer. However, they cannot collaborate to achieve complex workflows. 

OpenIoT (Soldatos et al., 2015) is an open-source IoT platform enabling the semantic 

interoperability of IoT services in the cloud. It allows the integration and annotation of virtually 

any sensor. 

LSM is utilised and acts as a cloud database which enables the storages of the annotated data 

streams. Services can access the annotated data through the use of SPARQL queries. However, 

service collaboration and advanced reasoning capabilities are lacking. 

SOFIA2 (Indra, 2017) is an ontology-based Big Data IoT middleware, allowing 

interoperability and semantic annotation of several heterogeneous devices. It facilitates 

Complex Event Processing (CEP) to orchestrate the context data between context consumers. 

However, besides context subscription based on CEP, there is no real semantic reasoning 

feasible. 

Some of these solutions do draw conclusions in an efficient reactive manner facilitated by 

annotating data semantically. Efficient data processing is often supported. Nonetheless, more 
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advanced reasoning capabilities are still missing. Furthermore, these platforms fail to mutually 

collaborate in a high-level manner. An overview of the ontology-based IoT frameworks 

discussed is summarised in Table 2-2. 

Table 2-2 State of the Art of Ontology-Based IoT Platforms 

PLATFORM SEMANTIC 

ANNOTATION 

INFERENCE CONTEXT 

MODEL 

Patkos et al. (Patkos et 

al., 2010) 

/ Rules and 

causality 

Central 

LinkSmart (Kostelnik 

et al., 2011) 

Yes Rules Central 

Gray et al. (Gray et al., 

2011b) 

Yes / Central  

Sense2Web (De et al., 

2012) 

Yes / Central  

SeCoMan (Celdrán et 

al., 2014) 

locations Rules  Distributed 

CASF (Kang and 

Park, 2013) 

Yes / Distributed 

SOFIA2 (Indra, 2017) Yes  / Central 

XGSN (Calbimonte et 

al., 2014) 

Yes Basic Stream 

Processing 

Central 

Ali et al. (Ali et al., 

2015) 

Yes Stream 

Processing 

Stream 

reasoning 

Central 

OpenIoT (Soldatos et 

al., 2015) 

Yes / Central 

OCEM-IoT Yes OWL DL Distributed 
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2.5 Sensor Ontology Modelling 

2.5.1 Sensor Data Ontologies 

Sensor data and metadata modelling using ontologies have been studied widely in the latest 

years, this has resulted in the development of various sensor ontologies, a lot of these ontologies 

were centred mainly on descriptions of sensors, and on measurements provided (Compton et 

al., 2009). 

Metadata is usually static and rarely changes over time since it contains information 

representing, the types of sensors, procedures, descriptions, value ranges, and technical 

capacities. The semantic metadata could be exploited for multiple reasons, such as enriched 

search, sensor configuration or dataset’s discovery. Sensor observation data however is 

characterised by continuous updates and higher data volumes, and includes values captured for 

a certain feature provided by the sensors. 

The initial ontology proposals for describing sensors were presented for wireless sensor 

networks by (Avancha et al., 2004, Eid et al., 2007, Goodwin and Russomanno, 2006) and 

others. However in these models, the main focus is limited to sensor’s meta information, and 

description of observation is ignored (Compton et al., 2009). Furthermore, most of these 

models lack ontological design best practices such as alignment with reference ontologies and 

standards, and reusability. The OntoSensor ontology (Goodwin and Russomanno, 2006) is 

based on the concepts defined in the OGC1 and SensorML2 standards as a basis. Although it is 

concerned with syntactic representation that does not explicitly state semantics, the OGC has 

been leading the development task in order to standardise sensor metadata. The OntoSensor, 

implements for its class descriptions and properties, the concepts of Sensor, Sensor 

                                                 
1 Open Geospatial Consortium http://www.opengeospatial.org/ 
2 SensorML http://www.opengeospatial.org/standards/sensorml 
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Capabilities, Platform and Measurement and Observable. Moreover, it implements extensions 

to the upper ontology SUMO, and also proposes service extensions (Kim et al., 2008). 

OntoSensor is considered one of the most comprehensive ontologies in relation to sensor 

metadata coverage. However, it fails to implement observation data and does not follow the 

OGC Observations and Measurements (O&M) standard3. The ideas identified in the OGC 

SensorML standard were adopted by the SWAMO ontology (Witt et al., 2008), this ontology 

focuses also on a sensors’ descriptions. 

Barnaghiet al. (Barnaghi et al., 2009) proposed the extension of ontological models to include 

representations of the observations captured by sensor networks, this work was also based on 

the standard defined by the OGC for both the Observations and Measurements (O&M). 

Moreover, the ontology includes characteristics of sensor nodes such as operation modes, 

typical values and power supply. Nonetheless, it does not implement configuration and 

deployment concepts; it neither follows the ontology design principles of modularisation nor it 

reuses the existing vocabularies.  

The researchers in (Eid et al., 2007), illustrate the SDO ontology for sensor data and hierarchy. 

The SDO is subdivided into multiple interconnected modules, the ontology is described as an 

extension for the SUMO4 Ontology. The Extensions for upper-level ontologies such as SUMO 

is extremely interesting in ontology development since it allows the integration with other 

vocabularies defined previously and facilitates reuse of potential ones. 

In (Compton et al., 2009) the researchers present the CSIRO sensor ontology, it includes, 

besides sensor properties and descriptions, the ability to represent sensor components and 

composition, which facilitates the representation of virtual sensors. However, data concepts 

and observations are neither detailed nor comprehensive in the ontology. The above-mentioned 

                                                 
3 Observations and Measurements standards OGS http://www.opengeospatial.org/standards/om 
4 SUMO Ontology http://www.adampease.org/OP/ 
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ontologies were deployed to describe and specify actions and complex events that run on an 

event processing engine (Taylor and Leidinger, 2015).  

The evaluation for early ontologies covers their ability to describe: sensor measurements, 

sensor data, sensor types, sensor hierarchies, sensor systems, structure and composition, etc., 

and diagnose the limitations in these ontologies, basically regarding operating conditions to a 

satisfying level or response models, and the ability to describe configurations (Compton et al., 

2009). 

2.5.2 The Semantic Sensor Network Ontology 

Based on the previous methods, and with the collaboration of the W3C SSN-XG group5, the 

semantic web and sensor network communities have been working towards a generic ontology, 

a domain-independent ontology, which adapts to various use-cases, and conforms to the 

standards proposed by OGC at the sensor level (SensorML) and observation level (O&M). The 

result was the Semantic Sensor Network Ontology (SSN) (Compton et al., 2012), is based on 

the stimulus-sensor observation design pattern (Janowicz and Compton, 2010) and the OGC 

standards. The SSN ontology is aligned to the upper-level DOLCE Ultra Lite ontology6 in order 

to improve matching and compatibility with other state-of-the-art ontologies, and as a W3C 

group initiative, a collaborative development process was followed. 

The SSN ontology presented in Figure 2-2 (Compton et al., 2012) is used for describing 

sensors, their functionalities, and for the processing of the external stimuli. Moreover, it could 

be centred on the data observations, and the related metadata, or in the platforms and systems 

of a sensing deployment. The SSN modules reflect these distinct perspectives. The key module 

                                                 
5 SSN Ontology https://www.w3.org/2005/Incubator/ssn/ssnx/ssn 
6 DOLCE Ultra Lite Ontology http://www.ontologydesignpatterns.org/ont/dul/DUL.owl 
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Skeleton comprises of concepts used in all the use cases, such as sensors, and the observations 

they generate, which includes properties being observed for a certain features of interest. 

 

Figure 2-2 SSN Ontology, Key concepts and relations  (Compton et al., 2012) 

For illustration, consider a humidity sensor deployed within a weather station at a certain 

location. The humidity sensor is used to measure the humidity level on its specific field site. 

Consider a different sensor in the same weather station records precipitation every 10 minutes. 

We can represent the two sensors, by utilising the SSN ontology, as instances of ssn:Sensor, 

each one holding a different Uniform Resource Identifier (URI) as shown in Listing 2-1. Using 

the ssn:onPlatform property each sensor could be linked to a weather station platform, e.g. 

Salford platform, where the sensors are deployed. The platform is geo-spatially located, using 
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the WGS84 vocabulary7. In this example, the location’s latitude and longitude coordinates of 

the platform are supplied, as a geographical point. Moreover, other information can be included 

such as an initial date of the deployment, the responsible person etc. 

Listing 2-1 Representaion of a Humidity Sensor on a platform Station 

salfweather:sensorHumidity2 

rdf:type ssn:Sensor; 

ssn:onPlatform salfweather:platformSalford; 

ssn:observes cf-property:Humidity_level. 

salfweather:sensorPercipitation1 

rdf:type ssn:Sensor; 

ssn:onPlatform salfweather:platformSalford1; 

ssn:observes cf-property:percipitation 

salfweather:platformSalford 

ngeo:hasGeometry [ rdf:type wgs84:Point; 

wgs84:lat " 53.4858 "; 

wgs84:long " 2.3836 " ]. 

  

In this example the “ssn:observes” property is used to describe the type of observed property. 

Since the SSN ontology is a domain independent ontology, the real values of the observed 

property are obtained from specific vocabularies, such as the Climate & Forecast properties 

ontology8. Consequently, with regard to the humidity sensor, the “cf:property:humidity_level” 

term is used to describe the humidity level observed property. Using the SSN ontology’s 

terminology, the measurements for the humidity and precipitation could be viewed as 

observations, each one of them represents a specific feature of interest (humidity and 

precipitation in this case), and each one refers to a specific property (humidity and 

precipitation). Instances of the Observation class in the SSN ontology describe such 

                                                 
7 Basic Geo WGS84(lat/long Vocabulary )https://www.w3.org/2003/01/geo/ 
8 Climate and Forecast Vocabulary https://www.w3.org/2005/Incubator/ssn/ssnx/cf/cf-property 
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observations and are connected through a “featureOfInterest” property to a certain feature 

instance (see Figure 2-3). Likewise, the “observedProperty” connects to an instance of a 

property, such as humidity level. Obviously, further information regarding the observation 

could be captured, this includes noise, units, precision, and failures. Note that the approach of 

ontology modelling requires the reuse of the SSN ontology combined with the domain-specific 

ontologies. 

2.5.3 Extending the SSN Ontology  

Most ontologies established after the SSN ontologies for wireless sensor networks or to be 

employed in an IoT environment, were in fact extensions of SSN ontology. The main extension 

directions were mainly for the following reasons: (Wang et al., 2015) (Bauer et al., 2019) 

1. Extensions according to a specific domain or application. 

2. Add new concepts to SSN ontology to develop a more general ontology. 

3. Combine with the other ontology to solve actual problem.  

This section will briefly present ontologies developed for these reasons. 

(1) Extending According to a Specific Domain  

SSN ontology is extended according to the specific requirements of different applications. The 

extended ontologies add new concepts on SSN ontology or change SSN ontology for the 

specific application so that they can describe the application field more clearly.  

NIST ontology (Schlenoff et al., 2013) applies to the manufacturing industry. In NIST 

ontology, SSN ontology is extended according to a series of specific requirements. On the basis 

of SSN ontology, function, domain, additional entities, resource group, status, purpose, 

physical location, etc. are added in NIST ontology. NIST ontology describes the detailed sensor 
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dimension, weights, resolution and the knowledge representation standard of the operating 

conditions, the representation of the system ability, and the sensor network of the 

manufacturing environment etc.  

SWROAO (Wang et al., 2011) ontology is used on atmosphere observation. The platform class 

of SSN ontology is extended. In SWROAO ontology, three subclasses are derived from the 

platform class. They are aircraft class, ground class and spacecraft class. Each class is 

subdivided. Aircraft class includes LEO satellite and high orbit satellite, ground class includes 

the ground remote sensing platform, the ground atmospheric boundary layer observation 

platform and the mobile ground atmospheric observation platform, and spacecraft class 

includes balloon, aircraft and rocket, etc. The subdivision of these specific platforms makes 

SWROAO ontology carry out different query or decision depending on different platforms in 

the applications. 

AEMET ontology (Atemezing et al., 2013) applies to the meteorological forecast of Spanish 

meteorological bureau. It extends from SSN ontology. In AEMET ontology, measurement 

ontology is related to meteorological observation. The main conceptes reuse “ssn: 

Observation”, “ssn: FeatureOfInterest” and “ssn: Property”of SSN ontology. But the SSN 

ontology concepts will be applied to a specific instance. Such as the concept "SSN: Property” 

is extended and added the specific properties of meteorological aspect in AEMET ontology. 

The concept “ssn: Sensor” is expanded to a hierarchy of types of sensors in the AEMET 

ontology and “ssn: Platform” is extended by “aemet: WeatherStation”. 

(2) Extending by Adding New Contents to SSN Ontology to Found More General Ontology  

The more general ontologies are extended on the basis of SSN ontology in order to have more 

extensively applicable scope.  
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WSSN ontology (Bendadouche et al., 2012) enriches SSN ontology. It describes 

communication by a kind of new pattern and integrates new concepts relating to the wireless 

sensor network in SSN ontology. WSSN ontology uses a new pattern: SWSNC (Stimulus-

WSNnode-Communication) ontology design pattern. This pattern treats the stimulus as the 

starting point of any process and the trigger of sensor or communication equipment. In the 

observed phenomenon, stimulation can exist as the measurable change and the unconscious 

stimulation of a reaction process. Stimulation can also be used as a conscious stimulus in the 

communication process, and it is an input communication needs. WSSN ontology adds some 

new concepts of wireless sensor network, such as communication, data flow and state. 

SCO ontology (Shi et al., 2012) is also built by reusing and extending SSN ontology. The 

Sensor module in SCO ontology is the core module which is a bridge connecting to other 

modules. Sensor module directly reuses the Sensor module of SSN ontology, but the Stimulus 

class is replaced by SensorInput class. The OpeatingRestriction module is changed to the 

SystematicCharacter module, and EnvironmentCondition class is added in the module. In 

addition, on the basis of SSN ontology modules, new modules such as the Component module, 

the Service module and the Context module, etc. are added. In the Context module, three 

important classes are added: Space, Time and Theme. These three classes respectively show 

that Space, Time, and Theme of observations values by which the sensor data information can 

be described in more detail. SCO ontology is a major progress of SSN ontology extensions.  

In order to conduct semantic description of the sensor data on the sensor cloud, SCO (Sensor 

Cloud Ontology) Ontology appears (Müller et al., 2013). SCO Ontology reuses and extends 

SSN ontology, and many classes and properties don't have to be redefined. Through the derived 

subclass, the platform and network and other characteristics of sensor network on the Cloud 

can be defined. In SCO ontology, the Network class and Platform class derived from the 

System class of SSN ontology, the Sensor class derived from the SensingDevice class, while 
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the ObservedPhenomenon class derived from the Observation class, the Observation Result 

class derived from the SensorOutput 

Kim et al. (Kim and Kim, 2015) propose an ontology based on the information provided by 

mobile device sensors, both physical (e.g. Wi-Fi, Bluetooth, etc.) and virtual (e.g., user 

schedule, weblogs, etc.) to support context-aware services. The proposed ontology defines the 

relations between different user locations and the contexts identified. The authors further 

propose a reasoner upon this ontology and evaluate it to identify locations. The result shows 

that their reasoner has higher location accuracy than the GPS locations. 

 (3) Extending by Combining with the other Ontology to Solve Actual Problem  

Because the data of Semantic Sensor Web is linked-data, the ontology combination can make 

the application range greatly extend. The combination of SSN ontology and the other 

ontologies is necessary.  

Alasdair Gray (Gray et al., 2011a) proposed SemSorGrid4Env ontology network to apply in 

flood emergency prediction scheme. This ontology network is composed of different 

ontologies. It is divided into four layers: the ontology of the specific fields, the information 

ontology, the upper ontologies and the external ontologies. These ontologies meet different 

knowledge representation requirements, and they share and reuse between each other. SSN 

ontology reuses the DOLCE + DnS UltraLite and SWEET upper ontology. The ontologies in 

the flood field are the basis of SSN ontology. They also reuse the external ontology. These 

ontologies combine with each other and play the biggest role in order to solve the flood 

emergency prediction (Wang et al., 2015). 

 The Smart Appliance REFerence (SAREF) ontology (Daniele et al., 2015) exists in the domain 

of smart appliances and aims to reuse and align concepts and relationships in existing 

appliance-based ontologies. The concept of functions: one or more commands supported by 
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devices (sensors) defined in SAREF, supports modularity and extensibility of the ontology, 

and also helps in maintenance of the appliances.  

Hirmer et al. (Hirmer et al., 2016) propose an ontology to support dynamic registration and 

bindings of new sensors to a platform. They borrow the concepts of Sensors, Things and their 

associated properties from SensorML, and introduce an additional concept of “Adapter” 

associated with every sensor. The borrowed concepts support sensor discovery while the newly 

introduced concepts provide/compute additional information about sensor data. For example, 

adapters are used to compute the average quality of sensor data values from the quality of the 

sensor provided by the manufacturer and the staleness of the values generated by the sensor. 

AEMET ontology is also formed by multiple ontologies (Atemezing et al., 2013).The ontology 

includes four modules: sensor, time, location and measurement. The Time module reuses the 

OWL Time Ontology, and the location Ontology reuses part of geobuddies ontology network, 

and the measure ontology reuses the concepts of SSN Ontology. All these ontologies are used 

to the meteorological forecasting of the Spanish meteorological bureau. They can transform 

the meteorological data to linked-data and have more comprehensive description (Wang et al., 

2015). 

2.5.4 Existing IoT Ontologies  

Researchers have developed various sensor ontologies that seek to resolve the issue of 

heterogeneous software, hardware and data management. Table 2-3 classifies the various 

sensor-based ontologies according to the problems which they address. It is important to note 

that ‘sensor data’ can either signify the raw data produced by perceiving the phenomenon, or 

it can refer to the metadata information which describes the capabilities of the sensor (for 

example, its accuracy or range of coverage). In this context, the term ‘sensor data’ is reserved 

for the raw data, while ‘sensor capabilities’ is used for the metadata. 
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Table 2-3 Areas tackled by existing ontologies 

Sensor Ontologies 

Sensor 

Discovery 

Data Access and 

Sharing 

Sensor 

Capabilities 

Sensor Data 

Description 

Extensibility 

IoT-Lite 

(Bermudez-Edo et 

al., 2016) 

Xue et al. (Xue et 

al., 2015) 

IoT-Lite 

(Bermudez-Edo et 

al., 2016) 

(Gyrard et al., 2014b) Brick (Balaji et al., 

2016) 

Dynamic 

Ontology-Based 

Sensor Binding 

(Hirmer et al., 

2016) 

 

Sensor Core 

Ontology (SCO), 

(Shi et al., 2012) 

Xue et al. (Xue et 

al., 2015) 

(Compton et al., 2012) SAREF (Daniele 

et al., 2015) 

Brick (Balaji et al., 

2016) 

 OntoSensor 

(Russomanno et 

al., 2005) 

MyOntoSens 

(Nachabe et al., 2015) 

 

 

In Chapter 3, we present a more comprehensive comparison of recent Ontologies for IoT based 

on their conceptual and functional requirements, such as reusability and capacity of extension.  

2.6 Introduction to Event Processing 

Event Processing (EP) is a software engineering discipline that developed a set of technologies 

and tools to allow real-time computing. EP techniques are based on principles of event 

programming. The EP architecture is an important concept in EP that helps us to better 

understand and control computing in EP applications. This section introduces EP, including 
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the fundamental principles and the EP architecture. To understand what EP is about, this 

section starts by explaining what an event is. 

Event Definition: An event is defined as “an occurrence within a particular system or domain; 

it is something that has happened or is contemplated as having happened in that domain” 

(Etzion et al., 2011a). 

The word event is also used to mean a programming entity that represents such an occurrence 

in a computing system. From this definition, we see that events are considered within a 

particular domain. In many cases, the domain endows events with a context in which they are 

interpreted. In the first part of the definition, an event denotes something that happened in the 

real, physical world. The second part, however, treats an event as a programming entity in a 

computing system. Indeed, an event is a general term, and in most of the applications by 

observing the physical world surges the need for means to represent and process these 

observations in a computing system. 

In practice, an event represents something that occurs, happens or changes the current state of 

affairs. For example, an event may signify a problem or an impending problem, a threshold, an 

opportunity, an information becoming available, a deviation and so forth. These events are 

directly related to specific, measurable changes of conditions. In many application, it is, 

however, important to infer more abstract situations. It is the task of EP to effectively derive 

these situations based on (many) single, ordinary events. 

2.6.1 Events: A Technique to Declare a Change 

Declarative programming involves declaring facts about things, clarifying whether they are 

true or false. These facts can help in the implementation of an inference procedure to determine 

the truth about other things whose truth is not stated explicitly. It is, however, necessary to not 



40 | P a g e  

 

specify who might use the fact about something being true or false and to avoid specifying 

when a fact could be used to deduce another fact.  

In a similar manner, an event in event-driven programming suggests the occurrence of 

something. This means that an event producer announces that something has happened or the 

current state of affairs has changed. It is, however, unclear as to who uses this fact. Moreover, 

it is not established when this fact can be used and when another fact can perhaps be inferred. 

It is also not predetermined what number of facts could be derived from that fact. (Etzion et 

al., 2011a) stated that, in Event Processing (EP), the concept of decoupling refers to an event’s 

declaration being independent from possible consequences it might produce (such as being 

used to derive an unspecified number of events or to utilise for other purpose with no impact 

on that event’s cause). Hence, event-driven programming has a close relationship with the 

declarative programming principles, while programming based on request-response 

interactions has an analogous relationship with imperative programming. In this case, a 

requester can ask to conduct particular processing when posting the request, and it is similar to 

an imperative program’s implementation of a series of commands when calling a sequence. In 

event-driven programming and in imperative programming, it is important to consider the order 

in which requests are being processed. 

2.6.2 Event Processing Architecture 

EP refers to computing which executes operations on events, with the typical event processing 

operations involving events being read, transformed, created, as well as deleted (Etzion et al., 

2011a). 

As noted by Luckham (2011), Event Processing Technical Society (EPTS) gives a similar 

definition of EP (Luckham, 2011). It should also be noted that scientific literature uses the term 

Complex Event Processing (CEP) for indicating operations similar to EP that are conducted on 
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complicated events (Luckham, 2011). The two terms are often used interchangeably. The 

operations on events which this thesis examines can also be applied without limitation to 

complex events. In this section, an in-depth explanation on EP is presented. 

Event processing architecture refers to a pattern of software architecture that promotes events’ 

reading, transformation, creation, as well as deletion. The question here is which architectural 

pattern can be implemented by the design and implementation of EP applications?. There is a 

difference in applications based on the domains they are applied to and the requirements they 

must fulfil. On the other hand, all EP applications include a set of common entities that are 

arranged in an event processing network (EPN). An EPN includes entities such as event 

producers and consumers, with EP functioning as an intermediate processing between them. 

EPN’s three major building blocks are illustrated in Figure 2-3. In the following, we briefly 

present each of these three entities (Etzion, 2010). 

 

 

Figure 2-3 Event Processing Network (Etzion, 2010) 

Further, an Event Producer, also called an event source, indicates an entity that introduces 

events in a system implementing EP architecture. In addition, an event producer is responsible 
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for ‘listening’ to the environment to which it is attached, providing events from that 

environment to a related event processing agent (EPA), as shown in Figure 2-3. It is possible 

for an event producer, for example, to be attached to a physical sensor, as it will help the sensor 

identify a change since the producer develops an object that indicates the change and provides 

it as an event. An event producer can function simply as a proxy communicating events from 

other places in other instances. 

An event consumer can be considered as an entity receiving events from a system that uses an 

EPA. Moreover, an event consumer “consumes” events; for example, it reads events and 

utilises them for further computation, visualisation, or business analytics. It can also write 

events into a log or even trigger actions from events, such as creating other events or calling a 

particular service.  

The EP in fact refers to the “processing” which occurs between the consumers and producers, 

as shown in Figure 2-3. This processing includes operations conducted on events such as events 

reading, transforming, creating, and deleting. This processing is typically not monolithic and 

comprises a set of agents, all of whom perform particular operations on events.  

An EPA is a software module that processes events (Etzion, 2010, Luckham, 2011). In an EPA, 

events are taken as input and an EP operation is performed to output more complex (or derived) 

events.  

Authors in (Etzion, 2010) classified EPAs into three major agents: 

 Filter agent is responsible for filtering irrelevant events with regard to a specific 

filtering condition. An agent, for example, can filter stock price events with a price less 

than £100. Filter agents aim to eliminate events that are considered uninteresting in 

order to improve the performance of an EP application. 
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 Pattern detection agent identifies an event pattern based on particular conditions such 

as spatial, temporal, and other semantic relations that might be established between 

events. For example, an agent can observe a number of stock events occurring and 

determine the increase in stock price, indicating an x% increase in price during a given 

time based on an event pattern. 

 Transformation agent: transforms input events according to transformation operations.  

Transformation agents can be further classified based on transformation operations: 

 Split agent – takes one event as input and outputs two or more copies of the input event. 

 Aggregate agent takes numerous events as input and then performs an aggregation 

function on these input events to produce one derived event. 

 Compose agent – combines two event streams in a similar manner two relations are 

joined in relational algebra. 

 Translate agent translates an input event based on a translation operation into an output 

event. 

A translation operation can take one of the following two forms: 

 Enrich agent appends an input event using additional information obtained from an 

external information source such as an ontology or a database. 

 Project agent is responsible for eliminating particular information carried by an input 

event, which is similar to how a relational algebra relationship is projected based on 

specific attributes. 



44 | P a g e  

 

EPA

Filter Agent

Pattern detection 

Agent

Tranformation 

Agent

Split

Aggregate

Compose

Transalte
Enrich

Project

 

Figure 2-4 EPA Classification 

EPAs are connected to event producers and consumers, as well as to themselves through event 

channels (denoted by directed edges in Figure 2-3). As noted by Etzion (2010), An event 

channel can be regarded as processing element which receives events from one or multiple 

source processing elements, defines routing decisions and sends the input events unchanged to 

one or more target processing elements in accordance with these routing decisions (Etzion, 

2010). 

Figure 2-4 summarises the EPA classification in literature. An EPN concept can be used for 

two reasons. The first one concerns the usability when an EP application is being designed. 

Namely, an architect may have better understanding of the application when the internal 

intermediate EP is represented as an EPN (Etzion, 2010). 

The second reason is related to efficiency. An EPN that is deliberately designed can help in 

decreasing event flow in the network, thus improving the overall performance of the 

application. Etzion (2010) also stated that an EPN can help EPAs to be implemented on a 

distributed architecture, thereby improving the application’s scalability and performance 

(Etzion, 2010).  
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An event processing language allows a higher-level specification of an EPN. In certain EP 

languages, a user is able to develop event flows mapped in an EPN. In others, language 

statements are written by a user and then compiled into an EPN.  

2.7 Streaming Data Processing 

The processing of Streaming data focus on data steams querying and management. These data 

streams could be considered as endless data values varying over time. Examples of data streams 

include cardiac measurements, inventory tickers or wave elevation observations from a marine 

sensor network. Such streams could be abstracted in a more elaborate form, such as complex 

events, where varying patterns could be identified and queried, and subsequently sent to a 

subscriber if they are relevant (Cugola and Margara, 2012). These types of applications vary 

from traditional data query and management systems, in recent years different techniques and 

solutions have been suggested, defining the distinct research areas of event processing and 

streaming data. 

Data streams inherent characteristics and features present challenges within the streaming 

query processing field, lots of these issues have been discussed in several prior research 

(Barnaghi et al., 2014). This section provides a brief background summary of the event and 

stream processing models, languages developed for querying data streams and the 

implementations of streaming engine system outlined in the literature. 

Event Processing Models 

Streaming data management differ greatly from traditional static data due to key characteristic 

features of these streams, such as its infinite nature and the need for continuous data evaluation 

over time. Database systems largely involve stored and static data, with their queries retrieving 
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the state of the data at a certain time, compared to the constant data evolution monitoring over 

time in event and streaming data processing.  

Research in this field has examined significantly dynamic data processing from various 

perspectives that can be classified into Complex Event Processing and Data Stream Processing. 

Both these processing types differ considerably in the data requirement types from traditional 

databases. Considering such streaming and event-based applications, the more recent values 

tend to be more relevant compared to older values. Query processing often focuses on real-

time data and current observations, whereas, historical data is outlined, aggregated, and stored 

to be analysed at a later stage. Therefore, data recency is regarded as a primary factor for 

designing such systems, this include prioritising time in their data models and processing 

algorithms.  

This domain has another important feature, which is the real-time and uninterrupted processing 

and delivery of data. As stated by Arasu et al. (2016), this is based on the principle of queries 

continuous evaluation over the streams, as opposed to the current stored relational models 

(Arasu et al., 2016). The stream source, such as a sensor, pushes streaming values at unknown 

rates and without explicit control of data arrival (Garofalakis et al., 2016). Following this, a 

query processor must regularly observe the tuples’ arrival and determine whether they match 

with one or more queries already registered in the system. 

In the following, some of significant aspects concerning data streaming and event models, 

continuous queries and recency-aware operators are presented. 

Stream Data Model 

As the streaming data processing field has developed from relational database research, hence 

in the first proposals streams were only considered as relations that were sometimes restricted 

to append-only updates, similar to Tapestry (Terry et al., 1992). Based on the database field, it 
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was convenient to use unbounded relational models for representing streams as it keeps the 

query languages and operators intact and regarding only the new characteristic as an extension. 

Although Tapestry’s approach was limited concerning query expressiveness and append-only 

tables, it suggests streams being sequences of data tuples occurring at a particular order. 

An extensively used data model views a stream as an unbounded sequence of tuples of 

continuously appended values (Golab and Özsu, 2003), with every value including a time-

based index, which is typically a sort of timestamp. The timestamp forces a sequential order 

and usually signifies the production of a tuple, although this notion could be extended to regard 

the sampling, arrival or observation time.  

 

Figure 2-5 Data stream tuples 

The tuple involves named attributes, including the atti shown in Figure 2-5 as per a schema, 

with every one of them involving a particular data type. It should be noted that numerous tuples 

can exist for every non-decreasing timestamp ‘T’. Numerous domains and use cases tend to 

use this model and its variants. Systems implementing this concept include Aurora (Abadi et 

al., 2007), STREAM (Arasu et al., 2016), and TelegraphCQ (Chandrasekaran et al., 2003). 

Event Data Model 

The event processing and data streams fields have considerable differences in terms of their 

data model. Events, unlike table-like structures and schemas that focus on raw data 

management, are complicated abstractions of situations and observations that are modelled 

based on a particular use domain (Cugola and Margara, 2012). Events are typically notified to 
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subscribers if they are relevant to them (Chandy et al., 2011). Studies on event data 

management as well as query processing have been conducted since the appearance of Active 

Object databases that defined events as “something that happens at a point in time” (LeBlanc 

et al., 2017, Paton and Díaz, 1999). Events could more specifically be characterised by their 

source: e.g. generated by an operation, invocation, transaction, and time-based. Moreover, 

events can include a type, such as composite or primitive, which helps in differentiating them 

and indicating its semantics. A Windspeed_Reading type event, for example, can indicate a 

wind speed observation that is different from an AtmosphericPressure_Reading. In addition, 

notifications may be provided to subscribers based on the events’ types, such as topic-based or 

type-based subscription. This, however, is a limiting method because events can include 

hierarchies and can generate complex as well as composite events.  

To conduct complex event query processing, it is vital to consider the relationships between 

events with regard to causality and time (simultaneousness, occurrence in an interval, and 

precedence) (Mei and Madden, 2009, Jayasekara et al., 2015). Common event relationships are 

presented in Figure 2-6. The first relationship denotes the occurrence of event E1 prior to E2. 

These events might correspond to a specific point in time or to a time-interval, thus enabling 

an overlap relationship to exist. The second relationship indicates causality, where E1 results 

in E2, thus indicating precedence, the emphasis however is on the cause of the resulting event. 

The final example refers to the aggregation of multiple events (E1, E2, E3) into a composite 

event, E4. Although this situation does not specify the aggregation’s nature, it implies the 

probability of developing complex events based on simpler ones.  
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Figure 2-6 Common Events Relationships 

Complex events can also be encoded by using other relationships including simultaneity, 

negation, occurrence in a certain interval, and disjunction. Event filters can be regarded as an 

advanced method through which users can be notified of the events matching a provided 

criteria. Such criteria can also be defined as expressions using a filtering language, such as 

conditions on an event’s type and attributes.  

Complex events surpasses filtering and enables the definition of new event types based on 

existing events as well as developing event patterns or pattern templates, which include 

temporal constraints, ordering conditions, and repetition (Song et al., 2015, Cugola and 

Margara, 2012). A complex event generation model is depicted in Figure 2-7. Streaming and 

processing of the incoming events is conducted in accordance with event models and rules 

matching the input, and producing complex events as outputs.  
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Figure 2-7 Complex Event Generation Model 

 

Though there may be differences in the data model of streams and events, there are also 

similarities between them. For example, events tend to include interval information, a time-

stamp and values of the attributes and depend on basic types of data. There are also certain 

systems that can define events in terms of queries or compositions of patterns and filters over 

relational streams. 

Continuous processing. The concept of continuous or standing queries was introduced in 

(Terry et al., 1992) as “queries issued once and [...] run continually over the database”. The 

development of this concept is based on assuming the use of an append-only database, in which 

traditional querying methods are not applicable because of the ineffectiveness resulting from 

big volumes and velocity of data. The resulting Tapestry system can periodically execute 

monotonic queries, where every evaluation considers only new tuples in order to avoid 

duplicates and to guarantee a deterministic and complete behaviour. 

In the subsequent works, continuous processing has changed the execution model in stream-

based systems, where data arrival initiates query processing, as opposed to stored relational 

databases. The result in a traditional one-off database query is instantly returned following the  

query evaluation, as shown in Figure 2-8 (leftside). On the other hand, the query processor 

involves continuous querying that delivers results when the streaming data matches the query 
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criteria, as shown in Figure 2-8 (rightside). Following this, the query processor can push the 

data when it is available to the clients or the client can actively retrieve the data in pull mode. 
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Continuous Query 

Processor

Database 

Query Query result
Query

Push 
results

Pull 
results

Data 
streams

 

Figure 2-8 Relational vs Continuous query processing 

Through sharing and adaptability, TelegraphCQ is capable of handling big numbers of 

simultaneous queries. 

Golab and Özsu (2003) further developed continuous queries, surpassing one-time queries or 

triggers presented in the Alert system (Schreier et al., 1991) or in the OpenCQ trigger-stop 

queries (Liu et al., 1999) and they included join semantics as well as optimisations definitions 

(Golab and Özsu, 2003). There are certain challenges that have been addressed including the 

possibility of simultaneously handling hundreds of standing queries, sharing data between 

query operators, performing static, and runtime optimisations. NiagaraCQ (Chen et al., 2000) 

examined and exploited the concept of combining similar queries based on their signature and 

sharing a global plan within the group for XML-based data streams. Eddy operators were used 

by TelegraphCQ (Chandrasekaran et al., 2003) which was based on previous systems CACQ 

(Madden et al., 2002) and PSoup (Chandrasekaran et al., 2003), to route tuples among query 

operators. Moreover, it promoted sharing temporary repositories of homogeneous tuples 
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through state modules., TelegraphCQ,  through adaptability and sharing was capable of 

handling large numbers of simultaneous queries. 

Windows. As noted by Garofalakis et al. (2016), the sliding window model is the most 

common and widespread norm on stream data processing (Garofalakis et al., 2016). The 

Windows idea restricts the tuples’ scope by the query operators. As shown in Figure 2-9, for 

example, the window has a starting point as well as an offset that restricts its scope over 

particular stream tuples. A subsequent window 1 limits data tuples in the stream’s latter 

interval. It should be noted that windows can instantly follow one another, overlap, and become 

non-contiguous regarding time. 

 

 

Figure 2-9 Window Operator 

Typically, windows are described in terms of width or offset as well as a slide indicating the 

periodicity used to create a new window. For example, considering a query which requests the 

average temperature within the latest five minutes, it is possible to establish a window starting 

from the present time to the previous five minutes, while excluding all the remaining data. On 

the other hand, regarding continuous queries, over time, the window slides, which means that 

the window boundaries move for every execution time. Various systems such as Aurora, 

NiagaraCQ, STREAM, TelegraphCQ, or Tribeca use variations of windows including sliding 

windows, landmark windows, tumbling windows, and update-interval windows. There are 
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many cases, however, where such systems netiher include precise semantics regarding the 

window operators nor the relationships between them. Arasu et al. (2016) provided an abstract 

semantics by introducing the concept of stream-to-relation operators (Arasu et al., 2016). These 

operators transform a stream into a relationship with the same schema. Different types of 

windows were successfully defined by this simple conceptualisation: (Calbimonte, 2013) 

1. Time-based windows: Given a time interval T over a stream s, the output relation is 

defined by the window of size T, sliding over time. Moreover, the interval’s 

specification can enable the definition of tumbling windows or punctual windows. 

2. Tuple-based windows: Given an integer n over a stream s, the output is defined as a 

relation of size n of the latest values of s. 

3. Partitioned windows: Given an integer n and a subset a of the attributes of a stream s, 

it divides s in sub-streams, with one sub-stream for every attribute of ~a. Every sub-

stream groups the tuples having the same value on the corresponding attribute of ~a, 

which is further limited in number by n. All windowed sub-streams are then combined 

into final output. 

2.8 Semantic Based Approaches for Event Processing 

Although current semantic technologies are being constantly improved dealing with time-

invariant domain knowledge, it does not support processing time-sensitive data. Adi et al. 

(2000) emphasised the significance of expressing the event semantics and relationships among 

events and other entities, such as the subclass relationships (Adi et al., 2000). They also defined 

the semantic abstractions and the implied knowledge representation scheme for events and 

provided a detailed event model that included several semantic properties for events. In recent 

years, few approaches have emerged for addressing problems from this area, acknowledging 
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time to be a vital dimension to process knowledge. This section reviews few of these 

approaches.  

2.8.1 Temporal RDF 

The Resource Description Framework (RDF), as noted by Klyne and Carroll (2006), has been 

commonly used to express graph-structured data (Klyne and Carroll, 2006). Gutierrez et al. 

(2007) introduced time as RDF graphs’ new dimension (Gutierrez et al., 2007). They provided 

semantics for temporal RDF graphs and a temporal query language for RDF which adheres to 

temporal databases concepts. They are concerned with the evolution of RDF graphs over time, 

and provide a framework for temporal entailment and querying over changing graphs. 

The present study differs from this approach as this study intends to identify temporal complex 

patterns considering time constraints instead of posing a single query and receiving one 

response. This study aims to detect situations of interest continuously whenever they occur. 

Therefore, it is necessary to continuously evaluate patterns in order to process the occurrence 

of relevant triples and also to detect complex events. SPARQL-ST (Perry et al., 2011) is an 

extension of the SPARQL language designed for complex temporal and spatial queries (Prud 

and Seaborne, 2006). The language and a corresponding implementation deal with temporal 

data as well as the possible reasoning over that data. On the other hand, according to a study 

by Gutierrez et al. (2007), only when SPARQL-ST queries are invoked, they are evaluated; 

that is, they are not continuously active (Gutierrez et al., 2007).  

The same argumentation can also be applied to other SPARQL approaches such as Temporal 

SPARQL (Tappolet and Bernstein, 2009), T-SPARQL (Grandi, 2010), and stSPARQL 

(Koubarakis and Kyzirakos, 2010). Moreover, EP-SPARQL (Anicic et al., 2012) encourages 

the necessity of a semantic management for streaming data. RDF format is used to represent 

streaming data so that it be exploited in semantic-web applications, such as semantically 
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annotated data and reasoning services. For this purpose, they proposed a Time-Annotated RDF 

model as well as a Time-Annotated SPARQL. However, the authors stated explicitly that 

continuous queries are a typical requirement of streaming data management systems, but it is 

not considered in that work. 

2.8.2 Stream reasoning approach: Continuous query languages 

Continuous SPARQL (C-SPARQL) (Barbieri et al., 2010) is a language for continuous query 

processing and Stream Reasoning. C-SPARQL provides extensions to the SPARQL language 

by implementing operations for window and aggregation. The set of currently valid RDF 

statements, in C-SPARQL, is determined according to a query (such as its window 

specification), and typical reasoning on that RDF set is conducted as if it were static. Chapter 

6 highlights the RDF triples detection in a particular temporal order, in order to capture more 

complex event patterns over RDF streaming data. Moreover, queries in C-SPARQL are 

classified into a static and dynamic part. A separate RDF triple storage is used to evaluate the 

static part, whereas the dynamic part is evaluated by a stream processing engine. These two 

parts in such cases function as “black boxes”, where C-SPARQL is unable to use query pre-

processing and optimisations over the unified (static and dynamic) data space. The proposed 

model in this work is on description logic, which is capable of handling the both parts within a 

uniform framework. 

Streaming Knowledge Bases are reasoning tools used to stream RDF triples and to compute 

the RDFS closures of an ontology. The tool, for example, is able to detect a triple in a stream 

that has a subject that represents a certain class’ instance or an instance of any of its subclasses 

defined in an ontology. The approach is based on TelegraphCQ model, which is an effective 

DSMS. For accelerating the upstream reasoning, the authors proposed to pre-calculate all 

inferences in advance and to record them in a database.  
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The MASSIF (Bonte et al., 2017) platform enables semantic annotation of IoT data and the 

high-level coordination between semantic IoT services. Services are able to indicate their input 

data on an abstract level since the platform semantically represent the data and is totally data 

driven. Every Service is able to process the received data and share the obtained knowledge 

with other Services using the Semantic Communication Bus. Thus, the development of data-

driven workflows that can accomplish complex reasoning chains becomes feasible. Since the 

Services define their input data, they can operate only on a subset of the available data, thus 

improving the reasoning efficiency compared to other models in this field. The MASSIF 

platform, however, has failed to provide time aware operators and lacks support for events 

joining, which are one of the crucial features in the processing of complex events. 

ODECP (Taylor and Leidinger, 2015) proposes the use of ontologies for specifying and 

recognising complex events that arise as selections and correlations, such as temporal 

correlations, of structured digital messages, usually streamed from multiple sensor networks. 

Moreover, ontologies are utilised as a basis for defining contextualised complex events of 

interest that are then translated into selections and temporal combinations of streamed 

messages. Description logic reasoning is used to support the translation of event descriptions 

into the native language of a commercial Complex Event Processor (CEP), and also to support 

their execution under the control of the CEP. However, the ODECP platform does not provide 

a query language interface which limits its capabilities to the language interface adopted in a 

given scenario. Chapter 6 provides a more comprehensive comparison of CEP models within 

an IoT environment and draws the shortfalls that are addressed in order to improve event 

processing within an IoT environment based on semantic techniques and description logic. 
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2.9 Discussion 

This chapter described the most relevant approaches in the various areas that this work is based 

upon. With regard to sensor ontologies used with IoT environment, we have studied the 

existing ontologies and classified the various sensor-based ontologies according to the 

problems that they address. We have also compared the existing IoT ontologies against their 

use of Semantic annotation, inference and context model used. 

We have also studied various event processing agents in order to understand how event 

processing is carried upon streaming data and investigated the old static model of processing 

data versus the new continuous stream processing approach.  

Table 2-4 Research Parameters and Associated References 

Areas tackled by existing sensor ontologies 

Sensor Discovery  

(Bermudez-Edo et al., 2016), (Hirmer et al., 2016), 

(Balaji et al., 2016). 

Data Access and Sharing 

(Xue et al., 2015), (Shi et al., 2012). 

Sensor Capabilities 

(Bermudez-Edo et al., 2016), (Xue et al., 2015), 

(Russomanno et al., 2005). 

Sensor Data Description  

(Gyrard et al., 2014b), (Compton et al., 2012),  

(Nachabe et al., 2015). 

Extensibility 

 (Balaji et al., 2016), (Daniele et al., 2015). 

 

Ontologies compared against 

Semantic Annotation  

(Kostelnik et al., 2011), (Gray et al., 2011b), (De et 

al., 2012), (Celdrán et al., 2014), (Kang and Park, 

2013), (Indra, 2017), (Calbimonte et al., 2014), (Ali et 

al., 2015), (Soldatos et al., 2015), (Patkos et al., 2010). 

Inference  

(Kostelnik et al., 2011), (Gray et al., 2011b), (De et 

al., 2012), (Celdrán et al., 2014), (Kang and Park, 

2013), (Indra, 2017), (Calbimonte et al., 2014), (Ali et 

al., 2015), (Soldatos et al., 2015), (Patkos et al., 2010). 
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Context Model  

(Kostelnik et al., 2011), (Gray et al., 2011b), (De et 

al., 2012), (Celdrán et al., 2014), (Kang and Park, 

2013), (Indra, 2017), (Calbimonte et al., 2014), (Ali et 

al., 2015), (Soldatos et al., 2015), (Patkos et al., 2010). 

 

Event Processing Agents  

Filter  

(Etzion, 2010), (Luckham, 2011). 

Pattern 

(Etzion, 2010), (Luckham, 2011). 

Transformation 

(Etzion, 2010), (Luckham, 2011). 

 

Continuous Stream Processing 

(Perry et al., 2011), (Tappolet and Bernstein, 2009), (Grandi, 2010), (Koubarakis and Kyzirakos, 2010), 

(Anicic et al., 2012), (Barbieri et al., 2010), (Bonte et al., 2017), (Taylor and Leidinger, 2015), (Schreier et al., 

1991), (Liu et al., 1999), (Golab and Özsu, 2003), (Chen et al., 2000). 

 

Table 2-4 shows the parameters used to carry out the literature review for the state of the art 

sensor ontologies, and for the Ontology-based IoT platforms. Section 2.4 provided a 

comprehensive comparison of existing Ontology-based IoT platform, shown in Table 2-2. 

Section 2.5 studied the areas tackled by sensor ontologies and showed the limitations in existing 

ontologies. The table provides a summary of various areas tackled by existing ontologies 

(Sensor Discovery, Data Access and Sharing, Sensor Capabilities, Sensor Data Description, 

and Extensibility) and the relevant researchers in this area. Moreover, it provides the 

parameters used to study the existing ontologies (Semantic Annotation, Inference, and Context 

Model). The table also shows the continuous stream processing models investigated in this 

thesis. 
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Within an IoT environment, the devices involved tend to be highly heterogeneous, in terms of 

nodes’ profiles and models, communication protocols, the data collected (for example, coding 

schemes, sensing ranges, formats and metadata) and applications. Since different nodes may 

be made by different manufacturers, they may have various processing functionalities. The 

resources they require may depend on their role – sensor, actuator, software or tag. Moreover, 

the rate and type of data that is required may also differ between applications. 

These issues concerning heterogeneity and interoperability hinder the functioning of the IoT. 

Indeed, they may, in fact, make it impossible for different sorts of sensor to interact, whether 

at the level of application, monitoring or management, for example, by reusing and sharing 

data across various applications. 

Resolving these problems depends in particular on developing an explicit semantic that is 

shared by all the terminologies used. It is thus necessary to define a data model specifically 

designed for the IoT. In this thesis we address the heterogeneity problem within an IoT 

infrastructure, this involves solving data variety (produced from heterogeneous sources), and 

is able to combine data with background knowledge, that deducts related information and 

operates temporal reasoning combining data streams from sensors and events. Temporal 

extensions of deductive reasoning extend the ontological language with time relations and, 

thus, easily diverge into intractability. Semantic Complex Event Processing is limited to a 

semantic description of events and does not focus on the processing. This thesis proposes an 

ontology based event-processing approach that operates the event processing over high-level 

concepts deduced through deductive reasoning, but without including time relations at the 

ontological level. Chapter 3 presents a review study of the methodologies used in ontology 

development processes.  
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CHAPTER 3: REVIEW OF ONTOLOGY 

DEVELOPMENT METHODOLOGIES 

3.1 Introduction: Why Ontology? 

The Internet of Things (IoT) has grown rapidly over recent years as a result of the ongoing 

development of wireless technology and the increasing miniaturisation of hardware. As the 

usage of the IoT continues to develop, it is coming to affect every area of human life, including 

energy management, healthcare, home automation and even military activities. The essential 

idea of the IoT is that everyday objects are interconnected through networks so as to work 

together in collecting, processing and transferring information (Atzori et al., 2010). 

Any IoT environment contains a range of characteristics and constraints. Among the most 

serious constraints stems from the perpetual changes in the network, which contains stationary 

and moving nodes formed by millions of different sensors and actuators that are distributed at 

random across the sensing field. Since such networks are multi-scalar and dynamic, failure is 

common. 

Within an IoT environment, the devices involved tend to be highly heterogeneous, in terms of 

nodes’ profiles and models, communication protocols, the data collected (for example, coding 

schemes, sensing ranges, formats and metadata) and applications. Since different nodes may 

be made by different manufacturers, they may have various processing functionalities. The 

resources they require may depend on their role – sensor, actuator, software or tag. Moreover, 

the rate and type of data that is required may also differ between applications. 

These issues concerning heterogeneity and interoperability hinder the functioning of the IoT. 

Indeed, they may, in fact, make it impossible for different sorts of sensor to interact, whether 

at the level of application, monitoring or management, for example, by reusing and sharing 

data across various applications. 
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Resolving these problems depends in particular on developing an explicit semantic that is 

shared by all the terminologies used. It is thus necessary to define a data model specifically 

designed for the IoT. 

Ontologies have been defined as “tools for specifying the semantics of a terminology system 

in a well-defined and unambiguous manner” (Bittner et al., 2005). As such, ontologies may be 

deployed in formalising a specific data model that suits an IoT environment. This could be 

achieved through the development of a common vocabulary, rooted in unambiguous semantics, 

for sharing different forms of data – including sensed, monitoring, control, alarm data – 

between the various services, applications and components that make up an IoT environment. 

This chapter presents the existing methodologies used for developing ontologies and the 

methodology used in our development. Chapter Four presents the devised ontology specifically 

for the IoT. This semantic model, which is formalised and pre-validated in Chapter 4, has been 

designed to deal with all types of sensors and actuators, as well as the data they generate. The 

proposed model thus addresses IoT’s crucial problems of interoperability and heterogeneity. 

Section 3.2, provides  a summary about methodologies used for the development of ontologies 

within an IoT paradigm. 

Section 3.3 presents the development process used for developing the IoT-Ont ontology in 

Chapter 4. Sections 3.4 and 3.5 respectively represent the conceptual and functional 

requirements for developing IoT-Ont. 

3.2 Methodologies in Ontology development  

This section presents a brief summary of the most popular methodologies used for developing 

ontologies, Section 3.2.1 introduces how these methodologies accomplish their lifecycle 



62 | P a g e  

 

development. Section 3.2.2 presents the state-of-the-art on ontology requirements specification 

and finally Section 3.2.3 presents the importance of resource reuse in developing ontologies. 

3.2.1 Lifecycles of Principal Methodologies for Ontology Development 

This section introduces a brief description of the four most adopted methodologies for devising 

ontologies. It presents the ontologies in a chronological order starting with, 

METHONTOLOGY methodology developed in 1998 (Blázquez et al., 1998), followed by On-

To-Knowledge developed in 2001 (Staab et al., 2001), the DILIGENT methodology developed 

in 2004 (Pinto et al., 2004) and finally the NeOn methodology developed in 2012 (Suárez-

Figueroa et al., 2012). 

3.2.1.1 METHONTOLOGY  

The METHONTOLOGY methodology (Blázquez et al., 1998), was devised by the Ontology 

Engineering Group at the Technical University of Madrid. METHONTOLOGY facilitates 

ontology’s construction at the knowledge level. 

This methodology defines a set of activities to be accomplished in order to build ontologies; 

this set of activities is defined as the identification process of ontology development. 

METHONTOLGIY’s life cycle is based on evolutionary prototyping, and on various 

techniques to accomplish each of these activities during the development process, support 

activities, and management.  

In order to provide technical support for METHONTOLOGY, the same engineering group at 

the Technical University of Madrid developed two workbenches ODE (Blázquez et al., 1998) 

and WebODE (Arpírez et al., 2003) that allow collaborative development of ontologies and 

includes various other features to provide scalable architecture for the building ontology 

development tools and ontology-based applications. Various ontology tool suites and tools 
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support building ontologies based on METHONTOLOGY, for example, Protégé and the NeOn 

Toolkit.  

The Foundation for Intelligent Physical Agents9 (FIPA) has adopted the use of this 

methodology for ontology development, which promotes inter-operability across agent-based 

applications.  

The ontology development process as a set of activities that are performed when devising 

ontologies (Fernández-López et al., 1997, Blázquez et al., 1998) was established on the 

framework of METHONTOLOGY for ontology development. The development process 

proposal was built on accordance with the IEEE standard for software development (IEEE, 

1996). The METHONTOLGY development process is characterised in three phases: 

Management, development-oriented and support: 

 Ontology management activities: This phase includes activities to initiate, control and 

monitor an ontology project during its life cycle.  

 Ontology technical development activities, which range from specification to 

maintenance. As shown in Figure 3-1. 

 Ontology support activities: This phase includes activities necessary to affirm the 

successful realisation of the ontology project.  

                                                 
9 http://www.fipa.org/ 
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Figure 3-1 Lifecycle of ontology development process based on METHONTOLOGY 

(Fernández-López et al., 1997)  

 

For requirements specification, METHONTOLOGY recommends the usage of competency 

questions and intermediate representations in order to describe the requirements that should be 

fulfilled by an ontology. However, no detailed guidelines are provided for accomplishing this 

activity. The initial prototype is specified within the specification activity, which is then 

followed by the conceptualisation activity where the ontological conceptual model is 

developed. 

For ontology reuse METHONTOLOGY comprises of a list of activities to be accomplished, 

however, again no detailed guidelines are provided regarding these activities. Moreover, there 

is no consideration of various granularity levels during the ontology reuse (as for example, 

ontology statements). Concerning reusing and reengineering, the methodology does not 

consider the reuse of design patterns nor the reuse and re-engineering of non-ontological 

resources. 
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3.2.1.2 On-To-Knowledge  

The On-To-Knowledge methodology project (Staab et al., 2001) aims to apply ontologies to 

information available electronically in order to improving knowledge management quality in 

large distributed organisations. Various partners were involved in this project in order to 

develop the methodology and multiple tools for intelligent access of big volumes textual and 

semi-structured information sources in Internet-based environments. The methodology 

proposes developing ontologies considering their future utilisation in different knowledge 

management applications. Thus, the developed ontologies using the On-To-Knowledge 

methodology are particularly dependant on the application.  

An important feature this methodology proposes is ontology learning with the aim of reducing 

efforts made to devise an ontology. But unlike the METHONTOLOGY methodology, this 

methodology does not consider collaboration development of ontologies. 

Goals identification is included in this methodology, this is achieved on analysis of usage 

scenarios by knowledge management tools (Staab et al., 2001). 

The proposed processes by On-To-Knowledge are summarised below: 

1) Feasibility study: The feasibility study according to this methodology is concerned of 

the application as a whole, thus, it should be accomplished before devising ontologies. 

This is based on the feasibility study presented in the CommonKADS methodology 

(Schreiber and Akkermans, 1999). 

2) Kick-off: This process concludes with the requirements specification document for 

ontology development. These requirements describe the following: the ontology’s 

domain and goal; the design guidelines (for example, the naming conventions); 

knowledge sources (for instance, magasines, books, interviews); use cases and possible 

users; and applications supported by the ontology. The methodology proposes the usage 



66 | P a g e  

 

of competency questions (CQs) (Grüninger and Fox, 1995b) in order to deduce the 

requirements specification; however, detailed guidelines for accomplishing this activity 

are not provided by this methodology. CQs can be very useful to develop the ontology 

requirements specification. The purpose of the requirements specification document is 

to facilitate the job of the ontology developer in order to determine whether to include 

or exclude concepts in an ontology. Actually, the specification document is used to 

develop a draft version, which contains the most influential elements for future 

development. The first draft is referred to as a “baseline ontology”. This draft identifies 

the main concepts and the relations on an informal level. During the kick-off process, 

engineers should search for possible reusable ontologies developed earlier. Although 

On-To-Knowledge refers to the identification of potentially reusable ontologies, there 

are no guidelines to identifying these ontologies. In addition, the methodology does not 

provide guidelines for reusing and re-engineering of non-ontological resources, nor for 

the reuse of available design patterns.  

3) Refinement. The aim of this process is producing a more mature “target ontology” 

which is application-oriented based on the specification document provided within the 

kick-off process. The refinement process comprises of two activities: 

 Activity 1: Knowledge gathering process to research the requirements with domain 

experts.  

 Activity 2: Formalisation, where the ontology is implemented using an ontology 

language  

It is essential to keep in mind that the developed ontologies using this methodology are 

application-dependant.  An incremental and cyclic ontology life cycle is adopted by the On-

To-Knowledge methodology, which is built on the evolutionary prototyping life cycle model 
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(Gómez-Pérez et al., 2003). The On-To-Knowledge life cycle is demonstrated in Figure 3-2 

(Staab et al., 2001). 

 

Figure 3-2 the On-To-Knowledge lifecycle (Staab et al., 2001) 

3.2.1.3 DILIGENT  

This methodology (Pinto et al., 2004) was proposed and developed by the AIFB Institute at 

Karlsruhe University with the collaboration of the Tecnico Lisboa at the University of Lisbon. 

This methodology was developed in order to support domain experts to develop ontologies 

within a distributed setting. The DILIGENT methodology focuses on collaborative 

development of ontologies; it is based on the idea of tracking change of arguments. 

The development process within this methodology comprises of five phases: 

1) Build: The goal of this phase is quickly creating a draft version of the ontology to allow 

the stakeholders use the ontology as soon as possible (Engler et al., 2006). The ontology 

initial version is created collaboratively by domain experts, knowledge engineers, users 

and ontology developers. The team involved in building the draft version should be 

small to facilitate this process and to reach a consensus of this version. Unlike the 

previous methodologies, the DILIGENT methodology does not require an ontology 

requirements specification nor does it emphasise on the importance of reusing available 
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resources. Moreover, completeness of the first draft ontology concerning the domain is 

not accomplished at this phase. 

2) Local adaptation: The next phase involves users adapting the ontology to their own 

requirements, while the ontology is in use, for example, to organise knowledge (Engler 

et al., 2006). Once the shared ontology is made available, users can begin to use it and 

locally adapting it for their own purposes. Normally, the local ontologies develop in a 

way similar to the folder hierarchies in a file system; this is due to new organisations 

demands and new business requirements or user changes.  

3) Analysis: During the analytical phase the ontology control board assesses the changes 

that the stakeholders have suggested (Engler et al., 2006). The input of the users 

provides the necessary arguments to highlight requests for change, the control board, 

however, examines the local ontologies and the requests for change and attempts to 

detect similarities in users' ontologies. The objective of this phase is to develop a core 

and shared ontology because it will quickly become bigger otherwise, and become 

completely un-manageable.  

4) Revision: The ontology is then revised by the board and decisions are taken to what 

changes should be applied to the ontology (Engler et al., 2006). In order to prevent 

further divergence between the local ontologies and the shared ontology, the board 

should review the shared ontology frequently. 

5) Local update: This is the last step, at this stage based on the revised ontology version, 

the stakeholders update their local ontologies (Engler et al., 2006). 
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The ontology lifecycle proposed by the DILIGENT methodology is based on the 

evolutionary prototyping life cycle model, illustrated in Figure 3-3. (Pinto et al., 2004). 

 

Figure 3-3 DILIGENT Ontology Life Cycle (Pinto et al., 2004) 

3.2.1.4 NeOn Methodology 

Unlike the alternative approaches to ontological engineering which provide a methodological 

guide, the NeOn approach does not specify a strict workflow but rather proposes a number of 

different ways in which ontologies can be developed. The methodology proposes nine 

scenarios to cover the most common situations. For example, if available ontologies need to be 

re-engineered, aligned, modularised, localised to support different languages and cultures, and 

integrated with ontology design patterns and non-ontological resources, such as thesauri. 

(Suárez-Figueroa et al., 2012) 

Morever, this methodology framework presents (a) a glossary of activities and processes 

involved in ontologies’ development, (b) two lifecycle models, and (c) a set of methodological 

guidelines for different activities and processes, which are described (a) functionally, in terms 

of objectives, inputs, outputs, and relevant limitations; (b) procedurally, by means of workflow 

specifications; and (c) empirically, through a set of illustrative examples (Suárez-Figueroa et 

al., 2012). 
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Figure 3-4 presents the various scenarios for developing ontologies according to the NeOn 

methodology (Suárez-Figueroa et al., 2012). 

 

Figure 3-4 Scenarios for building ontologies. (Suárez-Figueroa et al., 2012) 

 Scenario 1: From gathering specification to implementing. The ontology network is 

implemented from scratch, i.e. without the reuse of available resources (Suárez-

Figueroa et al., 2012). 

 Scenario 2: Reusing and re-engineering non-ontological resources. This scenario 

includes the situation where ontology engineers need to assess non-ontological 

resources to determine which of them could be reused, according to the requirements 

the ontology should fulfil, to build the ontology network. The scenario also includes 

the task of re-engineering the chosen resources into ontologies (Suárez-Figueroa et al., 

2012). 
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 Scenario 3: Reusing ontological resources. Here, the developers of the ontology reuse 

ontological resources (the whole ontologies, modules of an ontology, and/or ontology 

statements). (Suárez-Figueroa et al., 2012) 

 Scenario 4: Reusing and re-engineering ontological resources. Here, the developers of 

the ontology both reuse and re-engineer ontological resources. (Suárez-Figueroa et al., 

2012) 

 Scenario 5: Reusing and merging ontological resources. This scenario only occurs in 

those situations where multiple ontological resources are selected for reuse, for the 

same  domain, and where ontology developers aim to develop a new ontological 

resource from two or more ontological resources. (Suárez-Figueroa et al., 2012) 

 Scenario 6: Reusing, merging, and re-engineering ontological resources. This scenario 

is similar to Scenario 5; however, here developers decide not to use the set of merged 

resources as it is, but to re-engineer it. (Suárez-Figueroa et al., 2012) 

 Scenario 7: Reusing ontology design patterns (ODPs). Ontology developers access 

ODPs repositories to reuse them. (Suárez-Figueroa et al., 2012) 

 Scenario 8: Restructuring ontological resources. Ontology developers restructure 

(modularising, pruning, extending, and/or specializing) ontological resources to be 

integrated in the ontology network being built. (Suárez-Figueroa et al., 2012) 

 Scenario 9: Localising ontological resources. Ontology developers adapt an ontology 

to other languages and cultural groups, and therefore produce a multilingual ontology. 

(Suárez-Figueroa et al., 2012) 

3.2.2 Ontology Requirements Specification: Methods and Techniques 

This section presents a brief summary of the available techniques methods for ontology 

requirements specification according to the state-of-the-art methodologies. Ontology 
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Requirements Specification as defined earlier is the activity to collect the requirements to be 

met by the ontology (Suárez-Figueroa, 2010).  

The methodology proposed by Grüninger and Fox (Grüninger and Fox, 1995a), the On-To-

Knowledge methodology (Staab et al., 2001), and the methodology proposed by Uschold 

(Uschold, 1996) all propose the following basic steps to obtain the requirements specification 

document of an ontology:  

 To identify the purpose of the ontology to be developed.  

 To identify the intended users and uses of the ontology to be developed.  

 To identify the set of ontology requirements to be met by the ontology when it is 

formally implemented. 

Various techniques for collecting requirements can be applied. Brainstorming, joint application 

development (JAD) (Pressman and Maxim, 2015), scenario exploitation and use cases using 

templates, interviews with domain experts and users, and competency questions are examples 

of these techniques.  

Most of the methods (Grüninger and Fox, 1995a, Staab et al., 2001) (De Hoog, 1998) 

(Hristozova and Sterling, 2003) (Uschold, 1996) and guides (Noy and McGuinness, 2001) for 

ontology development recommend the identification of competency questions as a technique 

to identify the ontology requirements. Competency questions (CQs) firstly proposed by 

(Grüninger and Fox, 1995b), were defined as the questions that the ontology to be implemented 

should be capable of answering.  

The rest of this section shows how the various guides and methodologies mentioned above 

propose to carry out the activity of requirements specification for ontology development 

utilising competency questions.  



73 | P a g e  

 

The methodology of Grüninger and Fox’s (Grüninger and Fox, 1995a) was influenced by the 

advancements of first-order logic knowledge-based systems. This methodology suggests 

intuitively identifying the main motivating scenarios, i.e. potential applications where the 

ontology could be used. These scenarios outline a set of the ontology requirements to be met 

by the ontology after formal implementation. Industrial partners may present the scenarios, 

these scenarios could be issues or problems experienced in their companies. The motivating 

scenarios often have the form of story problems or examples that exiting ontologies do not 

adequately address. A motivating scenario offers a range of intuitive alternatives to solve the 

scenario problems. These solutions give an initial idea of the intended informal semantics of 

the objects and relations to be included in the ontology later on.  

Provided with the set of informal scenarios, the developer can identify a set of informal 

competency questions to define the ontology’s scope. Informal competency questions are those 

expressed in natural language that the ontology must answer when the ontology is expressed 

in a formal language. Both, the questions and their answers are used to extract the main 

concepts and their ontological properties, formal axioms, and relations within the ontology. 

Competency questions and their answers constitute the of requirement specification against 

which the ontology could be assessed.  

The On-To-Knowledge methodology (Staab et al., 2001) asserts the importance of competency 

questions and their usefulness in developing the requirements specification document. The 

requirement specification document should allow the ontology developer to determine whether 

to include or exclude concepts in the ontology and about their hierarchical structure.  

The methodology proposed by Uschold (Uschold, 1996) suggests identifying (a) the 

ontology’s purpose and, in particular, the identification and definition of the potential users, 

(b) the uses and application of the ontology, and (c) (fairly general) motivating scenarios and 
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competency questions, and to produce a user requirements document for the target software 

system. The methodology then suggests determine how formal the ontology should be. This 

decision is largely determined by the purpose of the ontology and its users. Eventually, this 

methodology suggests to identify the ontology’s scope by means of (a) establishing the 

comprehensive motivating scenarios that arise in the applications, which were also proposed 

by Grüninger and Fox’s (Grüninger and Fox, 1995a) or (b) employing brainstorming to carry 

out a more comprehensive and precise scoping task.  

The EXPLODE methodology  incorporates ideas from the methodology of extreme 

Programming methodlogy. Due to its focus on immediate feedback and evaluation, this 

methodology is especially suited for dynamic and open environments. It proposes fetching the 

system’s requirements and identifying the competency questions (De Hoog, 1998, Hristozova 

and Sterling, 2003).  

The “Ontology Development 101” guide  proposes to determine the scope and the domain of 

the ontology by answering a number of fundamental questions (“What is the domain that the 

ontology will cover?”, “What will be the uses of the ontology?”, “Who will use and maintain 

the ontology?”, etc.). The guide also suggests identifying the ontology competency questions, 

however it does not provide more details regarding its identification (Noy and McGuinness, 

2001). 

3.2.3 Ontological Resource Reuse: Methods and Techniques 

Ontology Resource Reuse is the process of using available ontological resources (ontologies, 

modules, statements, or ontology design patterns) to solve different problems (e.g., the 

development of different ontology-based applications, the ontology alignment activity (as 

background knowledge)) (Suárez-Figueroa, 2010). This section presents a short overview of 
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the available techniques and methods for reusing ontological resources according to the state-

of-the-art methodologies.  

METHONTOLOGY (Gómez-Pérez et al., 2003) proposes the following activities to reuse 

ontologies in a particular domain:  

 Searching for possible ontologies to be reused.  

 Content and granularity inspection of the candidate ontologies.  

 Selecting the ontologies to be reused.  

 Evaluating the selected ontologies from knowledge representation point of view.  

Uschold et al. (Uschold, 1996) identify the primary involved tasks in reusing available 

ontologies as follows:  

 The comprehension of the ontology and finding a core to reuse.  

 The translation of the ontology.  

 The specification and refinement of the ontology into executable code. The aim here is 

to define refinements of the specifications produced in the above steps and producing 

the executable code.  

 The verification of the refined ontology, this shall ensure that the executable code is 

precise to the initial specification.  

 The integration of the ontology with the application.  

Pinto and Martins (Pinto and Martins, 2001) introduces the following activities for reusing 

ontologies as part of the integration process:  
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 Search and select the potential ontologies. The ontologies to be analysed, and possibly 

reused, are selected from ontologies available in libraries that meet a number of 

requirements.  

 Evaluation with an integration approach. The potential ontologies must be assessed 

from an integration point of view. The authors have defined a range of criteria that 

domain experts should consider when analysing an ontology for integration. The 

ontology should be evaluated with particular attention to the missing knowledge; These 

criteria for evaluation demonstrate the weaknesses and strengths of the potential 

ontology from domain experts’ perspectives.  

 Assessment with an integration approach. The potential ontologies should be assessed 

from an integration point of view.  

 Selecting the appropriate ontology. Following the analysis of different potential 

ontologies, and given the fact that they may not perfectly match the ontology needed, 

another choice should take place. This choice must be taken amongst the potential 

ontologies that have complied with the strict requirements.  

 Integrating the chosen ontology.  

 Assessing and evaluating the final ontology.  

Paslaru and Mochol (Bontas and Mochol, 2005) propose an incremental reuse process that 

comprises of : 

 Taking into account the vocabulary of the potential ontologies (concepts, relations, and 

axioms) and deriving a common vocabulary based on the natural language in which the 

ontological primitives have been originally termed.  
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 Merging the vocabularies of potential ontologies, the generation of distinct ontological 

primitives lists based on the formality levels of the models considered, and dropping 

duplicates in order to prevent additional computations.  

 Computation of syntactic resemblance between concept names coming from various 

resource ontologies (Cohen et al., 2003). 

 Enhance the accuracy of the resemblance computation, creating a container of terms in 

the source vocabularies for each concept name.  

 Computing the concepts ranks by taking into account the frequency of occurrences 

(when names of a concept occur in several resource ontologies they rank higher), the 

priority of the source (measure of relevance of the respective source to the targeted 

application domain) and the requirements of the application.  

 Identification of relevant concepts. The user determines the adequate relationships that 

could be integrated within the ontology incrementally until a certain complexity level 

is attained.  

3.3 IoT-ONT DEVELOPMENT  

IoT is increasingly growing both in the number of devices and the volume of data produced, 

objects or smart things are now part of our daily lives, these things are deployed within dynamic 

systems, characterised mainly by mobility constraints, fluctuating network connectivity 

controlled by various parameters (e.g. duty cycle or battery level, etc.). Dynamic knowledge 

representations are essential in order to capture knowledge that describes these ever-growing 

environments. These knowledge representations must be adaptable over time to address the 

changing state of these environments. 

Chapter 4 presents IoT-Ont, which is an IoT ontology based on a modular design that supports, 

reuse, one of the most sought-after functionalities in developing ontologies. IoT-Ont introduces 



78 | P a g e  

 

a vocabulary that describes the connected things and the main relations that govern their 

interaction within an IoT environment. 

A number of components are involved in any application that uses IoT technology, whether a 

cloud-based application which functions through using sensors, or a standalone mobile app. 

These components function through interaction with a range of sensors. These sensors, which 

are connected to a platform, may either be static or mobile if there is a need to gather data 

across a wider area. 

Requirements for ontology development are usually divided in two types: Conceptual (non-

functional requirements) and functional requirements: (Suárez-Figueroa, 2010).  

1) Conceptual (non-functional requirements) include the main concepts that must exist in 

the ontology. Section 3.4 presents a detailed perspective of gathering the conceptual 

requirements, followed by a comparison between existing IoT-Ontologies against these 

requirements. 

2) Functional requirements include the design guidelines for ontologies and semantic best 

practice on the web, which is presented in a domain-agnostic manner. Section 3.5 

presents the functional requirements, followed by a comparison between existing IoT 

ontologies against these requirements. 

3.4 Conceptual Requirements: Key Concepts in Developing an 

IoT Ontology 

To design an optimal IoT ontology, it is necessary to describe both horizontal concepts (i.e., 

those shared by all applications in the IoT) and vertical concepts (i.e. those that are distinct to 

specific applications), as shown in Figure 3-6.  
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Figure 3-5 Horizontal vs. Vertical concepts 

Nevertheless, for the purposes of the current study, we restrict our investigation to the 

horizontal concepts that are shared by all IoT domains. Identifying these core concepts requires 

defining competency questions, that is, queries which experts pose to the knowledge base (Yan 

et al., 2015). Various authors, including Bermudez-Edo et al. (Bermudez-Edo et al., 2016), 

Haller et al. (Haller et al., 2013) and Wang et al. (Wang et al., 2013) have located some of these 

competency questions. They have identified various core concepts that are necessary in the IoT 

field, including Service, Resource, Device, User and Augmented Entity. However, some of 

these studies (Bermudez-Edo et al., 2016) (Haller et al., 2013) fail to take into account all of 

the core concepts that different applications may require to generate complex information in 

IoT environments. One widespread approach for describing the basic features of a particular 

event or situation is the 4W1H methodology (Niitsuma et al., 2009, Zhang et al., 2014), which 

is deployed in this work to identify the core concepts of  IoT-Ont ontology. To identify the 

necessary competency questions, it is necessary to define five variables: four ‘W’s (Who, 

What, Where, When) and one ‘H’ (How). These five variables and their respective 

corresponding competency questions are presented below: 

 Who will present the necessary information for designing the IoT application? 

Answering this question involves concepts that can locate the sources of data for 

developing an application for the IoT environment. These sources lie in sensors 
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implanted in a platform. Therefore, to provide an answer to the ‘who’ question, the IoT 

ontology must hold concepts for sensors and platforms. 

 Under what conditions must the source gather data? Are the particular circumstances 

in which it is appropriate to collect the data? To answer this question, the IoT ontology 

must include concepts that can define the data source’s context. The context might 

include the performed action or the mobility of a particular sensor. It is also necessary 

to determine whether the measurement involved a human intervention or whether it was 

done automatically by the device. 

 Where is the data source? The data source’s location may be defined through 

landmarks, geo-coordinates or names of buildings. If developers are to be able to 

identify the source of the data, it is, therefore, necessary for the IoT ontology to include 

where these sources might be located. 

 When should the data be collected? It is necessary to ask whether the sensor should be 

collecting the data over a particular time period, at regular intervals, or in designated 

timestamps. Within the IoT technology, there should be concepts to allow for a range 

of formats for defining when data collection is to occur. 

 How, after the sensors have gathered the relevant data, should it be disseminated to the 

developers in order for them to construct the application? Concepts are needed to 

maintain services that allow developers to access sensor data. 
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Figure 3-6 The CQs based on the 4W1H technique. 

Based on these competency questions, it is possible to identify which core concepts are needed 

to generate a comprehensive IoT ontology. These concepts are as follows: 

1. Sensor data gathered from a range of heterogeneous sensors form the basis of any IoT 

application. A sensor is a source that generates a value to capture the quality of a particular 

phenomenon (Compton et al., 2009). In this context, sensor data signifies not only the raw data 

generated by the sensor but also the metadata describing the sensor itself. 

2. A power supply is necessary for the functioning of these sensors, which may receive their 

energy from a battery or another source. In IoT-Ont this is limited to the current state of the 

device whether it is on or off, this can be expanded in future work. 

 3. A realistic testbed, on a large scale, is necessary if these platforms are to offer extensive 

IoT solutions (Gluhak et al., 2011). The testbed should be capable of catering to the various 

functionalities required by different sorts of sensors, which depend on the sort of phenomenon 

that they are detecting. It is also necessary for the testbed to have mechanisms which allow the 

sensor data to be transferred to the applications or actuators. In some cases, the sensor data that 

is captured is also stored internally within the testbed; this storage, which is done in the 

proprietary format, enables local data analysis to be conducted. 

4. Once the testbed infrastructure has been devised, it is necessary for an identifiable service 

to access the data, whether in raw or processed form. This service should have the capacity to 
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receive various sorts of sensor data in order to gain optimal contextual information (that is, 

assimilation) and to remove, or filter, the redundant sensor data generated by a collection of 

different data sources. 

5. Moreover, the majority of sensor data is specific both to time and location. Therefore, it is 

necessary to use information regarding time and location so as to generate a common context. 

This context includes data about a particular location and its environmental conditions, as well 

as the people, objects, devices and software agents present there (Chen et al., 2003). All this 

data is necessary for designing services within IoT environments (Flury et al., 2004). 
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Table 3-1 Coverage of Conceptual Requirements in existing state-of-the-art ontologies 

 IoT-

Thing 

Sensor Actuator Service Location Time Status(Power) Event 

SAREF (Daniele 

et al., 2015) 

No Yes No No Yes Yes No No 

IoT-Lite 

(Bermudez-Edo 

et al., 2016) 

No Yes Yes No Yes No No No 

Spitfire 

(Nagowah et al., 

2018) 

No Yes Yes No Yes Yes Yes No 

SSN (Compton et 

al., 2012) 

No Yes Yes No No No No No 

oneM2M (Yun et 

al., 2019) 

Yes Yes Yes Yes No No No No 

IoT-Ont Yes Yes Yes Yes Yes Yes Yes  Yes  

 

As seen in Table 3-1, all ontologies cover only some of the necessary requirements and thus 

they are incapable of providing a comprehensive solution to the problems of heterogeneity and 

interoperability in IoT technologies. Moreover, it would not be possible to combine existing 

ontologies in the interests of developing a comprehensive framework for reasoning about 

sensor measurements and data. This is because the resultant model would lack extended 

semantics designed specifically for the task. IoT-Ont addresses the limitations of previous 

models, by using a modular semantic data model where existing modules from existing 

ontologies are reused to develop the ontology.  
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3.5 Functional Requirements: Best Practices in Developing 

Ontologies 

After gathering the conceptual requirements of an IoT ontology, this section presents the 

functional requirements with regard to the best practices in developing ontologies. 

Reusability is one of the key problems facing the development of an ontology for a domain as 

large as IoT. Work conducted to define an ontology for a specific project is unlikely to be 

relevant to other projects. There is a range of overlapping approaches that can be applied to 

resolve this crucial issue: 

Modular Design 

If ontologies are designed in separate modules (‘modularisation’), it is easier to extend or reuse 

them (d’Aquin, 2012). Since IoT applications are connected with multiple domains, combining 

all these domains into a single ontology is complex and would result in a very complicated 

ontology. However, modular ontologies allow an approach that can be scaled up or down, as 

they can be combined or separated as required. 

Reusability 

Reuse of available resources: avoids redefinitions, and prevents from having to align a 

posteriori the redefined concepts to the existing sources for interoperability. It is a primary 

requirement of interoperability, which is a key issue in heterogeneous systems. 

By reusing existing sources, it is possible to avoid having to redefine concepts. It also means 

that it is not necessary to logically align new concepts with the pre-existing sources. Reusing 

existing sources is thus crucial for ensuring interoperability, which often presents problems 

within heterogeneous systems such as IoT. 
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If ontologies are designed in a way that conforms to Ontology Design Patterns (ODP) 

(Gangemi, 2005), they are more likely to be reused and can be more easily aligned (Scharffe 

et al., 2008). ODP’s records the efforts made at modelling ontologies, using them is essential 

to make use of previous work.  

Reusability can be ensured by aligning with upper-level ontologies, which define abstract 

concepts horizontally. Since upper-level ontologies specify a wide range of different domain-

specific ontologies, they are of critical importance to IoT, which is itself a very wide domain. 

Expressiveness  

It is necessary to choose the correct formalism level. Semantic descriptions of data and devices 

should allow inferences and reasoning. When applied to data, semantics would give rise to 

context-awareness (Henson et al., 2012); in the case of devices, it would enable device’s self-

configuration and facilitates discovery of Things (Chatzigiannakis et al., 2012); in the case of 

services, it facilitates automatic composition (Han et al., 2012). However, for specific 

applications, the chosen semantic model should accomplish inferences within a given 

timeframe. In reality, this renders an OWL-full model unfeasible. OWL-DL has been proposed 

by all the IoT ontologies surveyed, and is the recommended one by the Semantic Web 

Consortium.  

Table 3-2 Non-Functional requirements coverage in existing IoT ontologies 

 Modular Reuse existing 

ontologies 

ODP 

Based 

Allignment with 

upper ontologies 

SAREF (Daniele 

et al., 2015) 

Yes No No No 

IoT-Lite 

(Bermudez-Edo 

et al., 2016) 

No  Limited No No 
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Spitfire 

(Nagowah et al., 

2018) 

No No  No Yes 

SSN (Compton et 

al., 2012) 

Yes Yes Yes Yes 

oneM2M (Yun et 

al., 2019) 

No No No No 

IoT-Ont Yes Yes Yes Yes 

 

Table 3-2 illustrates how the semantic web best practices concerning reusability are often not 

adhered to in developing IoT ontologies: External ontologies are never reused, except the reuse 

of SSN and a limited usage within the IoT-Lite ontology. The rest of the researched IoT 

ontologies redefine concepts used in other ontologies. SAREF is a popular ontology in IoT, 

however, the ontology does not use the concepts present in multiple previous ontologies, it 

redefines these concepts and is not aligned to upper ontologies, however it does propose 

alignments separately in a textual document. Design patterns have only been used in ontologies 

importing SSN. Upper ontologies used are DUL22  (especially used by SSN) and SWEET23 

(for SA). The limited reuse of modules and previously developed ontologies in this field is a 

limitation to unifying them and to the development of a generic model for IoT. SSN is the only 

ontology that adheres to the semantic web good practices, being a modular ontology that 

facilitates the adoption of its’ module to develop a generic or a domain specific IoT ontologies. 

 Chapter 4 presents the main modules and the main concepts of IoT-Ont respectively. 

3.6 Discussion 

The identification of functional and non-functional requirements is one of the key activities in 

the development of ontologies. This chapter has presented the ontology requirements 
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specification activity employed by state-of-the-art methodologies and presented the 

methodological guidelines for ontology requirements specification based on CQs. 

Since the technique proposed by by Grüninger and Fox  (Grüninger and Fox, 1995a) on the 

specification of ontology requirements based on CQs, there have not been substantial 

contributions in this field. The purpose of specifying ontology requirements is to explain the 

reason behind developing the ontology, the intended usage of the ontology, the potential end-

users, and the requirements the ontology needs to meet. In this thesis, the competency questions 

technique will be deployed in order to specify the ontology requirements as proposed in 

(Grüninger and Fox, 1995a).  

The field of ontology engineering lacks tools and methods that can help guide ontology 

developers in the planning and scheduling of their ontology development projects. The chapter 

aimed at reviewing the current methodologies and techniques used for ontology development 

projects. 

For many knowledge-intensive applications, ontologies play an important role. The process of 

developing ontologies from scratch as proposed in METHONTOLOGY (Gómez-Pérez et al., 

2003) and in On-To-Knowledge (Staab et al., 2001) involves high consumption of time and 

cost. One technique to reduce the time and costs associated with ontology development projects 

is to reuse the ontological resources available. The reuse of existent and (well-developed) 

ontological resources enables the spread of best practices and increases the overall quality of 

ontological models.  

To summarise, there is no standard methodology for the process of ontology development, 

there exists a set of guidelines and techniques in this field. The development of IoT-Ont is 

based on and compliant with the ‘NeOn’ methodology, which is presented in (Suárez-Figueroa 

et al., 2012), The NeOn methodology is one of the most cited methodologies for ontology 
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development and it has strong emphasis on gathering requirements (Suárez-Figueroa et al., 

2012).  

The NeOn methodology have also systematised the reuse of ontological resources. The 

methodology provides thorough and descriptive methodological guidelines. A precise method 

to reuse ontological resources at various granularity levels is established : (a) through either 

the reuse of the whole ontological resources, and (b) or through the reuse of specific ontological 

statements (Suárez-Figueroa et al., 2012). 

Figure 3-5 summarises the development process for IoT-Ont based on the NeOn methodology. 

The NeOn process starts by identifying the requirements, this is illustrated in details in the next 

chapter in Sections 4.1 and 4.2. 

 

Figure 3-7 Development Process IoT-Ont 

 

In the second step, the defined requirements were used to analyse existing IoT ontologies, this 

was shown in Tables  3-1 and 3-2. The third step is the identification and reuse of existing 

ontologies and modules in order to avoid redefinition of existent concepts and relations. 
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Chapter 4 demonstrates the IoT-OnT development process. Section 4.1 presents the main 

modules in IoT-Ont, followed by the main concepts in section 4.2 
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CHAPTER 4: DESIGN OF IOT-ONT 

4.1 INTRODUCTION: IoT-Ont 

The ontology’s main modules are characterised as follows. Input data is described by the 

SSN/Sensors Module, the main classes of which come from SSN: ssn:Observation; ssn:Sensor. 

A generic sensor description is offered by ssn:Device together with its associated 

characteristics (for example, ssn:Deployment; ssn:OperatingRange). Meanwhile, the 

Resources Module characterises the system’s interaction with physical objects. The main 

classes of this module are taken from SAN: san:Actuation; san:Actuator. Further, this module 

reuses some SSN classes, including ssn:Device, which are not specific to sensing. In addition, 

the Resources Module describes spatial coverage, device status (such as on/off) and RIFD tags. 

Figure 4-1 shows the main modules used to build IoT-Ont. 

 

Figure 4-1 Main Modules of the IoT-Ont Ontology 

Time is crucial in real-world systems. Timestamps can be used to describe temporal aspects; 

the time at which an observation was made or transferred. Multiple sensor’s readings could be 

ordered according to their occurrence time. Users of an IoT application should be able to query 

sensors’ observations in a specific timeframe. In order to model this, IoT-Ont reuses a well-

established ontology for time as well as temporal properties and relations. OWL Time10 

                                                 
10 http://www.w3.org/TR/owl-time/ 
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describes temporal relationships and properties. It also supports durations as well as time 

intervals; these characteristics are advantageous when describing complex event specifications 

as well as inaccurate measurement times. 

Location is an essential concept in the real world that is modelled in the IoT-Ont ontology. 

Various ontologies and location models are available today, including symbolic locations and 

geographical models. IoT-Ont, follows a practical approach by using the WGS8411 ontology 

which facilitates the system usage and is flexible enough for more advanced use cases. The 

WGS8412 coordinates are in fact the standard model for outdoor scenarios using GPS. This is 

a widely used ontology for location purposes in IoT. 

Domain/Event: An event could be a simple event such as a high-temperature event in a 

servers’ room, where direct action could be needed as turning on the Air Condition. The goal 

of this module is to relate with domain specific ontologies that needs to use IoT-Ont. 

Table 4-1 summarises the main modules and provides a brief description of each. 

  

                                                 
11 http://www.w3.org/2003/01/geo/ 
12 http://www.w3.org/2003/01/geo/ 
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Table 4-1 Main Modules of IoT-Ont 

Module Name Description 

SSN Input data is described by the SSN/Sensors 

Module, the main classes of which come from 

SSN: ssn:Observation; ssn:Sensor. A generic 

sensor description is offered by ssn:Device 

together with its associated characteristics (for 

example, ssn:Deployment; ssn:OperatingRange) 

Resources the Resources Module characterises the system’s 

interaction with physical objects. The main 

classes of this module are taken from SAN: 

san:Actuation; san:Actuator. Further, this 

module reuses some SSN classes, including 

ssn:Device, which are not specific to sensing. In 

addition, the Resources Module describes spatial 

coverage, device status (such as on/off) and 

RIFD tags. 

 

Time OWL Time13 describes temporal relationships 

and properties. It also supports durations as well 

as time intervals; these characteristics are 

advantageous when describing complex event 

specifications as well as inaccurate measurement 

times 

Geo The WGS8414 ontology which facilitates the 

system usage and is flexible enough for more 

advanced use cases. The WGS8415 coordinates 

are in fact the standard model for outdoor 

scenarios using GPS.  

 

IoT-Ont Domain/Event The idea behind the event/domain module is the 

enrichment of the received stream and 

converting it in a meaningful event according to 

a specific-domain characteristics, An event 

could be a simple event such as a high-

temperature event in a servers’ room, where 

direct action could be needed as turning on the 

Air Condition. This is dependant on a domain 

ontology and is used here only to facilitate 

possible extension of the ontology. (i.e., Any 

event source of the system instantiates concepts 

from the domain ontology. Then, some static 

information about the event source are stored in 

the data properties defined by its relative 

concepts. ) 

 

 

                                                 
13 http://www.w3.org/TR/owl-time/ 
14 http://www.w3.org/2003/01/geo/ 
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A more comprehensive overview of the ontology’s concepts and relations is presented in 

Section 4.2.  

4.2 Main Concepts 

This section presents the main ontology concepts and illustrates its representation using the 

Protégé Software16 in figure 4-2. As shown in the figure, the IoT-Thing concept represents a 

key concept that characterises the main actors in an IoT domain and relate them to various 

domains using the event concept as a mapper which makes more sense in real-world scenarios, 

where domain specific ontologies need not to worry about the development of an IoT ontology. 

Figure 4-2 shows how the introduction of the IoT-Thing concept facilitates the interaction 

between various actors in the IoT domain, such as a sensor, an actuator, a software, a service 

and a tag device.  

 

Figure 4-2 Simple Protégé Representation of main concepts in IoT-Ont 

Table 4-2 provides a brief description of key concepts in IoT-Ont, for a more detailed 

description and implementation using OWL-DL, please see AppendixA. 

                                                 
16 https://protege.stanford.edu/ 

https://protege.stanford.edu/
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Table 4-2 Key Concepts IoT-Ont 

Concept Name Description 

IoT-Ont Thing The concept Iot-Ont Thing enables us to define 

events based on their features in the context of 

smart environments and relate it to one of the 

actors in an IoT environment. These actors are 

defined using a subclass of IoT-Thing. 

 

IoT-Ont Device IoT-Ont Device is based on the ssn:Device 

which describes an abstract device and inherits 

all the properties of the class ssn:System 

(subcomponents, platform to which a system is 

attached, deployment in which a system 

participates, operating and survival range). In 

IoT-Ont ssn:Device is categorised in four sub-

classes SensingDevice, ActuatingDevice, 

TagDevice and Software. 

 

All physical sensor devices are represented by 

the class ssn:SensingDevice in the ontology. 

Instances of this class possess all properties of 

the classes ssn:Sensor and ssn:Device. 

 

IoT-Ont temporal entity The pattern Iot-Ont Temporal Entity represents 

temporal intervals between any two timestamps 

through an observation process. It also could 

represent any instant of time. The two main 

classes of this pattern are IoT-Ont time:Interval 

(expresses an interval between two specific time-

date values) and Iot-Ont time:instant (expresses 

a temporal entity with zero extent or duration), 

which are subsumed by the class 

time:temporalentity. 

 

IoT-Ont Point IoT-Ont follow a practical approach of using a 

simple representation of location using GPS. 

This is based on the class WGS84:Point, whose 

members are points. Points can be described 

using the 'lat', 'long' and 'alt' properties, as well 

as with other RDF properties defined elsewhere. 

For example, we might use an externally 

defined property such as 'bornNear' or 

'withinFiveMilesFrom', or perhaps other 

properties for representing lat/long/alt in non-

WGS84 systems. 

The 'lat' and 'long' properties take literal (i.e. 

textual values), each in decimal degrees. The 

'alt' property is decimal metres about local 

reference ellipsoid. 

IoT-Ont Sensing Device Sensing Device is a subclass of SSN:Device 

and represents an IoT-Ont Thing that 

implements sensing. 

 

http://purl.oclc.org/NET/ssnx/ssn#Device
http://purl.oclc.org/NET/ssnx/ssn#System
http://purl.oclc.org/NET/ssnx/ssn#SensingDevice
http://purl.oclc.org/NET/ssnx/ssn#Sensor
http://purl.oclc.org/NET/ssnx/ssn#Device
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IoT-Ont Sensor This concepts is based on SSN:sensor it is an 

IoT-Ont Thing that can do (implements) 

sensing. 

A sensor is any entity that can follow a sensing 

method and thus observe some Property of a 

FeatureOfInterest. Sensors may be physical 

devices, computational methods, a laboratory 

setup with a person following a method, or any 

other thing that can follow a Sensing Method to 

observe a Property. 

IoT-Ont Actuating Device Represents a SSN:Device that can actuate over 

an object. It is a subclass of SSN:Device which 

in turn is a subclass of IoT-Ont Thing. 

IoT-Ont Tag Device Tag is a subclass of SSN:Device and could be a 

QR code, RFID or barcode.  

IoT-Ont Software IoT-Thing Software is a subclass of SSN:device 

and represents a piece of software or a service 

that runs in an IoT node.  

Can also be an abstracted device, issued from 

the composition of physical devices and abstract 

processing. 

 

IoT-Ont Coverage 

 

Represents the ‘physical space’ covered by an 

IoT-Ont Thing (i.e. a humidity sensor inside a 

room has a coverage of that room). 

 

IoT-Ont Status Represents the current status of an IoT-Ont 

Thing. Currently, this is limited only to 

represent whether the IoT-Ont Thing is on/off, 

this could be extended in the future. 

IoT-Ont Property Property refers to a feature of an IoT-Thing that 

is the interest of an observation process in an IoT 

environment. These properties differ based on 

the category of objects (e.g., mobile or non-

mobile objects) besides the measurement criteria 

(e.g., location of objects) depending on which the 

observation process is conducted. The concept 

Iot-Ont Property is used to more tightly couple 

the representation of IoT-Ont Thing with some 

features or properties, which are measurable by 

sensors. 

 

IoT-Ont Event The IoT-Ont Event concept represents a bridge 

between the IoT-Ont and a domain-specific 

ontology that could be easily added to the 

ontology. 

IoT-Ont Domain A domain is a concept that represents one of the 

domain applications in an IoT 

environment(Agriculture, HealthCare, Military, 

etc.). The main usage of this class is to provide 

more context to the observed data and thus 

provide data enrichment based on data 

properties. 
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IoT-Ont Observation An DUL:Observation is a Situation in which a 

Sensing method has been used to estimate or 

calculate a value of a Property of a 

FeatureOfInterest. Links to Sensing and Sensor 

describe what made the Observation and how; 

links to Property and Feature detail what was 

sensed; the result is the output of a Sensor; other 

metadata details times and so forth. 

4.3 EPS-DL EVENT PROCESSING SYNTAX BASED ON 

DESCRIPTION LANGUAGE 

Events were presented in Section 2.6.1 as methods for reporting changes and drawing a parallel 

between declarative and event-driven programming. Actually, an event occurrence could be 

considered as a declaration regarding something that has altered the actual state or as something 

has occurred (Who can use what, and how it is used, is not stated). However, patterns and rules 

are specified to identify these complex matters of interests. 

A complex event is derived, at any point of time, if any rule’s premises are proven true based 

on the existing events and another available background knowledge. This means that 

statements are declared about complex events alongside simple events. These statements could 

involve semantic, temporal, or any possible relations amongst events. However, their nature is 

declarative, that is, the rules provides the exact definitions of the patterns. However, it does 

not identify applicable methods to detect patterns nor it specifies the order these rules should 

be evaluated. 

This section introduces EPS-DL, and lay out the requirements for developing an event 

processing syntax based on description logic for an IoT environment.  

Why EPS-DL? 

Stream Reasoning (SR), investigated, envisioned and proved the possibility to make sense of 

heterogeneous streaming data (Anicic et al., 2012). Current research in this field investigates 

methods to enhance existing models to provide high reasoning level. The Event Processing 
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Syntax Based on Description Logic (EPS-DL) combines both Complex Even Processing and 

Description logic in order to provide stream reasoning. This syntax is based on RDF Stream 

Processing Engine. Section 5.3 briefly introduces the RDF stream model. 

The current state of the art in RDF Stream Processing (RSP) proposes various implementations 

and models to integrate Semantic Web technologies with operators used within a Data Stream 

Management System (DSMS) such as the windows operator presented in section 2.7.1. In the 

meantime, there are only a small number of solutions combining the Semantic Web with 

Complex Event Processing (CEP), which involves relevant features, like the identification of 

events sequences in streams. RSP query languages that currently support CEP features 

comprise various limitations: C-SPARQL supports limited pattern detection by using a 

timestamp function, while EP-SPARQL is capable of identifying sequences, but it lacks more 

sophisticated time operators and its selection policies are not defined formally. This chapter 

introduces an event processing syntax that builds upon state-of-the-art RSP query languages. 

EPS-DL, is developed to support CEP operators. We show that it provides more features than 

the ones offered by present RSP query languages. Moreover, we provide a comparison with 

other languages in this field, against the development requirements in Section 4.6. Section 4.4 

provides a requirement study for developing EPS-DL based on literature.  

4.4 EPS-DL: Requirements 

This section gives a short description of the requirements we build upon to develop the 

proposed syntax. The design of EPS-DL design is based on the following requirements 

Requirement1 – Requirement 5:  
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Requirement 1 

Semantic Event Representation: This enables multiple heterogeneous sources to be integrated, 

and to derive implicit data based on the background knowledge by Using description Logic. 

This fits perfectly within a highly heterogeneous IoT environment. (Taylor and Leidinger, 

2015) 

Requirement 2 

Event Processing: This enables high-level ontological concepts that capture temporal 

dependencies to be combined, and thus allows creating complex events. The usage of syntax 

time operators to create and directly manipulate abstracted events (such as pattern matching) 

should be possible. (Anicic et al., 2012) 

Requirement 3 

The Syntax should be capable of processing RDF graph-based streams. While the stream data 

items are described in single RDF statements by early RSP data models, the standardisation 

effort proposed recently by the W3C RSP-CG17 adopts the use of  RDF graph. The RDF graph 

model generalises of the single RDF statements, as a stream of time-annotated RDF statements 

could be modelled as a stream of time-annotated RDF graphs, each comprising of one 

statement. For this reason, acknowledging this requirement is essential to realise a generic RDF 

stream query model.  

Requirement 4 

The language should capture SEQ behaviour proposed in the EP-SPARQL. EP-SPARQL is 

the RSP language with the most extensive support for features of CEPs, implementing many 

                                                 
17 https://www.w3.org/community/rsp/ 



99 | P a g e  

 

operators to identify complex events, e.g., EQUALS, EQUALSOPTIONAL, SEQ, and 

OPTIONALSEQ. Features of semantically-enabled streaming language. 

Requirement 5 

The language must capture the features of CEPs provided by current RSP engines. In this 

research, we are focusing on the SEQ operator, AND operator and OR operator: the most 

fundamental building block in CEP. Intuitively, E1 SEQ E2: is used to identify events that 

match the E1 pattern followed by events matching the E2 pattern. Modifiers such as Every, 

Within, and Not are also being implemented. Section 4.5 introduces briefly the RDF Stream 

Model, which is backbone in any stream reasoning model. 

4.5 RDF Stream Model 

The Resource Description Framework (RDF) is a foundation for processing metadata; it 

supports interoperability amongst applications exchanging machine-understandable data on the 

Web. RDF is the standard web-based model for data exchange, and is the model used with all 

the researched IoT models. A key factor for the EPS-DL is the data model utilised to represent 

the RDF streams. Section 4.5.1 briefly presents the formalisation of RDF triples and graphs, 

followed by the extensions used to represent stream graphs.  

4.5.1 RDF Statements and Graphs 

An RDF statement is the basic data entity in the RDF data model, for such a data item is defined 

as an RDF triple, which is a set of three entities. In literature it is usually referred to as ‘t’ 

composed of <s,p,o> where, s, p, o are the subject, predicate and object respectively, such as 

the triples in Listing 4-1: 
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Listing 4-1 RDF triple examples 

<:sara :meets :sam> 

 

Whereas an RDF graph comprises a set of RDF triples, such as the example in Listing 4-2: 

Listing 4-2 RDF graph example 

<:sara :participates :meeting> 

<:sam :participates :meeting>  

<:meeting :haslocation :meetingroom2> 

4.5.2 RDF Stream Graphs 

An RDF Stream graph is a timestamped RDF graph, which is a pair (G; t), where G is the RDF 

graph, and t is a time instant. An RDF stream S is (possibly) an infinite timestamped RDF 

graphs sequenced in a non-decreasing timely order: 

𝑆 = (𝐺1; 𝑡1); (𝐺2; 𝑡2); (𝐺3; 𝑡3); (𝐺4; 𝑡4), … 

Where, for every, i > 0, (𝐺𝑖; 𝑡𝑖) is a timestamped RDF graph and ti < ti+1. 

4.6 Time Relations  

This section presents the time operators and modifiers supported by EPS-DL and provides a 

comparison with the state of the art event processing models against the requirements of an 

event-processing model presented earlier in Section 4.4.  

In order to simplify this section, we use a forest fire-detection example. The aim is to detect 

the existence of fire in a forest, having no direct way to do so. Instead, the forest contains 

various sensors for the presence detection of Carbon Monoxide (CO) and for measuring the 

temperature. Here, the RDF stream is a timestamped sequence of numbers used to represent 

the average temperature in one spot of the forest, and an event is a notification of detecting a 

certain CO threshold level”. 
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In order to detect a fire in one spot, it is crucial to represents the time relation between abnormal 

temperature and CO detection. If the temperature is high at a certain time, t1, this needs to be 

combined with CO detection at either a similar time, t1, or within a certain timeframe. 

This need is captured by creating event-processing operators within EPS-DL where direct 

manipulation (such as pattern matching) over events is feasible.  

Simple temporal pattern such as sequence ‘SEQ’ should be included in order to provide enough 

expressiveness and this could be used in combination with modifiers that allows even more 

expressiveness to capture the complexity of the entire domain (such as Every, Within, and Not).  

Concerning time, a point-based time semantics (Bohlen et al., 1998) for events is adopted in 

state-of-the-art models; where an event e is defined as a pair of an RDF graph (G) which 

contains the event’s statements, and a timestamp (t) associated to the occurrence time. This 

allows events to be partially ordered, and does not prevent events from occurring at the same 

time. At EPS-DL development, the following time-aware operators were considered for event 

processing:  

 Sequence, SEQ: 𝐸1(𝐺1, 𝑡1) seq 𝐸2(𝐺2, 𝑡2), represents a sequence of two events, it 

returns true if and only if both events occur and 𝑡1 > 𝑡2, on other words, the occurrence 

of 𝐸1 is followed by the occurrence of 𝐸2. 

 AND: 𝐸1(𝐺1, 𝑡1) and 𝐸2(𝐺2, 𝑡2), this pattern is detected if instances of 𝐸1 and 𝐸2 has 

occurred in whatever order. Regardless the ordering of their occurrence, this will return 

true when both of them have occurred. 

 OR: 𝐸1(𝐺1, 𝑡1)  or 𝐸2(𝐺2, 𝑡2), returns true if and only if one of the events occur.  

Next are the optional time-modifiers that were developed to enhance event processing: 

 EVERY: This modifier keeps evaluating the occurrence of a particular event.  
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 WITHIN: This modifier limits the pattern’s validity, it restricts the evalaution of a 

pattern to a certain time period. 

 NOT: This modifier simply acts as a logical not, it contradicts the pattern’s value. 

EPS-DL supports the usage of Event Filtering and Event Joining. Event Filtering allows 

removing irrelevant events, and Event Joining allows combining events over multiple event 

streams to achieve intelligent decision making. Filters and joins are utilised by most CEPs 

models in literature. However, the existing models do not implement all the time operators and 

modifiers together. Table 4-3 provides a comparison of existing CEP models in regard with 

their support of various operators, filter and joins. 

Table 4-3 Comparison of existing CEP Models 

 Semantic 

Event 

Declaration 

Inference Event 

processing 

Operators 

Filters Joins 

EPL Relational  None All Yes Yes 

MASSIF  

(Bonte et al., 2017) 

DL Axioms OWL 2DL None Yes No 

EP-SPARQL 

(Barbieri et al., 2010) 

RDF BGP RDFs SEQ Yes Yes 

C-SPARQL 

(Barbieri et al., 2010) 

RDF RDFs WINDOW Yes Yes 

ODECP (Taylor and 

Leidinger, 2011) 

OWL RDFs SEQ,AND,OR No No 

OCEM-IoT DL Axioms OWL 2DL All Yes Yes 

 

Table 4-3 summarises the similarities and differences between the state-of-the-art models, 

presented in Section 2.7 and 2.8 for event processing and EPS-DL. The table emphasises the 
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additions made by the EPS-DL against the aforementioned requirements in Section 4.4. This 

approach combines both the semantic declaration of events and event processing. It also 

supports temporal inference over events, since all the typical event processing operators are 

implemented, and introduces new optional modifiers allowing more expressiveness in defining 

patterns, whereas other models implements only some of these operators. 

4.7 EPS-DL Basic Syntax 

EPS-DL was influenced by previous SPARQL streaming-oriented extensions proposals, 

mainly EP-SPARQL (Anicic et al., 2011), C-SPARQL (Barbieri et al., 2010) and by RSEP-

QL (Dell’Aglio et al., 2016). EPS-DL syntax, is developed on the concept of continuous 

querying of RDF triples (RDF streams). EPS-DL syntax is totally based on the SPARQL 

syntax, this allows it to support aggregates, which are an important feature of SPARQL that is 

crucial for processing data streams.  

This section presents the EPS-DL syntax.  It focuses on the grammar that has not been provided 

by literature solutions. The parts that depend on other grammars, specifically: The Event 

Declaration Clause is used to define events; it is based on the classes formulation which is a 

basic feature of the Manchester Syntax18. Figure 4-3 provides an example for declaring an 

event using the Manchester Syntax. The Constraint clause is used to define filters; it is based 

on the SPARQL 1.1 grammar; Listing 4-4 provides an example for a constraint filter definition 

based on SPAQRL. The MATCH clause is used to define time relations over events’ 

declarations.  

 

This section presents the basic syntax of EPS-DL as follows: 

                                                 
18 https://www.w3.org/TR/owl2-manchester-syntax/ 
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Event Declaration 

The Event Declaration clause is used to define events. It is based on the classes formulation 

which is a basic feature of the Manchester Syntax.19 OWL 2 ontologies are used with 

information written in RDF, the Manchester Syntax is a user-friendly and compact syntax for 

OWL 2 ontologies. 

 

Figure 4-3 Manchester Description Syntax for Event Declaration20 

A simple example of an event declaration in EPS-DL is presented below: 

𝐸𝑉𝐸𝑁𝑇:  𝑃𝑙𝑎𝑛𝑒𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝐸𝑣𝑒𝑛𝑡 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓  

𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝐸𝑣𝑒𝑛𝑡 

 𝑎𝑛𝑑 (𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑜𝑚𝑒(ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 (ℎ𝑎𝑠𝐷𝑎𝑡𝑎𝑉𝑎𝑙𝑢𝑒 ≥  12))) 

𝑎𝑛𝑑 (ℎ𝑎𝑠𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑜𝑚𝑒 𝑃𝑙𝑎𝑛𝑒) 

Event Clause 

                                                 
19 https://www.w3.org/TR/owl2-manchester-syntax/ 
20 https://www.w3.org/TR/owl2-manchester-syntax/#description 
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An event clause in EPS-DL is described as follows: 

[𝐍𝐀𝐌𝐄𝐃] ′𝐄𝐕𝐄𝐍𝐓′ 𝐸𝑉𝐸𝑁𝑇𝐼𝑅𝐼(𝐸𝑉𝐸𝑁𝑇𝐷𝐸𝐶𝐿𝐴𝑅𝐴𝑇𝐼𝑂𝑁)|(𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝐷𝐸𝐶𝐿𝐴𝑅𝐴𝑇𝐼𝑂𝑁) 

Pattern Declaration  

Event pattern declaration is used to match event or multiple events whenever an event matches 

the definition of a particular pattern. In order to declare a pattern in EPS-DL the keyword 

‘WHEN is used as follows: 

′𝑾𝑯𝑬𝑵′𝑷𝑨𝑻𝑻𝑬𝑹𝑵𝑬𝑿𝑷𝑹𝑬𝑺𝑺𝑰𝑶𝑵 [𝑰𝑭𝑫𝑬𝑪𝑳𝑨𝑹𝑨𝑻𝑰𝑶𝑵] 

Pattern Expression 

The pattern expression uses the keyword MATCH, then the Followed By Expression “->” and 

finally the time modifier WITHIN to indicate the Time Period. 

′𝐌𝐀𝐓𝐂𝐇′𝐸𝑋𝑃𝑅𝐸𝑆𝑆𝐼𝑂𝑁 [𝐖𝐈𝐓𝐇𝐈𝐍 𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑖𝑜𝑑] 

Example:  

MATCH: HighAverageTemperature ->  :CODetectionEvent WITHIN(10m) 

Time Period 

Represents a period of time, it is always an integer value followed by a unit which could 

represent millisecond(ms), second(s), minutes(m), hour(h), day(d), week(w). 

Time Period: INTEGER(UNIT), i.e (10ms), (5m) 

′𝐈𝐍𝐓𝐄𝐆𝐄𝐑′(𝑚𝑠, 𝑠, 𝑚, ℎ, 𝑑, 𝑤, . . ) 

Followed by Expression ‘->’ 

The followed by operator ‘ ->’ specifies that the left hand expression must first become true 

and after that, the right hand expression is evaluated for matching events. 
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Consider this example ‘X -> Y’. First, evaluate the occurrence of event X and only if this event 

is encountered, then evaluate the occurrence of event Y. X and Y can themselves be nested 

event pattern expressions.  

The followed by expression is expressed in description logic as follows: 

𝑂𝑟𝐸𝑋𝑃𝑅𝐸𝑆𝑆𝐼𝑂𝑁(([𝐍𝐎𝐓] ′𝐒𝐄𝐐′) 𝑂𝑟𝐸𝑋𝑃𝑅𝐸𝑆𝑆𝐼𝑂𝑁) 

EVERY  Expression 

Whenever a pattern evaluates to true or false, the search for such a pattern stops. However, 

the every operator introduces a new way to keep looking at the pattern even if it evaluates to 

true or false. In other words, using the Every operator means that sub expression of a pattern 

restarts whenever this sub expression evaluates to either true or false. The example below 

shows the benefit provided by this operator. 

Example: 

X:  

This pattern evaluates to true when encountering an X event but then it stops looking for any 

X events that can occur afterwards. 

EVERY X:  

This pattern keeps looking for an Event X, even when an event X is encountered. It does stop 

looking. 

Or Expression 

Represents a logical OR for use in pattern expressions. The ‘OR’ operator requires either one 

of the expressions to become true before the whole expression becomes true. 
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Look for either event X or event Y; “X OR Y”. As always in event processing, X and Y can 

themselves be nested expressions as well. This is described in description logic as follows: 

AND𝐸𝑋𝑃𝑅𝐸𝑆𝑆𝐼𝑂𝑁(𝐎𝐑 AND𝐸𝑋𝑃𝑅𝐸𝑆𝑆𝐼𝑂𝑁) 

Example:  

EVERY (AverageTemperature(value > 40)) OR (AverageTemperature (value < 0)  

This expression detects all temperatures above or below a given specific threshold.  

AND Expression 

The ‘AND’ operator requires both nested pattern expressions to become true before the whole 

expression becomes true (a join pattern). It represents a logical AND and is described as follows 

in DL: 

𝐸𝑣𝑒𝑟𝑦𝑂𝑟𝑁𝑜𝑡𝐸𝑋𝑃𝑅𝐸𝑆𝑆𝐼𝑂𝑁(′𝐀𝐍𝐃′ 𝐸𝑣𝑒𝑟𝑦𝑂𝑟𝑁𝑜𝑡𝐸𝑋𝑃𝑅𝐸𝑆𝑆𝐼𝑂𝑁) 

This pattern matches when both event X and event Y event arrive, at the time the last of the 

two events arrive “X AND Y”. 

The pattern below matches on any sequence of X event followed by Y event and then W event 

followed by an Z event, or an event W followed by an event Z and an event X followed by an 

event Y: (X ->Y) AND (W ->Z). 

If Declaration 

An If Declaration is just like an if clause in any programming value, it checks against 

predefined conditions(rules) and returns true if the conditions were met. The If Declaration is 

represented as follows in DL: 

𝐈𝐅 {′𝐄𝐕𝐄𝐍𝐓′ (𝑬𝑽𝑬𝑵𝑻𝑰𝑹𝑰|𝑽𝑨𝑹)𝑭𝑰𝑳𝑻𝑬𝑹𝑬𝑿𝑷𝑹𝑬𝑺𝑺𝑰𝑶𝑵} 
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An Example of an IF declaration in order to verify that the CO detection event and the high 

temperature detection event are in the same location is expressed in EPS-DL in Listing 4-3 as 

follows: 

Listing 4-3 If Declaration example in EPS-DL 

IF{ 

EVENT: CODetection_EVENT {?Location1 DUL: HasValue ?v} 

EVENT: HighTemperature_EVENT {?Location2 DUL:HasValue ?v} 

} 

 

Filter Expression 

Filtering allows to eliminates irrelevant events and thus improve reasoning over the more 

relevant events, which also saves reasoning time. The Filter defines the type of event to be 

filtered against, it also provides an optional expression that returns true if the filter should 

consider the event, or false to reject the event. There are a set of operators used in event 

processing for filtering (such as, equals, not equals, giving ranges of values to filter against, 

using comparison operators >, <, etc.). The filter expression is defines in DL as follows: 

{(𝐵𝐺𝑃|′𝐅𝐈𝐋𝐓𝐄𝐑′𝐶𝑂𝑁𝑆𝑇𝑅𝐴𝐼𝑁𝑇)} 

The constraint filter is widely used in event processing, in all the surveyed models that 

implements filtering, it is based on the SPARQL grammar. The example in Listing 6-4 shows 

a Filter constraints definition. 
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Listing 4-4 Constraint Filter Based on SPARQL.21 

Input graph: 

@prefix dc:   <http://purl.org/dc/elements/1.1/> . 

:book1  dc:title  "SPARQL Tutorial" . 

:book2  dc:title  "Semantics" . 

Query: 

PREFIX  dc:  <http://purl.org/dc/elements/1.1/> 

SELECT  ?title 

WHERE   { ?x dc:title ?title 

          FILTER regex(?title, "^SPARQL")  

        } 

Query Result 

Title 

“SPARQL Tutorial” 
 

 

Listing 4-4 illustrates a simple constraint filter based on SPARQL, where only the book that 

has ‘SPARQL’ in its title is chosen.  

4.8 Event processing based on Description Logic 

This section explains the usage of operators in event processing alongside the ontological 

concepts. The fire detection example would be used to simplify the domain and to illustrate 

how EPS-DL declare events and defines filters. Assuming no straightforward method to detect 

fire, but the assumption of its existence could be confirmed through detecting CO and unusual 

temperature measurements in the same period. This should sound as a simple example, 

however there are many complexities in trying to define such simple rules. 

1. Complexity of the domain: How to determine whether the temperature observed is 

unusual or not? 

2. Integration of data: How to combine the local data sources and external data sources be 

combined? 

                                                 
21 https://www.w3.org/TR/rdf-sparql-query/#rConstraint 
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3. Time Relations: How the time relations between CO detection events and unusual 

temperature can be modelled in order to detect fire? 

4.8.1 Semantic Event Representation 

For the mentioned use case, the objective is to detect abnormal temperature measurements and 

by combining them with CO detection events, a fire event could be detected. Semantic event 

representation has been widely used to tackle the challenges of Domain complexity and data 

integration. Regarding the domain complexity, the normal temperature measurement could 

differ according to each city, building, room, etc. Through an Integrated Conceptual Model 

(ICM), systems for Static Information Integration (such as Ontology Based Data Access 

systems) provide a solution for these circumstances. The ICM allows queries to be answered 

using a common vocabulary specified formally by ontological languages (such as OWL, DL, 

etc.) and across heterogeneous data sources. The ICM of the above-mentioned example 

comprises the axioms illustrated in Table 4-4. 

Table 4-4 Example definition using DL axioms 

CODetectionEvent ≡ hasContext.( observedProperty.COthreshold)  

TemperatureEvent ≡ Observation 

 

1 

 (observedProperty.Temperature)  

 

2 

AbnormalTemperatureEvent  TemperatureEvent  

OfficeAbnormalTemperatureEvent  AbnormalTemperatureEvent 

 (observationResult.[hasValue>35]) 

 

3 

 (hasLocation.Office)  

ServersRoomTemperatureEvent  AbnormalTemperatureEvent 

 (observationResult.[hasValue>15) 

 

4 

 (hasLocation.ServersRoom)  

 

5 

 
 

The Data integration challenge, necessitates a generic data model. The Semantic Web 

community commonly uses the RDF model in order to resolve heterogeneity for static data. In 
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this work, RDF may be sufficient in representing the background static knowledge, however, 

in order to represent the continuous streams, RDF streams are required (Section 4.5.2). 

Finally, if combined with the reasoner, the ICM may benefit fully of the background knowledge 

in order to obtain information that described only implicitly by the raw data, this is shown in 

the axioms (4) and ( 5) in Table 4-4. The entailment to be used to represent any ICM is 

dependent on the domain; usually it is a compromise with the system’s final complexity. With 

regard to the use case, and for the purpose of providing meaningful expressions, OWL 2 DL22 

is used in this work. 

4.8.2 EPS-DL Event Declaration 

In the above-mentioned example, our interest is in both the temperature abnormal events and 

CO detection readings in order to detect the presence of fire. Section 4.8.1 showed that semantic 

event representation (Requirement 1) is achievable using simply any ICM. Higher-level events, 

however, could be described using an EPS-DL query. This can be done by deploying an Event 

Declaration clause (Section 4.7). Listing 4-5 provides an example for a declaration of an EPS-

DL event. The Manchester syntax23 has been selected since it is more concise than the RDF 

model and focuses on the idea of specifying events using high-level abstractions. In addition, 

it has been already recommended and combined with SPARQL in literature (Sirin et al., 2010). 

Listing 4-5 Event Declaration in EPS-DL 

EVENT : RoomAbnormalTemperaturEvent subClassOf 

AbnormalTemperaturEvent  

and ( observation_result some ( hasValue ( hasDataValue >= 30))) 

and ( hasLocation some Room ) ) 

 

                                                 
22 OWL 2 https://www.w3.org/TR/owl2-direct-semantics/ 
23 OWL2-Manchester Syntax https://www.w3.org/TR/owl2-manchester-syntax/ 
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The Event defined using this clause is added to the T-Box of IoT-Ont ontology. The defined 

events will go through Reasoner in order to accomplish the inference process. Each defined 

event in EPS-DL will be translated to class expressions using OWL. Since the event definition 

is based on the DL Manchester syntax, the translation becomes simple. For example, the 

translation of the example in Listing 4-5 is illustrated in EPS-DL in Listing 4-6 as follows:  

Listing 4-6 Event in EPS-DL  

RoomAbnormalTemperaturEvent  AbnormalTemperatureEvent 

 (observationResult.[hasValue>30]) 

 (hasLocation.Room) 

 

EPS-DL utilises the time operators introduced in Section 4.6. Listing 4-7 shows how to define 

the fire detection event based on the exploitation of temporal relations between the 

CO_DetectionEvent and the AbnormalTemperaturEvent. EPS-DL carries out Event processing 

over high-level concepts as stated in the requirements for developing an event processing 

syntax in Section 4.4. An example of which is available in Listing 4-8, this is accomplished by 

the use of the sub-clause Pattern-Expression of the Pattern-Declaration clause. The event 

patterns’ definition relies on user-defined concepts or existent concepts within the ontology. 

Here it is assumed that the CO-Detection Event is already defined in the ontology. 

Listing 4-7 Fire declaration event in EPS-DL 

NAMED EVENT : FireEvent { MATCH : AbnormalTemperaturEvent SEQ : CO_DetectionEvent 

WITHIN (10m)     

} 
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Listing 4-8 Using filters in event patterns 

NAMED EVENT : Fire {  

        MATCH : AbnormalTemperaturEvent SEQ : CO-DetectionEvent WITHIN (10m) 

        IF {  

               EVENT : AbnormalTemperaturEvent { ?tmpSnsLoc : hasValue ?v} 

               EVENT : CO-DetectionEvent { ?COSnsLoc : hasValue ?v ; 

               ?CO-Obs ssn : observationResult ; : hasValue? COLevel 

               FILTER (? COLevel == “7” ˆˆxsd : integer ) } 

              } 

} 

 

Finally, The IF Declaration clause allows expressing joins and filters over RDF Streams. 

Deploying a syntax based on SPARQL language, it becomes possible to identify a particular 

graph pattern matching for each event, for example, the “Abnormal  Temperature Event” in 

Listing 4-8, and joins that utilise the name-based notation; variables that have the same name 

get the same binding e (e.g., variable ?v in  Listing 4-8). Filters could be declared based on the 

SPARQL grammar for the clause Filter, (e.g., variable ?COLevel in  Listing 4-8). 

4.9 Summary 

The ontology was initially semantically validated using the automated check of the ontology’s 

consistency through the semantic reasoners Hermit24 and Pellet25 which are built-in Protégé, 

during the development process, the ontology has consistently passed many times through the 

reasoners, this however, only validates that there are no contradictory statements in the 

ontology. 

This was followed by competency question checking and iterative ontology revisions until the 

questions could be answered successfully. However, it is critical to further test whether these 

stated objectives are an adequate representation of the intended objectives, and even further 

testing to determine whether these intended objectives are a valid representation of what the 

                                                 
24 http://www.hermit-reasoner.com/ 
25 https://www.w3.org/2001/sw/wiki/Pellet 

http://www.hermit-reasoner.com/
https://www.w3.org/2001/sw/wiki/Pellet


114 | P a g e  

 

objectives should be. This testing has been conducted through the evaluation of the model by 

domain experts in terms of: whether it meets their view of what an IoT ontology should be, 

whether the concepts and main modules are adequate, and whether this is genuinely a valid 

representation of the wider IoT domain. The survey used for the evaluation process is presented 

in (Appendix A), and the evaluation process and results are presented in Chapter 6. 

This chapter presented the ontology development process for an IoT environment by 

researching the conceptual and functional requirements for ontology development. 

Competency questions were developed in order to derive main concepts and modules for an 

IoT ontology. A review on state-of-the-art IoT ontologies was presented, these ontologies were 

compared then against the deduced requirements. Chapter 4 also presents the EPS-DL syntax 

deployed alongside the ontology in order to extract properties used for filtering and joining 

over time which aims to facilitate and enhance reasoning.  

In the state-of-the-art Complex Event Processing models (CEPs), none of the existing solutions 

implement all the time manipulation operators together. Table 4-3 provided a comparison of 

existing CEP models in regard with their support of various operators, filter and joins and 

methods for inference and reasoning. Table 4-3 summarises the similarities and differences 

between the state-of-the-art models, presented in Section 2.7 and 2.8 for event processing and 

EPS-DL. The table emphasises the additions made by EPS-DL against the aforementioned 

requirements in Section 4.4. 

This approach combines both the semantic declaration of events and event processing. It also 

supports temporal inference over events, since all the typical event processing operators are 

implemented, and introduces new optional modifiers allowing more expressiveness in defining 

patterns, whereas other models implements only some of these operators. In Chapter 5, we 
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present the overall architecture of OCEM-IoT and illustrate its different layers based on the 

IoT-Ont  and the EPS-DL syntax.  
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CHAPTER 5: OCEM-IOT SPECIFICATION AND 

DESIGN 

5.1 Introduction: Ontology-Based Event Processing 

Information in the Internet of Things (IoT) has been represented traditionally as data streams, 

such as unbounded data sequences, or events representing notifications about occurrences of 

facts. Stream Reasoning (SR) (Della Valle et al., 2009) examines the ways in which Stream 

Processing technologies and Sematic Web can be combined to enable real-time decision 

making throughout multiple sources of data. SR studies ways of exploiting data streams time 

ordering to conduct temporal and deductive reasoning spontaneously. 

Data as well as events in IoT results from various types of sensors. Such heterogeneity prevents 

the performance of queries throughout such data sources. The domain complexity represents 

another obstacle in this field.  

To further explain the domain, a simple example is provided: our intent is to detect the 

existence of fire in a forest, without the existence of any direct method. The forest has various 

sensors for detecting the presence of Carbon Monoxide (CO) as well as for measuring the 

temperature. In such a situation, a data stream indicates a timestamped number sequence that 

represent the average temperature in one spot of the forest, while an event refers to a 

notification about the detection of CO. Considering the fact that the events and data result from 

various types of sensors, such heterogeneity impedes to carry out queries throughout data 

sources. The domain complexity represents another complication. If there is a fire, there will 

be a rise in temperature, but the question is how abnormal temperatures and normal 

temperatures can be differentiated? Another question is what will happen if we have different 

spots in the forest? Such information indicates the background knowledge which decision-

making systems must merge with live data for gaining an answer. Eventually with the 
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assumption that we detected CO and the presence of an event of abnormal temperature, they 

should be timely related. 

This thesis presents an approach that addresses the heterogeneity problem within an IoT 

infrastructure, this involves solving data variety (produced from heterogeneous sources), and 

is able to combine data and background knowledge, deducting related information and 

conducting temporal reasoning by combining data streams from events and sensors. Deductive 

reasoning’s temporal extensions can append time relations to the ontological language, thus, 

easily diverging into intractability. Further, semantic Complex Event Processing is restricted 

to an event’s semantic description and does not focus on the processing. This thesis proposes 

an ontology based event processing approach that conducts the event processing over high-

level concepts that results from deductive reasoning, while excluding time relations at the 

ontological level. 

5.2 OCEM-IoT: Lifecycle 

In the first Phase of the model, real-time sensor data will be semantically represented using the 

IoT-Ont ontology for an IoT domain, at this stage metadata will be attached to data in order to 

support information interoperability. Events are then abstracted by applying the ontological 

modelling and the usage of a semantic reasoner engine. The raw observations now are 

converted to meaningful events where the context of time and location are implemented. 
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Figure 5-1 OCEM-IoT Lifecycle 

The overall approach is illustrated in Figure 5-1. By using descriptive logic event processing 

syntax, properties relevant for filtering and/or joining are to be extracted. The abstracted events 

alongside the extracted properties are then forwarded to the event processing phase where the 

actual event processing over abstracted events takes place, besides any event processing 

technique such as the application of filtering/ joining, pattern matching, etc. A more 

comprehensive description of each layer of the model is presented in Sections 5.3 and 5.4. 

5.3 OCEM-IoT: Architectural Layers 

OCEM-IoT architecture is presented in Figure 5-1. It consists of three main layers: 1) Event 

Abstraction Layer, 2) Property Extraction Layer and 3) Event Processing Layer. However, it 

is vital to provide a short discussion of the sensor data layer in which sensor data stream sources 

are placed, before continuing with the descriptions of the main layers.  
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The fast development of the Internet of Things and the widespread use of smart mobile phones, 

knowledge bases and wearable smart devices significantly contribute to the big volumes of 

generated data and to the heterogeneity of this data. This heterogeneity refers primarily to time-

related aspects (e.g., data streams/databases or static knowledge), sensor type (e.g., physical 

sensors such humidity or temperature and virtual sensors such as social media), various data 

formats, origin (e.g., public entity, private organisations, and individuals), and so forth. 

Semantic techniques have therefore been utilised to address the aforementioned heterogeneity 

issues. 

 

Event Abstraction Layer: Enrichment and Inference

Property Extraction Layer(SPARQL Query Layer)

Event Processing Layer(Processing using ESPER, Apply Filters, 

Join using extracted properties)

Data Layer(RDF)

 

Figure 5-2 OCEM-IoT Architecture 
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A generic data model is required to guarantee data integration. The Semantic Web community 

has adopted the usage of RDF representation model to overcome the heterogeneity for static  

data. However, in this research, RDF is sufficient for representing the background static 

knowledge but not to represent sensor data streams, which require the usage of RDF Streams. 

This research assumes the receipt of data in the form of RDF stream without delving into 

various mapping languages used in this field. Regarding the temporal aspect for events, a point-

based time semantics is utilised, where any event E is defined as a pair (G,t), G representing 

the RDF graph comprising of the event statements and t representing the respective timestamps. 

5.4 Components of Architectural Layers 

This section describes the model architecture for an event processing system based on 

ontological concepts; the model supports the usage of the EPS-DL syntax. Figure 5-2 shows 

the four layers of the model, each layer is concerned with a particular processing task of 

utilising the RDF Streams in order to generate results of an EPS-DL query.  

5.4.1 Sensor Data Stream  

Incoming events are assumed to be a pair (G, t) G representing the RDF graph and t 

representing the respective timestamps (RDF Stream in Figure 5-3). 
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(Gi-2, ti-2) (Gi, ti)(Gi-1, ti-1)

 

Figure 5-3 Sensor Data (RDF Graph) 

RDF26 has a plain data model, which makes it easy to manipulate and process by applications. 

The data model is independent of any specific serialisation syntax. RDF has a formal semantics, 

which offers a dependable framework for reasoning about the RDF expression meaning. It 

particularly supports strictly defined notions of entailment that offer a framework for the 

definition of reliable inference in RDF data. 

The basic construct of an RDF expression is a set of triples, each triple comprises of a subject, 

a predicate and an object. An RDF graph is defined as a set of RDF triples. This can be 

presented by a node, and directed-line diagram, where each triple is represented as a node-line-

node link (that is where the term "graph" comes from) See Figure 5-4. 

                                                 
26 https://www.w3.org/TR/rdf-concepts 
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Figure 5-4 RDF Graph Data Model consists of Triples 

Each RDF triple is a statement that represents the relation between the linked nodes (the things 

in IoT). The triple is composed of three parts: 

 The subject. 

 The object. 

 The predicate (also referred to as a property) that denotes a relationship. 

The set of nodes of an RDF graph is the set of subjects and objects of triples in the graph. The 

RDF triple assertion signifies that a relationship, indicated by the predicate, holds between the 

things denoted by subject and object of the triple. The RDF graph signifies the assertion of all 

the triples in the graph, so the meaning of an RDF graph is the conjunction (logical AND) of 

the statements associated to all the triples it includes. A more comprehensive overview of the 

RDF data model used with relation to our work was presented earlier in section 4.5. 

5.4.2 Event Abstraction Layer (Enrichment and Reasoning) 

In an IoT environment, it is continuously required to sense and respond to specific changes. In 

such an environment, the focus needs to be shifted from analysing raw data streams to analysing 

higher-level information they conceal, namely events. The inference time can be reduced by 

methods of inferring and integrating event-related information from accessible data sources. 
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The purpose of the Event Abstraction Layer is to bridge the gap between raw sensor data and 

applications used for event processing as shown in Figure 5-5. 
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Figure 5-5 Event Abstraction Layer Analyses Data Stream and generates streams of Events 

Event processing in an IoT environment does not have to deal with raw sensor data. The role 

of the Event Abstraction Layer is to consume temporal RDF streams of observations, and to 

handle mappings between event patterns and event types, and thus the inferred events are 

classified automatically depending on the domain knowledge provided. The Event Abstraction 

Layer also generates high-level events that are represented by the same model. Data integration 

consists in providing users with a uniform view on data residing at different sources (Lenzerini, 

2002). The Event Abstraction Layer supports data integration by the representation of event-

related information derived from various resources under a common event model.  
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The Event Abstraction Layer reasons over the incoming events to deduce higher-level 

concepts. The semantic reasoner processes the incoming RDF graphs after adding them to the 

ontology. This process is shown in Figure 5-6.  

High Level Event Defintion 

using DL

Event Matching through 

reasoning

 

Figure 5-6 Event Definition and Inferred Events 

 

DL reasoning is utilised, alongside the ontological definition of events, to materialise the 

incoming RDF graphs. If the reasoner, after a realisation step, does infer one of the predefined 

higher-level events, these higher-level events will be forwarded to the next layer. 

The Event Abstraction Layer comprises of two primary elements: The IoT-Ont Ontology and 

the Semantic Reasoner. A brief introduction of each element is presented in the following 

sections. Chapter 4 introduced the ontology development for an IoT environment, which is 

used within the event abstraction layer. 

5.4.3 Property Extraction Layer (Description logic event processing) 

The Property Extraction Layer is responsible for the identification and extraction of the 

properties (variables) associated with filtering and joining, from the underlying RDF graph, as 

specified within the query. The proposed syntax Event Processing Syntax using Description 

Logic “EPS-DL” allows filter and joins to be specified over the predefined events. However, 
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in order to perform joins or filters we need to compare the values of the expressed variables in 

the EPS-DL query. This implies the need to access the higher-level ontological concepts from 

the underlying RDF graph that EPS-DL targets.  

For this reason, an additional SPARQL-querying layer (A querying engine that supports the 

SPARQL RDF query language) is developed in order to access the higher-level event definition 

from the underlying RDF graph and to extract the required variables for joining and/or filtering. 

Figure 5-7 illustrates the property extraction layer with the use of a SPARQL query engine. 
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Figure 5-7 Property Extraction Layer 

The EPS-DL filters can be simply translated to SPARQL queries. As shown in Listing 5-1. 

Listing 5-1 Property extraction based on the translation of SPARQL query 

SELECT ?temperatureSnsLoc ?v 

WHERE { ? temperatureSnsLoc a : Location; : hasValue ?v} 
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Listing 5-1 presents one of the required queries for the property extraction of smoke detection. 

With regard to joins, for all the events sharing a variable, the value of this variable has to be 

the same; filters, however, must positively validate the provided condition (e.g. higher than a 

specific threshold). Listing 5-1 filters against a certain temperature threshold and then joins it 

to a specific location, in order to detect fire in a specific location.  The variable bindings will 

be added to the event as properties after the execution of the query, while preserving the naming 

convention. This step can be omitted if there is no need to extract properties and no additional 

filtering is required. 

Extracted Properties

 

Figure 5-8 Extracting Properties using SPARQL 

5.4.4 Event Processing Layer (ESPER) 

Time-aware operators are used in Complex Event Processing (CEP) engines to detect patterns 

over unlimited incoming events sequences. Users specify reaction rules relating to invocating 

actions in response to situations and events where actions can be made. These rules actually 

define a pattern on the streaming data, e.g. X preceded-by Y, with the use of a declarative 

querying language. 

The Event Processing Layer is responsible of applying the processing task on the abstracted 

events. EPS-DL applies filters and joins by using the extracted properties. 
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This is the last layer in OCEM-IoT architecture and it is the one that actually performs the 

event processing as illustrated in Figure 5-9 . 
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Figure 5-9 Event Processing Layer 

The Event Processing Layer uses a complex event processor called ESPER, in order to apply 

event processing on the abstracted events and to perform the joining and filtering utilising the 

properties extracted earlier from the Property Extraction Layer. 

In this chapter, we presented the overall model by combining the IoT-Ont and the event 

processing syntax EPS-DL. The ontology was employed within the event abstraction layer 

alongside the semantic reasoner, which is used to validate it and to infer events. In chapter 6, 

we provide a comprehensive evaluation of the model’s components. 
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CHAPTER 6: EVALUATION 

6.1 Introduction 

This Chapter is divided as follows; Section 6.2 presents the IoT-Ont ontology evaluation.  

Section 6.3 presents the integration of the EPS-DL syntax with ontologies in an event-

processing model and an evaluation for OCEM-IoT is presented in Sections 6.3 and 6.4. 

6.2 IoT-Ont Evaluation 

Once an ontology development process is finished, the evaluation of an ontology is a crucial 

step towards its application in real use cases. This evaluation involves the assessment of the 

ontology’s usefulness with regard to the purpose it was developed for and the evaluation of the 

ontology’s quality (ontology’s conceptual coverage, clarity, etc.). This section presents the 

different methodologies applied in this research in evaluating the IoT-Ont ontology. This thesis 

does not claim that the developed IoT-Ont ontology is a complete one since the extensive 

domain it is meant to represent. It is a version that is meant to evolve and to be build upon by 

using various ontologies within the IoT domain. IoT-Ont aims to model key concepts and 

knowledge of the IoT domain into a practical, sharable and extensible ontology. 

6.2.1 Introduction to Ontology Evaluation 

Before publishing any ontology or building a software applications that rely on ontologies, 

there is an essential step of evaluating the contents of the ontology (definitions of its concepts, 

taxonomy and axioms). Evaluating ontologies is not an evidence of the lack of problems, 

however, it should make it safer to use. The main efforts towards evaluating ontology content 

were made by (Gómez‐Pérez, 2001, Gómez-Pérez et al., 1996) in the framework of 
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METHONTOLOGY and by (Welty and Guarino, 2001) in the OntoClean method. A survey 

on evaluation methods and tools can be found in (Gómez-Pérez et al., 2006). 

(Vrandečić, 2009) argues that ontology evaluation is an important and worthwhile task, hence 

it is the very step towards its application in real world scenarios. Omissions and mistakes in 

ontologies may lead to applications not realising the potential of exchanging data. In addition, 

ontology evaluation increases the availability and thus reusability of the ontology and decreases 

maintenance costs. Ontology evaluation assesses the quality of the ontologies and thus 

encourages their publication and reusability since the re-users’ confidence in the quality of 

such ontologies increases. 

According to (Gómez-Pérez et al., 2006) ontology evaluation requires:  

 Verification: This refers to building the ontology correctly. 

 Validation: This refers to whether the ontology definitions actually model the domain 

it was developed for. Ontology validation guarantees that the right ontology was 

developed. The aim is to show that the world model is compliant with the formal model. 

 Assessment: This is the human judgment of the ontology; it is focused on judging the 

ontology from the users' points of view. 

A popular ontology evaluation approach is evaluating the ontology with regard to a set of 

ontology design principles and criteria as it was evaluated in (Obrst et al., 2007, Gómez‐Pérez, 

2001, Gruber, 1995) (Vrandečić, 2009). 

 The coverage of the modelled domain. 

 The application and data sources it was developed to address. 

 Completeness and consistency. 
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 Structure, syntax and vocabulary; and the representation language in which it is 

modelled. 

In this thesis, ontology evaluation is based on the criteria identified by (Gómez‐Pérez, 2001) 

this includes completeness, consistency, conciseness, and expandability. 

 Completeness: All knowledge that is expected to be in the ontology is stated explicitly 

in it or could be inferred. In other words, how well the ontology covers the real world 

(IoT domain). Completeness comply to the minimal ontology commitment criteria 

where the ontology does not intend to describe all the knowledge involved in a domain, 

but only the one that is essential to conceptualise the domain. 

 Consistency: Refers to the absence or existence of contradictory information in the 

ontology.  

 Conciseness: Whether the ontology is free from any useless, redundant or unnecessary 

definitions.  

 Expandability: Refers to the ability of adding new definitions, without the alteration 

of already stated semantic. (Modularity) 

In this thesis, we distinguish between two types of consistency: the formal consistency and the 

logical consistency. Verification was held during the ontology implementation where the IoT-

Ont ontology was checked for formal consistency by applying a semantic Reasoner during all 

the steps of the ontology’s development, this feature is part of the Protégé software, where 

semantics reasoned can be applied to detect inconsistencies. Therefore, in this Chapter, 

consistency refers to the logical consistency. 
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6.2.2 Selection of Evaluation Methods 

Various ontology evaluation approaches were considered in literature based on the type of the 

ontology being evaluated and the purpose of the evaluation. Brank has classified ontology 

evaluation approaches as follows: (Brank et al., 2005) 

 Golden Standard Approach: Those involve comparing the ontology to a "golden 

standard" which might be an ontology itself. (Gomez-Perez, 1994, Hovy, 2002) 

 Task-Based Approach: Those based on the usage of the ontology in an application and 

assesses the outcomes. (Porzel and Malaka, 2004) 

 Corpus-driven approach: Those involving comparing the ontology  with a source of 

data (e.g. a collection of documents) on the domain being modelled by the ontology. 

(Lozano-Tello and Gómez-Pérez, 2004) 

 Human-Based assessment: Evaluation here is carried out by humans who attempt to 

assess how well the ontology complies with the predefined requirements, criteria, 

standards, etc. (Lozano-Tello and Gómez-Pérez, 2004) 

The first approach (Golden Standard Approach) is not applicable due to the lack of a "golden 

standard" or upper-level IoT ontology (SSN, DUL, …etc). The second approach (Task-Based 

Approach) has been carried out through experimenting using a prototype system alongside the 

developed EPS-DL, presented in Section 6.3. 

The third approach (Corpus-Driven Approach) was held over the course of the ontology’s 

development when the evolving conceptual model was compared to the sources of knowledge, 

mainly to existing ontologies in IoT. 

The fourth approach (Human-Based Approach) includes the usage of the ontology assessment 

questionnaire which has been distributed amongst Software Engineering, Cloud computing and 
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sensor network experts to evaluate the quality of the ontology. The Human-based assessment 

approach is presented in Section 6.2.3 

6.2.3 Domain-Expert Evaluation 

The evaluation process is conducted based on artefacts produced during the ontology 

conceptualisation. A general evaluation plan is presented in Table 6-1. 

Table 6-1 Evaluation Plan 

Evaluation Question 
Evaluation 

Method 

Evalauation 

Criteria 

Is IoT-Ont ontology capable of 

representing the key concepts and 

its relations in an IoT environment? 

Human 

Assesment 

(Survey 

Questionnaire) 

 Completeness 

 Conciseness 

 Consistency 

 Expandability 

 

During the evaluation process, the participants, 12 academic researchers and software 

engineers, received the list of modules and key concepts and their definitions, as well as a Class 

diagram containing the relationships between the concepts. Table 6-2 represents the modules 

definitions and Table 6-3 represents the concepts definitions. Both tables were sent to the 

domain experts.  
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Table 6-2 IoT-Ont Modules for Evaluation 

 

Module Name Description 

SSN 

Input data is described by the SSN/Sensors 

Module, the main classes of which come from 

SSN: ssn:Observation; ssn:Sensor. A generic 

sensor description is offered by ssn:Device 

together with its associated characteristics (for 

example, ssn:Deployment; ssn:OperatingRange) 

Resources 

the Resources Module characterises the 

system’s interaction with physical objects. The 

main classes of this module are taken from 

SAN: san:Actuation; san:Actuator. Further, this 

module reuses some SSN classes, including 

ssn:Device, which are not specific to sensing. In 

addition, the Resources Module describes 

spatial coverage, device status (such as on/off) 

and RIFD tags. 

 

Time 

OWL Time
27

 describes temporal relationships 

and properties. It also supports durations as well 

as time intervals; these characteristics are 

advantageous when describing complex event 

specifications as well as inaccurate 

measurement times 

Geo 

The WGS84
28

 ontology which facilitates the 

system usage and is flexible enough for more 

advanced use cases. The WGS84
29

 coordinates 

are in fact the standard model for outdoor 

scenarios using GPS. 

 

IoT-Ont Domain/Event 

The idea behind the event/domain module is the 

enrichment of the received stream and 

converting it in a meaningful event according to 

a specific-domain characteristics, An event 

could be a simple event such as a high-

temperature event in a servers’ room, where 

direct action could be needed as turning on the 

Air Condition. This is dependant on a domain 

ontology and is used here only to facilitate 

possible extension of the ontology. (i.e., Any 

event source of the system instantiates concepts 

from the domain ontology. Then, some static 

information about the event source are stored in 

the data properties defined by its relative 

concepts. ) 

 

 

                                                 
27 http://www.w3.org/TR/owl-time/ 
28 http://www.w3.org/2003/01/geo/ 
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The diagrams sent, contains the modules in Figure 6-1 and the concepts and relationships in 

Figure 6-2 are presented below.  

 

Figure 6-1 IoT-Ont Modules 
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Figure 6-2 IoT-Ont Key Concepts and relationships 
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Table 6-3 IoT-Ont Glossary for Evaluation 

Concept Name Description 

IoT-Ont Thing 

The concept Iot-Ont Thing enables us to define 

events based on their features in the context of smart 

environments and relate it to one of the actors in an 

IoT environment. These actors are defined using a 

subclass of IoT-Thing. 

 

IoT-Ont Device 

IoT-Ont Device is based on the ssn:Device which 

describes an abstract device and inherits all the 

properties of the class ssn:System (subcomponents, 

platform to which a system is attached, deployment 

in which a system participates, operating and survival 

range). In IoT-Ont ssn:Device is categorised in four 

sub-classes SensingDevice, ActuatingDevice, 

TagDevice and Software. 

All physical sensor devices are represented by the 

class ssn:SensingDevice in the ontology. Instances of 

this class possess all properties of the classes 

ssn:Sensor and ssn:Device. 

 

IoT-Ont temporal entity 

The pattern Iot-Ont Temporal Entity represents 

temporal intervals between any two timestamps 

through an observation process. It also could 

represent any instant of time. The two main classes of 

this pattern are IoT-Ont time:Interval (expresses an 

interval between two specific time-date values) and 

Iot-Ont time:instant (expresses a temporal entity with 

zero extent or duration), which are subsumed by the 

class time:temporalentity. 

 

IoT-Ont Point 

IoT-Ont follow a practical approach of using a simple 

representation of location using GPS. This is based 

on the class WGS84:Point, whose members are 

points. Points can be described using the 'lat', 'long' 

and 'alt' properties, as well as with other RDF 

properties defined elsewhere. For example, we might 

use an externally defined property such as 'bornNear' 

or 'withinFiveMilesFrom', or perhaps other properties 

for representing lat/long/alt in non-WGS84 systems. 

The 'lat' and 'long' properties take literal (i.e. textual 

values), each in decimal degrees. The 'alt' property is 

decimal metres about local reference ellipsoid. 

IoT-Ont Sensing Device 

Sensing Device is a subclass of SSN:Device and 

represents an IoT-Ont Thing that implements sensing. 

 

IoT-Ont Sensor 

This concepts is based on SSN:sensor it is an IoT-Ont 

Thing that can do (implements) sensing. 

A sensor is any entity that can follow a sensing 

method and thus observe some Property of a 

FeatureOfInterest. Sensors may be physical devices, 

computational methods, a laboratory setup with a 

person following a method, or any other thing that 

can follow a Sensing Method to observe a Property. 

IoT-Ont Actuating Device 
Represents a SSN:Device that can actuate over an 

object. It is a subclass of SSN:Device which in turn is 

a subclass of IoT-Ont Thing. 

http://purl.oclc.org/NET/ssnx/ssn#Device
http://purl.oclc.org/NET/ssnx/ssn#System
http://purl.oclc.org/NET/ssnx/ssn#SensingDevice
http://purl.oclc.org/NET/ssnx/ssn#Sensor
http://purl.oclc.org/NET/ssnx/ssn#Device


136 | P a g e  

 

IoT-Ont Tag Device Tag is a subclass of SSN:Device and could be a QR 

code, RFID or barcode. 

IoT-Ont Software 

IoT-Thing Software is a subclass of SSN:device and 

represents a piece of software or a service that runs in 

an IoT node. 

Can also be an abstracted device, issued from the 

composition of physical devices and abstract 

processing. 

 

IoT-Ont Coverage 

 

Represents the ‘physical space’ covered by an IoT-

Ont Thing (i.e. a temperature sensor inside a room 

has a coverage of that room). 

 

IoT-Ont Status 

Represents the current status of an IoT-Ont Thing. 

Currently, this is limited only to represent whether 

the IoT-Ont Thing is on/off, this could be extended in 

the future. 

IoT-Ont Property 

Property refers to a feature of an IoT-Thing that is the 

interest of an observation process in an IoT 

environment. These properties differ based on the 

category of objects (e.g., mobile or non-mobile 

objects) besides the measurement criteria (e.g., 

location of objects) depending on which the 

observation process is conducted. The concept Iot-

Ont Property is used to more tightly couple the 

representation of IoT-Ont Thing with some features 

or properties, which are measurable by sensors. 

 

IoT-Ont Event 
The IoT-Ont Event concept represents a bridge 

between the IoT-Ont and a domain-specific ontology 

that could be easily added to the ontology. 

IoT-Ont Domain 

A domain is a concept that represents one of the 

domain applications in an IoT 

environment(Agriculture, HealthCare, Military, etc.). 

The main usage of this class is to provide more 

context to the observed data and thus provide data 

enrichment based on data properties. 

IoT-Ont Observation 

An DUL:Observation is a Situation in which a 

Sensing method has been used to estimate or 

calculate a value of a Property of a FeatureOfInterest. 

Links to Sensing and Sensor describe what made the 

Observation and how; links to Property and Feature 

detail what was sensed; the result is the output of a 

Sensor; other metadata details times and so forth. 

 

6.2.4 Structure of the Survey 

The structure of the ontology evaluation is based on the criteria identified by (Gómez‐Pérez, 

2001) such as consistency, conciseness, completeness and expandability, which is the most 

cited research for ontology evaluation. The IoT-Ont evaluation survey was divided into seven 

sections as follows: 
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1. Introduction: The goals of the evaluation were presented to the participants, and an 

option to receive the evaluation results was given. 

2. (Conciseness) Description of Modules: The participants evaluated the description of 

the modules present in Table 6.2 and Figure 6.1. If the participants strongly disagreed 

or disagreed with any description, they could indicate which concepts should have the 

description changed. For that, a list of all modules were presented with checkboxes to 

select the ones that had to be reviewed. At the end of the section, a space for additional 

comments was given to the participant. 

3. (Conciseness) Description of Concepts: The participants evaluated the description of 

the terms present in the Table 6.3 and illustrated in Figure 6.2. If the participants 

strongly disagreed or disagreed with any description, they could indicate which 

concepts should have the description changed. For that, a list of all concepts was 

presented with checkboxes to select the ones that had to be reviewed. At the end of the 

section, a space for additional comments was given to the participant. 

4. Completeness represented by Ontology Coverage: The participants evaluated if the 

concepts in the ontology correctly represented the Internet of Things domain. If the 

participants strongly disagreed or disagreed with any concept, they could indicate 

which concepts should have been corrected in the ontology. For that, a list of all 

concepts was presented with checkboxes to select the ones that had to be reviewed. At 

the end of the section, a space for additional comments was given to the participant.  

5. (Consistency) Relationships: The participants evaluated if the relationships between 

concepts were correctly mapped. If the participants strongly disagreed or disagreed with 

any concept, they could indicate which relationships should have been corrected in the 

ontology. For that, a list of the relationships was presented with checkboxes to select 
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the ones that had to be reviewed. At the end of the section, a space for additional 

comments was given to the participant. 

6. Expandability (Modularity): New terms and modules could be added without having 

to revise the existing structure of the ontological model. This refers to the capacity of 

re-using IoT-Ont or part of its modules to build a domain specific ontology within IoT. 

7. Additional Information: The participants could give their option about the ontology 

and explain how he or she was planning to use the ontology. Finally, a text area was 

provided to the participant so that they could give any additional comment regarding 

the ontology or the evaluation itself.  

A summary of survey sections, questions, and possible answers is presented in Table 6-4. The 

complete survey structure can be found in Appendix A alongside the ethical approval needed 

for this type of research in Appendix B. 

Table 6-4 Survey Questions 

Quality Criteria Question/Statement 
Possible 

Answers 
Comments 

Introduction “This evaluation survey is aimed at expert 

researchers in this field and on software 

engineers” 

The purpose of this survey is to evaluate the 

modules and concepts represented and how 

they are related in IoT-Ont, an ontology for 

IoT. 

The survey contains 4 pre-survey questions 

regarding the participants expertise and 8 

ontology evaluation questions, and your 

participation is anonymous. If you want to 

be informed about the final result, please 

enter a valid e-mail address below.”. 

Enter E-

mail 

N/A 

Ontology 

Coverage 
“All relevant concepts related to the 

Internet of Things domain have been 

represented in the ontology.”. 

Strongly 

Disagree, 

Disagree, 

Undecided, 

Agree, 

Strongly 

Agree 

“If you strongly 

disagree or 

disagree, 

please explain 

which concepts 

should be 

corrected or 

included 

in the ontology.” 

Description of 

Modules 
“The ontology correctly describes all key 

modules related to Internet Of Things.”. 

Strongly 

Disagree, 

If you strongly 
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Disagree, 

Undecided, 

Agree, 

Strongly 

Agree 

disagree or 

disagree 

with any 

description, 

please 

explain why.” 

Description of 

Concepts 
“The ontology correctly describes all 

concepts related to Internet Of Things.”. 

Strongly 

Disagree 

Disagree 

Undecided 

Agree 

Strongly 

Agree 

If you strongly 

disagree or 

disagree 

with any 

description, 

please 

explain why.” 

Relationships “All relevant relationships related to the 

Internet of Things concepts have been 

correctly mapped in the ontology.” 

Strongly 

Disagree, 

Disagree, 

Undecided, 

Agree, 

Strongly 

Agree 

“If you strongly 

disagree or 

disagree, 

please explain 

which 

relationships 

should 

be corrected or 

included 

in the ontology.” 

Expandability “New terms and modules can be introduced 

without the need to revise the existing 

structure of the ontological model.” 

Strongly 

Disagree, 

Disagree, 

Undecided, 

Agree, 

Strongly 

Agree 

“If you strongly 

disagree or 

disagree, 

please explain 

what design issue 

makes it difficult to 

expand the current 

model.” 

Additional 

Information 
“In your opinion, is an ontology for 

Internet of Things necessary?” 

Yes, No If not, please 

elaborate 

your answer. 

Additional 

Information 
“Please use this space for any additional 

comments or suggestions in regards to IoT-

Ont.” 

Free text N/A 

 

The scale adopted for evaluation is of 1-5, where 5 = strongly agree and 1 = strongly disagree, 

to validate the following criteria, this is based on the evaluation scale proposed by (Gruber, 

1995, Obrst et al., 2007, Vrandečić, 2009). 

6.2.5 Results 

It was challenging step to collect responses from domain experts due to the limited number of 

experts in Software Engineering who are welling to participate and in particular those with 

experience in the IoT domain. It took more than 4 months to gather 12 response. The problem 
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of limited number of participants faces many researchers in their ontology evaluation process 

(García et al., 2006) (Al-Yahya, 2005). However, even though the sample is small in size, it is 

considered acceptable to judge domain ontology. (Velardi et al., 2005) 

The participants invited to participate in the survey questionnaire were computer scientists and 

software engineers with interests mainly in IoT, Data knowledge representation and cloud 

computing, and PhD graduates in software engineering and networking. Table presents the 

participants’ educational backgrounds and their current technology interests and expertise. 

Table 6-5 Participants’ Backgrounds and Technology of Interest 

 Educational Background Technology Interest/ Work 

Experience 

Person 1 PhD in Data Science IoT 

Person 2 PhD in Software Engineering Software Reference Architectures 

Person 3 PhD in Computer Science Cloud Computing 

Person 4 PhD in Software Engineering Data knowledge representation 

Person 5 MSc Robotics Robotics and Sensors 

Person 6 MSc Artificial Intelligence Speech Recognition 

Person 7 MSc Artificial Intelligence Human to Machine Interface 

Person 8 MSc Software Engineering Cloud Computing 

Person 9 BSc Computer Science Cloud Computing 

Person 10 BSc Computer Science Data Modelling in Cloud 

Computing 

Person 11 BSc Computer Science Data Modelling in Cloud 

Computing 

Person 12 BSc Computer Science IoT 
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After receiving the ontology artefacts and modules, the architectural model and the survey 

questionnaire, the participants could analyse the content provided to answer the survey and 

give their opinion. The results of the evaluation are presented and discussed according to the 

survey sections. 

Results: Description of Modules 

In Figure 6-3, a summary of the evaluation regarding the description of modules is presented. 

67% of the participants said that the ontology described correctly the key modules in an IoT 

environment, 8% strongly agreed to the modules descriptions, and 25% of the researchers 

declared to be undecided about the descriptions.  

 

Figure 6-3 Experts’ Opinions on Modules Description 

Results: Description of Concepts 

In Figure 6-4, a summary of the evaluation regarding the description of concepts is presented. 

83% of the researchers have agreed or strongly agreed to the description of concepts provided. 

17% were undecided about the descriptions. 
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Figure 6-4 Experts’ Opinions on Concepts Description 

Results: Ontology Coverage 

In Figure 6-5, a summary of the evaluation regarding the ontology coverage is presented. 75% 

of the participants said that all relevant concepts related to IoT domain were presented in the 

ontology, 25% of the participants have declared undecided. 

 

Figure 6-5 Experts’ Opinions on Ontology Coverage 
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Results: Ontology Relationships 

In Figure 6-6, a summary of the evaluation regarding the ontology relationships is presented. 

83% said that all relevant relationships related to IoT concepts were correctly mapped in the 

ontology, while 17% of the researchers were undecided.  

 

Figure 6-6 Experts Opinion On Ontology Relationships 

Results: Ontology Expandability 

In Figure 6-7, a summary of the evaluation regarding the ontology exapandability is presented. 

83% of the participants have declared that the ontology is exapandable, 17% of which has 

strongly agreed. 16% of the participants were undecided.  

 

Figure 6-7 Experts’ Opinions on Ontology Expandability 
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Results: Additional Information 

 

Figure 6-8 Experts’ opinion on the usefulness of the ontology 

The last parameter was a simple question whether the domain expert that this ontology could 

be useful in an IoT domain and whether, all the participants have acknowledged it as useful. 

In order to validate the results obtained from the survey questionnaire, the SPSS software was 

used to check the integrity and the reliability of the results. Cronbach’s alpha index is used  to 

examine the internal consistency of the results (Santos, 1999), as this measurement is 

commonly used to verify and analyse the reliability of Likert-type question results, the 

preferred alpha index value is > 0.7. (Creswell, 2009, Shull et al., 2007).  

 

Figure 6-9 Cronbach Alpha Result (6 Questions feedback) 

The calculated Cronbach’s alpha index for our results is 0.714 based on the 6 questions 

presented to the participants, this could be considered a good result, reflecting high inter-

correlated results; Figure 6-9 shows the Cronbach’s Alpha result for the dataset provided by 

the participants. 
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6.3 EPS-DL Evaluation 

6.3.1 Introduction 

An experimental evaluation of EPS-DL is also carried out to improve its functioning capability 

for event processing in an IoT environment. In order to do this, we followed the procedure used 

by researchers and developers of existing event processing languages (C-SPARQL, EP-

SPARQL, MASSIF, SPARQLstream, CQELS) (Zhang et al., 2012) by using a set of queries 

developed by the World Wide Web Consortium30 especially for stream reasoning evaluation 

(called the SR BENCH). The queries provided by the SR Bench aims to assess the capabilities 

of RDF/SPARQL stream engines with regard to essential features from Semantic Web research 

areas combined in one read-world application scenario. This indicates the capabilities of a 

system to handle a wide variety of distinct types of queries by using Semantic Web 

technologies, where querying, sharing, reasoning and interlinking, are applied on highly 

dynamic streaming RDF data. This benchmark was developed to aid both users and researchers 

to compare RDF/SPARQL stream engines in common application scenarios used in our daily 

life, i.e., querying and deriving information from weather stations. 

The metrics used to evaluate EPS-DL are the performance metrics based on the evaluation 

process (Throughput and Latency), followed by existing event processing languages. (C-

SPARQL, EP-SPARQL, MASSIF, SPARQLstream, and CQELS). This is illustrated in more 

details in Section 6.3.4. 

6.3.2 Evaluation Using the SRBench 

As we have seen in the literature, there is a growing interest in RDF/SPARQL streaming 

engines, though each one of them has its specific extensions set and very distinct approaches 

                                                 
30 https://www.w3.org/wiki/SRBench 

https://www.w3.org/wiki/SRBench
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of implementation. Therefore, for the purpose of comparing the performance and functionality 

of these systems, a streaming RDF/SPARQL Benchmark (SRBench) was first developed in 

2012 this benchmark has served as a reference for testing and has since been continuously 

developing (Zhang et al., 2012). To our knowledge there have not been produced any other 

benchmark for streaming data engines in the literature apart from the SRBench. 

The SRBench is a streaming RDF/SPARQL benchmark, which evaluates the capabilities of 

streaming RDF engines when addressing diverse query types that applies Semantic Web 

technologies such as querying, sharing, interlinking, and reasoning, on highly dynamic RDF 

data streaming. SRBench refers to a general-purpose benchmark designed mainly for 

comparing RDF/SPARQL streaming engines. The design of SRBench was founded on the 

principle of dealing with the following challenges: The necessity of an appropriate streaming 

RDF dataset, the lack of a single SPARQL-based streaming query language and the definition 

of a specific set of features. (Calbimonte, 2013) 

This section introduces the SRBench, which will be used for both the functional evaluation of 

EPS-DL in section 6.3.3, and the performance evaluation in Section 6.3.4. 

Benchmark Data set. The design of a streaming RDF/SPARQL benchmark ), a streaming 

RDF/SPARQL benchmark’s design necessitates a data set which is selected cautiously and is 

realistic, relevant, interlinkable, and semantically valid (Zhang et al., 2012). Further, the data 

set must enable the queries to be formulated such that they feel natural and put forth a brief yet 

complete set of challenges which should be met by streaming RDF engines. 

 A concise set of features. The application of Semantic Web technologies on streaming data 

can provide explicit semantics to data for searching and reusing, enabling reasoning using 

ontologies, and facilitating the integration with other data sets. A comprehensive query set is 

provided by the benchmark, which evaluates the ability of a system to process such distinctive 
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features on highly dynamic streaming data (considering the arrival rate and also the amount of 

streamed data), possibly along with static data. (Calbimonte, 2013) 

The SRBench has provided the definition of 17 queries which have been created and selected 

so that they provide important insights that are applicable to RDF streaming systems, and are 

useful in many domains, e.g., notion of time bounded queries (e.g., data in the latest X time-

units); notion of continuous queries (i.e., queries evaluated periodically); data summarisation 

in the queries (e.g., aggregates); using raw-data to provide high abstractions ; and combining 

streams with contextual static data. (Zhang et al., 2012) 

No standard query language. Standards have not yet been developed for streaming data 

processing, nor for streaming SPARQL extensions. Hence, in a streaming benchmark, it is 

important to specify the queries in a language agnostic way, while adhering to a precise 

semantics. This challennge was addressed by the SRBench, since it provided a descriptive 

definition for each query in the benchmark. (Zhang et al., 2012) 

SRBench Queries 

The queries defined by the SRBench31 include diverse features from RDF and SPARQL 

processing, more advanced SPARQL 1.1 features, interlinking with external static data, and 

inherent streaming data features included in CEP. The features taken into consideration are 

discussed below. 

Graph pattern matching. Is a significant feature of SPARQL queries, it comprises of features 

such as the basic graph pattern matching operators ’.’ (representing a natural join AND) as well 

as FILTER, along with the most complicated operators UNION and OPTIONAL (Arenas and 

Pérez, 2012) SRBench queries includes all these operators. 

                                                 
31 https://www.w3.org/wiki/SRBench 
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Query forms. SPARQL’s three major query forms are supported by the SRBench including 

SELECT, CONSTRUCT, and ASK. DESCRIBE, which is another query form, returns an RDF 

graph that represents the resources found. This form is not utilised in the SRBench queries as 

it is largely dependent on implementation, which highly complicates the verification of the 

query results. (Zhang et al., 2012) 

SPARQL 1.1. The additions to the SPARQL language included in the SPARQL 1.1 W3C 

Proposed Recommendation presented various new characteristics that includes; subqueries, 

negation, aggregates, Property Paths projection expressions and assignment.  

Reasoning. SRBench involves queries which enable exploiting reasoning if it is provided by 

the processing engine. Presently, the queries include reasoning over the rdfs:subClassOf, 

rdfs:subPropertyOf and owl:sameAs properties. Both systems can implement and execute 

queries provided by SRBench, with or without mechanisms for inference, while the differences 

can be noticed in the results of the query. Despite that SPARQL is not a reasoning language, it 

can be utilised for querying ontologies if they are RDF-encoded. Consequently, for systems 

that lack reasoning, such obstacle can be addressed by expressing explicitly some reasoning 

tasks through extra graph patterns with Property Path over the ontologies. (Calbimonte, 2013) 

Streaming. Current streaming extensions of SPARQL tend to utilise streaming data operators 

inspired by DSMS and CEP continuous query languages such as CQL.  

6.3.3 Functional Evaluation 

RDF/SPARQL stream query engines are new and are mainly in their early development phase. 

A functional evaluation of these systems is conducted in this section, aiming at finding out if 

the functionalities provided by these systems are sufficient for realistic streaming query 
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processing, if there are any missing key characteristics or if there are different operators that 

differentiate one system from another. 

The evaluation proposed  in this research comprises of four systems: OCEM-IoT, C-SPARQL, 

CQELS, and SPARQLstream. These models were chosen since they are widely cited in 

literature and they provide implementations and results within the SRBench. The implementing 

queries are available in the SRBench page32. The evaluation results are shown in Table 6-6. 

Table 6-6 Evaluation Results 

Model Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 

OCEM-IoT X X X X X X X X X X X F F F F F F 

C-SPARQL X F F X X X F X F X X F F F F F F 

CQELS X F F X X X F X F X X F F F F F F 

SPARQLstream X F F F F X X F F F F F F F F F F 

 

The X indicates that the model is capable of processing a specific query. If a certain model fails 

to process a particular query, the F letter refers to its failure. The results of the evaluation 

demonstrate that most fundamental SPARQL features are supported by all systems i.e., (Q1) 

The CONSTRUCT and SELECT modifiers used for graph pattern matching. Interestingly, 

neither C-SPARQL nor CQELS nor SPARQLstream support a simple solution modifier such 

as ASK (Q3), however this is covered by the OCEM-IoT (Q3).  

Notably, the property paths is not sufficiently supported by any of the implementations (Q12-

Q17), and thus these models fail to execute 6 queries implemented in SRBench. The Property 

Path expressions is an  important feature of SPARQL, since it offers flexible methods of 

navigating through RDF graphs and makes it easier to reason over different graph patterns. For 

future work, this should addressed. 

                                                 
32 https://www.w3.org/wiki/SRBench 
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Finally, the current implementations provide very little support for the reasoning process. 

CQELS does not currently tackle the reasoning problem at all. C-SPARQL supports little 

reasoning based on simple RDF entailment; however, this is not included in the published 

implementation. EPS-DL has managed to provide reasoning for (Q2), however it failed for the 

queries that had complex property paths (Q12-Q17). The main conclusion of this evaluation is 

that there is yet no best single system available, and even though the EPS-DL model does 

support few more queries than C-SPARQL, SPARQLstream , and CQELS, all of them still 

need covering features of SPARQL 1.1. Overall, we have shown that EPS-DL and the other 

approaches are capable of querying streaming data, but there is still a big gap to be filled in 

terms of the implementation.  

6.3.4 Performance Evaluation 

Throughput and Latency are the basic performance metrics used for evaluation of such models 

(Benarbia et al., 2018, Anicic, 2012). As presented in (Etzion et al., 2011b), for these two 

metrics there are various definitions. For instance, throughput could be measured in the 

following ways: input throughput (measures the number of input events that the system can 

“digest” within a given time interval), processing throughput (measures the total processing 

times divided by the number of event processed within a given time interval), and output 

throughput (measures the number of events that were emitted to event consumers within a 

given time interval). For testing the input throughput was adopted in this work, where the 

percentage of event instances that are processed in patterns is high. 

With regard to latency, the latency for each event is measured. For events that don’t create 

derived events directly, the time that the system takes to finish processing them is measured 

(Etzion et al., 2011b). 
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To evaluate the OCEM-IoT approach, EPS-DL was implemented in Java using Eclipse. The 

test cases presented subsequently were performed on a workstation with Intel(R) Core i5-

4210M, 2.6GHz, 4GB RAM, running on Windows 10. The RDF knowledge base is loaded 

automatically into Java by the query engine, which also compiles RDF stream triples into Java.  

To run tests, an event stream generator was implemented, which provides random time series 

data. Two queries were used to evaluate the performance, which is calculated using the two 

metrics mentioned above (Throughput and latency). Query 1 and Query 6 from the SRBench 

were used for this test since all the models studied were capable of performing these queries. 

 

Throughput and Latency Comparison 

 

Figure 6-10 shows the throughput results comparison between the three models, the Sparql-

stream provides better throughput in these two queries, however Sparqlstram provides no 

reasoning at all. Both C-Sparql and EPS-DL supports reasoning, EPS-DL has improved results 

over C-SPARQL. 

 

Figure 6-10 Throughput Comparison 

Figure 6-11 shows the latency results comparison between the three models, again Sparql-

stream provides better results, with minimum latency even when the number of inputted events 
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increase, however Sparql-stream provides no reasoning capabilities yet. EPS-DL again has 

improved results over C-Sparql. 

 

Figure 6-11 Latency Comparison 

6.4 Comparison of Relevant Models 

Table 6-7 summarises the similarities and differences between the related works and the 

OCEM-IoT model. The table highlights the contribution of the model through the requirements 

shown in Section 4.4. OCEM-IoT merges the semantic event declaration and with processing. 

Moreover, it supports computing temporal inference over the higher-level concepts produced 

by a deductive reasoning method. This model supports all the traditional event-processing 

operators, whereas state of the art approaches support some of these operators. For example, 

EP-SPAQL, which is one of the most cited modesl, supports only one event processing operator 

(The sequence operator SEQ), and the MASSIF model supports none of the event processing 

operators at all. 

One of the studied models (ODECP) does not support filters, whereas joins are not supported 

by two of the studied models (MASSIF AND ODECP). The approach includes optional time 

aware modifiers like also and not, which enables to define more expressive patterns.  
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Table 6-7 Comparison of existing CEP Models 

 Semantic 

Event 

Declaration 

Inference Event 

processing 

Operators 

Filters Joins 

EPL Relational  None All Yes Yes 

MASSIF  

(Bonte et al., 2017) 

DL Axioms OWL 2DL None Yes No 

EP-SPARQL 

(Barbieri et al., 2010) 

RDF BGP RDFs SEQ Yes Yes 

C-SPARQL 

(Barbieri et al., 2010) 

RDF RDFs WINDOW Yes Yes 

ODECP (Taylor and 

Leidinger, 2011) 

OWL RDFs SEQ,AND,OR No No 

OCEM-IoT DL Axioms OWL 2DL All Yes Yes 

 

In this chapter we have presented the evaluation method used for the two components of the 

OCEM-IoT model, the IoT-Ont has received positive feedback from the reviewers, and will be 

published online to allow collaboration on a generic IoT ontology. The EPS-DL syntax has 

advances over many languages used in event processing, it implements all the time operators 

used in complex event processing engines, and it has succeeded in running more queries in the 

SRBench, than the most cited languages in this field, moreover it has good throughput and 

latency results, in the running example using Q1 and Q6 of the SRbench, EPS-DL has improved 

results over one of the most cited languages for stream reasoning.  

OCEM-IoT can play an important role in a weather monitoring and actuating centre, where big 

amounts of data can be enriched with relevant weather ontologies alongside the core IoT-Ont, 

and then providing an analysis of the current irrigation needs by implementing the relevant 
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EPS-DL queries on the high level concepts and events. Another domain which could benefit 

efficiently from OCEM-IoT is a wearable health device, which for example in blood pressure 

patients, can read the blood pressure, heart rate and temperature of the patient and then by 

analysing and processing the readings triggers the patient to act either by taking the required 

medication or seeking medical attention. 

However, this is merely an initial step towards an event processing system based on ontological 

concepts, and lots of work should be done in this field. Chapter 7 provides the conclusions and 

future research work. 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

7.1 Introduction 

This thesis originates from the research on ontology-based event query techniques, the 

extensions for sensor data streams operators and the use of description logic to capture data 

and extract relevant properties sources. It aims to make sense of the raw sensor data in real 

time of multiple, heterogeneous, gigantic and inevitably noisy sensor data streams.  

This final chapter presents a summary of the work and describes the key contributions. It also 

illustrates the possible areas for future work. The thesis contributed by developing OCEM-IoT, 

a model for accessing, enriching and querying data streams from heterogeneous sources, by 

the use of ontologies for representing the data captured by sensors. Achievements of this work 

include the development of an ontology for IoT (IoT-Ont) and validation of its modules, 

concepts and relationships. In addition, the proposal of an architecture to bridge the gap 

between sensor data and event processing applications. OCEM-IoT supports all the traditional 

event-processing operators, whereas state of the art approaches support some of these 

operators. OCEM-IoT performs better with regard to latency and throughput, than one of the 

most cited models in literature C-SPARQL. 

OCEM-IoT tackled the research questions in section 1.2, by developing the IoT-Ont ontology, 

which represents the semantic properties of sensor data and enrich them with contect, such as 

time and location. Moreover OCEM-IoT implements an event processing syntax which can 

make use of the ontology as a data model to continuously query sensor data. 

 In this chapter, the objectives of the thesis will be revised and the means of realising them will 

be illustrated in Section 7.1. Section 7.2 presents the ideas and suggestions for the future 

development. 
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7.2 Review of the Research Objectives 

This section introduces the research objectives and reviews the means of achieving them. 

7.2.1 Objective 1 

 Comparison of existing IoT ontologies: 

In order to achieve this objective, existing ontologies for IoT have been researched and 

compared against requirements for devising an IoT ontology. This has been presented in 

Section 2.5.4 and in Chapter 3. A comparison table was provided by tables 3-1 and 3-2. The 

review has concluded that all the existing ontologies proposed cover only some of the necessary 

requirements, they are incapable of providing a comprehensive solution to the problems of 

heterogeneity and interoperability in IoT technologies 

7.2.2 Objective 2 

 Review of current methodologies in software engineering addressing the ontology 

development process. 

This objective aims to study the methodologies used for developing ontologies. This objective 

has been carried out comprehensively in Chapter 3. The review showed that all the 

methodologies provide general guidelines for the development process, it also showed that 

competency questions is one of the most successful and cited techniques in literature, this was 

followed later on the development process. 

7.2.3  Objective 3 

 An architectural model: An ontology based event processing model 
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This objective aims at developing a model that interconnects the sensor data with event 

processing applications (such as complex event processing engines). This objective was 

achieved in Chapter 5. The model bridges the gap between semantic event representation of 

high-level concepts and its employment in complex event processing. 

7.2.4 Objective 4 

 Development of an Ontology for IoT. 

To achieve this objective, after carrying a review on the existing IoT ontologies, conceptual 

and functional requirements were gathered in Chapter 4, this process was based on the-state-

of-the-art ontologies and upper ontologies (such as DUL and SSN), we defined the basic 

modules and concepts of the ontology. This illustrated in details in Chapter 4. 

7.2.5 Objective 5 

 A time-aware event processing syntax based on description logic to facilitate event 

processing (EPS-DL). 

To achieve this objective, we implemented a simple syntax based on the SPARQL language, 

this syntax uses description logic for reasoning over events and implements the time operators 

and modifiers used in complex event processing. The development process of this syntax is 

explained in details in Chapter 4. 

7.2.6 Objective 6 

 Evaluating the proposed ontology using a survey questionnaire. 
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To achieve this objective, we have carried out a survey questionnaire with domain experts. 

Results obtained from the participants provided evidence that the ontology does represent the 

IoT environment by providing a modular design which is easy to be reused and built upon. 

7.2.7  Objective 7 

 Evaluating the event processing syntax EPS-DL  

To achieve this objective, we first compared the syntax to the-state-of-the-art languages used 

for stream reasoning and event processing, the comparison was based on the development 

requirements presented in Section 4.4, and the comparison Table 4-3 is available in section 4.6. 

The proposed syntax has also been evaluated using both functional and performance 

evaluation. The results showed the advances of EPS-DL against other languages, it provided 

evidence that EPS-DL can run more queries in the SRBench than other languages and provided 

improved throughput and lower latency than the well cited language C-Sparql. 

7.3 Future Work 

The research opportunities that emerged during the work on this thesis represent perspectives 

of future research that can contribute to the areas of IoT and event processing. In the future, we 

plan to: 

1. IoT-Ont ontology should be evaluated within an industrial environment, in order to 

provide more evidence of its success. 

2. IoT-Ont ontology should be published online in order to allow collaboration 

development, since the IoT field is very complex, this should be a contant dynamic 

process. The ontology could be applied to industrial use cases within an IoT 

environment, such as smart cities and smart architecture. 
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3. IoT-Ont could be extended to various domains within IoT, in order to better capture the 

specific domain knowledge, such as agriculture, health, etc. 

4. Further test EPS-DL against the queries it failed to run in the SRBench, and work 

towards its success. 

5. Implement OCEM-IoT within a specific use cases and evaluate it in comparison with 

existing models.  
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APPENDIX A: SURVEY QUESTIONNAIRE  

This Appendix contains all survey structure, separated by sections, containing all items present 

in the survey form.  

IoT-Ont Ontology Evaluation 

This evaluation survey is aimed at domain expert and researchers in Internet of Things. The 

purpose of this survey is to evaluate the concepts represented and how they are related in IoT-

Ont, an ontology for Internet of Things, which has been developed in a PhD project. 

The survey contains 7 questions regarding the ontology evaluation, 4 questions regarding the 

respondent background and knowledge. Your participation is totally anonymous, if you would 

like to be informed about the final evaluation result, please enter a valid email address below. 

Email address (optional):  

 

The results of the survey will be used to assess and evaluate the developed ontology in this 

research. It is assumed that respondent has some knowledge in the IoT domain. 
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Part A: Background Knowledge 

1. Are you familiar with the Internet of Things or Wireless Sensor Networks? 

 Yes 

 Yes, but I don’t consider myself an expert. 

 No 

 

2. Are you familiar with Software Engineering? 

 Yes 

 Yes, but I don’t consider myself an expert. 

 No 

 

3. Are you familiar with Ontology Engineering? 

 Yes 

 Yes, but I don’t consider myself an expert. 

 No 

4. Have you developed an Ontology before? 

 Yes 

 No 

 

Part B: IoT-Ont Evaluation 

Description of Concepts (Conciseness) 

Please evaluate the description of each term presented in the attached Table titled IoT-Ont 

Description of Concepts. 

1. The ontology correctly describes all concepts related to Internet of Things. 

Strongly Agree 

Agree 

Undecided 

Disagree 

Strongly Disagree 
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Please evaluate the description of each term presented in the attached Table titled IoT-Ont 

Description of Modules. 

2. The ontology correctly describes all modules related to Internet of Things. 

Strongly Agree 

Agree 

Undecided 

Disagree 

Strongly Disagree 

 

Ontology Coverage (Completeness) 
 

Please evaluate if the concepts in ontology correctly represent the Internet of Things field.  

3. All relevant concepts related to the Internet of Things domain have been represented in 

the ontology. 

 

Strongly Agree 

Agree 

Undecided 

Disagree 

Strongly Disagree 

 

Relationships (Consistency) 

 

Please evaluate if the relationships between the concepts are correctly mapped. 

4. All relevant relationships related to the Internet of Things concepts have been correctly 

mapped in the ontology. 

Strongly Agree 

Agree 

Undecided 

Disagree 

Strongly Disagree 
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Expandability (Modularity) 

Please evaluate if the ontology follows a modular ontology design, where modules and 

concepts could easily be added. 

5. New terms and modules can be introduced without the need to revise the existing 

structure of the ontological model 

Strongly Agree 

Agree 

Undecided 

Disagree 

Strongly Disagree 

 

Additional Information 

6. In your opinion, do you think an ontology for IoT is useful? 

 

Strongly Agree 

Agree 

Undecided 

Disagree 

Strongly Disagree 

 

 

7. Please use this space for any additional comments or suggestions in regards to IoT-Ont. 
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APPENDIX B: ETHICAL APPROVAL 

 

 

 


