30 research outputs found

    A tangible user interface using spatial augmented reality

    Get PDF
    In this paper, we describe the novel implementation of a tangible user interface framework, namely the MagicPad, inspired by the concept of Spatial Augmented Reality. By using an Infrared pen with any flat surface, such as a paper pad that receives projected images from a projector, a user is able to perform a variety of interactive visualization and manipulation in the 3D space. Two implementations using the MagicPad framework are presented, which include the magic lenses like interface inside a CAVE-like system and a virtual book in an art installation. ©2010 IEEE.published_or_final_versionThe 2010 IEEE Symposium on 3D User Interfaces (3DUI 2010), Waltham, MA., 20-21 March 2010. In Proceedings of 3DUI, 2010, p. 137-13

    LoCoMoTe – a framework for classification of natural locomotion in VR by task, technique and modality

    Get PDF
    Virtual reality (VR) research has provided overviews of locomotion techniques, how they work, their strengths and overall user experience. Considerable research has investigated new methodologies, particularly machine learning to develop redirection algorithms. To best support the development of redirection algorithms through machine learning, we must understand how best to replicate human navigation and behaviour in VR, which can be supported by the accumulation of results produced through live-user experiments. However, it can be difficult to identify, select and compare relevant research without a pre-existing framework in an ever-growing research field. Therefore, this work aimed to facilitate the ongoing structuring and comparison of the VR-based natural walking literature by providing a standardised framework for researchers to utilise. We applied thematic analysis to study methodology descriptions from 140 VR-based papers that contained live-user experiments. From this analysis, we developed the LoCoMoTe framework with three themes: navigational decisions, technique implementation, and modalities. The LoCoMoTe framework provides a standardised approach to structuring and comparing experimental conditions. The framework should be continually updated to categorise and systematise knowledge and aid in identifying research gaps and discussions

    The Challenges in Modeling Human Performance in 3D Space with Fitts’ Law

    Get PDF
    With the rapid growth in virtual reality technologies, object interaction is becoming increasingly more immersive, elucidating human perception and leading to promising directions towards evaluating human performance under different settings. This spike in technological growth exponentially increased the need for a human performance metric in 3D space. Fitts' law is perhaps the most widely used human prediction model in HCI history attempting to capture human movement in lower dimensions. Despite the collective effort towards deriving an advanced extension of a 3D human performance model based on Fitts' law, a standardized metric is still missing. Moreover, most of the extensions to date assume or limit their findings to certain settings, effectively disregarding important variables that are fundamental to 3D object interaction. In this review, we investigate and analyze the most prominent extensions of Fitts' law and compare their characteristics pinpointing to potentially important aspects for deriving a higher-dimensional performance model. Lastly, we mention the complexities, frontiers as well as potential challenges that may lay ahead.Comment: Accepted at ACM CHI 2021 Conference on Human Factors in Computing Systems (CHI '21 Extended Abstracts

    Vibration-induced friction control for walkway locomotion interface

    Get PDF
    Falls represent a major challenge to mobility for the elderly community, a point that has motivated various studies of balance failures. To support this work, we are interested in mechanisms for the synthesis of ground environments that can be controlled to exhibit dynamic friction characteristics. As a first step, we investigate the design and development of such a variable-friction device, a hybrid locomotion interface using a cable-driven vibrotactile mechanism. Measurements on our prototype, consisting of an aluminum tile covered with low-friction polytetrafluoroethylene (PTFE), demonstrate that it can effectively simulate a low coefficient of static friction. As part of the design, we also investigated the role that induced vibration plays in modifying the coefficient of friction. Measurements of sliding on a PTFE-covered tile in a tilted configuration showed a significant influence of normal low-frequency vibration, particularly for frequencies around 20 Hz, regardless of the user's weight

    User Interface for Work with Computer in Virtual Reality

    Get PDF
    Tato práce se zabývá možnostmi ovládání počítače ve virtuální realitě. Jejím cílem je vytvořit uživatelské rozhraní, které v ní bude umožňovat pracovat s počítačem. Nejprve studuje možnosti zařízení pro snímání akci uživatele a jejich využití pro ovládání a způsoby interakce ve virtuální realitě. Na základě získaných informací se zaměřuje na způsoby interakce, které využívají pro ovládání snímání rukou uživatele. Práce řeší problém výběru a manipulace s virtuálními objekty. Představuje tři způsoby interakce, které testuje v rámci experimentu a následně hodnotí. This thesis explores various ways of controlling computer in virtual reality. The aim of this thesis is to create a user interface which would allow the user to control computer in virtual reality. First it explores the possibilities of detecting users actions using sensors and its usability for controls and various interaction techniques in virtual reality. Based on the information gathered about the described topics it focuses on various ways of interactions using hands as controllers. This thesis tackles the issue of selecting and manipulating virtual objects. It introduces the design of three interaction techniques, which are then tested and evaluated.

    Augmented and virtual reality evolution and future tendency

    Get PDF
    Augmented reality and virtual reality technologies are increasing in popularity. Augmented reality has thrived to date mainly on mobile applications, with games like Pokémon Go or the new Google Maps utility as some of its ambassadors. On the other hand, virtual reality has been popularized mainly thanks to the videogame industry and cheaper devices. However, what was initially a failure in the industrial field is resurfacing in recent years thanks to the technological improvements in devices and processing hardware. In this work, an in-depth study of the different fields in which augmented and virtual reality have been used has been carried out. This study focuses on conducting a thorough scoping review focused on these new technologies, where the evolution of each of them during the last years in the most important categories and in the countries most involved in these technologies will be analyzed. Finally, we will analyze the future trend of these technologies and the areas in which it is necessary to investigate to further integrate these technologies into society.Universidad de Sevilla, Spain Telefonica Chair “Intelligence in Networks

    Design of variable-friction devices for shoe-floor contact

    Get PDF
    In rehabilitation training, high-fidelity simulation environments are needed for reproducing the effects of slippery surfaces, in which potential balance failure conditions can be reproduced on demand. Motivated by these requirements, this article considers the design of variable-friction devices for use in the context of human walking on surfaces in which the coefficient of friction can be controlled dynamically. Various designs are described, aiming at rendering low-friction shoe-floor contact, associated with slippery sur- faces such as ice, as well as higher-friction values more typical of surfaces such as pebbles, sand, or snow. These designs include an array of omnidirectional rolling elements, a combination of low- and high- friction coverings whose contact pressure distribution is controlled, and modulation of low-frequency vi- bration normal to the surface. Our experimentation investigated the static coefficient of friction attainable with each of these designs. Rolling elements were found to be the most slippery, providing a coefficient of friction as low as 0.03, but with significant drawbacks from the perspective of our design objectives. A controlled pressure distribution of low- and high-friction coverings allowed for a minimum coefficient of friction of 0.06. The effects of vibration amplitude and frequency on sliding velocity were also explored. Increases in amplitude resulted in higher velocities, but vibration frequencies greater than 25 Hz reduced sliding velocities. To meet our design objectives, a novel approach involving a friction-variation mecha- nism, embedded in a shoe sole, is proposed

    Defining an Indicator for Navigation Performance Measurement in VE Based on ISO/IEC15939

    Get PDF
    Navigation is a key factor for immersion and exploration in virtual environment (VE). Nevertheless, measuring navigation performance is not an easy task, especially when analyzing and interpreting heterogeneous results of the measures used. To that end, we propose, in this paper, a new indicator for measuring navigation performance in VE based on ISO/IEC 15939 standard. It allows effective integration of heterogeneous results by retaining its raw values. Also, it provides a new method that offers a comprehensive graphical visualization of the data for interpreting the results. The experimental study had shown the feasibility of this indicator and its contribution to statistical results.Burgundy Franche-Comté counci
    corecore