148,558 research outputs found

    Construction 3D BIM-based knowledge management system: a case study

    Get PDF
    Knowledge management (KM) is the organization, creation, sharing and flow of knowledge within organizations. Knowledge can be shared and reused among involved engineers and experts to improve a construction process and reduce the time and cost of solving problems. This paper proposes a new and practical methodology to capture and represent construction project knowledge by using a Building Information Modeling (BIM) approach. Using BIM approach, users can make visual knowledge management in the 3D Computer-aided Design (CAD) environment. This study addresses the application of knowledge management in the construction phase of construction projects and proposes a Construction BIM-based Knowledge Management (CBIMKM) system for general contractors. The CBIMKM is then applied in selected case studies of a construction building project in Taiwan to verify our proposed methodology and demonstrate the effectiveness of sharing knowledge in the 3D environment. By applying the BIM approach, all participants in a project can share and reuse explicit and tacit knowledge through the 3D CAD-based knowledge map. The combined results demonstrate that the CBIMKM system can be used as a visual 3D-based knowledge management platform by utilizing the BIM approach and web technology

    Visualisation of semantic architectural information within a game engine environment

    Get PDF
    Because of the importance of graphics and information within the domain of architecture, engineering and construction (AEC), an appropriate combination of visualisation technology and information management technology is of utter importance in the development of appropriately supporting design and construction applications. We therefore started an investigation of two of the newest developments in these domains, namely game engine technology and semantic web technology. This paper documents part of this research, containing a review and comparison of the most prominent game engines and documenting our architectural semantic web. A short test-case illustrates how both can be combined to enhance information visualisation for architectural design and construction

    Cloud-Based Collaborative 3D Modeling to Train Engineers for the Industry 4.0

    Get PDF
    In the present study, Autodesk Fusion 360 software (which includes the A360 environment) is used to train engineering students for the demands of the industry 4.0. Fusion 360 is a tool that unifies product lifecycle management (PLM) applications and 3D-modeling software (PDLM—product design and life management). The main objective of the research is to deepen the students’ perception of the use of a PDLM application and its dependence on three categorical variables: PLM previous knowledge, individual practices and collaborative engineering perception. Therefore, a collaborative graphic simulation of an engineering project is proposed in the engineering graphics subject at the University of La Laguna with 65 engineering undergraduate students. A scale to measure the perception of the use of PDLM is designed, applied and validated. Subsequently, descriptive analyses, contingency graphical analyses and non-parametric analysis of variance are performed. The results indicate a high overall reception of this type of experience and that it helps them understand how professionals work in collaborative environments. It is concluded that it is possible to respond to the demand of the industry needs in future engineers through training programs of collaborative 3D modeling environments

    Global Teamwork: A Study of Design Learning in Collaborative Virtual Environments

    Get PDF
    With the recent developments in communication and information technologies, using Collaborative Virtual Environments (CVEs) in design activity has experienced a remarkable increase. In this paper we present a collaborative learning activity between the University of Sydney (USYD), and the Istanbul Technical University (ITU). This paper shares our teaching experience and discusses the principles of collaborative design learning in virtual environments. Followed by a study on students’ perception on the courses and collaborative learning in both universities, this paper also suggests future refinements on the course structure and the main areas of collaborative design learning. Keywords: Collaborative Design; Collaborative Virtual Environments; Design Teaching And Learning</p

    3D product authenticity model for online retail: An invariance analysis

    Get PDF
    This study investigates the effects of different levels of invariance analysis on three dimensional (3D) product authenticity model (3DPAM) constructs in the e- retailing context. A hypothetical retailer Web site presents a variety of laptops using 3D product visualisations. The proposed conceptual model achieves acceptable fit and the hypothesised paths are all valid. We empirically investigate the invariance across the subgroups to validate the results of our 3DPAM. We concluded that the 3D product authenticity model construct was invariant for our sample across different gender, level of education and study backgrounds. These findings suggested that all our subgroups conceptualised the 3DPAM similarly. Also the results show some non-invariance results for the structural and latent mean models. The gender group posits a non-invariance latent mean model. Study backgrounds group reveals a non-invariance result for the structural model. These findings allowed us to understand the 3DPAMs validity in the e-retail context. Managerial implications are explained

    The seamless integration of Web3D technologies with university curricula to engage the changing student cohort

    Get PDF
    The increasing tendency of many university students to study at least some courses at a distance limits their opportunities for the interactions fundamental to learning. Online learning can assist but relies heavily on text, which is limiting for some students. The popularity of computer games, especially among the younger students, and the emergence of networked games and game-like virtual worlds offers opportunities for enhanced interaction in educational applications. For virtual worlds to be widely adopted in higher education it is desirable to have approaches to design and development that are responsive to needs and limited in their resource requirements. Ideally it should be possible for academics without technical expertise to adapt virtual worlds to support their teaching needs. This project identified Web3D, a technology that is based on the X3D standards and which presents 3D virtual worlds within common web browsers, as an approach worth exploring for educational application. The broad goals of the project were to produce exemplars of Web3D for educational use, together with development tools and associated resources to support non-technical academic adopters, and to promote an Australian community of practice to support broader adoption of Web3D in education. During the first year of the project exemplar applications were developed and tested. The Web3D technology was found to be still in a relatively early stage of development in which the application of standards did not ensure reliable operation in different environments. Moreover, ab initio development of virtual worlds and associated tools proved to be more demanding of resources than anticipated and was judged unlikely in the near future to result in systems that non-technical academics could use with confidence. In the second year the emphasis moved to assisting academics to plan and implement teaching in existing virtual worlds that provided relatively easy to use tools for customizing an environment. A project officer worked with participating academics to support the teaching of significant elements of courses within Second LifeTM. This approach was more successful in producing examples of good practice that could be shared with and emulated by other academics. Trials were also conducted with ExitRealityTM, a new Australian technology that presents virtual worlds in a web browser. Critical factors in the success of the project included providing secure access to networked computers with the necessary capability; negotiating the complexity of working across education, design of virtual worlds, and technical requirements; and supporting participants with professional development in the technology and appropriate pedagogy for the new environments. Major challenges encountered included working with experimental technologies that are evolving rapidly and deploying new networked applications on secure university networks. The project has prepared the way for future expansion in the use of virtual worlds for teaching at USQ and has contributed to the emergence of a national network of tertiary educators interested in the educational applications of virtual worlds

    A semantic web approach for built heritage representation

    Get PDF
    In a built heritage process, meant as a structured system of activities aimed at the investigation, preservation, and management of architectural heritage, any task accomplished by the several actors involved in it is deeply influenced by the way the knowledge is represented and shared. In the current heritage practice, knowledge representation and management have shown several limitations due to the difficulty of dealing with large amount of extremely heterogeneous data. On this basis, this research aims at extending semantic web approaches and technologies to architectural heritage knowledge management in order to provide an integrated and multidisciplinary representation of the artifact and of the knowledge necessary to support any decision or any intervention and management activity. To this purpose, an ontology-based system, representing the knowledge related to the artifact and its contexts, has been developed through the formalization of domain-specific entities and relationships between them
    • 

    corecore