36,242 research outputs found
A Novel Imaging System for Automatic Real-Time 3D Patient-Specific Knee Model Reconstruction Using Ultrasound RF Data
This dissertation introduces a novel imaging method and system for automatic real-time 3D patient-specific knee model reconstruction using ultrasound RF data. The developed method uses ultrasound to transcutaneously digitize a point cloud representing the bone’s surface. This point cloud is then used to reconstruct 3D bone model using deformable models method.
In this work, three systems were developed for 3D knee bone model reconstruction using ultrasound RF data. The first system uses tracked single-element ultrasound transducer, and was experimented on 12 knee phantoms. An average reconstruction accuracy of 0.98 mm was obtained. The second system was developed using an ultrasound machine which provide real-time access to the ultrasound RF data, and was experimented on 2 cadaveric distal femurs, and proximal tibia. An average reconstruction accuracy of 0.976 mm was achieved. The third system was developed as an extension of the second system, and was used for clinical study of the developed system further assess its accuracy and repeatability. A knee scanning protocol was developed to scan the different articular surfaces of the knee bones to reconstruct 3D model of the bone without the need for bone-implanted motion tracking reference probes. The clinical study was performed on 6 volunteers’ knees. Average reconstruction accuracy of 0.88 mm was achieved with 93.5% repeatability.
Three extensions to the developed system were investigated for future work. The first extension is 3D knee injection guidance system. A prototype for the 3D injection guidance system was developed to demonstrate the feasibility of the idea. The second extension in a knee kinematics tracking system using A-mode ultrasound. A simulation framework was developed to study the feasibility of the idea, and to find the best number of single-element ultrasound transducers and their spatial distribution that yield the highest kinematics tracking accuracy. The third extension is 3D cartilage model reconstruction. A preliminary method for cartilage echo detection from ultrasound RF data was developed, and experimented on the distal femur scans of one of the clinical study’s volunteers to reconstruct a 3D point cloud for the cartilage
Development and Phantom Validation of a 3D-Ultrasound-Guided System for Targeting MRI-visible Lesions during Transrectal Prostate Biopsy
OBJECTIVE: Three- and four-dimensional transrectal ultrasound transducers are now available from most major ultrasound equipment manufacturers, but currently are incorporated into only one commercial prostate biopsy guidance system. Such transducers offer the benefits of rapid volumetric imaging, but can cause substantial measurement distortion in electromagnetic tracking sensors, which are commonly used to enable 3D navigation. In this paper, we describe the design, development and validation of a 3D-ultrasound-guided transrectal prostate biopsy system that employs high-accuracy optical tracking to localize the ultrasound probe and prostate targets in 3D physical space. METHODS: The accuracy of the system was validated by evaluating the targeted needle placement error after inserting a biopsy needle to sample planned targets in a phantom using standard 2D ultrasound guidance versus real-time 3D guidance provided by the new system. RESULTS: The overall mean needle-segment-to-target distance error was 3.6±4.0 mm and mean needle-to-target distance was 3.2±2.4 mm. CONCLUSION: a significant increase in needle placement accuracy was observed when using the 3D guidance system compared with visual targeting of invisible (virtual) lesions using a standard B-mode ultrasound guided biopsy technique
Enter the matrix:On how to improve thyroid nodule management using 3D ultrasound
Roughly two-thirds of the adult population has a thyroid nodule, of which 90% are benign. Of the adults that have a nodule, approximately 5% will experience symptoms that include a feeling of a marble stuck in the throat, difficulty swallowing and breathing, and cosmetic complaints. Thyroid nodule management primarily makes use of ultrasound as the imaging modality for diagnosis, image guidance during therapy (radiofrequency ablation i.e. RFA), and follow-up. Although ultrasound is relatively easy to apply, it is hard to standardize for repeated measurements and across various users. Further, RFA can benefit from 3D imaging information and a planning and navigation system to improve clinical outcome. These challenges may be overcome by using 3D ultrasound. In this thesis, two phantoms were created on which these methods can be developed. Further, it offers insight into the use of 2D and 3D ultrasound for thyroid nodule management.To assess the impact of changes to an intervention, a baseline was determined of the effectiveness of RFA in Dutch hospitalsUsing a simple phantom, we have shown that utilizing a volume-based measurement technique, that the matrix transducer offers, results in improved measurement accuracy. The more complex, anthropomorphic, phantom serves as a platform on which thermal treatments, such as RFA, can be improved. Using this phantom, we have shown that the impact of 2D and 3D ultrasound on RFA efficacy does not differ from one another; however, the matrix transducer might be more user-friendly for needle placement due to the dual-plane imaging. An additional use case for these phantoms is their capacity to compare dominant and non-dominant hand ablations, as well as serve as a training platform. Additional research is required that employs more operators to find stronger evidence supporting a difference between the ablating hands and the difference in effect of 2D and 3D ultrasound guidance.To make full use of 3D ultrasound, stitching algorithms should be integrated into the ultrasound systems to acquire larger volumes. These can then be processed by deep-learning algorithms for use in computer-aided diagnosis and intervention systems. To further improve the applicability of 3D ultrasound in the clinic, integrating analysis methods such as 3D elastography and 3D Doppler is suggested
Prostate biopsies guided by three-dimensional real-time (4-D) transrectal ultrasonography on a phantom: comparative study versus two-dimensional transrectal ultrasound-guided biopsies
OBJECTIVE: This study evaluated the accuracy in localisation and distribution
of real-time three-dimensional (4-D) ultrasound-guided biopsies on a prostate
phantom. METHODS: A prostate phantom was created. A three-dimensional real-time
ultrasound system with a 5.9MHz probe was used, making it possible to see
several reconstructed orthogonal viewing planes in real time. Fourteen
operators performed biopsies first under 2-D then 4-D transurethral ultrasound
(TRUS) guidance (336 biopsies). The biopsy path was modelled using segmentation
in a 3-D ultrasonographic volume. Special software was used to visualise the
biopsy paths in a reference prostate and assess the sampled area. A comparative
study was performed to examine the accuracy of the entry points and target of
the needle. Distribution was assessed by measuring the volume sampled and a
redundancy ratio of the sampled prostate. RESULTS: A significant increase in
accuracy in hitting the target zone was identified using 4-D ultrasonography as
compared to 2-D. There was no increase in the sampled volume or improvement in
the biopsy distribution with 4-D ultrasonography as compared to 2-D.
CONCLUSION: The 4-D TRUS guidance appears to show, on a synthetic model, an
improvement in location accuracy and in the ability to reproduce a protocol.
The biopsy distribution does not seem improved
Three-dimensional greyscale transrectal ultrasound-guidance and biopsy core preembedding for detection of prostate cancer:Dutch clinical cohort study
Background: To overcome the limitations regarding two dimensional (2D) greyscale (GS) transrectal ultrasound (TRUS)-guided biopsy in prostate cancer (PCa) detection and tissue packaging in biopsy processing, there is an ongoing focus on new imaging and pathology techniques. A three-dimensional (3D) model of the prostate with biopsy needle guidance can be generate by the Navigo™ workstation (UC-care, Israel). The SmartBX™ system (UC-care, Israel) provides a prostate biopsy core preembedding method. The aim of this study was to compare cancer detection rates between the 3D TRUS-guidance and preembedding method with conventional 2D GS TRUS-guidance among patients undergoing prostate biopsies. Methods: We retrospectively analyzed the records of all patients who underwent prostate biopsies for PCa detection at our institution from 2007 to 2016. The cohort was divided into a 2D GS TRUS-guidance cohort (from 2007 to 2013, n = 1149) and a 3D GS TRUS-guidance with preembedding cohort (from 2013 to 2016, n = 469). Effect of 3D GS TRUS-guidance with preembedding on detection rate of PCa and clinically significant PCa (Gleason score ≥ 7 or > 2 biopsy cores with a Gleason score 6) was compared to 2D GS TRUS-guidance using regression models. Results: Detection rate of PCa and clinically significant PCa was 39.0 and 24.9% in the 3D GS TRUS cohort compared to 33.5 and 19.0% in the 2D GS TRUS cohort, respectively. On multivariate regression analysis the use of 3D GS TRUS-guidance with preembedding was associated with a significant increase in detection rate of PCa (aOR = 1.33; 95% CI: 1.03-1.72) and clinically significant PCa (aOR = 1.47; 95% CI: 1.09-1.98). Conclusion: Our results suggest that 3D GS TRUS-guidance with biopsy core preembedding improves PCa and clinically significant PCa detection compared to 2D GS TRUS-guidance. Additional studies are needed to justify the application of these systems in clinical practice.</p
A 3D US Guidance System for Permanent Breast Seed Implantation: Development and Validation
Permanent breast seed implantation (PBSI) is a promising breast radiotherapy technique that suffers from operator dependence. We propose and have developed an intraoperative 3D ultrasound (US) guidance system for PBSI.
A tracking arm mounted to a 3D US scanner registers a needle template to the image. Images were validated for linear and volumetric accuracy, and image quality in a volunteer. The tracking arm was calibrated, and the 3D image registered to the scanner. Tracked and imaged needle positions were compared to assess accuracy and a patient-specific phantom procedure guided with the system.
Median/mean linear and volumetric error was ±1.1% and ±4.1%, respectively, with clinically suitable volunteer scans. Mean tracking arm error was 0.43mm and 3D US target registration error ≤0.87mm. Mean needle tip/trajectory error was 2.46mm/1.55°. Modelled mean phantom procedure seed displacement was 2.50mm. To our knowledge, this is the first reported PBSI phantom procedure with intraoperative 3D image guidance
Computer-assisted access to the kidney
OBJECTIVES: The aim of this paper is to introduce the principles of
computer-assisted access to the kidney. The system provides the surgeon with a
pre-operative 3D planning on computed tomography (CT) images. After a rigid
registration with space-localized ultrasound (US) data, preoperative planning
can be transferred to the intra-operative conditions and an intuitive
man-machine interface allows the user to perform a puncture. MATERIAL AND
METHODS: Both CT and US images of informed normal volunteer were obtained to
perform calculation on the accuracy of registration and punctures were carried
out on a kidney phantom to measure the precision of the whole of the system.
RESULTS: We carried out millimetric registrations on real data and guidance
experiments on a kidney phantom showed encouraging results of 4.7 mm between
planned and reached targets. We noticed that the most significant error was
related to the needle deflection during the puncture. CONCLUSION: Preliminary
results are encouraging. Further work will be undertaken to improve efficiency
and accuracy, and to take breathing into account
- …