41 research outputs found

    Design and Control of Motion Compensation Cardiac Catheters

    Get PDF
    Robotic cardiac catheters have the potential to revolutionize heart surgery by extending minimally invasive techniques to complex surgical repairs inside the heart. However, catheter technologies are currently unable to track fast tissue motion, which is required to perform delicate procedures inside a beating heart. This paper proposes an actuated catheter tool that compensated for the motion of heart structures like the mitral valve apparatus by servoing a catheter guidewire inside a flexible sheath. We examine design and operation parameters that affect performance and establish that friction and backlash limit the tracking performance of the catheter system. Based on the results of these experiments and a model of the backlash behavior, we propose and implement compensation methods to improve trajectory tracking performance. The catheter system is evaluated with 3D ultrasound guidance in simulate in vivo conditions. the results demonstrate that with mechanical and control system design improvements, a robotic catheter system can accurately track the fast motion of the human mitral valve.Engineering and Applied Science

    Autonomous Tissue Scanning under Free-Form Motion for Intraoperative Tissue Characterisation

    Full text link
    In Minimally Invasive Surgery (MIS), tissue scanning with imaging probes is required for subsurface visualisation to characterise the state of the tissue. However, scanning of large tissue surfaces in the presence of deformation is a challenging task for the surgeon. Recently, robot-assisted local tissue scanning has been investigated for motion stabilisation of imaging probes to facilitate the capturing of good quality images and reduce the surgeon's cognitive load. Nonetheless, these approaches require the tissue surface to be static or deform with periodic motion. To eliminate these assumptions, we propose a visual servoing framework for autonomous tissue scanning, able to deal with free-form tissue deformation. The 3D structure of the surgical scene is recovered and a feature-based method is proposed to estimate the motion of the tissue in real-time. A desired scanning trajectory is manually defined on a reference frame and continuously updated using projective geometry to follow the tissue motion and control the movement of the robotic arm. The advantage of the proposed method is that it does not require the learning of the tissue motion prior to scanning and can deal with free-form deformation. We deployed this framework on the da Vinci surgical robot using the da Vinci Research Kit (dVRK) for Ultrasound tissue scanning. Since the framework does not rely on information from the Ultrasound data, it can be easily extended to other probe-based imaging modalities.Comment: 7 pages, 5 figures, ICRA 202

    Acoustical structured illumination for super-resolution ultrasound imaging.

    Get PDF
    Structured illumination microscopy is an optical method to increase the spatial resolution of wide-field fluorescence imaging beyond the diffraction limit by applying a spatially structured illumination light. Here, we extend this concept to facilitate super-resolution ultrasound imaging by manipulating the transmitted sound field to encode the high spatial frequencies into the observed image through aliasing. Post processing is applied to precisely shift the spectral components to their proper positions in k-space and effectively double the spatial resolution of the reconstructed image compared to one-way focusing. The method has broad application, including the detection of small lesions for early cancer diagnosis, improving the detection of the borders of organs and tumors, and enhancing visualization of vascular features. The method can be implemented with conventional ultrasound systems, without the need for additional components. The resulting image enhancement is demonstrated with both test objects and ex vivo rat metacarpals and phalanges

    A 3D US Guidance System for Permanent Breast Seed Implantation: Development and Validation

    Get PDF
    Permanent breast seed implantation (PBSI) is a promising breast radiotherapy technique that suffers from operator dependence. We propose and have developed an intraoperative 3D ultrasound (US) guidance system for PBSI. A tracking arm mounted to a 3D US scanner registers a needle template to the image. Images were validated for linear and volumetric accuracy, and image quality in a volunteer. The tracking arm was calibrated, and the 3D image registered to the scanner. Tracked and imaged needle positions were compared to assess accuracy and a patient-specific phantom procedure guided with the system. Median/mean linear and volumetric error was ±1.1% and ±4.1%, respectively, with clinically suitable volunteer scans. Mean tracking arm error was 0.43mm and 3D US target registration error ≤0.87mm. Mean needle tip/trajectory error was 2.46mm/1.55°. Modelled mean phantom procedure seed displacement was 2.50mm. To our knowledge, this is the first reported PBSI phantom procedure with intraoperative 3D image guidance

    Three-Dimensional Ultrasound Guidance of Autonomous Robotic Breast Biopsy: Feasibility Study

    Get PDF
    Feasibility studies of autonomous robot biopsies in tissue have been conducted using real time 3D ultrasound combined with simple thresholding algorithms. The robot first autonomously processed 3D image volumes received from the ultrasound scanner to locate a metal rod target embedded in turkey breast tissue simulating a calcification, and in a separate experiment, the center of a water-filled void in the breast tissue simulating a cyst. In both experiments the robot then directed a needle to the desired target, with no user input required. Separate needle-touch experiments performed by the image-guided robot in a water tank yielded an rms error of 1.15 mm

    Robotic catheter cardiac ablation combining ultrasound guidance and force control

    Get PDF
    Cardiac catheters allow physicians to access the inside of the heart and perform therapeutic interventions without stopping the heart or opening the chest. However, conventional manual and actuated cardiac catheters are currently unable to precisely track and manipulate the intracardiac tissue structures because of the fast tissue motion and potential for applying damaging forces. This paper addresses these challenges by proposing and implementing a robotic catheter system that uses 3D ultrasound image guidance and force control to enable constant contact with a moving target surface in order to perform interventional procedures, such as intracardiac tissue ablation. The robotic catheter system, consisting of a catheter module, ablation and force sensing end effector, drive system, and image-guidance and control system, was commanded to apply a constant force against a moving target using a position-modulated force control method. The control system uses a combination of position tracking, force feedback, and friction and backlash compensation to achieve accurate and safe catheter–tissue interactions. The catheter was able to maintain a 1 N force on a moving motion simulator target under ultrasound guidance with 0.08 N RMS error. In a simulated ablation experiment, the robotic catheter was also able to apply a consistent force on the target while maintaining ablation electrode contact with 97% less RMS contact resistance variation than a passive mechanical equivalent. In addition, the use of force control improved catheter motion tracking by approximately 20%. These results demonstrate that 3D ultrasound guidance and force tracking allow the robotic system to maintain improved contact with a moving tissue structure, thus allowing for more accurate and repeatable cardiac procedures.Engineering and Applied Science

    Prostate

    Get PDF
    RMS, rhabdomyosar-Abstract Background: The surgical management of paediatric bladder/prostate rhabdomyosarcoma (B/P RMS) continues to develop, with the goal of maximising organ preservation while achieving successful cancer control. The timing of radio-therapy and surgical excision to improve event-free survival (EFS) and overall sur-vival (OS) remains controversial. Methods: Previous reports in English on B/P RMS over the past 15 years were identified and reviewed, focusing on studies comparing the effects of radiotherapy and surgery for local control, the effect of local control on OS, and improved means of diagnosing viable tumour after chemotherapy. Results: The concept of lowering the ‘cost of cure ’ drives current protocols. Blad-otherapy, with a f urine, and add-tudies suggesting therapy did not determinants o

    Micromachined Scanning Devices for 3D Acoustic Imaging

    Get PDF
    Acoustic imaging (including ultrasound and photoacoustic imaging) refers to a class of imaging methods that use high-frequency sound (ultrasound) waves to generate contrast images for the interrogated media. It provides 3D spatial distribution of structural, mechanical, and even compositional properties in different materials. To conduct 3D ultrasound imaging, 2D ultrasound transducer arrays followed by multi-channel high-frequency data acquisition (DAQ) systems are frequently used. However, as the quantity and density of the transducer elements and also the DAQ channels increase, the acoustic imaging system becomes complex, bulky, expensive, and also power consuming. This situation is especially true for 3D imaging systems, where a 2D transducer array with hundreds or even thousands of elements could be involved. To address this issue, the objective of this research is to achieve new micromachined scanning devices to enable fast and versatile 2D ultrasound signal acquisition for 3D image reconstruction without involving complex physical transducer arrays and DAQ electronics. The new micromachined scanning devices studied in this research include 1) a water-immersible scanning mirror microsystem, 2) a micromechanical scanning transducer, and 3) a multi-layer linear transducer array. Especially, the water-immersible scanning mirror microsystem is capable of scanning focused ultrasound beam (from a single-element transducer) in two dimensions for 3D high-resolution acoustic microscopy. The micromechanical scanning transducer is capable of sending and receiving ultrasound signal from a single-element transducer to a 2D array of locations for 3D acoustic tomography. The multi-layer linear transducer array allows a unique electronic scanning scheme to simulate the functioning of a much larger 2D transducer array for 3D acoustic tomography. The design, fabrication and testing of the above three devices have been successfully accomplished and their applications in 3D acoustic microscopy and tomography have been demonstrated
    corecore