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Abstract

This dissertation introduces a novel imaging method system for automatic
real-time 3D patient-specific knee model recondtoumcusing ultrasound RF data. The
developed method uses ultrasound to transcutanediggiize a point cloud representing
the bone’s surface. This point cloud is then usedetonstruct 3D bone model using
deformable models method.

In this work, three systems were developed for 3Beek bone model
reconstruction using ultrasound RF data. The Bgsdtem uses tracked single-element
ultrasound transducer, and was experimented on ri& kpohantoms. An average
reconstruction accuracy of 0.98 mm was obtainec 3décond system was developed
using an ultrasound machine which provide real-taneess to the ultrasound RF data,
and was experimented on two cadaveric distal femamd proximal tibia. An average
reconstruction accuracy of 0.976 mm was achievée. third system was developed as
an extension of the second system, and was usedlifical study of the developed
system further assess its accuracy and repeayabMitknee scanning protocol was
developed to scan the different articular surfagkethe knee bones to reconstruct 3D
model of the bone without the need for bone-im@dmhotion tracking reference probes.
The clinical study was performed on six volunteeksees. Average reconstruction
accuracy of 0.88 mm was achieved with 93.5% repéddya

Three extensions to the developed system weretigaésd for future work. The
first extension is 3D knee injection guidance systé prototype for the 3D injection

guidance system was developed to demonstrate #sibi@y of the idea. The second



Y
extension in a knee kinematics tracking systemgugirmode ultrasound. A simulation
framework was developed to study the feasibilityhaf idea, and to find the best number
of single-element ultrasound transducers and thpatial distribution that yield the
highest kinematics tracking accuracy. The thirdeegion is 3D cartilage model
reconstruction. A preliminary method for cartilageho detection from ultrasound RF
data was developed, and experimented on the destalr scans of one of the clinical

study’s volunteers to reconstruct a 3D point clwdhe cartilage.
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Chapter 1 Introduction

1.1  Significance

Joint pain is a major public health problem, respolie for significant costs and
disability in the united states. Due at least intga underlying osteoarthritis, the
prevalence of joint pain is 46 million and incregsidue to an aging population and an
epidemic of increasing obesity [1]. Joint paintsothe healthcare system $37 billion
annually [1].

Depending on the degree of disability, joint peam be treated with systemic (e.g.
dietary supplements, prescription pain relievers anti-inflammatory medications) and
targeted (e.g. medication injections, surgical @ction of underlying pathology and total
joint replacement surgery) interventions. Withire thargeted interventions segment,
annually there are an estimated 10,000,000 patien&sving treatments of the knee, hip,
spine and shoulder, including an estimated 505,09, 280,000 hip and 42,000
shoulder arthroplasties.

Injections of expensive pre-arthroplasty substan(eg. single dose visco-
supplements, platelet rich plasma, stem cells) aexessitate accurate injection into the
joint space as studies have revealed injectioncumacies ranging from 18-34% in the
knee and 33-90% in the shoulder with similar migsgettion rates in the hip [1]- [8].

By 2030, the number of knee and hip arthroplastiesprojected to increase by 565%
and 101% respectively[1]. For every joint replacatm@atient, there are an estimated 10
patients upstream in the care pathway creatingge laymptomatic population that is

projected to increase 40% by 2030 [1].
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A major challenge for conservative management oit jpain is the lack of low
cost, accurate, radiation-free joint imaging. Avioost imaging modality to accurately
visualize joints would represent a significant muasskeletal innovation, moving
diagnostic and treatment to lower-cost sites netatio MR or fluoroscopy imaging. The
site of care could move from the radiology suitdére physician’s office. Today, only
knee and shoulder injections and aspirations dieedbased procedures, and then, only
for skilled orthopedists. Improved joint visualimwat would enable treatment of other
joints in the office. Improved visualization anelsulting migration of many injections
and aspirations to lower-cost settings ultimateyytire non-orthopedist is attractive to
third-party payers.

Ultrasound is widely accepted as a means to vizeidhe joint space, but not
without limitations. Common imaging techniques 2@ and do not provide full insight
of the joint space. X-Ray shows only joint space étile other bony anatomic data.
Current ultrasound-based joint injection guidangstesms provide orthopedic surgeons
with a difficult to interpret 2D planar image oflienited area of the joint to be injected.
Some surgeons use fluoroscopy to assist with tieagae, which can be harmful to both
the patient and the surgeon due to the ionizinga¥-Radiation emitted. To limit the
amount of radiation exposure, many surgeons dé&ewey the fluoroscopy machine active
to track the needle while it is being inserted itite joint. Rather, they capture snapshots
at different time intervals to obtain the locatmithe needle relative to the joint space.

Current imaging techniques are expensive, furtheenX-Ray based imaging

systems (CT, X-Ray, and Fluoroscopy) expose patigat radiation[9]-[12]. Most
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medical practices cannot afford fluoroscopic or MfRlded equipment, so almost all are
facility or hospital based. Injections with thesedalities are often more painful if
multiple attempts are needed. Fluoroscopy expdsepdtient to X-Ray radiation far in
excess to conventional radiographs.

This work targets the development of a real-timeekimaging system for automatic
reconstruction of patient-specific 3D models of ¥mee bones using ultrasound. This
system utilizes ultrasound scans of the joint pertm by the surgeon to reconstruct and
register 3D models of the patient's actual bondsis Thew technology will enable
additional office-based diagnostics and treatmdatrpng innovations in orthopedics,

which are :

1. An accurate low cost, radiation-free 3D joint injen guidance system that can
provide the orthopedic surgeons with a 3D viewhs bones, while leaving their
hands free during the injection process. The imgacguidance system can be
extended to include the joint space by 3D visuibmaof the joint’s volume or the
more advanced approach of 3D reconstruction of ssdue (cartilage, muscles,
ligaments, and tendons) models.

2. A diagnostic bone and joint imaging system thabvedl the physician to optimize
pre-operative planning by identifying additional 3batomical information that is
of substantial value in understanding patient sypmst (e.g. size, shape, contours,
osteophytes, joint space, and bone deformities).

3. Imaging system that allows precise patient-specpi@-operative 3D bone

reconstructions will address the need for reduosttument and implant hospital
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inventory and ensure correct implant selectionuagery. Additionally, using the
reconstructed patient-specific 3D models, the qréldist can match the patient to
the best fitting off the shelf implant. The 3D bom®dels can also be used by
orthopedic implants manufacturers to create paspatific implants.

. 3D dynamic joint motion tracking (by tracking therte not the outer surface of the

joint) and analysis using ultrasound utilizing tteeonstructed 3D patient-specific

bones models.



1.2  Literature Review
Reconstruction of patient-specific 3D models of thenes has been widely
investigated for the CT and MRI imaging modalitielewever, the research of the use of
ultrasound in the 3D patient-specific modeling ohes has not been widely investigated.
Barrat et. al, and Chan et. al. have researchehskentiation of femur and pelvis
3D models using B-mode ultrasound [13][14]. Figdr& shows an overview of the

ultrasound-based image guided system developedbpiBet. al.

3D Optical ' o lII .
Localiser (LOC)

- .
y _
F Dynamic

‘M\ Reference Object
(PHYS)

S

»

3D US Slices

Instantiated us-derived (PHYS)

Bone Model Surface Points
(MOD) (PHYS)

Figure 1.1 Overview of the ultrasound-based imagdeyl system developed by Barrat

et. al for 3D patient-specific model reconstructadrihe femur [13]

They extracted the bone contours from B-Mode utnasl images by manually
selecting ten points on the bone’s contour in edtthsound image. These 10 points are
then used to fit a cubic spline that representsbtivee contour in segmented ultrasound
image. They used the principal components ana(y&3A)-based statistical deformable

models (SDM) to reconstruct patient-specific bomesdels. The first five principal
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components were used to instantiate the patiemifgpenodel. The statistical shape
model (SSM) or atlas for the femur was built usirigfemur scans for male and female
patients, while the pelvis atlas was built using wcans for female patients. The
ultrasound scans where collected from three cada@ptotrack 3020 optical tracking
system (from Northern Digital Inc, Canada) was ueedracking the ultrasound probe’s
motion while being used in scanning. The accurdcthe optical tracking is 0.1-0.15
mm[24]. Reference tracking probes were implantethencadavers’ bones to avoid the
leg motions artifacts. They performed the expenta®n three cadavers (three pelvises,
and six femurs). A mean reconstruction RMS erro4.@6 mm was achieved for the six
femurs, and 2.83 mm for the three pelvises. FiduPeshows the mean reconstruction
error color maps for the six cadaveric femoral nm®deconstructed. The reported scan
time was 5-30 min to selectively acquire high gyalitrasound images that can be used

for the 3D model reconstruction. The drawbackthisf work are:

» The ultrasound images were segmented manually.

» The ultrasound images had to be collected careftdlyacquire high quality
ultrasound images, which requires a skilled usdrraare acquisition time.

» A reference tracking probe implanted in the cadavaree was used, which makes
the method highly invasive.

» Despite the high accuracy optical tracking systseduwith 0.1 mm accuracy), and
implanted reference probe (which prevents patieation artifact), the achieved

RMS error is 4.15 mm for the femoral model recarction.
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» It did not focus on the articulating surfaces o tknee bones, and the scanning

protocols or procedures required to image thoseudaiting surface.

Figure 1.2 The color maps for the mean reconstnatiror (compared with the
reference models) for the 6 cadaveric femurs ugdsidorat et. al in their experiments for

3D patient-specific model reconstruction of the ferfi 3]

Kilian et. al. investigated the reconstruction loé distal femur bone model using
tracked B-mode ultrasound [15]. One cadaveric di#anur was used to test the
developed system. An optical motion tracking systess used for the ultrasound probe’s
motion tracking. A reference optical tracking probas implanted in the bone while
being scanned to avoid motion artifacts in theeméld scans, which makes the process
an invasive process. They claim a scanning timévef minutes for the distal femur.
Figure 1.3 shows a snapshot for the scanning ofc#luaveric knee using the tracked

ultrasound probe by Kilian et. al. [15]



Figure 1.3 Snapshot for the scanning of the cadalkeee using the tracked ultrasound

probe by Kilian et. al. [15]

The reconstruction error was specified to be laas L mm without mentioning
an exact error value, with local error values erasg 2 mm at the trochlear grove and
femoral condyles (the articulating surfaces of dietal femur). The error was calculated
by comparing the 3D bone model created using thrasdund and a 3D bone model
created from bone morphing from a set of pointttigd over the surface of the distal
femur after dissecting the cadaver. They claim matac segmentation of the B-mode
images using active contours. The speed of théonorsegmentation method was not
mentioned. Figure 1.4 show a reconstructed pomuctifor the cadaveric distal femur
[15]. Figure 1.5 shows the distance error color rfmaphe reconstructed 3D models of
the cadaveric distal femur scanned by two operatoithe experiments performed by

Kilian et. al [15].



Figure 1.4 The point cloud reconstructed for theéaeeric distal femur scanned in the

experiment performed by Kilian et. al. [15]

<1 mm
21 mm
<2 mm
22 mm
<5 mm

Figure 1.5 Color maps for the error between themstucted 3D models of the
cadaveric distal femur (scanned by first (a, land second (c) operator) using
ultrasound, and the 3D model reconstructed by bemghing using a point cloud

digitized over the dissected cadaveric femur, HiaKiet. al. [15].

Two scanning methods were mentioned; the first egdied single image scanning,
where the operator has to scan through the borleherghe find a clear ultrasound image

of the bone interface then he/she press a pedahke the imaging software acquire this
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image and process it to extract the bone contbwas mentioned this image selection
process has to be performed at least six timesdaie a minimum of six images. The
second scanning method is the continuous scanmnghich the operator scans the
bone, and all the images are acquired by the soétaad processed to extract the bone

contours The drawbacks of this work are:

» A specific bone model reconstruction error value wat mentioned.

» The reconstruction error calculation was not pentedt against a segmented CT or
MRI scans of the bone, but rather it was perfornusthg a morphing-based
reconstructed model, which makes the reported stagstion error inaccurate.

» High error (greater than 2 mm) values reportedhat dlinically important bone
articulating surfaces (distal condyles, and troahtroove)

» The use of bone-implanted reference probe, whidkesithe process invasive.

» The B-mode images automatic segmentation methochaetadescribed, nor was its

accuracy mentioned, and whether it is fast enoagdietreal-time or not.

Some research groups attempted the developmenttofatic segmentation
methods for the bone contours from B-mode ultradovmages. Kumar et. al. used
Bayesian probability model to segment bone contoutle ultrasound images of plastic
bone immersed in water [16]. The features usdaterBayesian model were the intensity
values and the reverberation. Processing time wasseconds per image, running on a
2.5 GHz Pentium 4 processor. Gongalves et. al. rexpated the snakes and the
probabilistic methods for bone contours segmemiaftiom B-mode ultrasound images.

Both methods require manual selection of initidla points. The use of A-mode
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ultrasound for intra-operative registration in cartgy aided orthopedic surgery for the
skull [17]-[20], and knee [21] has also been inigeged for the registration between the
patient’s surgical region of interest and the MRI/Gcans. It is also used for the
registration process in the robotic surgeries.

In this work, an imaging system for the reconsinrcof 3D knee models using
ultrasound was developed to overcome the drawbafckee mentioned previous work in
this area, and provide an accurate, fully automatedl-time, noninvasive imaging

system for 3D knee model reconstruction using sttuad RF data.
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1.3 Fundamental Contributions

The presented work in this dissertation was bugihg the knee bones statistical
atlases developed in the center for musculoskelessarch (CMR) at the University of
Tennessee. The cadaveric experiments were perfonitedhe help of the anthropology
department. The clinical study was prepared anébpeed in the Minimally invasive

Orthopedics clinic, Columbus, Ohio. My fundamem@htribution in this work are:

1. Developed a novel method for fully automated reakt patient-specific 3D bone
model reconstruction using ultrasound RF data.

2. Developed a novel signal processing framework ftiasound RF data processing
for automatic real-time extraction of bone contofn@m ultrasound raw RF data
frames.

3. Developed a knee scanning protocol and partial ssaagistration method for
scanning the different articulating surfaces of kmee bones at different flexion
angles without the need for invasive reference omotracking probes implanted in
the bones.

4. Developed a new method for 3D bone model reconsbtruby morphing a template
model to a point cloud acquired using tracked srelément ultrasound transducer.

5. Performed clinical study of the developed method anaging system for patient-
specific 3D knee model reconstruction using ultuesb RF data to evaluate its
accuracy and repeatability.

6. Developed a simulation framework for knee kinengatracking using single-element

ultrasound transducers, which can be applied tergdnts.
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1.4 Dissertation Outline

Chapter 2 provides an introduction to ultrasound.

Chapter 3 discusses the statistical atlas usethéobone morphing, and its performance
analysis. It also discusses the different morphumed and their accuracy and
performance.

Chapter 4 discusses the developed system and mith8® knee model reconstruction
using single-element ultrasound transducer.

Chapter 5 presents the developed system and mé&h@&D knee model reconstruction
using ultrasound RF data.

Chapter 6 presents the clinical study performedhendeveloped system and method for
3D knee model reconstruction using ultrasound RE.da

Chapter 7 presents the results for the phantom riemeets of the single-element
ultrasound transducer system. It also presentsatiaveric experiments, and the clinical
study results for the 3D knee model reconstructigstem using ultrasound RF data.
Chapter 8 presents the potential technologiescimate developed in future work, based

on the developed 3D knee model reconstruction sysieng ultrasound RF data.
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Chapter 2 Introduction to Ultrasound

Ultrasound is a pressure wave that travels throaigmedium with frequency
greater than 20 KHz. Mechanical waves with freqyesmoaller than 20 KHz are audible
sound waves. The ultrasound wave consists of casime and rarefaction regions in
which the medium particles oscillate and transiné tmechanical energy through the

medium. There are two types of ultrasound wavesdlare:

» Longitudinal Ultrasound Waves: in which the direction of the propagation is the
same direction of the particles displacement (zmh). Example of this type of
waves is the ultrasound waves in soft tissue aaid, water.

» Transverse (Shear) Ultrasound Wavesin which the direction of the propagation
perpendicular to the particles displacement (ageilh). Example of this type of

waves is the ultrasound waves in bones, and solids.

The speed of the ultrasound wave is equal to tlelymt of the ultrasound

frequency and the wavelength of the ultrasound wave

c= Af (2.1)

Wheref is the ultrasound frequency ands the wavelength. The frequency is
dependent on the ultrasound transducer, while theelength depends on the medium,

and changes with the change in the ultrasound 9pebd medium.
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The ultrasound speed is determined by the mediaorigoressibility (bulk

modulus)K and density as follows:

¢= \/ﬁ (2.2)

As the density of the medium increases, its congibdity decreases, but the
decrease in the compressibility is a lot biggenttiee increase in the density; therefore it
dominates the effect on the ultrasound speed inntedium and results in increased
ultrasound speed in the medium.

Every medium has its characteristic acoustic impedadenoted byZ. the
medium’s acoustic impedance is a function of thesbund velocity of the medium, and

the density of the medium according to the follogwielation:

Z =pc (2.3)

Where c is the ultrasound speed in the medium apds the density of the
medium. Since the ultrasound speed itself is atfan of the density and compressibility
of the medium, the acoustic impedantean be alternatively expressed in terms of the

compressibility and density of the medium as foBow

p
z= |z (2.4)

The acoustic impedance can also alternatively espe in terms of the local

pressure and velocity of the medium particles #evis:
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7 =

p
S (2.5)

Wheres is the local velocity of the medium particles, anib the local pressure
excreted on the medium patrticles to produce thecitgls. this relation is similar to the

electric impedance relation which is given by tokofving relation:

Z_V
]

(2.6)
WhereV is the electric voltage (potential), ahds the produced current through

the electric impedance.

The intensityl of the ultrasound beam is given by:

I =ps=— (2.7)
The ultrasound wave interacts with the medium ia tifferent ways:

1. Reflection and Transmission:The reflection of the ultrasound wave occurs when
the wave passes through two mediums with diffeem@ustic impedances (having
impedance mismatch). The amplitude reflection facieft R, (the percentage of the
amplitude of the reflected pressure of the ultrasowave) of the ultrasound wave is

a function of the impedances of the two media 4e\is:

P pi Z;+Z;

(2.8)
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Wherep; is the incident pressure, amg is the reflected pressurg,, and Z,are
the acoustic impedances of the first and secondumedespectively. The intensity

reflection coefficieni; is given by:

(22 21)2
— P2 — 29

The intensity transmission coefficiefitis given by:

47,7,

T,=1—-R? =—F—
! " (2, + Zy)?

(2.10)

Therefore, as the impedance mismatch of a two medinerface increases, the

reflectivity increases.

Attenuation: The energy of the ultrasound wave is dissipatattesvels through the
medium. This energy dissipation results in attepnato the ultrasound wave. This
attenuated is carried out by two processes:

0 Absorption: A portion of the ultrasound wave energy is transfed into heat
energy and is absorbed by the medium. The ratebsbrption is a linear
function of the ultrasound frequency.

0 Scattering: When the ultrasound wave hits particles with déférimpedence
than the medium, and of size similar to the wawgtlerof the ultrasound
wave, the particles act as an ultrasound sourceradidte the ultrasound
incident in spherical volume (in all directionshi3 results in weakening the

main beam of the ultrasound wave.
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The radiated ultrasound beam from the ultrasougstak contains a main beam
and side lobes. The divergence angle (measured from the line perpendicular to the

transducer at its center, and the edge of thesolirad beam) of the main beam is given

by:

A
¢4 = arcsin(1.22 5) (2.11)

Where D is the diameter of the ultrasound transdws®l is the wavelength of
the ultrasound wave. The distance traveled by th®sound beam before it starts

divergence is called the near field distance amvisn by:

2

D
- 2.12
NFD = (2.12)

The ultrasound is used in two modes of operation:

» Continuous: The continuous ultrasound wave is a sinusoidal veankits wave

equation is given by:

P = P,Sin(2nft + ¢) (2.13)

WhereP is the amplitude of the wave (pressure amplituélg)is the maximum
pressure amplitudd,is the wave frequency,is the time, andp is the phase of the
wave. It is used in Doppler imaging and therapeuitiasound.

» Pulsed (Pulse-Echo):Pulse-echo ultrasound is the most widely usedasgiind

imaging mode. It is used in the B-mode, M-mode, patsed Doppler imaging. It
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consists of sending an ultrasound pulse, and tkeaiwves the reflected echoes at
different tissue interfaces in the imaged speciméme ultrasound pulse wave is

ideally a decaying sinusoidal wave, and its wawgaégn is given by:

P = e_%PO Sin(2nft + ¢) (2.14)

Wherer is the time constant of the decaying wave, aneetds on the damping
of the ultrasound pulser generating the ultrasopuatse. Since most ultrasound
transducers are wideband transducer (to genemaitsa with small pulse duration in
order to achieve high axial resolution), the geteetapulse contains a several

frequencies instead of one single frequency asdrcontinuous ultrasound mode.

In this work, the pulse-echo ultrasound mode isduse the reconstruction of the

point cloud representing the bone’s surface.
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Chapter 3 Bone Morphing

3.1 Introduction

Bone morphing is the process of reconstructioBdbone model by deforming a
template bone model, which can be the bone atl@sinnmodel, to reconstruct the new
3D bone model. The model deformation is performsithgian optimization algorithm
which changes the shape of the template model twhmthe shape dictated by a
morphing guide. This morphing guide is the ava#abformation for the bone morphing
to create the new 3D model. The morphing guide lmamany type of measurements or
information about the bone to be modeled. The dpétion error function measures the
degree of fitting between the deforming model ah@ fgiven measurements or
information about the bone. The morphing procesanghs the shape of the template
model to create a new model that maximizes theedegf fitting (or reduces the error)
between the reconstructed model and the given measat or information about the
bone to be modeled.

In this work, the morphing (deformation) guideasreconstructed point cloud
representing the bone’s surface. Since the bon@’sm®del consists of thousands of
vertices (4120 for the distal femur, and 4812 toe proximal tibia), and each vertex
consists of three variables which are the x, y, anmbordinates of the vertex, which
makes each model consists approximately of 12,@0@Mes. It is nearly impossible to
perform the optimization on those 12,000 varialftee x, y, and z coordinates of the

model’s vertices) for every 3D bone model to benstructed.
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In order to perform the optimization for the modethorphology, the 3D model
needs to be represented by a limited number obbk$ that can be managed by an
optimization algorithm. To overcome this probleime 3D models are transformed into
another domain which can approximate the model feitver parameters. Several surface
representation methods have been developed an@dtdburier descriptors have been
used for shape approximation [29], [30] in whichuRer transform is applied to the 3D
model, and the model is approximated by the Foutiescriptors which capture the
spatial frequency coefficients of the model’s shape

Another approach introduced by Cootes and Tayl¢ri8Statistical method that
uses point distribution models (alternatively adllstatistical deformable models).
Statistical deformable models method is based ensthtistical analysis of a set of
training models. For 3D bone surface representatlmtraining models are 3D models
of bones to be represented. These bones’ modelsbeaobtained by scanning dry
cadaveric bones using laser scanners or motiokitigasystems. Another method of
obtaining the training bone models is scanning cigaveric bones using computed
tomography imaging (CT) or scanning patients/vadens using CT or magnetic
resonance imaging (MRI). These CT or MRI scandla@a segmented (manually, semi-
automatically, or automatically) to obtain the 3Dnbks’ models. Principal component
analysis (PCA) is then performed on the trainingssmodels. The PCA transforms the
models from the three-dimensional Cartesian coatdispace defined by the x, y, and z
coordinates of the models vertices, to a new vesparce called eigenspace. The unit

vectors comprising thisigenspace, are the modes of variation of the morphologyhef t
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training set’s models. Each model of the trainirmgadset can then be represented as a
linear combination of the eigenvectors plus thasktfs mean model. These eigenvectors
are called the principal components, and consetyyetiteir coefficients are called
principal components coefficients. Any model outsithe training dataset can be
approximated by the dataset’'s mean model plus eadicombination of the principal
components using different principal componentgffioients. The deformable models
method has been extensively used for automatic eetgition of CT, and MRI scans for
different body organs. It has also been used foonstruction of 3D bones models from
muli-planer X-Ray images[32]-[34], and from spars&nt clouds acquired from the
surface of the bone[35]-[37].

In this work, the statistical deformable models moet was used for the
reconstruction of the 3D surface models for thensed knee bones, using the bones’
surface point clouds reconstructed using ultrasoundthe following sections, the
statistical deformable method will be describedmore detail. The training datasets
(alternatively referred to as atlases) will be préed with a detailed analysis for their 3D
model representation capabilities. Then the bonephiog methods used in this work

will be presented along with their performance eg@bnstruction accuracy analysis.
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3.2 Knee Bones Statistical Deformable Models
3.2.1 Atlas Dataset

The knee bone atlases used in this work were ctestimg a dataset of 444 dry
femur (144 female, 304 male) and 422 dry tibia (feifale, and 303 male) bones, which
were CT-scanned and segmented. Segmented bonesnfod&lach of the knee bones
(femur, and tibia) were then used to create itSssizal atlases. The first step in creating
the statistical atlas for each bone’s dataset igst@ablish anatomical correspondence
between the individual models in each dataset;eaeh vertex in each model in the
dataset is anatomically corresponding to the saemtex in all the other models of the
same dataset [38], and [39]. The output of theespondence creation process is a set of
3D bone modelsM; (where iz [1, N], N is the number of models in the dataset)ihg
the same number of vertices, and every verjer any of the models corresponds (at the
same anatomical location on the bone) to the veriéin the other models.

After the anatomical correspondence is estaldisbeall the 3D bone models of
each femur, and tibia datasets, the distal podfahe femur and the proximal portion of
the tibia bones are separated from the femur dmd thodels. This is performed by
creating a mean model for the models in each dataise then labeling the vertices in the
distal femur portion of the mean distal femur, ahd vertices in the proximal tibia
portion of the tibia. The vertices correspondinghte mean model’s labeled vertices are
then extracted from each model in the datasetdaterthe distal femur or proximal tibia
models. These separated distal femur and proxibel bones models maintains the

anatomical correspondence established for the felamud tibia models. These distal
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femur and proximal tibia bone models were usedutnout this work for the atlas
analysis and 3D knee bone models reconstruction.

In order to study the density of the models’ ivexd, the average distance between
each vertex and its neighbor vertices was caladiltae each model of the atlases. This
distance will be denoted as the model's inter-gedi distance and is calculated as
follows:

Given a 3D modeM; with a set of vertices;, whereje [1,m], where m is the
number of vertices in the model. The mean intetives distancel; for the vertexv; is
the mean distance between the vertex and its neigldrtices and can be defined as

follows:

l
1
4 =7 v vl 61
i=1

Wherev; is theit" neighbor vertex of the vertew;, andl is the number of
neighbor vertices to the vertex. The mean inter-vertices distance for the maddgis
the average of the inter-vertices distance for riieglel’s vertices. Histograms of the
models’ mean inter-vertices distances are showfigare 3.1 through Figure 3.4 for the
female distal femur, male distal femur, female [m& tibia, and male proximal tibia
atlas models respectively. The average of the nsbd&tan inter-vertices distances are
2.66 mm for the female distal femur, 2.32 mm fa thale distal femur, 1.76 mm for the

female proximal tibia, and 2 mm for the male proairtibia datasets respectively.
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Female Distal Femur
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1.8 19 2 2.1 22 23 24 25
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Figure 3.1 Histogram of the models’ mean intericed distance for the female distal

femur models with an average of 2.66 mm

hale Distal Femur

Murmber of Models

1.9 2 2.1 22 23 24 25 2B 27
Mean Intevertices Distance (mm)

Figure 3.2 Histogram of the models’ mean intericed distance for the male distal

femur models with an average of 2.32 mm
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Female Proximal Tibia
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Figure 3.3 Histogram of the models’ mean intericed distance for the female proximal

tibia models with an average of 1.76 mm
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Figure 3.4 Histogram of the models’ mean interdces distance for the male proximal

tibia models with an average of 2 mm
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3.2.2 Knee Bones Principal Component Analysis (PCA)

Principal Component Analysis (PCA) was perforroedeach of the bone models
datasets to extract the modes of variations of lbaes’ morphology which are
represented by the eigenvectors generated by thA. Abese eigenvectors are
alternatively called eigenbones or principal comgrds, and they define the vector space
for the bone morphology variations existing in Hume’s dataset. Any bone model in the
dataset used to perform the PCA can be expressed lasar combination of the

eigenbones plus the mean model of the datasetlawso

N
1
Mayg :_Z M; (3.2)
N i=1
L
M; = Mg, + Z ay U,V i€e[1,N] (3.3)
k=1

Where M,,,4is the mean model of the datasktjs the dimensionality of the
eigenspace (the number of eigenbones), and is é¢qudile number of models in the
dataset NI, is thekt" eigenbone, and;, is the k" shape descriptor or eigenbone’s
coefficient for thei®* model.

Furthermore, any new mod#l,.,, outside the dataset (used to perform the PCA)
can be approximated by new values of the shapeiptss (eigenvectors coefficients) as

follows:

w
Mpew = Mgyy + z a, Uy, (3.4)
k=1
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WhereM,,,,, is the new bone’s modet,, are the shape descriptors for the new
model, U, are the eigenvectors (principal components) ofatihees, andV is the number
of principal components used in the model appro&onaandW < L. The accuracy of
the representation of a new model is directly propoal to the number of principal
componentsW used for model representation and the number afefsd_ of the dataset
used for the PCA. The residual error or root meprage error (RMS) for the new model

representation using the PCA shape descriptorsfisedi by:

w

RMS = rms [Mnew — (Mgyg + Z arUy)
k=1

(3.5)

Where the root mean square error (RMSE) of two isofleand B having the

same number of vertices m is defined by:

2
27 llVaj = Vsl (3.6)
m

RMSE = rmse(4 — B) = \/

Wherem is the number of vertices in each modgl; is thej* vertex in model
A, and similarlyVg; is the j* vertex in model B. Table 3.1., and Table 3.2 fist
accumulated variances, as a percentage of thedataset models morphology variance,
carried by different principal components for ttender-specific atlases, and non gender-
specific atlases respectively. Figure 3.5 througlgufée 3.8 show plots for the
accumulated variance versus the number of principalponents for the gender-specific
atlases. The plot of the accumulate variance vetsisiumber of principal components
for the non gender-specific atlases are showngnrei 3.9 and Figure 3.10 for the distal

femur and proximal tibia atlases respectively.



Table 3.1 Accumulated variances for the genderiBp&nee bones atlas

PCs Count

Female

Distal Femur

Male

DistalFemur

Female

Proximal Tibia

Male

Proximal Tibia

1 35 33.8 33.9 42.6
2 51.2 58.2 49.9 58.7
3 62.1 69.1 58.7 66
4 68.4 72.9 64.9 70.8
5 73.4 76.5 70.6 74.7
6 77.3 79.3 74.7 78.3
7 79.5 81.5 77.9 80.1
8 81.4 83.2 0.1 81.7
16 89.7 90.1 88.4 87.7
17 90.2 90.6 89 88.1
18 90.8 91.1 89.5 88.6
19 91.2 91.5 90.4 89
20 91.7 92.1 90.9 89.4
21 92.1 92.4 91.2 90.1
119 99.76 98.93 - 97.691
143 99.25 98.17
302 99.9987

29
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Table 3.2 Accumulated variances for the non-gesgecific knee bones atlases

PC Count Distal Femur @ Proximal Tibia
1 37.6 59.5
2 61.9 70.3
3 72.3 75.5
4 75.9 79
5 79.2 81.9
6 81.7 84.4
7 83.5 85.7
8 85.1 86.9
9 86.1 87.7
10 87.1 88.4
11 88.1 89
12 88.8 89.5
13 89.5 89.9
14 90.1 90.3

421 99.986
447




31

Female Distal Femur
120
9
< 100 S
[}
g /—'
& 80
s |/
> 60
g
s 40 o
€
§20
<
0
AN MO O A NOMOAOAO ANOMOOWN ANOMODODWN ANOMOO
T EH AN OO N T TN O ONNMNOOODOODOOOHEA NN MOMM
— Do R o I I |
Number of Principal Components

Figure 3.5 Accumulated variance versus the numbgpricipal components for the
gender-specific female distal femur atlas
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Figure 3.6 Accumulated variance versus the numbgrincipal for the gender-specific

male distal femur atlas
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Figure 3.7 Accumulated variance versus the numbgpricipal components for the

gender-specific female proximal tibia atlas
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Figure 3.8 Accumulated variances versus the numigrincipal components for the

gender-specific male distal femur atlas
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Figure 3.9 Accumulated variances versus the numibgrncipal components for the non

gender-specific distal femur atlas
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Figure 3.10 Accumulated variances versus the nuwifogrincipal components for the

non gender-specific proximal tibia atlas
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3.2.3 Knee Bones’ Morphology Variation Analysis

To study the morphology variation of the distal teprand proximal tibia bones,
the RMS distance error between each model in eatihedbones’ datasets (female and
male distal femur, and proximal tibia) and thetlk&nife mean model (the mean model
calculated using all the models in the dataset gxtee model whose RMS error is
calculated) was calculated, and histograms foreth®&S errors were generated. Figure
3.11 through Figure 3.14 show the histograms fer RMS errors between the models
and their jack-knife mean models for the femalaadlifemur, male distal femur, female
proximal tibia, and male proximal tibia, respeclivéd-rom examining the histograms, it
can be concluded that the morphology variatiorgrésater in the male datasets than the
female datasets. This can be contributed to thgetanumbers of models in the male
datasets than the female datasets.

Female Distal Fermur

25—

204

Murnber of Models

95 o0 05 1 15 2 25 3 35 4
hodel To Jack-Knife Mean Model RMS Error (mim)

Figure 3.11 Histogram of the mean RMS errors betvtbe female distal femur models,
and their jack-knife mean models with mean RMSreofd..6 mm, and maximum RMS

error of 3.54 mm
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Figure 3.12 Histogram of the mean RMS errors betvtbe male distal femur models,
and their jack-knife mean models with mean RMSresfd..87 mm and maximum RMS

error of 5.33 mm
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Figure 3.13 Histogram of the mean RMS errors betvibe female proximal tibia
models, and their jack-knife mean models with me&8s error of 1.52 mm and

maximum RMS error of 3.42 mm
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hlale Proximal Tibia
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Figure 3.14 Histogram of the mean RMS errors betvtbe male proximal tibia models,
and their jack-knife mean models with mean RMSreofd..9 mm and maximum RMS

error of 5.03 mm

To examine the local morphology variations of tined bones, the distance error
between the vertices of each model in a datasettseid corresponding vertices in the
jack-knife mean model were averaged over the maxfdlse dataset, and a color map for
these distance errors was generated for every alatalso, similar color maps were
generated for the standard deviation of theserdistarrors. Figure 3.15, and Figure 3.16
show the color maps for the mean and standard ti@vsaof distance errors between the
models and their jack-knife mean models for thediendistal femur. Similarly, Figure
3.17, and Figure 3.18 show the mean and standardtid® of the distance errors for the
male distal femur. Figure 3.19, and Figure 3.20astiee mean and standard deviation of
the distance errors for the female proximal tilsilgure 3.21, and Figure 3.22 show the

mean and standard deviation of the distance efwotbe male proximal tibia.
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Examining the color maps, it can be concluded thatfemale and male datasets
(distal femur, or proximal tibia) show very similaariation distribution among the
bones. However, the distal femur exhibits smalliatans at some areas and large
variation in other areas, while the proximal tilBacharacterized by more homogeneous

distribution for the variations across bone surface

'y rYa

Figure 3.15 Color map for the mean distance erebwéen the female distal femur

models, and their jack-knife mean models

H. 0 )
| |

Figure 3.16 Color map for the standard deviatiothefdistance error between the female

distal femur models, and their jack-knife mean ni®de

s

Figure 3.17 Color map for the mean distance eretwben the male distal femur models,

and their jack-knife mean models



Figure 3.18 Color map for the standard deviatiothefdistance error between the male

distal femur models, and their jack-knife mean ni®de

Figure 3.19 Color map for the mean distance eretwben the female proximal tibia

models, and their jack-knife mean models

Figure 3.20 Color map for the standard deviatiothefdistance error between the female

proximal tibia models, and their jack-knife meandals

Figure 3.21 Color map for the mean distance eretwéen the male proximal tibia

models, and their jack-knife mean models



Figure 3.22 Color map for the standard deviatiothefdistance error between the female

proximal tibia models’ vertices, and their jackdenmean models

3.2.4 Knee Bones Atlases Analysis

In previous work, the knee atlases were studiedyémder, and ethnic difference
[39], and [40]. In this work a similar study wasrfeemed on the knee bones PCA-based
atlases (used in the developed systems) to an#gie capabilities in 3D of the knee
bones morphology. Three different aspects of th&-B&sed atlases of the knee bones

were studied:

1. Bone morphology approximation capability.
2. Gender-specific morphology effect on atlas.

3. Effect of dimensionality reduction on bone’s morlaggy representation.

In order to study these three features, the kneedwere divided into female and
male datasets for each bone, i.e female distal female distal femur, female proximal
tibia, and male proximal tibia. For each dataseingpal component analysis was
performed using jack-knife and non jack-knife methan the jack-knife (leave one out)
method, PCA is performed on all the models of theasket except one model. This jack-
knife method produces a PCA-based statistical &lasach model of the dataset, which

is generated using all the models of the datase¢pmxthis specific model. The atlas
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generated using this method contains the morphaldgymation of all the models in the
dataset except the model left out, which simulagereal-life situation when the atlas will
be used to reconstruct a 3D model that was noadied in the atlas dataset. While in the
non jack-knife method, all the models in the datase used to generate one atlas. This
method produces a PCA-based atlas that has thehology information of all the
dataset models encoded in its principal components.

Gender-specific and non-gender specific atlaseg @&ks0 generated (using jack-
knife and non jack-knife methods). In the Genderedir atlases, the models were
grouped based of the bone type and gender, andhkdhCA (jack-knife and non jack-
knife) was performed on each group. While in the gender-specific atlases, the bone
models were grouped by bone type only, i.e. difgalur and proximal tibia, and the
PCA (jack-knife and non jack-knife) was performedeach group. Therefore, four types
of PCA-based atlases were generated for each lypee (tistal femur, and proximal

tibia) and gender (male and female) combination:

1. Gender-specific jack-knife atlas.
2. Gender-specific non jack-knife atlas.
3. Non gender-specific jack-knife atlas.

4. Non gender-specific non jack-knife atlas.

This results in 16 atlases, in which for the jackik atlas, each model in the
dataset (for bone type, and gender combination) itsagorresponding leave-on-out
statistical atlas. The aforementioned featureheftione atlas were studied by projecting

the bones models on the atlas’ principal componantsreconstructing the model again
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using the principal components coefficients resufi®m the projection process. This
projection-reconstruction process was performechguslifferent numbers of principal
components that were chosen to be powers of 21,i2 4. 8,...,N, where N is the
maximum number of principal components in the atlEss projection-reconstruction
process was performed for each of the 16 atlases.ekch atlas, the  projection-
reconstruction process was performed for each madeh the RMS error between the
reconstructed model and the original model wasutated using the closest surface point
method. The results for the projection-reconstancprocess for the different 16 atlases,

are presented in the appendix section 9.1

3.2.4.1Bone Morphology Estimation Capability of the PCA-Baed Statistical Atlas

In order to study the ability of the PCA-based stl®m approximate the
morphology of a bone’s model outside the atlasaskt, the projection-reconstruction
process was performed using jack-knife, and nok-kaife atlases. This process was
performed on all distal femur, and proximal tibiih males and females) models using
the gender-specific atlases . Since the non jade-latlas is generated using all the
models of the dataset, the morphology of the mdukhg studied (projected and
reconstructed) is encoded in the atlas’ principahgonents; hence, the only error source
in the non jack-knife projection-reconstruction gees is the dimensionality reduction,
i.e. using a subset of the principal component®@sosed to using all the principal
components to project and reconstruct the models.

On the other hand, the jack-knife atlas does neg llae morphology of the model

being studied encoded in its principal componeats] therefore the projection of the
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model on the jack-knife atlas’ principal componeatsd reconstruction of the model
results in an estimation of the model’s morpholofiye model estimation using the jack-
knife atlas is based on the morphology, of alldagaset models except the model being
studied, encoded in the atlas’ principal componeFtgrefore, comparing the mean RMS
error for the projection-reconstruction processigshe jack-knife atlas and the non jack-
knife atlas, for each number of principal composeunsed, shows the residual error
resulting from the model’s shape estimation perfrby the atlas. Figure 3.23 through
Figure 3.26 show the RMS errors for the projectieoenstruction process using the
gender jack-knife and non jack-knife atlases fae female distal femur, male distal
femur, female proximal tibia, and male proximalidilbespectively. The gender-specific
atlases (jack-knife and non jack-knife) were adity chosen to be used for this
comparison in order to keep the effect of gendec#ic versus non gender specific
factor constant during the comparison.

Comparing the jack-knife and the non-jack-knife RMBors for each of the
datasets shows that when a small number of prihcgraponents is used, the difference
in the RMS error between the jack-knife and norkjaaife is small. This difference
increases as the number of principal componentd iseeases. This shows that when
using small number of principal components, theetisionality reduction effect is more
prominent and is the main source of the residual dretween the reconstructed and the
original models. While, increasing the number ahg@pal components used, the error of

the model’s morphology estimation becomes more prent and the difference between
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the RMS errors for the reconstruction using thé&-jaufe atlases becomes greater than
the errors resulting from using the non jack-kuiflases.

Furthermore, by comparing the RMS errors for théensatasets to the female
datasets, it can be shown that for the female etstathe difference between the RMS
errors resulting from using the jack-knife atlas@sl the errors resulting from using the
non jack-knife atlases are greater than the oneghi® male datasets. This can be
attributed to the larger number of models in thdentiatasets than the female datasets.
This reveals that the model's morphology estimatiapability increases as the number

of models included in creating the statisticalattecreases.
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Figure 3.23 Mean RMS errors versus the numberin€ipal components for the
projection-reconstruction process using the jaciekfiblue) and non jack-knife (red)

gender-specific female distal femur atlases.
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Figure 3.24 Mean RMS errors versus the numberin€ipal components for the

projection-reconstruction process using the jaciekfiblue) and non jack-knife (red)

gender-specific male distal femur atlases.
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Figure 3.25 Mean RMS errors versus the numberin€ipal components for the

projection-reconstruction process using the jaciekfiblue) and non jack-knife (red)

gender-specific female proximal tibia atlases.
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Male Proximal Tibia
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Figure 3.26 Mean RMS errors versus the numberin€ipal components for the
projection-reconstruction process using the jaciekfiblue) and non jack-knife (red)

gender-specific male proximal tibia atlases.

3.2.4.2Difference between gender-specific and non gendepecific atlases

To study the effect of gender-specific atlases w&erson gender gender-specific
atlases on the knee bones’ morphology represenjattbe model projection-
reconstruction process was performed on the bomeslels using gender-specific and
non gender-specific jack-knife atlases. The RM®&rarbetween the reconstructed models
and the original models were then calculated usimgg closest surface point method.
Figure 3.27 through Figure 3.30 show the mean RM®r® for the projection-
reconstruction process using gender-specific and gemder-specific jack-knife atlases
for the female distal femur, male distal femur, &enproximal tibia, and male proximal
tibia respectively. Examining these RMS errors shaat there is a small-to-no

difference between gender-specific and non genpecisc atlases in the morphology
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representation of the distal femur, and proximabtbones. However, a small difference
in the mean RMS errors between the gender-speaifct non gender-specific female
atlases is shown in Figure 3.27, and Figure 3.2% 3mall difference is attributed to the
difference in the number of models incorporatectr@ating the gender-specific female
atlases (144 for the female distal femur and 1X9%He female proximal tibia) and the
number of models used in generating the non gespleific female atlases (which was
448 for the distal femur, and 422 for the proxirtibla). This difference results in a
distributional difference of the morphology varianon the principal components.
Therefore it can be concluded that there is nceifice in morphology representation

between gender-specific and non gender-specibsedl
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Figure 3.27 Mean RMS error versus the number ofcgzal components for the
projection-reconstruction process using genderiBpéred) and non gender-specific

(blue) jack-knife female distal femur atlases.
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Male Distal Femur
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Figure 3.28 Mean RMS errors versus the numberin€ipal components for the
projection-reconstruction process using genderiBpéred) and non gender-specific

(blue) jack-knife male distal femur atlases.
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Figure 3.29 Mean RMS errors versus the numberio€ipal components for the
projection-reconstruction process using genderiBpdéred) and non gender-specific

(blue) jack-knife female proximal tibia atlases.
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Male Proximal Tibia
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Figure 3.30 Mean RMS errors versus the numberio€ipal components for the
projection-reconstruction process using genderiBpéred) and non gender-specific

(blue) jack-knife male proximal tibia atlases.

3.2.4.3Effect of dimensionality reduction on bones’ morphtogy representation

The most important feature of the PCA-based atksthie dimensionality
reduction, which enables approximating the 3D medti few parameters (the principal
components coefficients) manageable by an optimizatlgorithm for instantiation of
new 3D models. To study the effect of the dimeralibnhreduction on the representation
of the 3D bone models, the projection-reconstructwocess was performed on the
atlases’ models using different numbers of prinlcgeenponents, the same approach used
in studying the previous features: increasing psw#rtwo as the number of principal
components used. The closest surface point metlasduiilized to calculate the residual
RMS error between the reconstructed models andtiginal models. The jack-knife

atlases were used to study the effect of the diroeabty reduction on the combined
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effect of models’ morphology estimation (due to ngsijack-knife atlases), and
approximation (due to using subset of the princig@ihponents). Figure 3.31 through
Figure 3.34 show the mean, maximum, and minimunjeption-reconstruction RMS
errors for the female distal femur, male distal fienfemale proximal tibia, and male
proximal tibia respectively using the gender-specjack-knife atlases for different
numbers of principal components.

The RMS errors graphs show that increasing the eumbprincipal components
(modes of variations) used in the model represemtgestimation and approximation)
results in an increase in the model represent&tmmever, the slope of the change of the
RMS error decreases by increasing the number atipal components, as the higher
order principal component carries fewer variatidghan the lower order principal
components. The slope of the RMS error reachessragall value (nearly zero) after 128
principal components, leading to the conclusion #aaling more models to the atlas will

not have a significant effect on the model repregem accuracy.
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Female Distal Femur
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Figure 3.31 Mean, minimum, and maximum RMS err@isus the number of principal
components for the projection-reconstruction preaesng jack-knife gender-specific

female distal femur atlases.
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Figure 3.32 Mean, minimum, and maximum RMS errersus the number of principal
components for the projection-reconstruction preaesng jack-knife gender-specific

male distal femur atlases.
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Female Proximal Tibia
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Figure 3.33 Mean, minimum, and maximum RMS err@isus the number of principal
components for the projection-reconstruction preaesng jack-knife gender-specific

female proximal tibia atlases.
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Figure 3.34 Mean, minimum, and maximum RMS errensus the number of principal
components for the projection-reconstruction preaesng jack-knife gender-specific

male proximal tibia atlases.
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3.3  Bone Morphing Methods

Three bone morphing methods have been investigp#te first is based on a
numerical iterative optimization algorithm calledviRell's Direction Set method [40].
The second morphing method is a linear least squaethod that calculates the shape
descriptors using closed-form solution [35]. A hgbmorphing method, which consists
of applying the iterative morphing followed by theear least squares morphing, was
also investigated.

In order to study the performance and reconstmciccuracy of each morphing
method, the vertices of the atlas models were asdtle morphing guidance point clouds
to reconstruct the 3D bones models from those poouds. To study the effect of the
point cloud density, different densities of the misd point clouds were used for
performing 3D model reconstruction using the défdar morphing methods. For each
model, the model’s vertices was used as the uneedpoint cloud, and this point cloud
was reduced to different densities to obtain d#fempoint clouds with different densities
for the same model. The reduced point clouds wbtairmed by reducing the number of
points in the point cloud using an octree, wheeedtiree leaves’ size was specified to be
4, 8, 16, and 32 mm. The original models’ pointude (unreduced), had a mean inter-
vertices distance (the mean distance between eatéxvand its neighbor vertices) of
approximately 2 mm as described in section 3.2dgurg 3.35 through Figure 3.39 show
sample point clouds for a distal femur with 2 mmréduced), 4 mm, 8 mm, 16 mm, and

32 mm mean inter-vertices distance. Similarly, F&g3.40 through Figure 3.44 show
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sample point clouds for a proximal tibia with 2 nfomreduced), 4 mm, 8 mm, 16 mm,
and 32 mm inter-vertices distance.

The different point clouds (with different inteertices distances) were used to
reconstruct the 3D models using the three morpmeghods, and the reconstructed
model was compared with the original model to dalieuthe root mean square error
(RMS). In the following sections, the three morghimethods are presented, as well as
the reconstruction accuracy analysis for each@&ihthThe complete results of the models
reconstruction using the three morphing methodsilteesand the point clouds with

different densities are presented in the apperetikian 9.2

Figure 3.35 Unreduced point clouds for a femaléatlfemur, showing the anterior side

(left), the condyles (middle), and the posterialesiright)

T ! ot ]
Figure 3.36 4-mm reduced point cloud for a femadeatifemur, showing the anterior
side (left), the condyles (middle), and the posteside (right)
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Figure 3.37 8-mm reduced point cloud for a femadeatifemur, showing the anterior
side (left), the condyles (middle), and the posteside (right)

Figure 3.38 16-mm reduced point cloud for a fendidéal femur, showing the anterior
side (left), the condyles (middle), and the posteside (right)

S
Figure 3.39 32-mm reduced point cloud for a fendidéal femur, showing the anterior
side (left), the condyles (middle), and the posteside (right)
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Figure 3.41 4-mm reduced point clouds for a fenpatximal tibia, showing the anterior
side (left), the tibial plateau (middle), and tresterior side (right)

Figure 3.42 8-mm reduced point clouds for a fenpatximal tibia, showing the anterior
side (left), the tibial plateau (middle), and tresterior side (right)
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Figure 3.43 16-mm reduced point clouds for a ferpatimal tibia, showing the
anterior side (left), the tibial plateau (middlahd the posterior side (right)

Figure 3.44 32-mm reduced point clouds for a ferpataimal tibia, showing the

anterior side (left), the tibial plateau (middlahd the posterior side (right)

3.3.1 Powell's Direction Set Optimization Morphing

The first optimization method is an iterative methihat searches the principal
components vector space to find the minima of therdunction to create a 3D bone
model that best matches the bone’s point cloud.gdi@bDirection Set method [40] was
used as for the shape descriptors (principal commtsncoefficients) optimization. The
directions used were the basis vectors of the sppgoe which are the eigenvectors (or
principal components). The error function used #Wesroot mean square error between

the optimization-guiding point cloud and the modeing morphed. The model under
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morphing is represented by the shape descriptoid,tlaus the changes to the shape
descriptors performed by the optimization algoritbreates a new model, as defined in
(3.4), at every iteration of the optimization. Tdreor E function is defined as follows:

Given a point cloud with n points, and a mode\l, being morphed, with
vertices. The set of closest vertidesn M to the points in the point clou@ is defined as
follows:

v; = argmin”vj - qi” v ie[1,n],jel1,1] (3.7)
vjeM

Wherev; is the closest point iN to the pointg; in the point cloud. An octree
was used to efficiently search for the closest {goin the model’s vertices to the point
cloud points. The erroE between the morphed moddl and the point clou® is then

defined as:

E=|v-Ql (3.8)

To study the performance of the Direction Set ojation-based morphing
method in estimating the bone’s morphology giveoet cloud representing the bone’s
shape, the point clouds extracted from the datassiglels were used to reconstruct
bones models using the gender-specific jack-kriltesas. To study the effect of the point
cloud density on the morphing accuracy, differeainp cloud densities (as shown in
Figure 3.35 through Figure 3.44) were used to rstront the bones models. Another
factor included in this morphing accuracy evaluatiovas the number of principal

components (modes of variations) used in the boopinology optimization. The closest
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surface point based RMS error between the recaristtumodels, and their reference
original models was then calculated.

The detailed results for the accuracy study of &iom Set morphing method are
presented in the appendix section 9.2.1. A comparier the mean RMS reconstruction
error for the Direction Set morphing method didfier point cloud densities as shown in
Figure 3.45 through Figure 3.48 for the femalealig#mur, male distal femur, female
proximal tibia, and male proximal tibia respectivelExamining these figures, it can be
shown that decreasing the point cloud density tesalan increase in the reconstruction
RMS error. However, this increase in the reconsiwacerror is more significant for the
32 mm point clouds. The effect of the point clowhsity is also decreased by decreasing
the number of principal components used for the ehadorphing. This is due to the
dominating effect of the decreased number of ppaicicomponents used over the
decreased point cloud. The maximum number of gradlatomponents used was limited
to be 32, since this yield the highest reconstomcticcuracy with reasonable processing
time. The processing time for morphing one modé@hgishe 2-mm density point cloud
was 2, and 14 minutes when using 32, and 64 pahcdpmponents respectively on an
Intel Core i7 2.3 GHz processor. The processing tdropped to 15-20 seconds when
using the first 32 principal components with thend point cloud density. The
difference in accuracy was below 0.08 mm for foxppeximented model reconstruction
using 32, and 64 principal components.. The firt @Bincipal components carries
94.97%, 94.58%, 93.95%, and 92.5% for the femas¢adifemur, male distal femur,

female proximal tibia, and male proximal tibia a#la respectively.
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Figure 3.45 Mean RMS errors vs number of princquathponents for the female distal

femur morphing using the Direction Set method amadgr-specific jack-knife atlases
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Figure 3.46 Mean RMS errors vs number of princquathponents for the female distal

femur morphing using the Direction Set method amaddgr-specific jack-knife atlases
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Female Proximal Tibia
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Figure 3.47 Mean RMS errors vs number of princguathponents for female proximal

tibia morphing using Direction Set method and gerspecific jack-knife atlases
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Figure 3.48 Mean RMS errors vs number of princqgmathponents for male proximal tibia

morphing using the Direction Set method using gesgecific jack-knife atlases
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3.3.2 Linear Least Squares Morphing

The second optimization method solves directly thoe shape descriptors by
partial differentiation of the error functiok with respect to the shape descriptors
(principal component coefficients) to find the nmva of the error function [35]. The
result of the partial differentiation is a systefioear equations in the shape descriptors.
The roots of this system of equations are the adtishape descriptors that create a
model which has the minimum value of the error fiorcE. In the following section
depicts the derivation of the systems of linearatigns will be derived from the error
function

The error function defined in (3.8) can be expeesin terms of the;vertices of

V, and point®; of the point cloud Q as follows:

m
E= ) llvi - il 3.9)
i=1

Equation (3.9) can also be expressed in termseofrtbdel’s shape descriptors as:

2

E = (3.10)

w
(Vavg + Z ag UI,c) - Q
k=1

Wherel,,, is subset of vertices, from the atlas’ mean magelices, which is
corresponding to the vertices 9ét that contains the closest vertices in the maddel
(being morphed) to the point clo@ U, is a reduced version &, (the k" eigenbone)
that only contains the set of vertices correspantiinthe vertices sét

Combining (3.9) and (3.10), the error functBoan be expressed as follows:
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w 2

(vavg,i + Z ag ul;L) —(q;

k=1

E= i (3.11)

i=1

Where v, is the it" vertex of atlas mean model's vertices subiggt, .
Similarly, u, ;is thei" vertex of the reduced eigenbone (principal comptri,.

The shape descriptotg, that create a bone model which optimally match the
point cloudQ (at the minima of the error functidg), can then be calculated by partially
differentiating the error functiok with respect to the shape descriptagsand equating
the result of differentiation to zero. This willejd a system of homogenous linear
equations in the shape descriptors as follows:

The error functiore in (3.11) can be further expanded as:

m w 2 w
E = Z (xavg,i + Z Xy ki — xq,i> + <Yavg,i + Z AkYu' ki — Yq,i)
i=1 =

2

k=1 k=1

, (3.12)

Where x,,,,; is the x-coordinate of thé" vertex of the atlas mean model's

vertices subsédt,, 4, x is the x-coordinate of thé™” vertex of reduced eigenbobig,

u ki
andx, ; is the x-coordinate of thié" point of Q. Similar arguments apply to the y, and z
coordinates. Then calculating the partial deriv@tiwE with respect to each of the shape

descriptors (eigenvectors’ coefficients) yields
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OE

P 0 V ke[l W] (3.13)

m w

O0E

M = Z 2 Xavg,i T z WXy i — Xq,i | X' ki
i=

=1
w
+ 2 (yavg,i + Z GV — )’q,i) Yu'k,i
=1
Y (3.14)
+ 2 (Zavg,i + Z QZy i — Zq,i) Zu’,k,i]
=1
=0 vV ke[l W]

Recombining coordinates values into vertices (ws§toand dividing by 2 yield:

m w

0E ' ' : '

Fra Z (Vavg,i- Up,i) + Z Uy |- Uk, = Gi-Upi
i=1 l

=1 (3.15)
=0 V ke[l W]

Rearranging yields:

> (Z a (uz,i.u,;,l-)) = D[ v wie) | VLW (3.16)
i=1

i=1 \l=1
Reformulating (3.16) in a matrix form will resuttt a linear system of equations

in the form of AX = B as follows:
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Uy iUy Upi-Uyy o o Uy Uy

(45 — Vavg)-Us) (3:17)

z|(‘h vavgl) uz i)

[(Qi - Vavg,i)- uI,/I/,i)J

This linear system of equations is then solvedccatrulate the roots of the
equations, which are the optimal shape descrifitocseate the new 3D model that best
fit the point cloud. In this work, singular valuea@mposition (SVD) [40] was used to
solve the linear system of equations.

In this work, the mahalanobis distance used in {88 omitted because the point
clouds used were dense; these dense clouds incargedat constraining force on the
model deformation. Therefore the constraining fiomcbf the mahalanobis distance was
not needed, but rather was avoided to provide théetndeformation with more freedom
to generate a new model that best fit the boneitpdoud.

To study the performance of the linear least squarerphing in predicting the
bone’s morphology given a point cloud representhm bone’s shape, the point clouds
extracted from the datasets models were used tnsecct bones models using the
gender-specific jack-knife atlases for each moddid reconstructed. To study the effect
of the point cloud density on the morphing accuyatifferent point cloud densities (as

shown in Figure 3.35 through Figure 3.44) were useckconstruct the bones models.
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Another factor included in this morphing accuracyalaation, was the number of
principal components (modes of variations) usethebone morphology optimization.
The closest surface point based RMS error betwieenmdconstructed models, and their
reference original models was then calculated asgbonstruction error.

The detailed results for the accuracy study ofdinkeast squares morphing
method are presented in the appendix section 9.2t# processing time for the linear
least squares method was few seconds using 2-mnt plouds density, using any
number of principal components on an Intel Cor@.¥ GHz processor. The processing
time decreases with decreasing the point cloudiyedscomparison for the mean RMS
reconstruction error for the linear least squaresthod using different point cloud
densities is shown in Figure 3.49 through Figuf2 3or the female distal femur, male
distal femur, female proximal tibia, and male proal tibia respectively. Examining
these figures, it can be shown that that point itiehas insignificant effect on the model
reconstruction accuracy. However, for the 16 mmnpailoud density case, the
reconstruction error increases by increasing thebau of principal components used
(approximately in the range of 64 to maximum nunddfgorincipal components). This is
due to the insufficient morphing guidance inforroatavailable in the low density point
clouds (equals to or greater than 16 mm) to guigelacal deformations carried out by
the least significant (higher order) principal campnts. For the same reason, point

clouds with 32-mm density were not included becaigbeir high reconstruction error.
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Female Distal Femur
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Figure 3.49 Mean RMS errors vs number of princqguathponents for female distal femur
morphing using the linear least squares methodyug@gmder specific jack-knife atlases
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Figure 3.50 Mean RMS errors vs number of princquathponents for male distal femur

morphing using the linear least squares methodyander specific jack-knife atlases
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Female Proximal Tibia

_ 1.4
3

I
= 1

g 0.8

w

w0 0.6

2 0.4

H 0.2

[}

s 0

1 2 4 8 16 32 64 117
=¢=2mm | 1.25 1.19 108 | 094 | 0.81 | 0.66 | 0.54 0.5
=@=4mm | 126 | 1.19 108 | 094 | 081 | 066 | 0.54 | 0.51
=8 mm | 1.26 | 1.19 108 | 094 | 081 | 066 | 0.55 | 0.52
=>¢=16mm| 1.26 1.2 1.09 | 095 | 0.83 | 0.69 | 0.61 | 0.61

Figure 3.51 Mean RMS errors vs number of princgmathponents for female proximal

tibia morphing using linear least squares methatigemder specific jack-knife atlases
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Figure 3.52 Mean RMS errors vs number of princquahponents for male proximal tibia

morphing using linear least squares method usingeyespecific jack-knife atlases
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3.3.3 Hybrid Morphing

The last bone morphing method examined in this wera combination of the
direction-set optimization morphing and the linésast squares morphing methods. The
result (the reconstructed model) of the Directi@t ®orphing is input to the linear least
squares morphing as the initial model. The ratierahind the hybrid method is that the
Direction Set morphed model will be closer to thends point cloud, therefore the
selected closest points in the Direction Set madpine@del (as the initial model for the
linear least squares morphing) will be more acelyatelected than the ones that would
be selected from the mean model as the initial i@dein the case of applying the linear
least squares morphing only). This should incrélaseeconstruction accuracy.

To study the performance of the hybrid morphingpiredicting the bone’s
morphology given a point cloud representing thed®shape, the point clouds extracted
from the datasets’ models were used to reconstvanes models using the gender-
specific jack-knife atlases for each model to mnstructed. To study the effect of the
point cloud density on the morphing accuracy, dé#fe point cloud densities (as shown
in Figure 3.35 through Figure 3.44) were used tmmstruct the bones models. Another
factor included in this morphing accuracy evaluatiovas the number of principal
components (modes of variations) used in the lime@st squares morphing stage. The
number of principal components used in the Direc8et morphing stage was selected to
the 32. The closest surface point based RMS egtwden the reconstructed models, and

their reference original models was then calculatethe reconstruction error.
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The results for the model reconstruction accurdaagysof the hybrid morphing
method are presented in the appendix section 92 &mparison for the mean RMS
reconstruction errors for the hybrid method usiiffecent point cloud densities is shown
in Figure 3.53 through Figure 3.56 for the femaktal femur, male distal femur, female
proximal tibia, and male proximal tibia respectivelExamining these figures, it can be
shown that the effect of the point density on tredat reconstruction accuracy using the
hybrid method is similar to the its effect in theelar least squares morphing. Also, the
error charts shows that the hybrid method has I0RMIS error than the linear least

squares method.
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Female Distal Femur

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

Mean RMS Error (mm)

1 2 4 8 16 32 64 128 | 142
=¢=2mm | 145 | 1.2 | 1.05 | 0.92 | 0.74 | 0.54 | 0.44 | 0.36 | 0.35
~@=4mm | 144 | 12 | 1.06 | 0.93 | 0.75 | 0.55 | 0.45 | 0.37 | 0.36
=de=8mm | 144 | 1.2 | 1.08 | 095 | 0.77 | 0.58 | 0.47 | 0.4 | 0.39
=>¢=16mm| 145 | 1.22 | 1.11 | 0.99 | 0.82 | 0.63 | 0.54 | 0.5 0.5

Figure 3.53 Mean RMS errors versus the numberiotipal components for the female
distal femur reconstruction using the hybrid monghmethod for the unreduced, 4 mm,

8 mm, and 16 mm reduced models’ point clouds ugergler-specific jack-knife atlases
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Figure 3.54 Mean RMS errors versus the numberiotipal components for the male
distal femur reconstruction using the hybrid monghmethod for the unreduced, 4 mm,

8 mm, and 16 mm reduced models’ point clouds ugergler-specific jack-knife atlases
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Female Proximal Tibia
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Figure 3.55 Mean RMS errors vs the number of pp@lccomponents for the female
proximal tibia morphing using the hybrid morphingtimod for the unreduced, 4 mm, 8
mm, and 16 mm reduced models’ point clouds usimgigespecific jack-knife atlases
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Figure 3.56 Mean RMS errors vs the number of pp@lccomponents for the male
proximal tibia morphing using the hybrid morphingtimod for the unreduced, 4 mm, 8

mm, and 16 mm reduced models’ point clouds usimgigespecific jack-knife atlases



72

Chapter 4 3D Knee Model Reconstruction Using
Single-Element Ultrasound Transducer

The first method and system developed in this wiok 3D knee model
reconstruction using ultrasound RF data is presgentéhis chapter. This imaging system
used a tracked single-element ultrasound transdoceollect a 3D point cloud over the
bone’s surface, which was then used by the bongmry module to reconstruct 3D
model for the scanned bone. In the following sexdjdhe system setup will be described,
followed by the probe calibration method, the @tnand signal processing method for
bone echo detection, and the point cloud reconstrumethod.

4.1  System Setup

This imaging system was built using a single-elem@tmode) ultrasound
transducer, a pulser/receiver to drive the ultradawansducer, a data acquisition system,
and an optical motion tracking system to track riingtion of the ultrasound transducer
while being used in the scanning of the bone.

4.1.1 Ultrasound Transducer and Pulser/Receiver

The single element (A-Mode) ultrasound transducgeduin this system was
immersion type (Olympus NDT) 6 mm in diameter aad la 3.5 MHz center frequency.
The ultrasound transducer was driven by a 5072 rgegreceiver (Olympus NDT). The
pulser/receiver activates the ultrasound transdbygean electric pulse and receives the
echo signal from the transducer, amplifies andrltit, and delivers it out through the RF
output port. The output of the pulser/receiver nsamalog ultrasound RF signal which

consists of the echoes generated by the reflectbiize transmitted ultrasound pulse at
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the different interfaces in the path of the ultas beam. Figure 4.1 show the ultrasound
transducer, and pulser/receiver used in the deedlggystem. Figure 4.2 shows the

impulse response of the ultrasound transducer asehits frequency sprectrum.

Figure 4.1 The A-mode ultrasound transducer (laftyj the 5072 pulser/receiver
(Olympus NDT) used in the developed single-elentrdsound transducer-based 3D

knee model reconstruction system.

0.8

0.8

( .2 USEC/DIVISION)
Figure 4.2 The impulse response (left) for theasibund transducer used in the system,
and its frequency spectrum (right) generated dutiegransducer test performed by the

vendor using a water tank and a rigid reflectory(@dus NDT).
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4.1.2 Data Acquisition System

The analog ultrasound RF signal output from thesgnileceiver is fed to a data
acquisition system to be digitized and fed in t&ak to the imaging software developed
for the point cloud reconstruction. The data adtjais system used in this work was the
12-bit Octopus CompuScope (Gage Inc, Lockport, ich is an analog to digital
converter board that is connected to the computssugh the PCI connector. The
Octopus data acquisition system has an applic@tiogramming interface (API) library
that allows the control of the data acquisitiond atquiring the data by the imaging
software. The sampling frequency used was 20 MHmrE 4.3 shows the Octopus data

acquisition PCI card used

L111017) B
H B B

Figure 4.3 Octopus CompuScope (Gage Inc, Lockfojtdata acquisition PCI card
used in the developed single-element ultrasoumsdwcer-based 3D knee model

reconstruction system.
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4.1.3 Motion Tracking System

The ultrasound transducer was used to detect tpéh def the bone, i.e. the
distance between the transducer’s face and the'dsodgace. In order to convert this
one-dimensional bone depth measurement into a 3M, @omotion tracking system was
used to track the motion of the ultrasound traneduo register the bone depth
measurements into 3D point cloud representing thareed bone’s surface. The motion
tracking system used was the OptoTrak3020 (NortHaigital Inc (NDI), Ontario,
Canada).

The OptoTrak3020 system is a high accuracy opticalon tracking system (0.1-
0.15 mm tracking accuracy [24]) that utilizes th&ared light for motion tracking. This

motion tracking system consists of three components

» Infrared Camera: is the main optical unit which contains of infrdresceivers
which acquire the infrared light emitted by theraméd LEDs in the motion tracking
probes. The infrared camera acts as the fixed wardddinate frame of reference of
the tracking system.

» Control Unit: is the control unit of the tracking system. Itdsnnected to the
infrared camera and the computer running the mdtecking software. It receives
the detected infrared pulses signals from the cantieangulates the position of the
tracking probe and sends the motion tracking in&drom to the computer.

» Motion Tracking Probe: is the probe used for the motion tracking. Thekirg
probe contains infrared LEDs (at least 3 non celiim and usually are 4-6 to

provide redundancy and higher tracking accuracyighviransmits infrared pulses
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that are received by the infrared camera to tritatguhe position and orientation of

the probe.

The motion tracking system has two coordinate &srof reference. The first
coordinate is the fixed world coordinate frame,| Wi denoted byV, and is defined by
(virtually attached to) the optical camera. Theoseccoordinate frame is the tracking
probe’s local coordinate frame, will be denoted@R. During its operation, the motion
tracking system provides the six position and dagon parameters of the tracking
probe’s local coordinate frant@P, relative to the fixed world coordinate fraié These

parameters are:

» Rotation Angles (Euler Angles)
0 Yaw: is the angle of counterclockwise rotation arourelzfaxis.
o Pitch: is the angle of counterclockwise rotation arouraytraxis.
0 Roll: is the angle of counterclockwise rotation arouraxraxis.
» Translation
o T,:is the translation along the x-axis.

o T,:is the translation along the y-axis.

o T,:is the translation along the z-axis.

The homogenous transformatidiy}, between the probe’s local coordinate frame

OP and the world coordinate franwé can then be calculated as follows:
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Let R, be the rotation matrix around the x-axs, be the rotation matrix around

the y-axis, an®k, be the rotation matrix around the z-axis. Thegatian matrices are

defined as follows:

1 0 0
R, = |0 cos(roll) —sin(roll)] (4.1)
0 sin(roll)  cos(roll)
cos(pitch) 0 sin(pitch)
R, = 0 1 0 ] 4.2)
—sin(pitch) 0 cos(pitch)
cos(yaw) —sin(yaw) 0
R, = [sin(yaw) cos(yaw) O] (4.3)
0 0 1

Then the total rotation matrix denoted Rywhich is 3x3 matrix) can be obtained

by the multiplication of the individual rotation tn@es as follows:

Ri1 Riz Ryz
R= R,RyRy =|R21 Ry Ry 4.4)
R3; R3z Rss

The homogenous transformation matH¥, that transforms the local coordinate
frame of the tracking prob@P to the world coordinate fram# is then constructed from

the rotation matrix and the translation parametsrillows

Ri1 Rz Riz T
R21 Rz Raz Ty (4.5)
R31 R3z R3zz T, '

0 0 0 1

wo_
Hop =
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The optical tracking probe was rigidly attachedthe ultrasound transducer to
track its motion, and acquire the 3D orientatiord amanslation of the ultrasound
transducer, while being used in the scanning, @eoto transform the measured bone
surface points’ depths into 3D point cloud repréisgnthe bone surface. Figure 4.4
shows the developed imaging system’s setup duritega the phantom experiments.
Figure 4.5 shows a distal femur phantom, consisting saw bone in a water container,

while being scanned during one of the system exjesris.

Figure 4.4 The developed single-element ultrasdrarsducer-based 3D knee model
reconstruction system’s setup showing the OptoT@2R3Northern Digital Inc (NDI),
Ontario, Canada) tracking system, the phantom segnand the developed imaging

software during one of the phantom experiments.
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Tracked Ultrasound!

___Probe

L1
Distal Femur. Phantom

Figure 4.5 A snapshot for a phantom scanning exyggri showing the distal femur

phantom and the tracked A-mode ultrasound probiagltine scanning process.

4.1.4 Imaging Software

The imaging software was developed in MicrosoftudisC++ 2005. QT 4.3
(Nokia, Keilalahdentie, Finland) was used for giaphuser interface (GUI), and Open
Inventor 7.2 (Visualization Science Group (VSG),Barlington, MA) was used for 3D
visualization. The CompuScope’s (the data acqaisitsystem) APl was used for
interfacing with the data acquisition system towathe digitized ultrasound RF signals
in real-time. The OptoTrak3020 API was used to aequitrasound probe’s tracking data
in real-time. The imaging software was developadgithe multithreading technology in
order to allow concurrent ultrasound data, and @rototion tracking data acquisition,
processing, and point cloud reconstruction andeend. Figure 4.6 shows a snapshot

for the developed imaging software.
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Figure 4.6 A snapshot for the developed imagingasot, for 3D knee model
reconstruction using single-element ultrasoundsaaner, during scanning of a phantom.
It shows the reconstructed 3D point cloud for @adiemur phantom and one of the
ultrasound A-mode (RF) signals with the initial edhed dot) reflected by transducer-

water interface, and the bone echo (white doteotdéid by the bone-water interface

4.2  Tracked A-Mode Ultrasound Probe Calibration

The probe calibration is a registration processwiych the spatial relation
between the ultrasound transducer and the motickityg probe is determined. The
calibration process results in a set of calibrapp@nameters, which are characteristic to

the tracked A-mode ultrasound probe assembly. Thalgration parameters were then
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used by the imaging software to transform the aegqudepth measurements into 3D

points. The calibration parameters are:

> Center of the Ultrasound Transducer €°F): The center point@), of the
ultrasound transducer’s face as shown in Figurgréldtive to the coordinate frame
(OP) of the tracking probe.

> Ultrasound Transducer's Scan Line Unit Vector @i2?): The scan line unit
vector {i,) of the ultrasound transducer is the unit vectnral to the ultrasound
transducer’s face as shown in Figure 4.7. It pototgsards the direction of the

ultrasound beam propagation. This scan line veastalso calculated relative to the

local coordinate frameQP) of the probe assembly’s optical tracking probe

Figure 4.7 The tracked single-element (A-mode)stiund probe showing the optical
motion tracking probe, the A-mode ultrasound traicsd rigidly attached to it, the
optical probe’s local coordinate fram@K) and the calibration parameters
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In order to calculate the calibration parametens, wltrasound probe assembly
was held fixed, and a set of calibration measureésnarere collected an additional

tracking probe. These collected measurements are:

1. Transducer’s Circumference Points:The ultrasound transducer’s circumference
was digitized (a set of points collected from thensducer’s circumference) by a
tracking probe. A linear least squares circledgtimethod was then used to fit a
circle to the acquired circumferential points [2%he center of this circle is the
required center pointC") of the ultrasound transducer, relative to thekirzg
system’s world coordinate fram®/J. The transducer’s circumference points were
also used to calculate the unit vect@}'] normal to the circle plane (which is the
transducer’s face).

2. A Point in Transducer’s Ultrasound Field: This point was used to adjust the
direction of the calculated ultrasound scan linetee(@?), make it point towards
direction of the ultrasound propagation.

3. Optical Probe’s Orientation and Position: The homogeneous transformation
(H)) between the tracking probe’s coordinate fran@P)( and the world
coordinate frame W). This was used to transform the calculated caidma
parameters (transducer centéf’{, and scan line unit vectodi){’)) from the world
coordinate ) frame to the tracking probe’s coordinate fram@P). This
transformation was performed by multiplying theccddted calibration parameters

by the inverse ofH{},) as follows:
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COP = W, tcv (4.6)

a9P = g, 'y 4.7)

These calibration parameters were then used biyrthging software to transform
the calculated bone’s surface points’ depth measemés (detected using the ultrasound
transducer) into 3D point cloud representing thed®surface.
4.3  Bone Echo Detection and Point Cloud Reconstruction

The bone echo detection process is responsibleefmrtime detection of the
distance between the ultrasound transducer’s fand, the bone’s surface (this one-
dimensional distance will be denoted by bone’s am@fdepth). The probe calibration
parameters along with real-time the probe trackia were used to transform these one-
dimensional bone depth measurements into 3D poaisive to the tracking system’s
world coordinate frame. In the following sectiotise bone echo detection method will
be described, and then followed by a descriptioritfe transformation of the bone depth
measurements into the 3D point cloud representiadbne’s surface.

4.3.1 Bone Echo Detection

The bone echo detection algorithm used in this intgagystem (the single-
element based system) was designed mainly for t&m® eignals produced by the
phantoms, which consisted of saw bones held firegdter container. The ultrasound
signals generated by these phantoms consist ofntaio echoes and sometimes other

secondary echoes. The two main echoes are:
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» Transducer-Water Interface Echo (Main-Bang Echo): This echo is produced by
the reflection of a portion of the ultrasound pidsenergy at the transducer-water
interface due to the difference in the acousticadgnce of the transducer and water
[17].

» Water-Bone Echo (Bone Echo)This echo is generated by the reflection of the
ultrasound beam at the water-saw bone interfagré&i4.8 shows an ultrasound
RF signal, captured during one of the phantom emets, showing the main bang

echo and the bone echo.

| L——"Main Bang Echo ";yl-”i Bone Echo
I . o /

I
\

Figure 4.8 An ultrasound RF signal showing the tagin echoes, which are the main

bang echo (red dot) and the bone echo (white dot).

The secondary echoes that exist in the ultrasoahd signal are:

» Off-Axis Echoes: These echoes are generated by reflectors thafflibe axis of
the ultrasound transducer (the scan line), whidhecets the ultrasound beam
travelling in the off-axis direction (side lobestbe ultrasound beam). The off-axis
beam is smaller in amplitude and energy contem tha main beam. Figure 4.9

shows an ultrasound echo signal that exhibit aaxif echo.
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Off-Axis Echo

I —— Main Bang Echo Bone Echo

Figure 4.9 An ultrasound echo signal showing thenrbang, bone echo, and an off-axis

echo.

» Reverberation Echoes:These echoes are generated when the ultrasound isea
perpendicular to a reflecting surface with higheetion coefficient (like the case of
saw bone in water). This reverberation occurs duthé multiple reflection of the
ultrasound beam between the reflector and theswoltnad transducer. This produce
secondary reflection echoes which have apparenhslemual to integer multiples
of reflector's depth. The reverberation echoes samaller in amplitude then the
main echo due to the energy lost during the digtdravelled by the echo. Figure

4.10 shows an echo signal exhibiting reverberation.

Main Bang L 1°' Reverberation

/ echo (il 1

Bone Echo

2"! Reverberation 3 Reverberation
Figure 4.10 An ultrasound echo signal showing tlaénrbang echo, bone echo, and

multiple reverberation echoes
The target of the bone echo detection componéntdetect distance between the
main bang echo) and the bone echo and minimize=tiieet of the secondary echoes
(reverberation and off-axis echoes) on this detacprocess. The detected distance is

equal to double the distance between the transdufeee, and the bone’s surface point.
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Every ultrasound echo has a temporal pulse lemgthvaries depending on the incident
angle of the ultrasound beam on the bone’s surtaeyell as the distance travelled by
the ultrasound pulse. In order to have an accureasure of the distance between the
main bang echo and the bone echo, the pulse’sniggmint was used to represent the
pulse location in the ultrasound signal as showrrigure 4.8 through Figure 4.10 in
which the detected main bang echo leading poidersted by a red dot, and the detected
bone echo leading point is denoted by a white dot.

The main bang echo’s leading edge point is defiagdhe first sample in the
ultrasound signal that is above the signal acqarsitrigger level, which was set to 20%
of the signal maximum (since the signal maximumueg@at the main bang echo). The
bone echo is then detected by searching for teedtho following the main bang echo.
This is performed by searching for the first samafter the main bang echo which
exceeds a predefined threshold. The threshold wesdined empirically to be 80% of
the signal maximum (the threshold is set to a halue, to avoid the off-axis echoes).
The search starts after skipping the complete rhaimg echo by skipping a number of
samples, equals to the average length of the maiy lecho (which was empirically
determined to be 10 us) after the leading edget mdithe main bang echo. This search
leads to a point in the bone echo’s that is noteading edge point. To reach the leading
edge point of the echo, a backward local searctsdtam the reached point in the bone
echo to the leading edge point of the echo. Theraifor stopping this search is finding
a point below an empirically determined thresholdoh has a value of 20% (same as the

trigger level in order to detect the same corredpanpoints in the main bang echo and
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bone echo) of the signal maximum value. This fisearch leads to the bone echo’s
leading edge point which represents the temporehtion of the bone echo in the
ultrasound echo signal.

4.3.2 Bone Echoes Registration (Point Cloud Reconstructig

The detected echo leading edge points are repesbess samples indices
(denoted a®tyqin_pang for the main bang echo, ang,,. cn, for the bone echo). These
samples indices are transformed into timestampsp@eal points) on the signal by
multiplying the samples indices by the samplingiiwal, which is equals to the inverse
of the sampling frequency (denoted By). The difference between the bone echo
timestamp and the main bang echo timestamp iditite fime (denoted by,., ) of the
bone echo as follows:

(nbone_echo - nmain_bang)

techo = F (4.8)
s

This flight time is then multiplied by the ultrasuispeed in water (denoted by c)
to obtain the roundtrip distance travelled by tbedecho (travelling from the transducer
to the bone surface, and back again to the traesgduthe bone surface point’s depth,
denoted byd.., and, is equal to half of the calculated roundtiigiance travelled by the
bone echo. The bone deptly,;,, is calculated as follows:

cx* techo

decho = 2 (4.9

The ultrasound speed c in water is a function ef water temperature and is

calculated using the following formula [25]:
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¢ = 1402.38744 + 5.03836171 T — 5.81172916
X 1072T2 + 3.34638117 x 107473
— 1.48259672 x 1075T* + 3.16585020 (4.10)

x 1079T>

WhereT is the temperature of the water in Fahrenheit. détected depth of the
bone’s surface point is then transformed into a [@int using probe’s calibration
parameters and the ultrasound transducer’s traclate represented as the homogeneous
transformation §},) between the tracking probe’s coordinate fran@8)( and world
coordinate frameW).

The calibration parameters are first used to tansthe detected bone depth into
a 3D point, denoted by,? , in the tracking probe’s local coordinate fran@P) as

follows:
chliw =C% + dechoarqp (4.11)

The bone surface poi®C),, represented in the tracking probe’s coordinate éram
(OP) is then transformed to the world coordinai®) (using the tracking homogenous

transformationd}}, between the coordinate fram&P), and V) as follows:

Petho = HopPerno (4.12)

The pointsPY, , form the point cloud digitized over the bone’sfage using the

tracked single-element ultrasound probe.
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Chapter 5 3D Knee Model Reconstruction Using
Ultrasound RF Data

This chapter describes the second imaging systeralafeed in this work for
patient-specific 3D knee model reconstruction usifitasound RF data. This imaging
system was developed as an extension of the traeitddde ultrasound imaging system.
This system used the RF data acquired from ansoltrad machine to transcutaneously
digitize a 3D point clouds over the surface of blmme. This point cloud is then used to
create a patient-specific 3D bone model using tbeebmorphing. In the following
sections, the system components will be descriteh followed by the ultrasound RF

data processing, and point cloud reconstructiornots used

5.1 Imaging System Setup
The developed system consisted of an ultrasoundhimgca motion tracking
system, and custom built imaging software for tbeb®ne model reconstruction. In the

following subsections, each component will be désdk

5.1.1 Ultrasound Machine, and Transducer

This imaging system was built using a SonixRP atitand machine (Ultrasonix
Inc, British Colombia, Canada). The SonixRP machisieown in Figure 5.1, is a
diagnostic ultrasound machine with research capielil It allows the access to many
imaging parameters, as well as access to the alinasraw RF data (post beam forming)
through C++ based application programming interfg&el) libraries. The API library

used in this work is called Porta. The Porta APdldas the control of the ultrasound
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machine through C++ functions, and the real-timguésstion of the post beam forming
RF data. This APl was used to develop the 3D booéehreconstruction software to be
running in real-time on the ultrasound machineirfdr high frequency transducer with
128 elements (L14-5/38) was used for the scanmirgptain the highest resolution. The
transducer’s frequency range is 5-14 MHz with ceritequency of 7.2 MHz. Its

fractional bandwidth is 70% at -6 dB. Its lengtt3&mm, with 4 mm elevation height.

Figure 5.1 SonixRP ultrasound machine (Ultrasongs British Colombia, Canada) used

in the second developed patient-specific 3D knedahieconstruction system
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5.1.2 Motion Tracking System

In order to reconstruct 3D point cloud from the woed ultrasound RF data, a
motion tracking system was used to track the wuiad probe’s motion while being used
in the scanning. The ultrasound probe’s motionkirar data were used to register the
acquired RF data frames in the 3D coordinate frafrtbe motion tracking system. The
Polaris Spectra Optical motion tracking system (Nenn Digital Inc (NDI), Ontario,
Canada) was used in this imaging system. The Bo&pectra is a state-of-art motion
tracker that utilizes the infrared light to tradketmotion of a tracking probe with a
number (at least 3, and usually 4 for redundandy)nfsared light emitting diodes

(LEDs). This motion tracking system has three congmts:

» Infrared Camera: is the main optical unit which contains the inf@rtransmitters
(which are used for the passive probes), and recemwhich receives the infrared
light emitted (or reflected in case of passive px)bby the infrared LEDSs in the
motion tracking probes. It acts as the fixed waddrdinate frame of reference for
the tracking system.

» Control Unit: is the control unit of the tracking system. Itdennected to the
infrared camera and the computer running the mdtecking software. It receives
the detected pulses of infrared light from the canprocess them to triangulate the
3D position and orientation of the tracking probieen sends the motion tracking
data to the computer through a USB port. Figuresh@ws the infrared camera and

controller of the Polaris Spectra tracking system.
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» Motion Tracking Probe: is the probe which is used for the motion trackifhige
motion tracking probe can be either active or pasgirobe. The active probe
contains infrared LEDs (active probe), or inframedlectors (passive probe). The
active probe contains infrared LEDs (at least 3 calfinear) which tramsit infrared
pulses that are received by the infrared camer&igaogulate the position and
orientation of the tracking probe. The passive €leiss) probe contains four
reflectors which reflects the infrared pulses tnaits infrared pulses emitted by the
infrared camera. and the reflected infrared pudseghen received by the camera to
triangulate the probe’s position and orientatioiguFe 5.3 shows the active and
passive probes of the Polaris Spectra motion tngckystem. Figure 5.4 shows the

tracking volume for the Polaris Spectra tracker.

Infrared Camera

Control Unit

Figure 5.2 Polaris Spectra optical motion traclsggtem (Northern Digital Inc (NDI),
Ontario, Canada) used in the second developed imgagistem; showing the infrared

camera, and the control unit
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Active Probe

Passive Probe

Figure 5.3 Active and passive motion tracking psotoe the Polaris Spectra optical

motion tracking system (Northern Digital Inc (NDQntario, Canada)

Polaris Spectra Yolumes

W Fyramid Volume
B Extendsd Pyramid Volume

Figure 5.4 Polaris Spectra tracking volume (NontHeigital Inc (NDI), Ontario, Canada)
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5.1.3 Imaging Software

The imaging software was developed in C++ usingi®isStudio 2005 (Microsoft
Inc). QT 4.3 (Nokia, Keilalahdentie, Finland) wased for graphical user interface
(GUI), and Open Inventor 7.2 (Visualization Scie@®up (VSG) Inc, Burlington, MA)
was used for 3D visualization. To acquire real-tinieasound RF data from ultrasound
machine, the developed software used the UltrasoRiarta API for interfacing with the
ultrasound machine’s hardware to acquire the digitiultrasound RF signals in real-time
to be processed by the software. The RF data veaegsed at a rate of 20 frames/second
using an Intel dual core 2.4 GHz processor (theizZR¥ih processor). This processing
frame rate was lower than the ultrasound machirfessne rate, which was 25
frames/second. The RF processing module was sgbtess the latest frame in order to
maintain the speed of the contour extraction with speed of scanning in order to
provide the user with real-time extracted bone @ors. The sampling frequency used by
the ultrasound machine for the RF data was 20 MHe. ultrasound probe tracking data
was acquired in real-time by the developed softwastng the Polaris Spectra’s
interfacing API library. The imaging software wasvdloped using the multithreading
technology in order to allow concurrent acquisitiamd processing of ultrasound RF
data, and the probe motion tracking data, and pooud reconstruction and rendering.
Figure 5.5 shows a snapshot of the developed irgagfftware during scanning of a

cadaveric distal femur.
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Figure 5.5 A snapshot of the developed imagingrssof during scanning of a cadaveric
distal femur, showing a B-mode ultrasound image Jibne contour extracted from the

ultrasound raw RF data, and the reconstructed ptood while being reconstructed.

5.2  Tracked Linear Ultrasound Probe 3D Calibration
Tracked ultrasound probe 3D calibration is thecpss by which the tracking
probe is registered with the ultrasound probe taiolthe spatial transformation between

the coordinate frames of the ultrasound RF datalatracking probe.
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The optical probe has a local coordinate frameefafrence virtually attached to it,
while the optical camera defines the fixed worlernate frame. The function of the
tracking system is to determine, in real-time, th@mogenous transformatioH}
between the optical probe’s local coordinate fradeaoted by QP) and the camera’s
fixed world coordinate frame of referenc®/)( The ultrasound probe has a local
coordinate frame virtually attached to it as w&he calibration targets the determination
of the spatial transformation between the coordiigme of the ultrasound RF data, and
the coordinate frame of the tracking probe.

In this system, a simple, fast and yet accuratbdration method was used. This

method is based on four measured calibration paeame

> The origin point of the transducer (P2P): which corresponds to the first sample
of the first ultrasound scan line, or alternativelyrresponds to the origin of the
ultrasound B-mode image. The transducer’s origintge calculated relative to the
local coordinate fram@OP) of the tracking probe.

» The length of the transducer array (Ly-qnsL): 1S provided by the manufacturer
specifications.

» Unit vector along the ultrasound transducer’s scarines (ﬁJ?P): iS a unit vector
in the direction of the ultrasound beam propagaiitis scan line vector is also
calculated relative to the local coordinate frabfeof the tracking probe.

> Unit vector along the ultrasound transducer array @27): is a unit vector in the

direction of the ultrasound transducer array (ndértoathe scan line). This unit
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vector is also calculated relative to the localrdamate frameOP of the tracking

probe.

Figure 5.6 shows the calibration parameters iléiett on the tracked ultrasound
probe used. In order to obtain these calibratiorampaters, the following calibration
process was performed.

After rigidly attaching the optical probe to th#érasound probe, the calibration
process was performed by holding the probe assemmlayixed position (throughout the
whole calibration process), while a number of poimtere collected using another
tracking probe. The collected points were the twa eoints of the ultrasound
transducers arrag)”, andP)’, and a poinPr‘j'{ane on the transducer face which is not
collinear with the previously collected transdueeray end points as shown in Figure
5.6. The homogeneous transformatib}f, between local coordinate fran@P of the
tracking probe (attached to the ultrasound proaedl, the world coordinate franW of
the optical camera was also recorded.

The calibration parameters were then calculatedgutiie collected calibration

measurements points and transformations as follows:
PP = (Hgp)™* P (5.1)

~ -1 12
27" = (Hpp)™

1B =B 62
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(Pgll/ane_le) X (PZW_le)

”(Pyl)/ll/ane_le) X (PZW_le)”

a9P = ()™ (5.3)

These calibration parameters were then used dyntaging software during the
system operation, as described in Section 5.4t@.6egister the detected bone contours
from the RF data in the world coordinate framehaf tracking system’s to reconstruct the

3D point cloud representing the scanned bone’secarf

Figure 5.6 The tracked linear ultrasound probe us¢ide developed system, showing the

collected calibration measurements, and the cakikealibration parameters

5.3  Knee Scanning Protocol
The high reflectivity and attenuation of the bote ultrasound prevents the

ultrasound energy from penetrating the bone to ereag/ organ or tissue lying behind it.
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This acoustic characteristic of the bone posesaiertge to the use of ultrasound in joint
imaging. The knee is one of the main joints of thenan body. It is formed of three
articulating bones: femur, tibia and patella. Thbsaes articulate together in two sub-

joints:

» Tibio-Femoral Joint: formed by the articulation of the femur with thieid at the
femoral condyles and tibial condyles.
» Patello-Femoral Joint: formed by the articulation of the patella with tieenur at

the patellar surface of the femur and the articsilaface of the patella.

During the flexion-extension motion of the kneeme portions of the articular
surfaces of the bones are visible to the ultrasdagzin, while others are occluded but the
other bones. The two main positions at which mdsthe knee’s articulating bones’
surfaces are visible for the ultrasound beam dieskiension and deep knee bend (or
90° flexion, if deep knee bend is difficult to ashe by the patient) positions. Figure 5.7
shows a dissected cadaver’s knee (one of the telavea knees used for experimenting
the imaging system) showing the articulating kneeds surfaces visible to ultrasound at
90° flexion. Figure 5.8 shows fluoroscopic imagesd volunteer's knee, showing the
different articulating surfaces of the knee bonesbie to the ultrasound at different
flexion angles.

When the knee is in full extension, the posteparts of the distal femur and
proximal tibia are both visible to the ultrasoun&hile in deep knee bend (or 90°
flexion), the anterior surfaces of the distal fepthe trochlear grove, most of the inferior

surface of the femoral condyles, the anterior Sopsurface of the tibia, and the anterior
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surface of the tibia are visible to the ultrasobedm. Both the medial and lateral sides of
the femur and tibia are visible at all flexion agbf the knee.

Therefore, in order to obtain a point cloud reprdging the ultrasound-visible
knee bones surfaces, the knee should be scanriffieatnt flexion angles. Implanting
reference probes into the bones, to track the bam&son during scanning, is would
make the imaging system invasive. Attaching refeeemprobes to the legs over the skin
would greatly deteriorate the accuracy due to #ie-lsone motion [27], and [28]. To
overcome this problem, partial bones surfaces seans performed at different flexion
angles of the knee. During each partial scan, tiee= kvas held fixed in order to avoid
motion artifacts. From these partial scans, 3Diglapoint clouds were reconstructed
which represent the scanned partial bone’s surfadesse partial point clouds were then
mutually registered to reconstruct the whole bomsedace point cloud, as described in

the following section.

‘ ‘ t“?’ 2
‘ .
Figure 5.7 Dissected cadaver’s knee showing tHerdifit ultrasound-visible regions of

the patella, distal femur, and proximal tibia atd#@rees flexion
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Patella

Figure 5.8 Fluoroscopic images of a volunteer'sekf26] at different flexion angles
starting from full extension (1) to deep knee b@&id The images show the different

articular bone surfaces of the knee visible tcasitiund at different flexion angles
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5.4  Bone Echo Detection and Point Cloud Reconstruction

This part of the system is responsible for trareoeibusly localizing a point cloud
over the bone’s surface using the ultrasound RE, datd the probe’s motion tracking
data captured by the motion tracking system. Inftiewing sections, the real-time
method for the automatic extraction of the bonetaors from the RF data will be
described followed by description of the registratmethod of the extracted contours
into a 3D point cloud that represents the scanoeg’s surface.

5.4.1 Automatic Extraction of Bone Contours from Ultrasound RF Data

The ultrasound RF signal consists of a number offaised and/or overlapping
echoes. These echoes originate from the refledidalfferent portions of the ultrasound
pulse’s energy at the different tissue interfadesgthe ultrasound beam’s path. Of these
echoes, is one echo of interest; the bone’s ech@hwis generated by the reflection of
the ultrasound energy at the bone’s surface. Thegss of bone contour extraction from
the ultrasound frame is performed by automaticekyracting the individual bone echo
from each ultrasound RF signal, then combining ehieslividual echoes to form the
bone’s contour. The extracted bone contours ae fittered to reject non-bone (noise)
contours. Figure 5.9 shows a sample ultrasound Bemmage for cadaver’'s distal
femur, showing sample scan lines RF signals as agethe final extracted contour using
the developed method. Figure 5.10 shows a flowctlmarthe bone contour extraction
from the ultrasound RF data. In the following sea$, each step of the bone contour

extraction process is described in details.
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Figure 5.9 An ultrasound B-mode image of a cadawdistal femoral groove (top),
example ultrasound RF signals (middle), and theraatically extracted bone contour

overlaid on the reconstructed B-mode image (bottom)
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Figure 5.10 Flowchart for the process of automiadice contour extraction from

ultrasound RF data

5.4.1.1Envelope Detection using Moving Power Filter

The target of this step is to transform the Rfagbund signal into a smooth

envelop which can then be used to extract the iddal echoes existing in the RF signal.
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A moving power filter, consisting of a moving kelr# length equals to the average
length of an individual ultrasound echo, is appltedthe RF signal to generate an
envelope of the RF signal. At each step of the mpwernel, the power of the RF
signal’'s segment at the kernel position is caledaind its value represents the value of
the envelope at that point. The kernel window langjt 20 was determined empirically
and was used in the performed experiments. Givewligtrete-time signal X of length N,

the envelope Y using a moving power filter of ldngtis defined by:

Y, = Z X?v v ke[—,N———l (5.4)

In this and the following signal processing equadica one-sided filter of varying

length is used for the special cases of the santy@fse theg— sample (left-sided filter),

and after the&v — % — 1 sample (right-sided filter).

5.4.1.2Bone Echoes Detection and Contour Reconstruction

The envelope produced by the moving power filg@resents an intensity profile
for the RF signal, and provides a clear represemtbr the individual echoes existing in
the acquired ultrasound RF signal. This envelopk vé denoted as the RF signal’s
intensity profile. Every echo is represented bypeal peak in the RF signal’'s envelope.
These peaks are then extracted automatically ectidie location (sample index) of the
individual echoes in the RF signal. Figure 5.110Wh four ultrasound RF signals
(extracted from the ultrasound frame in Figure 5tBgir envelopes, and the extracted

bone and non-bone echoes.
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Figure 5.11 Sample RF signals (in blue) from theagbund frame in Figure 5.9, and

their moving power envelopes (in red). The deteetdtbes are shown in green for the

detected bone-echoes, and in cyan for the otheresch

The soft tissue-bone interface is characterizgdigh reflection coefficient of
43% [17], which means that 43% of the ultrasountsg@®energy reaching the bone’s
surface is reflected back to the transducer. Thih meflectivity gives the bone its
characteristic hyper-echoic appearance in the sdtnad image. The bone is also
characterized by a high attenuation coefficien©9,(Gand 9.94 db/cm/MHz for the
trabecular and cortical bone respectively). At tigh frequencies (in the range of 7-14
MHz) used in musculoskeletal imaging, the atterwnatif the bone becomes very high so

that the ultrasound beam ends at the bone’s suffade This characteristic makes the
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bone echo the last echo in the received ultras®hdignal. Therefore, the selection of
the bone echo from the detected echoes is accdraglisy selecting the last echo having
normalized intensity value (with respect to the mmaxn intensity value existing in the
intensity profile) above a certain preset threshdlis normalized intensity value at the
detected bone echo will be denoted as the bone remimoalized intensity. The threshold
used will be denoted as the bone echo normalizedhsity threshold, and its value was
empirically determined to be 0.05 (or 5%).

The set of bone echoes extracted from the uliradd&F signals for an acquired
frame constitutes the bone’s contour existing iat thame. These contours might be
noisy and need filtering to remove outlier echoedsély detected non-bone echoes).
Also some frames do not have any bone contourseftire, the detected contours for
these are noise contours and should be filtered Dugrefore after each contour is
extracted from the RF data frame, it is filtered @yumber by a number of contour

filtering processes which are described in theofeihg section.

5.4.1.3Bone Contours Filtering

There are two sources of noise in the detecteé’baontours; the first noise type
is isolated outlier echoes, and the second iseyutibntour segments (non-bone contour

segments).

> Isolated Outlier Echoes

The first noise source is isolated outlier echoéhiwthe bone contour segment

where the actual bone echo is not selected, amhdbone echo is selected instead. This
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occurs in two cases; the first case is when the lsmho normalized intensity is smaller
than the bone echo normalized intensity threshioidhis case, an echo from the soft
tissue layer lying before the bone, in the ultrambframe, is falsely detected as the bone
echo.

The second case is when the normalized intens$ity non-bone echo is greater
than the bone echo normalized intensity threshotti lees beyond the bone echo in the
RF signal. This leads to falsely detecting noiseaattering echo that appears beyond the
bone's echo. With the empirically determined arstee bone echo normalized intensity
threshold of 0.05, the noise due to the second &i@saot frequent; they occur mostly in
the case of reverberation, which doesn’'t occur Uesdly. However the bone echo
detection process is not very sensitive to thisghold, a range of 0.02 to 0.08 was tested
and the process was insensitive to variation ofineshold within this range. The noise
echoes detected from both types of noise are retnbyehe different filters applied to
the contours and the final reconstructed pointalou

The filter used for removing bone echo outlisrghe median filter, which is very
efficient in outlier removal. The filter's kernehi size was empirically determined to be
7 (full kernel length of 15). Given A contour X t#ngth N, the median-filtered contour

Y using a median filter of length L is defined by:

L L
Y, = Median [Xk_é, Xk+£] Vke [E’N 5~ 1] (5.5)
2 2

Figure 5.12 shows sample ultrasound frames am@ttracted contours from the

RF data, before and after the outlier echoes remmmag the median filter.
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Figure 5.12 Two ultrasound B-mode images (top), thecextracted bone contour from
their RF data overlaid on the B-mode images (boktdine unfiltered contours are shown

in red, and the median-filtered contours, to fittez outlier echoes, are shown in yellow

» Outlier Contour Segments

The second source of noise in the detected borneuwors falsely detected bone
contour for a region where no bone contour exi$tis noise occurs when an area
containing no bones is scanned, or the probe ionented in a perpendicular (or near
perpendicular) orientation with respect to the beserface, or the bone lies deeper than
the preset scanning depth, or the bone lies witienpreset scan depth but its echo is
highly attenuated by soft tissue lying over the é@ior example the distal femur which

has its echo highly attenuated by the posterioeknascles).
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These falsely detected bone contour segments léeeeéi out using the bone
contour continuity criteria. Since the bone surfhae regular shape, its 2D contour in the
ultrasound frame should exhibits continuity and sthness. Any none-bone contour
segment falsely detected is always non-continuoud exhibits a high degree of
irregularity. To filter out the false bone contmegments, a moving standard deviation
filter is used to detect contour irregularities,dadiscontinuity points. The moving
window length of 3 was used for the moving standsediation filter to generate a local
standard deviation curve representing the meanatieni in depth between adjacent
contour points. Given the contour X of length N thoving standard deviation Y using a

moving standard deviation filter of length L is uhefd by:

Yy = % Z X;,—X)2 v ke[%,N—§—1] (5.6)

The output of this filter is the local stiard deviation curve for the contour; it is
used as a measure of the regularity and contirafityye contour at every point of the
contour. This local standard deviation curve isntlused to discriminate between the
bone contour segments and the noise contour segment

Contour segments constructed from echoes thahatrgenerated by reflection
from bone’s surface have high local standard dmnatalues due to the irregularity and
discontinuity of the contour segments. On the otted the contour segments formed
from echoes generated by ultrasound reflectiohebbne’s surface are characterized by

low values of local standard deviation due to thegularity and continuity.
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The input contours to the outlier contour segmeiiter can be one of the

following three cases:

» A full length bone contour which means the entwatour is a true bone contour in
the ultrasound frame.

» One or more partial bone contour segments andeiteof the contour are non-bone
contour segments.

> The entire contour is noise and is not a bone econto

The true bone contour segments are detectedebyuttier contour segments filter

as the contour segments that satisfy two conditions

» It should satisfy the continuity criteria by havitaral standard deviation values
below a certain empirically determined thresholthgaf 30 which corresponds to
1.08 mm standard deviation between adjacent comiints.

» It should satisfy a minimum-length criterion to a@lgiecewise-smooth noise
contour segments from being falsely detected ase bmontour segments. The

minimum contour segment length threshold was s80% of the transducer length.

Figure 5.13 shows sample ultrasound frames watigh bone contour segments,
showing the extracted bone contours (in green), ted filtered out noise contour
segments (in red). Figure 5.14 shows sample ultrasdrames with no bone contours
(the detected contours are entirely noise), ansl were filtered out by the outlier contour

segments filter.
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Figure 5.13 Sample ultrasound B-mode images (tmprdmes with partial bone contour
segments, showing the extracted contour from tREidata overlaid on the B-mode
images (middle), and the contour’s local standawation with the threshold line
(bottom). The true bone contour segments are sligreen, while the filtered out noise

contour segments are shown in red
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Figure 5.14 Sample ultrasound B-mode images (tmpihie case of frames with no bone
contour, and the extracted contour from their Rfa daerlaid on the B-mode images
(middle), and the contour’s local standard deviatiath the threshold line (bottom). The
entire extracted contour (red) was detected agrsiice no segment in it satisfied the

continuity and the minimum-length conditions
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5.4.2 Bone Contours Registration

After the extraction from the ultrasound RF date bone contours undergoes
two registration processes to reconstruct the 3Mtpdoud representing the scanned
bone surface. The first registration step transftrencontours from 2D contours, in the
ultrasound probe’s local coordinate fran@Pj, into 3D contours in the world coordinate
frame W) of the motion tracking system as described itice&.4.2.1. This registration
step is performed on all contours extracted from diftrasound RF data frames of a
partial joint scan. The output of this registratisna partial point cloud for the scanned
partial bone’s surface (scanned at a certain flfexdogle; full extension or deep knee
bend, or 90 flexion). The second registration process targetsgrating the bone’s
partial point clouds into one point cloud representhe whole scanned bone’s surface.
Another registration process is performed betwden B-mode image and the bone
contour extracted from the RF data. This registrasitep is performed for visualizing the
contour overlaid on the B-mode image for real-tmsual validation and performance
feedback of the contour detection process whiledperator is performing the scans.
Figure 5.15 shows a flowchart for the contours polaud, and 3D model reconstruction

from the extracted bone contours.

5.4.2.1Bone Contours 3D Registration
The extracted contours from the RF data are reptedeas signal's samples
indices. Each contour consists of the bone echabesds in the individual ultrasound RF

signals existing in the ultrasound frame contairthng contour. To transform this contour
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into a 3D contour, every detected bone echo iscitigour is transformed into a 3D point

as follows:

Aecho = NechoTsCus (57)
ny;
lecho = Ltransﬁ (5.8)
Pe?cf;lo = POOP + dechoﬁgp + lechoﬁ)(gp (59)
Petho = HopPerho (5.10)

Where d,.,, is the depth of the detected bone echoniy,;, is the signal's
sample index of the ech®, is the RF signal’s sampling period,, is the average speed
of ultrasound in soft tissue which is equal to 13. l..,, IS the distance from the
origin of the transducer array to the scan linetaiming the bone echay;,, is the index
of the scan line containing the bone echo in thesbund frame, anl;;,..s is the total
number of scan lines in the ultrasound RF datadraif)’,, is the detected 3D point on
the bone’s surface represented relative to thecapprobe’s coordinate frame&??,
Lerans, 02F,and 297 are probe’s calibration parametersy,, is the detected bone’s
surface point relative to the fixed world coordmétame of the optical camera, aHYp
is the homogeneous transformation between theitrggikobe’s local coordinate frame
(OP) and the world coordinate frame of the trackingtesmn ). H),» is acquired

dynamically in real-time from the tracking systeamd it contains the position and
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orientation of the tracking probe attached to thesound probe during the acquisition

of the ultrasound frame.
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Figure 5.15 Flowchart for the contours registra@onl bone model reconstruction

process.
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5.4.2.2Partial Point Clouds Integration

After the partial bone surface 2D contours argisters in the 3D world
coordinate frame, they form a 3D point cloud repnéimg the scanned partial bone
surface. This partial point cloud contains somes@goints which were not filtered out
by the contour filtering processes. Each partiahfpdoud is then initially aligned to the
atlas’ mean model using at least three non-coltipea-specified landmarks which are
picked from the partial point cloud by the systemy{grator. The landmarks do not need
to be picked with high accuracy; they merely defihe initial alignment between the
point cloud and the mean model to avoid any simgylan the registration. Following
this initial alignment, an iterative closest poiiCP) registration is performed to
accurately align the partial point cloud to the meaodel. The noisy points are then
removed based on a simple thresholding for thedlcet between the points of the partial
point cloud and their closest vertices in the meexdel. The average distance was used
as the threshold. The same process is performeéviery reconstructed partial point
cloud for the scanned bone’s surface. Then theadigartial point cloud are integrated
by simply combining them together into one poinbucl that represents the whole
scanned bone’s surface. Figure 5.16 shows an erdimpthe alignment and integration
of the partial point clouds reconstructed for of¢he cadaver’s knee used in the system

experiments.

5.4.2.3Bone Contour to B-Mode Image Registration

In order to visually verify the validity of thexeeacted bone contours while the

joint being scanned, the extracted contours arelaideon the B-mode images acquired
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from the ultrasound machine, and rendered for tperaior. The bone contour,
represented as samples RF signal’s indices, istezgd with the ultrasound image as

follows:

lechol
I __ | *fecho'x
Pecho - decholy (5 11)

Wherely, andl, denotes the image resolution in pixel/cm for thand y axes

respectively of the B-mode image,,, denotes the 2D coordinates of the contour point

relative to the B-mode image.

Figure 5.16 An anterior distal femur’s partial podfoud (top left), and the partial point
cloud aligned to the atlas’ mean model (top rightjnedial partial point cloud is shown
aligned to the mean model (bottom left), and ttegrated point cloud after combining

the anterior, medial and lateral partial point dedor the distal femur (bottom right)
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Chapter 6 Clinical Study

The results obtained from the cadavers’ experimenftthe developed system
motivated the move to a clinical study for furtlassessment of the system, and method
accuracy and efficiency in 3D model reconstructidrthe knee bones. The developed
system had to be upgraded to use a newer modéieotiitrasound machine, and an
electromagnetic motion tracking system which ginese flexibility, efficiency and ease
of use than the optical motion tracking system usethe cadaver experiments while
maintaining the required accuracy. The followimgt®on describes the different system
components, the patient scanning setup, and saapnocol.

6.1 Imaging System Setup

The imaging system developed for the clinical stisdyery similar to the imaging
system described in section 4.1 which was usedtHfercadaveric experiments. The
clinical study system consisted of an ultrasoundhiree, motion tracking system to track
the ultrasound probe’s motion. The ultrasound meghand the motion tracking system
were driven by the imaging software developed iis thork for ultrasound machine
control, ultrasound data acquisition and processingal time for the reconstruction of
the 3D model of the scanned bones. In the follovaagtions, the different components
of the clinical system will be described in details
6.1.1 Ultrasound Machine, and Transducer

The ultrasound machine used for the clinical stwdys the SonixTOUCH

(Ultrasonix Inc, British Colombia, Canada) whichtiee newer model of the SonixRP
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ultrasound machine used in the imaging system tbestin section 4.1. It provides the
same capabilities of the SonixRP machine, from rotlimg the ultrasound imaging
through application programming interface libra®P(), and access to the ultrasound
data (B-mode images, and RF data) through the WiPdry named Porta. Figure 6.1

shows the SonixTOUCH ultrasound machine used iliheal study.

Figure 6.1 The SonixTOUCH ultrasound machine (\$lirax Inc, British Columbia,
Canada) used in the clinical study, showing thermatgf the driveBay electromagnetic

tracking system (Ascension Inc) fixed to an artatulg arm
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6.1.2 Motion Tracking System
The motion tracking system used (to track the sdttuamd probe’s motion during
scanning) in the clinical study system was the EBay electromagnetic (EM) tracking
system (Ascension Inc, Burlington, VT). The DrivgBaM tracking device is integrated
in the SonixTOUCH ultrasound machine (connectedstanotherboard). The DriveBay

electromagnetic tracking system consists of thiefowhg components:

1. Magnet: is an electric magnet which consists of a cailtbon a ferromagnetic
core to magnify the magnetic field created by teraating current in the coil. The
magnet provides a magnetic field in the trackinduree in which the tracking
sensors (probes) move. The tracking sensors imterttee magnetic field and
generate electric signals which are used to triltguhe position and orientation of
the motion tracking probe. The magnet defines ikedfworld coordinate frame of
reference\(V) of the tracking system as shown in Figure 6.4.

2. Control Unit: is the main component of the tracking system, iarmbntains the
electronics of the tracking system that controks tiiagnet activation, collects the
signal from the tracking sensor, triangulate theiggmn and orientation of the
tracking sensors, then send the tracking dataga@dmputer. Figure 6.2 shows the
DriveBay control unit and the magnet.

3. Motion Tracking Sensor (Probe): is consisting of coils which are used to
determine the position and orientation of the sensong the theoretical knowledge
of the magnet’'s magnetic field. There are severadik of sensors, depending of

their sizes. There are sensors with 90 mm, 130 18®,mm, and 800 mm in size.
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Figure 6.3 shows the 800 mm, 180 mm, and 130 mmeosenEach sensor has its
own virtually-attached local coordinate frame dierence as shown in Figure 6.4.

Figure 6.5 shows a graph for the position detectioise versus range (distance
from the magnet’s center) for the four differerstcking probes. The tracking noise
increase as the size of the tracking probe decedise to the decreased signal to
noise ratio (SNR). The tracking noise increase# whe increase of the distance
between the tracking sensor (probe) and the magigtre 6.6 shows the tracking

volume for the mid-range magnet used in the clirstady system.

3D Guidance driveBAY A Ascension

Sensors Transm_i:t.gr

Figure 6.2 The DriveBay (Ascension Inc, BurlingtdT,) electromagnetic tracking
system used in the clinical study, showing the @ninit (left), and the magnet (right)

Figure 6.3 The 800 mm (left), 180 mm (middle), 43@ mm (right) electromagnetic
motion tracking sensors (Ascension Inc, Burlingtdin)
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Figure 6.4 Schematics for the magnet, a modeh®B00 mm sensor, and micro sensors
(the 130 mm, and 180 mm sensors), showing theidaaate frames of reference

(Ascension Inc, Burlington, VT)
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Figure 6.6 Tracking volume for the mid range magrsetd in the clinical study system

(Ascension Inc, Burlington, VT)

6.1.3 Imaging Software

The imaging software developed for the SonixRPastiund machine-based
system was modified to be compatible with the S6@GKCH ultrasound machine, and
to replace the Polaris Spectra optical motion fragksystem with the DriveBay
electromagnetic motion tracking system. The clihgtady imaging software had extra
controls than its previous version (used in theagadc experiments). It had ultrasound
controls for the depth, gain, and time gain compgos (TGC). It also had controls for
the automatic bone contour extraction process pateas described in section 5.4.1.

These controls were used to empirically determivee dptimal values that were used
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throughout the clinical study which were identitalthe values used for the cadaveric

experiments and are shown in Figure 6.7.

) Joint Imaging =D E
| Imaging Controk
System e hatei2s EL{ | maging Controls
Tracked Porta v Connect Freq (MHz) 10
1 10
Probe J
Depth (mm) 40
L14-5/38 v Select 20 =
Gain 29
Joint Scan 2909 - 3000
Region Sc:
egion Scan Joint Motion 0.157¢ 0.2734 mm
(Ustop | RF Parameters
Save Process Bone Echo Thr 500 2 %

D:/RD3 Testing/Jaren/Trial 3/Di¢ Contour Length Thr 30 3 %

100% Median Filter 7 2
Images
)100% SD Filter 1
RF Data Max Contour SD 30 2

Ultrasound Speed 1540 T

Registration & Morphing

Bone Side
Femur |v|  Right |v [E] J
Region Landmarks =
Anterior (v| 1 |v @ -
[J extern [7] Filter @ J
Morph (&Y =
Femur 0.000000 -
Tibia 0.000000 @ -
st (o 5 =
Focusing
Save Clouds & Models Focus Count o
o | 10

Focus Depth (mm) 18

2 I 100
Focus Spacing (mm) 6

1 100

RF Processing Params

RotXRotY' 1] Zoom < >/ 45.0  Dolly

e ——

Figure 6.7 Snapshot of the developed imaging soé&waed in the clinical study,
showing a reconstructed 3D point cloud for a difgadur, and one of the automatically
extracted contours with the bone contour segmere(n, and the rejected non-bone

contour segments (red).
6.2  Tracked Linear Ultrasound Probe Calibration
The SonixTOUCH ultrasound machine has ultrasoundbgs which have
electromagnetic tracking sensors (model 180) lwsitde the ultrasound probe. The 3D
calibration of the probe was performed by the stitamd machine manufacturer

(Ultrasonix Inc, British Columbia, Canada), and tdaibration parameters provided by
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the manufacturer were the rotation and translatairices between the ultrasound image
coordinate frame, and the electromagnetic traclsegsor’s local coordinate frame.
These calibration matrices were used to calculeedeveloped imaging system-specific
calibration parameters described in section 4.Rygusnit vectors in the x (to calculate
the calibration parametdi?”), and y (to calculate the calibration paraméigf) axis of
the ultrasound image reference frame, and the ¢opec point of the ultrasound image
(which represents the center point of the ultradowiansducer’s face, and was used to
calculate the calibration parameg#®).

6.3 Patient’'s Knee Scanning Setup

The knee joint consists of the femur, tibia, anteli@ bones articulating at different
articular surfaces as described in section 5.8rdler to acquire scans covering the whole
surface (or most of it) of the distal femur andxineal tibia, the knee scanning is divided
into separate scanning sessions. In each scasasgjon, the knee is held fixed and a
specific region of the distal femur, or proximabi&i bones is scanned. These regions
scans are then used to create partial point claddsh are then mutually registered to
produce a point cloud representing the whole sdahrivene’s surface (including all
scanned regions).

The patient’s knee is scanned in two positions:

1. Knee Bend:this position is used to scan the anterior, mediadi lateral regions of
the distal femur and proximal tibia. A deep knead¢€l30) is used if the patient
can perform the deep knee bend; otherwise®akfi8e bend position is employed.

The deep knee bend is preferred because at thisoposa larger portion of the
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anterior grove of the femur is accessible (un-adetu by other bones) to the
ultrasound beam for imaging.

2. Full Extension: this position is used to scan the posterior regiohshe distal
femur, and proximal tibia which are only accessibide scanning at the full

extension position of the knee.

A key requirement for the patient scanning setuip ibave the patient’s knee fixed
throughout a region scanning session. To meetréggirement, three leg holders were
built to hold the patient’s knee fixed during thegion scanning sessions. Two of the leg
holders are used for scanning of the anterior, ateahd lateral regions of the distal
femur, and proximal tibia in deep knee bend, antii@&e bend positions as shown in
Figure 6.8. The 90knee bend leg holder is used when the patient bawe his/her knee
at deep knee bend. The third leg holder is useddanning the posterior regions of the

distal femur, and proximal tibia at the full extemsposition as shown in Figure 6.9

Figure 6.8 Deep, and 9@nee bend leg holders with a volunteer’s leg agddo it in the
position used for scanning of the anterior, medial] lateral regions of the distal femur,

and proximal tibia bones.
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Figure 6.9 Full extension leg holder with a volwete leg attached to it in the position

for the scanning of the posterior region of digahur, and proximal tibia bones

6.4  Patient’s Knee Scanning Protocol

The patient’'s knee scan is divided into four scagniegions. Each region is
scanned in a scanning session which lasts for appately 2-3 minutes during which,
the knee is fixed to the leg holder to minimize teg motion artifacts (which would
create noise points in the reconstructed pointd;l@nd decrease the SNR of the point
cloud). During the scanning of each region, theettgyed imaging system creates in real-
time the 3D point cloud of the bone’s region besognned. The reconstructed regions
point clouds are then mutually registered to geeetiae whole scanned bone’s (distal
femur, or proximal tibia) point cloud as describedection 5.4.2.2.

The four scanning regions of the knee are:

1. Anterior Distal Femur: The anterior femur region scan is performed wikile

patient’s knee is in deep knee bend oP3hee bend (if the patient can’t perform
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deep knee bend). The anterior distal femur regeam $onsists of six sub-regions

scans which are:

Vi.

The lateral area of the distal femur (lateral epicondyle): which is scanned
with the ultrasound transducer in an axial (longspyosition as shown in
Figure 6.10(a)

The medial area of the distal femur (medial epicondyle): which is scanned
with the ultrasound transducer in an axial posiasrshown in Figure 6.10(a)
The anterior shaft area of the distal femur: which is scanned with the
ultrasound transducer in an axial position as shiowkigure 6.10(c)
Theinferior area of the medial femoral condyle: which is scanned with the
ultrasound transducer in an axial position as shiowfigure 6.10(d)
Theinferior area of the lateral femoral condyle: which is scanned with the
ultrasound transducer in an axial position as shiowkigure 6.10(e)

The trochlear grove of femur: which is scanned with the ultrasound

transducer in an transverse position (short asshawn in Figure 6.10(f)

2. Posterior Distal Femur: The posterior distal femur region scan is performade

the patient’s knee in full extension. The postedstal femur region scan consists

of three sub-regions scans which are:

Posterior area of the lateral femoral condyle: which is scanned with the
ultrasound transducer in an axial position as shiowFigure 6.11(a)
Posterior area of the medial femoral condyle: which is scanned with the

ultrasound transducer in an axial position as shiowigure 6.11(b)
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iii.  Posterior area of the distal femoral shaft: which is scanned with the
ultrasound transducer in an axial position as shiowFigure 6.11(c)

3. Anterior Proximal Tibia: The anterior proximal tibia region scan is also
performed while the patient’s knee is in deep kheed or 90 knee bend (if the
patient can’t perform deep knee bend). The antgioximal tibia region scan
consists of two sub-regions scans which are:

i. Lateral area of the anterior proximal tibia: which is scanned with the
ultrasound transducer in an axial position as shiowkigure 6.18)

ii. Medial area of the anterior proximal tibia: which is scanned with the
ultrasound transducer in an axial position as shioviigure 6.1%)

4. Posterior Proximal Tibia: The posterior proximal tibia region scan is perfedn
while the patient’s knee in full extension. The feo®r proximal tibia region scan
consists of four sub-regions scans which are
i. Posterior areas of the tibial condyles, and inter-condyler area:: which are

scanned with the ultrasound transducer in an texssvposition as shown in
Figure 6.13(a)
li. Posterior area of the proximal tibial shaft: which is scanned with the

ultrasound transducer in an axial position as shiowsgure 6.13 (b)
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() (f)

Figure 6.10 Scanning protocol for the anterioralimur region scan, showing the axial

scanning of the lateral (a), medial (b), and aatdic) areas of the distal femur as well as

the medial (d), and lateral (e) condyles. The ti@mhgrove is scanned transversally (f).
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Figure 6.11 Scanning protocol for the posteriotadilemur region scan, showing the
axial scanning of the lateral condyle (a), medadyle (b), and posterior distal femoral

shaft (c) areas of the distal femur

(b)

Figure 6.12 Scanning protocol for the anterior jpre! tibia region scan, showing the

axial scanning of the lateral (a), and medial acddke proximal tibia (b)
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Figure 6.13 Scanning protocol for the posterioxpral tibia region scan, showing the
transverse scanning of the posterior areas ofltfe tondyles and intercondyler area (a),

and the axial scanning of the posterior area optiogimal tibia shaft (b).
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Chapter 7 Results

7.1  Single-Element Transducer System‘ Phantoms Experinm#s Results

The developed imaging system for 3D bone modelnstcaction using single
element ultrasound transducer was tested on 24 fiwenr@oms (six female distal femurs,
six male distal femurs, six female proximal tibiasid six male proximal tibias). The
phantoms were made of plastic bone models, prifited a subset of the atlas models
using a fused deposition modeling (FDM) 3D propatg machine (StratSys Inc, Eden
Prairie, MN), The plastic bone models were immelisea water tank as shown in Figure
4.5 to provide a medium for ultrasound transmissiolhe water temperature was
monitored during the phantoms scanning to changellthasound speed setting (which is
a function in the water temperature as describesation 4.3.1) in the imaging software
according to the water temperature. In the follayisections, the point cloud
reconstruction results will be presented, thenofedd by the results of the 3D model
reconstruction using the reconstructed point clouds

7.1.1 Point Cloud Reconstruction

In order to study the accuracy of the reconstruptadt clouds in representing the
scanned bones surfaces, the point cloud for eveemtpm was reduced (using octree) to
a 1 mm average inter-points cloud density, thersteged to its reference 3D bone model
(which was used in 3D printing of the phantom’ssiamodel) using the ICP method.
The ICP registration was performed after an initlahdmark-based registration
performed using manually-picked three landmarks tb@ point cloud. The initial

registration is necessary to avoid any singulantythe point cloud to 3D model



135
registration which would cause the entrapment efrégistration process in local minima
in the registration RMS error function. The distarerror between every point in the
point cloud and its closest surface point on thieremce 3D model was then calculated,
and a histogram was generated for these distamoes éo examine the accuracy of the
reconstructed point cloud. The point clouds usegeteerate the histograms were the raw
acquired point clouds without any filtering perfadon them. These raw point clouds
were then filtered to remove the noisy points frthra point clouds. The filtering was
performed by removing a percentage of the poinictlbaving the highest distance error
between the cloud points and the reference modhel.pErcentage used was chosen to be
25%. After each point cloud was filtered, it wagistered again to the reference model
using the ICP method to perform fine tuning for tlegistration that might have been
affected by the noisy points. The RMS error betwten filtered point cloud and the
reference model was then calculated.

The reconstructed point clouds and the histograihteeodistance error between
the reconstructed point clouds and their corresimgnitference 3D models are presented
in the appendix section 9.3.1. Table 7.1 showsrtban number of points in the acquired
point clouds, and the mean RMS error between tfepgcentile filtered point clouds

and their reference models for the scanned bonetqing datasets
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Table 7.1 Mean number of points in the acquiredipdouds, and the mean RMS error

between the 75percentile filtered point clouds and their ref@emodels.

Mean Number of Points Mean RMS Error (mm)

Female Distal Femur 6596 0.83
Male Distal Femur 6523 0.77
Female Proximal Tibia 5210 0.87
Male Proximal Tibia 5980 0.85

7.1.2 3D Bone Model Reconstruction (Bone Morphing)

The reconstructed raw (unfiltered) point cloudseviren used to reconstruct 3D

models of the scanned bones. The three morphingadetdescribed in section 3.3 were

used to reconstruct the 3D models of the scannadddefore the bone morphing was

performed, the raw point clouds were reduced irsiigrusing octree to different point

cloud densities, and then the reduced point clouwdse registered with their gender-

specific jack-knife atlases mean models. The meastartte errors between each point

cloud and its corresponding jack-knife atlas’ meandel was calculated, and used to

filter the point cloud by removing the points witlistance, between it and its closest

surface point on the mean model, greater thantaioghreshold. The threshold was set

equal to the average mean distance error betweepdint cloud and its corresponding

jack-knife atlas’ mean model. The point cloud redug registration, and filtering

processes were performed using different pointctidensities (1 to 19 mm, with 2 mm

increment) to study the effect of the point clowhsity on the 3D model reconstruction
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accuracy with the point cloud registration, antefihg factors included. The RMS errors
between the reconstructed 3D models and the refererodels were calculated. The
following sections present the results using tireehmorphing methods (Direction Set,

linear least squares, and the hybrid method).

7.1.2.1Direction Set Morphing

The Direction Set morphing method was applied réconstructed point clouds
(with different point cloud densities). The numlsr principal components used was
chosen to be 32, which yield the highest reconstmicaccuracy with reasonable
processing time. This was concluded from the DioactSet morphing method
performance analysis in described in section 3.3The first 32 principal components
carried 94.97%, 94.58%, 93.95%, and 92.5% for tmaale distal femur, male distal
femur, female proximal tibia, and male proximaldihatlases.

Appendix section 9.3.2.1 presents the RMS errottfer3D model reconstruction
(for the reconstructed phantoms’ point clouds wdiffierent point cloud densities) using
the Direction Set method using the first 32 priatipomponents. Examining the RMS
error graphs, it can be concluded that the pomucffiltering, and registration as well as
the 3D model reconstruction are affected by thatpdobud density. However, this effect
is not large, as the change in the mean RMS esrapproximately 0.2-0.4 mm between
the 1 mm, and the 19 mm point cloud densities for four bones datasets. The
reconstruction error graphs show that the 1 mmtpdouds (the highest density point
cloud) exhibits the lowest mean RMS error for 3D deloreconstruction using the

Direction Set optimization method.
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7.1.2.2Linear Least Squares Morphing

The linear least squares morphing method was apfi¢he reconstructed point
clouds (with different point cloud densities). Thember of principal components used
was chosen to be 64 which carried 98.22%, 97.38%6190, and 95.77% for the female
distal femur, male distal femur, female proximdlidi and male proximal tibia atlases
respectively. The number of principal components wlaosen to be 64 (and not higher)
because this represents approximately 97% of th@hotogy variations in each bone’s
atlas. The remaining 3% of the morphology variatiare responsible for the local
features in the bones morphology, and thereforsethmodes of variations are very
sensitive to noise in the point cloud, and can leadn increase in the 3D model
reconstruction (bone morphing) error.

Appendix section 9.3.2.2 presents the RMS errors tlee 3D model
reconstruction (for the reconstructed phantoms tpdiouds with different point cloud
densities) using the linear least squares morphethod using the first 64 principal
components. Examining the RMS error graphs, it lbarshown that the effect of the
point cloud density on the model reconstructiomigher using the linear least squares
method than the Direction Set method. This can ledde conclusion that the linear least
squares method is more sensitive to the point cldedsity than the Direction Set
method. However the RMS error does not increaseotooically with decreasing the

point cloud density.
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7.1.2.3Hybrid Morphing

The hybrid morphing method was applied to the retrocted point clouds (with
different point cloud densities). The reconstructaddels using the Direction Set
morphing method using the first 32 principal comgats were used as the initial models
for the linear least squares morphing method. Tureber of principal components used,
for the linear least squares morphing stage ohieid morphing was set to 64 principal
components. Appendix section 9.3.2.3 presents tMS Ferrors for the 3D model
reconstruction (for the reconstructed phantoms tpdiouds with different point cloud
densities) using the hybrid morphing method (ushregfirst 32 principal components for
the Direction Set morphing stage, and the firstpéi#icipal components for the linear
least squares stage) for the female distal female whistal femur, female proximal tibia,
and male proximal tibia phantoms. The mean RMSresas the lowest for the 1 mm
point cloud density.

Table 7.2 shows the mean RMS and average distanoe fer the 3D model
reconstruction using the three morphing methodsttierscanned bone phantoms. The
three morphing methods showed very similar perforceaand reconstruction accuracy.

A mean distance error color map was generated HerRMS distance error
between the reconstructed 3D models (using theciore Set, and linear least squares
methods) and their corresponding reference modelsdch of the bones datasets. Figure
7.1, and Figure 7.2 show the mean RMS error colapsnfor the distal femur, and

proximal tibia models respectively.
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Table 7.2 Mean reconstruction RMS errors (in mmiie three morphing methods

using the point clouds with 1 mm density.

Direction Set Linear Least Hybrid

Method Squares Method
Female Distal Femur | 0.8 1.02 0.81 1.03 0.82 1.04
Male Distal Femur 0.98 1.22 0.99 1.24 0.98 1.23
Female Proximal | 595 | 118 | 001 1.12| 104 1.3

Tibia

Male Proximal Tibia 1.19 1.45 1.34 1.6 1.2 1.46
Average 0.983 1.218 | 1.013 1.248 | 1.01| 1.258
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3.5 mm

(@) (b) () (d)

Figure 7.1 Mean RMS distance error color mapsHerfemale distal femurs

reconstructed using the Direction Set method widximum error of 2.49 mm (a), the
linear least squares method with maximum error.46 2nm (b), and for the male distal
femurs reconstructed using the Direction Set methitid maximum error of 2.38 mm

(c), and the linear least squares method with mamirarror of 2.35(d).
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3.5mn

(@) (b) () (d)

Figure 7.2 Mean RMS distance error color mapsHerfemale proximal tibias

reconstructed using the Direction Set method widximum error of 2.7 mm (a), the
linear least squares method with maximum error.bin@m (b), and for the male
proximal tibias reconstructed using the Directi@t @ethod with maximum error of 2.89

mm (c), and the linear least squares method witkiimam error of 3.2 (d).
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7.2  Ultrasound RF Data System Cadavers’ Experiments Redis

The first ultrasound RF data based imaging systeweldped in this work (built
using the SonixRP ultrasound machine) was expetedeon two cadaveric distal
femurs, and a proximal tibia. Each bone (distalidgnand proximal tibia) was scanned
individually in order to increase the signal toseratio of the reconstructed point cloud,
and simplify the point cloud filtering process. &ig 7.3 shows a picture for one of the
cadaveric experiments, showing developed imagirgesy running on the SonixRP

ultrasound machine.

Figure 7.3 A picture for the one of the cadaverperiments showing the developed

imaging system running on the SonixRP ultrasoundhina
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Each bone’s scan contained approximately 1200saltnad frames which were
automatically processed in real-time to extractlitbees’ contours as described in section
5.4.1. A large number of RF data frames was acduiwe each bone’s scan to test the
developed method for real-time automatic bone agndéietection from the RF data. The
high density of the point cloud reconstructed frdmase contours is not necessary for
accurate 3D model reconstruction as shown in thee bnorphing analysis described in
section 3.3. The developed contour extraction m®cshowed high reliability;
approximately 95% of the acquired frames were @®e@ correctly to extract the bone
contours. Figure 7.4 shows sample B-mode imaged,tlam extracted bone contours
using their RF data.

The extracted bone contours were then mutuallysteggd, by the developed
imaging software, using the ultrasound probe’s arotiracking data and the probe’s
calibration parameters as described in sectior2 5td.reconstruct partial 3D point clouds
for the scanned regions (anterior, posterior, mediad lateral). Due to the line of sight
constrain of the optical tracking system used auhrasound probe’s motion tracking, it
was not possible to scan the full anterior pathefbones as one region (in a scan session
in which the leg is held fixed). Therefore the ateregion of the distal femur was
scanned in three partial (region) scans; which veerterior, medial, and lateral regions
with the knee in a flexion angle of approximateB0ldegrees. The anterior scans of the
tibia were divided into two regions; medial-anteriand lateral-anterior with the knee in
a flexion angle of approximately 120 degrees. Tostqrior scans of the distal femur and

proximal tibia were also acquired as separate reggans with the knee in full extension.
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The partial point clouds were then mutually registieinto one point cloud representing

the whole scanned bone surface as described ioséct.2.2.

Figure 7.4 Ultrasound B-mode image (left), recangtrd by applying Hilbert transform
to the ultrasound RF data, for a different regioha cadaveric knee, and the extracted

bone contour from the RF data overlaid on the B-enathge (right)
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The reconstructed bones’ point clouds were thed tseeconstruct 3D models of
the scanned bones. The three morphing methodsilses$dn section 3.3 were used to
reconstruct the 3D models for each reconstructéat ptoud to compare the accuracy of
morphing methods. In order to study the combinddcefof the point cloud density on
the point cloud to atlas’ mean model registratiod &#one morphing, the point clouds
were reduced to different point cloud densitiesnthegistered to the atlas’ mean model,
and used in the reconstruction of the bones’ 3Detfsod

Computed tomography (CT) scanning of the cadadersés was performed, and
the CT scans were manually segmented to creatgotden reference 3D bone models of
the cadavers’ distal femurs and proximal tibia whigere used to assess the accuracy of
the 3D point clouds, and models reconstructed uirgultrasound RF data. The RMS
errors between the reconstructed point clouds haeddference CT segmented 3D bone
models were then calculated. The point clouds fiereace CT models RMS errors were
1.32 mm, 1.3 mm, and 1.69 for the first cadaveissatl femur, first cadaver’s proximal
tibia, and second cadaver’s distal femur respdgtive

The RMS errors between the reconstructed 3D borezeis and the reference
CT models were then calculated for the three magplmethods, and the different point
cloud densities used. In order to study the eristridution over the bone’s surface,
distance error color maps were generated for réaated 3D model with the highest
accuracy (among the models reconstructed usingrdiit point cloud densities, and
morphing methods) for each scanned cadaveric Baide 7.3 shows the average, RMS,

and maximum distance errors for the highest acguraconstructed models for each
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scanned cadaveric bone. Appendix section 9.4 shiosvseconstructed 3D point clouds,
and models for the scanned cadaveric distal fenaunc proximal tibia. It shows also the
color maps for the distance error between the toocted 3D models, and the reference

CT models.
Table 7.3 3D model reconstruction errors (in mnijeen the reconstructed models

using the developed ultrasound RF data systemtren@T-segmented models for the

scanned cadavers’ bones.

Avg. Error  RMS Error
Distal Femurl 1.01 1.26
Distal Femur2 0.93 1.19
Proximal Tibia 0.99 1.22
Average 0.976 1.223
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7.3  Ultrasound RF Data Imaging System'’s Clinical StudyResults

The developed 3D knee model reconstruction systeomning on the
SonixTOUCH ultrasound machine) was experimentedoon volunteers. The system
was tested on the right knees of two volunteerd,tha both right and left knees of two
volunteers, with a total of six knees. The patgsanning setup, described in section 6.2,
was used for holding the volunteers’ knees fixedlavheing scanned. Each volunteer’s
knee was scanned using the scanning protocol 8eslcn section 6.4.

The ultrasound RF data of each region’s scan wasepsed in real-time, by the
imaging software running on the ultrasound machiogenerate the bone contours, and
the bone’s surface point cloud. The bone contoleewverlaid on the B-mode images
of the scans in real time to provide feedback tersystem’s operator about the quality of
the bone contours extracted. This feedback was tosedtify the scanner if he/she needs
to change the tilt angle of the ultrasound probgdbclearer scans of the bone contours.
The real-time reconstructed point cloud provideel slgstem operator with feedback for
the quality of the bone cloud as well as the argavered by the scanning, so he/she
can scan these areas. Figure 7.5 through Figureshb®s pictures taken during the
scanning of the anterior distal femur, anteriorqor@l tibia, posterior distal femur, and
posterior proximal tibia regions of one of the vakeers’ knee, respectively.

The reconstructed point clouds were then reduced4enm density point clouds
which were used, by the imaging software, to retans 3D models for the scanned
bones using the described morphing methods. Thecion Set method showed slightly

higher reconstruction accuracy than the lineartlsasiares method, and the hybrid
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method. This is due to the tendency of the lineast squares method to over-fit the
reconstructed 3D model to the point cloud, whictkesait more sensitive to the noise in
the point cloud. This over-fitting results in a dhdrop in accuracy (around 0.2 mm).
Therefore the Direction Set method was used for3emodel reconstruction of the
distal femurs, and proximal tibias of the scanneldinteers’ knees.

In order to assess the accuracy of the 3D bone Inmmedenstructed using the
developed imaging system, the volunteers' knees weanned using the Magnetic
Resonance Imaging (MRI), and manually segmentedréate golden reference 3D
models of the scanned knees bones (distal femudsp@ximal tibias). Sagittal 3D VIBE
fat saturation MRI scanning with 0.6 mm slice timeks, and 0.6 mm pixel size (voxel

size of 0.6 mm).was used to scan the volunteerekne

/,

Figure 7.5 A snapshot from scanning the anteristatifemur of a volunteer’s knee
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Figure 7.7 A snapshot from scanning of the posteligtal femur of a volunteer’s knee
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Figure 7.8 A snapshot from scanning of posterioxnal tibia of a volunteer’s knee.

In order to study the repeatability of the devetbpenaging system, each
volunteer's knee was scanned three times (threés)trto generate three independent
point clouds for each scanned bone. These threet mbouds were then used to
reconstruct three independent 3D models for theebgppendix section 9.5 shows the
reconstructed point clouds, models, and the distarcors color maps for the three
scanning, and reconstruction trials for the sixumtéers’ knees scanned in the clinical
study. Table 7.4 lists the average (Avg.) and roean square (RMS) errors for the three
trials for each scanned volunteer’s knee. It alsts the body mass index (BMI) for each
volunteer. Table 7.5 lists the mean (u), standadation ©), and relative standard

deviation for the distance errors for the threal¢rof each bone model reconstruction.
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Table 7.4 3D model reconstruction average (Avanjl, ot mean square (RMS) errors
(in mm) for the 3 trials for the distal femur anyimal tibia 3D model reconstruction

for the 6 volunteers’ knees (Vol. 1 to Vol. 4 reféo the four volunteers). The Body

Mass Index (BMI) for the volunteers is shown in tast column.

Trail 1 Trail 2 Trial 3
vol.1 | Distal 1o erl 984 074 0.04| 08| 1.04
Knee 1| Femur
(Right) : 19
Proximal | < 78| 0.62 0.79 | 0.75 0.96
Tibia
Distal
Vol.2 | Femur |0-72| 094|085 1.09| 078 1
Knee 2 : 22
(Right) | Proximal | g ga! 1 5 | 5.71) 0.91| 0.73 0.95
Tibia
Distal
Vol.3 | Femur |0:93| 118|083 1.05| 0.81 1.01
Knee 3 :
(Right) | Proximal | 5 g | 1 05| 969 0.88 | 0.68 0.89
Tibia
: 25
vol.3 | Distal | ha9l 114] 0.02 1.17| 0.95 1.2
Knee 4 | Femur
Left i
(Lef) Proximal | , ea! 587 | 0.75 0.94 | 0.66 0.86
Tibia
Vol.4 | Distal o6l 1 19| 1,01 1.28| 1.04 1.3
Knee5 | Femur
Right :
(Right Proximal | 1 4| 13 | 113 1.42| 1.2| 1.49
Tibia
: 35
Vol. 4 | Distal 1 | 1.27| 092 1.17| 0.97 1.21
Knee 6 | Femur
Left i
(Left Pr%"b'ga' 1.27| 1.61| 1.23 1.54| 1.43 1.75
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Table 7.5 Mean (u), standard deviatieh for the average (Avg.), and root mean square

(RMS) errors (in mm), and their relative standaegtidtion ¢ /p) for the three trials for

the three trials for the distal femur and proxiniala 3D model reconstruction for the 6

volunteers’ knees. The BMI for the volunteershewn in the last column.

[0)
Bone H ‘ o ‘ o /u (%) ‘BMI
Avg | RMS| Avg | RMS | Avg | RMS
vol.1 | Distal 1452500 594 | 0.066 0.082| 9.08| 8.69
Knee 1 | Femur 19
Right :
(RION) | Proximal | § 6571 0 843 0.067| 0.083| 10.13| 9.79
Tibia
Vol. 2 I?elrsrtlﬁlr 0.783| 1.01 | 0.053 0.062| 6.78 | 6.10
Knee 2 - 22
(Right) Pr?ft')i";'la' 0.807| 1.02 | 0.123 0.128| 15.23| 12.58
Vol. 3 FDe'f]fJ"r 0.857| 1.08 | 0.053 0.073| 6.13 | 6.72
Knee 3 -
(Right) Pr%xk;ga’ 0.723| 0.94 | 0.054 0.078| 7.52 | 8.29
! 25
Vol. 3 Distal | 95| 1.17| 0.0250.025| 2.66 | 2.09
Knee 4 | Femur
Left i
(Left Proximal | 6921 .89 | 0.039 0.036| 5.54 | 3.99
Tibia
Vol.4 | Distal 1y 551 1 557 0.033] 0.048] 3.20| 3.81
Knee5 | Femur
Right :
(Right) Pr%xk;ga’ 1.137| 1.403| 0.049| 0.079| 4.33 | 5.59
_ 35
Vol.4 | Distal | gaal 517 0.033] 0.041| 3.43 | 3.38
Knee 6 | Femur
Left i
(Left Proximal | 4 31 | 1 539 0.086| 0.087| 6.6 | 5.35
Tibia
Average 0.882| 1.117| 0.057| 0.069| 6.73 | 6.37
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The 3D model reconstruction for the three trialsdix volunteers’ knees had an
mean average error of 0.88 mm, and RMS error o2 Inin. The average relative
standard deviation of the results of the three sicg and model reconstruction trials
performed on each volunteer's knee was shown t6.1& % for the average error, and
6.37% for the RMS error. This means that average@é in the reconstruction error
change between different trails for the same kise6.37% for the average error, and
6.73% for the RMS error. This results shows thatdhbtput of the system is repeatable
with an average change of 6.5% in the reconstmietioor, which can be translated into
93.5 % repeatability.

The results obtained also showed that the 3D medehstruction error increases

with the increase in the BMI, this is due to twottas which are:

1. The increased depth of the bone under the skimfaeiresults in an increase in
error introduced in the calculated bone depth (tlwadtrip distance travelled by the
ultrasound pulse from the skin surface to the tsnéace). This error is due to the
approximation used in the ultrasound speed estimatvhich is assumed to have an
average value of 1540 m/s is soft tissue. Thihiésultrasound speed used in the
developed system. The actual ultrasound speed depen the tissue type
encountered by the ultrasound pulse in its roupdiherefore as this trip increases,
the error in estimated trip distance increases tduthe inexact ultrasound speed
estimation. Table 7.6 lists the ultrasound speedtlie water and different soft

tissues in the knee.
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2. In most of the cases of high BMI subjects the amafiradipose tissue in the knee
is larger than those of the low BMI subjects. Aswh in Table 7.6, the ultrasound
speed in fat tissue is 1459 m/s which is 5.3% lothan the average ultrasound
speed in soft tissue used which is 1540 m/s. Tifierdnce between the actual and
the estimated and used ultrasound speed introduegrar in the calculated depth
of the bone, which propagates to the point cloucligary, and finally to the 3D
model reconstruction accuracy. This error can briehted or reduced by using a
different estimate of ultrasound speed for high&tl Batients. This new estimate
should be adjusted according to the ratio betwherfdt and muscle content of the

scanned knee regions.

Table 7.6 Ultrasound speed for the water and d@iffesoft tissue types in the knee [17].

L ooy

Average Soft Tissue 1540
Bone 4080

Muscle 1580

Fat 1459

Blood 1575

Water (20 C) 1480
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Chapter 8 Future Work

8.1 System Enhancement, Accuracy Improvement, and Inckion of other Joints
The developed method and system for 3D knee mogbnstruction from

ultrasound RF data showed high accuracy (0.88 nerage reconstruction error without
the need of bone-implanted motion tracking refeeemobes), and high-speed real-time
performance (20 frames/second). The develope@msyshowed also high repeatability
with an average change of 6% between differentgaddent 3D model reconstruction
trials for the same knee. The developed systenstae limitation that can be overcome
in future work. These limitations are; the need figmg the knee during each region
scanning session, and the increase in the modahs&action accuracy with the increase
of the subject's BMI due to the used inexact averafijrasound speed in soft tissue.

Future enhancement and extension of the develofstens can include:

» Using tissue-specific ultrasound speed:he estimate of the bone’s depth from the
ultrasound RF data is a function of the ultrasowsmed in the soft tissue
interrogated by the ultrasound pulse in its roupditom the transducer’s surface,
to the bone surface, and back to the transducén.afjae developed system uses a
constant average speed of ultrasound in the ssfieiof 1540 m/s. A more accurate
estimate of the bone’s depth can be calculatedsnygutissue-specific ultrasound
speed at different segments of the pulse’s tripe @wproach of doing that could be
using an anatomical model of the soft tissue tygresthickness of the tissues in the
way of the ultrasound pulse (muscles, tendons,ilaget adipose, and other

connective tissues) in the joint. Using this anat@amodel along with the position
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and orientation of the ultrasound pulse’s scan, liokbtained from the motion
tracking probe attached to the ultrasound probe, distance travelled by the
ultrasound pulse can be divided into segments dipgnon the tissue type
travelled during each of the trip segments. In ezicthese segments, there will be
an estimated tissue type (obtained from the anatdmodel of the joint) with its
associated speed of ultrasound. Therefore, thardisttravelled in each segment of
the pulse’s trip will be calculated independentiing the speed of ultrasound in
this segment. The bone depth will equal to the stithe distance travelled by the
ultrasound pulse (in one-way trip) through the etiéiht segments composed of the
different tissue types, estimated by the anatominabel, interrogated by the
ultrasound pulse.

Reduction of the sensitivity of the system to knemotion: The developed system
requires the knee to be held fixed (using the lelgldrs) during every region
scanning session as described in section 6.3.régigrement was implemented in
the scanning protocol to eliminate the need foragive bone-implanted motion
tracking reference probes. In order to eliminais tequirement, the sensitivity of
the system to the motion artifact (noise), produicethe reconstructed point cloud
by the motion of the joint during the region scamgnsessions, should be reduced.
This can be partially achieved by using motionknag reference probes firmly
attached to the patient’s leg (in the case of theek on the bone being scanned
(distal femur, or proximal tibia). This referencelpe will provide tracking data for

the bone’s motion occurring during the region soagsession, and can be used to
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correct the noise added to the point cloud duditrhotion. This can be achieved
by recording the ultrasound probe’s motion trackitaga relative to this reference
probe. However, since the reference probe is otihclaed to the subjects’ skin
(outer surface of the joint), it will be affectegl the skin motion artifact, and hence
will reduce the accuracy of the reconstructed poiotid, and consequently reduce
the accuracy of the reconstructed bone model. Tdrverethe elimination of the
joint fixation constraint might be at the expenseealuced accuracy.

Inclusion of other joints: The developed method for bone contour extractiad, a
point cloud, and 3D model reconstruction is notcdpeto the knee joint, and can
be applied with no change to other joints of thdyhsuch as the shoulder and hip.
The partial point cloud integration method is adgaplicable to other bones, and
joints. However, every joint has its own unique tanay, and a different scanning

protocol, and setup (joint holder) has to be dgwedbfor each joint type.
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8.2 3D Knee Injection Guidance

One of the innovative technologies that can bet lhsiked on the developed 3D
knee model reconstruction technology is 3D kneectipn guidance system. This 3D
knee injection guidance system uses the 3D modé¢ledknee bones reconstructed using
the ultrasound-based 3D bone model reconstrucéohnblogy developed in this work.
3D model of the injection needle is rendered alith the 3D models of the knee bones.
The motion of the injection needle is tracked usangnicro electromagnetic tracking
sensor attached to the needle. The 3D model afébdle moves on the screen as the real
needle moves inside or outside of the knee joimiceSthe reconstructed 3D bone models
are registered with the patient’s knee bones, tbgom of the 3D needle model, relative
to the 3D models of the bones, represents the matiche real needle relative to the
patient’'s knee bones. Current injection guidancérelogies are 2-D based which uses
either ultrasound-based guidance or fluoroscoshtiw the needle inside the joint being
injected. The latest ultrasound-based injectiondgouce technologies utilize the
electromagnetic tracking system to track the motafnthe needle, and overlay its
projection on the 2D ultrasound image whether ihithe ultrasound image plane or out
of the image place as shown in Figure 8.1. Thes#ague systems still lack the 3D view
of the organ or joint being injected which is paed by the novel 3D injection guidance
system. Figure 8.2 shows a schematic comparisomeket the current 2D ultrasound-
based injection guidance, and the 3D injection gui@ system. Figure 8.3 shows a

flowchart for the proposed 3D joint injection guita system.
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Figure 8.1 Example for the latest ultrasound-bamsstile guidance systems (Ultrasonix
Inc) using the electromagnetic tracking system éhson Inc) to track the needle’s

motion and project it on the ultrasound imagehtgs the two cases when the needle is

in the image plane (left), and when the needlaitobthe image plane, i.e. the needle is

not in the ultrasound image (right)

3D reconstructed
femur

Needle

3D reconstructed Tibia

Figure 8.2 A schematic comparison between thettoaadil 2D and the 3D ultrasound-
based injection guidance, showing a schematicpaiti@nt’s knee while being injected
(left), the 2D ultrasound-based injection guida(enter), and the 3D injection guidance

with the visualized 3D joint bone models and réalettracked needle (right).
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Figure 8.3 Flowchart for the proposed 3D joint atien guidance system, showing the

process flow starting from the scanning of thetjdinen automatic real-time 3D bones

models reconstruction, then volume reconstructiongoft tissue visualization), then

injection planning, and finally injection executiand needle guidance.
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This innovative technology will enable the orthedipesurgeon to plan the
trajectory for the injection before performing thrgection process, which will yield a
potential decrease in the number of missed injastidhis will result in elimination of
the injection cost and the pain associated withsetsinjections. This technology will
also provide the surgeon with more insight in tlaéigmt’'s knee, and enable him/her to
visualize the knee in 3D views, and to visualiz&om different viewing angles, which
are expected to provide more user-friendly imagmadality for the joint which will
enable more efficient and accurate injections. Taehnology can also be extended to
include other joints, such as the shoulder, and hip

In this work, a prototype for the 3D knee injectigystem was developed, using
Microsoft Visual C++ 2005 for development, QT 4 fraphical user interface, and
Open Inventor 7.2 for 3D visualization. The systemas implemented on the
SonixTOUCH (Ultrasonix Inc) ultrasound machine, andging the DriveBay
electromagnetic tracking system (Ascension Inc)tiier needle tracking. This prototype
was developed as an extension to the 3D knee medehstruction system used in the
clinical study. The 3D injection prototype used thedel 90 electromagnetic tracking
sensor (0.9 mm diameter) to track a special holleedle that house the electromagnetic
sensor inside it. A simulation for the injection svperformed (no actual injection was
performed, just positioning of the needle overgkim was performed) for a volunteering
surgeon after reconstructing the 3D models of hesekbones (distal femur, and proximal
tibia) using the developed imaging system. FigudesBiows a picture for the developed

3D injection guidance prototype while being expemted in injection planning



Figure 8.4 A picture taken for the developed 3[@dtipn guidance prototype while
experimenting it in injection planning (no injeatizvas performed) for a volunteering
surgeon, showing the reconstructed 3D models okitiee bones (distal femur, and
proximal tibia), and the 3D model of the needlejlevheing tracked, showing its position

and orientation relative to the knee bones.
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8.3  Knee Kinematics Tracking Using A-Mode Ultrasound

Kinematics tracking is the process of tracking thlative motion of between joints
bones while doing an activity involving the joingibg studied (such as knee, shoulder,
and hip). This motion consists of rotation and station of the joint bones relative to
each others. Joint motion analysis is used in disignof joint pathology, as well as
studying the normal joint function. Currently, fl@scopy is the most accurate method
for joint kinematics tracking [42]-[45].

Fluoroscopy-based kinematics tracking is perforrbgdimaging the patient with
fluoroscopy while doing an activity involving theifnt under study. Then the patient’s
joint is scanned using computed tomography (CTpagnetic resonance imaging (MRI).
The CT or MRI scans are then segmented to create@i®ls of the joint bones. The 3D
models of the bones are registered to each of Itteokcopy images using 3D/2D
registration to estimate the 3D motion of the jobdnes from the consecutive 2D
fluoroscopy images [46],[47]. Figure 8.5 shows @awithart for the fluoroscopy-based
kinematics tracking method.

A potential novel technology that can be developsihg the developed ultrasound-
based 3D knee model reconstruction system, istadgguracy knee kinematics tracking
system using A-mode ultrasound. This novel kineosatiacking technology can replace
the fluoroscopy-based kinematics tracking to awbigl harmful X-ray radiation the the
patient and physician are exposed to during therdscopy. This new technology can
also replace the markers-based knee kinematidsirigato avoid its low accuracy due to

the skin-bone motion artifact which introduced higine tracking errors.
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Manually {or
automatically) segment
the MRI (or CT) scans

MRI (or CT) imaging of the
patient/volunteer knee

Fluoroscopic imaging of the patient/
volunteer during an activity (deep
knee bend in this case)

|

Segmented . "' -
Tibia Segmented CK'?;% s IVIRI (or

Perform the kinematics tracking
By 3D/2D registration of the
bones models with the
fluoroscopy frames (images)

Knee Activity Fluoroscopy (Deep Knee

Bend in this Case) Segmented

Activity's Knee Kinematics (Activity's Step Homogeneous
Transformations for Each Bone Models)

Figure 8.5 Flowchart for fluoroscopy-based kinewestracking of the knee. Fluoroscopy

images copied from the work in [26], and modified iflustration in the flowchart.
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The new kinematics tracking system shall be buwibhg a number of single-element
ultrasound transducers attached to a knee-weabsibée as shown in Figure 8.6. This
brace shall have an optical or electromagnetickingcsystem’s probe attached to it in
order to track the global motion of the brace. Tilgasound transducers will be
responsible for transcutaneously detecting 3D goavier the bone’s surface. This 3D
point detection will be performed by automatic agtron, and 3D registration of the
bone’s echoes from the ultrasound RF signals reddy the single-element transducers.
The bone echo detection will be performed using dbtéomatic bone echo detection
method developed in this work and described ini@ec.4.1. The bone echo point
(represented as 1D depth measurement between tigshsurface and the ultrasound
transducer’s face) will be registered into a 3D émurface point in the reference
coordinate frame of the motion tracking probe ditakcto the brace. Figure 8.6 shows a

schematic for the proposed A-mode ultrasound-bksed kinematics tracking system

Figure 8.6 Schematic for the ultrasound-based kimeamatics tracking system, showing

the femoral, and tibial braces that host the she¢genent ultrasound transducers.
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The bone surface point detection process will bfopmed for each single-element
ultrasound transducer in the brace at a trackiagndr rate (determined by the whole
system speed), and thus collecting a number of barface points equals to the number
of ultrasound transducers in the brace for eadkitng frame. This set of points collected
for each bone identifies the new position and daeon of the bone at time instanag)(
while the patient is doing the activity involviniyet knee. This set of bone surface points
is then registered to the reconstructed 3D boneemmpresenting the patient’'s bone
position at time instance,{_,) using the iterative closest point algorithm (IG®predict
the relative transformation between the positiod anentation of the patient's bone at
time instancest{,_;) , and ¢,). This relative transformation will then be appli® the
3D bone model (currently at the position of timetamce £,,_,)) to register it with the
patient’'s bone at timet,(). Then this process of detecting a set of bonfaseipoints at
time (t,,.1), and is registered to the 3D bone model at tlstipa and orientation at time
(tn) using the ICP method to predict the new patiebtse position and orientation at
time (t,,1). Each iteration of this process is called a tiraglstep. The tracking process
starts at timet,) when the 3D models of the knee bones are reeanstt and registered
to the patient’'s knee position and orientation ggime system developed in this work.
Therefore the tracking system has an initial cooditof 3D models registered to the
patient’'s knee bones before performing the activityen the tracking system estimates
the incremental (residual) position and orientatafrthe patient's knee bones at each
tracking step. The tracking steps shall be execatexddframe rate fast enough to sample

the motion of the knee bones (depending on theigcperformed).
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In this work, a simulation framework was developeding Microsoft visual
C++2005 for development, QT 4.3 for graphical usterface, and Open Inventor 7.2 for
3D visualization, to determine the feasibility dietconcept and to determine the best
configuration (number of transducers and their iapatistribution) of the ultrasound
transducers that can achieve a high-accuracy trgcki

The simulation framework uses real kinematics adt@ained for patients during an
activity such as gait, deep knee bend, stair clmgbi These kinematics data were
obtained using fluoroscopy [26] as shown in thevlbart in Figure 8.5. 3D models of
the proximal tibia and distal femur were segmenfiean CT or MRI scans of the
patient's knee. The 3D models of the distal femud @roximal tibia, along with the
kinematics data obtained using fluoroscopy, weenthsed to perform the ultrasound-
based kinematics tracking simulation.

The ultrasound-based kinematics tracking simulatimmsists of the following steps:

1. The 3D patient-specific models of the distal ferand proximal tibia (segmented
from CT or MRI scans) are first positioned in thigitial positions acquired by the
fluoroscopy-based kinematics tracking data. Th&en®dels will be simulating the
real bones motion (in the actual proposed systang,will be denoted by motion-
simulating bone models.

2. A number of points on the motion-simulating 3D b®meodels are selected by the
user of the simulation. These selected points sufiulate the bone surface points
detected using the single-element ultrasound traoesd at the selected locations.

These points will be denoted by simulated bonertase points.
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3. The kinematics tracking data are then applied ¢ontiotion-simulating bone models
in incremental steps to simulate the volunteer'sdsomotion (as acquired using
from the fluoroscopy-based kinematics tracking fata

4. At each motion simulation step, the new coordinafabe simulated bone’s surface
points are calculated using the fluoroscopy-baseenkatics tracking data. So these
points simulate the points detected on the suréddke actual patients bones, using
the single-element ultrasound transducers attatbetthe patient's knee, at each
tracking step for the patient's knee motion. Thase simulated bone’s surface
points carries the information of the new positi@md orientation of the motion-
simulating 3D bones models after applying one stéphe fluoroscopy-based
kinematics tracking data. In the actual proposestesy, these points shall be
detected using the single-element ultrasound traoesd attached to the patient’s
knee. These detected points shall carry the infoomaof the new orientation and
position of the patient’s bone at each tracking.ste

5. The new position and orientation of the motion-dating bone models are then
estimated by registering, using the iterative dvog®int method (ICP), the new
calculated simulated bone’s surface points to aratbt of 3D patient specific bone
models (distal femur, and proximal tibia 3D bonedels) which are identical to the
motion-simulating bone models but have independeentation and position than
the motion-simulating bone models. These set oeboaodels will be denoted by the
bones tracking models. They are the models thatbeiltracking the motion of the

patients’ knee bones in the proposed system. Ttnasking bone models shall be
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reconstructed using the ultrasound-based 3D bondeimeeconstruction system
developed in this work. The tracking bone modelallshe registered (at every
tracking step or frame) to the moving patient’s &m®nes by the ultrasound-based
kinematics tracking system. In the simulation framek, the bone tracking models
track the motion-simulating bone models using tineukated bone’s surface points
calculated at each tracking step using the fluapgdased kinematics data. While
in the actual proposed kinematics system, the I@oking models shall track the
motion of the patient's bones using the bone sarfpoints acquired using the
single-element ultrasound transducers attachetegatient's knee. The estimated
orientation and position data for the motion-sinin;bone models (or the patient’s
bones in proposed system) are then used to ugdafeosition and orientation of the
bones tracking models.

6. At every tracking step (or simulation step), thecking error (or registration error)
between the bone tracking models, and the motionilaiing models is calculated

(as the root mean square (RMS) between them) antidglin a tracking error chart.

Therefore the tracking simulation step consistapglying the kinematics data to the
motion-simulating bone models, then calculating tteww coordinates of the set of
simulated bone’s surface points, then registebtime tracking models to these simulated
bone’s surface points using the ICP method to esérthe new orientation and position
of the motion-simulating bone models, then appBsthnew position and orientation to
the bone tracking models. Then calculate the megish RMS error between the bones

tracking models, and the motion simulating bone efmdrFigure 8.7 shows a flowchart
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for the kinematics tracking simulation with snapshof the kinematics tracking
simulation for a knee, using 22 simulated singlyednt ultrasound transducers (or
simulated bone’s surface points), shown as grekarsep, were used for the distal femur,
and 19 for the proximal tibia. The motion simulgtimodels are in beige, and the motion
tracking models are in red and blue. The trackiteps error graph is shown in the
flowchart with an average tracking error was 0.54 ffor the proximal tibia, and 0.01

mm for the distal femuir.
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Load motion
simulating bones
models, tracking
bone models, and

fluoroscopy-based
kinematics data

Pick simulated bone
surface points
(simulating ultrasound
transducers locations)

Estimate the step Apply kinematics step
transformation using the | _ transformation to motion
simulated ultrasound-based | simulating bones models |
bone surface points (in beige)

i

Calculate the tracking step error
between the motion-simulating
bone models and the tracking

bones models (in red, and blue )

.

Apply the estimated
transformation to the tracking
bone models (In red, and blue)

Teneking Error (0.1 mam)

Figure 8.7 A flowchart for the A-mode ultrasoundgéa kinematics tracking simulation
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8.4  Cartilage Model Reconstruction

A potential extension for the developed ultrasobaded 3D knee bone model
reconstruction system is the reconstruction ofgpatispecific 3D model of the knee
cartilage. The cartilage thickness is very esskintdicator in several knee pathologies,
and most important the osteoarthritis. Monitorihg tartilage thickness for osteoarthritis
patients is a very important procedure for orthapgdhysicians. Currently the cartilage
thickness examination is performed using MRI, whElexpensive. The ultrasound can
be used as an alternative tool create a 3D mod#ieotartilage which can provide the
orthopedic physician with 3D map of the cartilalgekness similar to the one that can be
obtained from MRI but with much less cost.

In this work, the feasibility of automatic extramti of the cartilage contours from
ultrasound RF data frames, to reconstruct 3D pdioid representing the cartilage’s
outer surface (the bone’s point cloud and 3D maegekesents the cartilage’s inner
surface), was studied. The ultrasound RF datahferdt trial of the clinical study's St
volunteer distal femur scan was used to automatiesdtract the cartilage echoes, and
mutually register the extracted cartilage echoethén3D reference coordinate frame of
the tracking system to reconstruct a 3D point cleetesenting the outer surface of the
scanned cartilage. The reconstructed cartilageter@urface 3D point cloud was then
merged with the bone’s 3D point cloud at the cagl areas (which also represents the
inner surface of the cartilage at the bone-casiliagerface areas).

The difference in the acoustic impedance betweerc#ntilage and the soft tissue

lying above it gives defines the outer surfacehef tartilage in the ultrasound RF data
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frames or B-mode images. Similarly, the differemtecoustic impedance between the
cartilage and the bone lying under it defines tagilage’s inner boundary (and also the
bone’s surface boundary) in the ultrasound RF fftataes B-mode images. The cartilage
tissue is hypogenic (doesn’t generate ultrasoumdes), but its two surrounding edges
(one at the bone-cartilage interface, and the othext the muscle-cartilage interface)
generate detectable echoes which the cartilagéisedée its boundary.

The cartilage echo detection method is an extensiahe bone echo detection
method described in section 5.4.1. The cartila¢® éx detected as the falling edge point
of the echo preceding the bone echo (which wasctisteluring the bone echo detection
process). Figure 8.8 shows 4 sample RF signalsiegdhe detected bone, and cartilage
echoes. Figure 8.9 shows two example ultrasounmesafor femoral condyle scans
showing the extracted bone and cartilage contaora the ultrasound RF data overlaid
on the B-mode images. The detected cartilage ecliagshen transformed into 3D point
cloud using the same process of transforming thee echoes into 3D point cloud as
described in section 5.4.2.1. Figure 8.10 showseabenstructed cartilage 3D point cloud
for the distal femur of the'3trial for the f' volunteer's scans of the clinical trial. The
limitation to the cartilage surface reconstructignthe limited areas of the cartilage

accessible to the ultrasound scanning.
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o b

Figure 8.8 Sample raw ultrasound RF signals (ir)}land their processed versions (in

red) below them, showing the detected bone eclgyesrf dots), and cartilage echoes

(red dots), and the other deteced non-bone nonacgrtechoes (cyan dots)



Bone-Cartilage Cartilage
Interface

Bone/

Figure 8.9 Two examples for bone (in green) antllage (red) contours extracted using
the ultrasound RF data overlaid on their B-modegi@safor two frames of one of the
clinical study volunteers’ femoral condyle scane Tartilage is the hypo echoic region

lying between the bone and cartilage contours.
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Medial
Condyle

Trochlear _—¥ | |}\|

Groove

Figure 8.10 The reconstructed 3D cartilage poiotid| showing the outer (red), and
inner (green) cartilage surfaces of the distaltfeof the & trial for the £ volunteer’s

knee of the clinical study. The cartilage’s innerface point cloud is tself the bone’s
surface point cloud. Three views of the point clawel shown; superior view(top),

inferior view(middle), and side view(bottom)
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Chapter 9 Appendix

The first section of the appendix (9.1) includes &krrors graphs for the knee
bones atlas analysis performed on the gender-specdn gender-specific, jack-knife,
and non jack-knife combinations of the atlasesti®&e®.2 includes RMS errors graphs
for the bone morphing methods analysis for the dioa Set, linear least squares, and
the hybrid methods. Section 9.3 includes RMS ergraphs for the results for the
phantoms experiments of the developed A-mode olirad based 3D bone patient-
specific model reconstruction system. All RMS ergrmaphs are plotted versus the
number of principal components used. Sections 8wl 9.5 includes the cadaveric

experiments and clinical study results respectively
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9.1 Knee Bones Atlas Analysis

9.1.1 Female Distal Femur

FDF G-Specific JK RMS Errors
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Figure 9.1 Mean, maximum, and minimum RMS errorgtie models projection-

reconstruction using gender-specific, jack-knifasfor the female distal femur

FDF G-Specific NJK RMS Errors

4

’g 3.5 \
£ 3 \
5 2.5
P 2 .\
g 1.5
_*3 1
a 0.5
0 =
1 2 4 8 16 | 32 | 64 | 128 | 143
—4—MeanRMS| 1.48 | 1.22 | 1.05 | 0.89 | 0.68 | 0.46 | 0.26 | 0.05 | O
~@—MaxRMS | 3.79 | 2.17 | 1.62 | 1.36 | 1.03 | 0.72 | 036 | 0.13 | 0O
~#=MinRMS | 0.85 | 0.73 | 0.68 | 0.53 | 0.47 | 0.3 | 0.09 | 0.01| O

Figure 9.2 Mean, maximum, and minimum RMS errordlie model projection-
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FDF NG-Specific JK RMS Errors
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Figure 9.3 Mean, maximum, and minimum RMS errorgtie models projection-

reconstruction using non gender-specific, jack-<maitias for the female distal femur
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9.1.2 Male Distal Femur

MDF G-Specific JK RMS Errors
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Figure 9.5 Mean, maximum, and minimum RMS errordtie models projection-

reconstruction using gender-specific, jack-knifasfor the male distal femur

4.5
4
3.5
3
2.5
2
1.5
1
0.5
0

Distance Error (mm)

MDF G-Specific NJK RMS Errors

\

\

H

1

2

4

8

16

32

64

128

256

£

=@=—Mean RMS

1.72

1.4

1.17

1.02

0.77

0.55

0.37

0.21

0.06

== Max RMS

4.25

2.54

1.79

1.65

1.27

0.93

0.49

0.28

0.11

====Min RMS

0.87

0.77

0.69

0.65

0.47

0.39

0.28

0.1

0.02

o|lOo| o

Figure 9.6 Mean, maximum, and minimum RMS errorgtie models projection-

reconstruction using gender-specific, non jack-aifias for the male distal femur
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MDF NG-Specific JK RMS Errors
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Figure 9.7 Mean, maximum, and minimum RMS errorgtie models projection-

reconstruction using non gender-specific, jack<aitias for the male distal femur
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9.1.3 Female Proximal Tibia
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Figure 9.9 Mean, maximum, and minimum RMS errordtie models projection-

reconstruction using gender-specific, jack-knifasfor the female proximal tibia
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Figure 9.10 Mean, maximum, and minimum RMS errorgtie models projection-

reconstruction using gender-specific, non jack<aitias for the female proximal tibia
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FPT NG-Specific JK RMS Errors
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Figure 9.11 Mean, maximum, and minimum RMS errorgtie models projection-

reconstruction using non gender-specific, jack<maitias for the female proximal tibia
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Figure 9.12 Mean, maximum, and minimum errors fier models projection-
reconstruction using non gender-specific, non jaalke atlas for the female proximal
tibia



9.1.4 Male Proximal Tibia
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Figure 9.13 Mean, maximum, and minimum RMS errorgtie models projection-

reconstruction using gender-specific, jack-knifasfor the male proximal tibia
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Figure 9.14 Mean, maximum, and minimum RMS errorgtie models projection-

reconstruction using gender-specific, non jack<kaitias for the male proximal tibia
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MPT NG-Specific JK RMS Errors
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Figure 9.15 Mean, maximum, and minimum RMS errorgtie models projection-

reconstruction using non gender-specific, jackaitias for the male proximal tibia
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Figure 9.16 Mean, maximum, and minimum RMS errorgtie models projection-

reconstruction using non gender-specific, non jauke atlas for the male proximal tibia



9.2  Bone Morphing Analysis

9.2.1 Direction Set Method

9.2.1.1Using unreduced point clouds
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Figure 9.17 Mean, maximum, and minimum RMS errorgtie female distal femur

morphing using the Direction Set method for theaediced models’ point clouds
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Figure 9.18 Mean, maximum, and minimum RMS errorgtie male distal femur

morphing using the Direction Set method for theadniced models’ point clouds



Female Proximal Tibia
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Figure 9.19 Mean, maximum, and minimum RMS errorglie female proximal tibia

morphing using the Direction Set method for theadniced models’ point clouds
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Figure 9.20 Mean, maximum, and minimum RMS errordlie male proximal tibia

morphing using the Direction Set method for theaediced models’ point clouds
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9.2.1.2Using 4 mm reduced point clouds
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Figure 9.21 Mean, maximum, and minimum RMS errorgtie female distal femur

morphing using the Direction Set method for them raduced models’ point clouds
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Figure 9.22 Mean, maximum, and minimum RMS errorglie female proximal tibia

morphing using the Direction Set method for them reduced models’ point clouds
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Female Proximal Tibia
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Figure 9.23 Mean, maximum, and minimum RMS errorglie female proximal tibia

morphing using the Direction Set method for them reduced models’ point clouds
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Figure 9.24 Mean, maximum, and minimum RMS errordlie male proximal tibia

morphing using the Direction Set method for them reduced models’ point clouds
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9.2.1.3Using 8 mm reduced point clouds
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Figure 9.25 Mean, maximum, and minimum RMS errorgtie female distal femur

morphing using the Direction Set method for ther@ raduced models’ point clouds
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Figure 9.26 an, maximum, and minimum RMS errordfiermale distal femur morphing

using the Direction Set method for the 8 mm redunedels’ point clouds
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Female Proximal Tibia
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Figure 9.27 Mean, maximum, and minimum RMS errorglie female proximal tibia

morphing using the Direction Set method for ther@ reduced models’ point clouds
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Figure 9.28 Mean, maximum, and minimum RMS errordlie male proximal tibia

morphing using the Direction Set method for ther@ reduced models’ point clouds
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9.2.1.4Using 16 mm reduced point clouds
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Figure 9.29 Mean, maximum, and minimum RMS errorgtie female distal femur

morphing using the Direction Set method for therité reduced models’ point clouds
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Figure 9.30 Mean, maximum, and minimum RMS errorgtie male distal femur

morphing using the Direction Set method for therité reduced models’ point clouds
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Female Proximal Tibia
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Figure 9.31 Mean, maximum, and minimum RMS errorglie female proximal tibia
morphing using the Direction Set optimization mettior the 16 mm reduced models’

point clouds
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Figure 9.32 Mean, maximum, and minimum RMS errordlie male proximal tibia

morphing using the Direction Set method for therité reduced models’ point clouds
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9.2.1.5Using 32 mm point clouds
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Figure 9.33 Mean, maximum, and minimum RMS errorgtie female distal femur

using the Direction Set method for the 32 mm redunedels’ point clouds
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Figure 9.34 Mean, maximum, and minimum RMS erforghe male distal femur using
the Direction Set method for the 32 mm reduced rsd@eint clouds



Female Proximal Tibia
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Figure 9.35 Mean, maximum, and minimum RMS errorglie female proximal tibia

using the Direction Set method for the 32 mm redunedels’ point clouds
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Figure 9.36 Mean, maximum, and minimum RMS errordlie male proximal tibia

using the Direction Set method for the 32 mm reduwnedels’ point clouds
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9.2.2 Linear Least Squares Method

9.2.2.1Using unreduced point clouds
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Figure 9.37 Mean, maximum, and minimum RMS errorgtie female distal femur

using the linear least squares method for the woestimodels’ point clouds
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Figure 9.38 Mean, maximum, and minimum RMS errorgtie male distal femur using

the linear least squares method for the unredua&tels’ point clouds
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Figure 9.39 Mean, maximum, and minimum RMS errorglie female proximal tibia

using the linear least squares method for the weestimodels’ point clouds

Male Proximal Tibia
3
E 2.5
13
- 2
5
I 1.5
g
c 1
£ A——ﬁ\‘_*‘
B 0.5 hﬁ_
0
1 2 8 16 32 64 | 128 | 256 | 301
=f=Mean RMS| 1.43 |1.35|1.21|/1.06|0.93|/0.76 |0.59| 0.5 |0.47 | 0.46
=f=Max RMS |2.56| 2.4 |2.03/2.09|2.02|152|1.27|1.23| 1.2 |1.19
==he=Min RMS 0.78 | 0.77 0.56 10.53/0.44 1 0.33/0.25(0.22 | 0.22

Figure 9.40 Mean, maximum, and minimum RMS errordlie male proximal tibia

using the linear least squares method for the wizestimodels’ point clouds
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9.2.2.1Using 4 mm point clouds
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Figure 9.41 Mean, maximum, and minimum RMS errorglie female proximal tibia

using the linear least squares method for the 4resiuced models’ point clouds
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Figure 9.42 Mean, maximum, and minimum RMS errorglie female proximal tibia

using the linear least squares method for the 4reduced models’ point clouds using
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Figure 9.43 Mean, maximum, and minimum RMS errorglie female proximal tibia

using the linear least squares method for the 4resiuced models’ point clouds
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Figure 9.44 Mean, maximum, and minimum RMS errorglie male proximal tibia

using the linear least squares method for the 4resiuced models’ point clouds
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Female Distal Femur
4
z 35 K
é 3
‘é 2.5
P 2
§ 1.5
g 1 iy
a 0.5
0
1 2 4 8 16 32 64 128 142
—4—MeanRMS| 1.53 | 1.29 | 1.2 | 1.07 | 0.89 | 0.7 | 0.59 | 0.52 | 0.51
== Max RMS 362 | 245|209 192 171|132 | 1.18 | 1.09 | 1.06
=== Min RMS 0.86 | 0.74 | 0.73 | 0.7 | 058 | 0.37 | 0.29 | 0.27 | 0.27

201

Figure 9.45 Mean, maximum, and minimum RMS errorgtie female distal femur

using the linear least squares method for the 8resiuced models’ point clouds
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Figure 9.46 Mean, maximum, and minimum RMS errorgtie female distal femur

using the linear least squares method for the 8resiuced models’ point clouds
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Female Proximal Tibia
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Figure 9.47 Mean, maximum, and minimum RMS errorgtie female proximal tibia

using the linear least squares method for the 8eatuced models’ point
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Figure 9.48 Mean, maximum, and minimum RMS errordlie male proximal tibia

using the linear least squares method for the 8restuced models’ point clouds
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9.2.2.3Using 16 mm point clouds
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Figure 9.49 Mean, maximum, and minimum RMS errorgtie female distal femur

using the linear least squares method for the 16reduced models’ point clouds
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Figure 9.50 Mean, maximum, and minimum RMS errordtie male distal femur using

the linear least squares method for the 16 mm extinwdels’ point clouds
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Female Proximal Tibia
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Figure 9.51 Mean, maximum, and minimum RMS errorglie female proximal tibia

using the linear least squares method for the 16reduced models’ point clouds
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Figure 9.52 Mean, maximum, and minimum RMS errordlie male proximal tibia
using the linear least squares method for the 16readuced models’ point clouds Hybrid
Morphing
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9.2.3 Hybrid Method

9.2.3.1Using unreduced point clouds
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Figure 9.53 Mean, maximum, and minimum RMS errorgtie female distal femur

using the hybrid method for the unreduced modedgitclouds
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Figure 9.54 Mean, maximum, and minimum RMS errorgtie male distal femur using
the hybrid method for the unreduced models’ pdiotids
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Figure 9.55 Mean, maximum, and minimum RMS errorglie female proximal tibia

using the hybrid method for the unreduced modedsitclouds
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Figure 9.56 Mean, maximum, and minimum RMS errordlie male proximal tibia

using the hybrid method for the unreduced modedsitclouds
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9.2.3.2Using 4 mm point clouds
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Figure 9.57 Mean, maximum, and minimum RMS errorgtie female distal femur
using the hybrid method for the 4 mm reduced mogeisit clouds
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Figure 9.58 Mean, maximum, and minimum RMS errorgtie male distal femur using
the hybrid method for the 4 mm reduced models’ pdiouds
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Figure 9.59 Mean, maximum, and minimum RMS errorglie female proximal tibia

using the hybrid method for the 4 mm reduced mogeisit clouds
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Figure 9.60 Mean, maximum, and minimum RMS errordlie male proximal tibia

using the hybrid morphing method for the 4 mm redluimodels’ point clouds
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9.2.3.3Using 8 mm point clouds
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Figure 9.61 Mean, maximum, and minimum RMS errorgtie female distal femur
using the hybrid method for the 8 mm reduced mogeisit clouds
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Figure 9.62 Mean, maximum, and minimum RMS errorgtie male distal femur using

the hybrid method for the 8 mm reduced models’ pdiouds
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Figure 9.63 Mean, maximum, and minimum RMS errorglie female proximal tibia

using the hybrid method for the 8 mm reduced mogeisit clouds

Proximal Tibia
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Figure 9.64 Mean, maximum, and minimum RMS errorglie male proximal tibia

using the hybrid method for the 8 mm reduced mogeisit clouds



211

9.2.3.4Using 16 mm point clouds
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Figure 9.65 Mean, maximum, and minimum RMS errorgtie female distal femur
using the hybrid method for the 16 mm reduced nsigaint clouds
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Figure 9.66 Mean, maximum, and minimum RMS errorgtie male distal femur using
the hybrid method for the 16 mm reduced modelshpdouds
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Figure 9.67 Mean, maximum, and minimum RMS errorglie female proximal tibia

using the hybrid method for the 16 mm reduced nsigaint clouds

Male Proximal Tibia
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Figure 9.68 Mean, maximum, and minimum RMS errordlie male proximal tibia

using the hybrid method for the 16 mm reduced nsdgeint clouds
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9.3  Single-Element Ultrasound Transducer-Based System®&hantom Results
9.3.1 Reconstructed Point Clouds Results

9.3.1.1Female Distal Femur

Figure 9.69 Point cloud for the ID_27_01 femaldaalif&emur phantom (left), and the
point cloud overlaid on its reference model (rightith 6721 points and RMS error of
0.8 mm between the ¥5ercentile filtered point cloud and the referenuedel
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Figure 9.70 Histogram of the error between the fpdoud and its reference model for

the ID_27_01 female distal femur phantom with medieror of 1.29 mm
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Figure 9.71 Point cloud for the ID_33 03 femalgali;emur phantom using (left), and
the point cloud overlaid on its reference modgt), with 5322 points and RMS of 0.73

mm error between the #%ercentile filtered point cloud and the referenusel

25'] T T T T T

200

150

100

Murmber of Points

50

Distance Errar {mm)

Figure 9.72 Histogram of the error between the fpdoud and its reference model for

the ID_33_03 female distal femur phantom with medieror of 1.14 mm
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point cloud overlaid on its reference model (righith 6624 points and RMS of 0.83 mm

error between the 5percentile filtered point cloud and the referenuslel
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Figure 9.74 Histogram of the error between the fpdoud and its reference model for

the ID_37_23 female distal femur phantom with medieror of 1.4 mm
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the point cloud overlaid on its reference modght) with6837 points and RMS error of

1 mm between the ¥5ercentile filtered point cloud and the referenuzdel
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Figure 9.76 Histogram of the error between the fpdoud and its reference model for

the ID_39 01 female distal femur phantom with medieror of 1.5 mm
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Figure 9.77 Point cloud for the ID_11 90 femaldaalifemur phantom (left), and the
point cloud overlaid on its reference model (righith 7022 points and RMS error of
0.89 mm between the ?Hercentile filtered point cloud and the referenudel
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Figure 9.78 Histogram of the error between the fpdoud and its reference model for

the ID_11 90 female distal femur phantom with medieror of 1.31 mm
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[RRPYE TR

Figure 9.79 Point cloud for the ID_12_02 femaldaalifemur phantom (left), and the
point cloud overlaid on its reference model (righith 7051 points and RMS error of

0.7 mm between the ¥5ercentile filtered point cloud and the referenuedel
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Figure 9.80 Histogram of the error between the fpdoud and its reference model for

the ID_12_02 female distal femur phantom with medieror of 1.23 mm
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9.3.1.2Male Distal Femur
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Figure 9.81 Point cloud for the ID_1_03 male digtahur phantom (left), and the point
cloud overlaid on its reference model (right), wsth34 points and RMS error of 0.75

mm between the ¥5percentile filtered point cloud and the referemudel
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Figure 9.82Histogram of the error between the pdmid and its reference model for the

ID_1 03 male distal femur phantom with median eafot.2 mm
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Figure 9.83 Point cloud for the ID_31_00 male digeur phantom (left), and the point
cloud overlaid on its reference model (right), waffiL3 points and RMS error of 0.75

mm between the ¥5percentile filtered point cloud and the referemudel
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Figure 9.84 Histogram of the error between the fpdoud and its reference model for

the ID_31_00 male distal femur phantom with mediemor of 1.19 mm
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Figure 9.85 Point cloud for the ID_1_87 male digtahur phantom (left), and the point
cloud overlaid on its reference model (right), \8df71 point and RMS error of 0.93 mm

between the 75percentile filtered point cloud and the referenuel
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Figure 9.86 Histogram of the error between the fpdoud and its reference model for

the ID_1_87 male distal femur phantom with mediaoreof 1.54 mm



222

Figure 9.87 Point cloud for the ID_4 97 male digtahur phantom (left), and the point
cloud overlaid on its reference model (right), wittb4 points and RMS of 0.86 mm

error between the 5percentile filtered point cloud and the referenuslel
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Figure 9.88 Histogram of the error between the fpdvud and its reference model for

the ID_4 97 male distal femur phantom with mediaoreof 1.38 mm
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Figure 9.89 Point cloud for the ID_11 97 male digeur phantom (left), and the point
cloud overlaid on its reference model (right), wstt83 points and RMS error of 0.63
mm between the ¥5percentile filtered point cloud and the referemudel
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Figure 9.90 Histogram of the error between the fpdoud and its reference model for

the ID_11 97 male distal femur phantom with medieor of 1.15 mm
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Figure 9.91 Point cloud for the ID_14 90 male digeur phantom (left), and the point
cloud overlaid on its reference model (right), we83 points and RMS error of 0.72

mm between the ¥5percentile filtered point cloud and the referemudel
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Figure 9.92 Histogram of the error between the fpdoud and its reference model for

the ID_14 90 male distal femur phantom with mediemor of 1.23 mm
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9.3.1.3Female Proximal Tibia

Figure 9.93 Point cloud for the ID_39 01 femalexral tibia phantom (left), and the
point cloud overlaid on its reference model (rightith 5767 points and RMS error of
0.85 mm between the ?Hercentile filtered point cloud and the referenuzdel
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Figure 9.94 Histogram of the error between the fpdoud and its reference model for
the ID_39 01 female proximal tibia phantom with maederror of 1.2 mm
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Figure 9.95 Point cloud for the ID_37_02 femalexrl tibia phantom (left), and the
point cloud overlaid on its reference model (rightith 4159 points and RMS error of
0.97 mm between the ?%Hercentile filtered point cloud and the referenuzdel
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Figure 9.96 Histogram of the error between the fpdoud and its reference model for

the ID_37_02 female proximal tibia phantom with ma@derror of 1.29 mm
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Figure 9.97 Point cloud for the ID_27_01 femalexrwal tibia phantom (left), and the
point cloud overlaid on its corresponding modaeit(t), with5039 points and RMS error
of 0.98 mm between the ?percentile filtered point cloud and the referemudel
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Figure 9.98 Histogram of the error between the fpdoud and its reference model for
the ID_27_01 female proximal tibia phantom with ma@derror of 1.27 mm
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Figure 9.99 Point cloud for the ID_12_02 femalexrwal tibia phantom (left), and the
point cloud overlaid on its reference model (rightith 5248 points and RMS error of

0.6 mm between the ¥5ercentile filtered point cloud and the referenuedel
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Figure 9.100 Histogram of the error between thatfpdbud and its reference model for
the ID_12_02 female proximal tibia phantom with maederror of 1.05 mm
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Figure 9.101 Point cloud for the ID_11 90 femalexmnal tibia phantom (left), and the
point cloud overlaid on its reference model (rightith 4887 points and RMS error of
0.94 mm between the ?Hercentile filtered point cloud and the referenudel
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Figure 9.102 Histogram of the error between thatpdbud and its reference model for

the ID_11_90 female proximal tibia phantom with maederror of 1.28 mm



Figure 9.103 Point cloud for the ID_33_03 femalexmmal tibia phantom (left), and the
point cloud overlaid on its reference model (rightith 6163 points and RMS error of

0.85 mm between the ?Hercentile filtered point cloud and the referenudel
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Figure 9.104 Histogram of the error between thatfdbud and its reference model for
the ID_33_03 female proximal tibia phantom with maederror of 1.17 mm
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9.3.1.4Male Proximal Tibia

Figure 9.105 Point cloud for the ID_1_03 male pnoadi tibia phantom (left), and the
point cloud overlaid on its of 0.94 mm model (rightith 5711 points and RMS error of
0.85 mm between the ?Hercentile filtered point cloud and the referenudel
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Figure 9.106 Histogram of the error between thatpdbud and its reference model for

the ID_1_03 male proximal tibia phantom with medgaror of 1.18 mm
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Figure 9.107 Point cloud for the ID_14 90 male pred tibia phantom (left), and the
point cloud overlaid on its reference model (rightith 7222 points and RMS error of

0.86 mm betweenthe 7%ercentile filtered point cloud and the referenmudel
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Figure 9.108 Histogram of the error between thatfdbud and its reference model for
the ID_14 90 male proximal tibia phantom with medgror of 1.24 mm
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Figure 9.109 Point cloud for the ID_31_00 male pred tibia phantom (left), and the
point cloud overlaid on its reference model (rightith 8155 points and RMS error of
0.77 mm between the ?%ercentile filtered point cloud and the referenudel
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Figure 9.110 Histogram of the error between thafdbud and its reference model for

the ID_31_00 male proximal tibia phantom with medgror of 1.13 mm
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Figure 9.111 Point cloud for the ID_11_ 97 male e tibia phantom (left), and the
point cloud overlaid on its reference model (rightith 5481 points and RMS error of 1

mm between the ¥5percentile filtered point cloud and the referemudel
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Figure 9.112 Histogram of the error between thatfdbud and its reference model for

the ID_11_97 male proximal tibia phantom with medgror of 1.35 mm
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Figure 9.113 Point cloud for the ID_1_87 male pnoadi tibia phantom (left), and the
point cloud overlaid on its reference model (rightith 4968 points and RMS error of

0.82 mm between the ?Hercentile filtered point cloud and the reference
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Figure 9.114 Histogram of the error between thatfdbud and its reference model for

the ID_1_87 male proximal tibia phantom with medgaror of 1.27 mm
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Figure 9.115 Point cloud for the ID_4 97 male pnoaii tibia phantom (left), and the
point cloud overlaid on its reference model (rightith 4346 points and RMS error of
0.8 mm between the ¥5ercentile filtered point cloud and the referentedel
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Figure 9.116 Histogram of the error between thatpdbud and its reference model for

the ID_4 97 male proximal tibia phantom with medgaror of 1.21 mm
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9.3.2 3D Model Reconstruction Results

9.3.2.1Direction Set Morphing Method (32 Principal Components)

Female Distal Femur

RMS Error (mm)
o
o]

——ID_11 90 | 0.87 | 092 | 091 | 0.82 | 091 | 0.87 | 1.05 | 1.05 | 1.07 | 1.07
-@-ID_12 02 | 1.23 | 1.11 | 1.04 | 1.07 | 1.05 | 1.05 11 11 1.2 1.24
=#—ID_27 01 | 089 | 093 | 092 | 097 | 0.89 | 0.87 | 0.87 | 1.03 | 1.09 | 1.09
=>¢=|D_33_03 1.2 126 | 1.34 | 138 | 136 | 1.33 | 148 | 148 | 1.26 | 1.26
=¢=ID_37_02 | 0.77 | 0.82 | 0.82 | 0.97 | 0.95 0.9 0.9 0.84 | 0.84 | 1.06
=-ID_39 01 | 1.16 | 1.13 | 1.11 | 1.07 | 1.11 1.2 1.2 1.2 113 | 1.17
====MeanRMS| 1.02 | 1.03 | 1.02 | 1.05 | 1.04 | 1.04 11 111 11 1.15

Male Distal Femur

2
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E 1.4
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e 1
frr] 0.8
w0 0.6
= 0.4
o« 0.2

0

=——ID_11 97 | 1.28 1.3 135 | 1.37 | 1.37 | 1.38 | 147 | 1.47 | 1.47 1.4
—@-ID_14 90 | 096 | 093 | 091 | 096 | 097 | 097 | 1.03 | 1.03 | 1.03 11
=f=|D_1_03 165 | 172 | 167 | 1.72 | 153 | 153 | 1.72 | 1.57 | 1.74 | 1.74
=>e=|D_1_87 1.18 | 1.16 | 1.08 | 1.08 | 1.08 | 1.02 | 1.04 | 1.04 | 1.04 | 1.04
=¢=ID_31_00 | 1.44 | 1.48 1.6 141 | 142 | 145 | 145 | 145 | 145 | 176
=0-1D_4_97 0.86 | 0.85 | 1.01 | 096 | 096 | 1.11 | 1.13 1.2 1.2 1.27
—==MeanRMS| 1.23 | 1.24 | 1.27 | 1.25 | 1.22 | 1.24 | 131 | 1.29 | 1.32 | 1.39

Figure 9.117 Reconstruction RMS errors vs. poiotididensity (in mm) for the female

(top), and male (bottom) distal femur phantoms gigie linear least squares method
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Female Proximal Tibia
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=¢—|D_11_97 | 0.74 | 0.74 | 0.77 0.8 0.86 | 0.89 | 0.89 | 1.17 | 1.17 | 1.06
—@-|1D_14 90 | 1.11 | 1.04 | 0.79 | 1.06 0.9 0.9 0.9 117 | 1.17 | 151
==ID_1_03 172 | 1.77 | 1.84 | 1.88 | 1.53 | 1.88 | 1.88 | 2.14 1.4 1.4
=>=|D_1_87 142 | 156 | 1.55 | 1.55 | 1.65 | 1.67 | 1.67 1.7 1.7 1.64
=e=|D_31_00 | 1.34 1.4 141 | 146 | 175 | 171 | 171 | 1.71 | 1.71 | 1.74
=0—1D_4_97 0.76 | 0.75 0.8 0.82 | 096 | 1.09 | 153 | 1.74 | 1.74 | 1.74
===MeanRMS| 1.18 | 1.21 | 1.19 | 1.26 | 1.28 | 1.36 | 1.43 1.6 148 | 151

Male Proximal Tibia
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=——ID_11 97 | 195 | 194 | 198 | 1.85 | 199 | 1.84 | 1.84 | 2.23 | 2.15 | 2.15
=@=ID_14 90 | 095 | 096 | 1.01 | 1.08 | 1.09 | 099 | 099 | 1.23 | 1.19 | 1.19
==ID_1_03 195 | 202 | 199 | 198 | 1.89 | 188 | 2.13 | 2.13 | 1.85 | 1.85
=>=|D_1_87 0.88 | 0.86 | 0.89 0.9 096 | 1.06 | 1.06 | 0.94 | 0.94 | 0.94
=3=|D_31_00 | 1.37 14 15 15 146 | 165 | 165 | 165 | 1.66 | 191
=0—1D_4_97 162 | 162 | 159 | 166 | 158 | 165 | 1.65 | 1.53 | 1.53 | 1.53
==t==Mean RMS| 145 | 1.47 15 149 | 149 | 151 | 155 | 1.62 | 1.55 | 1.59

Figure 9.118 Reconstruction RMS errors vs. poiatidldensity (in mm) for the female

(top), and male (bottom) proximal tibia phantommgshe linear least squares method
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9.3.2.2Linear Least Squares Method (64 Principal Componers)

Female Distal Femur

RMS Error (mm)
[eloloNoe) PR

oNbPnRND O

==ID_11 97 | 0.83 | 0.81 | 0.85 | 0.88 | 094 | 092 | 1.09 | 1.09 | 1.34 | 1.34
=@—ID_14 90 | 135 | 1.24 | 1.15 11 114 | 1.14 | 1.19 | 1.19 | 1.28 1.2
==ID_1_03 0.81 | 0.82 | 0.86 | 091 | 0.87 0.9 0.9 0.94 11 11
=>=|D_1_87 142 | 149 | 147 | 1.52 15 153 | 158 | 1.58 | 1.39 | 1.39
=¢=ID_31_00 | 0.89 | 0.86 0.8 0.8 0.79 | 092 | 092 | 1.03 | 1.03 | 1.13
=0=ID_4_97 0.9 094 | 091 | 0.94 | 0.91 1 1 1 117 | 1.25
==t==MeanRMS| 1.03 | 1.03 | 1.01 | 1.03 | 1.03 | 1.07 | 1.11 | 1.14 | 1.22 | 1.24

Male Distal Femur
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=—ID_11 97 | 1.28 | 1.27 | 1.27 | 1.26 | 1.26 | 131 | 1.48 | 1.48 | 1.48 | 1.24
—@-ID_14 90 | 0.87 | 0.87 | 091 | 1.03 | 1.03 | 1.03 | 1.25 | 1.25 | 1.25 | 1.23
=—ID_1_03 1.65 1.6 161 | 1.63 | 158 | 158 | 1.62 | 1.63 | 2.12 | 2.12
=>=|D_1_87 109 | 093 | 092 | 0.86 | 0.86 | 093 | 1.13 | 1.13 | 1.13 | 1.13
=3=|D_31_00 1.5 151 | 155 | 1.44 1.6 144 | 144 | 1.44 | 144 | 198
=0=|D_4_97 104 | 1.15 | 136 | 1.14 | 1.14 1.3 121 | 1.47 | 1.47 | 158
—t==MeanRMS| 1.24 | 1.22 | 1.27 | 1.23 | 1.25 | 1.27 | 1.35 1.4 148 | 1.55

Figure 9.119 Reconstruction RMS errors vs. poiotidldensity (in mm) for the female

(top), and male (bottom) distalfemur phantoms usingglinear least squares method
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Female Proximal Tibia
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=¢=—|D_11_97 | 0.69 0.7 0.73 | 0.75 | 0.84 | 0.79 | 0.79 1.2 1.2 1.59
=@-ID_14 90 | 154 | 147 | 135 | 1.44 | 148 | 1.48 | 1.48 | 1.46 | 1.46 | 2.15
==ID_1_03 112 | 1.09 | 1.24 | 1.27 | 123 | 117 | 1.17 | 1.75 | 134 | 1.34
=>=|D_1_87 151 | 161 | 166 | 1.66 | 161 1.8 1.8 2.08 | 2.08 | 1.76
=s¢=|D_31 00 | 1.04 | 1.07 | 1.11 | 1.12 | 1.21 | 1.44 | 144 | 1.44 | 1.44 | 2.64
=0—1D_4_97 083 | 0.83 | 0.82 | 0.83 | 0.87 | 0.82 | 1.16 | 147 | 1.47 | 1.47
====MeanRMS| 1.12 | 1.13 | 1.15 | 1.18 | 1.21 | 1.25 1.3 1.57 1.5 1.83

Male Proximal Tibia

3.5

3 3

£ 2.5
5 2 —& >

E 1.i

5 0.5

0

1 2 3 4 5 6 7 8 9 10
——ID_11 97 | 199 | 198 | 198 | 194 | 197 | 1.84 | 1.84 24 293 | 293
=@=ID_14 90 | 1.01 | 1.02 | 1.01 | 1.17 | 1.06 13 1.3 135 | 1.29 | 1.29
=f=|D_1_03 234 | 232 | 2.28 2.2 221 | 243 2.2 2.2 2.83 | 2.83
=>e=|D_1_87 1.2 115 | 113 | 1.27 | 111 | 109 | 1.09 | 1.68 | 1.68 | 1.68
=¢=ID_31_00 1.5 156 | 156 | 1.57 | 161 | 1.72 | 1.72 | 1.72 | 1.78 | 1.95
=0-1D_4_97 157 | 154 | 155 | 1.65 | 148 2 2 1.76 | 1.76 | 1.76
==f==Mean RMS| 1.6 159 | 159 | 163 | 157 | 1.73 | 169 | 1.85 | 2.04 | 2.07

Figure 9.120 Reconstruction RMS errors vs. poiatidldensity (in mm) for the female

(top), and male (bottom) proximal tibia phantommgshe linear least squares method
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9.3.2.3Hybrid Method (32, and 64 Principal Components)

Female Distal Femur

RMS Error (mm)
o
o]

=¢—|D_11_97 | 0.91 0.9 0.93 1 098 | 098 | 1.06 | 1.06 | 1.18 | 1.18
-=@-ID_14 90 | 1.27 | 1.16 | 1.06 | 1.04 | 1.11 | 1.11 | 1.13 | 1.13 | 1.09 | 1.05
==ID_1_03 082 | 085 | 0.88 | 092 | 0.84 | 093 | 093 | 1.12 | 1.06 | 1.06
=>=|D_1_87 134 | 142 | 142 | 139 | 142 | 146 1.5 1.5 1.4 1.4
==|D_31_00 | 0.82 0.8 0.79 | 0.89 | 0.91 0.9 0.9 0.98 | 0.98 | 1.08
=0=|D_4_97 104 | 1.08 | 1.07 | 1.04 | 1.06 | 1.15 | 1.15 | 1.15 | 1.42 | 1.42
==t==MeanRMS| 1.03 | 1.03 | 1.02 | 1.05 | 1.05 | 1.09 | 1.11 | 1.16 | 1.19 1.2

Male Distal Femur

2
£ 18 -
£ 1.4
= 1.2
e 1
& 0.8
w0 0.6
b 0.4
o« o.%
1 2 3 4 5 6 7 8 9 10

——|D_11 97 | 1.21 | 1.19 | 1.24 | 1.21 | 1.21 | 1.25 | 133 | 1.33 | 1.33 | 1.38
-=@-I/D_14 90 | 089 | 091 | 095 | 1.12 | 1.03 | 1.03 | 1.17 | 1.17 | 1.17 | 1.25
=—ID_1_03 149 | 147 | 148 | 1.49 | 149 | 149 | 142 | 148 | 151 | 151
=>=|D_1_87 128 | 1.21 1.2 113 | 1.13 | 1.18 | 143 | 143 | 143 | 143
==|D_31 00 | 143 | 143 | 1.47 | 142 | 148 | 157 | 157 | 1.57 | 1.57 | 1.88
=0=|D_4_97 107 | 1.21 | 1.25 | 1.24 | 124 | 131 | 1.21 | 1.37 | 137 | 154
—t==MeanRMS| 1.23 | 1.23 | 1.27 | 1.27 | 1.26 1.3 135 | 1.39 1.4 1.5

Figure 9.121 Reconstruction RMS errors vs. poiatidldensity (in mm) for the female

(top), and male (bottom) distal femur phantoms gisie hybrid morphing method
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Female Proximal Tibia

RMS Error (mm)
[EEY
(0]

=¢—|D_11_97 | 0.74 | 0.74 | 0.77 0.8 0.87 | 0.81 | 081 | 1.19 | 1.19 | 1.39
-—@-ID_14. 90 | 093 | 0.87 | 0.82 | 091 | 097 | 097 | 097 | 1.23 | 1.23 | 2.07
==ID_1_03 201 | 193 | 199 | 2.05 | 2.15 1.8 1.8 2,13 | 1.99 | 1.99
=>=|D_1_87 1.6 1.7 175 | 1.75 | 1.82 | 191 | 191 | 2.27 | 2.27 | 191
=¢=|D_31 00 | 159 | 1.57 | 1.57 | 1.62 | 164 | 1.77 | 1.77 | 1.77 | 1.77 | 2.52
=0—1D_4_97 093 | 097 | 099 | 096 | 1.11 | 1.23 | 138 | 1.59 | 1.59 | 1.59
==f==Mean RMS| 1.3 13 131 | 135 | 143 | 141 | 144 1.7 167 | 191

RMS Error (mm)
[EEN
(93]

—6—ID_11 97 | 1.76 1.8 178 | 1.81 | 1.76 | 191 | 191 | 2.25 | 2.56 | 2.56
=@=ID_14 90 | 1.03 | 1.01 | 1.04 | 1.23 | 1.11 | 1.28 | 1.28 | 1.38 | 1.27 | 1.27
=f=|D_1_03 2.04 | 202 | 204 | 201 | 2.01 2.1 209 | 209 | 219 | 219
=>e=|D_1_87 096 | 097 | 103 | 102 | 1.13 | 1.16 | 1.16 | 143 | 143 | 1.43
=¢=ID_31 .00 | 1.39 | 143 | 144 | 146 | 151 | 1.62 | 1.62 | 1.62 | 1.56 | 2.01
=0-1D_4_97 168 | 1.59 | 1.68 | 1.64 | 1.55 | 195 | 195 | 194 | 194 | 194
==t==Mean RMS| 1.48 | 1.47 15 153 | 151 | 167 | 167 | 1.79 | 1.82 1.9

Figure 9.122 Reconstruction RMS errors vs. poiatidldensity (in mm) for the female

(top), and male (bottom) proximal tibia phantommgshe hybrid morphing method
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9.4  Ultrasound RF Data System Cadavers’ Experiments Redis
9.4.1 First Cadaver’s Distal Femur

Figure 9.123 Point cloud (left), point cloud ovétlan reconstructed model (middle),

and reconstruction error color map (right) for tinst cadaver’s distal femur
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9.4.2 First Cadaver’'s Proximal Tibia
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Figure 9.124 Point cloud (left), point cloud ovétlan reconstructed model (middle),

and reconstruction error color map (right) for tinst cadaver’s proximal tibia



245

9.4.3 Second Cadaver’s Distal Femur

Figure 9.125 Point cloud (left), point cloud ovétlan reconstructed model (middle),

and reconstruction error color map (right) for seeond cadaver’s distal femur



246
9.5 Ultrasound RF Data Imaging System’s Clinical StudyResults

This section presents the clinical study resultstlie three trials for each of the
six knees scanned in the study. The reconstrudiedddnt clouds are shown as well as
the reconstructed 3D models (with the point cloodsrlaid on them) for each of the
distal femurs and proximal tibias scanned in eddhe three trials for every volunteer’s
knee. The color maps, of the distance errors betwiee reconstructed 3D bone models
and the golden reference 3D bone models manuajiyseted from the MRI scans of the
volunteers knees, are shown along with the pomids and the reconstructed models in
different anatomical views (medial, lateral, argerposterior, superior (for the proximal
tibia), and inferior (for the distal femur)). Semis 9.5.1 to 9.5.6 contains the model
reconstruction results for the six knees. The tedok each knee consists of the results
for the three trials of distal femur 3D model reswuaction, and three trials of proximal
tibia 3D model reconstruction.

Examining the reconstruction error color maps foe teconstructed 3D models
for the three trials for each bone (distal femurpximal tibia), it can be shown that the
reconstruction error is low and has similar disttibn along the bone’s surface for the
three trials with few areas having higher erromtliae rest of the bone’s surface. The
source of high error areas (yellow, and red cailorthe color map) in the reconstruction
error color map for any reconstructed 3D bone maslebne or combination of the

following sources:

» Missing point cloud area: This is the case when the reconstructed point clsud

missing the point cloud part covering this areasccurs at the areas that can’t be
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accessible by the ultrasound for scanning and pdoud reconstruction. These
areas are the lateral condyle of the femur, therimt surface of the femoral
condyles (the opposite surface to the epicondyéex],tibial plateau. In addition to
these inaccessible areas of the bones, some ottees af the bones can be missed
in the scanning which creates gaps in the poinid;lavhich causes high model
reconstruction errors at these areas. If the nmgsgoint cloud area is due to
incomplete scanning, then this error will most Iykaot be existing in different
scanning trials for the same knee. While the errcaissed by the gaps in the point
cloud due to inaccessible parts of the bone, veilekisting in all scanning trials of
the same knee.

High error in the point cloud at the area: This case occurs when the part of the
point cloud at that area (with high reconstructemor) having high error (low
accuracy). This can happen due motion artifact fleenmotion of the patient’s leg,
or the motion tracking system (the magnet of tleetebmagnetic tracking system)
during any of the region scanning sessions. Thk &igor areas of the point cloud
can also occur in areas where the bone depthge [ain high BMI patients) which
increases the distance travelled by the ultrasquitgk, and thus increases the error
in the bone depth estimation due to the inexacastund speed used as described
in section 7.3. This source of error will mostelik not exist in all of the scanning
trials of the same knee if it is due to motionfadi because of its randomness in
occurrence. While, if the source of this error &lgpne depth, the error will exist in

all of the scanning trials of the same knee.
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» Lack of area’s anatomical morphology representaiiothe atlas: This case occurs
when an area of the bone’s surface is having a Imedogy not existing in the
statistical atlas used, and can’t be extrapolatech fthe morphology variations
encoded in the atlas used. This error occurs iafdhe scanning trials for the same

knee.
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9.5.1 Volunteer's Knee 1
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Figure 9.126 Point cloud (left), reconstructed mddeddle), and error map (right) for

volunteer’s knee 1 distal femur, trial 1, with RM80.84 mm and Avg. error of 0.64 mm
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Figure 9.127 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction
error color map (right) for volunteer’s knee 1 didemur, trial 2, with RMS of 0.94 mm

and Avg. error of 0.74 mm
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Figure 9.128 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction
error color map (right) for volunteer’s knee 1 didemur, trial 3, with RMS of 1.04 mm

and Avg. error of 0.8 mm
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Figure 9.129 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction
error map (right) for volunteer’s knee 1 proximaid, trial 1, with RMS of 0.78 mm and

Avg. error of 0.6 mm
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3.1 mm

Figure 9.130 Point cloud (left), reconstructed 3bdel (middle), and reconstruction
error color map (right) for volunteer 1 proximadis, trial 2, with RMS of 0.79 mm and

Avg. error of 0.62 mm
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Figure 9.131 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction

error color map (right) for volunteer’s knee 1 proal tibia, trial 3, with RMS of 0.96

mm and Avg. error of 0.75 mm
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9.5.2 Volunteer's Knee 2

Figure 9.132 Point cloud (left), reconstructed 3Bdel (middle), and error map (right)

for volunteer’s knee 2 distal femur, trial 1, wRMS of 1 mm and Avg. error of 0.78 mm
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Figure 9.133 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction
error color map (right) for volunteer’s knee 2 didemur, trial 2, with RMS of 1.09 mm

and Avg. error of 0.85 mm
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3.3 mm

Figure 9.134 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction
error color map (right) for volunteer 2 distal femtrial 3, with RMS of 0.95 mm and

Avg. error of 0.72 mm
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Figure 9.135 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction
error color map (right) for volunteer 2 proximdig, trial 1, with RMS of 1.2 mm and

Avg. error of 0.98 mm
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Figure 9.136 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction
error color map (right) for volunteer 2 proximdit, trial 2, with RMS of 0.91 mm and

Avg. error of 0.71 mm
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Figure 9.137 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction
error color map (right) for volunteer 2 proximdit, trial 1, with RMS of 0.95 mm and

Avg. error of 0.72 mm
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9.5.3 Volunteer's Knee 3

Figure 9.138 Point cloud (left), reconstructed mdadeddle), and error map (right) for

volunteer’s knee 3 distal femur, trial 1, with RME1.18 mm and Avg. error of 0.93 mm
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Figure 9.139 Point cloud (left), reconstructed 3bdel (middle), and reconstruction
error color map (right) for volunteer’s knee3 digeanur, trial 2, with RMS of 1.05 mm

and Avg. error of 0.83 mm
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Figure 9.140 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction
error color map (right) for volunteer’s knee 3 didemur, trial 3, with RMS of 1.01 mm

and Avg. error of 0.81 mm
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Figure 9.141 Point cloud (left), reconstructed 3bdel (middle), and reconstruction
error color map (right) for volunteer’s knee 3 proal tibia, trial 1, with RMS of 1.05

mm and Avg. error of 0.8 mm
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Figure 9.142 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction
error color map (right) for volunteer’s knee 3 proal tibia, trial 2, with RMS of 0.88

mm and Avg. error of 0.69 mm
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Figure 9.143 Point cloud (left), reconstructed 3bdel (middle), and reconstruction
error color map (right) for volunteer‘s knee 3 proal tibia, trial 3, with RMS of 0.89

mm and Avg. error of 0.68 mm
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9.5.4 Volunteer's Knee 4

Figure 9.144 Point cloud (Ieft) reconstructed nicﬁdaddle) and error map (right) for
volunteer’s knee 4distal femur, trial 1, with RMEB1014 mm and Avg. error of 0.89 mm
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3.7 mm

Figure 9.145 Point cloud (left), reconstructed 3bdel (middle), and reconstruction
error color map (right) for volunteer’s knee 4atr2, distal femur with RMS of 1.17 mm

and Avg. error of 0.92 mm
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Figure 9.146 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction
error color map (right) for volunteer’s knee 4 didemur, trial 3, with RMS of 1.2 mm

and Avg. error of 0.95 mm
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Figure 9.147 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction
error color map (right) for volunteer’s knee 4 proal tibia, trial 1, with RMS of 0.94

mm and Avg. error of 0.75 mm
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Figure 9.148 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction
error color map (right) for volunteer’s knee4 pmoai tibia, trial 2, with RMS of 0.87

mm and Avg. error of 0.68 mm
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Figure 9.149 Point cloud (left), reconstructed 3bdel (middle), and reconstruction
error color map (right) for volunteer’s knee 4 proal tibia, trial 3, with RMS of 0.86

mm and Avg. error of 0.66 mm
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9.5.5 Volunteer's Knee 5

Figure 9.150 Point cloud (left), reconstructed mdadeddle), and error map (right) for
volunteer’s kneeb5 distal femur, trial 1, with RMEB1019 mm and Avg. error of 0.96 mm
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4.5 mm

Figure 9.151 Point cloud (left), reconstructed 3bdel (middle), and reconstruction
error color map (right) for volunteer’s knee 5 difemur, trial 2, with RMS of 1.28 mm

and Avg. error of 1.01 mm
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Figure 9.152 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction
error color map (right) for volunteer’s knee 5atr8, distal femur with RMS of 1.3 mm

and Avg. error of 1.04 mm
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3.5 mm

Figure 9.153 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction
error color map (right) for volunteer’s knee 5 proal tibia, trial 1, with RMS of 1.3 mm

and Avg. error of 1.08 mm



277

4.1 mm

Figure 9.154 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction
error color map (right) for volunteer’s knee 5 groal tibia, trial 2, with RMS of 1.42

mm and Avg. error of 1.13 mm
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4 8 mm

Figure 9.155 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction
error color map (right) for volunteer’s knee 5 groal tibia, trial 3, with RMS of 1.49

mm and Avg. error of 1.2 mm
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9.5.6 Volunteer's Knee 6
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Figure 9.156 Point cloud (left), reconstructed mddeddle), and error color map (right)

for volunteer’s knee 6 distal femur, trial 1, wRMS of 1.27 mm and Avg. error of 1 mm
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Figure 9.157 Point cloud (left), reconstructed 3bdel (middle), and reconstruction
error color map (right) for volunteer’s knee 6 digemur, trial 2, with RMS of 1.17 mm

and Avg. error of 0.92 mm
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Figure 9.158 Point cloud (left), reconstructed 3bdel (middle), and reconstruction
error color map (right) for volunteer’s knee 6 digemur, trial 3, with RMS of 1.21 mm

and Avg. error of 0.97 mm
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Figure 9.159 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction

error color map (right) for volunteer’s knee 6 proal tibia, trial 1, with RMS of 1.61

mm and Avg. error of 1.27 mm
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Figure 9.160 Point cloud (left), reconstructed 3bdel (middle), and reconstruction
error color map (right) for volunteer’s knee 6 proal tibia, trial 2, with RMS of 1.54

mm and Avg. error of 1.23 mm
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Figure 9.161 Point cloud (left), reconstructed 3Bdel (middle), and reconstruction

error color map (right) for volunteer’s knee 6 proal tibia, trial 3, with RMS of 1.75

mm and Avg. error of 1.43 mm
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