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Abstract 

This dissertation introduces a novel imaging method and system for automatic 

real-time 3D patient-specific knee model reconstruction using ultrasound RF data. The 

developed method uses ultrasound to transcutaneously digitize a point cloud representing 

the bone’s surface. This point cloud is then used to reconstruct 3D bone model using 

deformable models method. 

In this work, three systems were developed for 3D knee bone model 

reconstruction using ultrasound RF data. The first system uses tracked single-element 

ultrasound transducer, and was experimented on 12 knee phantoms. An average 

reconstruction accuracy of 0.98 mm was obtained. The second system was developed 

using an ultrasound machine which provide real-time access to the ultrasound RF data, 

and was experimented on two cadaveric distal femurs, and proximal tibia. An average 

reconstruction accuracy of 0.976 mm was achieved. The third system was developed as 

an extension of the second system, and was used for clinical study of the developed 

system further assess its accuracy and repeatability. A knee scanning protocol was 

developed to scan the different articular surfaces of the knee bones to reconstruct 3D 

model of the bone without the need for bone-implanted motion tracking reference probes. 

The clinical study was performed on six volunteers’ knees. Average reconstruction 

accuracy of 0.88 mm was achieved with 93.5% repeatability. 

Three extensions to the developed system were investigated for future work. The 

first extension is 3D knee injection guidance system. A prototype for the 3D injection 

guidance system was developed to demonstrate the feasibility of the idea. The second 
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extension in a knee kinematics tracking system using A-mode ultrasound. A simulation 

framework was developed to study the feasibility of the idea, and to find the best number 

of single-element ultrasound transducers and their spatial distribution that yield the 

highest kinematics tracking accuracy. The third extension is 3D cartilage model 

reconstruction. A preliminary method for cartilage echo detection from ultrasound RF 

data was developed, and experimented on the distal femur scans of one of the clinical 

study’s volunteers to reconstruct a 3D point cloud for the cartilage. 
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Chapter 1 Introduction 
 
 
1.1 Significance 

Joint pain is a major public health problem, responsible for significant costs and 

disability in the united states. Due at least in part to underlying osteoarthritis, the 

prevalence of joint pain is 46 million and increasing due to an aging population and an 

epidemic of increasing obesity [1].  Joint pain costs the healthcare system $37 billion 

annually [1].  

  Depending on the degree of disability, joint pain can be treated with systemic (e.g. 

dietary supplements, prescription pain relievers and anti-inflammatory medications) and 

targeted (e.g. medication injections, surgical correction of underlying pathology and total 

joint replacement surgery) interventions. Within the targeted interventions segment, 

annually there are an estimated 10,000,000 patients receiving treatments of the knee, hip, 

spine and shoulder, including an estimated 505,000 knee, 280,000 hip and 42,000 

shoulder arthroplasties.   

Injections of expensive pre-arthroplasty substances (e.g. single dose visco-

supplements, platelet rich plasma, stem cells, etc.) necessitate accurate injection into the 

joint space as studies have revealed injection inaccuracies ranging from 18-34% in the 

knee and 33-90% in the shoulder with similar missed injection rates in the hip [1]- [8].  

By 2030, the number of knee and hip arthroplasties are projected to increase by 565% 

and 101% respectively[1]. For every joint replacement patient, there are an estimated 10 

patients upstream in the care pathway creating a large symptomatic population that is 

projected to increase 40% by 2030 [1]. 
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A major challenge for conservative management of joint pain is the lack of low 

cost, accurate, radiation-free joint imaging.  A low-cost imaging modality to accurately 

visualize joints would represent a significant musculoskeletal innovation, moving 

diagnostic and treatment to lower-cost sites relative to MRI or fluoroscopy imaging. The 

site of care could move from the radiology suite to the physician’s office. Today, only 

knee and shoulder injections and aspirations are office-based procedures, and then, only 

for skilled orthopedists. Improved joint visualization would enable treatment of other 

joints in the office.  Improved visualization and resulting migration of many injections 

and aspirations to lower-cost settings ultimately by the non-orthopedist is attractive to 

third-party payers.   

Ultrasound is widely accepted as a means to visualize the joint space, but not 

without limitations. Common imaging techniques are 2D and do not provide full insight 

of the joint space. X-Ray shows only joint space and little other bony anatomic data. 

Current ultrasound-based joint injection guidance systems provide orthopedic surgeons 

with a difficult to interpret 2D planar image of a limited area of the joint to be injected. 

Some surgeons use fluoroscopy to assist with the guidance, which can be harmful to both 

the patient and the surgeon due to the ionizing X-Ray radiation emitted. To limit the 

amount of radiation exposure, many surgeons do not keep the fluoroscopy machine active 

to track the needle while it is being inserted into the joint. Rather, they capture snapshots 

at different time intervals to obtain the location of the needle relative to the joint space.    

Current imaging techniques are expensive, furthermore X-Ray based imaging 

systems (CT, X-Ray, and Fluoroscopy) expose patients to radiation[9]-[12]. Most 
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medical practices cannot afford fluoroscopic or MRI guided equipment, so almost all are 

facility or hospital based. Injections with these modalities are often more painful if 

multiple attempts are needed. Fluoroscopy exposes the patient to X-Ray radiation far in 

excess to conventional radiographs. 

This work targets the development of a real-time knee imaging system for automatic 

reconstruction of patient-specific 3D models of the knee bones using ultrasound. This 

system utilizes ultrasound scans of the joint performed by the surgeon to reconstruct and 

register 3D models of the patient’s actual bones. This new technology will enable 

additional office-based diagnostics and treatment planning innovations in orthopedics, 

which are : 

1. An accurate low cost, radiation-free 3D joint injection guidance system that can 

provide the orthopedic surgeons with a 3D view of the bones, while leaving their 

hands free during the injection process. The injection guidance system can be 

extended to include the joint space by 3D visualization of the joint’s volume or the 

more advanced approach of 3D reconstruction of soft tissue (cartilage, muscles, 

ligaments, and tendons) models.  

2. A diagnostic bone and joint imaging system that allows the physician to optimize 

pre-operative planning by identifying additional 3D anatomical information that is 

of substantial value in understanding patient symptoms (e.g. size, shape, contours, 

osteophytes, joint space, and bone deformities).  

3. Imaging system that allows precise patient-specific pre-operative 3D bone 

reconstructions will address the need for reduced instrument and implant hospital 
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inventory and ensure correct implant selection at surgery. Additionally, using the 

reconstructed patient-specific 3D models, the orthopedist can match the patient to 

the best fitting off the shelf implant. The 3D bone models can also be used by 

orthopedic implants manufacturers to create patient-specific implants. 

4. 3D dynamic joint motion tracking (by tracking the bone not the outer surface of the 

joint) and analysis using ultrasound utilizing the reconstructed 3D patient-specific 

bones models. 
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1.2 Literature Review 

Reconstruction of patient-specific 3D models of the bones has been widely 

investigated for the CT and MRI imaging modalities. However, the research of the use of 

ultrasound in the 3D patient-specific modeling of bones has not been widely investigated. 

Barrat et. al, and Chan et. al. have researched the instantiation of femur and pelvis 

3D models using B-mode ultrasound [13][14]. Figure 1.1 shows an overview of the 

ultrasound-based image guided system developed by Barrat et. al.  

 

Figure 1.1 Overview of the ultrasound-based image guided system developed by Barrat 

et. al for 3D patient-specific model reconstruction of the femur [13] 

They extracted the bone contours from B-Mode ultrasound images by manually 

selecting ten points on the bone’s contour in each ultrasound image. These 10 points are 

then used to fit a cubic spline that represents the bone contour in segmented ultrasound 

image. They used the principal components analysis (PCA)-based statistical deformable 

models (SDM) to reconstruct patient-specific bones models. The first five principal 
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components were used to instantiate the patient-specific model. The statistical shape 

model (SSM) or atlas for the femur was built using 16 femur scans for male and female 

patients, while the pelvis atlas was built using ten scans for female patients. The 

ultrasound scans where collected from three cadavers. Optotrack 3020 optical tracking 

system (from Northern Digital Inc, Canada) was used for tracking the ultrasound probe’s 

motion while being used in scanning. The accuracy of the optical tracking is 0.1-0.15 

mm[24]. Reference tracking probes were implanted in the cadavers’ bones to avoid the 

leg motions artifacts.  They performed the experiments on three cadavers (three pelvises, 

and six femurs). A mean reconstruction RMS error of 4.15 mm was achieved for the six 

femurs, and 2.83 mm for the three pelvises. Figure 1.2 shows the mean reconstruction 

error color maps for the six cadaveric femoral models reconstructed. The reported scan 

time was 5-30 min to selectively acquire high quality ultrasound images that can be used 

for the 3D model reconstruction.  The drawbacks of this work are: 

� The ultrasound images were segmented manually. 

� The ultrasound images had to be collected carefully to acquire high quality 

ultrasound images, which requires a skilled user and more acquisition time. 

� A reference tracking probe implanted in the cadaver’s knee was used, which makes 

the method highly invasive. 

� Despite the high accuracy optical tracking system used (with 0.1 mm accuracy), and 

implanted reference probe (which prevents patient motion artifact), the achieved 

RMS error is 4.15 mm for the femoral model reconstruction. 
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� It did not focus on the articulating surfaces of the knee bones, and the scanning 

protocols or procedures required to image those articulating surface. 

 

Figure 1.2 The color maps for the mean reconstruction error (compared with the 

reference models) for the 6 cadaveric femurs used by Barrat et. al in their experiments for 

3D patient-specific model reconstruction of the femur [13] 

 
Kilian et. al. investigated the reconstruction of the distal femur bone model using 

tracked B-mode ultrasound [15]. One cadaveric distal femur was used to test the 

developed system. An optical motion tracking system was used for the ultrasound probe’s 

motion tracking. A reference optical tracking probe was implanted in the bone while 

being scanned to avoid motion artifacts in the collected scans, which makes the process 

an invasive process. They claim a scanning time of five minutes for the distal femur. 

Figure 1.3 shows a snapshot for the scanning of the cadaveric knee using the tracked 

ultrasound probe by Kilian et. al. [15] 
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Figure 1.3 Snapshot for the scanning of the cadaveric knee using the tracked ultrasound 

probe by Kilian et. al. [15] 

The reconstruction error was specified to be less than 1 mm without mentioning 

an exact error value, with local error values exceeding 2 mm at the trochlear grove and 

femoral condyles (the articulating surfaces of the distal femur). The error was calculated 

by comparing the 3D bone model created using the ultrasound and a 3D bone model 

created from bone morphing from a set of point digitized over the surface of the distal 

femur after dissecting the cadaver. They claim automatic segmentation of the B-mode 

images using active contours. The  speed of the contour segmentation method was not 

mentioned. Figure 1.4 show a reconstructed point cloud for the cadaveric distal femur 

[15]. Figure 1.5 shows the distance error color map for the reconstructed 3D models of 

the cadaveric distal femur scanned by two operators in the experiments performed by 

Kilian et. al [15].   



 
9

 

Figure 1.4 The point cloud reconstructed for the cadaveric distal femur scanned in the 

experiment performed by Kilian et. al. [15] 

 

Figure 1.5 Color maps for the error between the reconstructed 3D models of the 

cadaveric distal femur (scanned by first (a, b), , and second (c) operator) using 

ultrasound, and the 3D model reconstructed by bone morphing using a point cloud 

digitized over the dissected cadaveric femur, by Kilian et. al. [15].   

 
Two scanning methods were mentioned; the first was called single image scanning, 

where the operator has to scan through the bone until he/she find a clear ultrasound image 

of the bone interface then he/she press a pedal to make the imaging software acquire this 
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image and process it to extract the bone contour. It was mentioned this image selection 

process has to be performed at least six times to acquire a minimum of six images. The 

second scanning method is the continuous scanning, in which the operator scans the 

bone, and all the images are acquired by the software and processed to extract the bone 

contours The drawbacks of this work are:   

� A specific bone model reconstruction error value was not mentioned. 

� The reconstruction error calculation was not performed against a segmented CT or 

MRI scans of the bone, but rather it was performed using a morphing-based 

reconstructed model, which makes the reported reconstruction error inaccurate. 

� High error (greater than 2 mm) values reported at the clinically important bone 

articulating surfaces (distal condyles, and trochlear groove) 

� The use of bone-implanted reference probe, which makes the process invasive. 

� The B-mode images automatic segmentation method was not described, nor was its 

accuracy mentioned, and whether it is fast enough to be real-time or not. 

Some research groups attempted the development of automatic segmentation 

methods for the bone contours from B-mode ultrasound images. Kumar et. al. used 

Bayesian probability model to segment bone contours in the ultrasound images of plastic 

bone immersed in water  [16]. The features used in the Bayesian model were the intensity 

values and the reverberation. Processing time was five seconds per image, running on a  

2.5 GHz Pentium 4 processor. Gonçalves et. al. experimented the snakes and the 

probabilistic methods for bone contours segmentation from B-mode ultrasound images. 

Both methods require manual selection of initialization points. The use of A-mode 
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ultrasound for intra-operative registration in computer aided orthopedic surgery for the 

skull [17]-[20], and knee [21] has also been investigated for the registration between the 

patient’s surgical region of interest and the MRI/CT scans. It is also used for the 

registration process in the robotic surgeries. 

In this work, an imaging system for the reconstruction of 3D knee models using 

ultrasound was developed to overcome the drawbacks of the mentioned previous work in 

this area, and provide an accurate, fully automated, real-time, noninvasive imaging 

system for 3D knee model reconstruction using ultrasound RF data. 
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1.3 Fundamental Contributions 

 
The presented work in this dissertation was built using the knee bones statistical 

atlases developed in the center for musculoskeletal research (CMR) at the University of 

Tennessee. The cadaveric experiments were performed with the help of the anthropology 

department. The clinical study was prepared and performed in the Minimally invasive 

Orthopedics clinic, Columbus, Ohio. My fundamental contribution in this work are:  

1. Developed a novel method for fully automated real-time patient-specific 3D bone 

model reconstruction using ultrasound RF data. 

2. Developed a novel signal processing framework for ultrasound RF data processing 

for automatic real-time extraction of bone contours from ultrasound raw RF data 

frames. 

3. Developed a knee scanning protocol and partial scans registration method for 

scanning the different articulating surfaces of the knee bones at different flexion 

angles without the need for invasive reference motion tracking probes implanted in 

the bones. 

4. Developed a new method for 3D bone model reconstruction by morphing a template 

model to a point cloud acquired using tracked single-element ultrasound transducer. 

5. Performed clinical study of the developed method and imaging system for patient-

specific 3D knee model reconstruction using ultrasound RF data to evaluate its 

accuracy and repeatability. 

6. Developed a simulation framework for knee kinematics tracking using single-element 

ultrasound transducers, which can be applied to other joints. 
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1.4 Dissertation Outline 

 
Chapter 2 provides an introduction to ultrasound. 

Chapter 3 discusses the statistical atlas used for the bone morphing, and its performance 

analysis. It also discusses the different morphing used and their accuracy and 

performance.   

Chapter 4 discusses the developed system and method for 3D knee model reconstruction 

using single-element ultrasound transducer. 

Chapter 5 presents the developed system and method for 3D knee model reconstruction 

using ultrasound RF data. 

Chapter 6 presents the clinical study performed on the developed system and method for 

3D knee model reconstruction using ultrasound RF data. 

Chapter 7 presents the results for the phantom experiments of the single-element 

ultrasound transducer system. It also presents the cadaveric experiments, and the clinical 

study results for the 3D knee model reconstruction system using ultrasound RF data. 

Chapter 8 presents the potential technologies that can be developed in future work, based 

on the developed 3D knee model reconstruction system using ultrasound RF data. 
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Chapter 2 Introduction to Ultrasound 
 
 

Ultrasound is a pressure wave that travels through a medium with frequency 

greater than 20 KHz. Mechanical waves with frequency smaller than 20 KHz are audible 

sound waves. The ultrasound wave consists of compression and rarefaction regions in 

which the medium particles oscillate and transmit the mechanical energy through the 

medium. There are two types of ultrasound waves, these are: 

� Longitudinal Ultrasound Waves: in which the direction of the propagation is the 

same direction of the particles displacement (oscillation).  Example of this type of 

waves is the ultrasound waves in soft tissue, air, and water. 

� Transverse (Shear) Ultrasound Waves: in which the direction of the propagation 

perpendicular to the particles displacement (oscillation).  Example of this type of 

waves is the ultrasound waves in bones, and solids. 

The speed of the ultrasound wave is equal to the product of the ultrasound 

frequency and the wavelength of the ultrasound wave:  

 � = 	�� (2.1) 

Where f is the ultrasound frequency and λ is the wavelength. The frequency is 

dependent on the ultrasound transducer, while the wavelength depends on the medium, 

and changes with the change in the ultrasound speed in the medium. 
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The ultrasound speed is determined by the medium’s compressibility (bulk 

modulus) K and density ρ as follows: 

 � = 	 1�ρ� (2.2) 

As the density of the medium increases, its compressibility decreases, but the 

decrease in the compressibility is a lot bigger than the increase in the density; therefore it 

dominates the effect on the ultrasound speed in the medium and results in increased 

ultrasound speed in the medium. 

Every medium has its characteristic acoustic impedance denoted by Z. the 

medium’s acoustic impedance is a function of the ultrasound velocity of the medium, and 

the density of the medium according to the following relation: 

 	 = ρc (2.3) 

Where c is the ultrasound speed in the medium and  ρ is the density of the 

medium.  Since the ultrasound speed itself is a function of the density and compressibility 

of the medium, the acoustic impedance Z can be alternatively expressed in terms of the 

compressibility and density of the medium as follows: 

 	 = �ρ� (2.4) 

The acoustic impedance can also alternatively expresses in terms of the local 

pressure and velocity of the medium particles as follows: 
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 	 = �
 (2.5) 

Where s is the local velocity of the medium particles, and p is the local pressure 

excreted on the medium particles to produce the velocity s. this relation is similar to the 

electric impedance relation which is given by the following relation: 

 	 = ��  (2.6) 

Where V is the electric voltage (potential), and I is the produced current through 

the electric impedance. 

The intensity I of the ultrasound beam is given by: 

 � = �
 = 	��	  (2.7) 

The ultrasound wave interacts with the medium in two different ways: 

1. Reflection and Transmission: The reflection of the ultrasound wave occurs when 

the wave passes through two mediums with different acoustic impedances (having 

impedance mismatch).  The amplitude reflection coefficient �� (the percentage of the 

amplitude of the reflected pressure of the ultrasound wave) of the ultrasound wave is 

a function of the impedances of the two media as follows:   

 �� = ���� = 	� − 	�	� + 	� (2.8) 
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Where �� is the incident pressure, and  �� is the reflected pressure. 	�, and 	�are 

the acoustic impedances of the first and second medium, respectively. The intensity 

reflection coefficient �� is given by: 

 �� = ��� = (	� − 	�)�(	� + 	�)� (2.9) 

The intensity transmission coefficient �� is given by: 

 �� = 1 − ��� = 4	�	�(	� + 	�)� (2.10) 

Therefore, as the impedance mismatch of a two medium interface increases, the 

reflectivity increases. 

2. Attenuation: The energy of the ultrasound wave is dissipated as it travels through the 

medium. This energy dissipation results in attenuation to the ultrasound wave. This 

attenuated  is carried out by two processes: 

o Absorption: A portion of the ultrasound wave energy is transformed into heat 

energy and is absorbed by the medium. The rate of absorption is a linear 

function of the ultrasound frequency.   

o Scattering: When the ultrasound wave hits particles with different impedence 

than the medium, and of size similar to the wavelength of the ultrasound 

wave, the particles act as an ultrasound source and radiate the ultrasound 

incident in spherical volume (in all directions). This results in weakening the 

main beam of the ultrasound wave.   
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The radiated ultrasound beam from the ultrasound crystal contains a main beam 

and side lobes. The divergence angle !" (measured from the line perpendicular to the 

transducer at its center, and the edge of the ultrasound beam) of the main beam is given 

by: 

 !" = 	arcsin	(1.22 �() (2.11) 

Where D is the diameter of the ultrasound transducer, and � is the wavelength of 

the ultrasound wave. The distance traveled by the ultrasound beam before it starts 

divergence is called the near field distance and is given by: 

 )*( =	(�4� (2.12) 

The ultrasound is used in two modes of operation: 

� Continuous: The continuous ultrasound wave is a sinusoidal wave and its wave 

equation is given by:  

 + = +,-./(20�1 + 	2) (2.13) 

Where P is the amplitude of the wave (pressure amplitude), +, is the maximum 

pressure amplitude, f is the wave frequency, t is the time, and 2 is the phase of the 

wave. It is used in Doppler imaging and therapeutic ultrasound. 

� Pulsed (Pulse-Echo): Pulse-echo ultrasound is the most widely used ultrasound 

imaging mode. It is used in the B-mode, M-mode, and pulsed Doppler imaging.  It 
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consists of sending an ultrasound pulse, and then receives the reflected echoes at 

different tissue interfaces in the imaged specimen. The ultrasound pulse wave is 

ideally a decaying sinusoidal wave, and its wave equation is given by:  

 + = 3456+,	-./(20�1 + 	2) (2.14) 

Where τ is the time constant of the decaying wave, and it depends on the damping 

of the ultrasound pulser generating the ultrasound pulse. Since most ultrasound 

transducers are wideband transducer (to generate a pulse with small pulse duration in 

order to achieve high axial resolution), the generated pulse contains a several 

frequencies instead of one single frequency as in the continuous ultrasound mode. 

In this work, the pulse-echo ultrasound mode is used for the reconstruction of the 

point cloud representing the bone’s surface. 
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Chapter 3 Bone Morphing 
 
 
3.1 Introduction 

  Bone morphing is the process of reconstruction of 3D bone model by deforming a 

template bone model, which can be the bone atlas’ mean model, to reconstruct the new 

3D bone model. The model deformation is performed using an optimization algorithm 

which changes the shape of the template model to match the shape dictated by a 

morphing guide. This morphing guide is the available information for the bone morphing 

to create the new 3D model. The morphing guide can be any type of measurements or 

information about the bone to be modeled. The optimization error function measures the 

degree of fitting between the deforming model and the given measurements or 

information about the bone. The morphing process changes the shape of the template 

model to create a new model that maximizes the degree of fitting (or reduces the error) 

between the reconstructed model and the given measurement or information about the 

bone to be modeled.  

  In this work, the morphing (deformation) guide is a reconstructed point cloud 

representing the bone’s surface. Since the bone’s 3D model consists of thousands of 

vertices (4120 for the distal femur, and 4812 for the proximal tibia), and each vertex 

consists of three variables which are the x, y, and z coordinates of the vertex, which 

makes each model consists approximately of 12,000 variables. It is nearly impossible to 

perform the optimization on those 12,000 variables (the x, y, and z coordinates of the 

model’s vertices) for every 3D bone model to be reconstructed.  
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In order to perform the optimization for the model’s morphology, the 3D model 

needs to be represented by a limited number of variables that can be managed by an 

optimization algorithm. To overcome this problem, the 3D models are transformed into 

another domain which can approximate the model with fewer parameters. Several surface 

representation methods have been developed and studied. Fourier descriptors have been 

used for shape approximation [29], [30] in which Fourier transform is applied to the 3D 

model, and the model is approximated by the Fourier descriptors which capture the 

spatial frequency coefficients of the model’s shape.  

Another approach introduced by Cootes and Taylor[31] is statistical method that 

uses point distribution models (alternatively called statistical deformable models). 

Statistical deformable models method is based on the statistical analysis of a set of 

training models. For 3D bone surface representation, the training models are 3D models 

of bones to be represented. These bones’ models can be obtained by scanning dry 

cadaveric bones using laser scanners or motion tracking systems. Another method of 

obtaining the training bone models is scanning dry cadaveric bones using computed 

tomography imaging (CT) or scanning patients/volunteers using CT or magnetic 

resonance imaging (MRI). These CT or MRI scans are then segmented (manually, semi-

automatically, or automatically) to obtain the 3D bones’ models. Principal component 

analysis (PCA) is then performed on the training set’s models. The PCA transforms the 

models from the three-dimensional Cartesian coordinate space defined by the x, y, and z 

coordinates of the models vertices, to a new vector space called eigenspace. The unit 

vectors comprising this eigenspace, are the modes of variation of the morphology of the 



 
22

training set’s models. Each model of the training data set can then be represented as a 

linear combination of the eigenvectors plus the dataset’s mean model. These eigenvectors 

are called the principal components, and consequently, their coefficients are called 

principal components coefficients. Any model outside the training dataset can be 

approximated by the dataset’s mean model plus a linear combination of the principal 

components using different principal components’ coefficients. The deformable models 

method has been extensively used for automatic segmentation of CT, and MRI scans for 

different body organs. It has also been used for reconstruction of 3D bones models from 

muli-planer X-Ray images[32]-[34], and from sparse point clouds acquired from the 

surface of the bone[35]-[37].  

In this work, the statistical deformable models method was used for the 

reconstruction of the 3D surface models for the scanned knee bones, using the bones’ 

surface point clouds reconstructed using ultrasound. In the following sections, the 

statistical deformable method will be described in more detail. The training datasets 

(alternatively referred to as atlases) will be presented with a detailed analysis for their 3D 

model representation capabilities. Then the bone morphing methods used in this work 

will be presented along with their performance and reconstruction accuracy analysis. 
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3.2 Knee Bones Statistical Deformable Models  

3.2.1 Atlas Dataset 
 
  The knee bone atlases used in this work were created using a dataset of 444 dry 

femur (144 female, 304 male) and 422 dry tibia (119 female, and 303 male) bones, which 

were CT-scanned and segmented. Segmented bone models for each of the knee bones 

(femur, and tibia) were then used to create its statistical atlases. The first step in creating 

the statistical atlas for each bone’s dataset is to establish anatomical correspondence 

between the individual models in each dataset; i.e. each vertex in each model in the 

dataset is anatomically corresponding to the same vertex in all the other models of the 

same dataset [38], and [39]. The output of the correspondence creation process is a set of 

3D bone models  7� (where i  [1, N], N is the number of models in the dataset) having 

the same number of vertices, and every vertex 89 in any of the models corresponds (at the 

same anatomical location on the bone) to the vertex  89 ′ in the other models.  

  After the anatomical correspondence is established for all the 3D bone models of 

each femur, and tibia datasets, the distal portion of the femur and the proximal portion of 

the tibia bones are separated from the femur and tibia models. This is performed by 

creating a mean model for the models in each dataset, and then labeling the vertices in the 

distal femur portion of the mean distal femur, and the vertices in the proximal tibia 

portion of the tibia. The vertices corresponding to the mean model’s labeled vertices are 

then extracted from each model in the dataset to create the distal femur or proximal tibia 

models. These separated distal femur and proximal tibia bones models maintains the 

anatomical correspondence established for the femur, and tibia models. These distal 
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femur and proximal tibia bone models were used throughout this work for the atlas 

analysis and 3D knee bone models reconstruction.  

  In order to study the density of the models’ vertices, the average distance between 

each vertex and its neighbor vertices was calculated for each model of the atlases. This 

distance will be denoted as the model’s inter-vertices distance and is calculated as 

follows: 

  Given a 3D model 7� with a set of vertices 89, where :;	[1,=], where m is the 

number of vertices in the model. The mean inter-vertices distance ?9 for the vertex 89 is 

the mean distance between the vertex and its neighbor vertices and can be defined as 

follows: 

 ?9 = 1@ AB89 − 8�BC
�D�  (3.1) 

  Where 8� is the .EF neighbor vertex of the vertex 89, and l is the number of 

neighbor vertices to the vertex 89. The mean inter-vertices distance for the model 7� is 

the average of the inter-vertices distance for the model’s vertices. Histograms of the 

models’ mean inter-vertices distances are shown in Figure 3.1 through Figure 3.4 for the 

female distal femur, male distal femur, female proximal tibia, and male proximal tibia 

atlas models respectively. The average of the models’ mean inter-vertices distances are 

2.66 mm for the female distal femur, 2.32 mm for the male distal femur, 1.76 mm for the 

female proximal tibia, and 2 mm for the male proximal tibia datasets respectively.  
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Figure 3.1 Histogram of the models’ mean inter-vertices distance for the female distal 

femur models with an average of 2.66 mm 

 

 

Figure 3.2 Histogram of the models’ mean inter-vertices distance for the male distal 

femur models with an average of 2.32 mm 
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Figure 3.3 Histogram of the models’ mean inter-vertices distance for the female proximal 

tibia models with an average of 1.76 mm 

 
 

 

Figure 3.4 Histogram of the models’ mean inter-vertices distance for the male proximal 

tibia models with an average of 2 mm 
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3.2.2 Knee Bones Principal Component Analysis (PCA) 
 

  Principal Component Analysis (PCA) was performed on each of the bone models 

datasets to extract the modes of variations of the bones’ morphology which are 

represented by the eigenvectors generated by the PCA. These eigenvectors are 

alternatively  called eigenbones or principal components, and they define the vector space 

for the bone morphology variations existing in the bone’s dataset. Any bone model in the 

dataset used to perform the PCA can be expressed as a linear combination of the 

eigenbones plus the mean model of the dataset as follows: 

  7GHI = 1)A7�
J
�D�  (3.2) 

  7� = 	7GHI +AK�LML	∀		.	;	[1, )]O
LD�  (3.3) 

  Where 7GHIis the mean model of the dataset, L is the dimensionality of the 

eigenspace (the number of eigenbones), and is equal to the number of models in the 

dataset N. ML is the PEF eigenbone, and K�L is the  PEF shape descriptor or eigenbone’s 

coefficient for the .EF model.  

  Furthermore, any new model 7QRS outside the dataset (used to perform the PCA) 

can be approximated by new values of the shape descriptors (eigenvectors coefficients) as 

follows:   

 7QRS ≃ 7GHI +AKLMLU
LD�  (3.4) 
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  Where 7QRS is the new bone’s model, KL are the shape descriptors for the new 

model, ML are the eigenvectors (principal components) of the atlas, and W is the number 

of principal components used in the model approximation, and W ≤ L. The accuracy of 

the representation of a new model is directly proportional to the number of principal 

components  W used for model representation and the number of models L of the dataset 

used for the PCA. The residual error or root mean square error (RMS) for the new model 

representation using the PCA shape descriptors is defined by: 

 RMS = rms Z7QRS − (7GHI +AKLML)U
LD� [ (3.5) 

  Where the root mean square error (RMSE) of two models A, and B having the 

same number of vertices m is defined by: 

 RMSE = rmse(^ − _) = 	`∑ B�b9 − �c9B�d9D� =  
(3.6) 

  Where m is the number of vertices in each model, �b9 is the :EF vertex in model 

A, and similarly �c9 is the :EF vertex in model B. Table 3.1., and Table 3.2 list the 

accumulated variances, as a percentage of the total dataset models morphology variance, 

carried by different principal components for the gender-specific atlases, and non gender-

specific atlases respectively. Figure 3.5 through Figure 3.8 show plots for the 

accumulated variance versus the number of principal components for the gender-specific 

atlases. The plot of the accumulate variance versus the number of principal components 

for the non gender-specific atlases are shown in Figure 3.9 and Figure 3.10 for the distal 

femur and proximal tibia atlases respectively. 
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Table 3.1 Accumulated variances for the gender-specific knee bones atlas 

PCs Count Female  

Distal Femur 

Male  

DistalFemur 

Female  

Proximal Tibia 

Male  

Proximal Tibia 

1 35 33.8 33.9 42.6 

2 51.2 58.2 49.9 58.7 

3 62.1 69.1 58.7 66 

4 68.4 72.9 64.9 70.8 

5 73.4 76.5 70.6 74.7 

6 77.3 79.3 74.7 78.3 

7 79.5 81.5 77.9 80.1 

8 81.4 83.2 80.1 81.7 

…. …. …. …. …. 
16 89.7 90.1 88.4 87.7 

17 90.2 90.6 89 88.1 

18 90.8 91.1 89.5 88.6 

19 91.2 91.5 90.4 89 

20 91.7 92.1 90.9 89.4 

21 92.1 92.4 91.2 90.1 

     
119 99.76 98.93 100 97.691 

     
143 100 99.25  98.17 

     
302  99.9987  100 

     
303  100   

 



 
30

Table 3.2 Accumulated variances for the non-gender specific knee bones atlases 

PC Count Distal Femur Proximal Tibia 

1 37.6 59.5 

2 61.9 70.3 

3 72.3 75.5 

4 75.9 79 

5 79.2 81.9 

6 81.7 84.4 

7 83.5 85.7 

8 85.1 86.9 

9 86.1 87.7 

10 87.1 88.4 

11 88.1 89 

12 88.8 89.5 

13 89.5 89.9 

14 90.1 90.3 

   

421 99.986 100 

   

447 100  
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Figure 3.5 Accumulated variance versus the number of principal components for the 

gender-specific female distal femur atlas 

 

 

 

Figure 3.6 Accumulated variance versus the number of principal for the gender-specific 

male distal femur atlas 
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Figure 3.7 Accumulated variance versus the number of principal components for the 

gender-specific female proximal tibia atlas 

 

 

 

Figure 3.8 Accumulated variances versus the number of principal components for the 

gender-specific male distal femur atlas 

 

0

20

40

60

80

100

120
1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

A
cc

u
m

u
la

te
d

 V
a

ri
a

n
ce

 (
%

)

Number of Principal Components

Female Proximal Tibia

0

20

40

60

80

100

120

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

2
3

5

2
4

8

2
6

1

2
7

4

2
8

7

3
0

0

A
cc

u
m

u
la

te
d

 V
a

ri
a

n
ce

 (
%

)

Number of Principal Components

Male Proximal Tibia



 
33

 

Figure 3.9 Accumulated variances versus the number of principal components for the non 

gender-specific distal femur atlas 

 
 

 

Figure 3.10 Accumulated variances versus the number of principal components for the 

non gender-specific proximal tibia atlas 

 
 

0

20

40

60

80

100

120
1

2
0

3
9

5
8

7
7

9
6

1
1

5

1
3

4

1
5

3

1
7

2

1
9

1

2
1

0

2
2

9

2
4

8

2
6

7

2
8

6

3
0

5

3
2

4

3
4

3

3
6

2

3
8

1

4
0

0

4
1

9

4
3

8

A
cc

u
m

u
la

te
d

 V
a

ri
a

n
ce

 (
%

)

Number of Principal Components

Distal Femur

0

20

40

60

80

100

120

1

1
9

3
7

5
5

7
3

9
1

1
0

9

1
2

7

1
4

5

1
6

3

1
8

1

1
9

9

2
1

7

2
3

5

2
5

3

2
7

1

2
8

9

3
0

7

3
2

5

3
4

3

3
6

1

3
7

9

3
9

7

4
1

5

A
cc

u
m

u
la

te
d

 v
a

ri
a

n
ce

 (
%

)

Number of Principal Components



 
34

3.2.3 Knee Bones’ Morphology Variation Analysis 
 

To study the morphology variation of the distal femur, and proximal tibia bones, 

the RMS distance error between each model in each of the bones’ datasets (female and 

male distal femur, and proximal tibia) and their jack-knife mean model (the mean model 

calculated using all the models in the dataset except the model whose RMS error is 

calculated) was calculated, and histograms for these RMS errors were generated. Figure 

3.11 through Figure 3.14 show the histograms for the RMS errors between the models 

and their jack-knife mean models for the female distal femur, male distal femur, female 

proximal tibia, and male proximal tibia, respectively. From examining the histograms, it 

can be concluded that the morphology variations is greater in the male datasets than the 

female datasets. This can be contributed to the larger numbers of models in the male 

datasets than the female datasets. 

 

Figure 3.11 Histogram of the mean RMS errors between the female distal femur models, 

and their jack-knife mean models with mean RMS error of 1.6 mm, and maximum RMS 

error of 3.54 mm 
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Figure 3.12 Histogram of the mean RMS errors between the male distal femur models, 

and their jack-knife mean models with mean RMS error of 1.87 mm and maximum RMS 

error of 5.33 mm 

 

Figure 3.13 Histogram of the mean RMS errors between the female proximal tibia 

models, and their jack-knife mean models with mean RMS error of 1.52 mm and 

maximum RMS error of 3.42 mm 
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Figure 3.14 Histogram of the mean RMS errors between the male proximal tibia models, 

and their jack-knife mean models with mean RMS error of 1.9 mm and maximum RMS 

error of 5.03 mm  

 
To examine the local morphology variations of the knee bones, the distance error 

between the vertices of each model in a dataset and their corresponding vertices in the 

jack-knife mean model were averaged over the models of the dataset, and a color map for 

these distance errors was generated for every dataset. Also, similar color maps were 

generated for the standard deviation of these distance errors. Figure 3.15, and Figure 3.16 

show the color maps for the mean and standard deviations of distance errors between the 

models and their jack-knife mean models for the female distal femur. Similarly, Figure 

3.17, and Figure 3.18 show the mean and standard deviation of the distance errors for the 

male distal femur. Figure 3.19, and Figure 3.20 show the mean and standard deviation of 

the distance errors for the female proximal tibia. Figure 3.21, and Figure 3.22 show the 

mean and standard deviation of the distance errors for the male proximal tibia.  
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Examining the color maps, it can be concluded that the female and male datasets 

(distal femur, or proximal tibia) show very similar variation distribution among the 

bones. However, the distal femur exhibits small variations at some areas and large 

variation in other areas, while the proximal tibia is characterized by more homogeneous 

distribution for the variations across bone surface.  

 

Figure 3.15 Color map for the mean distance error between the female distal femur 

models, and their jack-knife mean models 

 

Figure 3.16 Color map for the standard deviation of the distance error between the female 

distal femur models, and their jack-knife mean models 

 

Figure 3.17 Color map for the mean distance error between the male distal femur models, 

and their jack-knife mean models 
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Figure 3.18 Color map for the standard deviation of the distance error between the male 

distal femur models, and their jack-knife mean models 

 

Figure 3.19 Color map for the mean distance error between the female proximal tibia 

models, and their jack-knife mean models 

 

Figure 3.20 Color map for the standard deviation of the distance error between the female 

proximal tibia models, and their jack-knife mean models 

 

Figure 3.21 Color map for the mean distance error between the male proximal tibia 

models, and their jack-knife mean models 



 
39

 

Figure 3.22 Color map for the standard deviation of the distance error between the female 

proximal tibia models’ vertices, and their jack-knife mean models 

 
3.2.4 Knee Bones Atlases Analysis 
 

In previous work, the knee atlases were studied for gender, and ethnic difference  

[39], and [40]. In this work a similar study was performed on the knee bones PCA-based 

atlases (used in the developed systems) to analyze their capabilities in 3D of the knee 

bones morphology. Three different aspects of the PCA-based atlases of the knee bones 

were studied: 

1. Bone morphology  approximation capability. 

2. Gender-specific morphology effect on atlas. 

3. Effect of dimensionality reduction on bone’s morphology representation. 

In order to study these three features, the knee bones were divided into female and 

male datasets for each bone, i.e female distal femur, male distal femur, female proximal 

tibia, and male proximal tibia. For each dataset, principal component analysis was 

performed using jack-knife and non jack-knife methods. In the jack-knife (leave one out) 

method, PCA is performed on all the models of the dataset except one model.  This jack-

knife method produces a PCA-based statistical atlas for each model of the dataset, which 

is generated using all the models of the dataset except this specific model. The atlas 
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generated using this method contains the morphology information of all the models in the 

dataset except the model left out, which simulate the real-life situation when the atlas will 

be used to reconstruct a 3D model that was not included in the atlas dataset.  While in the 

non jack-knife method, all the models in the dataset are used to generate one atlas. This 

method produces a PCA-based atlas that has the morphology information of all the 

dataset models encoded in its principal components. 

Gender-specific and non-gender specific atlases were also generated (using jack-

knife and non jack-knife methods). In the Gender-specific atlases, the models were 

grouped based of the bone type and gender, and then the PCA (jack-knife and non jack-

knife) was performed on each group. While in the non gender-specific atlases, the bone 

models were grouped by bone type only, i.e. distal femur and proximal tibia, and the 

PCA (jack-knife and non jack-knife) was performed on each group. Therefore, four types 

of PCA-based atlases were generated for each bone type (distal femur, and proximal 

tibia) and gender (male and female) combination: 

1. Gender-specific jack-knife atlas. 

2. Gender-specific non jack-knife atlas. 

3. Non gender-specific jack-knife atlas. 

4. Non gender-specific non jack-knife atlas. 

This results in 16 atlases, in which for the jack-knife atlas, each model in the 

dataset (for bone type, and gender combination) has its corresponding leave-on-out 

statistical atlas. The aforementioned features of the bone atlas were studied by projecting 

the bones models on the atlas’ principal components and reconstructing the model again 
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using the principal components coefficients resulted from the projection process. This 

projection-reconstruction process was performed using different numbers of principal 

components that were chosen to be powers of 2, i.e 1, 2, 4. 8,…,N, where N is the 

maximum number of principal components in the atlas. This projection-reconstruction 

process was performed for each of the 16 atlases. For each atlas, the   projection-

reconstruction process was performed for each model, then the RMS error between the 

reconstructed model and the original model was calculated using the closest surface point 

method. The results for the projection-reconstruction process for the different 16 atlases, 

are presented in the appendix section 9.1 

3.2.4.1 Bone Morphology Estimation Capability of the PCA-Based Statistical Atlas 
 

In order to study the ability of the PCA-based atlas to approximate the 

morphology of a bone’s model outside the atlas’ dataset, the projection-reconstruction 

process was performed using jack-knife, and non jack-knife atlases. This process was 

performed on all distal femur, and proximal tibia (both males and females) models using 

the gender-specific atlases . Since the non jack-knife atlas is generated using all the 

models of the dataset, the morphology of the model being studied (projected and 

reconstructed) is encoded in the atlas’ principal components; hence, the only error source 

in the non jack-knife projection-reconstruction process is the dimensionality reduction, 

i.e. using a subset of the principal components as opposed to using all the principal 

components to project and reconstruct the models.  

On the other hand, the jack-knife atlas does not have the morphology of the model 

being studied encoded in its principal components, and therefore the projection of the 
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model on the jack-knife atlas’ principal components and reconstruction of the model 

results in an estimation of the model’s morphology. The model estimation using the jack-

knife atlas is based on the morphology, of all the dataset models except the model being 

studied, encoded in the atlas’ principal components. Therefore, comparing the mean RMS 

error for the projection-reconstruction process using the jack-knife atlas and the non jack-

knife atlas, for each number of principal components used, shows the residual error 

resulting from the model’s shape estimation performed by the atlas. Figure 3.23 through 

Figure 3.26 show the RMS errors for the projection-reconstruction process using the 

gender jack-knife and non jack-knife atlases for the female distal femur, male distal 

femur, female proximal tibia, and male proximal tibia respectively. The gender-specific 

atlases (jack-knife and non jack-knife) were arbitrarily chosen to be used for this 

comparison in order to keep the effect of gender-specific versus non gender specific 

factor constant during the comparison.  

Comparing the jack-knife and the non-jack-knife RMS errors for each of the 

datasets shows that when a small number of principal components is used, the difference 

in the RMS error between the jack-knife and non jack-knife is small. This difference 

increases as the number of principal components used increases. This shows that when 

using small number of principal components, the dimensionality reduction effect is more 

prominent and is the main source of the residual error between the reconstructed and the 

original models. While, increasing the number of principal components used, the error of 

the model’s morphology estimation becomes more prominent and the difference between 
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the RMS errors for the reconstruction using the jack-knife atlases becomes greater than 

the errors resulting from using the non jack-knife atlases.  

Furthermore, by comparing the RMS errors for the male datasets to the female 

datasets, it can be shown that for the female datasets, the difference between the RMS 

errors resulting from using the jack-knife atlases and the errors resulting from using the 

non jack-knife atlases are greater than the ones for the male datasets. This can be 

attributed to the larger number of models in the male datasets than the female datasets. 

This reveals that the model’s morphology estimation capability increases as the number 

of models included in creating the statistical atlas increases. 

 

 

Figure 3.23 Mean RMS errors versus the number of principal components for the 

projection-reconstruction process using the jack-knife (blue) and non jack-knife (red) 

gender-specific female distal femur atlases. 
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Figure 3.24  Mean RMS errors versus the number of principal components for the 

projection-reconstruction process using the jack-knife (blue) and non jack-knife (red) 

gender-specific male distal femur atlases. 

 

 

Figure 3.25  Mean RMS errors versus the number of principal components for the 

projection-reconstruction process using the jack-knife (blue) and non jack-knife (red) 

gender-specific female proximal tibia atlases. 
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Figure 3.26  Mean RMS errors versus the number of principal components for the 

projection-reconstruction process using the jack-knife (blue) and non jack-knife (red) 

gender-specific male proximal tibia atlases. 
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representation of the distal femur, and proximal tibia bones. However, a small difference 

in the mean RMS errors between the gender-specific and non gender-specific female 

atlases is shown in Figure 3.27, and Figure 3.29. This small difference is attributed to the 

difference in the number of models incorporated in creating the gender-specific female 

atlases (144 for the female distal femur and 119 for the female proximal tibia) and the 

number of models used in generating the non gender-specific female atlases (which was 

448 for the distal femur, and 422 for the proximal tibia). This difference results in a 

distributional difference of the morphology variance on the principal components.  

Therefore it can be concluded that there is no difference in morphology representation 

between gender-specific and non gender-specific atlases.  

 

 

Figure 3.27 Mean RMS error versus the number of principal components for the 

projection-reconstruction process using gender-specific (red) and non gender-specific 

(blue) jack-knife female distal femur atlases. 
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Figure 3.28 Mean RMS errors versus the number of principal components for the 

projection-reconstruction process using gender-specific (red) and non gender-specific 

(blue) jack-knife male distal femur atlases. 

 
 

 

Figure 3.29 Mean RMS errors versus the number of principal components for the 

projection-reconstruction process using gender-specific (red) and non gender-specific 

(blue) jack-knife female proximal tibia atlases. 
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Figure 3.30 Mean RMS errors versus the number of principal components for the 

projection-reconstruction process using gender-specific (red) and non gender-specific 

(blue) jack-knife male proximal tibia atlases. 
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effect of models’ morphology estimation (due to using jack-knife atlases), and 

approximation (due to using subset of the principal components). Figure 3.31 through 

Figure 3.34 show the mean, maximum, and minimum projection-reconstruction RMS 

errors for the female distal femur, male distal femur, female proximal tibia, and male 

proximal tibia respectively using the gender-specific jack-knife atlases for different 

numbers of principal components.   

The RMS errors graphs show that increasing the number of principal components 

(modes of variations) used in the model representation (estimation and approximation) 

results in an increase in the model representation However, the slope of the change of the 

RMS error decreases by increasing the number of principal components, as the higher 

order principal component carries fewer variations than the lower order principal 

components. The slope of the RMS error reaches very small value (nearly zero) after 128 

principal components, leading to the conclusion that adding more models to the atlas will 

not have a significant effect on the model representation accuracy.  

.  
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Figure 3.31 Mean, minimum, and maximum RMS errors versus the number of principal 

components for the projection-reconstruction process using jack-knife gender-specific 

female distal femur atlases. 

 

 

Figure 3.32 Mean, minimum, and maximum RMS errors versus the number of principal 

components for the projection-reconstruction process using jack-knife gender-specific 

male distal femur atlases. 
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Figure 3.33 Mean, minimum, and maximum RMS errors versus the number of principal 

components for the projection-reconstruction process using jack-knife gender-specific 

female proximal tibia atlases. 

 

 

Figure 3.34 Mean, minimum, and maximum RMS errors versus the number of principal 

components for the projection-reconstruction process using jack-knife gender-specific 

male proximal tibia atlases. 
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3.3 Bone Morphing Methods 

  Three bone morphing methods have been investigated: the first is based on a 

numerical iterative optimization algorithm called Powell’s Direction Set method [40]. 

The second morphing method is a linear least squares method that calculates the shape 

descriptors using closed-form solution [35]. A hybrid morphing method, which consists 

of applying the iterative morphing followed by the linear least squares morphing, was 

also investigated. 

  In order to study the performance and reconstruction accuracy of each morphing 

method, the vertices of the atlas models were used as the morphing guidance point clouds 

to reconstruct the 3D bones models from those point clouds. To study the effect of the 

point cloud density, different densities of the models’ point clouds were used for 

performing 3D model reconstruction using the different morphing methods. For each 

model, the model’s vertices was used as the unreduced point cloud, and this point cloud 

was reduced to different densities to obtain different point clouds with different densities 

for the same model. The reduced point clouds were obtained by reducing the number of 

points in the point cloud using an octree, where the octree leaves’ size was specified to be 

4, 8, 16, and 32 mm. The original models’ point clouds (unreduced), had a mean inter-

vertices distance (the mean distance between each vertex and its neighbor vertices) of 

approximately 2 mm as described in section 3.2.1. Figure 3.35 through Figure 3.39 show 

sample point clouds for a distal femur with 2 mm (unreduced), 4 mm, 8 mm, 16 mm, and 

32 mm mean inter-vertices distance. Similarly, Figure 3.40 through Figure 3.44 show 
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sample point clouds for a proximal tibia with 2 mm (unreduced), 4 mm, 8 mm, 16 mm, 

and 32 mm inter-vertices distance.  

  The different point clouds (with different inter-vertices distances) were used to 

reconstruct the 3D models using the three morphing methods, and the reconstructed 

model was compared with the original model to calculate the root mean square error 

(RMS). In the following sections, the three morphing methods are presented, as well as 

the reconstruction accuracy analysis for each of them. The complete results of the models 

reconstruction using the three morphing methods results and the point clouds with 

different densities are presented in the appendix section 9.2 

 

Figure 3.35 Unreduced point clouds for a female distal femur, showing the anterior side 

(left), the condyles (middle), and the posterior side (right) 

 

Figure 3.36 4-mm reduced point cloud for a female distal femur, showing the anterior 

side (left), the condyles (middle), and the posterior side (right) 
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Figure 3.37 8-mm reduced point cloud for a female distal femur, showing the anterior 

side (left), the condyles (middle), and the posterior side (right) 

 

Figure 3.38 16-mm reduced point cloud for a female distal femur, showing the anterior 

side (left), the condyles (middle), and the posterior side (right) 

s  

Figure 3.39 32-mm reduced point cloud for a female distal femur, showing the anterior 

side (left), the condyles (middle), and the posterior side (right) 
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Figure 3.40 Unreduced point clouds for a female proximal tibia, showing the anterior side 

(left), the tibialplatue (middle), and the posterior side (right) 

 

Figure 3.41 4-mm reduced point clouds for a female proximal tibia, showing the anterior 

side (left), the tibial plateau (middle), and the posterior side (right) 

 

Figure 3.42 8-mm reduced point clouds for a female proximal tibia, showing the anterior 

side (left), the tibial plateau (middle), and the posterior side (right) 
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Figure 3.43 16-mm reduced point clouds for a female proximal tibia, showing the 

anterior side (left), the tibial plateau (middle), and the posterior side (right) 

 

Figure 3.44 32-mm reduced point clouds for a female proximal tibia, showing the 

anterior side (left), the tibial plateau (middle), and the posterior side (right) 

 
3.3.1 Powell’s Direction Set Optimization Morphing 
 

  The first optimization method is an iterative method that searches the principal 

components vector space to find the minima of the error function to create a 3D bone 

model that best matches the bone’s point cloud. Powell’s Direction Set method [40] was 

used as for the shape descriptors (principal components coefficients) optimization. The 

directions used were the basis vectors of the eigenspace which are the eigenvectors (or 

principal components). The error function used was the root mean square error between 

the optimization-guiding point cloud and the model being morphed. The model under 



 
57

morphing is represented by the shape descriptors, and thus the changes to the shape 

descriptors performed by the optimization algorithm creates a new model, as defined in 

(3.4), at every iteration of the optimization. The error E function is defined as follows: 

  Given a point cloud Q with n points, and a model M, being morphed, with l 

vertices. The set of closest vertices V  in M to the points in the point cloud Q is defined as 

follows: 

 8� =	argminHfgh B89 − i�B		∀		.;[1, /], :;[1, @] (3.7) 

  Where 8� is the closest point in V to the point i� in the point cloud Q. An octree 

was used to efficiently search for the closest points in the model’s vertices to the point 

cloud points. The error E between the morphed model M and the point cloud Q is then 

defined as: 

 j = 	‖� − l‖�	 (3.8) 

To study the performance of the Direction Set optimization-based morphing 

method in estimating the bone’s morphology given a point cloud representing the bone’s 

shape, the point clouds extracted from the datasets’ models were used to reconstruct 

bones models using the gender-specific jack-knife atlases. To study the effect of the point 

cloud density on the morphing accuracy, different point cloud densities (as shown in 

Figure 3.35 through Figure 3.44) were used to reconstruct the bones models. Another 

factor included in this morphing accuracy evaluation, was the number of principal 

components (modes of variations) used in the bone morphology optimization. The closest 
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surface point based RMS error between the reconstructed models, and their reference 

original models was then calculated. 

The detailed results for the accuracy study of Direction Set morphing method are 

presented in the appendix section 9.2.1. A comparison for the mean RMS reconstruction 

error for  the Direction Set morphing method different point cloud densities as shown in 

Figure 3.45 through Figure 3.48 for the female distal femur, male distal femur, female 

proximal tibia, and male proximal tibia respectively. Examining these figures, it can be 

shown that decreasing the point cloud density results in an increase in the reconstruction 

RMS error. However, this increase in the reconstruction error is more significant for the 

32 mm point clouds. The effect of the point cloud density is also decreased by decreasing 

the number of principal components used for the model morphing. This is due to the 

dominating effect of the decreased number of principal components used over the 

decreased point cloud. The maximum number of principal components used was limited 

to be 32, since this yield the highest reconstruction accuracy with reasonable processing 

time. The processing time for morphing one model using the 2-mm density point cloud 

was 2, and 14 minutes when using 32, and 64 principal components respectively on an 

Intel Core i7 2.3 GHz processor. The processing time dropped to 15-20 seconds when 

using the first 32 principal components with the 4-mm point cloud density. The 

difference in accuracy was below 0.08 mm for four experimented model reconstruction 

using 32, and 64 principal components.. The first 32 principal components carries 

94.97%, 94.58%, 93.95%, and 92.5% for the female distal femur, male distal femur, 

female proximal tibia, and male proximal tibia atlases respectively.  
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Figure 3.45 Mean RMS errors vs number of principal components for the female distal 

femur morphing using the Direction Set method and gender-specific jack-knife atlases 

 

 

Figure 3.46 Mean RMS errors vs number of principal components for the female distal 

femur morphing using the Direction Set method and gender-specific jack-knife atlases 
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Figure 3.47 Mean RMS errors vs number of principal components for female proximal 

tibia morphing using  Direction Set method and gender-specific jack-knife atlases 

 

 

Figure 3.48 Mean RMS errors vs number of principal components for male proximal tibia 

morphing using the Direction Set method using gender specific jack-knife atlases 
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3.3.2 Linear Least Squares Morphing 
 
  The second optimization method solves directly for the shape descriptors by 

partial differentiation of the error function E with respect to the shape descriptors 

(principal component coefficients) to find the minima of the error function [35]. The 

result of the partial differentiation is a system of linear equations in the shape descriptors. 

The roots of this system of equations are the optimal shape descriptors that create a 

model which has the minimum value of the error function E. In the following section 

depicts the derivation of the systems of linear equations will be derived from the error 

function. 

  The error function defined in (3.8) can be expressed in terms of the 8�vertices of 

V, and points �� of the point cloud Q as follows: 

 E = A‖8� − i�‖�m
nD�  (3.9) 

Equation (3.9) can also be expressed in terms of the model’s shape descriptors as:  

 j = 	o(�GHI +ApLU
LD� ML′ ) − lo�	 (3.10) 

  Where �GHI is subset of vertices, from the atlas’ mean model vertices, which is 

corresponding to the vertices set V  that contains the closest vertices in the model M  

(being morphed) to the point cloud Q. ML′ is a reduced version of ML (the PEF eigenbone) 

that only contains the set of vertices corresponding to the vertices set V. 

  Combining (3.9) and (3.10), the error function E can be expressed as follows:  
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 E =Ao(8GHI,� +ApLU
LD� qL,�′ ) − i�o�m

nD�  (3.11) 

  Where 8GHI,� is the .EF vertex of atlas mean model’s vertices subset �GHI. 

Similarly, qL,�′ is the .EF vertex of the reduced eigenbone (principal component) ML′ . 
  The shape descriptors KL that create a bone model which optimally match the 

point cloud Q (at the minima of the error function E), can then be calculated by partially 

differentiating the error function E with respect to the shape descriptors KL and equating 

the result of differentiation to zero. This will yield a system of homogenous linear 

equations in the shape descriptors as follows:  

  The error function E in (3.11) can be further expanded as: 

 

j =ArstGHI,� +ApLtu′,L,�U
LD� − tv,�w� + sxGHI,� +ApLxu′,L,�U

LD� − xv,�w�d
�D�

+ syGHI,� +ApLyu′,L,�U
LD� − yv,�w�z 

(3.12) 

Where tGHI,� is the x-coordinate of the .EF vertex of the atlas mean model’s 

vertices subset �GHI, tu′,L,� is the x-coordinate of the  .EF vertex of reduced eigenbone ML′ , 
and tv,� is the x-coordinate of the .EF point of Q. Similar arguments apply to the y, and z 

coordinates. Then calculating the partial derivative of E with respect to each of the shape 

descriptors (eigenvectors’ coefficients) KL yields 
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{j{KL = 0												∀		P	;	[1,}] (3.13) 

 

{j{KL = AZ2stGHI,� +ApCtu′,C,�U
CD� − tv,�wtu′,L,�d

�D�
+ 2sxGHI,� +ApCxu′,C,�U

CD� − xv,�wxu′,L,�
+ 2syGHI,� +ApCyu′,C,�U

CD� − yv,�wyu′,L,�[
= 0																									∀								P	;	[1,}] 

(3.14) 

   

Recombining coordinates values into vertices (vectors) , and dividing by 2 yield:  

 

{j{KL =AZ(8GHI,� . qL,�′ ) + sApCU
CD� qC,�′ w . qL,�′ − i� . qL,�′ [d

�D�
= 0																									∀			P	;	[1,}] (3.15) 

Rearranging yields: 

 AsApCS
CD� (qC,�′ . qL,�′ )wd

�D� = 	A~(i� − 8GHI,�). qL,�′ )	�		∀	P	;	[1,}]d
�D�  (3.16) 

Reformulating (3.16)  in a matrix form will result in a linear system of equations 

in the form of AX = B as follows: 
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A
���
���
q�,�′ . q�,�′ q�,�′ . q�,�′ ⋯ ⋯ qU,�′ . q�,�′q�,�′ . q�,�′ q�,�′ . q�,�′ ⋯ ⋯ qU,�′ . q�,�′⋮ ⋮ ⋱ ⋱ ⋮⋮ ⋮ ⋱ ⋱ ⋮q�,�′ . qU,�′ q�,�′ . qU,�′ ⋯ ⋯ qU,�′ . qU,�′ ���

���d
�D� ���

�� p�p�⋮⋮pU���
��

= A
���
���
(i� − 8GHI,�). q�,�′ )	(i� − 8GHI,�). q�,�′ )⋮⋮(i� − 8GHI,�). qU,�′ )���

���d
�D�  

(3.17) 

This linear system of equations is then  solved to calculate the roots of the 

equations, which are the optimal shape descriptors to create the new 3D model that best 

fit the point cloud. In this work, singular value decomposition (SVD) [40]  was used to 

solve the linear system of equations.   

In this work, the mahalanobis distance used in [35] was omitted because the point 

clouds used were dense; these dense clouds incurred a great constraining force on the 

model deformation. Therefore the constraining function of the mahalanobis distance was 

not needed, but rather was avoided to provide the model deformation with more freedom 

to generate a new model that best fit the bone’ point cloud.  

To study the performance of the linear least squares morphing in predicting the 

bone’s morphology given a point cloud representing the bone’s shape, the point clouds 

extracted from the datasets models were used to reconstruct bones models using the 

gender-specific jack-knife atlases for each model to be reconstructed. To study the effect 

of the point cloud density on the morphing accuracy, different point cloud densities (as 

shown in Figure 3.35 through Figure 3.44) were used to reconstruct the bones models. 
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Another factor included in this morphing accuracy evaluation, was the number of 

principal components (modes of variations) used in the bone morphology optimization. 

The closest surface point based RMS error between the reconstructed models, and their 

reference original models was then calculated as the reconstruction error. 

The detailed results for the accuracy study of linear least squares morphing 

method are presented in the appendix section 9.2.2 . The processing time for the linear 

least squares method was few seconds using 2-mm point clouds density, using any 

number of principal components on an Intel Core i7 2.3 GHz processor. The processing 

time decreases with decreasing the point cloud density. A comparison for the mean RMS 

reconstruction error for  the linear least squares method using different point cloud 

densities is shown in Figure 3.49 through Figure 3.52 for the female distal femur, male 

distal femur, female proximal tibia, and male proximal tibia respectively. Examining 

these figures, it can be shown that that point density has insignificant effect on the model 

reconstruction accuracy. However, for the 16 mm point cloud density case, the 

reconstruction error increases by increasing the number of principal components used 

(approximately in the range of 64 to maximum number of principal components). This is 

due to the insufficient morphing guidance information available in the low density point 

clouds (equals to or greater than 16 mm) to guide the local deformations carried out by 

the least significant (higher order) principal components. For the same reason, point 

clouds with 32-mm density were not included because of their high reconstruction error.  
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Figure 3.49 Mean RMS errors vs number of principal components for female distal femur 

morphing using the linear least squares method using gender specific jack-knife atlases 

 
 

 

Figure 3.50 Mean RMS errors vs number of principal components for male distal femur 

morphing using the linear least squares method and gender specific jack-knife atlases 
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Figure 3.51 Mean RMS errors vs number of principal components for female proximal 

tibia morphing using linear least squares method and gender specific jack-knife atlases 

 
 

 

Figure 3.52 Mean RMS errors vs number of principal components for male proximal tibia 

morphing using linear least squares method using gender specific jack-knife atlases 
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3.3.3 Hybrid Morphing 
 

The last bone morphing method examined in this work is a combination of the 

direction-set optimization morphing and the linear least squares morphing methods. The 

result (the reconstructed model) of the Direction Set morphing is input to the linear least 

squares morphing as the initial model. The rationale behind the hybrid method is that the 

Direction Set morphed model will be closer to the bone’s point cloud, therefore the 

selected closest points in the Direction Set morphed model (as the initial model for the 

linear least squares morphing) will be more accurately selected than the ones that would 

be selected from the mean model as the initial model (as in the case of applying the linear 

least squares morphing only). This should increase the reconstruction accuracy.   

To study the performance of the hybrid morphing in predicting the bone’s 

morphology given a point cloud representing the bone’s shape, the point clouds extracted 

from the datasets’ models were used to reconstruct bones models using the gender-

specific jack-knife atlases for each model to be reconstructed. To study the effect of the 

point cloud density on the morphing accuracy, different point cloud densities (as shown 

in Figure 3.35 through Figure 3.44) were used to reconstruct the bones models. Another 

factor included in this morphing accuracy evaluation, was the number of principal 

components (modes of variations) used in the linear least squares morphing stage. The 

number of principal components used in the Direction Set morphing stage was selected to 

the 32. The closest surface point based RMS error between the reconstructed models, and 

their reference original models was then calculated as the reconstruction error. 
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The results for the model reconstruction accuracy study of the hybrid morphing 

method are presented in the appendix section 9.2.3. A comparison for the mean RMS 

reconstruction errors for the hybrid method using different point cloud densities is shown 

in Figure 3.53 through Figure 3.56 for the female distal femur, male distal femur, female 

proximal tibia, and male proximal tibia respectively. Examining these figures, it can be 

shown that the effect of the point density on the model reconstruction accuracy using the 

hybrid method is similar to the its effect in the linear least squares morphing. Also, the 

error charts shows that the hybrid method has lower RMS error than the linear least 

squares method. 
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Figure 3.53 Mean RMS errors versus the number of principal components for the female 

distal femur reconstruction using the hybrid morphing method for the unreduced, 4 mm, 

8 mm, and 16 mm reduced models’ point clouds using gender-specific jack-knife atlases 

 
 

 

Figure 3.54 Mean RMS errors versus the number of principal components for the male 

distal femur reconstruction using the hybrid morphing method for the unreduced, 4 mm, 

8 mm, and 16 mm reduced models’ point clouds using gender-specific  jack-knife atlases 
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Figure 3.55 Mean RMS errors vs the number of principal components for the female 

proximal tibia morphing using the hybrid morphing method for the unreduced, 4 mm, 8 

mm, and 16 mm reduced models’ point clouds using gender-specific  jack-knife atlases 

 

 

Figure 3.56 Mean RMS errors vs the number of principal components for the male 

proximal tibia morphing using the hybrid morphing method for the unreduced, 4 mm, 8 

mm, and 16 mm reduced models’ point clouds using gender-specific  jack-knife atlases 
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Chapter 4 3D Knee Model Reconstruction Using 
Single-Element Ultrasound Transducer 
 

The first method and system developed in this work for 3D knee model 

reconstruction using ultrasound RF data is presented in this chapter. This imaging system 

used a tracked single-element ultrasound transducer to collect a 3D point cloud over the 

bone’s surface, which was then used by the bone morphing module to reconstruct 3D 

model for the scanned bone. In the following sections, the system setup will be described,  

followed by the probe calibration method, the ultrasound signal processing method for 

bone echo detection, and the point cloud reconstruction method. 

4.1 System Setup 

This imaging system was built using a single-element (A-mode) ultrasound 

transducer, a pulser/receiver to drive the ultrasound transducer, a data acquisition system, 

and an optical motion tracking system to track the motion of the ultrasound transducer 

while being used in the scanning of the bone. 

4.1.1 Ultrasound Transducer and Pulser/Receiver 
 

The single element (A-Mode) ultrasound transducer used in this system was 

immersion type (Olympus NDT) 6 mm in diameter and had a 3.5 MHz center frequency. 

The ultrasound transducer was driven by a 5072 PR pulser/receiver (Olympus NDT). The 

pulser/receiver activates the ultrasound transducer by an electric pulse and receives the 

echo signal from the transducer, amplifies and filters it, and delivers it out through the RF 

output port. The output of the pulser/receiver is an analog ultrasound RF signal which 

consists of the echoes generated by the reflections of the transmitted ultrasound pulse at 
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the different interfaces in the path of the ultrasound beam. Figure 4.1 show the ultrasound 

transducer, and pulser/receiver used in the developed system. Figure 4.2 shows the 

impulse response of the ultrasound transducer used, and its frequency sprectrum.  

 

Figure 4.1 The A-mode ultrasound transducer (left), and the 5072 pulser/receiver 

(Olympus NDT) used in the developed single-element ultrasound transducer-based 3D 

knee model reconstruction system. 

 

 

Figure 4.2 The impulse response (left) for the ultrasound transducer used in the system, 

and its frequency spectrum (right) generated during the transducer test performed by the 

vendor using a water tank and a rigid reflector (Olympus NDT). 
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4.1.2 Data Acquisition System 
 

The analog ultrasound RF signal output from the pulser/receiver is fed to a data 

acquisition system to be digitized and fed in real-time to the imaging software developed 

for the point cloud reconstruction. The data acquisition system used in this work was the 

12-bit Octopus CompuScope (Gage Inc, Lockport, IL), which is an analog to digital 

converter board that is connected to the computer through the PCI connector. The 

Octopus data acquisition system has an application programming interface (API) library 

that allows the control of the data acquisition, and acquiring the data by the imaging 

software. The sampling frequency used was 20 MHz. Figure 4.3 shows the Octopus data 

acquisition PCI card used 

 

Figure 4.3 Octopus CompuScope (Gage Inc, Lockport, IL ) data acquisition PCI card 

used in the developed single-element ultrasound transducer-based 3D knee model 

reconstruction system. 
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4.1.3 Motion Tracking System 
 

The ultrasound transducer was used to detect the depth of the bone, i.e. the 

distance between the transducer’s face and the bone’s surface. In order to convert this 

one-dimensional bone depth measurement into a 3D point, a motion tracking system was 

used to track the motion of the ultrasound transducer to register the bone depth 

measurements into 3D point cloud representing the scanned bone’s surface. The motion 

tracking system used was the OptoTrak3020 (Northern Digital Inc (NDI), Ontario, 

Canada).  

The OptoTrak3020 system is a high accuracy optical motion tracking system (0.1-

0.15 mm tracking accuracy [24]) that utilizes the infrared light for motion tracking. This 

motion tracking system consists of three components: 

� Infrared Camera:  is the main optical unit which contains of infrared receivers 

which acquire the infrared light emitted by the infrared LEDs in the motion tracking 

probes. The infrared camera acts as the fixed world coordinate frame of reference of 

the tracking system. 

� Control Unit:  is the control unit of the tracking system. It is connected to the 

infrared camera and the computer running the motion tracking software. It receives 

the detected infrared pulses signals from the camera, triangulates the position of the 

tracking probe and sends the motion tracking information to the computer.  

� Motion Tracking Probe:  is the probe used for the motion tracking. The tracking 

probe contains infrared LEDs (at least 3 non collinear, and usually are 4-6 to 

provide redundancy and higher tracking accuracy) which transmits infrared pulses 
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that are received by the infrared camera to triangulate the position and orientation of 

the probe.   

 The motion tracking system has two coordinate frames of reference. The first 

coordinate is the fixed world coordinate frame, will be denoted by W, and is defined by 

(virtually attached to) the optical camera. The second coordinate frame is the tracking 

probe’s local coordinate frame, will be denoted by OP. During its operation, the motion 

tracking system provides the six position and orientation parameters of the tracking 

probe’s local coordinate frame OP, relative to the fixed world coordinate frame W. These 

parameters are: 

� Rotation Angles (Euler Angles) 

o Yaw: is the angle of counterclockwise rotation around the z-axis. 

o Pitch: is the angle of counterclockwise rotation around the y-axis. 

o Roll: is the angle of counterclockwise rotation around the x-axis. 

� Translation 

o ��: is the translation along the x-axis. 

o ��: is the translation along the y-axis. 

o ��: is the translation along the z-axis. 

The homogenous transformation  ���U  between the probe’s local coordinate frame 

OP and the world coordinate frame W can then be calculated as follows: 
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Let R� be the rotation matrix around the x-axis, R� be the rotation matrix around 

the y-axis, and R� be the rotation matrix around the z-axis. These rotation matrices are 

defined as follows: 

 R� =	 Z1 0 00 cos	(roll) −sin	(roll)0 sin	(roll) cos	(roll) [ (4.1) 

 R� =	 Z cos	(pitch) 0 sin	(pitch)0 1 0−sin	(pitch) 0 cos	(pitch)[ (4.2) 

 R� =	 Zcos	(yaw) −sin	(yaw) 0sin	(yaw) cos	(yaw) 00 0 1[ (4.3) 

Then the total rotation matrix denoted by R (which is 3x3 matrix) can be obtained 

by the multiplication of the individual rotation matrices as follows: 

 R = 	R�R�R� = ZR�� R�� R��R�� R�� R��R�� R�� R��[ (4.4) 

The homogenous transformation matrix ���U  that transforms the local coordinate 

frame of the tracking probe OP to the world coordinate frame W is then constructed from 

the rotation matrix and the translation parameters as follows 

 ���U = �R�� R�� R�� T�R�� R�� R�� T�R�� R�� R�� T�0 0 0 1 � (4.5) 
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The optical tracking probe was rigidly attached to the ultrasound transducer to 

track its motion, and acquire the 3D orientation and translation of the ultrasound 

transducer, while being used in the scanning, in order to transform the measured bone 

surface points’ depths into 3D point cloud representing the bone surface. Figure 4.4 

shows the developed imaging system’s setup during one of the phantom experiments. 

Figure 4.5 shows a distal femur phantom, consisting of a saw bone in a water container, 

while being scanned during one of the system experiments. 

 

Figure 4.4 The developed single-element ultrasound transducer-based 3D knee model 

reconstruction system’s setup showing the OptoTrak3020 (Northern Digital Inc (NDI), 

Ontario, Canada) tracking system, the phantom scanning, and the developed imaging 

software during one of the phantom experiments. 

 

Optical Tracking 
System 

Bone Phantom 
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Figure 4.5 A snapshot for a phantom scanning experiment showing the distal femur 

phantom and the tracked A-mode ultrasound probe during the scanning process. 

 
4.1.4 Imaging Software 
 

The imaging software was developed in Microsoft Visual C++ 2005. QT 4.3 

(Nokia, Keilalahdentie, Finland) was used for graphical user interface (GUI), and Open 

Inventor 7.2 (Visualization Science Group (VSG) Inc, Burlington, MA) was used for 3D 

visualization. The CompuScope’s (the data acquisition system) API was used for 

interfacing with the data acquisition system to acquire the digitized ultrasound RF signals 

in real-time. The OptoTrak3020 API was used to acquire ultrasound probe’s tracking data 

in real-time. The imaging software was developed using the multithreading technology in 

order to allow concurrent ultrasound data, and probe motion tracking data acquisition, 

processing, and point cloud reconstruction and rendering.  Figure 4.6 shows a snapshot 

for the developed imaging software.  

Tracked Ultrasound 
Probe 

Distal Femur Phantom  
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Figure 4.6 A snapshot for the developed imaging software, for 3D knee model 

reconstruction using single-element ultrasound transducer, during scanning of a phantom. 

It shows the reconstructed 3D point cloud for a distal femur phantom and one of the 

ultrasound A-mode (RF) signals with the initial echo (red dot) reflected by  transducer-

water interface, and the bone echo (white dot) reflected by the bone-water interface 

 
4.2 Tracked A-Mode Ultrasound Probe Calibration 

The probe calibration is a registration process by which the spatial relation 

between the ultrasound transducer and the motion tracking probe is determined. The 

calibration process results in a set of calibration parameters, which are characteristic to 

the tracked A-mode ultrasound probe assembly. These calibration parameters were then 

Ultrasound Echo Signal 

Bone Echo (Bone-Water Interface) Main Bang Echo  
(Transducer-Water Interface) 

Reconstructed Point Cloud 
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used by the imaging software to transform the acquired depth measurements into 3D 

points. The calibration parameters are: 

� Center of the Ultrasound Transducer (���):  The center point (C), of the 

ultrasound transducer’s face as shown in Figure 4.7, relative to the coordinate frame 

(OP) of the tracking probe. 

� Ultrasound Transducer’s Scan Line Unit Vector ( ¡¢��):  The scan line unit 

vector (q£Q) of the ultrasound transducer is the unit vector normal to the ultrasound 

transducer’s face as shown in Figure 4.7. It points towards the direction of the 

ultrasound beam propagation. This scan line vector is also calculated relative to the 

local coordinate frame (OP) of the probe assembly’s optical tracking probe 

 

 

Figure 4.7 The tracked single-element (A-mode) ultrasound probe showing the optical 

motion tracking probe, the A-mode ultrasound transducer rigidly attached to it, the 

optical probe’s local coordinate frame (OP) and the calibration parameters 
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In order to calculate the calibration parameters, the ultrasound probe assembly 

was held fixed, and a set of calibration measurements were collected an additional 

tracking probe. These collected measurements are:  

1. Transducer’s Circumference Points: The ultrasound transducer’s circumference 

was digitized (a set of points collected from the transducer’s circumference) by a 

tracking probe. A linear least squares circle fitting method was then used to fit a 

circle to the acquired circumferential points [25]. The center of this circle is the 

required center point (¤U) of the ultrasound transducer, relative to the tracking 

system’s world coordinate frame (W). The transducer’s circumference points were 

also used to calculate the unit vector (q£QU) normal to the circle plane (which is the 

transducer’s face). 

2. A Point in Transducer’s Ultrasound Field: This point was used to adjust the 

direction of the calculated ultrasound scan line vector (q£QU), make it point towards 

direction of the ultrasound propagation.  

3. Optical Probe’s Orientation and Position: The homogeneous transformation 

(���U ) between the tracking probe’s coordinate frame (OP) and the world 

coordinate frame (W). This was used to transform the calculated calibration 

parameters (transducer center (¤U), and scan line unit vector (q£QU)) from the world 

coordinate (W) frame to the tracking probe’s coordinate frame (OP). This 

transformation was performed by multiplying the calculated calibration parameters 

by the inverse of (���U ) as follows: 
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 ¤�� = ���U 4�¤S (4.6) 

 q£Q�� = ���U 4�q£QU (4.7) 

These calibration parameters were then used by the imaging software to transform 

the calculated bone’s surface points’ depth measurements (detected using the ultrasound 

transducer) into 3D point cloud representing the bone’s surface.  

4.3 Bone Echo Detection and Point Cloud Reconstruction 

The bone echo detection process is responsible for real-time detection of the 

distance between the ultrasound transducer’s face, and the bone’s surface (this one-

dimensional distance will be denoted by bone’s surface depth). The probe calibration 

parameters along with real-time the probe tracking data were used to transform these one-

dimensional bone depth measurements into 3D points relative to the tracking system’s 

world coordinate frame. In the following sections, the bone echo detection method will 

be described, and then followed by a description for the transformation of the bone depth 

measurements into the 3D point cloud representing the bone’s surface. 

4.3.1 Bone Echo Detection 
 

The bone echo detection algorithm used in this imaging system (the single-

element based system) was designed mainly for the echo signals produced by the 

phantoms, which consisted of saw bones held fixed in water container.   The ultrasound 

signals generated by these phantoms consist of two main echoes and sometimes other 

secondary echoes. The two main echoes are: 
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� Transducer-Water Interface Echo (Main-Bang Echo): This echo is produced by 

the reflection of a portion of the ultrasound pulse’s energy at the transducer-water 

interface due to the difference in the acoustic impedance of the transducer and water 

[17]. 

� Water-Bone Echo (Bone Echo): This echo is generated by the reflection of the 

ultrasound beam at the water-saw bone interface. Figure 4.8 shows an ultrasound 

RF signal, captured during one of the phantom experiments, showing the main bang 

echo and the bone echo.  

 

Figure 4.8 An ultrasound RF signal showing the two main echoes, which are the main 

bang echo (red dot) and the bone echo (white dot). 

 
The secondary echoes that exist in the ultrasound echo signal are: 

� Off-Axis Echoes: These echoes are generated by reflectors that lie off the axis of 

the ultrasound transducer (the scan line), which reflects the ultrasound beam 

travelling in the off-axis direction (side lobes of the ultrasound beam). The off-axis 

beam is smaller in amplitude and energy content than the main beam. Figure 4.9 

shows an ultrasound echo signal that exhibit an off-axis echo. 

Bone Echo Main Bang Echo 
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Figure 4.9 An ultrasound echo signal showing the main bang, bone echo, and an off-axis 

echo. 

� Reverberation Echoes: These echoes are generated when the ultrasound beam is 

perpendicular to a reflecting surface with high reflection coefficient (like the case of 

saw bone in water). This reverberation occurs due to the multiple reflection of the 

ultrasound beam between the reflector and the ultrasound transducer. This produce 

secondary reflection echoes which have apparent depths equal to integer multiples 

of reflector’s depth. The reverberation echoes are smaller in amplitude then the 

main echo due to the energy lost during the distance travelled by the echo. Figure 

4.10 shows an echo signal exhibiting reverberation.. 

 

Figure 4.10 An ultrasound echo signal showing the main bang echo, bone echo, and 

multiple reverberation echoes 

The target of the bone echo detection component is to detect distance between the 

main bang echo) and the bone echo and minimize the effect of the secondary echoes 

(reverberation and off-axis echoes) on this detection process. The detected distance is 

equal to double the distance between the transducer’s face, and the bone’s surface point. 

2nd Reverberation  

Off-Axis Echo 

Bone Echo 

Bone Echo Main Bang Echo 

Main Bang 
Echo 

1st Reverberation  

3rd Reverberation  
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Every ultrasound echo has a temporal pulse length that varies depending on the incident 

angle of the ultrasound beam on the bone’s surface, as well as the distance travelled by 

the ultrasound pulse. In order to have an accurate measure of the distance between the 

main bang echo and the bone echo, the pulse’s leading point was used to represent the 

pulse location in the ultrasound signal as shown in Figure 4.8 through Figure 4.10 in 

which the detected main bang echo leading point is denoted by a red dot, and the detected 

bone echo leading point is denoted by a white dot.  

The main bang echo’s leading edge point is defined as the first sample in the 

ultrasound signal that is above the signal acquisition trigger level, which was set to 20% 

of the signal maximum (since the signal maximum occurs at the main bang echo). The 

bone echo is then detected by searching for the first echo following the main bang echo.  

This is performed by searching for the first sample after the main bang echo which 

exceeds a predefined threshold. The threshold was determined empirically to be 80% of 

the signal maximum (the threshold is set to a high value, to avoid the off-axis echoes). 

The search starts after skipping the complete main bang echo by skipping a number of 

samples, equals to the average length of the main bang echo (which was empirically 

determined to be 10 µs) after the leading edge point of the main bang echo. This search 

leads to a point in the bone echo’s that is not the leading edge point. To reach the leading 

edge point of the echo, a backward local search starts from the reached point in the bone 

echo to the leading edge point of the echo. The criteria for stopping this search is finding 

a point below an empirically determined threshold which has a value of 20% (same as the 

trigger level in order to detect the same corresponding points in the main bang echo and 
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bone echo) of the signal maximum value. This final search leads to the bone echo’s 

leading edge point which represents the temporal location of the bone echo in the 

ultrasound echo signal.  

4.3.2 Bone Echoes Registration (Point Cloud Reconstruction) 
 

The detected echo leading edge points are represented as samples indices 

(denoted as /dG�Q_¦GQI for the main bang echo, and /¦§QR_R¨F§ for the bone echo). These 

samples indices are transformed into timestamps (temporal points) on the signal by 

multiplying the samples indices by the sampling interval, which is equals to the inverse 

of the sampling frequency (denoted by Fª). The difference between the bone echo 

timestamp and the main bang echo timestamp is the flight time (denoted by 1R¨F§ ) of the 

bone echo as follows: 

 1R¨F§ = 	 (/¦§QR_R¨F§ − /dG�Q_¦GQI)*«  (4.8) 

This flight time is then multiplied by the ultrasound speed in water (denoted by c) 

to obtain the roundtrip distance travelled by the bone echo (travelling from the transducer 

to the bone surface, and back again to the transducer). The bone surface point’s depth, 

denoted by d¬­®¯ and, is equal to half of the calculated roundtrip distance travelled by the 

bone echo. The bone depth d¬­®¯ is calculated as follows: 

 ?R¨F§ = � ∗ 1R¨F§2  (4.9) 

The ultrasound speed c in water is a function of the water temperature and is 

calculated using the following formula [25]: 
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� = 1402.38744 + 5.03836171	�	 − 	5.81172916	
× 104��� + 3.34638117	 × 104¸��
− 	1.48259672	 × 104¹�¸ + 3.16585020	
× 104º�» 

(4.10) 

Where T is the temperature of the water in Fahrenheit. The detected  depth of the 

bone’s surface point is then transformed into a 3D point using probe’s calibration 

parameters and the ultrasound transducer’s tracking data represented as the homogeneous 

transformation (���U ) between the tracking probe’s coordinate frames (OP), and world 

coordinate frame (W). 

The calibration parameters are first used to transform the detected bone depth into 

a 3D point, denoted by +R¨F§§� , in the tracking probe’s local coordinate frame (OP) as 

follows: 

 +R¨F§�� = ¤�� + ?R¨F§q£Q�� (4.11) 

The bone surface point +R¨F§�� 	represented in the tracking probe’s coordinate frame 

(OP) is then transformed to the world coordinate (W) using the tracking homogenous 

transformation ���U  between the coordinate frames (OP), and (W) as follows: 

 +R¨F§U = ���U +R¨F§��  (4.12) 

The points +R¨F§U  form the point cloud digitized over the bone’s surface using the 

tracked single-element ultrasound probe. 
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Chapter 5 3D Knee Model Reconstruction Using 
Ultrasound RF Data 
 
 

This chapter describes the second imaging system developed in this work for 

patient-specific 3D knee model reconstruction using ultrasound RF data.  This imaging 

system was developed as an extension of the tracked A-Mode ultrasound imaging system. 

This system used the RF data acquired from an ultrasound machine to transcutaneously 

digitize a 3D point clouds over the surface of the bone. This point cloud is then used to 

create a patient-specific 3D bone model using the bone morphing. In the following 

sections, the system components will be described, then followed by the ultrasound RF 

data processing, and point cloud reconstruction methods used 

 
5.1 Imaging System Setup 

The developed system consisted of an ultrasound machine, a motion tracking 

system, and custom built imaging software for the 3D bone model reconstruction. In the 

following subsections, each component will be described. 

 
5.1.1 Ultrasound Machine, and Transducer 
 

This imaging system was built using a SonixRP ultrasound machine (Ultrasonix 

Inc, British Colombia, Canada). The SonixRP machine, shown in Figure 5.1, is a 

diagnostic ultrasound machine with research capabilities. It allows the access to many 

imaging parameters, as well as access to the ultrasound raw RF data (post beam forming) 

through C++ based application programming interface (API) libraries. The API library 

used in this work is called Porta. The Porta API enables the control of the ultrasound 
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machine through C++ functions, and the real-time acquisition of the post beam forming 

RF data. This API was used to develop the 3D bone model reconstruction software to be 

running in real-time on the ultrasound machine. A linear high frequency transducer with 

128 elements (L14-5/38) was used for the scanning to obtain the highest resolution. The 

transducer’s frequency range is 5-14 MHz with center frequency of 7.2 MHz. Its 

fractional bandwidth is 70% at -6 dB. Its length is 38 mm, with 4 mm elevation height. 

 

Figure 5.1 SonixRP ultrasound machine (Ultrasonix Inc, British Colombia, Canada) used 

in the second developed patient-specific 3D knee model reconstruction system  
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5.1.2 Motion Tracking System 
 

In order to reconstruct 3D point cloud from the acquired ultrasound RF data, a 

motion tracking system was used to track the ultrasound probe’s motion while being used 

in the scanning. The ultrasound probe’s motion tracking data were used to register the 

acquired RF data frames in the 3D coordinate frame of the motion tracking system. The  

Polaris Spectra Optical motion tracking system (Northern Digital Inc (NDI), Ontario, 

Canada) was used in this imaging system. The Polaris Spectra is a state-of-art motion 

tracker that utilizes the infrared light to track the motion of a tracking probe with a 

number (at least 3, and usually 4 for redundancy) of infrared light emitting diodes 

(LEDs).  This motion tracking system has three components: 

� Infrared Camera:  is the main optical unit which contains the infrared transmitters 

(which are used for the passive probes), and receivers which receives the infrared 

light emitted (or reflected in case of passive probes) by the infrared LEDs in the 

motion tracking probes. It acts as the fixed world coordinate frame of reference for 

the tracking system. 

� Control Unit:  is the control unit of the tracking system. It is connected to the 

infrared camera and the computer running the motion tracking software. It receives 

the detected pulses of infrared light from the camera, process them to triangulate the 

3D position and orientation of the tracking probe, then sends the motion tracking 

data to the computer through a USB port. Figure 5.2 shows the infrared camera and 

controller of the Polaris Spectra tracking system.  
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� Motion Tracking Probe:  is the probe which is used for the motion tracking. The 

motion tracking probe can be either active or passive probe. The active probe 

contains infrared LEDs (active probe), or infrared reflectors (passive probe). The 

active probe contains infrared LEDs (at least 3 non collinear) which tramsit infrared 

pulses that are received by the infrared camera to triangulate the position and 

orientation of the tracking probe. The passive (wireless) probe contains four 

reflectors which reflects the infrared pulses transmits infrared pulses emitted by the 

infrared camera. and the reflected infrared pulses are then received by the camera to 

triangulate the probe’s position and orientation. Figure 5.3 shows the active and 

passive probes of the Polaris Spectra motion tracking system. Figure 5.4 shows the 

tracking volume for the Polaris Spectra tracker. 

 

 

Figure 5.2 Polaris Spectra optical motion tracking system (Northern Digital Inc (NDI), 

Ontario, Canada) used in the second developed imaging system; showing the infrared 

camera, and the control unit 

Infrared Camera 

Control Unit 
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Figure 5.3 Active and passive motion tracking probes for the Polaris Spectra optical 

motion tracking system (Northern Digital Inc (NDI), Ontario, Canada) 

 

 

Figure 5.4 Polaris Spectra tracking volume (Northern Digital Inc (NDI), Ontario, Canada) 

 
 

Active Probe 

Passive Probe 
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5.1.3 Imaging Software 
 

The imaging software was developed in C++ using Visual Studio 2005 (Microsoft 

Inc). QT 4.3 (Nokia, Keilalahdentie, Finland) was used for graphical user interface 

(GUI), and Open Inventor 7.2 (Visualization Science Group (VSG) Inc, Burlington, MA) 

was used for 3D visualization. To acquire real-time ultrasound RF data from ultrasound 

machine, the developed software used the Ultrasonix’s Porta API for interfacing with the 

ultrasound machine’s hardware to acquire the digitized ultrasound RF signals in real-time 

to be processed by the software. The RF data was processed at a rate of 20 frames/second 

using an Intel dual core 2.4 GHz processor (the SonizRP processor). This processing 

frame rate was lower than the ultrasound machine’s frame rate, which was 25 

frames/second. The RF processing module was set to process the latest frame in order to 

maintain the speed of the contour extraction with the speed of scanning in order to 

provide the user with real-time extracted bone contours. The sampling frequency used by 

the ultrasound machine for the RF data was 20 MHz. The ultrasound probe tracking data 

was acquired in real-time by the developed software using the Polaris Spectra’s 

interfacing API library. The imaging software was developed using the multithreading 

technology in order to allow concurrent acquisition, and processing of ultrasound RF 

data, and the probe motion tracking data, and point cloud reconstruction and rendering.  

Figure 5.5 shows a snapshot of the developed imaging software during scanning of a 

cadaveric distal femur. 
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Figure 5.5 A snapshot of the developed imaging software during scanning of a cadaveric 

distal femur, showing a B-mode ultrasound image, the bone contour extracted from the 

ultrasound raw RF data, and the reconstructed point cloud while being reconstructed. 

 
5.2 Tracked Linear Ultrasound Probe 3D Calibration 

  Tracked ultrasound probe 3D calibration is the process by which the tracking 

probe is registered with the ultrasound probe to obtain the spatial transformation between 

the coordinate frames of the ultrasound RF data and the tracking probe. 

B-mode Image 

Bone Contour 

Bone’s Point Cloud 
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  The optical probe has a local coordinate frame of reference virtually attached to it, 

while the optical camera defines the fixed world coordinate frame. The function of the 

tracking system is to determine, in real-time, the homogenous transformation ���U  

between the optical probe’s local coordinate frame denoted by (OP) and the camera’s 

fixed world coordinate frame of reference (W). The ultrasound probe has a local 

coordinate frame virtually attached to it as well. The calibration targets the determination 

of the spatial transformation between the coordinate frame of the ultrasound RF data, and 

the coordinate frame of the tracking probe.  

  In this system, a simple, fast and yet accurate calibration method was used. This 

method is based on four measured calibration parameters:  

� The origin point of the transducer (�¼��): which corresponds to the first sample 

of the first ultrasound scan line, or alternatively corresponds to the origin of the 

ultrasound B-mode image. The transducer’s origin point is calculated relative to the 

local coordinate frame (OP) of the tracking probe. 

� The length of the transducer array (½¾¿À¢ÁL):  is provided by the manufacturer 

specifications. 

� Unit vector along the ultrasound transducer’s scan lines ( ¡Â��):  is a unit vector 

in the direction of the ultrasound beam propagation This scan line vector is also 

calculated relative to the local coordinate frame OP of the tracking probe. 

� Unit vector along the ultrasound transducer array ( ¡Ã��):  is a unit vector in the 

direction of the ultrasound transducer array (normal to the scan line). This unit 
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vector is also calculated relative to the local coordinate frame OP of the tracking 

probe.  

Figure 5.6 shows the calibration parameters illustrated on the tracked ultrasound  

probe used. In order to obtain these calibration parameters, the following calibration 

process was performed. 

  After rigidly attaching the optical probe to the ultrasound probe, the calibration 

process was performed by holding the probe assembly in a fixed position (throughout the 

whole calibration process), while a number of points were collected using another 

tracking probe. The collected points were the two end points of the ultrasound 

transducers array +�U, and +�U, and a point +�CGQRU   on the transducer face which is not 

collinear with the previously collected transducer array end points as shown in Figure 

5.6. The homogeneous transformation ���U  between local coordinate frame OP of the 

tracking probe (attached to the ultrasound probe), and the world coordinate frame W of 

the optical camera was also recorded.  

The calibration parameters were then calculated using the collected calibration 

measurements points and transformations as follows: 

 +§�� = 	 (���U )4�	+�U (5.1) 

 q£��� = (���U )4� +�U − +�U‖+�U − +�U‖ (5.2) 
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 u£��� = (���U )4� 	 (+�CGQRU − +�U) 	× 	(+�U − +�U)B(+�CGQRU − +�U) 	× 	(+�U − +�U)B (5.3) 

  These calibration parameters were then used by the imaging software during the 

system operation, as described in Section 5.4.2.1, to register the detected bone contours 

from the RF data in the world coordinate frame of the tracking system’s to reconstruct the 

3D point cloud representing the scanned bone’s surface. 

 

 

Figure 5.6 The tracked linear ultrasound probe used in the developed system, showing the 

collected calibration measurements, and the calculated calibration parameters 

 
5.3 Knee Scanning Protocol 

  The high reflectivity and attenuation of the bone to ultrasound prevents the 

ultrasound energy from penetrating the bone to image any organ or tissue lying behind it. 
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This acoustic characteristic of the bone poses a challenge to the use of ultrasound in joint 

imaging. The knee is one of the main joints of the human body. It is formed of three 

articulating bones: femur, tibia and patella. These bones articulate together in two sub-

joints: 

� Tibio-Femoral Joint:  formed by the articulation of the femur with the tibia at the 

femoral  condyles and tibial condyles. 

� Patello-Femoral Joint: formed by the articulation of the patella with the femur at 

the patellar surface of the femur and the articular surface of the patella. 

  During the flexion-extension motion of the knee, some portions of the articular 

surfaces of the bones are visible to the ultrasound beam, while others are occluded but the 

other bones. The two main positions at which most of the knee’s articulating bones’ 

surfaces are visible for the ultrasound beam are full extension and deep knee bend  (or 

90º flexion, if deep knee bend is difficult to achieve by the patient) positions. Figure 5.7 

shows a dissected cadaver’s knee (one of the two cadaver knees used for experimenting 

the imaging system) showing the articulating knee bones surfaces visible to ultrasound at 

90º flexion. Figure 5.8 shows fluoroscopic images for a volunteer’s knee, showing the 

different articulating surfaces of the knee bones visible to the ultrasound at different 

flexion angles.  

  When the knee is in full extension, the posterior parts of the distal femur and 

proximal tibia are both visible to the ultrasound. While in deep knee bend (or 90º 

flexion), the anterior surfaces of the distal femur, the trochlear grove, most of the inferior 

surface of the femoral condyles, the anterior superior surface of the tibia, and the anterior 
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surface of the tibia are visible to the ultrasound beam. Both the medial and lateral sides of 

the femur and tibia are visible at all flexion angles of the knee. 

  Therefore, in order to obtain a point cloud representing the ultrasound-visible 

knee bones surfaces, the knee should be scanned at different flexion angles. Implanting 

reference probes into the bones, to track the bones motion during scanning, is would 

make the imaging system invasive. Attaching references probes to the legs over the skin 

would greatly deteriorate the accuracy due to the skin-bone motion [27], and [28]. To 

overcome this problem, partial bones surfaces scans were performed at different flexion 

angles of the knee. During each partial scan, the knee was held fixed in order to avoid 

motion artifacts. From these partial scans, 3D partial point clouds were reconstructed 

which represent the scanned partial bone’s surfaces. These partial point clouds were then 

mutually registered to reconstruct the whole bone’s surface point cloud, as described in 

the following section. 

 

 

Figure 5.7 Dissected cadaver’s knee showing the different ultrasound-visible regions of 

the patella, distal femur, and proximal tibia at 90 degrees flexion 
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Figure 5.8 Fluoroscopic images of a volunteer’s knee [26] at different flexion angles 

starting from full extension (1) to deep knee bend (6). The images show the different 

articular bone surfaces of the knee visible to ultrasound at different flexion angles  
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5.4 Bone Echo Detection and Point Cloud Reconstruction 

  This part of the system is responsible for transcutaneously localizing a point cloud 

over the bone’s surface using the ultrasound RF data, and the probe’s motion tracking 

data captured by the motion tracking system. In the following sections, the real-time 

method for the automatic extraction of the bone contours from the RF data will be 

described followed by description of the registration method of the extracted contours 

into a 3D point cloud that represents the scanned bone’s surface. 

5.4.1 Automatic Extraction of Bone Contours from Ultrasound RF Data 
 
  The ultrasound RF signal consists of a number of isolated and/or overlapping 

echoes. These echoes originate from the reflection of different portions of the ultrasound 

pulse’s energy at the different tissue interfaces along the ultrasound beam’s path. Of these 

echoes, is one echo of interest; the bone’s echo, which is generated by the reflection of 

the ultrasound energy at the bone’s surface. The process of bone contour extraction from 

the ultrasound frame is performed by automatically extracting the individual bone echo 

from each ultrasound RF signal, then combining these individual echoes to form the 

bone’s contour. The extracted  bone contours are then filtered to reject non-bone (noise) 

contours. Figure 5.9 shows a sample ultrasound B-mode image for cadaver’s distal 

femur, showing sample scan lines RF signals as well as the final extracted contour using 

the developed method. Figure 5.10 shows a flowchart for the bone contour extraction 

from the ultrasound RF data. In the following sections, each step of the bone contour 

extraction process is described in details.  
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Figure 5.9 An ultrasound B-mode image of a cadaver’s distal femoral groove (top), 

example ultrasound RF signals (middle), and the automatically extracted bone contour 

overlaid on the reconstructed B-mode image (bottom) 
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Figure 5.10 Flowchart for the process of automatic bone contour extraction from 

ultrasound RF data 

5.4.1.1 Envelope Detection using Moving Power Filter 
 
  The target of this step is to transform the RF ultrasound signal into a smooth 

envelop which can then be used to extract the individual echoes existing in the RF signal. 
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A moving power filter, consisting of a moving kernel of length equals to the average 

length of an individual ultrasound echo, is applied to the RF signal to generate an 

envelope of the RF signal. At each step of the moving kernel, the power of the RF 

signal’s segment at the kernel position is calculated and its value represents the value of 

the envelope at that point. The kernel window length of 20 was determined empirically 

and was used in the performed experiments. Given the discrete-time signal X of length N, 

the envelope Y using a moving power filter of length L is defined by: 

 ÅL = A Æ��
LÇÈÉ

�D	L4ÈÉ
⩝				∀				P	; ËÌ2 , ) − Ì2 − 1	Í (5.4) 

  In this and the following signal processing equations, a one-sided filter of varying 

length is used for the special cases of the samples before the 
O� sample (left-sided filter), 

and after the ) − O�− 1 sample (right-sided filter). 

5.4.1.2 Bone Echoes Detection and Contour Reconstruction 
 
  The envelope produced by the moving power filter represents an intensity profile 

for the RF signal, and provides a clear representation for the individual echoes existing in 

the acquired ultrasound RF signal. This envelope will be denoted as the RF signal’s 

intensity profile. Every echo is represented by a local peak in the RF signal’s envelope. 

These peaks are then extracted automatically to detect the location (sample index) of the 

individual echoes in the RF signal. Figure 5.11. Shows four ultrasound RF signals 

(extracted from the ultrasound frame in Figure 5.9), their envelopes, and the extracted 

bone and non-bone echoes. 
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Figure 5.11 Sample RF signals (in blue) from the ultrasound frame in Figure 5.9, and 

their moving power envelopes (in red). The detected echoes are shown in green for the 

detected bone-echoes, and in cyan for the other echoes 

 
  The soft tissue-bone interface is characterized by high reflection coefficient of 

43% [17], which means that 43% of the ultrasound pulse energy reaching the bone’s 

surface is reflected back to the transducer. This high reflectivity gives the bone its 

characteristic hyper-echoic appearance in the ultrasound image. The bone is also 

characterized by a high attenuation coefficient (6.9, and 9.94 db/cm/MHz for the 

trabecular and cortical bone respectively). At the high frequencies (in the range of 7-14 

MHz) used in musculoskeletal imaging, the attenuation of the bone becomes very high so 

that the ultrasound beam ends at the bone’s surface [17]. This characteristic makes the 
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bone echo the last echo in the received ultrasound RF signal. Therefore, the selection of 

the bone echo from the detected echoes is accomplished by selecting the last echo having 

normalized intensity value (with respect to the maximum intensity value existing in the 

intensity profile) above a certain preset threshold. This normalized intensity value at the 

detected bone echo will be denoted as the bone echo normalized intensity. The threshold 

used will be denoted as the bone echo normalized intensity threshold, and its value was 

empirically determined to be 0.05 (or 5%).  

  The set of bone echoes extracted from the ultrasound RF signals for an acquired 

frame constitutes the bone’s contour existing in that frame. These contours might be 

noisy and need filtering to remove outlier echoes (falsely detected non-bone echoes). 

Also some frames do not have any bone contours; therefore, the detected contours for 

these are noise contours and should be filtered out. Therefore after each contour is 

extracted from the RF data frame, it is filtered by a number by a number of contour 

filtering processes which are described in the following section.   

5.4.1.3 Bone Contours Filtering 
 
  There are two sources of noise in the detected bone’s contours; the first noise type 

is isolated outlier echoes, and the second is outlier contour segments (non-bone contour 

segments).  

� Isolated Outlier Echoes 
 
  The first noise source is isolated outlier echoes within the bone contour segment 

where the actual bone echo is not selected, and a non-bone echo is selected instead. This 
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occurs in two cases; the first case is when the bone echo normalized intensity is smaller 

than the bone echo normalized intensity threshold. In this case, an echo from the soft 

tissue layer lying before the bone, in the ultrasound frame, is falsely detected as the bone 

echo.  

  The second case is when the normalized intensity of a non-bone echo is greater 

than the bone echo normalized intensity threshold and lies beyond the bone echo in the 

RF signal. This leads to falsely detecting noise or scattering echo that appears beyond the 

bone‘s echo. With the empirically determined and tested bone echo normalized intensity 

threshold of 0.05, the noise due to the second case are not frequent; they occur mostly in 

the case of reverberation, which doesn’t occur frequently. However the bone echo 

detection process is not very sensitive to this threshold, a range of 0.02 to 0.08 was tested 

and the process was insensitive to variation of the threshold within this range. The noise 

echoes detected from both types of noise are removed by the different filters applied to 

the contours and the final reconstructed point cloud. 

   The filter used for removing bone echo outliers is the median filter, which is very 

efficient in outlier removal. The filter’s kernel half size was empirically determined to be 

7 (full kernel length of 15). Given A contour X of length N, the median-filtered contour 

Y using a median filter of length L is defined by: 

 ÅL = 73?.p/ ËÆL4ÈÉ, ÆLÇÈÉÍ ∀P; ËÌ2 , ) − Ì2 − 1Í (5.5) 

  Figure 5.12 shows sample ultrasound frames and the extracted contours from the 

RF data, before and after the outlier echoes removal using the median filter.  
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Figure 5.12 Two ultrasound B-mode images (top), and the extracted bone contour from 

their RF data overlaid on the B-mode images (bottom). The unfiltered contours are shown 

in red, and the median-filtered contours, to filter the outlier echoes, are shown in yellow 

� Outlier Contour Segments 
 
  The second source of noise in the detected bone contour is falsely detected bone 

contour for a region where no bone contour exists. This noise occurs when an area 

containing no bones is scanned, or the probe is not oriented in a perpendicular (or near 

perpendicular) orientation with respect to the bone’s surface, or the bone lies deeper than 

the preset scanning depth, or the bone lies within the preset scan depth but its echo is 

highly attenuated by soft tissue lying over the bone (for example the distal femur which 

has its echo highly attenuated by the posterior knee muscles). 
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These falsely detected bone contour segments are filtered out using the bone 

contour continuity criteria. Since the bone surface has regular shape, its 2D contour in the 

ultrasound frame should exhibits continuity and smoothness. Any none-bone contour 

segment falsely detected is always non-continuous and exhibits a high degree of 

irregularity. To filter out the false bone contour segments, a moving standard deviation 

filter is used to detect contour irregularities, and discontinuity points. The moving 

window length of 3 was used for the moving standard deviation filter to generate a local 

standard deviation curve representing the mean deviation in depth between adjacent 

contour points. Given the contour X of length N, the moving standard deviation Y using a 

moving standard deviation filter of length L is defined by: 

 ÅL = Î 1Ì − 1 A (Æ�
L4ÈÉ

�D	L4ÈÉ
− ÆÏ)�		∀			P	; ËÌ2 , ) − Ì2 − 1	Í (5.6) 

         The output of this filter is the local standard deviation curve for the contour; it is 

used as a measure of the regularity and continuity of the contour at every point of the 

contour. This local standard deviation curve is then used to discriminate between the 

bone contour segments and the noise contour segments.  

  Contour segments constructed from echoes that are not generated by reflection 

from bone’s surface have high local standard deviation values due to the irregularity and 

discontinuity of the contour segments. On the other hand the contour segments formed 

from echoes generated by ultrasound reflection at the bone’s surface are characterized by 

low values of local standard deviation due to their regularity and continuity.  
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  The input contours to the outlier contour segments filter can be one of the 

following three cases: 

� A full length bone contour which means the entire contour is a true bone contour in 

the ultrasound frame.   

� One or more partial bone contour segments and the rest of the contour are non-bone 

contour segments.  

� The entire contour is noise and is not a bone contour. 

  The true bone contour segments are detected by the outlier contour segments filter 

as the contour segments that satisfy two conditions;  

� It should satisfy the continuity criteria by having local standard deviation values 

below a certain empirically determined threshold value of 30 which corresponds to 

1.08 mm standard deviation between adjacent contour points. 

� It should satisfy a minimum-length criterion to avoid piecewise-smooth noise 

contour segments from being falsely detected as bone contour segments. The 

minimum contour segment length threshold was set to 30% of the transducer length.  

  Figure 5.13 shows sample ultrasound frames with partial bone contour segments, 

showing the extracted bone contours (in green), and the filtered out noise contour 

segments (in red). Figure 5.14 shows sample ultrasound frames with no bone contours 

(the detected contours are entirely noise), and thus were filtered out by the outlier contour 

segments filter. 
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Figure 5.13 Sample ultrasound B-mode images (top) for frames with partial bone contour 

segments, showing the extracted contour from their RF data overlaid on the B-mode 

images (middle), and the contour’s local standard deviation with the threshold line 

(bottom). The true bone contour segments are shown in green, while the filtered out noise 

contour segments are shown in red 
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Figure 5.14 Sample ultrasound B-mode images (top) for the case of frames with no bone 

contour, and the extracted contour from their RF data overlaid on the B-mode images 

(middle), and the contour’s local standard deviation with the threshold line (bottom). The 

entire extracted contour (red) was detected as noise since no segment in it satisfied the 

continuity and the minimum-length conditions 
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5.4.2 Bone Contours Registration 
 
  After the extraction from the ultrasound RF data, the bone contours undergoes 

two registration processes to reconstruct the 3D point cloud representing the scanned 

bone surface. The first registration step transform the contours from 2D contours, in the 

ultrasound probe’s local coordinate frame (OP), into 3D contours in the world coordinate 

frame (W) of the motion tracking system as described in section 5.4.2.1. This registration 

step is performed on all contours extracted from the ultrasound RF data frames of a 

partial joint scan. The output of this registration is a partial point cloud for the scanned 

partial bone’s surface (scanned at a certain flexion angle; full extension or deep knee 

bend, or 90o flexion). The second registration process targets integrating the bone’s 

partial point clouds into one point cloud representing the whole scanned bone’s surface. 

Another registration process is performed between the B-mode image and the bone 

contour extracted from the RF data. This registration step is performed for visualizing the 

contour overlaid on the B-mode image for real-time visual validation and performance 

feedback of the contour detection process while the operator is performing the scans.  

Figure 5.15 shows a flowchart for the contours point cloud, and 3D model reconstruction 

from the extracted bone contours. 

5.4.2.1 Bone Contours 3D Registration 
 
  The extracted contours from the RF data are represented as signal’s samples 

indices. Each contour consists of the bone echoes indices in the individual ultrasound RF 

signals existing in the ultrasound frame containing the contour. To transform this contour 
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into a 3D contour, every detected bone echo is this contour is transformed into a 3D point 

as follows: 

 ?R¨F§ = /R¨F§�«¤u« (5.7) 

 @R¨F§ = 	 ÌE�GQ« /C�QR)C�QR« (5.8) 

 

 +R¨F§�� = +§�� + 	?R¨F§q£��� + @R¨F§q£��� (5.9) 

 +R¨F§U =	���U +R¨F§��
 (5.10) 

 

Where ?R¨F§ is the depth of the detected bone echo in, /R¨F§ is the signal’s 

sample index of the echo. �ª is the RF signal’s sampling period, ¤u« is the average speed 

of ultrasound in soft tissue which is equal to 1540 m/s. l¬­®¯ is the distance from the 

origin of the transducer array to the scan line containing the bone echo. /C�QR is the index 

of the scan line containing the bone echo in the ultrasound frame, and )C�QR« is the total 

number of scan lines in the ultrasound RF data frame. +R¨F§��  is the detected 3D point on 

the bone’s surface represented relative to the optical probe’s coordinate frame. +§�� , 
ÌE�GQ«,	 q£��� , and	q£���	are probe’s calibration parameters. +R¨F§U  is the detected bone’s 

surface point relative to the fixed world coordinate frame of the optical camera, and ���U  

is the homogeneous transformation between the tracking probe’s local coordinate frame 

(OP) and the world coordinate frame of the tracking system (W). ���U  is acquired 

dynamically in real-time from the tracking system, and it contains the position and 
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orientation of the tracking probe attached to the ultrasound probe during the acquisition 

of the ultrasound frame. 

 

Figure 5.15 Flowchart for the contours registration and bone model reconstruction 

process. 
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5.4.2.2 Partial Point Clouds Integration 
 
  After the partial bone surface 2D contours are registers in the 3D world 

coordinate frame, they form a 3D point cloud representing the scanned partial bone 

surface. This partial point cloud contains some noise points which were not filtered out 

by the contour filtering processes. Each partial point cloud is then initially aligned to the 

atlas’ mean model using at least three non-collinear pre-specified landmarks which are 

picked from the partial point cloud by the system’s operator. The landmarks do not need 

to be picked with high accuracy; they merely define the initial alignment between the 

point cloud and the mean model to avoid any singularity in the registration. Following 

this initial alignment, an iterative closest point (ICP) registration is performed to 

accurately align the partial point cloud to the mean model. The noisy points are then 

removed based on a simple thresholding for the distance between the points of the partial 

point cloud and their closest vertices in the mean model. The average distance was used 

as the threshold. The same process is performed for every reconstructed partial point 

cloud for the scanned bone’s surface. Then the aligned partial point cloud are integrated 

by simply combining them together into one point cloud that represents the whole 

scanned bone’s surface. Figure 5.16 shows an example for the alignment and integration 

of the partial point clouds reconstructed for one of the cadaver’s knee used in the system 

experiments.  

5.4.2.3 Bone Contour to B-Mode Image Registration 
 
  In order to visually verify the validity of the extracted bone contours while the 

joint being scanned, the extracted contours are overlaid on the B-mode images acquired 
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from the ultrasound machine, and rendered for the operator. The bone contour, 

represented as samples RF signal’s indices, is registered with the ultrasound image as 

follows: 

 P¬­®¯Ñ = Ë l¬­®¯I�d¬­®¯I�Í	 (5.11) 

  Where I�, and I� denotes the image resolution in pixel/cm for the x, and y axes 

respectively of the B-mode image. P¬­®¯Ñ  denotes the 2D coordinates of the contour point 

relative to the B-mode image. 

 

Figure 5.16 An anterior distal femur’s partial point cloud (top left), and the partial point 

cloud aligned to the atlas’ mean model (top right). A medial partial point cloud is shown 

aligned to the mean model (bottom left), and the integrated point cloud after combining 

the anterior, medial and lateral partial point clouds for the distal femur (bottom right) 
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Chapter 6 Clinical Study 
 
 

The results obtained from the cadavers’ experiments of the developed system 

motivated the move to a clinical study for further assessment of the system, and method 

accuracy and efficiency in 3D model reconstruction of the knee bones. The developed 

system had to be upgraded to use a newer model of the ultrasound machine, and an 

electromagnetic motion tracking system which gives more flexibility, efficiency and ease 

of use than the optical motion tracking system used in the cadaver experiments while 

maintaining the required accuracy.  The following section describes the different system 

components, the patient scanning setup, and scanning protocol. 

6.1 Imaging System Setup 

The imaging system developed for the clinical study is very similar to the imaging 

system described in section 4.1 which was used for the cadaveric experiments. The 

clinical study system consisted of an ultrasound machine, motion tracking system to track 

the ultrasound probe’s motion. The ultrasound machine, and the motion tracking system 

were driven by the imaging software developed in this work for ultrasound machine 

control, ultrasound data acquisition and processing in real time for the reconstruction of 

the 3D model of the scanned bones. In the following sections, the different components 

of the clinical system will be described in details.  

6.1.1 Ultrasound Machine, and Transducer 
 

The ultrasound machine used for the clinical study was the SonixTOUCH 

(Ultrasonix Inc, British Colombia, Canada) which is the newer model of the SonixRP 
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ultrasound machine used in the imaging system described in section 4.1. It provides the 

same capabilities of the SonixRP machine, from controlling the ultrasound imaging 

through application programming interface library (API), and access to the ultrasound 

data (B-mode images, and RF data) through the API library named Porta.  Figure 6.1 

shows the SonixTOUCH ultrasound machine used in the clinical study. 

 

Figure 6.1 The SonixTOUCH ultrasound machine (Ultrasonix Inc, British Columbia, 

Canada) used in the clinical study, showing the magnet of the driveBay electromagnetic 

tracking system (Ascension Inc) fixed to an articulating arm 
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6.1.2 Motion Tracking System 
 

The motion tracking system used (to track the ultrasound probe’s motion during 

scanning) in the clinical study system was the DriveBay electromagnetic (EM) tracking 

system (Ascension Inc, Burlington, VT). The DriveBay EM tracking device is integrated 

in the SonixTOUCH ultrasound machine (connected to its motherboard). The DriveBay 

electromagnetic tracking system consists of the following components: 

1. Magnet:  is an electric magnet which consists of a coil built on a ferromagnetic 

core to magnify the magnetic field created by the alternating current in the coil. The 

magnet provides a magnetic field in the tracking volume in which the tracking 

sensors (probes) move. The tracking sensors intercept the magnetic field and 

generate electric signals which are used to triangulate the position and orientation of 

the motion tracking probe. The magnet defines the fixed world coordinate frame of 

reference (W) of the tracking system as shown in Figure 6.4. 

2. Control Unit:  is the main component of the tracking system, and it contains the 

electronics of the tracking system that controls the magnet activation, collects the 

signal from the tracking sensor, triangulate the position and orientation of the 

tracking sensors, then send the tracking data to the computer. Figure 6.2 shows the 

DriveBay control unit and the magnet. 

3. Motion Tracking Sensor (Probe): is consisting of coils which are used to 

determine the position and orientation of the sensor using the theoretical knowledge 

of the magnet’s magnetic field. There are several kinds of sensors, depending of 

their sizes. There are sensors with 90 mm, 130 mm, 180 mm, and 800 mm in size. 
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Figure 6.3 shows the 800 mm, 180 mm, and 130 mm sensors. Each sensor has its 

own virtually-attached local coordinate frame of reference as shown in Figure 6.4. 

Figure 6.5 shows a graph for the position detection noise versus range (distance 

from the magnet’s center) for the four different tracking probes. The tracking noise 

increase as the size of the tracking probe decreases due to the decreased signal to 

noise ratio (SNR). The tracking noise increases with the increase of the distance 

between the tracking sensor (probe) and the magnet. Figure 6.6 shows the tracking 

volume for the mid-range magnet used in the clinical study system. 

 

Figure 6.2 The DriveBay (Ascension Inc, Burlington, VT) electromagnetic tracking 

system used in the clinical study, showing the control unit (left), and the magnet (right)  

 

Figure 6.3 The 800 mm (left), 180 mm (middle), and 130 mm (right) electromagnetic 

motion tracking sensors (Ascension Inc, Burlington, VT) 
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Figure 6.4 Schematics for the magnet, a model for the 800 mm sensor, and micro sensors 

(the 130 mm, and 180 mm sensors), showing their coordinate frames of reference 

(Ascension Inc, Burlington, VT) 

 

Figure 6.5 Position noise versus range (distance to the magnet’s center) comparison for 

the 90 mm,130 mm, 180 mm and 800 mm Sensors (Ascension Inc, Burlington, VT) 
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Figure 6.6 Tracking volume for the mid range magnet used in the clinical study system 

(Ascension Inc, Burlington, VT) 

 
6.1.3 Imaging Software 
 

The imaging software developed for the SonixRP ultrasound machine-based 

system was modified to be compatible with the SonixTOUCH ultrasound machine, and 

to replace the Polaris Spectra optical motion tracking system with the DriveBay 

electromagnetic motion tracking system. The clinical study imaging software had extra 

controls than its previous version (used in the cadaveric experiments). It had ultrasound 

controls for the depth, gain, and time gain compensation (TGC). It also had controls for 

the automatic bone contour extraction process parameters described in section 5.4.1. 

These controls were used to empirically determine the optimal values that were used 
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throughout the clinical study which were identical to the values used for the cadaveric 

experiments and are shown in Figure 6.7.  

 

Figure 6.7 Snapshot of the developed imaging software used in the clinical study, 

showing a reconstructed 3D point cloud for a distal femur, and one of the automatically 

extracted contours with the bone contour segment (green), and the rejected non-bone 

contour segments (red).  

6.2 Tracked Linear Ultrasound Probe Calibration 

The SonixTOUCH ultrasound machine has ultrasound probes which have 

electromagnetic tracking sensors (model 180) built inside the ultrasound probe. The 3D 

calibration of the probe was performed by the ultrasound machine manufacturer 

(Ultrasonix Inc, British Columbia, Canada), and the calibration parameters provided by 
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the manufacturer were the rotation and translation matrices between the ultrasound image 

coordinate frame, and the electromagnetic tracking sensor’s local coordinate frame. 

These calibration matrices were used to calculate the developed imaging system-specific 

calibration parameters described in section 4.2, using unit vectors in the x (to calculate 

the calibration parameter q£���), and y (to calculate the calibration parameter q£���) axis of 

the ultrasound image reference frame, and the top center point of the ultrasound image 

(which represents the center point of the ultrasound transducer’s face, and was used to 

calculate the calibration parameter +§��). 

6.3 Patient’s Knee Scanning Setup 

The knee joint consists of the femur, tibia, and patella bones articulating at different 

articular surfaces as described in section 5.3. In order to acquire scans covering the whole 

surface (or most of it) of the distal femur and proximal tibia, the knee scanning is divided 

into separate scanning sessions.  In each scanning session, the knee is held fixed and a 

specific region of the distal femur, or proximal tibia bones is scanned. These regions 

scans are then used to create partial point clouds which are then mutually registered to 

produce a point cloud representing the whole scanned bone’s surface (including all 

scanned regions). 

The patient’s knee is scanned in two positions: 

1. Knee Bend: this position is used to scan the anterior, medial, and lateral regions of 

the distal femur and proximal tibia. A deep knee bend (130⁰) is used if the patient 

can perform the deep knee bend; otherwise a 90⁰ knee bend position is employed. 

The deep knee bend is preferred because at this position, a larger portion of the 
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anterior grove of the femur is accessible (un-occluded by other bones)  to the 

ultrasound beam for imaging. 

2.  Full Extension: this position is used to scan the posterior regions of the distal 

femur, and proximal tibia which are only accessible for scanning at the full 

extension position of the knee. 

A key requirement for the patient scanning setup is to have the patient’s knee fixed 

throughout a region scanning session. To meet this requirement, three leg holders were 

built to hold the patient’s knee fixed during the region scanning sessions. Two of the leg 

holders are used for scanning of the anterior, medial and lateral regions of the distal 

femur, and proximal tibia in deep knee bend, and 90⁰ knee bend positions as shown in  

Figure 6.8. The 90⁰ knee bend leg holder is used when the patient can’t have his/her knee 

at deep knee bend. The third leg holder is used for scanning the posterior regions of the 

distal femur, and proximal tibia at the full extension position as shown in Figure 6.9 

 

Figure 6.8 Deep, and 90⁰ knee bend leg holders with a volunteer’s leg attached to it in the 

position used for scanning of the anterior, medial, and lateral regions of the distal femur, 

and proximal tibia bones. 

Height Adjusting 
Assembly 
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Figure 6.9 Full extension leg holder with a volunteer’s leg attached to it in the position 

for the scanning of the posterior region of distal femur, and proximal tibia bones  

 
6.4 Patient’s Knee Scanning Protocol 

The patient’s knee scan is divided into four scanning regions. Each region is 

scanned in a scanning session which lasts for approximately 2-3 minutes during which, 

the knee is fixed to the leg holder to minimize the leg motion artifacts (which would 

create noise points in the reconstructed point cloud, and decrease the SNR of the point 

cloud). During the scanning of each region, the developed imaging system creates in real-

time the 3D point cloud of the bone’s region being scanned. The reconstructed regions 

point clouds are then mutually registered to generate the whole scanned bone’s (distal 

femur, or proximal tibia) point cloud as described in section 5.4.2.2. 

The four scanning regions of the knee are: 

1. Anterior Distal Femur:   The anterior femur region scan is performed while the 

patient’s knee is in deep knee bend or 90 ⁰ knee bend (if the patient can’t perform 
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deep knee bend). The anterior distal femur region scan consists of six sub-regions 

scans which are: 

i. The lateral area of the distal femur (lateral epicondyle):  which is scanned 

with the ultrasound transducer in an axial (long-axis) position as shown in 

Figure 6.10(a) 

ii. The medial area of the distal femur (medial epicondyle):  which is scanned 

with the ultrasound transducer in an axial position as shown in Figure 6.10(a) 

iii.  The anterior shaft area of the distal femur:  which is scanned with the 

ultrasound transducer in an axial position as shown in Figure 6.10(c) 

iv. The inferior  area of the medial femoral condyle:  which is scanned with the 

ultrasound transducer in an axial position as shown in Figure 6.10(d) 

v. The inferior  area of the lateral femoral condyle:  which is scanned with the 

ultrasound transducer in an axial position as shown in Figure 6.10(e) 

vi. The trochlear grove of femur:  which is scanned with the ultrasound 

transducer in an transverse position (short axis) as shown in Figure 6.10(f) 

2. Posterior Distal Femur:  The posterior distal femur region scan is performed while 

the patient’s knee in full extension. The posterior distal femur region scan consists 

of three sub-regions scans which are: 

i. Posterior area of the lateral femoral condyle: which is scanned with the 

ultrasound transducer in an axial position as shown in Figure 6.11(a) 

ii. Posterior area of the medial femoral condyle: which is scanned with the 

ultrasound transducer in an axial position as shown in Figure 6.11(b) 
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iii.  Posterior area of the distal femoral shaft: which is scanned with the 

ultrasound transducer in an axial position as shown in Figure 6.11(c) 

3. Anterior Proximal Tibia: The anterior proximal tibia region scan is also 

performed while the patient’s knee is in deep knee bend or 90⁰ knee bend (if the 

patient can’t perform deep knee bend). The anterior proximal tibia region scan 

consists of two sub-regions scans which are: 

i. Lateral area of the anterior proximal tibia: which is scanned with the 

ultrasound transducer in an axial position as shown in Figure 6.12(a) 

ii. Medial area of the anterior proximal tibia: which is scanned with the 

ultrasound transducer in an axial position as shown in Figure 6.12(b) 

4. Posterior Proximal Tibia: The posterior proximal tibia region scan is performed 

while the patient’s knee in full extension. The posterior proximal tibia region scan 

consists of four sub-regions scans which are: 

i. Posterior areas of the tibial condyles, and inter-condyler area:: which are 

scanned with the ultrasound transducer in an transverse position as shown in 

Figure 6.13(a)  

ii. Posterior area of the proximal tibial shaft: which is scanned with the 

ultrasound transducer in an axial position as shown in Figure 6.13 (b) 
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(a) (b) 

  
(c) (d) 

  

(e) (f) 

Figure 6.10 Scanning protocol for the anterior distal femur region scan, showing the axial 

scanning of the lateral (a), medial (b), and anterior (c) areas of the distal femur as well as 

the medial (d), and lateral (e) condyles. The trochlear grove is scanned transversally (f). 
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(a) (b) 

 
(c) 

Figure 6.11 Scanning protocol for the posterior distal femur region scan, showing the 

axial scanning of the lateral condyle (a), medial condyle (b), and posterior distal femoral 

shaft (c) areas of the distal femur 

 

  
(a) (b) 

Figure 6.12 Scanning protocol for the anterior proximal tibia region scan, showing the 

axial scanning of the lateral (a), and medial areas of the proximal tibia (b) 
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(a) (b) 

Figure 6.13 Scanning protocol for the posterior proximal tibia region scan, showing the 

transverse scanning of the posterior areas of the tibial condyles and intercondyler area (a), 

and the axial scanning of the posterior area of the proximal tibia shaft (b). 
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Chapter 7 Results 
 
 
7.1 Single-Element Transducer System‘ Phantoms Experiments Results 

The developed imaging system for 3D bone model reconstruction using single 

element ultrasound transducer was tested on 24 bone phantoms (six female distal femurs, 

six male distal femurs, six female proximal tibias, and six male proximal tibias). The 

phantoms were made of plastic bone models, printed from a subset of the atlas models 

using a fused deposition modeling (FDM) 3D  prototyping machine (StratSys Inc, Eden 

Prairie, MN), The plastic bone models were immersed in a water tank as shown in Figure 

4.5 to provide a medium for ultrasound transmission.  The water temperature was 

monitored during the phantoms scanning to change the ultrasound speed setting (which is 

a function in the water temperature as described in section 4.3.1) in the imaging software 

according to the water temperature. In the following sections, the point cloud 

reconstruction results will be presented, then followed by the results of the 3D model 

reconstruction using the reconstructed point clouds. 

7.1.1 Point Cloud Reconstruction 
 

In order to study the accuracy of the reconstructed point clouds in representing the 

scanned bones surfaces, the point cloud for every phantom was reduced (using octree) to 

a 1 mm average inter-points cloud density, then registered to its reference 3D bone model 

(which was used in 3D printing of the phantom’s plastic model) using the ICP method. 

The ICP registration was performed after an initial landmark-based registration 

performed using manually-picked three landmarks on the point cloud. The initial 

registration is necessary to avoid any singularity in the point cloud to 3D model 



 
135

registration which would cause the entrapment of the registration process in local minima 

in the registration RMS error function. The distance error between every point in the 

point cloud and its closest surface point on the reference 3D model was then calculated, 

and a histogram was generated for these distance errors to examine the accuracy of the 

reconstructed point cloud. The point clouds used to generate the histograms were the raw 

acquired point clouds without any filtering performed on them. These raw point clouds 

were then filtered to remove the noisy points from the point clouds. The filtering was 

performed by removing a percentage of the point cloud having the highest distance error 

between the cloud points and the reference model. The percentage used was chosen to be 

25%.  After each point cloud was filtered, it was registered again to the reference model 

using the ICP method to perform fine tuning for the registration that might have been 

affected by the noisy points. The RMS error between the filtered point cloud and the 

reference model was then calculated.  

The reconstructed point clouds and the histograms of the distance error between 

the reconstructed point clouds and their corresponding reference 3D models are presented 

in the appendix section 9.3.1. Table 7.1 shows the mean number of points in the acquired 

point clouds, and the mean RMS error between the 75th percentile filtered point clouds 

and their reference models for the scanned bone phantoms datasets 

 

 

. 
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Table 7.1 Mean number of points in the acquired point clouds, and the mean RMS error 

between the 75th percentile filtered point clouds and their reference models. 

 Mean Number of Points Mean RMS Error (mm) 

Female Distal Femur 6596 0.83 

Male Distal Femur 6523 0.77 

Female Proximal Tibia 5210 0.87 

Male Proximal Tibia 5980 0.85 

 
7.1.2 3D Bone Model Reconstruction (Bone Morphing) 
 

The reconstructed raw (unfiltered) point clouds were then used to reconstruct 3D 

models of the scanned bones. The three morphing methods described in section 3.3 were 

used to reconstruct the 3D models of the scanned bones. Before the bone morphing was 

performed, the raw point clouds were reduced in density using octree to different point 

cloud densities, and then the reduced point clouds were registered with their gender-

specific jack-knife atlases mean models. The mean distance errors between each point 

cloud and its corresponding jack-knife atlas’ mean model was calculated, and used to 

filter the point cloud by removing the points with distance, between it and its closest 

surface point on the mean model, greater than a certain threshold. The threshold was set 

equal to the average mean distance error between the point cloud and its corresponding 

jack-knife atlas’ mean model. The point cloud reduction, registration, and filtering 

processes were performed using different point cloud densities (1 to 19 mm, with 2 mm 

increment) to study the effect of the point cloud density on the 3D model reconstruction 



 
137

accuracy with the point cloud registration, and filtering factors included. The RMS errors 

between the reconstructed 3D models and the reference models were calculated. The 

following sections present the results using the three morphing methods (Direction Set, 

linear least squares, and the hybrid method). 

7.1.2.1 Direction Set Morphing 
 

The Direction Set morphing method was applied to the reconstructed point clouds 

(with different point cloud densities). The number of principal components used was 

chosen to be 32, which yield the highest reconstruction accuracy with reasonable 

processing time. This was concluded from the Direction Set morphing method 

performance analysis in described in section 3.3.1.  The first 32 principal components 

carried 94.97%, 94.58%, 93.95%, and 92.5% for the female distal femur, male distal 

femur, female proximal tibia, and male proximal tibia atlases.  

Appendix section 9.3.2.1 presents the RMS error for the 3D model reconstruction 

(for the reconstructed phantoms’ point clouds with different point cloud densities) using 

the Direction Set method using the first 32 principal components. Examining the RMS 

error graphs, it can be concluded that the point cloud filtering, and registration as well as 

the 3D model reconstruction are affected by the point cloud density. However, this effect 

is not large, as the change in the mean RMS error is approximately 0.2-0.4 mm between 

the 1 mm, and the 19 mm point cloud densities for the four bones datasets. The 

reconstruction error graphs show that the 1 mm point clouds (the highest density point 

cloud) exhibits the lowest mean RMS error for 3D model reconstruction using the 

Direction Set optimization method.  
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7.1.2.2 Linear Least Squares Morphing 
 

The linear least squares morphing method was applied to the reconstructed point 

clouds (with different point cloud densities). The number of principal components used 

was chosen to be 64 which carried 98.22%, 97.38%, 97.61%, and 95.77% for the female 

distal femur, male distal femur, female proximal tibia, and male proximal tibia atlases 

respectively. The number of principal components was chosen to be 64 (and not higher) 

because this represents approximately 97% of the morphology variations in each bone’s 

atlas. The remaining 3% of the morphology variations are responsible for the local 

features in the bones morphology, and therefore these modes of variations are very 

sensitive to noise in the point cloud, and can lead to an increase in the 3D model 

reconstruction (bone morphing) error. 

Appendix section 9.3.2.2 presents the RMS errors for the 3D model 

reconstruction (for the reconstructed phantoms point clouds with different point cloud 

densities) using the linear least squares morphing method using the first 64 principal 

components. Examining the RMS error graphs, it can be shown that the effect of the 

point cloud density on the model reconstruction is higher using the linear least squares 

method than the Direction Set method. This can lead to the conclusion that the linear least 

squares method is more sensitive to the point cloud density than the Direction Set 

method. However the RMS error does not increase monotonically with decreasing the 

point cloud density. 
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7.1.2.3 Hybrid Morphing 
 

The hybrid morphing method was applied to the reconstructed point clouds (with 

different point cloud densities). The reconstructed models using the Direction Set 

morphing method using the first 32 principal components were used as the initial models 

for the linear least squares morphing method. The number of principal components used, 

for the linear least squares morphing stage of the hybrid morphing was set to 64 principal 

components. Appendix section 9.3.2.3 presents the RMS errors for the 3D model 

reconstruction (for the reconstructed phantoms point clouds with different point cloud 

densities) using the hybrid morphing method (using the first 32 principal components for 

the Direction Set morphing stage, and the first 64 principal components for the linear 

least squares stage) for the female distal femur, male distal femur, female proximal tibia, 

and male proximal tibia phantoms. The mean RMS error was the lowest for the 1 mm 

point cloud density. 

Table 7.2 shows the mean RMS and average distance error for the 3D model 

reconstruction using the three morphing methods for the scanned bone phantoms. The 

three morphing methods showed very similar performance and reconstruction accuracy. 

A mean distance error color map was generated for the RMS distance error 

between the reconstructed 3D models (using the Direction Set, and linear least squares 

methods) and their corresponding reference models for each of the bones datasets. Figure 

7.1, and Figure 7.2 show the mean RMS error color maps for the distal femur, and 

proximal tibia models respectively.  
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Table 7.2 Mean reconstruction RMS errors (in mm) for the three morphing methods 

using the point clouds with 1 mm density. 

 

Direction Set 

Method 

Linear Least 

Squares 

Hybrid 

Method 
Avg RMS Avg RMS Avg RMS 

Female Distal Femur 0.8 1.02 0.81 1.03 0.82 1.04 

Male Distal Femur 0.98 1.22 0.99 1.24 0.98 1.23 

Female Proximal 
Tibia 

0.96 1.18 0.91 1.12 1.04 1.3 

Male Proximal Tibia 1.19 1.45 1.34 1.6 1.2 1.46 

Average 0.983 1.218 1.013 1.248 1.01 1.258 
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(a) (b) (c) (d)     

Figure 7.1  Mean RMS distance error color maps for the female distal femurs 

reconstructed using the Direction Set method with maximum error of 2.49 mm (a), the 

linear least squares method with maximum error of 2.46 mm (b), and for the male distal 

femurs reconstructed using the Direction Set method with maximum error of 2.38 mm 

(c), and the linear least squares method with maximum error of 2.35(d). 
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(a) (b) (c) (d)     

Figure 7.2  Mean RMS distance error color maps for the female proximal tibias 

reconstructed using the Direction Set method with maximum error of 2.7 mm (a), the 

linear least squares method with maximum error of 2.1 mm (b), and for the male 

proximal tibias reconstructed using the Direction Set method with maximum error of 2.89 

mm (c), and the linear least squares method with maximum error of 3.2 (d). 
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7.2 Ultrasound RF Data System Cadavers’ Experiments Results 

The first ultrasound RF data based imaging system developed in this work (built 

using the SonixRP ultrasound machine) was experimented on two cadaveric distal 

femurs, and a proximal tibia. Each bone (distal femur, and proximal tibia) was scanned 

individually in order to increase the signal to noise ratio of the reconstructed point cloud, 

and simplify the point cloud filtering process. Figure 7.3 shows a picture for one of the 

cadaveric experiments, showing developed imaging system running on the SonixRP 

ultrasound machine. 

 

Figure 7.3 A picture for the one of the cadaveric experiments showing the developed 

imaging system running on the SonixRP ultrasound machine 
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Each bone’s scan contained approximately 1200 ultrasound frames which were 

automatically processed in real-time to extract the bones’ contours as described in section 

5.4.1. A large number of RF data frames was acquired for each bone’s scan to test the 

developed method for real-time automatic bone contour detection from the RF data. The 

high density of the point cloud reconstructed from these contours is not necessary for 

accurate 3D model reconstruction as shown in the bone morphing analysis described in 

section 3.3. The developed contour extraction process showed high reliability; 

approximately 95% of the acquired frames were processed correctly to extract the bone 

contours. Figure 7.4 shows sample B-mode images, and the extracted bone contours 

using their RF data.  

The extracted bone contours were then mutually registered, by the developed 

imaging software, using the ultrasound probe’s motion tracking data and the probe’s 

calibration parameters as described in section 5.4.2, to reconstruct partial 3D point clouds 

for the scanned regions (anterior, posterior, medial, and lateral). Due to the line of sight 

constrain of the optical tracking system used in the ultrasound probe’s motion tracking, it 

was not possible to scan the full anterior part of the bones as one region (in a scan session 

in which the leg is held fixed). Therefore the anterior region of the distal femur was 

scanned in three partial (region) scans; which were anterior, medial, and lateral regions 

with the knee in a flexion angle of approximately 120 degrees. The anterior scans of the 

tibia were divided into two regions; medial-anterior, and lateral-anterior with the knee in 

a flexion angle of approximately 120 degrees. The posterior scans of the distal femur and 

proximal tibia were also acquired as separate region scans with the knee in full extension. 
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The partial point clouds were then mutually registered into one point cloud representing 

the whole scanned bone surface as described in section 5.4.2.2.  

 
 

 
 

 
 

Figure 7.4 Ultrasound B-mode image (left), reconstructed by applying Hilbert transform 

to the ultrasound RF data, for a different regions of a cadaveric knee, and the extracted 

bone contour from the RF data overlaid on the B-mode image (right) 
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The reconstructed bones’ point clouds were then used to reconstruct 3D models of 

the scanned bones. The three morphing methods described in section 3.3 were used to 

reconstruct the 3D models for each reconstructed point cloud to compare the accuracy of 

morphing methods. In order to study the combined effect of the point cloud density on 

the point cloud to atlas’ mean model registration and bone morphing, the point clouds 

were reduced to different point cloud densities, then registered to the atlas’ mean model, 

and used in the reconstruction of the bones’ 3D models. 

Computed tomography (CT) scanning of the cadavers’ knees was performed, and 

the CT scans were manually segmented to create the golden reference 3D bone models of 

the cadavers’ distal femurs and proximal tibia which were used to assess the accuracy of 

the 3D point clouds, and models reconstructed using the ultrasound RF data. The RMS 

errors between the reconstructed point clouds and the reference CT segmented 3D bone 

models were then calculated. The point clouds to reference CT models RMS errors were 

1.32 mm, 1.3 mm, and 1.69 for the first cadaver’s distal femur, first cadaver’s proximal 

tibia, and second cadaver’s distal femur respectively.  

The RMS errors between the reconstructed 3D bones models and the reference 

CT models were then calculated for the three morphing methods, and the different point 

cloud densities used. In order to study the error distribution over the bone’s surface, 

distance error color maps were generated for reconstructed 3D model with the highest 

accuracy (among the models reconstructed using different point cloud densities, and 

morphing methods) for each scanned cadaveric bone. Table 7.3 shows the average, RMS, 

and maximum distance errors for the highest accuracy reconstructed models for each 
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scanned cadaveric bone. Appendix section 9.4 shows the reconstructed 3D point clouds, 

and models for the scanned cadaveric distal femurs, and proximal tibia. It shows also the 

color maps for the distance error between the reconstructed 3D models, and the reference 

CT  models. 

Table 7.3 3D model reconstruction errors (in mm) between the reconstructed models 

using the developed ultrasound RF data system, and the CT-segmented models for the 

scanned cadavers’ bones. 

 Avg. Error  RMS Error  

Distal Femur1 1.01 1.26 

Distal Femur2 0.93 1.19 

Proximal Tibia  0.99 1.22 

Average 0.976 1.223 
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7.3 Ultrasound RF Data Imaging System’s Clinical Study Results 

The developed 3D knee model reconstruction system (running on the 

SonixTOUCH ultrasound machine) was experimented on four volunteers.  The system 

was tested on the right knees of two volunteers, and the both right and left knees of two 

volunteers, with a total of six knees. The patient scanning setup, described in section 6.2, 

was used for holding the volunteers’ knees fixed while being scanned. Each volunteer’s 

knee was scanned using the scanning protocol described in section 6.4.   

The ultrasound RF data of each region’s scan was processed in real-time, by the 

imaging software running on the ultrasound machine, to generate the bone contours, and 

the bone’s surface point cloud. The bone contours were overlaid on the B-mode images 

of the scans in real time to provide feedback for the system’s operator about the quality of 

the bone contours extracted. This feedback was used to notify the scanner if he/she needs 

to change the tilt angle of the ultrasound probe to get clearer scans of the bone contours. 

The real-time reconstructed point cloud provided the system operator with feedback for 

the quality of the bone cloud as well as the areas uncovered by the scanning, so he/she 

can scan these areas. Figure 7.5 through Figure 7.8 shows pictures taken during the 

scanning of the anterior distal femur, anterior proximal tibia, posterior distal femur, and 

posterior proximal tibia regions of one of the volunteers’ knee, respectively.  

The reconstructed point clouds were then reduced to a 4-mm density point clouds 

which were used, by the imaging software, to reconstruct 3D models for the scanned 

bones using the described morphing methods. The Direction Set method showed slightly 

higher reconstruction accuracy than the linear least squares method, and the hybrid 
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method. This is due to the tendency of the linear least squares method to over-fit the 

reconstructed 3D model to the point cloud, which makes it more sensitive to the noise in 

the point cloud. This over-fitting results in a small drop in accuracy (around 0.2 mm). 

Therefore the Direction Set method was used for the 3D model reconstruction of the 

distal femurs, and proximal tibias of the scanned volunteers’ knees. 

In order to assess the accuracy of the 3D bone model reconstructed using the 

developed imaging system, the volunteers' knees were scanned using the Magnetic 

Resonance Imaging (MRI), and manually segmented to create golden reference 3D 

models of the scanned knees bones (distal femurs, and proximal tibias). Sagittal 3D VIBE 

fat saturation MRI scanning with 0.6 mm slice thickness, and 0.6 mm pixel size (voxel 

size of 0.6 mm).was used to scan the volunteers knees.  

 

Figure 7.5 A snapshot from scanning the anterior distal femur of a volunteer’s knee 
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Figure 7.6 A snapshot from scanning the anterior proximal tibia of a volunteer’s knee 

 

Figure 7.7 A snapshot from scanning of the posterior distal femur of a volunteer’s knee 
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Figure 7.8 A snapshot from scanning of posterior proximal tibia of a volunteer’s knee. 

 
In order to study the repeatability of the developed imaging system, each 

volunteer’s knee was scanned three times (three trials) to generate three independent 

point clouds for each scanned bone. These three point clouds were then used to 

reconstruct three independent 3D models for the bone. Appendix section 9.5 shows the 

reconstructed point clouds, models, and the distance errors color maps for the three 

scanning, and reconstruction trials for the six volunteers’ knees scanned in the clinical 

study. Table 7.4 lists the average (Avg.) and root mean square (RMS) errors for the three 

trials for each scanned volunteer’s knee. It also lists the body mass index (BMI) for each 

volunteer. Table 7.5 lists the mean (µ), standard deviation (σ), and relative standard 

deviation for the distance errors for the three trials of each bone model reconstruction. 
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Table 7.4 3D model reconstruction average (Avg.), and root mean square (RMS) errors 

(in mm) for the 3 trials for the distal femur and proximal tibia 3D model reconstruction 

for the 6 volunteers’ knees (Vol. 1 to Vol. 4 refers to the four volunteers).  The Body 

Mass Index (BMI) for the volunteers is shown in the last column. 

 Bone 
Trail 1 Trail 2 Trial 3 

BMI  
Avg RMS Avg RMS Avg RMS 

Vol. 1 
Knee 1 
(Right)  

 

Distal 
Femur 

0.64 0.84 0.74 0.94 0.8 1.04 

19 
Proximal 

Tibia 
0.6 0.78 0.62 0.79 0.75 0.96 

Vol. 2 
Knee 2 
(Right) 

Distal 
Femur 

0.72 0.94 0.85 1.09 0.78 1 

22 
Proximal 

Tibia 
0.98 1.2 0.71 0.91 0.73 0.95 

Vol. 3 
Knee 3 
(Right) 

Distal 
Femur 

0.93 1.18 0.83 1.05 0.81 1.01 

25 

Proximal 
Tibia 

0.8 1.05 0.69 0.88 0.68 0.89 

Vol. 3 
Knee 4 
(Left) 

 

Distal 
Femur 

0.89 1.14 0.92 1.17 0.95 1.2 

Proximal 
Tibia 

0.68 0.87 0.75 0.94 0.66 0.86 

Vol. 4 
Knee5 
(Right) 

 

Distal 
Femur 

0.96 1.19 1.01 1.28 1.04 1.3 

35 

Proximal 
Tibia 

1.08 1.3 1.13 1.42 1.2 1.49 

Vol. 4 
Knee 6 
(Left) 

 

Distal 
Femur 

1 1.27 0.92 1.17 0.97 1.21 

Proximal 
Tibia 

1.27 1.61 1.23 1.54 1.43 1.75 
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Table 7.5 Mean (µ), standard deviation (σ) for the average (Avg.), and root mean square 

(RMS) errors (in mm), and their relative standard deviation (σ /µ) for the three trials for 

the three trials for the distal femur and proximal tibia 3D model reconstruction for the 6 

volunteers’ knees.  The BMI for the volunteers is shown in the last column. 

 Bone 
µ σ σ /µ (%) 

BMI  
Avg RMS Avg RMS Avg RMS 

Vol. 1 
Knee 1 
(Right)  

 

Distal 
Femur 

0.727 0.94 0.066 0.082 9.08 8.69 

19 
Proximal 

Tibia 
0.657 0.843 0.067 0.083 10.13 9.79 

Vol. 2 
Knee 2 
(Right) 

Distal 
Femur 

0.783 1.01 0.053 0.062 6.78 6.10 

22 
Proximal 

Tibia 
0.807 1.02 0.123 0.128 15.23 12.58 

Vol. 3 
Knee 3 
(Right) 

Distal 
Femur 

0.857 1.08 0.053 0.073 6.13 6.72 

25 

Proximal 
Tibia 

0.723 0.94 0.054 0.078 7.52 8.29 

Vol. 3 
Knee 4 
(Left) 

 

Distal 
Femur 

0.92 1.17 0.025 0.025 2.66 2.09 

Proximal 
Tibia 

0.697 0.89 0.039 0.036 5.54 3.99 

Vol. 4 
Knee5 
(Right) 

 

Distal 
Femur 

1.02 1.257 0.033 0.048 3.29 3.81 

35 

Proximal 
Tibia 

1.137 1.403 0.049 0.079 4.33 5.59 

Vol. 4 
Knee 6 
(Left) 

 

Distal 
Femur 

0.963 1.217 0.033 0.041 3.43 3.38 

Proximal 
Tibia 

1.31 1.633 0.086 0.087 6.6 5.35 

Average 0.882 1.117 0.057 0.069 6.73 6.37  
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The 3D model reconstruction for the three trials for six volunteers’ knees had an 

mean average error of 0.88 mm, and RMS error of 1.12 mm. The average relative 

standard deviation of the results of the three scanning, and model reconstruction trials 

performed on each volunteer’s knee was shown to be 6.73 % for the average error, and 

6.37% for the RMS error. This means that average change in the reconstruction error 

change between different trails for the same knee is 6.37% for the average error, and 

6.73% for the RMS error. This results shows that the output of the system is repeatable 

with an average change of 6.5% in the reconstruction error, which can be translated into 

93.5 % repeatability.  

The results obtained also showed that the 3D model reconstruction error increases 

with the increase in the BMI, this is due to two factors which are: 

1. The increased depth of the bone under the skin’s surface results in an increase in 

error introduced in the calculated bone depth (the roundtrip distance travelled by the 

ultrasound pulse from the skin surface to the bone surface). This error is due to the 

approximation used in the ultrasound speed estimation, which is assumed to have an 

average value of 1540 m/s is soft tissue. This is the ultrasound speed used in the 

developed system. The actual ultrasound speed depends on the tissue type 

encountered by the ultrasound pulse in its roundtrip. Therefore as this trip increases, 

the error in estimated trip distance increases due to the inexact ultrasound speed 

estimation. Table 7.6 lists the ultrasound speed for the water and different soft 

tissues in the knee. 
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2. In most of the cases of high BMI subjects the amount of adipose tissue in the knee 

is larger than those of the low BMI subjects. As shown in Table 7.6, the ultrasound 

speed in fat tissue is 1459 m/s which is 5.3% lower than the average ultrasound 

speed in soft tissue used which is 1540 m/s. This difference between the actual and 

the estimated and used ultrasound speed introduce an error in the calculated depth 

of the bone, which propagates to the point cloud accuracy, and finally to the 3D 

model reconstruction accuracy. This error can be eliminated or reduced by using a 

different estimate of ultrasound speed for higher BMI patients. This new estimate 

should be adjusted according to the ratio between the fat and muscle content of the 

scanned knee regions.  

Table 7.6 Ultrasound speed for the water and different soft tissue types in the knee [17]. 

 Ultrasound Speed (m/s) 

Average Soft Tissue 1540 

Bone 4080 

Muscle 1580 

Fat 1459 

Blood 1575 

Water (20o C) 1480 
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Chapter 8 Future Work 
 
8.1 System Enhancement, Accuracy Improvement, and Inclusion of other Joints 

The developed method and system for 3D knee model reconstruction from 

ultrasound RF data showed high accuracy (0.88 mm average reconstruction error without 

the need of bone-implanted motion tracking reference probes), and high-speed real-time 

performance (20 frames/second).  The developed system showed also high repeatability 

with an average change of 6% between different independent 3D model reconstruction 

trials for the same knee.  The developed system has some limitation that can be overcome 

in future work. These limitations are; the need for fixing the knee during each region 

scanning session, and the increase in the model reconstruction accuracy with the increase 

of the subject’s BMI due to the used inexact average ultrasound speed in soft tissue. 

Future enhancement and extension of the developed system can include: 

� Using tissue-specific ultrasound speed: The estimate of the bone’s depth from the 

ultrasound RF data is a function of the ultrasound speed in the soft tissue 

interrogated by the ultrasound pulse in its roundtrip from the transducer’s surface, 

to the bone surface, and back to the transducer again. The developed system uses a 

constant average speed of ultrasound in the soft tissue of 1540 m/s. A more accurate 

estimate of the bone’s depth can be calculated by using tissue-specific ultrasound 

speed at different segments of the pulse’s trip. One approach of doing that could be 

using an anatomical model of the soft tissue types and thickness of the tissues in the 

way of the ultrasound pulse (muscles, tendons, cartilage, adipose, and other 

connective tissues) in the joint. Using this anatomical model along with the position 
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and orientation of the ultrasound pulse’s scan line, obtained from the motion 

tracking probe attached to the ultrasound probe, the distance travelled by the 

ultrasound pulse can be divided into segments depending on the tissue type 

travelled during each of the trip segments. In each of these segments, there will be 

an estimated tissue type (obtained from the anatomical model of the joint) with its 

associated speed of ultrasound. Therefore, the distance travelled in each segment of 

the pulse’s trip will be calculated independently using the speed of ultrasound in 

this segment. The bone depth will equal to the sum of the distance travelled by the 

ultrasound pulse (in one-way trip) through the different segments composed of the 

different tissue types, estimated by the anatomical model, interrogated by the 

ultrasound pulse. 

� Reduction of the sensitivity of the system to knee motion: The developed system 

requires the knee to be held fixed (using the leg holders) during every region 

scanning session as described in section 6.3. This requirement was implemented in 

the scanning protocol to eliminate the need for invasive bone-implanted motion 

tracking reference probes. In order to eliminate this requirement, the sensitivity of 

the system to the motion artifact (noise), produced in the reconstructed point cloud 

by the motion of the joint during the region scanning sessions, should be reduced.  

This can be partially achieved by using motion-tracking reference probes firmly 

attached to the patient’s leg (in the case of the knee) on the bone being scanned 

(distal femur, or proximal tibia). This reference probe will provide tracking data for 

the bone’s motion occurring during the region scanning session, and can be used to 
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correct the noise added to the point cloud due to this motion. This can be achieved 

by recording the ultrasound probe’s motion tracking data relative to this reference 

probe. However, since the reference probe is only attached to the subjects’ skin 

(outer surface of the joint), it will be affected by the skin motion artifact, and hence 

will reduce the accuracy of the reconstructed point cloud, and consequently reduce 

the accuracy of the reconstructed bone model. Therefore, the elimination of the 

joint fixation constraint might be at the expense of reduced accuracy. 

� Inclusion of other joints: The developed method for bone contour extraction, and 

point cloud, and 3D model reconstruction is not specific to the knee joint, and can 

be applied with no change to other joints of the body, such as the shoulder and hip. 

The partial point cloud integration method is also applicable to other bones, and 

joints. However, every joint has its own unique anatomy, and a different scanning 

protocol, and setup (joint holder) has to be developed for each joint type.    
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8.2 3D Knee Injection Guidance 

One of the innovative technologies that can be built based on the developed 3D 

knee model reconstruction technology is 3D knee injection guidance system. This 3D 

knee injection guidance system uses the 3D models of the knee bones reconstructed using 

the ultrasound-based 3D bone model reconstruction technology developed in this work. 

3D model of the injection needle is rendered along with the 3D models of the knee bones. 

The motion of the injection needle is tracked using a micro electromagnetic tracking 

sensor attached to the needle. The 3D model of the needle moves on the screen as the real 

needle moves inside or outside of the knee joint. Since the reconstructed 3D bone models 

are registered with the patient’s knee bones, the motion of the 3D needle model, relative 

to the 3D models of the bones, represents the motion of the real needle relative to the 

patient’s knee bones. Current injection guidance technologies are 2-D based which uses 

either ultrasound-based guidance or fluoroscopy to show the needle inside the joint being 

injected. The latest ultrasound-based injection guidance technologies utilize the 

electromagnetic tracking system to track the motion of the needle, and overlay its 

projection on the 2D ultrasound image whether it is in the ultrasound image plane or out 

of the image place as shown in Figure 8.1. These guidance systems still lack the 3D view 

of the organ or joint being injected which is provided by the novel 3D injection guidance 

system. Figure 8.2 shows a schematic comparison between the current 2D ultrasound-

based injection guidance, and the 3D injection guidance system. Figure 8.3 shows a 

flowchart for the proposed 3D joint injection guidance system. 
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Figure 8.1 Example for the latest ultrasound-based needle guidance systems (Ultrasonix 

Inc) using the electromagnetic tracking system (Ascension Inc) to track the needle’s 

motion and project it on the ultrasound image. It shows the two cases when the needle is 

in the image plane (left), and when the needle is out of the image plane, i.e. the needle is 

not in the ultrasound image (right)  

 

 

Figure 8.2 A schematic comparison between the traditional 2D and the 3D ultrasound-

based injection guidance, showing a schematic of a patient’s knee while being injected 

(left), the 2D ultrasound-based injection guidance (center), and the 3D injection guidance 

with the visualized 3D joint bone models and real-time tracked needle (right). 
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Figure 8.3 Flowchart for the proposed 3D joint injection guidance system, showing the 

process flow starting from the scanning of the joint, then automatic real-time 3D bones 

models reconstruction, then volume reconstruction (for soft tissue visualization), then 

injection planning, and finally injection execution and needle guidance.  
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This innovative technology will enable the ortheopedic surgeon to plan the 

trajectory for the injection before performing the injection process, which will yield a 

potential decrease in the number of missed injections. This will result in elimination of 

the injection cost and the pain associated with missed injections. This technology will 

also provide the surgeon with more insight in the patient’s knee, and enable him/her to 

visualize the knee in 3D views, and to visualize it from different viewing angles, which 

are expected to provide more user-friendly imaging modality for the joint which will 

enable more efficient and accurate injections. This technology can also be extended to 

include other joints, such as the shoulder, and hip. 

In this work, a prototype for the 3D knee injection system was developed, using 

Microsoft Visual C++ 2005 for development, QT 4.3 for graphical user interface, and 

Open Inventor 7.2 for 3D visualization. The system was implemented on the 

SonixTOUCH (Ultrasonix Inc) ultrasound machine, and using the DriveBay 

electromagnetic tracking system (Ascension Inc) for the needle tracking. This prototype 

was developed as an extension to the 3D knee model reconstruction system used in the 

clinical study. The 3D injection prototype used the model 90 electromagnetic tracking 

sensor (0.9 mm diameter) to track a special hollow needle that house the electromagnetic 

sensor inside it. A simulation for the injection was performed (no actual injection was 

performed, just positioning of the needle over the skin was performed) for a volunteering 

surgeon after reconstructing the 3D models of his knee bones (distal femur, and proximal 

tibia) using the developed imaging system. Figure 8.4 shows a picture for the developed 

3D injection guidance prototype while being experimented in injection planning 
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Figure 8.4 A picture taken for the developed 3D injection guidance prototype while 

experimenting it in injection planning (no injection was performed) for a volunteering 

surgeon, showing the reconstructed 3D models of the knee bones (distal femur, and 

proximal tibia), and the 3D model of the needle, while being tracked, showing its position 

and orientation relative to the knee bones. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tracked Needle 
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8.3 Knee Kinematics Tracking Using A-Mode Ultrasound 

Kinematics tracking is the process of tracking the relative motion of between joints 

bones while doing an activity involving the joint being studied (such as knee, shoulder, 

and hip). This motion consists of rotation and translation of the joint bones relative to 

each others. Joint motion analysis is used in diagnosis of joint pathology, as well as 

studying the normal joint function. Currently, fluoroscopy is the most accurate method 

for joint kinematics tracking [42]-[45]. 

Fluoroscopy-based kinematics tracking is performed by imaging the patient with 

fluoroscopy while doing an activity involving the joint under study. Then the patient’s 

joint is scanned using computed tomography (CT) or magnetic resonance imaging (MRI). 

The CT or MRI scans are then segmented to create 3D models of the joint bones. The 3D 

models of the bones are registered to each of the fluoroscopy images using 3D/2D 

registration to estimate the 3D motion of the joint bones from the consecutive 2D 

fluoroscopy images [46],[47]. Figure 8.5 shows a flowchart for the fluoroscopy-based 

kinematics tracking method. 

A potential novel technology that can be developed, using the developed ultrasound-

based 3D knee model reconstruction system, is a high-accuracy knee kinematics tracking 

system using A-mode ultrasound. This novel kinematics tracking technology can replace 

the fluoroscopy-based kinematics tracking to avoid the harmful X-ray radiation the the 

patient and physician are exposed to during the fluoroscopy. This new technology can 

also replace the markers-based knee kinematics tracking to avoid its low accuracy due to 

the skin-bone motion artifact which introduced high bone tracking errors. 
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Figure 8.5 Flowchart for fluoroscopy-based kinematics tracking of the knee. Fluoroscopy 

images copied from the work in [26], and modified for illustration in the flowchart. 
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The new kinematics tracking system shall be built using a number of single-element 

ultrasound transducers attached to a knee-wearable brace as shown in Figure 8.6. This 

brace shall have an optical or electromagnetic tracking system’s probe attached to it in 

order to track the global motion of the brace. The ultrasound transducers will be 

responsible for transcutaneously detecting 3D points over the bone’s surface. This 3D 

point detection will be performed by automatic extraction, and 3D registration of the 

bone’s echoes from the ultrasound RF signals received by the single-element transducers. 

The bone echo detection will be performed using the automatic bone echo detection 

method developed in this work and described in section 5.4.1. The bone echo point 

(represented as 1D depth measurement between the bone’s surface and the ultrasound 

transducer’s face) will be registered into a 3D bone surface point in the reference 

coordinate frame of the motion tracking probe attached to the brace. Figure 8.6 shows a 

schematic for the proposed A-mode ultrasound-based knee kinematics tracking system 

 

Figure 8.6 Schematic for the ultrasound-based knee kinematics tracking system, showing 

the femoral, and tibial braces that host the single-element ultrasound transducers. 
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The bone surface point detection process will be performed for each single-element 

ultrasound transducer in the brace at a tracking frame rate (determined by the whole 

system speed), and thus collecting a number of bone surface points equals to the number 

of ultrasound transducers in the brace for each tracking frame. This set of points collected 

for each bone identifies the new position and orientation of the bone at time instance (1Q) 

while the patient is doing the activity involving the knee. This set of bone surface points 

is then registered to the reconstructed 3D bone model representing the patient’s bone 

position at time instance (1Q4�) using the iterative closest point algorithm (ICP) to predict 

the relative transformation between the position and orientation of the patient’s bone at 

time instances (1Q4�) , and (1Q). This relative transformation will then be applied to the 

3D bone model (currently at the position of time instance (1Q4�)) to register it with the 

patient’s bone at time (1Q). Then this process of detecting a set of bone surface points at 

time (1QÇ�), and is registered to the 3D bone model at the position and orientation at time 

(1Q) using the ICP method to predict the new patient’s bone position and orientation at 

time (1QÇ�). Each iteration of this process is called a tracking step. The tracking process 

starts at time (1,) when the 3D models of the knee bones are reconstructed and registered 

to the patient’s knee position and orientation using the system developed in this work. 

Therefore the tracking system has an initial condition of 3D models registered to the 

patient’s knee bones before performing the activity. Then the tracking system estimates 

the incremental (residual) position and orientation of the patient’s knee bones at each 

tracking step. The tracking steps shall be executed at a frame rate fast enough to sample 

the motion of the knee bones (depending on the activity performed).  
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In this work, a simulation framework was developed, using Microsoft visual 

C++2005 for development, QT 4.3 for graphical user interface, and Open Inventor 7.2 for 

3D visualization, to determine the feasibility of the concept and to determine the best 

configuration (number of transducers and their spatial distribution) of the ultrasound 

transducers that can achieve a high-accuracy tracking. 

The simulation framework uses real kinematics data obtained for patients during an 

activity such as gait, deep knee bend, stair climbing.  These kinematics data were 

obtained using fluoroscopy [26] as shown in the flowchart in Figure 8.5. 3D models of 

the proximal tibia and distal femur were segmented from CT or MRI scans of the 

patient’s knee. The 3D models of the distal femur and proximal tibia, along with the 

kinematics data obtained using fluoroscopy, were then used to perform the ultrasound-

based kinematics tracking simulation.  

The ultrasound-based kinematics tracking simulation consists of the following steps: 

1. The 3D patient-specific models of the distal femur and proximal tibia (segmented 

from CT or MRI scans) are first positioned in their initial positions acquired by the 

fluoroscopy-based kinematics tracking data. These 3D models will be simulating the 

real bones motion (in the actual proposed system), and will be denoted by motion-

simulating bone models. 

2. A number of points on the motion-simulating 3D bones models are selected by the 

user of the simulation. These selected points will simulate the bone surface points 

detected using the single-element ultrasound transducers at the selected locations. 

These points will be denoted by simulated bone’s surface points. 
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3. The kinematics tracking data are then applied to the motion-simulating bone models 

in incremental steps to simulate the volunteer’s bones motion (as acquired using 

from the fluoroscopy-based kinematics tracking data). 

4. At each motion simulation step, the new coordinates of the simulated bone’s surface 

points are calculated using the fluoroscopy-based kinematics tracking data. So these 

points simulate the points detected on the surface of the actual patients bones, using 

the single-element ultrasound transducers attached to the patient’s knee, at each 

tracking step for the patient’s knee motion. These new simulated bone’s surface 

points carries the information of the new position and orientation of the motion-

simulating 3D bones models after applying one step of the fluoroscopy-based 

kinematics tracking data. In the actual proposed system, these points shall be 

detected using the single-element ultrasound transducers attached to the patient’s 

knee. These detected points shall carry the information of the new orientation and 

position of the patient’s bone at each tracking step.  

5. The new position and orientation of the motion-simulating bone models are then 

estimated by registering, using the iterative closest point method (ICP), the new 

calculated simulated bone’s surface points to another set of 3D patient specific bone 

models (distal femur, and proximal tibia 3D bone models) which are identical to the 

motion-simulating bone models but have independent orientation and position than 

the motion-simulating bone models. These set of bone models will be denoted by the 

bones tracking models. They are the models that will be tracking the motion of the 

patients’ knee bones in the proposed system. These tracking bone models shall be 
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reconstructed using the ultrasound-based 3D bone model reconstruction system 

developed in this work. The tracking bone models shall be registered (at every 

tracking step or frame) to the moving patient’s knee bones by the ultrasound-based 

kinematics tracking system. In the simulation framework, the bone tracking models 

track the motion-simulating bone models using the simulated bone’s surface points 

calculated at each tracking step using the fluoroscopy-based kinematics data. While 

in the actual proposed kinematics system, the bone tracking models shall track the 

motion of the patient’s bones using the bone surface points acquired using the 

single-element ultrasound transducers attached to the patient’s knee. The estimated 

orientation and position data for the motion-simulating bone models (or the patient’s 

bones in proposed system) are then used to update the position and orientation of the 

bones tracking models. 

6. At every tracking step (or simulation step), the tracking error (or registration error) 

between the bone tracking models, and the motion simulating models is calculated 

(as the root mean square (RMS) between them) and plotted in a tracking error chart.  

Therefore the tracking simulation step consists of applying the kinematics data to the 

motion-simulating bone models, then calculating the new coordinates of the set of 

simulated bone’s surface points, then register the bone tracking models to these simulated 

bone’s surface points using the ICP method to estimate the new orientation and position 

of the motion-simulating bone models, then apply these new position and orientation to 

the bone tracking models. Then calculate the registration RMS error between the bones 

tracking models, and the motion simulating bone models. Figure 8.7  shows a flowchart 
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for the kinematics tracking simulation with snapshots of the kinematics tracking 

simulation for a knee, using 22 simulated single-element ultrasound transducers (or 

simulated bone’s surface points), shown as green spheres, were used for the distal femur, 

and 19 for the proximal tibia. The motion simulating models are in beige, and the motion 

tracking models are in red and blue. The tracking steps error graph is shown in the 

flowchart with an average tracking error was 0.54 mm for the proximal tibia, and 0.01 

mm for the distal femur.  
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Figure 8.7 A flowchart for the A-mode ultrasound based kinematics tracking simulation   
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8.4 Cartilage Model Reconstruction 

A potential extension for the developed ultrasound-based 3D knee bone model 

reconstruction system is the reconstruction of patient specific 3D model of the knee 

cartilage. The cartilage thickness is very essential indicator in several knee pathologies, 

and most important the osteoarthritis. Monitoring the cartilage thickness for osteoarthritis 

patients is a very important procedure for orthopedic physicians. Currently the cartilage 

thickness examination is performed using MRI, which is expensive. The ultrasound can 

be used as an alternative tool create a 3D model of the cartilage which can provide the 

orthopedic physician with 3D map of the cartilage thickness similar to the one that can be 

obtained from MRI but with much less cost. 

In this work, the feasibility of automatic extraction of the cartilage contours from 

ultrasound RF data frames, to reconstruct 3D point cloud representing the cartilage’s 

outer surface (the bone’s point cloud and 3D model represents the cartilage’s inner 

surface), was studied. The ultrasound RF data for the 3rd trial of the clinical study’s 1st 

volunteer distal femur scan was used to automatically extract the cartilage echoes, and 

mutually register the extracted cartilage echoes in the 3D reference coordinate frame of 

the tracking system to reconstruct a 3D point cloud representing the outer surface of the 

scanned cartilage. The reconstructed cartilage’s outer surface 3D point cloud was then 

merged with the bone’s 3D point cloud at the cartilage areas (which also represents the 

inner surface of the cartilage at the bone-cartilage interface areas).   

The difference in the acoustic impedance between the cartilage and the soft tissue 

lying above it gives defines the outer surface of the cartilage in the ultrasound RF data 
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frames or B-mode images. Similarly, the difference in acoustic impedance between the 

cartilage and the bone lying under it defines the cartilage’s inner boundary (and also the 

bone’s surface boundary) in the ultrasound RF data frames B-mode images. The cartilage 

tissue is hypogenic (doesn’t generate ultrasound echoes), but its two surrounding edges 

(one at the bone-cartilage interface, and the other is at the muscle-cartilage interface) 

generate detectable echoes which the cartilage’s delineate its boundary. 

The cartilage echo detection method is an extension of the bone echo detection 

method described in section 5.4.1. The cartilage echo is detected as the falling edge point 

of the echo preceding the bone echo (which was detected during the bone echo detection 

process).  Figure 8.8 shows 4 sample RF signals showing the detected bone, and cartilage 

echoes. Figure 8.9 shows two example ultrasound frames for femoral condyle scans 

showing the extracted bone and cartilage contours from the ultrasound RF data overlaid 

on the B-mode images. The detected cartilage echoes was then transformed into 3D point 

cloud using the same process of transforming the bone echoes into 3D point cloud as 

described in section 5.4.2.1. Figure 8.10 shows the reconstructed cartilage 3D point cloud 

for the distal femur of the 3rd trial for the 1st volunteer’s scans of the clinical trial. The 

limitation to the cartilage surface reconstruction is the limited areas of the cartilage 

accessible to the ultrasound scanning. 
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Figure 8.8 Sample raw ultrasound RF signals (in blue), and their processed versions (in 

red) below them, showing the detected bone echoes (green dots), and cartilage echoes 

(red dots), and the other deteced non-bone non-cartilage echoes (cyan dots)  
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Figure 8.9 Two examples for bone (in green) and cartilage (red) contours extracted using 

the ultrasound RF data overlaid on their B-mode images, for two frames of one of the 

clinical study volunteers’ femoral condyle scans. The cartilage is the hypo echoic region 

lying between the bone and cartilage contours. 
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Figure 8.10 The reconstructed 3D cartilage point cloud, showing the outer (red), and 

inner (green) cartilage surfaces of  the distal femur of the 3rd trial for the 1st volunteer’s 

knee of the clinical study. The cartilage’s inner surface point cloud is tself the bone’s 

surface point cloud. Three views of the point cloud are shown; superior view(top), 

inferior view(middle), and side view(bottom) 
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Chapter 9 Appendix 
 
 

The first section of the appendix (9.1) includes RMS errors graphs for the knee 

bones atlas analysis performed on the gender-specific, non gender-specific, jack-knife, 

and non jack-knife combinations of the atlases. Section 9.2 includes RMS errors graphs 

for the bone morphing methods analysis for the Direction Set, linear least squares, and 

the hybrid methods. Section 9.3 includes RMS errors graphs for the results for the 

phantoms experiments of the developed A-mode ultrasound based 3D bone patient-

specific model reconstruction system. All RMS error graphs are plotted versus the 

number of principal components used. Sections 9.4, and 9.5 includes the cadaveric 

experiments and clinical study results respectively. 
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9.1 Knee Bones Atlas Analysis 

9.1.1 Female Distal Femur 
 

 

Figure 9.1 Mean, maximum, and minimum RMS errors for the models projection-

reconstruction using gender-specific, jack-knife atlas for the female distal femur 

 

Figure 9.2 Mean, maximum, and minimum RMS errors for the model projection-

reconstruction using gender-specific, non jack-knife atlas for the female distal femur 
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Figure 9.3 Mean, maximum, and minimum RMS errors for the models projection-

reconstruction using non gender-specific, jack-knife atlas for the female distal femur 

 
 

 

 

Figure 9.4 Mean, maximum, and minimum RMS errors for the projection-reconstruction 

using non gender-specific, non jack-knife atlas for the female distal femur 
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9.1.2 Male Distal Femur 
 

 

Figure 9.5 Mean, maximum, and minimum RMS errors for the models projection-

reconstruction using gender-specific, jack-knife atlas for the male distal femur 

 
 

 

Figure 9.6 Mean, maximum, and minimum RMS errors for the models projection-

reconstruction using gender-specific, non jack-knife atlas for the male distal femur 
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Figure 9.7 Mean, maximum, and minimum RMS errors for the models projection-

reconstruction using non gender-specific, jack-knife atlas for the male distal femur 

 
 
 

 
 

 

Figure 9.8 Mean, maximum, and minimum RMS errors for the models projection-

reconstruction using non gender-specific, non jack-knife atlas for the male distal femur 
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9.1.3 Female Proximal Tibia 
 

 

Figure 9.9 Mean, maximum, and minimum RMS errors for the models projection-

reconstruction using gender-specific, jack-knife atlas for the female proximal tibia 

 
 
 

 

Figure 9.10 Mean, maximum, and minimum RMS errors for the models projection-

reconstruction using gender-specific, non jack-knife atlas for the female proximal tibia 
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Figure 9.11 Mean, maximum, and minimum RMS errors for the models projection-

reconstruction using non gender-specific, jack-knife atlas for the female proximal tibia 

 
 

 

 

Figure 9.12 Mean, maximum, and minimum errors for the models projection-

reconstruction using non gender-specific, non jack-knife atlas for the female proximal 

tibia 
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9.1.4 Male Proximal Tibia 
 

 

Figure 9.13 Mean, maximum, and minimum RMS errors for the models projection-

reconstruction using gender-specific, jack-knife atlas for the male proximal tibia 

 
 

 

 

Figure 9.14 Mean, maximum, and minimum RMS errors for the models projection-

reconstruction using gender-specific, non jack-knife atlas for the male proximal tibia 
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Figure 9.15 Mean, maximum, and minimum RMS errors for the models projection-

reconstruction using non gender-specific, jack-knife atlas for the male proximal tibia 

 
 

 

 

Figure 9.16 Mean, maximum, and minimum RMS errors for the models projection-

reconstruction using non gender-specific, non jack-knife atlas for the male proximal tibia 
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9.2 Bone Morphing Analysis 

9.2.1 Direction Set Method 

9.2.1.1 Using unreduced point clouds  
 

 

Figure 9.17 Mean, maximum, and minimum RMS errors for the female distal femur 

morphing using the Direction Set method for the unreduced models’ point clouds 

 

 

Figure 9.18 Mean, maximum, and minimum RMS errors for the male distal femur 

morphing using the Direction Set method for the unreduced models’ point clouds 
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Figure 9.19 Mean, maximum, and minimum RMS errors for the female proximal tibia 

morphing using the Direction Set method for the unreduced models’ point clouds 

 
 
 

 

 

Figure 9.20 Mean, maximum, and minimum RMS errors for the male proximal tibia 

morphing using the Direction Set method for the unreduced models’ point clouds 
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9.2.1.2 Using 4 mm reduced point clouds  
 

 

Figure 9.21 Mean, maximum, and minimum RMS errors for the female distal femur 

morphing using the Direction Set method for the 4 mm reduced models’ point clouds 

 
 

 

Figure 9.22 Mean, maximum, and minimum RMS errors for the female proximal tibia 

morphing using the Direction Set method for the 4 mm reduced models’ point clouds 
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Figure 9.23 Mean, maximum, and minimum RMS errors for the female proximal tibia 

morphing using the Direction Set method for the 4 mm reduced models’ point clouds 

 
 
 

 

 

Figure 9.24 Mean, maximum, and minimum RMS errors for the male proximal tibia 

morphing using the Direction Set method for the 4 mm reduced models’ point clouds 
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9.2.1.3 Using 8 mm reduced point clouds 
 

 

Figure 9.25 Mean, maximum, and minimum RMS errors for the female distal femur 

morphing using the Direction Set method for the 8 mm reduced models’ point clouds 

 
 

 

Figure 9.26 an, maximum, and minimum RMS errors for the male distal femur morphing 

using the Direction Set method for the 8 mm reduced models’ point clouds 
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Figure 9.27 Mean, maximum, and minimum RMS errors for the female proximal tibia 

morphing using the Direction Set method for the 8 mm reduced models’ point clouds 

 
 
 
 

 

Figure 9.28 Mean, maximum, and minimum RMS errors for the male proximal tibia 

morphing using the Direction Set method for the 8 mm reduced models’ point clouds 
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9.2.1.4 Using 16 mm reduced point clouds  
 

 

Figure 9.29 Mean, maximum, and minimum RMS errors for the female distal femur 

morphing using the Direction Set method for the 16 mm reduced models’ point clouds 

 
 

 

Figure 9.30 Mean, maximum, and minimum RMS errors for the male distal femur 

morphing using the Direction Set method for the 16 mm reduced models’ point clouds 
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Figure 9.31 Mean, maximum, and minimum RMS errors for the female proximal tibia 

morphing using the Direction Set optimization method for the 16 mm reduced models’ 

point clouds 

 
 

 

Figure 9.32 Mean, maximum, and minimum RMS errors for the male proximal tibia 

morphing using the Direction Set method for the 16 mm reduced models’ point clouds 
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9.2.1.5 Using 32 mm point clouds  
 

 

Figure 9.33 Mean, maximum, and minimum RMS errors for the female distal femur 

using the Direction Set method for the 32 mm reduced models’ point clouds 

 

 

Figure 9.34  Mean, maximum, and minimum RMS errors for the male distal femur using 

the Direction Set method for the 32 mm reduced models’ point clouds 
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Figure 9.35 Mean, maximum, and minimum RMS errors for the female proximal tibia 

using the Direction Set method for the 32 mm reduced models’ point clouds 

 
 
 

 

 

Figure 9.36 Mean, maximum, and minimum RMS errors for the male proximal tibia 

using the Direction Set method for the 32 mm reduced models’ point clouds 
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9.2.2 Linear Least Squares Method 

9.2.2.1 Using unreduced point clouds  

 

 

Figure 9.37 Mean, maximum, and minimum RMS errors for the female distal femur 

using the linear least squares method for the unreduced models’ point clouds 

 

Figure 9.38 Mean, maximum, and minimum RMS errors for the male distal femur using 

the linear least squares method for the unreduced models’ point clouds 
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Figure 9.39 Mean, maximum, and minimum RMS errors for the female proximal tibia 

using the linear least squares method for the unreduced models’ point clouds 

 
 
 
 

 

Figure 9.40 Mean, maximum, and minimum RMS errors for the male proximal tibia 

using the linear least squares method for the unreduced models’ point clouds 
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9.2.2.1 Using 4 mm point clouds  
 

 

Figure 9.41 Mean, maximum, and minimum RMS errors for the female proximal tibia 

using the linear least squares method for the 4 mm reduced models’ point clouds 

 
 

 

Figure 9.42 Mean, maximum, and minimum RMS errors for the female proximal tibia 

using the linear least squares method for the 4 mm reduced models’ point clouds using 
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Figure 9.43 Mean, maximum, and minimum RMS errors for the female proximal tibia 

using the linear least squares method for the 4 mm reduced models’ point clouds 

 
 

 
 

 

Figure 9.44 Mean, maximum, and minimum RMS errors for the male proximal tibia 

using the linear least squares method for the 4 mm reduced models’ point clouds 
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9.2.2.2 Using 8 mm point clouds  
 

 

Figure 9.45 Mean, maximum, and minimum RMS errors for the female distal femur 

using the linear least squares method for the 8 mm reduced models’ point clouds 

 

 

Figure 9.46 Mean, maximum, and minimum RMS errors for the female distal femur 

using the linear least squares method for the 8 mm reduced models’ point clouds 
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Figure 9.47 Mean, maximum, and minimum RMS errors for the female proximal tibia 

using the linear least squares method for the 8 mm reduced models’ point 

 

 
 

 

Figure 9.48 Mean, maximum, and minimum RMS errors for the male proximal tibia 

using the linear least squares method for the 8 mm reduced models’ point clouds 
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9.2.2.3 Using 16 mm point clouds  
 

 

Figure 9.49 Mean, maximum, and minimum RMS errors for the female distal femur 

using the linear least squares method for the 16 mm reduced models’ point clouds 

 
 

 

Figure 9.50 Mean, maximum, and minimum RMS errors for the male distal femur using 

the linear least squares method for the 16 mm reduced models’ point clouds 
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Figure 9.51 Mean, maximum, and minimum RMS errors for the female proximal tibia 

using the linear least squares method for the 16 mm reduced models’ point clouds 

 
 
 

 

Figure 9.52 Mean, maximum, and minimum RMS errors for the male proximal tibia 

using the linear least squares method for the 16 mm reduced models’ point clouds Hybrid 

Morphing 
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9.2.3 Hybrid Method 

9.2.3.1 Using unreduced point clouds  

 

 

Figure 9.53 Mean, maximum, and minimum RMS errors for the female distal femur 

using the hybrid method for the unreduced models’ point clouds 

 

Figure 9.54 Mean, maximum, and minimum RMS errors for the male distal femur using 

the hybrid method for the unreduced models’ point clouds 
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Figure 9.55 Mean, maximum, and minimum RMS errors for the female proximal tibia 

using the hybrid method for the unreduced models’ point clouds 

 
 
 
 

 

Figure 9.56 Mean, maximum, and minimum RMS errors for the male proximal tibia 

using the hybrid method for the unreduced models’ point clouds 
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9.2.3.2 Using 4 mm point clouds  
 

 

Figure 9.57 Mean, maximum, and minimum RMS errors for the female distal femur 

using the hybrid method for the 4 mm reduced models’ point clouds 

 

 

Figure 9.58 Mean, maximum, and minimum RMS errors for the male distal femur using 

the hybrid method for the 4 mm reduced models’ point clouds 
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Figure 9.59 Mean, maximum, and minimum RMS errors for the female proximal tibia 

using the hybrid method for the 4 mm reduced models’ point clouds 

 
 
 
 

 

Figure 9.60 Mean, maximum, and minimum RMS errors for the male proximal tibia 

using the hybrid morphing method for the 4 mm reduced models’ point clouds 
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9.2.3.3 Using 8 mm point clouds  
 

 

Figure 9.61 Mean, maximum, and minimum RMS errors for the female distal femur 

using the hybrid method for the 8 mm reduced models’ point clouds 

 

 

Figure 9.62 Mean, maximum, and minimum RMS errors for the male distal femur using 

the hybrid method for the 8 mm reduced models’ point clouds 
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Figure 9.63 Mean, maximum, and minimum RMS errors for the female proximal tibia 

using the hybrid method for the 8 mm reduced models’ point clouds 

 

 
 

 

Figure 9.64 Mean, maximum, and minimum RMS errors for the male proximal tibia 

using the hybrid method for the 8 mm reduced models’ point clouds 
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9.2.3.4 Using 16 mm point clouds  
 

 

Figure 9.65 Mean, maximum, and minimum RMS errors for the female distal femur 

using the hybrid method for the 16 mm reduced models’ point clouds 

 

 

Figure 9.66 Mean, maximum, and minimum RMS errors for the male distal femur using 

the hybrid method for the 16 mm reduced models’ point clouds 
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Figure 9.67 Mean, maximum, and minimum RMS errors for the female proximal tibia 

using the hybrid method for the 16 mm reduced models’ point clouds 

 
 
 

 

Figure 9.68 Mean, maximum, and minimum RMS errors for the male proximal tibia 

using the hybrid method for the 16 mm reduced models’ point clouds 
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9.3 Single-Element Ultrasound Transducer-Based Systems’ Phantom Results 

9.3.1 Reconstructed Point Clouds Results 

9.3.1.1 Female Distal Femur 

 

Figure 9.69 Point cloud for the ID_27_01 female distal femur phantom (left), and the 

point cloud overlaid on its reference model (right), with 6721 points and RMS error of 

0.8 mm between the 75th percentile filtered point cloud and the reference model 

 

Figure 9.70 Histogram of the error between the point cloud and its reference model for 

the ID_27_01 female distal femur phantom with median error of 1.29 mm 
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Figure 9.71 Point cloud for the ID_33_03 female distal femur phantom using (left), and 

the point cloud overlaid on its reference model (right), with 5322 points and RMS of 0.73 

mm error between the 75th percentile filtered point cloud and the reference model 

 
 
 

 

Figure 9.72 Histogram of the error between the point cloud and its reference model for 

the ID_33_03 female distal femur phantom with median error of 1.14 mm 
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Figure 9.73 Point cloud for the ID_37_23 female distal femur phantom (left), and the 

point cloud overlaid on its reference model (right) with 6624 points and RMS of 0.83 mm 

error between the 75th percentile filtered point cloud and the reference model 

 

 

 

Figure 9.74 Histogram of the error between the point cloud and its reference model for 

the ID_37_23 female distal femur phantom with median error of 1.4 mm 
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Figure 9.75 Point cloud for the ID_39_01 female distal femur phantom using (left), and 

the point cloud overlaid on its reference model (right) with6837 points and RMS error of 

1 mm between the 75th percentile filtered point cloud and the reference model 

 
 
 

 

Figure 9.76 Histogram of the error between the point cloud and its reference model for 

the ID_39_01 female distal femur phantom with median error of 1.5 mm 
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Figure 9.77 Point cloud for the ID_11_90 female distal femur phantom (left), and the 

point cloud overlaid on its reference model (right) with 7022 points and RMS error of 

0.89 mm between the 75th percentile filtered point cloud and the reference model 

 
 
 

 

Figure 9.78 Histogram of the error between the point cloud and its reference model for 

the ID_11_90 female distal femur phantom with median error of 1.31 mm 
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Figure 9.79 Point cloud for the ID_12_02 female distal femur phantom (left), and the 

point cloud overlaid on its reference model (right) with 7051 points and  RMS error of 

0.7 mm between the 75th percentile filtered point cloud and the reference model 

 
 
 

 

Figure 9.80 Histogram of the error between the point cloud and its reference model for 

the ID_12_02 female distal femur phantom with median error of 1.23 mm 
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9.3.1.2 Male Distal Femur 

 

Figure 9.81 Point cloud for the ID_1_03 male distal femur phantom (left), and the point 

cloud overlaid on its reference model (right), with 5034 points and RMS error of 0.75 

mm between the 75th percentile filtered point cloud and the reference model 

 

 

Figure 9.82Histogram of the error between the point cloud and its reference model for the 

ID_1_03 male distal femur phantom with median error of 1.2 mm 
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Figure 9.83 Point cloud for the ID_31_00 male distal femur phantom (left), and the point 

cloud overlaid on its reference model (right), with 5713 points and RMS error of 0.75 

mm between the 75th percentile filtered point cloud and the reference model 

 
 
 

 

Figure 9.84 Histogram of the error between the point cloud and its reference model for 

the ID_31_00 male distal femur phantom with median error of 1.19 mm 
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Figure 9.85 Point cloud for the ID_1_87 male distal femur phantom (left), and the point 

cloud overlaid on its reference model (right), with6471 point and RMS error of 0.93 mm 

between the 75th percentile filtered point cloud and the reference model 

 
 
 

 

Figure 9.86 Histogram of the error between the point cloud and its reference model for 

the ID_1_87 male distal femur phantom with median error of 1.54 mm 
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Figure 9.87 Point cloud for the ID_4_97 male distal femur phantom (left), and the point 

cloud overlaid on its reference model (right), with 7154 points and RMS of 0.86 mm 

error between the 75th percentile filtered point cloud and the reference model 

 
 
 

 

Figure 9.88 Histogram of the error between the point cloud and its reference model for 

the ID_4_97 male distal femur phantom with median error of 1.38 mm 
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Figure 9.89 Point cloud for the ID_11_97 male distal femur phantom (left), and the point 

cloud overlaid on its reference model (right), with 8183 points and RMS error of 0.63 

mm between the 75th percentile filtered point cloud and the reference model 

 
 

 

Figure 9.90 Histogram of the error between the point cloud and its reference model for 

the ID_11_97 male distal femur phantom with median error of 1.15 mm 
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Figure 9.91 Point cloud for the ID_14_90 male distal femur phantom (left), and the point 

cloud overlaid on its reference model (right), with 6583 points and RMS error of 0.72 

mm between the 75th percentile filtered point cloud and the reference model 

 
 

 

Figure 9.92 Histogram of the error between the point cloud and its reference model for 

the ID_14_90 male distal femur phantom with median error of 1.23 mm 
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9.3.1.3 Female Proximal Tibia 

 

Figure 9.93 Point cloud for the ID_39_01 female proximal tibia phantom (left), and the 

point cloud overlaid on its reference model (right), with 5767 points and RMS error of 

0.85 mm between the 75th percentile filtered point cloud and the reference model 

 

 

Figure 9.94 Histogram of the error between the point cloud and its reference model for 

the ID_39_01 female proximal tibia phantom with median error of 1.2 mm 
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Figure 9.95 Point cloud for the ID_37_02 female proximal tibia phantom (left), and the 

point cloud overlaid on its reference model (right), with 4159 points and RMS error of 

0.97 mm between the 75th percentile filtered point cloud and the reference model 

 

 

Figure 9.96 Histogram of the error between the point cloud and its reference model for 

the ID_37_02 female proximal tibia phantom with median error of 1.29 mm 
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Figure 9.97 Point cloud for the ID_27_01 female proximal tibia phantom (left), and the 

point cloud overlaid on its corresponding model (right), with5039 points and RMS error 

of 0.98 mm between the 75th percentile filtered point cloud and the reference model 

 

 

 

Figure 9.98 Histogram of the error between the point cloud and its reference model for 

the ID_27_01 female proximal tibia phantom with median error of 1.27 mm 
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Figure 9.99 Point cloud for the ID_12_02 female proximal tibia phantom (left), and the 

point cloud overlaid on its reference model (right), with 5248 points and RMS error of 

0.6 mm between the 75th percentile filtered point cloud and the reference model 

 
 
 

 

Figure 9.100 Histogram of the error between the point cloud and its reference model for 

the ID_12_02 female proximal tibia phantom with median error of 1.05 mm 
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Figure 9.101 Point cloud for the ID_11_90 female proximal tibia phantom (left), and the 

point cloud overlaid on its reference model (right), with 4887 points and RMS error of 

0.94 mm between the 75th percentile filtered point cloud and the reference model 

 
 

 

Figure 9.102 Histogram of the error between the point cloud and its reference model for 

the ID_11_90 female proximal tibia phantom with median error of 1.28 mm 
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Figure 9.103 Point cloud for the ID_33_03 female proximal tibia phantom (left), and the 

point cloud overlaid on its reference model (right), with 6163 points and RMS error of 

0.85 mm between the 75th percentile filtered point cloud and the reference model 

 
 

 

Figure 9.104 Histogram of the error between the point cloud and its reference model for 

the ID_33_03 female proximal tibia phantom with median error of 1.17 mm 
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9.3.1.4 Male Proximal Tibia 

 

Figure 9.105 Point cloud for the ID_1_03 male proximal tibia phantom (left), and the 

point cloud overlaid on its of 0.94 mm model (right), with 5711 points and RMS error of 

0.85 mm between the 75th percentile filtered point cloud and the reference model 

 

 

Figure 9.106 Histogram of the error between the point cloud and its reference model for 

the ID_1_03 male proximal tibia phantom with median error of 1.18 mm 
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Figure 9.107 Point cloud for the ID_14_90 male proximal tibia phantom (left), and the 

point cloud overlaid on its reference model (right), with 7222 points and RMS error of 

0.86 mm betweenthe 75th percentile filtered point cloud and the reference model 

 

 
 

 

Figure 9.108 Histogram of the error between the point cloud and its reference model for 

the ID_14_90 male proximal tibia phantom with median error of 1.24 mm 
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Figure 9.109 Point cloud for the ID_31_00 male proximal tibia phantom (left), and the 

point cloud overlaid on its reference model (right), with 8155 points and RMS error of 

0.77 mm between the 75th percentile filtered point cloud and the reference model 

 
 
 
 

 

Figure 9.110 Histogram of the error between the point cloud and its reference model for 

the ID_31_00 male proximal tibia phantom with median error of 1.13 mm 
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Figure 9.111 Point cloud for the ID_11_97 male proximal tibia phantom (left), and the 

point cloud overlaid on its reference model (right), with 5481 points and RMS error of 1 

mm between the 75th percentile filtered point cloud and the reference model 

 
 
 
 

 

Figure 9.112 Histogram of the error between the point cloud and its reference model for 

the ID_11_97 male proximal tibia phantom with median error of 1.35 mm 
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Figure 9.113 Point cloud for the ID_1_87 male proximal tibia phantom (left), and the 

point cloud overlaid on its reference model (right), with 4968 points and RMS error of 

0.82 mm between the 75th percentile filtered point cloud and the reference 

 

 

 

Figure 9.114 Histogram of the error between the point cloud and its reference model for 

the ID_1_87 male proximal tibia phantom with median error of 1.27 mm 
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Figure 9.115 Point cloud for the ID_4_97 male proximal tibia phantom (left), and the 

point cloud overlaid on its reference model (right), with 4346 points and RMS error of 

0.8 mm between the 75th percentile filtered point cloud and the reference model 

 
 

 

Figure 9.116 Histogram of the error between the point cloud and its reference model for 

the ID_4_97 male proximal tibia phantom with median error of 1.21 mm 
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9.3.2 3D Model Reconstruction Results 

9.3.2.1 Direction Set Morphing Method (32 Principal Components) 

 

 

Figure 9.117 Reconstruction RMS errors vs. point cloud density (in mm) for the female 

(top), and male (bottom) distal femur phantoms using the linear least squares method 
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Figure 9.118 Reconstruction RMS errors vs. point cloud density (in mm) for the female 

(top), and male (bottom) proximal tibia phantoms using the linear least squares method 
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9.3.2.2 Linear Least Squares Method (64 Principal Components) 

 

 

Figure 9.119 Reconstruction RMS errors vs. point cloud density (in mm) for the female 

(top), and male (bottom) distalfemur phantoms using the linear least squares method 
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Figure 9.120 Reconstruction RMS errors vs. point cloud density (in mm) for the female 

(top), and male (bottom) proximal tibia phantoms using the linear least squares method 
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9.3.2.3 Hybrid Method (32, and 64 Principal Components) 

 

 

Figure 9.121 Reconstruction RMS errors vs. point cloud density (in mm) for the female 

(top), and male (bottom) distal femur phantoms using the hybrid morphing method 

1 2 3 4 5 6 7 8 9 10

ID_11_97 0.91 0.9 0.93 1 0.98 0.98 1.06 1.06 1.18 1.18

ID_14_90 1.27 1.16 1.06 1.04 1.11 1.11 1.13 1.13 1.09 1.05

ID_1_03 0.82 0.85 0.88 0.92 0.84 0.93 0.93 1.12 1.06 1.06

ID_1_87 1.34 1.42 1.42 1.39 1.42 1.46 1.5 1.5 1.4 1.4

ID_31_00 0.82 0.8 0.79 0.89 0.91 0.9 0.9 0.98 0.98 1.08

ID_4_97 1.04 1.08 1.07 1.04 1.06 1.15 1.15 1.15 1.42 1.42

Mean RMS 1.03 1.03 1.02 1.05 1.05 1.09 1.11 1.16 1.19 1.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

R
M

S
 E

rr
o

r 
(m

m
)

Female Distal Femur

1 2 3 4 5 6 7 8 9 10

ID_11_97 1.21 1.19 1.24 1.21 1.21 1.25 1.33 1.33 1.33 1.38

ID_14_90 0.89 0.91 0.95 1.12 1.03 1.03 1.17 1.17 1.17 1.25

ID_1_03 1.49 1.47 1.48 1.49 1.49 1.49 1.42 1.48 1.51 1.51

ID_1_87 1.28 1.21 1.2 1.13 1.13 1.18 1.43 1.43 1.43 1.43

ID_31_00 1.43 1.43 1.47 1.42 1.48 1.57 1.57 1.57 1.57 1.88

ID_4_97 1.07 1.21 1.25 1.24 1.24 1.31 1.21 1.37 1.37 1.54

Mean RMS 1.23 1.23 1.27 1.27 1.26 1.3 1.35 1.39 1.4 1.5

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

R
M

S
 E

rr
o

r 
(m

m
)

Male Distal Femur



 
242

 

 

Figure 9.122 Reconstruction RMS errors vs. point cloud density (in mm) for the female 

(top), and male (bottom) proximal tibia phantoms using the hybrid morphing method 
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9.4 Ultrasound RF Data System Cadavers’ Experiments Results 
9.4.1 First Cadaver’s Distal Femur 

 
 

 
 

 
 

 

 

Figure 9.123 Point cloud (left), point cloud overlaid on reconstructed model (middle), 

and reconstruction error color map (right) for the first cadaver’s distal femur 
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9.4.2 First Cadaver’s Proximal Tibia 

 
 

 
 

 
 

 
 

 

Figure 9.124 Point cloud (left), point cloud overlaid on reconstructed model (middle), 

and reconstruction error color map (right) for the first cadaver’s proximal tibia 
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9.4.3 Second Cadaver’s Distal Femur 

 
 

 
 

 
 

 
 

 

Figure 9.125 Point cloud (left), point cloud overlaid on reconstructed model (middle), 

and reconstruction error color map (right) for the second cadaver’s distal femur  



 
246

9.5 Ultrasound RF Data Imaging System’s Clinical Study Results 
 

This section presents the clinical study results for the three trials for each of the 

six knees scanned in the study. The reconstructed 3D point clouds are shown as well as 

the reconstructed 3D models (with the point clouds overlaid on them) for each of the 

distal femurs and proximal tibias scanned in each of the three trials for every volunteer’s 

knee. The color maps, of the distance errors between the reconstructed 3D bone models 

and the golden reference 3D bone models manually segmented from the MRI scans of the 

volunteers knees, are shown along with the point clouds and the reconstructed models in 

different anatomical views (medial, lateral, anterior, posterior, superior (for the proximal 

tibia), and inferior (for the distal femur)). Sections 9.5.1 to 9.5.6 contains the model 

reconstruction results for the six knees. The results for each knee consists of the results 

for the three trials of distal femur 3D model reconstruction, and three trials of proximal 

tibia 3D model reconstruction. 

Examining the reconstruction error color maps for the reconstructed 3D models 

for the three trials for each bone (distal femur, or proximal tibia), it can be shown that the 

reconstruction error is low and has similar distribution along the bone’s surface for the 

three trials with few areas having higher error than the rest of the bone’s surface. The 

source of high error areas (yellow, and red colors in the color map) in the reconstruction 

error color map for any reconstructed 3D bone model is one or combination of the 

following sources: 

� Missing point cloud area: This is the case when the reconstructed point cloud is 

missing the point cloud part covering this area. This occurs at the areas that can’t be 
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accessible by the ultrasound for scanning and point cloud reconstruction. These 

areas are the lateral condyle of the femur, the interior surface of the femoral 

condyles (the opposite surface to the epicondyles), and tibial plateau. In addition to 

these inaccessible areas of the bones, some other areas of the bones can be missed 

in the scanning which creates gaps in the point cloud, which causes high model 

reconstruction errors at these areas. If the missing point cloud area is due to 

incomplete scanning, then this error will most likely not be existing in different 

scanning trials for the same knee. While the errors, caused by the gaps in the point 

cloud due to inaccessible parts of the bone, will be existing in all scanning trials of 

the same knee.  

� High error in the point cloud at the area: This case occurs when the part of the 

point cloud at that area (with high reconstruction error) having high error (low 

accuracy). This can happen due motion artifact from the motion of the patient’s leg, 

or the motion tracking system (the magnet of the electromagnetic tracking system) 

during any of the region scanning sessions. The high error areas of the point cloud 

can also occur in areas where the bone depth is large ( in high BMI patients) which 

increases the distance travelled by the ultrasound pulse, and thus increases the error 

in the bone depth estimation due to the inexact ultrasound speed used as described 

in section 7.3.  This source of error will most likely not exist in all of the scanning 

trials of the same knee if it is due to motion artifact because of its randomness in 

occurrence. While, if the source of this error large bone depth, the error will exist in 

all of the scanning trials of the same knee. 
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� Lack of area’s anatomical morphology representation in the atlas: This case occurs 

when an area of the bone’s surface is having a morphology not existing in the 

statistical atlas used, and can’t be extrapolated from the morphology variations 

encoded in the atlas used. This error occurs in all of the scanning trials for the same 

knee. 
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9.5.1 Volunteer’s Knee 1 

 
 

 
 

 
 

 
 

 

Figure 9.126 Point cloud (left), reconstructed model (middle), and error map (right) for 

volunteer’s knee 1 distal femur, trial 1, with RMS of 0.84 mm and Avg. error of 0.64 mm 
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Figure 9.127 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 1 distal femur, trial 2, with RMS of 0.94 mm 

and Avg. error of 0.74 mm 
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Figure 9.128 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 1 distal femur, trial 3, with RMS of 1.04 mm 

and Avg. error of 0.8 mm 
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Figure 9.129 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error map (right) for volunteer’s knee 1 proximal tibia, trial 1, with RMS of 0.78 mm and 

Avg. error of 0.6 mm 
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Figure 9.130 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer 1 proximal tibia, trial 2, with RMS of 0.79 mm and 

Avg. error of 0.62 mm 
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Figure 9.131 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 1 proximal tibia, trial 3, with RMS of 0.96 

mm and Avg. error of 0.75 mm 
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9.5.2 Volunteer’s Knee 2 

 
 

 
 

 
 

 
 

 

Figure 9.132 Point cloud (left), reconstructed 3D model (middle), and error map (right) 

for volunteer’s knee 2 distal femur, trial 1, with RMS of 1 mm and Avg. error of 0.78 mm 
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Figure 9.133 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 2 distal femur, trial 2, with RMS of 1.09 mm 

and Avg. error of 0.85 mm 
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Figure 9.134 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer 2 distal femur, trial 3, with RMS of 0.95 mm and 

Avg. error of 0.72 mm 
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Figure 9.135 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer 2 proximal tibia, trial 1, with RMS of 1.2 mm and 

Avg. error of 0.98 mm 
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Figure 9.136 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer 2 proximal tibia, trial 2, with RMS of 0.91 mm and 

Avg. error of 0.71 mm 
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Figure 9.137 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer 2 proximal tibia, trial 1, with RMS of 0.95 mm and 

Avg. error of 0.72 mm 
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9.5.3 Volunteer’s Knee 3 

 
 

 
 

 
 

 
 

 

Figure 9.138 Point cloud (left), reconstructed model (middle), and error map (right) for 

volunteer’s knee 3 distal femur, trial 1, with RMS of 1.18 mm and Avg. error of 0.93 mm 
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Figure 9.139 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee3 distal femur, trial 2, with RMS of 1.05 mm 

and Avg. error of 0.83 mm 
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Figure 9.140 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 3 distal femur, trial 3, with RMS of 1.01 mm 

and Avg. error of 0.81 mm 
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Figure 9.141 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 3 proximal tibia, trial 1, with RMS of 1.05 

mm and Avg. error of 0.8 mm 
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Figure 9.142 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 3 proximal tibia, trial 2, with RMS of 0.88 

mm and Avg. error of 0.69 mm 
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Figure 9.143 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer‘s knee 3 proximal tibia, trial 3, with RMS of 0.89 

mm and Avg. error of 0.68 mm 
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9.5.4 Volunteer’s Knee 4 
 

 
 

 
 

 
 
 

 
 

 

Figure 9.144 Point cloud (left), reconstructed model (middle), and error map (right) for 

volunteer’s knee 4distal femur, trial 1, with RMS of 1.14 mm and Avg. error of 0.89 mm 



 
268

 
 

 
 

 
 

 
 

 

Figure 9.145 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 4, trial 2,  distal femur with RMS of 1.17 mm 

and Avg. error of 0.92 mm 
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Figure 9.146 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 4 distal femur, trial 3, with RMS of 1.2 mm 

and Avg. error of 0.95 mm 



 
270

 
 

 
 

 
 

 
 

 
 

 

Figure 9.147 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 4 proximal tibia, trial 1, with RMS of 0.94 

mm and Avg. error of 0.75 mm 
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Figure 9.148 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee4 proximal tibia, trial 2, with RMS of 0.87 

mm and Avg. error of 0.68 mm 
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Figure 9.149 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 4 proximal tibia, trial 3, with RMS of 0.86 

mm and Avg. error of 0.66 mm 
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9.5.5 Volunteer’s Knee 5 
 

 
 

 
 

 
 

 
 

 

Figure 9.150 Point cloud (left), reconstructed model (middle), and error map (right) for 

volunteer’s knee5 distal femur, trial 1, with RMS of 1.19 mm and Avg. error of 0.96 mm 
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Figure 9.151 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 5 distal femur, trial 2, with RMS of 1.28 mm 

and Avg. error of 1.01 mm 
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Figure 9.152 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 5, trial 3,  distal femur with RMS of 1.3 mm 

and Avg. error of 1.04 mm 
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Figure 9.153 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 5 proximal tibia, trial 1, with RMS of 1.3 mm 

and Avg. error of 1.08 mm 
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Figure 9.154 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 5 proximal tibia, trial 2, with RMS of 1.42 

mm and Avg. error of 1.13 mm 
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Figure 9.155 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 5 proximal tibia, trial 3, with RMS of 1.49 

mm and Avg. error of 1.2 mm 
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9.5.6 Volunteer’s Knee 6 

 
 

 
 

 
 

 
 

 

Figure 9.156 Point cloud (left), reconstructed model (middle), and error color map (right) 

for volunteer’s knee 6 distal femur, trial 1, with RMS of 1.27 mm and Avg. error of 1 mm 
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Figure 9.157 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 6 distal femur, trial 2, with RMS of 1.17 mm 

and Avg. error of 0.92 mm 
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Figure 9.158 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 6 distal femur, trial 3, with RMS of 1.21 mm 

and Avg. error of 0.97 mm 
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Figure 9.159 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 6 proximal tibia, trial 1, with RMS of 1.61 

mm and Avg. error of 1.27 mm 
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Figure 9.160 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 6 proximal tibia, trial 2, with RMS of 1.54 

mm and Avg. error of 1.23 mm 
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Figure 9.161 Point cloud (left), reconstructed 3D model (middle), and reconstruction 

error color map (right) for volunteer’s knee 6 proximal tibia, trial 3, with RMS of 1.75 

mm and Avg. error of 1.43 mm 
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