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Summary

Cardiac interventions with a catheter and/or needle are commonly applied pro-
cedures with patients in hospitals. To guide medical interventions, advanced
medical imaging systems such as ultrasound (US) and fluoroscopy are broadly
applied and offer surgeons accurate visualization and measurement of anatom-
ical structures, while displaying the interventional instrument and activities
within or outside the operation regions. For efficiency reasons, a general trend
in clinical environments appears towards a smooth and fast workflow of the pa-
tient treatment, where the emphasis is on shortening the procedure time, com-
bined with improving the clinical outcome for a given intervention. For the
intervention and surgical guidance, accurate instrument detection is important
during the operation, but also forms a challenge with US imaging. First, an ex-
tensive multi-fold hand-eye coordination of the instrument and US transducer
is required to continuously align the instrument within the beamforming region
of the US transducer, even for a 3D US probe. Second, US imaging has intrinsic
quality challenges like low signal-to-noise ratio, imaging artifacts and distorted
appearance of the instrument, which complicates the interpretation of the image
data. Existing technologies are neither accurate nor efficient enough for a real
clinical application in 3D ultrasound. This is the field of research for this thesis,
where the objective is to detect the medical instruments during the intervention
in a live setting, where the patient is operated by clinicians and the intervention
is imaged by ultrasound equipment. The imaging should support the live inter-
vention by visualizing the instrument and enable to localize it inside the human
body.

The thesis commences with an overview of existing computer vision methods
for US interventional imaging. After initial experiments with machine learning in
Chapter 3, the thesis proposes in succeeding Chapters 4-7 several efficient med-
ical instrument segmentation and detection solutions in 3D US images, which
are based on data-driven methods, such as deep learning. The image processing
problem is approached in various ways using two-dimensional (2D) analysis of
the 3D US output image (in Chapter 4), 3D processing of volumetric data contain-
ing the instrument (Chapters 5-6), and a hybrid combination of 2.5D processing
(Chapter 7).
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In the proposed methods, the majority of the designs, e.g. Chapters 4-6, are
based on a coarse-to-fine framework, which facilitates both accuracy in segmen-
tation and detection and efficiency in computation. In the framework, first, the
regions containing the instrument are efficiently selected by a coarse locator (ei-
ther in voxels or in image patches), which drastically reduces the computation
cost for processing on whole image segmentation from several minutes to the
level of seconds. Several novel coarse selection techniques are introduced in the
thesis, such as a 3D Frangi model-based voxel pre-selection in Chapter 4, a 2D
convolutional neural network-based coarse detector in Chapter 5 and a region-
based reinforcement-learning detector in Chapter 6. These approaches all yield
an efficient and lower computation cost than direct 3D processing of the volumet-
ric data. The proposed detectors coarsely detect the instrument within a large 3D
volumetric data with an execution speed of about 0.2-2 seconds, which generates
the restricted regional volumes for the subsequent fine segmentation tasks. Then,
as the second step, a fine 3D segmentation is applied based on the coarse results,
such as CNN-based classification in Chapter 4 and a dimensional-fusion network
in Chapter 5. This exploits the both 2D and 3D semantic information in the re-
gional patches with higher accuracy than state-of-the-art methods, because of a
better network architecture design and the coarse-to-fine strategy. More specifi-
cally in Chapter 5, a novel FuseNet is proposed to exploit the 2.5D and 3D infor-
mation with an end-to-end training approach, which leads to better results than
the conventional standard UNet. Using the proposed methods, the medical in-
strument can be segmented within 0.3-1.0 seconds for a 3D US image, which is
at least 10 times faster than the existing published literature. More importantly,
the segmentation can be achieved with about 70% Dice score in noisy and chal-
lenging US images, which leads to accurate detections with a localization error
of about 1-2 mm only.

The second type of study focuses on annotation-efficient deep learning in
Chapter 6, which reduces the initially required accurate annotation effort for deep
neural network training. Especially for US imaging, the manual annotation of the
instrument is costly and laborious. Specifically, a modified mean-teacher model,
so-called Dual-UNet in Chapter 6, is proposed to exploit the prediction uncer-
tainty on the unlabeled training images. This model aims at finding the unla-
beled discriminative information in the images for performance improvement of
the segmentation. The extensive validation shows the proposed uncertainty anal-
ysis method requires that only 30% of the images are annotated, while achieving
comparable results to fully-supervised approaches with full annotations.

The third type of the study includes network architecture optimization in
Chapter 7, which enhances the prediction efficiency by reducing the overall net-
work architecture complexity. This method introduces a novel 3D-to-2D network
projection module that projects the 3D volumes to 2D planes by an end-to-end
learned network. The projection module drastically simplifies the overall net-
work, so that the discriminative information is easier to learn and the overall ef-

ii



Arash Pourtaherian Dissertation TU Eindhoven March 21, 2022 14:26 Page iii Sheet 9/214

�
�	 �
�	

�
�	

ficiency is increased with at least a factor of 10. This results an execution speed of
about 0.1-0.2 seconds for a standard volumetric image with a size of 1603 voxels.
Moreover, this speed improvement is obtained with limited automated detection
errors, which are only about 2-3 voxels on different challenging datasets.

In conclusion, the developed techniques of this thesis can accurately and effi-
ciently detect the medical instrument, such as a catheter and/or needle, in chal-
lenging 3D US images. The use of deep learning networks further generalizes
the application of instruments in the US imaging experiments, such as catheters,
guide-wires or needles. This finding is also supported by making no assump-
tions on the instrument’s shape and thickness. The proposed algorithms already
execute on existing computing platforms with a speed of 1-3 frames per second
without any software optimization, which facilitate real-time applications in the
near future. With accurate segmentation results, the algorithms can aid surgeons
to find the instrument easily, which can contribute to a safer and more accurate
instrument placement, thereby benefiting both patients and physicians.

US imaging is assumed to be widely applied in many different applications in
regional or local hospitals to be supplementary to CT or X-Ray imaging, or even
replace them for simple tasks, because it is less expensive and can be equipped
with more advanced image processing software. With the trend of more afford-
able US machines and advanced US analysis in the future, a reduction of the
hospital referring cost and better early outcomes for patients may be achieved.
Future ultrasound systems with integration of the proposed deep learning algo-
rithms will eventually improve the outcomes of image-guided interventions, and
facilitate clinicians in training and operations. This will lead to a substantially
broader usage of US-guided analysis, indicating a bright future for US-based im-
age processing with AI techniques.

iii
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Samenvatting

Cardiale interventies met behulp van een katheter of een naald worden vaak
uitgevoerd bij patiënten in ziekenhuizen. Geavanceerde medische beeldvor-
mingssystemen, zoals echografie en fluoroscopie, worden daarbij gebruikt om
de medische interventies te begeleiden. Zij bieden chirurgen de mogelijkheid
anatomische structuren met hoge resolutie te visualiseren en te meten, ter-
wijl het interventie-instrument en de activiteiten zowel binnen als buiten het
operatiegebied in het lichaam worden gevisualiseerd. In de klinische omge-
ving is er een toenemende trend naar een soepele en snelle efficiënte work-
flow van de patiëntbehandeling, waarbij de nadruk ligt op het verkorten van
de doorlooptijd en het verbeteren van het klinische resultaat van de geplande
ingreep. Tijdens de operatie is nauwkeurige instrumentdetectie essentieel voor
interventie en chirurgische begeleiding, maar dit vormt tevens een uitdaging
wanneer echografie wordt gebruikt. Ten eerste is een nauwkeurige hand-
oog coördinatie tussen het instrument en de ultrageluidsomvormer (transducer)
nodig om het instrument voortdurend binnen het bundelvormingsgebied van
de transducer te houden, zelfs met gebruik van een 3D-echografische sonde.
Ten tweede heeft echografische beeldverwerking inherente kwaliteitsproblemen,
zoals lage signaal-ruisverhoudingen, beeldverwerkingsartefacten en vervormde
instrumentweergave, die de interpretatie van beelddata bemoeilijken. Bestaande
technologieën zijn niet nauwkeurig of efficiënt genoeg voor de daadwerkelijke
klinische toepassing van 3D-echografie. Dit is precies het onderzoeksgebied van
dit proefschrift, dat gericht is op het detecteren van medische instrumenten tij-
dens interventies in een live omgeving, waarbij de patiënt wordt geopereerd door
artsen en de interventie met beeldvorming wordt gevolgd met echografische ap-
paratuur. De beeldvorming is bedoeld om een live-interventie te ondersteunen
door het instrument te visualiseren en het mogelijk te maken dit instrument te
lokaliseren in het menselijk lichaam.

De thesis begint met een overzicht van de meest gebruikte computer-
visiemethoden die worden toegepast bij echografische beeldvorming gedurende
interventies. Na inleidende experimenten met conventionele machine learning in
hoofdstuk 3, presenteert het proefschrift in de hoofdstukken 4-7 verscheidene
efficiënte technieken voor medische instrumentsegmentatie en detectieoplos-
singen voor 3D echografie, gebaseerd op data-gedreven methoden zoals deep
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learning. Het probleem van de echografische beeldverwerking wordt op ver-
schillende manieren aangepakt, waaronder een tweedimensionale analyse van
het 3D echografische uitgangsbeeld (hoofdstuk 4), driedimensionale verwerking
van volumetrische data die het instrument bevatten (hoofdstukken 5-6) en een
hybride combinatie van 2.5D beeldverwerking (hoofdstuk 7).

De meeste van de onderzochte methodes, zoals bijv. in de hoofdstukken 4-
6, zijn gebaseerd op een grof-naar-fijn raamwerk dat zowel nauwkeurigheid in
segmentatie en detectie geeft als efficiënte berekening hiervan mogelijk maakt.
In het raamwerk worden eerst de regio’s die het instrument bevatten efficiënt
geselecteerd door een grove instrumentlocalisatie (hetzij in voxels of in beeldde-
len), hetgeen resulteert in een drastische reductie van de benodigde berekenin-
gen voor de segmentatie van het gehele beeld (van minuten naar enkele secon-
den). Verschillende nieuwe methoden voor grove voxelselectie worden geı̈ntro-
duceerd, zoals een 3D Frangi model-gebaseerde preselectie van voxels in hoofd-
stuk 4, een 2D convolutioneel neuraal netwerk-gebaseerde grove detector in
hoofdstuk 5 en een op regio-gebaseerde reinforcement learning detector in hoofd-
stuk 6. Al deze benaderingen leveren efficiënte en verminderde berekenings-
kosten op dan directe 3D-volumetrische dataverwerking. De detectoren iden-
tificeren het instrument binnen een groot 3D-volumetrisch gebied met een uit-
voeringssnelheid van ongeveer 0,2-2 seconden, waardoor begrensde regionale
datavolumes worden geselecteerd die nodig zijn voor de daaropvolgende fijne
segmentatie. Als een tweede stap wordt dan een fijne 3D-segmentatie toegepast
op basis van de eerste grove resultaten, zoals een CNN-gebaseerde classificatie in
hoofdstuk 4 en een multi-dimensionaal fusienetwerk in hoofdstuk 5. Dit maakt
gebruik van zowel 2D als 3D semantische data in regionale beelddelen (patches)
met een hogere nauwkeurigheid dan recente bestaande methoden, dankzij een
betere netwerkarchitectuur en een grof-naar-fijn strategie. In hoofdstuk 5 wordt
er meer specifiek ingegaan op een nieuw FuseNet dat gebruik maakt van 2.5D- en
3D-informatie met een end-to-end trainingsmethode die tot betere resultaten leidt
dan een standaard UNet. Met de bovengenoemde methoden kan een medisch
instrument in 0,3-1,0 seconde worden gesegmenteerd met een 3D-echografisch
beeld, wat minstens 10 keer sneller is dan de reeds beschikbare methoden uit de
literatuur. Nog belangrijker is dat de segmentatie kan worden bereikt met een
Dice score van ten minste 70% met ruis en beperkte echografische beeldkwaliteit,
wat desondanks resulteert in een nauwkeurige detectie met een lokalisatiefout
van slechts 1-2 mm.

De tweede studie streeft naar annotatie-effectieve deep learning in hoofdstuk 6,
dat het vereiste nauwkeurige annotatiewerk voor de training van het neurale
netwerk vermindert. De handmatige annotatie van instrumenten in beelddata
is duur en bewerkelijk, vooral voor echografische beeldvorming. Een gewij-
zigd leraar-student leermodel, het zogenoemde Dual-UNet in hoofdstuk 6, is
ontwikkeld om de voorspellingsonzekerheid op ongelabelde trainingsbeelden
te benutten. Dit model streeft naar het lokaliseren van ongelabelde karakte-

vi
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ristieke informatie in beelden om zo de segmentatiekwaliteit te verbeteren. De
uitgebreide validatie toont aan dat de voorgestelde methode voor onzekerheids-
analyse slechts 30% van de beelden annoteert, terwijl dezelfde resultaatkwaliteit
wordt bereikt als met getrainde systemen met volledig complete annotaties.

De derde studie is de optimalisatie van de netwerkarchitectuur in hoofd-
stuk 7, die de voorspellingsefficiëntie bevordert door de algehele complexiteit
van de netwerkarchitectuur te verminderen. Deze techniek introduceert een
nieuwe netwerkmodule voor 3D-naar-2D projectie, m.a.w. het projecteert 3D-
volumes op 2D-vlakken via een end-to-end lerend netwerk. De voorgestelde
projectiemodule vereenvoudigt drastisch het totale netwerk, waardoor onder-
scheidende informatie gemakkelijker te leren is en de algehele efficiëntie met
ten minste een factor 10 toeneemt. Dit resulteert in een uitvoeringssnelheid van
ongeveer 0,1-0,2 seconde voor een standaard volumetrisch beeld met een grootte
van 1603 voxels. Bovendien wordt deze snelheidsverbetering bereikt met slechts
beperkte automatische detectiefouten, die slechts 2-3 voxels beı̈nvloeden voor
verschillende uitdagende datasets.

Concluderend kan worden vastgesteld dat de ontwikkelde technieken in
dit proefschrift het mogelijk maken om een medisch instrument, zoals een ka-
theter of een naald, te herkennen in real-time 3D echografische beelden. Het
gebruik van deep learning netwerken generaliseert en verbreedt dit tot algemeen
instrumentengebruik in echografische beeldvorming, zoals katheters, geleidings-
draden en naalden. Deze uitkomst wordt ook ondersteund door het feit dat
er geen aannamen zijn gemaakt over de vorm en grootte van het gebruikte
instrument. De algoritmen zijn ontwikkeld op standaard computersystemen,
die een verwerkingssnelheid leveren van 1-3 beelden/sec. zonder software-
optimalisatie, waardoor real-time toepassingen in de nabije toekomst mogelijk
zijn. De algoritmen kunnen met nauwkeurige segmentatieresultaten de chirur-
gen helpen bij het lokaliseren van het instrument, wat kan leiden tot een veiliger
en preciezere plaatsing van het instrument, hetgeen ten goede komt aan zowel
de patiënt als de arts. Het is aannemelijk dat echografie op grote schaal zal
worden gebruikt in verschillende toepassingen in grote en regionale zieken-
huizen, als aanvulling op CT- of X-Ray beeldvorming, of zelfs deels vervangt
in bepaalde procedures, omdat het minder kost en met geavanceerde beeldverw-
erkingssoftware kan worden uitgevoerd. Met de ontwikkeling van meer bereik-
bare echografie-apparatuur en geavanceerde echografie-analyses kan een verla-
ging van de diagnostische kosten in het ziekenhuis worden gerealiseerd naast
een verbeterde vroegtijdige analyse voor de patiënt. Toekomstige echografiesys-
temen die gebruik maken van de eerder genoemde deep learning algoritmen
zullen de uitkomsten van beeldgeleide interventies verbeteren en artsen helpen
bij opleidingen en operaties. Deze toename biedt een gunstig perspectief voor het
gebruik van echografie-gebaseerde beeldanalyse die gecombineerd wordt met ar-
tificiële intelligentie.
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Introduction

1.1 Image-guided Intervention

With the advancing development of imaging technologies, image-guided inter-
ventions on patients have become increasingly mature and robust for various in-
terventions on organs and related applications. Examples of applications of such
advances have been made for cardiac interventions and needle or catheter-based
biopsy taking. Ultrasound (US) imaging facilitates a higher clinical outcome or
robustness, since it is used as a supplementary imaging modality to another al-
ready existing imaging modality, such as X-ray imaging, to visualize the medical
instrument that is inserted or part of the procedure. The primary imaging modal-
ity provides the overview of the operation area, whereas the ultrasound system
is used to visualize the local navigation of the instrument. Besides this, with the
growing quality of the ultrasound imaging system, it offers intervention physi-
cians also visualization and measurement of anatomical structures. This means
that the system displays the interventional activities within the region of inter-
est. The imaging system also enables the guidance of medical instruments inside
the patient body without making an incision. The latter is commonly known as
minimally invasive image-guided intervention [1, 2, 3, 4]. This approach is being
increasingly adopted to many surgical applications because of its lower risk of
complications, shorter patient recovery time, and therefore overall lower cost of
the intervention.

Ultrasound imaging is currently employed during the intervention proce-
dures as a supplementary modality for other real-time imaging [1], such as 2D
X-ray for cardiac catheterizations. In more detail, the US modality is only con-
sidered to visualize the instrument for the local region of interest, due to the
limited field-of-view of the US probe, whereas fluoroscopic imaging generally
provides a much larger visualization of the procedure to guide the instrument
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1. INTRODUCTION

inside the patient body [5]. Comparing US to X-ray imaging, US images can
provide richer spatial information, such as 3D imaging, and better tissue char-
acteristics, since the X-ray imaging cannot generate a clear boundary contrast of
the organs, which mostly requires an additional contrast agent to be injected to
guide the operation [6]. In current procedures, US imaging is commonly con-
sidered as a supplementary modality to visualize the instrument. However, on
the longer term, it is foreseen that these two modalities will be jointly used, such
as performed in 2D-3D image-stitching techniques for Virtual Reality, which will
facilitate the operation with a better interpretation [7].

Ultrasound imaging is typically characterized as a noisy signal modality for
clinical applications because it intrinsically has limitations of low contrast and
low signal-to-noise ratio [8]. Nevertheless, due to the continuous developments
of computer vision and image processing techniques, the imaging quality has
been significantly improved, which ensures a better visualization of the instru-
ment and besides this, also a partial insight into anatomical structure for naviga-
tion. Consequently, the visualization of the instrument in US has become possi-
ble by advanced image processing and/or computer vision techniques, and an
complementary properly designed pre-processing, post-processing, and render-
ing visualization algorithms [8, 6]. For interventional applications, these tech-
niques should ensure a real-time performance. Besides, the advanced hardware
and image recording techniques provide the possibilities to obtain high-quality
operation-related images in an efficient way [9], which enables the researchers to
analyze the image data and provide solutions for interventional guidance.

This thesis concentrates on realizing medical instrument visibility in a contin-
uous way, such that a cardiac catheter, guide-ware or anesthesia needle becomes
always visible. Furthermore, the continuous visibility of the instrument by ex-
ploiting computer vision techniques, is facilitating the reliability of the interven-
tion and giving a higher success rate. As a result, more accurate and easier inter-
ventions can be achieved for physicians, which potentially lead to faster opera-
tion and better outcomes. The proposed technical implementation of the above
concepts should be based on commonly used surgical and imaging equipment.

1.2 Examples of Ultrasound-guided Instruments Visualization

This section describes a few key applications, where US imaging is used to navi-
gate the instrument for the image-guided intervention in the clinical setting.

1.2.1 Needle-based Intervention

In clinical practice, needles that are inserted in patients, are used for administra-
tion of medication, performing biopsies or for treatments, such as e.g. a needle is
used for biopsy taking of cancer tissue to refine the decision-making for further
treatment or surgery. Such a procedure is demonstrated and shown in Fig. 1.1.

2
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Figure 1.1 Ultrasound-guided needle biopsy taking (figure after [6]). (a) Clinical staff has
to manage the multi-fold coordination of 1© the needle, 2© ultrasound transducer, while 3©
looking at the US screen (Courtesy of Philips Ultrasound). (b) Schematic representation
of guiding a needle using US imaging, depicting an example situation for vascular access.
, where the needle tip is outside the imaging plane and is approaching an erroneous target
area. (c) B-mode US volume slice containing the needle, pointed by a green arrow.

3
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Fig. 1.1 (a) visualizes the physician at the left manipulating the needle with his
right hand (in 1©) and the US probe with his left hand (in 2©). During the ma-
nipulation, the physician monitors the display of the US imaging system 3© at
the right of the image. In the subfigure (b), the US transducer at the left (in 2©)
is radiating the sound pattern, indicated by the light blue color, into the patient
tissue. The inserted needle is shown at the bottom in 1© with an enlarged view
in the middle subfigure, where it points to the artery at the right, inside the pa-
tient tissue. In the subfigure (c), which is commonly called a B-mode image, the
resulting image of the US system is illustrated, where the needle is visible at the
top-left corner, indicated by the green arrow (the horizontal white line indicates
an anatomic structure of e.g. a muscle or similar element).

The difficulty of this type of imaging is that the physician has to look to the
screen, while optimizing the visualization of the needle by manipulating the US
transducer. More precisely, to visualize the instrument in US imaging, the 2D
US plane needs to be oriented perfectly, such that it is fully parallelized with the
needle orientation, and visualization of the US image coincides with the plane
containing the full needle. Thus the clinical staff has to carefully align the coor-
dinates between the needle and US probe, while looking at the US display for
the operation. Besides the above orientation and alignment difficulties, it is still
challenging for sonographers to distinguish the instrument from the background
tissue in the B-mode images by human eyes. This aspect requires extra training
and experience of the medical expert, in order to achieve a suitable instrument
interpretation, such as in Fig. 1.1 (c).

1.2.2 Catheter-based Intervention

In catheter-based cardiac operation, a catheter is inserted into the patient heart
chamber for tissue ablation or signal measurement. Such a procedure is demon-
strated and shown in Fig. 1.2. Fig. 1.2 (a) depicts the overview of the capturing
process of such US images. The US probe, commonly known as Transesophageal
Echocardiogram (TEE) probe, is inserted into the patient body through the esoph-
agus to reach the position close to the patient heart. In subfigure (b), the catheters
reach the heart chambers via a patient vein or artery. The activities of the instru-
ment are recorded by the TEE probe close to the heart. In subfigure (c), a cap-
tured 3D volumetric dataset is demonstrated by a standard rendering technique,
which is difficult for interpretation. Finally in subfigure (d), the manually sliced
B-mode image from (c) is visualized, which contains an instrument (indicated by
the green arrow).

The difficulty of this type of imaging is similar to the needle-based operation,
i.e. the multi-coordination manipulation required by the physician. By compar-
ing catheter and needle-based interventions, the main difference in this section
is coming from the imaging modality, where the 3D TEE probe generates the
3D images such that the careful alignment between instrument and US acoustic
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Figure 1.2 Example of 3D US imaging steps in cardiac operations. (a) The US probe is
inserted into esophagus of the patient, which is passing by close to the patient heart [5]. (b)
An example of cardiac catheterization in the heart with a phased array probe placed next
to the heart chamber. Generally, catheters are inserted into the heart chambers. (c) The
3D volumetric dataset is rendered by standard techniques, where it is hard to interpret the
image and localize the instrument in the volume. (d) The manually sliced B-mode image
from the 3D volume, which contains the instrument (pointed by the green arrow).

plane is not required. However, due to the complex 3D US imaging with render-
ing techniques, it is still challenging for sonographers and physicians to tune the
3D US image such that the 2D plane or slice contains the instrument with good
visibility. In addition, it is challenging to distinguish the instrument in B-mode
images for human expert eyes, which requires extra training and experience from
the medical expert.

1.3 Ultrasound Guidance of Instrument

Due to challenging conditions of the instrument visualization, such as limited
field of view, complex anatomical structure, and low image contrast, extensive
tuning and manipulation of instruments and US transducers are performed to
continuously capture an instrument. This advanced manipulation and tuning
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may lead to image interpretation errors during the operation and thereby lead to
higher risks for patients.

A. Instrument Detection Techniques
To successfully find the medical instrument during the operation, instrument
detection techniques have been studied in recent years, and various solutions
have been developed to improve the manual alignment between the instrument
and US transducers, which can facilitate the visualization of the instrument.
These solutions employ various techniques, which can be classified into two
categories. First, detection of the instrument by external or internal sensing
devices (hardware-based), such as optical fiber sensing [10], electromagnetic
tracking [11], and robotic-guided detection [12]. Second, the use of image-based
approaches for instrument visualization, without employing any additional
sensors. Although sensing-based methods have achieved promising results, the
relatively high cost of their equipment and the involved sensors complicate the
system set up in the operation room. Therefore, clinical users do not broadly
accept the sensing-based approaches in practice. In contrast, image-based
approaches have been proposed to detect the medical instrument in US images,
since this solution is less obtrusive to the clinical user, but it is difficult to obtain
a robust implementation. In addition, based on available equipment in the
hospital, an image-based method provides a less costly and affordable solution.
Therefore, we aim at image-based medical instrument detection for clinical
applications to ensure the visualization of the instrument during surgery.

B. Potential of Image Processing
Image-based instrument detection is a promising technique for clinical practice
because it minimizes the instrument-probe manipulation, while preserving the
usage of conventional instruments and image recording systems [13]. This
system approach is solely based on image processing techniques to improve
the instrument representations. With advanced techniques of image processing
and computer vision, the target instrument can be enhanced to obtain better
visualization with improved contrast and visibility. Furthermore, with consistent
detection of the instrument in US data, this approach will support the guidance
of the intervention by enabling continuous visualization of the instrument.
Therefore, with optimized viewing and image-based techniques, the instrument
detection is considerably simplifying the placement of the instrument within the
acquired field of view of the US probe.

To develop an image-based detection system, advanced image processing and
computer vision techniques are investigated. Several studies have been con-
ducted in the past two decades using image-based methods. However, these
methods are lacking validation on realistic datasets or require specific record-
ing conditions, such as recording images from phantoms or computer-generated

6
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datasets. Despite the fact that these solutions have resulted in an acceptable per-
formance for specific applications, the reported methods lack robustness in of-
fering anatomical background when applied to real clinical situations. In recent
years, the fast development of combining advanced image processing and artifi-
cial intelligence provides a new direction of designing an image-based medical
instrument detection, which overcomes various challenges and yields novel and
improved support for US-guided interventions.

1.4 Artificial Intelligence

The rapid development of digital computing has enabled computer systems to
grow in an exponential rate, as predicted by Gordon Moore [14]. Digital sig-
nal processing techniques have been extensively applied in medical imaging,
which can execute the complex and expensive computations with real-time op-
eration, thereby increasing the clinical value of the different imaging modalities.
Many signal processing components, such as de-noising and contrast enhance-
ment, have been widely applied to imaging data, which has improved the image
quality to a level that enables accurate image analysis. In addition, this rapid de-
velopment in computation capabilities of processing units has resulted in a new
period of artificial intelligence (AI), which is compounded with advanced sens-
ing technologies. Nowadays, advanced (image) signal processing systems with
AI, advanced sensors and smart devices have been deeply integrated into the
daily life of millions of people in many different ways, such as the digital assis-
tant on mobile phones, but also popular applications (Apps) like TikTok making
use of AI.

The rapid development of AI has also a great impact in the healthcare area.
Several essential domains have already experienced revolutionizing develop-
ments, ranging from cancer diagnosis, medicine development and computer-
assisted intervention. These advanced techniques can help medical people and
patients to perform a more efficient and effective healthcare treatment, by in-
corporating e.g. AI-based monitoring, or obtaining suggestions for personalized
treatment. By employing AI in medical imaging systems, there will be a large
impact on the outcomes of patients, by providing a more accurate diagnosis and
treatment solution. Specifically, for US imaging empowered by AI, a faster and
accurate image acquisition and interpretation can be achieved, which extends
the usage of this modality to novice and non-expert practices. In addition, the
advanced processing of US images during the intervention can enable a better
interpretation of the image content and facilitate the operation with better under-
standing. Therefore, a safer and better intervention outcome for patients can be
obtained at a faster pace.

7
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1.5 Requirements and System Aspects of the Research

Advanced and robust processing solutions for accurate and efficient medical in-
strument detection for US-guided interventions is useful for clinical applications,
since they provide potential improvement of the accessibility and suitability of
minimally invasive procedures. Thanks to fast developments in image process-
ing techniques, 3D US is gradually becoming feasible in clinical practice, because
it provides richer spatial information and better instrument-related information
capturing than conventional 2D US. Nevertheless, due to the large required space
for volumetric data recording and limited image representations on a 2D moni-
tor, it is challenging to interpret the 3D images with complex image manipulation,
such as image-plane selection, probe rotation, etc. Therefore, it is time-consuming
and inconvenient for sonographers or surgeons to manipulate the devices and
instrument for maximum instrument visibility, rather than focusing on the oper-
ation itself. With the rapid development of AI-based techniques and advanced
signal processing solutions, this limitation can be addressed, such that an opti-
mized and automated visualization of the medical instrument in a 3D volume
or in 2D planes is realized. This thesis focuses on developing robust and efficient
image processing solutions for medical instrument detection, or more specifically,
localization and segmentation in 3D US data volumes, enabling simplified man-
ual coordination of imaging equipment and instrument.

When developing such intervention support system, both technical and clin-
ical challenges should be identified and addressed. In the following, the most
important considerations and aspects are summarized, which are essential for
this study.

1.5.1 Data Acquisition and Standardization

An essential step for developing an AI algorithm is having access to large
amounts of data. In the healthcare domain, there is a natural limitation to collect
a large amount of clinical datasets. These limitations include technical limitations
for advanced studies, but also ethical limitations (privacy rules and governmen-
tal regulations). Medical imaging systems are less available than commonly used
video cameras, which limits the data collection in both efficiency and accuracy. In
addition, the collection of datasets for development of novel techniques are com-
monly involving new and immature procedures, which are typically avoided for
considerations of patient safety, ethical evaluation, and privacy protection. More-
over, the gold-standard data or so-called ground-truth data for AI development
is obtained in practice from highly skilled medical experts, which are scarcely
available and validated data are expensive to obtain.

All the above difficulties have made the medical datasets expensive and with
limited availability. This has motivated the researchers to choose sometimes an-
other experimental direction, such as simulation experiments using phantoms
(in-vitro), either on animal tissue or cadaver (ex-vivo), and sometimes incidentally

8
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on live animals and patients (in-vivo). Although most research studies from re-
cent years are gradually concentrating on ex-vivo and in-vivo datasets, the limited
amount of validation datasets still hampers the progress of the designing a reli-
able automated system.

1.5.2 Reliability and Decision-making Motivations

During the operation, it is important for surgeons to consider the uncertainty
of a procedure for each decision, which ensures the treatment can be controlled
to avoid any high-risk situation. By considering an automated detection sys-
tem in clinical practice, it is important for physicians to understand the risk and
uncertainty of the applied solution. Therefore, a reliable quality evaluation and
an acceptable error margin of such a system should be provided to support the
decision-making of operators, which ensures the surgeon can perform the oper-
ation with known risks. In addition to the above reliability of the system design,
it is also important for clinical experts to understand the motivation for using
such a system. When being able to explain the reason for each design step in
the system, clinical specialists can gain trust in the detection results of the sys-
tem, and know-how to integrate the system into operation procedures, thereby
making every decision during the intervention responsible and accountable.

1.5.3 Applicability, Execution Speed and Accessibility

Clinical solutions designed for medical instrument detection and guidance are
subject to strict requirements by the type of application. One of the major consid-
erations in the intervention operation is to achieve the optimal procedure as fast
as possible, to minimize the risk of complications. Therefore, the applicability of
a detection system should not divert too much from the current work flow and
should proceed without interruption of the normal decision-making and device-
handling procedures. Moreover, the execution speed with real-time performance
is also essential for the system design, since it avoids any delays in the operation
stages. Moreover, the system should limit any additional complexity for the op-
eration system, while ensuring that the end-users have know-how and control
on the detection and guidance steps of the system during the intervention.

1.5.4 Evaluation Criteria

Automated assistance and guidance systems for healthcare are usually aiming at
improving decision-making and treatment accuracy. Therefore, an accurate per-
formance evaluation is important for the system development. Nevertheless, the
direct contribution of such a system to patient health may not be always clear, not
visible, and/or not measurable. Therefore, it is important to evaluate the system
w.r.t. the intended application in clinical practice. In addition, the performance
of such a system may be subject to variations due to the different handling of
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the specialists. Therefore, the applied performance criteria for a clinical solution
should be objective and quantitatively measurable. This approach has been fol-
lowed also for this thesis, where in each chapter metrics for quality and accuracy
are addressed.

1.6 Problem Statement and Research Questions

The presented technical and clinical challenges in developing a robust and effi-
cient detection system for medical instruments result in the following problem
statement of this thesis.

Problem Statement: This thesis aims at the design and development of ro-
bust and efficient processing algorithms to detect and localize a medical in-
strument within the acquired 3D ultrasound volumetric data. This detection
and localization is based on exploiting machine learning techniques, in or-
der to properly present the medical instrument to the clinical expert and to
support the interventional guidance.

An efficient automated detection is required to support the interventional guid-
ance. As a result, a fully automated instrument detection algorithm should be
exploited with at least near-real-time execution speed, e.g. 1-5 frames per second
for the observed 3D volumetric data (based on algorithm complexity and image
size).

Research Questions

From the above problem statement, specific research questions (RQ) are formu-
lated below.

RQ1. Features and modeling of the instrument for an automated
detection system

In order to design a system that can robustly detect the instrument in noisy acous-
tic image data with complex anatomical structures, it is necessary to design a
full 3D feature description and modeling of the instrument and its background,
which ensures a robust separation in 3D imaging. This leads to the following
related research questions.

RQ1a. What are good discriminative shape features for a medical instru-
ment?

RQ1b. Is it possible to model a curved instrument in 3D image data based on
position information, from the initial classification of voxels?

10
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RQ2. Pre-modeling and robustness of the detection system

The voxel-level detection may lead to redundancy and hamper the execution per-
formance of the detection algorithm. In addition, increased robustness is needed
to detect the instrument in complex anatomical US images. These topics lead to
the following research questions.

RQ2a. For efficient removal of irrelevant voxels, is pre-modeling and select-
ing the voxel points in 3D volume data a feasible solution?

RQ2b. Can we directly describe the instrument within a deep neural network
using (partially) 3D US data, to potentially improve the detection accuracy or
improve the detection efficiency?

RQ3. Exploitation of the 3D context and near-real-time instrument
detection

During the operation, the instrument only occupies a small volume of the ac-
quired US data. Consequently, algorithms applied to the total US volume are less
efficient in computation, thereby hampering execution speed. Exploiting the 3D
complex context for the separation algorithm can improve the detection robust-
ness. These aspects lead to the following research questions.

RQ3a. Can we implement an efficient and robust region-of-interest (ROI) in-
strument detection by means of a deep learning method?

RQ3b. Can the instrument be robustly segmented by deep learning after ap-
plying the ROI methods? Does this technique provide a more meaningful se-
mantic model and improve the robustness against challenging volumes con-
taining anatomical structures?

RQ4. Annotation-efficient training of a deep learning method for
instrument detection

To train a successful deep learning model, a large amount of training data are
required to ensure the robustness and accuracy of the prediction. Nevertheless,
it is challenging to collect sufficient data with annotations for accurate model
training purposes. To address this challenge, the following research questions
are formulated.

RQ4a. Is it possible to train an efficient coarse localization method to find the
sub-volume containing the instrument without requiring accurate voxel-level
annotation?

RQ4b. How should the region of interest be segmented with a deep learning
method, when the network is trained by only a small amount of annotated
data (or even without) at voxel-level and a large amount of unannotated data?

11
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RQ5. Real-time detection of medical instruments

A deep learning method for 3D US images involves a complex 3D model with
large memory, which involves patch-based processing due to limited hardware
capability. Therefore, a real-time performance is difficult to achieve and hampers
the use of contextual information. These limitations lead to the research question
stated below.

RQ5. Is it possible to reduce the complexity of a 3D model by decreasing the
number of dimensions in the neural network modeling, rather than reducing
the image-scale/resolution, CNN filter sizes, etc.?

1.7 Scientific Contributions

The scientific and technical contributions of this thesis can be divided into 5 cat-
egories, which are summarized below.

1.7.1 Contributions to Feature Analysis and Instrument Model-fitting
Algorithm

A two-stage algorithmic approach is proposed to detect an instrument in 3D US
data. In the first stage, multi-scale features with multiple feature definitions are
introduced to capture the discriminative information of the instrument to extract
the corresponding instrument voxels from a complex 3D US volume. In the sec-
ond stage, a specifically designed model-fitting algorithm is employed, which
is able to localize the curvature instrument in 3D US images. Although the de-
scribed two stages of the algorithm form a novel detection method for finding
instrument in US data, they are based conventional computer vision techniques.

First, the classification of the proposed features using a non-linear classifier
has achieved on average a Dice score of 83.7% on an in-vitro dataset, 55.2-67.0%
on multiple ex-vivo datasets and 52.9% on an in-vivo dataset (Chapter 3). Second,
based on the classified volumes, the position and orientation of the instrument
are extracted after the specifically designed Sparse-plus-dense Random Samples
Consensus (SPD-RANSAC) algorithm. The proposed system achieves an aver-
age localization error of 1.5 mm applied to an in-vitro dataset, 1.5-3.0 mm on
multiple ex-vivo datasets and 1.9 mm on an in-vivo dataset (Chapter 3). The pre-
sented method is a first algorithm for catheter detection in 3D US images on var-
ious datasets. Although it has a decent score, it is not optimal and serves as a
baseline for further algorithm development, where deep learning is extensively
employed.
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1.7.2 Contributions to Pre-modeling and Robust Voxel Classification

A voxel-of-interest deep learning-based classification framework is proposed to
efficiently detect the instrument in complex 3D US images. First, a pre-filtering
on the US images is applied to skip the non-interest voxels based on prior knowl-
edge of the instrument shape. This shape is pre-analyzed by the Frangi vessel-
ness filter [15], which efficiently reduces the computation load for complex deep
learning classification. Second, a specifically designed convolutional neural net-
work (CNN) is developed using a tri-planar approach for projecting 3D CNN
input on these planes, which further reduces the computation load compared to
straightforward processing on 3D US images.

Quantitative analysis of the proposed method shows the proposed voxel-
of-interest pre-selection accelerates the overall procedure time from more than
100 seconds to approximately 10 seconds per volume on a standard PC with a Ti-
tan 1080ti GPU. The overall classification achieves about 53.7% recall and 59.1%
precision on an ex-vivo dataset. The final localization error is about 1.7 mm for
a catheter with a diameter of 2.3 mm. Therefore, the described system in Chap-
ter 4 is able to improve the detection of the instrument, compared to the baseline
algorithm with computer vision techniques, as presented in Chapter 3. Also, an
ablation study shows a higher efficiency than a conventional exhaustive and iter-
ative classification strategy.

1.7.3 Contributions to 3D Context and Semi-real-time Segmentation

A novel patch-of-interest deep learning method is proposed to semantically seg-
ment the instrument in 3D US images, which overcomes the limited use of con-
text information in conventional voxel-wise classification methods. The pro-
posed framework employs a fast region-of-interest selection method based on
a 2D slice-based CNN with a large field-of-view, where the patches are processed
by a regional patch-based semantic segmentation, using another novel 3D CNN
trained by a contextual hybrid loss function.

The proposed system in Chapter 5 acts as a coarse-to-fine framework, which
addresses the challenging class imbalance issues for 3D US images containing a
small instrument such as a catheter. Moreover, it decreases the computational
load for the 3D semantic network, thereby reducing the overall execution time.
The proposed method achieves a Dice score of about 66.5 vs. 70.5% on ex-vivo
and in-vivo datasets, respectively, with an execution time of about 1.3 seconds
per volume on a standard PC with a Titan 1080ti GPU. This performance ensures
a near real-time operation in clinical applications. Additionally, the proposed
method with high Dice score ensures a successful instrument detection with a
localization error of 2-3 mm only.
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1.7.4 Contributions to Annotation-efficient Deep Learning Analysis

One challenging issue for a data-driven method following an AI approach, such
as CNN for deep learning, is the large amount of labeled data that is required for
training the model. Besides, this data is expensive and laborious to obtain. There-
fore, a novel annotation-efficient approach is proposed to detect and segment the
instrument in 3D US data, containing the following innovative aspects.

The proposed method involves a two-stage procedure. First, a deep reinforce-
ment learning method is proposed to localize the region-of-interest containing
the instrument, which does not require accurate voxel-level annotation of the
instrument. Second, based on the candidate region, a novel semi-supervised
trained CNN is applied to segment the instrument in the US images.

Quantitative analysis of the localization and segmentation in Chapter 6 shows
that the proposed method achieves about 68.6 vs. 69.1% Dice score on in-vivo
and ex-vivo datasets, respectively. The overall execution time is about 1 second
per volume on a standard PC with a Titan 1080ti GPU, which is comparable to a
fully supervised learning method. These results indicate that the proposed sys-
tem is able to accurately detect the instrument with near real-time performance,
but with much lower annotation effort (only about 30% training images require
voxel-accurate annotations).

1.7.5 Contributions to Multi-dimensional Deep Learning for
Real-time Detection

A novel multi-dimensional (3D-to-2D) transformation-based CNN architecture
is proposed to efficiently localize the catheter and/or needle in large-volume
US images. This method reduces the inherent 3D complexity of the CNN ar-
chitecture, by introducing a dimensionality-reduction module, which effectively
enables 2D processing. Therefore, the computation effort of the CNN model is
dominantly reduced to 2D operations, yielding a near real-time execution time
for detection.

Quantitative accuracy analyses of the efficient detection system in Chapter 7
on challenging ex-vivo datasets show that the proposed method achieves a de-
tection error of 2.3-2.5 voxels with an execution time of 0.06-0.12 seconds per
volume, which is much faster than the reported work in literature. The detection
results can be efficiently visualized by the cross-section plane or 3D rendered
volume, thereby creating a high clinical value for practical interventions, since it
can efficiently indicate the location of the instrument and facilitate the operation
procedures.
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1.8 Outline and Scientific Background

This section presents an overview of the chapters in this thesis with the related
publication background. As shown in Fig. 1.3, Chapter 2 provides a technical
introduction of image-based medical instrument detection and related algorith-
mic components, which are employed in this thesis. Chapters 3-6 present various
contributions and innovative algorithm designs. Finally, the conclusions and fu-
ture work are elaborated in Chapter 8. The individual chapters are summarized
below, including references to the corresponding publications.

Figure 1.3 Structure of the chapter organization in the thesis.

Chapter 2

This chapter introduces a high-level overview of designing an image-based in-
strument detection system, based on conventional computer vision techniques.
The detail of various algorithmic components are introduced. To design a medi-
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cal instrument detection system based on computer vision, image pre-processing
is first discussed. Then, feature analysis by exploring transformation techniques,
feature design and extraction methods are used for developing feature vectors
for further processing. Next, linear and non-linear classification techniques are
explained for processing these feature vectors. Afterwards, a CNN is intro-
duced as an alternative option to replace computer vision methods. Finally, post-
processing, validation details and evaluation metrics are defined.

Chapter 3

This chapter presents a framework of automated medical instrument detec-
tion based on computer vision techniques, employing both feature analysis and
model-fitting. The chapter is divided into two parts: 1) voxel-level classification
and 2) model-fitting for localization of the instrument. Subsequently, the exper-
imental validation is provided on phantoms, isolated tissue and animal data ac-
quired during experiments.

The main topic of this chapter is the feature analysis and model-fitting algo-
rithm design. This work was published in the SPIE Journal of Medical Imaging
(2019) [J-7]. Moreover, the presented individual sub-systems were presented at
the Int. Conf. SPIE Medical Imaging (2018) [C-8].

Chapter 4

This chapter presents a voxel-level coarse-to-fine classification system by inves-
tigating the combination of a vesselness filter and a CNN classification, which
improves the overall localization efficiency. First, the vesselness filter is applied
to coarsely select the voxels of interest. Second, this is followed by introduc-
ing a patch-based voxel-level CNN classification, which is applied to accurately
segment the image. Subsequently, experiments with the proposed method are
presented, as well as the final accuracy and efficiency of the proposed method.

The contribution of this chapter is published in a journal publication in IJ-
CARS (2019) [J-6], which is based on a publication in the IEEE ICIP conference
(2018) [C-7]. Besides this, the proposed method in the chapter has resulted in one
patent application, which was published in 2020 [P2].

Chapter 5

This chapter describes the contribution of patch-based semantic segmentation by
using a CNN, which involves a patch-of-interest coarse-to-fine strategy, aiming
to achieve a high efficiency with high segmentation accuracy. For this purpose,
a fast patch-extraction method is introduced with a 2D slice-based CNN. Next,
a 3D regional CNN is applied to segment the instrument, which employs two
individual sub-networks to fully exploit the spatial information, together with
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a novel hybrid focal loss for learning. Subsequently, experimental results and
analysis are presented on both challenging isolated heart tissue and patient data.

The contributions of this chapter were published in the Journal Medical Im-
age Analysis (2021) [J-4]. Moreover, several international conference papers were
published in MICCAI (2019) [C-5], IEEE ISBI (2019)[C-6] and IEEE ICIP (2019)
[C-3, C-4].

Chapter 6

This chapter investigates the contribution of annotation-efficient segmentation
by CNNs, aiming at reducing the laborious and expensive voxel-level annotation
for semantic segmentation. To this end, a coarse deep reinforcement learning
detection algorithm is introduced to find the potential region of the instrument.
Then, a semi-supervised learning trained CNN is subsequently applied to seg-
ment the instrument, which is trained by a novel hybrid constraint to exploit the
unlabeled information. The proposed method is validated in experiments and
achieves state-of-the-art performance.

The contribution of this chapter is partly presented at the MICCAI Conference
2020 [C-1]. Moreover, its extension is reported in IEEE Journal of BHI [J-2].

Chapter 7

This chapter addresses a novel framework to reduce the computation cost in 3D
CNN design for instrument detection. First, a multi-dimensional network is in-
troduced with a detailed dimension-reduction module and image reconstruction
steps. Second, validation and evaluation experiments are presented. The pro-
posed method is explored for high efficiency and compared with the state-of-the-
art methods.

The contributions of this chapter were published in the IEEE Trans. on BME
[J-5], and also in one patent application in 2021 [P1].

Chapter 8

The final chapter summarizes the achieved results and addresses the research
questions and answers found in the thesis work. In addition, this chapter con-
cludes with a brief discussion on possible directions for the future and ways to
achieve higher efficiency and accuracy.
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Overview of Image-based Instrument

Detection Systems

2.1 Introduction

This chapter summarizes the state-of-the-art techniques at the time of starting re-
search of the thesis and the latest developed image-based detection methods for
medical instruments in 3D US volumetric data. As discussed in the first chapter,
the focus is on image processing methods that are generic to different types of
medical instruments, such as RF-ablation catheters, guide-wires and anesthesia
needles, which have different appearances of both instrument and background
tissue related to the intervention. These methods allow a seamless integration
with existing US recording systems and introduce a minimal influence on the ap-
plied clinical protocol. When designing an instrument detection system, several
techniques are exploited to identify the natural properties of instruments. For
example, since the tubular shape of a catheter yields essential discriminative in-
formation, the majority of the techniques consider a vesselness filter to enhance
and exploit such properties. Moreover, the echogenicity and linearity of the nee-
dle leads to the use of a parametrical transformation to exploit its discriminative
information. Nevertheless, because clinical US data with complex anatomical
structures introduce challenges of the intervention environment, additional pre-
processing and post-processing methods are required to robustly distinguish the
instrument from the anatomical environment.

In the field of image-based instrument detection, the majority techniques can
be clustered into two groups, which are based on the addressed challenges in the
clinical dataset and limitations of the assumed situations. These two groups are
as follows.
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1. Transformation and model-fitting: This forms the mostly studied method at
the early stage, which gradually exploits the instrument-related information at
different processing stages. These stages range from intensity information up
to contextual model-fitting. The instrument can be detected with a carefully
designed processing chain of various functions.

2. Machine learning and prediction: With more challenging US images containing
complex anatomical environment, the straightforward definition and selection
of such an intensity-based transformation is challenging. Therefore, more
descriptive and discriminative information representations of data are mod-
eled by machine learning techniques, based on a large size of image observations.

Conventional transformation and model-fitting methods have been proposed
for instrument detection for a simplified and largely constrained dataset, which
are unfortunately far from real-world clinical practice. In contrast, the proposed
methodologies in this thesis provide an essential groundwork for a robust instru-
ment detection system suited for clinical usage.

This chapter first presents a general architecture of the instrument detection
system, which can address challenges appearing at several stages of the consid-
ered system. To this end, each stage of the system is briefly discussed, and some
of the popular state-of-the-art techniques are introduced. Section 2.3 addresses
pre-processing techniques to improve the quality of the US signal and approaches
for selection the data of interest as the system input. Section 2.4 discusses the im-
portant stage of feature analysis, which aims at finding the characteristic prop-
erties of the instrument in the US data and creating an informative feature rep-
resentation from those properties. Section 2.5 is dedicated to machine learning
techniques employed for learning feature representation and deciding upon the
presence of the instrument. Section 2.6 introduces the concept of convolutional
neural networks (CNNs), which are able to learn and map the aforementioned
processing stages automatically into a learned network. The various stages for
the processing are discussed in the CNN context and design aspects. Section 2.7
briefly handles the post-processing and the concept of the model-fitting steps.
Section 2.8 discusses the validation methods and appropriate metrics for objec-
tively measuring the performance of the system. Section 2.9 concludes the chap-
ter.

2.2 System Architecture

For a general image-based instrument detection system, discriminating informa-
tion of the instrument or tissue are processed to enhance, detect, and/or visualize
the target instrument in the US data. Since the complexity of clinical data intro-
duces challenges for the instrument detection, auxiliary information from multi-
ple information representations should be exploited to improve the performance

20



Arash Pourtaherian Dissertation TU Eindhoven March 21, 2022 14:26 Page 21 Sheet 41/214

�
�	 �
�	

�
�	

2.2. System Architecture

and robustness of the detection. This is commonly achieved by a learned model
for high-level information processing, which performs better in multiple aspects
than conventional image transformation, such as the intensity project [16]. The
mentioned two groups from Section 2.1 form the essential stages for an auto-
mated instrument detection system, which are schematically depicted in Fig-
ure 2.1.

Figure 2.1 System architecture of a general image-based instrument detection system.

As described in Fig. 2.1, the key element of a general automated instrument
detection system includes of a training stage, which constructs the model and
decision criteria, based on available training data and a-priori knowledge. The
training stage may be simplified to include a straightforward intensity-based
threshold, or distinguish the properties of the instrument by shape analysis.
In contrast, for a machine learning framework, the training stage includes
exploiting a specific learning algorithm and parameters to achieve the highest
and fastest detection results. Based on the model from the training stage, the
testing stage of the architecture can be clustered into three steps, which are
described as follows.

1. Pre-processing and feature extraction: The original US images are typically not
suitable for automated detection of the instrument, i.e. mismatch in intensity
dynamic range or too large image size. As a consequence, various steps such
as image normalization, enhancement and the selection of a region-of-interest
area (or voxel-of-interest) of the input image are required. Example steps of
zero-mean normalization, discriminating representation extractions or region-
of-interest extractions are applied to enhance the discriminating information and
discard the redundant processing components.

2. Machine learning and prediction: The processed images are used for the instru-
ment model derived from training stage, which can be a simple thresholding, or
classifying the extracted feature vectors in a trained machine learning model.
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3. Post-processing and model-fitting: The outcome of the machine learning and
prediction step is further analyzed by morphology operations to omit outliers
and noisy predictions, which are then processed by a model-fitting algorithm
to localize the instrument in 3D space. The outcome results in the correct
instrument voxel groups with their corresponding locations and orientations.

It is worthy to mention that the feature extraction and model training can be
directly replaced by one of the latest end-to-end deep learning approaches for
better information representation and learning. This approach is discussed in
a later section of this chapter. The following sections will briefly introduce the
commonly used techniques for each stage. Afterwards, a section is dedicated to
novel methodologies of neural networks for developing the instrument detection
system in a machine learning network.

2.3 Pre-processing

Pre-processing steps typically include two different techniques, such as image
normalization and region-of-interest (ROI) pre-selection. Image normalization
techniques are commonly applied to re-scale the voxel intensity range, which en-
forces the images from different recording sessions to obtain a similar response
range. This transformation leads to processed images having similar appearance
for the feature extraction stage, thereby achieving a higher performance (espe-
cially for deep learning applications). Moreover, the ROI pre-selection can reduce
the computational load from the whole image level to a local area (e.g. window)
of the image, which drastically improves the computational efficiency of the de-
tection algorithm and leads to a real-time performance. The image normaliza-
tion techniques and ROI selection methods are briefly introduced in this section,
which form the basis of the system in the following chapters.

2.3.1 Image Normalization Techniques

Images for testing are commonly normalized to match the intensity range of the
training images, which ensures that the constructed model processes the infor-
mation within a fixed intensity distribution. Mostly, two different types of nor-
malizations are applied for image processing: Z-score normalization and image
subtraction.

A. Z-score Normalization

The first type of normalization is denoted as Z-score normalization and is defined
for an image I by

IZ-scored =
I − µI
σI

, (2.1)
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where µI is the average of all the pixel/voxel intensity values and σI is the stan-
dard deviation of these intensity values. This transformation enforces the image
to have a zero mean and unity standard deviation, which makes all the tested im-
ages to obtain a similar distribution at the image level. Alternatively, this trans-
formation is also commonly applied without dividing by σI , i.e. only centering at
zero value is performed. A typical example of this transformation is performed
at the entrance stage of the VGG network [17].

B. Image Subtraction

Another image normalization technique for deep learning is defined as the sub-
traction of the averaged training samples. Specifically, for a training dataset, the
averaged image Ī is obtained by adding all the observed training samples with
the same coordinates, which is defined by

Ī(x, y) =

∑N
i=1 Ii(x, y)

N
, (2.2)

where Ii(x, y) is the training sample at position (x, y), the value N is the amount
of training samples and index i is the index of the image. As a result, the normal-
ization is defined as

Inormalized(x, y) = I(x, y)− Ī(x, y), (2.3)

where I is the test sample. By doing so, the test image obtains an attention region
for the deep learning networks, because the static stationary structures are sub-
tracted so that informative change points are notable for the networks. This im-
proves the training efficiency and testing accuracy of the network. This technique
is commonly applied to small patch-based segmentation or classification [18],
since this pre-processing assumes the target objects are mostly at the center of
the images. An example of image subtraction normalization is shown in Fig. 2.2,
which is based on the method of voxel-based tri-planar classification for catheter
detection [19]; this is addressed in detail in Chapter 4.

Figure 2.2 Visualization of image subtraction for voxel-based tri-planar classification.
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2.3.2 ROI Pre-selection Techniques

With proper pre-processing techniques, the input images at the testing stage are
commonly further processed by ROI pre-selection, which automatically selects
a much smaller region-of-interest area containing the considered object. Since
medical instruments are mapped into about 1/2,000-1/1,000 voxels of the whole
image, the pre-selection can drastically reduce the overall computation cost and
therefore improve the detection efficiency, which is essential for clinical practice
with real-time performance requirements. Typically, there are two approaches to
achieve the pre-selection purpose, known as voxel-of-interest (VOI) and region-
of-interest (ROI) methods, as they are used for different purposes following these
pre-selection methods.

A. VOI Pre-selection

As for VOI pre-selection, the candidate voxels belonging to the instrument are
selected by voxel-level processing. Example VOI pre-selection is obtained by
applying a Frangi vesselness filter on the volume, which is then thresholded to
select the most confident voxels. Then, the selected voxels are classified by a
machine learning classifier, such as Adaptive boosting or ConvNet (CNN), to
further remove the non-instrument voxels. The overview illustration is depicted
in Fig. 2.3. More details of the Frangi vesselness filter and adaptive thresholding
are discussed in a later chapter.

Figure 2.3 VOI pre-selection-based instrument detection. The voxels of interest are pre-
selected to remove background and tissue voxels. Then, the remaining voxels are classi-
fied by the CNN for catheter segmentation.

B. ROI Pre-selection

In contrast to VOI pre-selection, which is processed by voxel-level classifica-
tion, the ROI pre-selection is commonly succeeded by patch-based segmenta-
tion [20, 21, 22]. Specifically, this approach typically applies coarse and fast seg-
mentation or detection techniques, to correctly localize the target location in the
3D volumetric data. Then, the local patches or regions containing the (parts of)
target objects, are extracted for the second-stage processing, which may include
Kalman filtering [20] or a more accurate semantic segmentation [21, 22]. With this

24



Arash Pourtaherian Dissertation TU Eindhoven March 21, 2022 14:26 Page 25 Sheet 45/214

�
�	 �
�	

�
�	

2.4. Feature Analysis

coarse-to-fine strategy, a more complex technique can be considered to provide
an accurate classification result from the selected region. However, such process-
ing is computationally expensive for full-image processing. An example of this
framework is depicted in Fig. 2.4.

Figure 2.4 Visualization of the instrument detection using ROI pre-selection as the first
pre-processing stage.

2.4 Feature Analysis

This section briefly introduces feature analysis and extraction techniques, which
are specifically related to machine learning-based methods. In addition, to better
model and represent the instrument in 3D US data, multiple measures are em-
ployed to form feature vectors that capture the shape and curvature information
of the instruments. This procedure serves as the essential stage of the system
discussed in Chapter 3.

A. Gabor Transformation

Gabor theory has been proposed to quantify the information capacity of the sig-
nal and gives the basis of signal representation by choosing an elementary func-
tion [23]. The Gabor elementary functions exploit time and frequency simulta-
neously with optimized resolution. In the Gabor expansion, the signal without
infinite duration is defined with a certain inaccuracy, i.e. uncertainty relation,
which is modulated by a Gaussian-shaped pulse having harmonic oscillations.
Any signal can be formulated in terms of these elementary functions, which in-
cludes time analysis and Fourier analysis as extreme cases. This motivation of
time analysis was described by Daugman [24] in an early study, where he ex-
ploited a neurophysiological plausible analysis of the uncertainty relation of the
Gabor elementary functions in 2D space. Since then, vast applications of Gabor
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filter have been proposed in the image processing domain, such as texture analy-
sis and edge detection [25, 26]. Later on, Gabor transformation-based instrument
detection techniques were proposed to exploit the instrument in US data by con-
sidering textual and edge information, which showed promising results in both
2D and 3D images [27, 28].

The conventional Gabor elementary function is expressed in Cartesian space
in complex form, i.e. including real and imaginary parts. Nevertheless, this
Gabor-based processing is influenced by a DC component of the signal [29]. To
stabilize the performance with varying DC components and gray-value varia-
tions in US images, the log-Gabor function is commonly adopted. Specifically,
the 3D log-Gabor elementary function G [29] in the frequency domain is speci-
fied by

G(ω, φ, θ) = exp


(

log ω
ω0

)2
2log B

ω0

× exp

(
−α (φ, θ)

2

2σα2

)
, (2.4)

where B denotes the bandwidth of the filter in polar coordinates and ω0 is the
filter’s central response frequency. The termB/ω0 is set to a constant value to ob-
tain constant-shape ratio filters. The direction of the filter is defined by azimuth
angle φ and elevation angle θ. The position vector α(φ, θ) at given frequency f
point is defined as α(φ, θ) = arccos((f · d)/|f |), where the unit direction vector is
d = (cosφ cos θ, cosφ sin θ, sinφ). The bandwidth of the angular direction is de-
fined by σα. The discriminative information is extracted based on the real part of
the frequency response, as it is focusing on the symmetric response on line detec-
tion. Specifically, the central frequency ω0 of the Gabor function is characterized
by the diameter of the instrument di, which is defined as ω0 = 1/(2di) [30]. The
resulting Gabor transformation is obtained by applying the convolution of the
filter G(ω, φ, θ) with the input volume.

B. Objectness Feature

Multi-dimensional objectness was first introduced by Antiga [31], who extended
the traditional definition of the vesselness filter into the different shape descrip-
tions for multi-dimensional images, see Fig. 2.5 as an example. For 3D images,
the Hessian matrix is defined below, where fσ is a Gaussian-filtered image with
standard deviation σ, while fxx, ..., fzz represent the second-order derivatives in
the x−, y−, or z−directions. The Hessian matrix with these derivatives is speci-
fied in matrix form by

Hσ =

fσxx fσxy fσxz
fσyx fσyy fσyz
fσzx fσzy fσzz

 . (2.5)

From the Hessian matrix, the Eigenvalues are computed, which can be used to
derive specific shape parameters RA, RB and S [31]. These parameters are de-
fined by
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RA =

(
|λM+1|

)
/

(
3∏

i=M+2

|λi|1/(3−M−1)
)
,

RB =

(
|λM |

)
/

(
3∏

i=M+1

|λi|1/(3−M)

)
,

S =

√√√√ 3∑
j=1

λ2j .

(2.6)

OMσ = (1− e−R
2
A/2α

2

) · e−R
2
B/2β

2

· (1− e−S
2/2γ2

). (2.7)

The Eigenvalues of Eqn. (2.5) are ranked by |λ1|≤|λ2|≤|λ3|. Using these Eigen-
values, the M -dimensional (M ≤ 3) shape structures are described by Eqn. (2.7)
based on the parameters from Eqn. (2.6). Parameters RA and RB have the form
of “normalized” Eigenvalues, which control the shape sensitivity of the Hessian
matrix in two directions. This is implemented with parameter settings M = 0

for a blob, M = 1 for a vessel and M = 2 for a plate in shapes, while the Frangi
vesselness filter equals to M = 1. Parameters RA and RB have two special cases.
When M = 2, parameter RA =∞, and when M = 0, parameter RB is set to zero.

As for Frangi’s vesselness feature [15], parameter λj is set to be λj < 0 for
M < j ≤ 3. For the other cases of positive values of λj , the value of OMσ is set
to be OMσ = 0. In addition, parameters α, β and γ are empirically determined,
which define the sensitivity of the response [32].

Figure 2.5 Objectness descriptors based on Eigenvalues of the Hessian matrix, showing
different structures. Three coordinate systems indicate which Eigenvalues λ are dominant,
leading to changes in the shape of the object. For example, in the second case at the
middle, λ1 is small, resulting into a tubular structure.
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2.5 Machine Learning and Prediction

As described in the previous section, to enrich the description of the instrument
in space, a feature vector is constructed such that it includes multiple descriptors,
which is then classified to “instrument” or “no instrument”. Typically, given a
feature vector x, the classification task is to assign it to one of K discrete classes
Ck, where k = 0, 1, ...,K − 1. In case of classification, the assignment is unique
that only one class is assigned for an input x. As a result, the multiple inputs
with different feature elements’ values are divided into several regions by the
classification decision boundary. In terms of instrument detection, this multi-
classification is degraded to a two-class problem. In the following paragraph, two
typical machine learning classification methods are introduced, which support
the instrument voxel classification solutions proposed in this thesis.

2.5.1 Support Vector Machine

The support vector machine (SVM) is a popular classifier proposed by Cortes
and Vapnik [33], which is based on empirical risk minimization. Given the input
training feature vectors and corresponding binary label:

Dtrain = {(xi, yi)|xi ∈ Rd, with yi ∈ {−1,+1}}Ni=1, (2.8)

where yi denotes the class label of a feature vector xi with d elements. The objec-
tive of SVM is to find the hyperplane wTx + b = 0 that maximally separates the
two different classes. In the case the distributions are clearly non-linear and can-
not be separated by a plane, a feature mapping φ : Rd →M is applied to project
the feature vectors into a high-dimensional space, which generally separates the
classes more easily. The optimization based on the training dataset is achieved
by the concept of margin, which is defined as the smallest distance between the
decision boundary and training samples. Given the classification relationship
between the estimated class label ŷi and training feature vector xi, the decision
procedure is defined as

ŷi(xi) = sign(wTφ(x) + b), (2.9)

where ŷi = yi for a perfect classification. The sign function produces a binary −1

or +1 output. As a result, the decision boundary of the optimized classification
is to maximize the margin by optimizing the parameters w and b. Therefore, the
maximum-margin solution is defined by solving:

arg max
w,b

{ 1

||w||
min
i

(yi(wTφ(xi) + b)}. (2.10)

Because the distance from an arbitrary point to the decision surface is fixed
after rescaling, the training points closest to the surface are satisfying

yi(wTφ(xi) + b) = 1. (2.11)
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Figure 2.6 Visual illustration of SVM hyperplane separation in a 2D dataset. Left: Linear
SVM, right: non-linear SVM. The support vectors are highlighted by a black circle, while
the decision plane is depicted by a solid line. The margin is the distance between the two
dashed lines in each figure.

This constraint leads to a case where the decision plane is only affected by
the subset of the training samples that are closest to the hyperplane. Therefore,
these samples are denoted as the support vectors, which are shown in Fig. 2.6.
Because of this constraint, the optimization problem is simplified to maximize
the distance of 1/||w|| with the constraint that the distance magnitudes at both
sides of the plane are larger than unity.

When the SVM is constructed and learned, a new data point can be efficiently
classified based on Eqn. (2.9), which simply determines at which side the data
point is located. Because of this straightforward feature vector manipulation,
SVM provides an efficient testing performance. Meanwhile, the trained parame-
ters are consisting of simply the hyperplane information with only plane param-
eters and support vector points, which are used for model storage.

2.5.2 Adaptive Boosting

Adaptive boosting (AdaBoost) is an ensemble learning method, which uses an
iterative approach to learn the discriminative information from the mistakes of
weak learners, such as decision stumps, and turn them into a stronger classi-
fier [34]. AdaBoost combines several base and simple classifiers, i.e. decision
stumps, to form one optimized classifier. Based on several decision stumps,
AdaBoost is constructed sequentially and the mistakes of previous models are
learned by their successors. By doing so, the model dependencies are exploited
based on the mislabeled examples. An example of AdaBoost and decision stumps
are visualized in Fig 2.7, where the model is constructed based on several weak
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Figure 2.7 Overview of AdaBoost based on decision stumps. The model is constructed
based on a sequence of weak classifiers, incorporating decisions of previous classifiers.

learners with sequential decisions. Given the input x and corresponding label y,
the overall classifier H(x) is defined as

H(x) = sign
( T∑
t=1

wtht(x)
)
, (2.12)

where ht(·) is the decision stump, while parameter wt is the corresponding
weight of the stump, and t is the index of T weak learners. Specifically, the weight
wt is initially defined aswt = 1/T , while for each training iteration i, it is updated
by the classification error rate Et, so that the weight is updated by

wt(i+ 1) =
wt(i)e

−αtyht(x)

Z
, (2.13)

where αt is the classification influence of the decision stump, which is defined
as αt = 1

2 ln((1− Et)/Et), with ln being the natural logarithm. Parameter Z is
used to normalize the weight to confirm that the summation equals to unity. As
for α, a larger value means an overconfidence of the weak classifier, so that the
exponential will reduce its weight, since it is already performs well [35].

2.6 Convolutional Neural Networks (CNNs)

Besides the aforementioned classification methods, which employ a fixed trans-
formation function between input feature vector and classification output, a flex-
ible parametrical estimation of nonlinear transformations can be used for classi-
fication tasks. Specifically, instead of previous methods with experience-based
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feature vector design, parameters of the nonlinear transformation can be directly
obtained by adaptive learning from the original input images for both feature
extraction and classification. The multi-layer perceptron (MLP) network in the
early stage of neural networks is the most successful example of such a paramet-
rical model. In the multi-layer perceptron network, discriminative information is
learned by decomposing the input data into a multi-level representation, which is
achieved by sequentially composing simple non-linear transformation modules.
Therefore, the information contents are gradually extracted from low-level infor-
mation to high and abstract level [36]. Based on the sequential structure of the
network, the complex and abstract patterns can be constructed using low-level
components. Moreover, because of the loss function, commonly denoted as ob-
jective function, the network tends to learn and amplify the information related
to discriminative elements rather than the irrelevant variants of the input [37]. A
typical system architecture for instrument detection by using a neural network is
depicted in Fig. 2.8, which has a similar pipeline as in Fig. 2.1, but combines the
feature extraction and task decision simultaneously.

Figure 2.8 System architecture of instrument detection based on neural networks.

Neural networks (NNs) were initially considered to have limitations like lack
of generalization and tend to overfit the training data with expensive compu-
tation in standard hardware. Since 2006, many papers have shown that the
NN can achieve desirable results using a standard backpropagation with la-
beled data [38, 39]. NNs have become more attractive than in the past decades.
Moreover, the improvement in computation ability of Graphics Processing Units
(GPUs) and the vast amount of available data have enabled NNs to become one
of the most popular techniques in machine learning and artificial intelligence.
Specifically in computer vision and image processing communities, convolu-
tional neural networks (CNNs) have achieved a dominant success because of
their generalization and easy implementation properties [40].
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The remainder of this section provides descriptions of neural networks, which
are listed as follows. (1) A neural network, which formulates deep learning as
the fundamental component. (2) Training of NNs by backpropagation. (3) Con-
volutional neural networks for different image detection tasks, which include
classification, segmentation and reinforcement learning. (4) Commonly used ar-
chitectures within the deep learning framework are briefly introduced.

2.6.1 Neural Networks

Figure 2.9 Network diagram for the two-layer multi-layer perceptron (MLP) network. The
blue lines represent weight w while green lines mean bias b. The feedforward MLP network
processes the input data from x to generate output y.

The neural network typically consists of several non-linear layers, which in-
clude a linear transformation and a nonlinear operation. Specifically, for an NN
with N layers, a common layer i ∈ 1, 2, ..., N is defined as follows for input x:

zi = h(wi · x + bi), (2.14)

where h(·) is a differentiable non-linear activation operation. Parameter wi

denotes learnable weights while b indicates the bias. The commonly applied
non-linear activations include the logistic sigmoid function, rectified linear unit
(ReLU) or softmax function. As for a commonly used multi-layered perceptron
(MLP), it is constructed by a sequence of layers. A typical two-layer network is
formulated as:

y(x,w, b) = h(w2 · h(w1 · x + b1) + b2), (2.15)

where parameters w and b include the weights and bias for all the layers. The
corresponding diagram is shown in Fig. 2.9, which is a two-layer MLP network.

2.6.2 Network Training

With the defined network, and to determine its parameters, a common approach
is to minimize the objective function, also known as loss function, by exploiting
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input x and corresponding desired output t. For instance, by a given training
data set {x1,x2, ...,xN}, and their target {t1, t2, ..., tN}, the cost function can be
straightforwardly defined as an error function between two terms:

E(w, b) =
1

N

N∑
i=1

(tn − y(xi,w, b))
2, (2.16)

where E(·) is the commonly denoted mean squared error (MSE) loss function,
which can be also replaced by cross-entropy [36]. Because of the nonlinear activa-
tions of the networks, most cost functions are not convex, and cannot be obtained
by a closed form. Instead, the network parameters are commonly obtained by
an iteratively gradient-based optimization approach, which minimizes the cost
function during the training procedure. The optimization of a continuous nonlin-
ear function can be obtained by iterative updating: a randomly initialized weight
w(0) is gradually moving to the desired state under the guidance of the negative
gradient of the cost function. This is specified by

w(τ+1) = w(τ) − η∇E(w(τ)), (2.17)

where τ is the iteration count while η is a positive parameter known as the learn-
ing rate. With the updated parameters, the gradient is re-evaluated based on new
input w.r.t. the target label, and then the parameter updating repeats itself until
the end of the training procedures. More details of the derivation can be found
in [41].

2.6.3 CNN for Image Processing

A convolutional neural network (CNN or ConvNet) is a class of neural networks
for analyzing visual imagery or time series with grid-like topology [36]. The
name of the CNN indicates that the network employs convolutional operations,
which is a mathematical operation to correlate the information around the tar-
get point. The transformation weight w in a standard NN structure is replaced
by a series of convolutional operations in a CNN, which drastically reduces the
number of trainable parameters. Therefore, computing a CNN is affordable for a
state-of-the-art GPU for training, which has resulted in a high popularity in ap-
plications and research of image processing and computer vision. Within a CNN
architecture, three key components are essential to exploit the multi-scale and
multi-level information of data.

1. Local receptive field. For any input image or processed result by a convo-
lutional layer, all the resulting points are just a response to previous filters
or point intensities. The local receptive field is only focusing on the neigh-
borhood information of the point. Although the fully connected neurons in a
standard NN can be adopted to learn the features, it is expensive and not prac-
tical to apply, as it leads to a high number of neurons. Alternatively, a local
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receptive field extracts the regional features, e.g. edges, corners, etc., which
are exploited by the sequential structure to find the contextual information.

2. Weight sharing. A standard image poses a large number of points, which
leads to millions of weights in a standard NN. Furthermore, based on the
concept of local receptive field, regional features should be invariant to loca-
tion or translation. Therefore, sharing weights on the whole image can avoid
overfitting of the location and achieve spatial invariant properties.

3. Information aggregation. With weight sharing and a local receptive field,
neighborhood points will expect similar responses for the same stimulus,
which unfortunately leads to spatial redundancy. Moreover, a regional re-
ceptive field only focuses on local information, while ignoring the contextual
information. Therefore, in order to better exploit contextual information and
reduce the spatial redundancy, information aggregation, typically known as
pooling, is applied to concentrate neighboring information by max or mean
operations. Moreover, with the combination of pooling and a local receptive
field, high-level information can be processed for contextual analysis.

Figure 2.10 Diagram of a typical CNN architecture with convolutional layers and pooling
layers, which are followed by fully-connected layers (also know as MLP). The green region
in the input is local receptive field of the input convolutional filter.

A typical example of a CNN architecture for classification is shown in
Fig. 2.10, which includes four convolutional layers with a multi-layer percep-
tron. The convolutional layers consist of several small-sized filters for local infor-
mation processing. Based on the shared filters for the whole image, the spatial
invariant information can be extracted and aggregated by the pooling layer. The
resulting image has a compact and high-level information for succeeding layers.
Finally, an MLP layer is introduced with dense connections for classification task.
In this case, the non-shared weights exploit all the information from the input.

2.6.4 Deep Learning Networks and Application Tasks

As the depth of the neural network increases, the complexity and information
extraction capability is augmenting. The deep neural networks are commonly
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referred to after the name of the architecture, such as UNet [42], VGG [17] or
ResNet [43], while sometimes the application is abbreviated and mixed into the
name. The essential advantage of a deep learning network is to exploit hierar-
chical information from the training data involving resolution scaling, while the
learning of the network is guided by a loss function that is typically minimized.
Because of the data-driven optimization and automatic feature learning, more
relevant information is captured from the input data, so that deep learning out-
performs conventional handcrafted feature designing approaches.

Based on the popular applications of deep learning, there are two commonly
considered tasks for deep learning networks: (1) image classification, and (2) im-
age segmentation. Image classification is specifically defined as a procedure to
classify the input image to a particular category by the deep neural network. A
well-known example is to distinguish whether the input image includes a par-
ticular object (e.g. a cat or a dog). Alternatively, image segmentation is a more
advanced task that not only distinguishes the image category, but also draws the
boundary of the objects from the input image. Besides object classification and
segmentation, deep networks are now also employed for motion analysis, behav-
ior analysis, noise reduction, and other diversified tasks.

2.7 Post-processing

Based on the voxel-level classification or image segmentation, the outcome
coarsely estimates the instrument location in the image data and its orientation.
However, the results also include outliers or irregular structures from noisy and
unseen data. Therefore, a proper post-processing is sometimes applied to refine
the network outputs. A commonly used strategy includes cluster-connectivity
analysis for outlier removal through binary morphological operations. Moreover,
a model-fitting algorithm is commonly applied to localize the instrument by con-
textual level analysis. Specifically, the localization is achieved by random sample
consensus, which is a typical technique for fitting a curved cylinder in a noisy
dataset. As will be discussed in this thesis, instruments like a curved catheter
or straight needle are localized in 3D space by sparse-plus-dense random sam-
ple consensus (SPD-RANSAC) algorithm. By removing outliers, the RANSAC
algorithm acts as a filter for robust decision making.

2.8 Validation

Performance evaluation of the designed method is essential w.r.t. its designated
tasks. For the medical domain, the performance evaluation with a good result
not only provides detection capabilities and accuracy of that, but also implicitly
indicates the stability and generalization of the learning approach. Therefore, the
stability and accuracy can be obtained from the system when an unseen data is
processed, which is required to assess whether the system is sufficiently powerful
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for the clinical practice. A common way to evaluate a machine learning system is
based on so-called ground-truth data, which is a pre-defined or measured type of
information related to the input data and processing tasks. Therefore, the differ-
ence between the desired outcome and result from the system can be compared
to qualify and quantify the performance.

In the machine learning area, training is defined as the procedure to generate
a learned model based on the provided data, while testing indicates the evalua-
tion step for the developed model. With a limited experimental dataset, appro-
priate selection and division is essential, which can reveal unbiased information
for model generation, when supplying an unseen testing dataset. The key con-
cept to split the dataset into training and testing parts without any overlapping
can efficiently exploit the limited clinical dataset in practice. The most common
techniques in machine learning for validation purposes are introduced below.

1. Leave-one-out cross-validation : The leave-one-out cross validation
(LOOCV) is a commonly adopted technique for a limited dataset. More
specifically, one sample is left out during the training, which is then used
for the testing phase. For a dataset with N samples, this step is iteratively
performed N times on each sample, so that the testing can be applied to all
samples. The overall performance is obtained on the average of the N -times
test. Because of using a single-data element for testing, a variability would be
introduced from the occurring outliers. Moreover, it is expensive because the
model is trained for N times.

2. K-fold cross-validation : Similar to LOOCV, instead of selecting one sam-
ple for testing, k-fold CV splits the dataset into k parts, and for each part,
k− 1 parts are used for training and the remaining one for testing. The exper-
iment is performed k-times for overall performance evaluation. Compared to
LOOCV, the performance variation is reduced, since more testing samples are
included for each validation.

3. Dataset split : Another validation method is to split the dataset into train-
ing, validation and testing datasets, which is commonly applied now in deep
learning methods. During training, besides the training samples for parame-
ter optimization, a validation dataset is used to control the learning curve and
evaluate the hyper-parameters that optimize the network to satisfy the loss
function. Then the testing dataset is used to evaluate the final performance
of the method. The validation dataset helps to provide an unbiased evalua-
tion of the model fitting. Compared to the above cross-validation method, a
dataset split provides less effort to train the model, but will overestimate the
error rate at the testing phase for the model to fit on the whole dataset.

Based on the above evaluation approaches, evaluation metrics are required to
quantify the performance of the designed system. Based on the tasks for classifi-

36



Arash Pourtaherian Dissertation TU Eindhoven March 21, 2022 14:26 Page 37 Sheet 57/214

�
�	 �
�	

�
�	

2.8. Validation

cation, segmentation and localization, different metrics w.r.t. those tasks are now
introduced.

2.8.1 Voxel-level Classification and Segmentation Performance

In a binary classification system, appropriate evaluation metrics consider the rel-
ative correction of the decisions by defining the true positive, false positive, true
negative and false negative results. In terms of these definitions, true and false
refer to the decision agreement w.r.t. the ground-truth statement. The positive
and negative labels are obtained based on the decisions from the automated clas-
sification algorithms. As a consequence, for a binary classification system for
instrument voxel classification, the number of true positives (NTP) is captured by
the counted events of true occurrences of the desired class. A true positive indi-
cates that the decision algorithm has correctly classified the involved instrument
voxel as a positive occurrence. A false positive (where the count is the NFP) indi-
cates that a non-instrument voxels is wrongly classified as a positive class. Sim-
ilarly, true negative (with total count NTN) represents the non-instrument voxels
are correctly classified, while false negative (which is counted intoNFN) indicates
the instrument voxel is wrongly classified as a non-instrument region. These def-
initions are summarized in Fig. 2.11.

Figure 2.11 Definition matrix of true and false positives and negatives in a binary classifi-
cation problem.

Based on the above definitions, a high-level evaluation metric can be derived
from these counted values, as specified in Fig. 2.11. These metrics are denoted
as recall, precision, and specificity, which are defined as fractions in the unity
interval based on the aforementioned counted numbers. The recall (Rc) of a bi-
nary classification algorithm indicates how many times an instrument voxel is
correctly detected compared to the total amount of the instrument voxels. The
precision (Pr) measures the how many times an instrument voxel detection is ac-
tually an instrument element compared to the total amount of predicted voxels.
The specificity (Sp) refers to how many times a non-instrument voxel is correctly
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detected when no instrument exists. These metrics are numerically computed as
follows, and specified by:

Rc =
NTP

NTP +NFN
, (2.18)

Pr =
NTP

NTP +NFP
, (2.19)

Sp =
NTN

NTN +NFP
. (2.20)

The ideal classification algorithm would have a value of unity or 100% score for
the evaluation metrics. In real practice, the precision and specificity are closely
related, such that a higher specificity always leads to a better precision. Never-
theless, for a highly imbalanced data distribution, for example of an instrument
in 3D US, where the number of negative samples is several orders of magnitude
larger than the number of instrument points, a high specificity cannot ensure a
satisfactory classification result.

In case of image segmentation, a larger recall can be obtained by accepting a
lower precision, and vice versa. Therefore, a typical evaluation metric for such
task is considered by compounding them together, which is commonly denoted
as the Fβ-score. This score is specified by

Fβ = (1 + β2) · Rc · Pr
β2 · Pr +Rc

, (2.21)

where the parameter β controls the preference of a higher recall or precision per-
formance in the results. Specifically, when β = 1, the metric is called F1 score or
Dice score, which is often practically applied for segmentation, because it focuses
on the performance of true results.

Another type of evaluation metric for classification and segmentation results
is to measure the volume similarity between the ground-truth volume and classi-
fied volume. Specifically, based on the definitions ofNTP,NFP, etc., the Volumetric
Similarity (VS) is defined as

VS = 1− |NFN −NFP|
(2 ·NTP +NFP +NFN)

. (2.22)

The VS measures the overlapping regions between the ground-truth volume and
classified volume, which is expected to be unity in the ideal case. In addition, the
surface distance of the classified clusters in the 3D volume is measured by the
Hausdorff Distance (HD), which is defined as

HD(A,B) = max
(
d(A,B), d(B,A)

)
. (2.23)

In Eqn. (2.23), parameter d(A,B) is the directed Hausdorff Distance, which is
specified by:

d(A,B) = maxa∈A
(

minb∈B ||a− b||
)
, (2.24)
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where the A and B denote voxel groups from the ground truth and the predicted
results, respectively, and a and b are individual voxels from the corresponding
groups, respectively. From this definition, the HD is commonly sensitive to out-
lier voxels, and can be smoothed by the Average Hausdorff Distance (AHD) and
95% Hausdorff Distance (95HD), which have different definitions of Eqns. (2.23)
and (2.24). As for AHD, its distance d(A,B) is alternatively defined as

d(A,B) =
1

N

∑
a∈A

minb∈B ||a− b||, (2.25)

whereas for the 95HD metric, it is defined as

95HD(A,B) = Pct
(
d(A,B), d(B,A), 95%

)
, (2.26)

where d(A,B) follows the equation in Eqn.(2.24) and Pct( · , · , 95%) is the 95
percentile operation, which considers 95% voxels and excludes any noisy outlier
information.

2.8.2 Instrument Localization Accuracy

The overall localization accuracy of a medical instrument detection system mea-
sures how close the estimated instrument coordinates are to the ground-truth
annotation. Therefore, several instrument-level metrics are defined to asses the
accuracy of the instrument position, which is visually defined in Fig. 2.12.

Figure 2.12 Examples of evaluation metrics for the instrument localization errors. (a) Dis-
tance error metrics: tip-point error, tail-point error and skeleton-point error. The red curve
indicates the ground-truth skeleton, the green curve highlights the localized catheter skele-
ton. (b) Orientation metric, which measures the angle difference between the segmented
skeleton of segmentation and the annotation skeleton.

As depicted in Fig. 2.12, three types of distance errors are defined: skeleton-
point error, and two errors concerning the beginning and ending of the model,
i.e. tip-point error and end-point error, respectively (the average of tip-point er-
rors and tail-point errors). The latter two error types are defined as the distances
between the localized point with the corresponding ground-truth point, either at
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the tip or at the tail of the catheter. The skeleton-point error denotes the distance
between the sampled points from the localized catheter to the ground-truth skele-
ton. All errors are measured visually in the images and are initially expressed in
voxels, which can be translated to a distance using the voxel resolution. In addi-
tion, the orientation difference is also defined as the angle between the detected
and ground-truth orientation vectors.

2.9 Conclusions

This chapter has presented an introductory overview of the common techniques
for image-based instrument detection methods in 3D US data. Different algo-
rithmic components have been presented, such as SVM, and CNN classification
methods. In addition, several performance validation metrics of the develop-
ment detection system have been presented in this chapter, which will be exten-
sively used in the upcoming chapters of this thesis. Based on the objective of
the instrument detection system, evaluation metrics for voxel-level classification,
segmentation and instrument-level localization are reported.

The presented algorithmic components are used to design a robust and effi-
cient image-based instrument detection system for 3D US data, aiming at giving
guidance for challenging intervention tasks. The algorithmic components can be
used to design and implement an instrument detection and segmentation frame-
work, which is divided into two categories as follows.

1. Conventional instrument detection : The thesis starts with feature analysis
and design to extract the discriminative information of the instrument, based
on its local texture distribution and shape information. With the obtained
features, SVM and other machine learning techniques are considered, as they
can learn more complex features and combinations, which leads to successful
voxel separation in complex 3D US volumes.

2. Deep learning-based instrument detection : Deep learning techniques are
attractive for learning high-level representations of complicated structures in
3D images, which can separate the instrument voxels from the background by
the fully automated learned discriminative features. With a tailored design of
the CNN and its loss function, the network can extract specific characteristics
of the instrument from the 3D data volume.

In Chapter 3, feature analysis and instrument model-fitting are exploited to
classify the instrument, or more specifically cardiac catheters, in 3D US volumes.
This setup serves as a baseline of the AI-based instrument detection in 3D US
volumes for the subsequent chapters.
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Handcrafted Feature Analysis and

Model-fitting for Catheter Detection

3.1 Introduction

The previous chapter has reviewed the fundamental technology and introduced
a general state-of-the-art overview of techniques for image analysis. The chapter
has also described an image-based automated detection system for medical in-
struments in 3D US data. The machine learning-based methods have been briefly
overviewed for detection of the considered instrument by employing image seg-
mentation and model fitting. The common pipeline for the detection system is
referred to as a segmentation model, which includes instrument segmentation in
3D US and a model-fitting stage for the instrument. This approach can work
properly only if the segmentation of the instrument voxels are accurately classi-
fied in the volumetric images.

However, the above assumption is usually not valid in clinical practice and
data points in 3D US are complex in nature for ensuring accurate segmentation.
The complexity of the data points are caused by anatomical structures, resulting
from comparable spatial representations in the image, e.g. the heart chamber and
heart valve have a similar appearance in cardiac US when compared to a catheter.
An example of a US imaging setup are shown in Fig. 3.1. As can be observed, the
RF-ablation catheter has almost the same appearance as the background, which
makes it difficult to be identified by human eyes and this holds similarly for the
segmentation algorithm. In order to create more stable segmentation, it is crucial
to build 3D discriminating descriptors, based on different spatial descriptions
and definitions. In this manner, challenging structures and anatomical back-
grounds can be omitted by the segmentation algorithm, as they consist of dif-
ferent discriminative information. In addition, a stable model-fitting algorithm
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for detection should be considered with high efficiency for complex segmentation
output.

Figure 3.1 Ultrasound imaging of a cardiac intervention. (a) Example of cardiac interven-
tion therapy with two catheters in the heart. (b) 2D image slice from a 3D image, where
the RF-ablation catheter is located within the marked yellow ellipse.

3.1.1 Objective and General Challenges

This chapter aims to model the discriminating features of the medical instrument,
especially for RF-ablation catheters, in 3D space by multi-definition features that
capture the discriminative information with scale and definition sensitivity. As a
result, each voxel is represented by its spatial frequencies, orientations and local
statistical information, which jointly enable a robust detection of catheter voxels
among other anatomical structures in the complex US volumetric data. With the
obtained voxels, further analysis and elegant model-fitting is applied to localize
the catheter with its orientation inside the US data. In more detail, the objective
of this chapter is to design classification and model-fitting algorithms that are
capable of: (1) robustly representing the voxel information in complex 3D space
with anatomical structures, and (2) efficiently and robustly performing model-
fitting to localize the catheter in the noisy segmentation output.

In order to achieve these objectives, we propose a specific solution to im-
prove the detection performance for a robust detection and localization system.
The proposed catheter detection system consists of two key steps, as depicted in
Fig. 3.2. These steps are summarized as follows.

1. Feature extraction and classification for voxels: Handcrafted features of the
catheter are designed to describe the information around the voxel. Super-
vised modeling and classification of the catheter voxels are applied prior to
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Figure 3.2 Block diagram of the proposed system for catheter detection.

the model-fitting stage, where both enclosed steps remove the non-catheter
points in the volume. This will increase the detection accuracy and reduce
the computation complexity.

2. Catheter localization by model-fitting: Catheter localization is applied based
on the classified volume, which clusters the catheter-related voxels as a
group with specific geometric properties, such as, e.g. a fat tube in an empty
space. Nevertheless, some misclassified voxels are inevitable, which lead
to difficulties in directly localizing the catheter in the classified volume. An
advanced modeling step is proposed to localize the instrument in the full-
3D US volume.

3.1.2 Specific Challenges for Feature Extraction and Voxel
Classification

In order to robustly extract catheter points from the complex input US imaging,
two essential algorithmic aspects, i.e. the use of multiple definitions and multiple
scales, are proposed to perform information extraction in complex volumetric
data. Each aspect aims at eliminating the background voxels that have a different
intensity value, shape or structure from the catheter. By doing so, the overall
localization robustness can be improved. We now briefly address the specific
issues and objectives associated with multi-definition and multi-scale aspects.

1. Multiple definitions of discriminative features: The complex anatomical struc-
ture in 3D US imaging has comparable information and is yet different from
the catheter. To remove these background voxels from the classification,
a stable and discriminative feature should be considered. Nevertheless,
feature extraction based on only one feature type (like Gabor feature) is
considered too weak for catheter segmentation in 3D cardiac imaging. To
better capture the discriminating information, we propose multiple 3D de-
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scriptors for the US images, which better extract the spatial patterns of the
catheter.

2. Multiple scales of discriminative features: Besides the above information ex-
traction by the multiple features, discriminative features are also related to
the feature scales. In previous studies, the papers are focusing on informa-
tion extraction at specific scale, which only relate to the target. However,
this approach ignores the information of the anatomical structure or back-
ground. Therefore, features are analyzed at multiple scales for each point,
which is expected to improve the classification performance of the catheter
in complex 3D US images.

3.1.3 Specific Challenges for Catheter Localization by Model-Fitting

Based on the image segmentation, it is important to localize the instrument by a
model-fitting algorithm. Nevertheless, conventional model-fitting methods have
limitations in both accuracy and efficiency for the catheter detection application.
The involved issues are now briefly listed below.

1. Coherency in the voxel labeling: The voxel-based classification only catego-
rizes the voxels independently. Therefore, for better labeling of the voxels,
a joint labeling strategy is performed among the voxels, which removes the
isolated small outliers and noise from the classified images. In this way, the
segmented regions in the images are divided into sub-regions.

2. Redundancy of clustered regions: A typical model-fitting algorithm, such as
RANSAC, is applied on the processed images after the group analysis to
localize the instrument. Nevertheless, catheters are thicker than needles or
thin instruments, leading to the issue that standard RANSAC-type of algo-
rithms introduce redundancy for the model-fitting. Therefore, the accuracy
and efficiency of such algorithms are degraded in practice. To address this,
a concept is employed where only limited voxel data are allowed surround-
ing the catheter candidate voxels, to constrain the redundancy growth.

3. Catheter localization in constrained 3D data: Based on the constrained volume,
the model fitting is performed with a reduced complexity of the surround-
ing background. This should enhance the catheter localization.

The sequel of this chapter is structured in the following way. Section 3.2 sum-
marizes the related work. Sections 3.3 and 3.4 describe the proposed method in
detail, including the various features for voxel classification and the proposed
model-fitting algorithm. Section 3.5 discusses the collected datasets and experi-
mental results. Finally, Section 3.6 concludes the chapter and presents some dis-
cussions on possible refinements.
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3.2 Related Work

3.2.1 Non-machine Learning-based Detection

Many studies have recently focused on image-based medical instrument de-
tection or localization in 3D US, but their approaches may be problematic for
catheter detection in cardiac imaging. Methods like Principal Component Analy-
sis (PCA) [44], Hough transformation [45] and Parallel Integral Projection trans-
formation [16] were proposed to detect straight electrodes in 3D images. How-
ever, these transformation-based methods are not stable when the background
includes high-intensity values, as is the case with instruments. This instability
results from the fact that an image transformation cannot extract the discrimi-
nant shape information of tools to distinguish them from bright tissues or noise.
Cao et al. [46] proposed a template-matching method to detect a catheter with
a-priori knowledge of direction and diameter. Nevertheless, this method is still
limited because it requires also by a-priori assumptions on the shape and orienta-
tion of the catheter. Besides, the carefully designed template is not only unstable
to catheter appearance variations, but also lacking discriminating information.

3.2.2 Machine Learning-based Detection

Uherčı́k et al. [47, 48] applied Frangi [15] vesselness features to classify in-
strument voxels using supervised learning algorithms. The model-fitting based
on RANdom SAmple Consensus (RANSAC) was employed to identify straight
tubular-like instruments. Meanwhile, Zhao et al. [20] applied a similar method
to track a needle on an ROI-based Kalman filter. Although the ROI-based algo-
rithm decreases computation complexity, there are still some limitations. Firstly,
the ROI-based algorithm requires a fixed view of images, which poses an extra
limitation of avoiding ultrasound transducer movement during operation. Fur-
thermore, both Uherčı́k [20] and Zhao [20] only considered a pre-defined Frangi
feature as the discriminating key information, which is not only less robust to di-
ameter variation, but also considers a small amount of information only, i.e. the
information in the captured ultrasound volume is not fully exploited for discrim-
inating classification. Recently, Pourtaherian et al. [49, 50, 28] have intensively
studied needle detection algorithms based on 3D US. Their method detects the
candidate needle-like voxels by incorporating a Gabor-based feature. This fea-
ture introduces more discriminating information on local orientation distribu-
tion, which is similar to the histogram of gradients. After the voxel-based clas-
sification, a two-point RANSAC algorithm is applied to estimate the axis of the
needle. However, their proposed method is specifically designed for a thin nee-
dle with a large length versus diameter ratio in a high-quality US image, which
does not apply to cardiac catheter detection. Although they did an experiment on
catheter detection in an in-vitro dataset, their results showed that further studies
on detecting the catheter on ex-vivo or in-vivo datasets were found necessary.
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3.2.3 Challenges of the Current Methods

Although the methods discussed above have shown successful results in 3D US-
based instrument localization, such as needle detection for anesthesia, there are
still many challenges concerning cardiac intervention in both the segmentation
and model-fitting stages.

As for the segmentation by non-machine learning-methods and already
proven in the literature [48, 51], it is considered that the machine learning meth-
ods can generate more stable and accurate segmentation outcomes. Therefore,
machine learning methods are superior over conventional methods in most cases,
such as specific filtering techniques applied to the image followed by advanced
thresholding. As shown in recent literature [28], machine learning methods can
better exploit the discriminative information of the instrument voxels. In the ar-
ticle, Frangi filtering is compounded with a Gabor filterbank [28] to extract the
discriminative feature vector, which is then classified by a learned SVM classifier.
Nevertheless, only a preliminary study was performed on an in-vitro phantom
dataset for catheter segmentation, which obtained insufficient performance. In
addition, with a limited description of the catheter and non-catheter information,
the discriminative features cannot be properly extracted for the supervised clas-
sification, which hampers catheter segmentation performance. As a result, the
methods in current literature may not be sufficient and robust for catheter local-
ization in cardiac interventional imaging. Motivated by the above discussion,
we propose a novel feature extraction method for catheter segmentation, which
includes multiple definitions and scales for a better feature representation and
increased robustness.

As for the model-fitting methods, the current publications are focusing on
straight-line instruments, such as a needle or an electrode. However, a catheter
can be curved inside the volume, which makes the current fitting method less
attractive and unsuccessful. In addition, the catheter has a thicker segmentation
outcome than a needle which causes a conventional RANSAC algorithm to in-
troduce computational redundancy, thereby hampering the fitting efficiency. To
better fit the curved instrument properties and improve the efficiency, we will
modify the RANSAC algorithm based on the concept of a sparse volume [52]
and three-point fitting [48].

3.3 Method Part A: Feature Design and Voxel Classification

This section reviews and discusses several feature extraction techniques to evalu-
ate them in the context of the catheter detection. To this end, these techniques will
be compared in the same framework and input data to highlight their suitability
for segmentation of the candidate catheter structure. The techniques will later be
appended by a model-fitting procedure for further accurate catheter detection.
This model-fitting will be discussed in the subsequent section.
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The block diagram of the proposed catheter detection system is shown in
Fig. 3.2. In the first step, the 3D volumetric image is processed to extract features
from each voxel. The voxels are then classified by supervised learning methods
into catheter-like voxels and non-catheter voxels. The procedure of catheter-like
voxel classification consists of two steps. First, 3D discriminating features are
extracted from each voxel in the 3D US image. Second, the supervised learning
classifier is applied to classify the voxels. The discriminating features employed
for voxel classification are described in the following subsections.

3.3.1 Objectness Feature

Multi-dimensional Objectness was first introduced by Antiga [31], who extended
the traditional definition of the vesselness filter into the different shape descrip-
tions for multi-dimensional images, see Fig. 3.3 as an example. For 3D images,
the Hessian matrix is defined below, where fσ is a Gaussian-filtered image with
the standard deviation σ, while fxx, ..., fzz represent the second-order derivatives
in the x−, y−, or z−directions. The Hessian matrix with these derivatives is spec-
ified in matrix form by

Hσ =

fσxx fσxy fσxz
fσyx fσyy fσyz
fσzx fσzy fσzz

 . (3.1)

The Eigenvalues of Eqn. (3.1) are ranked by |λ1|≤|λ2|≤|λ3|. Using these Eigen-
values, the M -dimensional (M ≤ 3) shape structures are described by Eqn. (3.3)
based on the parameters from Eqn. (3.2). This is implemented with parameter
settings M = 0 for a blob, M = 1 for a vessel and M = 2 for a flat surface in
shapes, i.e. the Frangi vesselness filter equals to M = 1. Parameters RA and RB
lead to two special cases. When M = 2, parameter RA = ∞, and when M = 0,
parameter RB is set to zero. These shape parameters are derived from the com-
puted Eigenvalues of the Hessian matrix, which are defined by

RA =

(
|λM+1|

)
/

(
3∏

i=M+2

|λi|1/(3−M−1)
)
,

RB =

(
|λM |

)
/

(
3∏

i=M+1

|λi|1/(3−M)

)
,

S =

√√√√ 3∑
j=1

λ2j .

(3.2)

Similar to Frangi’s vesselness feature [15], when λj < 0 for M < j ≤ 3, the
measurement of Objectness OMσ is defined by

OMσ = (1− e−R
2
A/2α

2

) · e−R
2
B/2β

2

· (1− e−S
2/2γ2

). (3.3)
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For the other cases of j, the value of OMσ = 0. The parameters α, β and γ are
empirically determined, which defines the sensitivity of the response [32].

Figure 3.3 Objectness descriptors based on Eigenvalues of the Hessian matrix, showing
different structures. Three coordinate systems indicates values of λ are dominant, leading
to changes in the shape of the object. For example, in the second case at the middle, λ1

is small, resulting into a tubular structure.

From the original definition, both Antiga and Frangi select the maximum
response per pixel among a range of spatial scales, e.g. the maximum value
among the scale range with σ ∈ [1, 2, .., 5]. However, this maximizing step
loses scale-distribution information. Therefore, we propose to exploit all scale
responses as features. Meanwhile, we calculate three different shape measure-
ments, i.e. M = 0, 1, 2, instead of the tube descriptor used for needle detection in
Uherčı́k [48]. Based on the above definitions, for each voxel v in the 3D volume V ,
the final feature vector is O(v) = (OM=0

σ=1 (v), OM=1
σ=1 (v), OM=2

σ=1 (v), ..., OMσ=3(v), ...)T

in the multi-scale approach, where σ represents the standard deviation of a Gaus-
sian filter and M denotes the type of Objectness feature, ranging from 0 to 2.

3.3.2 Hessian Features

Essentially, the Eigenvalue analysis in the Objectness feature space is to extract
the directional information of edge distributions through the Hessian matrix and
to remove the noise. However, the pre-defined descriptors in Objectness may
lose some information because of (a) low signal-to-noise ratio and (b) the pro-
jection of nine features into three Eigenvalues. To preserve more information
from a low-contrast image, we consider the elements of the Hessian matrix, as
given in Eqn (3.1). Due to the symmetric structure of the Hessian matrix and
to preserve the orientation response, we use six elements from the upper right
of the Hessian matrix, and then shift the maximum response to the first posi-
tion via circular shifting. As a result, the feature vector contains six elements
for a specific scale (σ). The multi-scale Hessian feature H(v) is denoted as
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H(v) = (H(v, σ = 1), ...,H(v, σ = 3), ...)T with circularly shifted elements of
Eqn. (3.4) in each scale. The feature vector per scale σ is specified by

H(v, σ) = (fσxx, f
σ
xy, f

σ
xz, f

σ
yz, f

σ
zz, f

σ
yy)T . (3.4)

3.3.3 log-Gabor Feature

Pourtaherian et al. [49, 50, 28] introduced Gabor features as an attractive discrim-
inative feature for needle detection. The conventional Gabor-based features can
be influenced by the DC components of the images [29]. To stabilize the per-
formance for varying DC components and related gray-scale image variations
in different US images, we adopt 3D log-Gabor features [29]. The 3D log-Gabor
filter in the frequency domain is defined by:

G(ω, φ, θ) = exp

 log2
(
ω
ω0

)
2 log

(
B
ω0

)
× exp

(
−α

2 (φ, θ)

2 σbw2

)
, (3.5)

where B is the bandwidth of the filter in polar coordinates, and ω0 is the cen-
tral response frequency of the filter. The term B/ω0 is set to a constant value to
define constant shape-ratio filters. The direction of the filter is defined by the
azimuth angle φ and elevation angle θ. The position vector α(φ, θ) at frequency
f is defined as α(φ, θ) = arcos((f · d)/|f |), where the unit direction vector is
d = (cosφ cos θ, cosφ sin θ, sinφ). The polar coordinate system here is defined
with an angle φ to the z-direction, and angle θ in the polar circle. The bandwidth
of the angular direction is defined by σbw. Discriminative features are extracted
using the real parts of the response in the spatial domain, due to their symme-
try. The circular shifting operation is performed to shift the maximum response
to the center and is denoted by G(v, ω) at specific frequency ω. The log-Gabor
feature is then denoted by G(v) = (G(v, ω = 2π), ...,G(v, ω = 6π), ...)T for mul-
tiple harmonic frequencies with unit 2π. We have empirically chosen both angle
parameters, i.e. φ and θ, to be set at {15◦, 65◦, 115◦, 165◦}. The amount and the
interval between the angles is chosen such that the feature vector size is explicitly
constrained.

3.3.4 Statistical Features

To extract more local information from a 3D cube, we propose to introduce a
novel feature type, i.e. local statistical features. For a voxel v at the center point,
we extract a 3D cube with specific sizes, such as 3 × 3 × 3 voxels. The statistical
features are obtained by calculating the mean, standard deviation, maximum,
minimum value and local entropy of this cube. The statistical feature S(v) in the
multi-scale case is denoted as

49



Arash Pourtaherian Dissertation TU Eindhoven March 21, 2022 14:26 Page 50 Sheet 70/214

�
�	 �
�	

�
�	

3. HANDCRAFTED FEATURE ANALYSIS AND MODEL-FITTING FOR CATHETER
DETECTION

S(v) = (I(v),means=3(v), stds=3(v),maxs=3(v),mins=3(v), entrs=3(v), ...)T ,

(3.6)
where I(v) is the voxel intensity, parameter s is the size of the cube expressed in
voxels, using v as the center point .

Table 3.1 lists the proposed 3D features with their symbols, scale variables
and feature lengths for each scale. To enhance the performance of voxel classi-
fication, we apply a feature fusion strategy, which combines four different types
of features in a multi-scale approach. The fused feature vector C(v) is defined
as C(v) = (O(v),H(v),G(v),S(v))T , in which each component is developed in
multi-scale fashion.

Table 3.1 Summary of 3D feature vectors

Name Symbol Scale param. Size dim.

Objectness O σ 3
Hessian H σ 6
Log-Gabor G ω 16
Statistic S s 1+5

3.3.5 Supervised Classifiers for Voxel Classification

To achieve the best performance of the proposed features, we perform the
classification under Linear Discriminant Analysis (LDA), Linear Support Vector
Machine (LSVM), Random Forest (RF) and Adaptive Boosting (AdaBoost).
Typically, the kernel-based SVM performs better than LSVM, but the fine-tuning
of kernel parameters requires a large computation cost and empirical evidence
shows that its performance is not better than RF and AdaBoost [53]. As a conse-
quence, we consider only LSVM as the SVM classifier, which has a box constraint
equal to unity. The RF is set to generate 50 trees. For the AdaBoost, weak learner
is set to be decision stump with 50 learning cycles. During the training stage, due
to an imbalanced class ratio, we down-sample the non-catheter voxels to have
the same size as the catheter voxels. For testing, the voxels of whole captured
volume is classified by the trained model, despite the fact that these voxels are
imbalanced.

The section on feature extraction and classification is completed here. We
have covered various feature extraction techniques, ranging from Objectness to
Statistical features. Besides this, several classification approaches have been pre-
sented, which combine well with the presented feature extraction techniques. It is
attractive to capture multiple elements in the feature vector and use also multiple
scales for the feature representation. Therefore, the section has been completed
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with an extended feature vector than combines several features into one larger
feature vector with multi-scale representations within that vector. This concept
will be tested later in this chapter in comparison with other techniques, in order
to come to the best performance.

3.4 Method Part B: Catheter Model-fitting

This section develops a different part of the method, aiming at using the devel-
oped feature model for fitting that to a model for catheter detection. This model-
fitting forms the second step for the identification of the catheters in the images.

In the second step, a modified RANSAC model-fitting is applied to localize
the catheter in the noisy output of voxel classification. Given these noisy signal
components, the choice of applying a RANSAC procedure is plausible. Misclassi-
fied voxels commonly occur, due to the complex local information from anatom-
ical structures inside the heart and the non-perfect description of 3D features. As
a result, after the voxel classification, there are multiple outlier blobs inside the
US volumes. Fig. 3.4 shows example results from AdaBoost classification, where
such outliers are clearly visible.

Figure 3.4 Examples of classified volumes in US imaging. The classified catheter voxels
are highlighted in the images by bright intensity. Other bright areas may confuse the
catheter detection.

To correctly localize the catheter in the noisy 3D image, we apply catheter
model-fitting based on the a-priori knowledge that the shape of the catheter
is a curved cylinder. The medical instrument model is conventionally recon-
structed by fitting its skeleton together with instrument body voxels surround-
ing it[47, 28]. However, this method is not stable in detection and also inaccurate
when assuming only a straight-line model in our challenging and noisy classified
images. In our case, we have to assume that the instrument can also be curved
and even can follow a more complicated 3D path. To localize a curved catheter in
3D US, a so-called Sparse-Plus-Dense-RANSAC (SPD-RANSAC)[52] has been re-
ported earlier in literature. This concept is complex, so that we gradually explain
and modify it for our purpose below. Meanwhile, we also modify the instrument
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model into a 3-point curvature line to improve the localization accuracy. In the
following paragraphs, we first describe the generation of a sparse volume, which
reduces the complexity of the RANSAC algorithm. After this, a more complex
catheter model is introduced to improve the detection accuracy, based on modi-
fied SPD-RANSAC.

3.4.1 Sparse Volume Generation for 3D US

After the voxel-level classification, the resulting binary image is called a dense
volume Vd. Then, a connectivity analysis is applied to cluster the voxels, which
are assumed to be part of a catheter-like shape, which can be either catheter or
tissue voxels. The voxels from the same cluster are considered to belong to the
same model. This means that the RANSAC algorithm includes many redundant
sampling processes, if it is applied directly to dense data [52]. As a result, the
centerline along the skeleton in each cluster is extracted to construct the sparse
volume Vs, which reduces the model-fitting sampling iterations. The centerlines
in the original SPD-RANSAC algorithm are generated directly by filtering the
X-ray image, which benefits from using high-contrast imaging. However, in a
coarsely classified 3D US image, the centerlines are difficult to extract directly
and are not well-defined. As a result, we propose a new method to extract the
centerline for each classified cluster in 3D US. This novel method for centerline
extraction is described by pseudo-code in Algorithm 3.1, which is also leading to
sparse volume generation. This terminology results from the fact that the algo-
rithm locates a catheter cluster everywhere and then extracts centerlines, leading
to sparse volume representations. Fig. 3.5 portrays an example of the obtained
result when applying this sparse volume generation.

Algorithm 3.1: Sparse volume generation from a dense volume
Input: Dense volume Vd and empty Vs

Find connected clusters in Vd
for each cluster in Vd do

Apply PCA analysis to find dominant axis among lat., az., and ax.
for each 2D slice along dominant axis do

Find connected 2D areas in the slice
for each 2D area in the slice do

Find center point of the area
Project center point to Vs

end for
end for

end for
Output: Sparse volume Vs
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Figure 3.5 (a) Example of a catheter in 3D US imaging, (b) resulting dense cluster and
sparse centerline, describing a sparse volume.

3.4.2 Model-fitting based on Sparse and Dense Volumes

In the proposed method, the catheter is modeled as a curved cylinder, which
relies on fitting the centerline of the catheter [47]. Since we are looking for the
catheter skeleton, the curved skeleton K can be described as:

K = {r ∈ V, r0 ∈ V, t ∈ R,h0,h1 ∈ R3 : r = r0 + th0 + t2h1}, (3.7)

where V denotes the selected group of voxels from the 3D images, t is a real
number and h0, h1 are vectors in 3D space. For catheter detection in 3D US,
the model is fitted by a cubic spline interpolation, which is controlled by three
control points [54]. For each RANSAC iteration, three control points are ran-
domly selected from the sparse volume Vs, which are ranked by PCA analysis
to define the interpolation order and to model the skeleton. The skeleton with
the highest number of inliers in the dense volume Vd is chosen to be the catheter
skeleton. The outliers are determined by computing their Euclidean distances to
the skeleton. Finally, the inliers together with the skeleton in Vd are regarded as
the localized catheter. Using the a-priori knowledge that the RF-ablation catheter
cannot be heavily curved inside the heart chamber, we constrain the curvature by
controlling the distance between the middle point to the straight line constructed
from the endpoints. The maximum distance is empirically selected as 10 voxels
in this chapter.

3.5 Experimental Results

For the experiments, the section starts with describing different datasets in Sub-
section 3.5.1. The evaluation metrics for classification and localization are intro-
duced in Subsection 3.5.2. The results on the voxel classification using different
features and classifiers are reported in Subsection 3.5.3. Subsection 3.5.4 shows
the performance on catheter localization using the modified SPD-RANSAC algo-
rithm.
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3.5.1 Datasets

To validate the stability of our system, we have collected 3D US datasets under
different recording conditions and performed the experiments on those data.

As for the in-vitro dataset, a Polyvinyl Alcohol (PVA) rubber heart was placed
into a water tank. The images were captured by a 3D Transesophageal Echocar-
diography probe (TEE) while an RF-ablation catheter is inserted into it. Due to
the less complex structure inside the rubber heart and the absence of anatomical
material from a real heart, a clear contrast between catheter and background or
phantom wall is shown.

For the ex-vivo datasets, porcine hearts were placed in several water tanks and
images were captured through TEE, or a Transthoracic Echocardiogram probe
(TTE). During the recording, the catheters were inserted into the ventricle or
atrium. As for TEE-based images, although they were obtained from a differ-
ent US system, we obtained a similar US quality because the same US probe
was used. However, the dataset collected by employing a TTE probe, yielded
noisy images with low-contrast appearance, due to a lower response at the low-
frequency range.

Finally, we also collected an in-vivo dataset on a live porcine. During the
recording, the TEE probe was placed next to the beating heart through the open
chest, while the RF-ablation catheter was inserted through the vein to approach
the heart. Because of challenging recording conditions and an unstable environ-
ment, the in-vivo dataset had the worst image quality.

More detailed meta-data about our datasets are presented in Table 3.2. All the
datasets were manually annotated for catheter locations and confirmed by both
medical and technical experts as the ground truth. In the following experiment,
to fully exploit limited datasets, the Leave-One-Out Cross-Validation (LOOCV)
is performed on each dataset. Some 2D slices from different datasets are shown
in Fig 3.6.

3.5.2 Evaluation Metrics

Because of the class imbalance in the testing images, we use precision (Pr), recall
(Rc), specificity (SP ) and F1 score as evaluation metrics for classification perfor-
mance after the supervised classification on each 3D US image. The definitions
can be found in Chapter 2.

Our method starts with finding the voxels and identifying the catheter inside
those voxels. The following major step is the previously discussed model-fitting
to the classified voxels. The accuracy of the method can be defined as an absolute
accuracy or a relative accuracy. The definition of absolute accuracy would require
a completely calibrated physical setup with pre-defined phantoms or tissues and
reference catheters. In our case, the accuracy is defined as the deviation of the
visual ground truth, where the catheter is manually annotated within the image.
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Table 3.2 Characterization of 3D ultrasound datasets for the experiments.

Dataset Description

D1 In-vitro dataset from a PVA phantom heart with 2.3-mm RF-ablation catheter
of 20 volumes, which was obtained by a 2-7 MHz phased-array transducer
(TEE) using EPIQ7. The volume size ranges from 141 × 168 × 101 to 145 ×
185 × 101 voxels (lat.×ax.×elev., which is the same for all datasets in this
table) at a resolution of around 0.4 mm/voxel. The corresponding example
is shown in Fig. 3.6 (a).

D2 Ex-vivo dataset from an isolated porcine heart with 2.3-mm RF-ablation
catheter of 10 volumes, which was obtained by a 2-7 MHz phased-array
transducer (TEE) using CX50. The volumes are resampled to a size of
179 × 175 × 92 voxels at a resolution of around 0.4 mm/voxel. The cor-
responding example is shown in Fig. 3.6 (b).

D3 Ex-vivo dataset from an isolated porcine heart with 2.3-mm RF-ablation
catheter of 10 volumes, which was obtained by a 2-7 MHz phased-array
transducer (TEE) using EPIQ7. The volume size ranges from 120 × 69 × 92
voxels to 193×284×190 voxels at a resolution of around 0.6 mm/voxel. The
corresponding example is shown in Fig. 3.6 (c).

D4 Ex-vivo dataset from an isolated porcine heart with 2.3-mm RF-ablation
catheter of 12 volumes, which was obtained by a 1-5 MHz phased-array
transducer (TTE) using EPIQ7. The volumes are resampled to a size of
137 × 130 × 112 voxels at a resolution of around 0.7 mm/voxel. The cor-
responding example is shown in Fig. 3.6 (d).

D5 In-vivo dataset from a live porcine heart with 2.3-mm RF-ablation catheter of
8 volumes, which was obtained by a 2-7 MHz phased-array transducer (TEE)
using EPIQ7. The volume size ranges from 146 × 76 × 153 voxels to 172 ×
88× 178 voxels at a resolution of around 0.4 mm/voxel. The corresponding
example is shown in Fig. 3.6 (e).

In order to define the deviation as a distance, we define the skeleton of a
catheter in the form of the center line of the shape. The deviation is then the
distance between the annotated center line and the center line of model-fitted
catheter. From the model, we obtain a limited set of key points, so that a spline
function is used to construct a smooth curve going through the key points. This
approach makes the model-fitted catheter well defined between the end points.

For our case, three types of errors are defined: skeleton-point error, and two
errors concerning the beginning and ending of the model, i.e. tip-point error and
end-point error (the average of tip-point error and tail-point error). These errors
are visualized in Fig. 3.7. The latter two errors are defined as the distance between
the localized point and the corresponding ground-truth point, either at the tip
or at the tail of the catheter. The skeleton-point error is the distance between
the sampled points from the localized catheter to the ground-truth skeleton. All
errors are measured visually in the images and are initially expressed in voxels,
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Figure 3.6 Examples of 2D slices from different datasets, which are corresponding to
Table 3.2. (a) Dataset D1, (b) Dataset D2, (c) Dataset D3, (d) Dataset D4, (e) Dataset D5.

Figure 3.7 Example of three error metrics: tip-point error, tail-point error and skeleton-
point error. The red curve is the ground-truth skeleton, the green curve represents the
localized catheter skeleton.

which can be translated to distance using the voxel resolution. Further details
and outcomes can be found in the experiments.

3.5.3 Voxel-based Classification

For the voxel classification, both feature and classifier can influence the perfor-
mance of candidate voxel detection. To evaluate the discriminative power of
the proposed features, we exploit their performances applying both a single-scale
approach and a multi-scale approach. Conventional methods, e.g. needle de-
tection in 3D US [48, 20], only consider a pre-defined scale size, i.e. single-scale
and are denoted by SS-N for a pre-defined single-scale size N, based on a-priori
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Figure 3.8 Average precision of single-scale (SS) and multi-scale (MS) Objectness fea-
tures, depending on the applied datasets, D1 to D5.

knowledge of the instrument diameter. However, these pre-defined scales only
extract discriminating information of tools while ignoring the information from
the anatomical background, such as a heart wall or microvalve inside the heart.
To extract more discriminative information for a better and stable classification,
we also employ a multi-scale approach, which involves different scales simulta-
neously, e.g. the scale ranges from 1 to N, denoted as MS-N. In the following sec-
tion, all comparisons are based on AdaBoost classification, due to its optimized
performance which is shown in Fig. 3.12.

A. Single-scale vs. Multi-scale Feature Vector

Using the Objectness (O) and Hessian (H) features, we have performed exper-
iments with σ ranging from 3 to 15 and a step size of 4. To measure the scale
influence on the features in a simple way, we only employ the precision (P ) as a
metric, while fixing recall (R) at 75% in each volume. The experimental results are
shown in Fig. 3.8 and Fig. 3.9 separately. These experiments lead to the following
conclusions. (1) The multi-scale approach with the Objectness feature achieves
a higher performance, because different shape information is contained for dif-
ferent scale sizes. When considering more scales, the features become more dis-
criminating. (2) When comparing Frangi and Objectness features with Hessian
features, the latter one has better performance, due to preserving more spatial in-
formation without PCA analysis. However, with the dataset D1, the Objectness
gives a higher precision, which can be explained by the high-contrast image qual-
ity when compared with real tissue. Meanwhile, in all cases, the Frangi feature
achieves a lower precision than Objectness.[32]

For features like the statistical feature S and log-Gabor feature G, similar re-
sults are obtained, i.e. when the multi-scale range is increasing, the classification
performance improves and the multi-scale approach achieves a higher perfor-
mance than single-scale operation. We have performed the experiments with
statistic feature S with scale ranging from 4 to 12 and step size 4. The experi-
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Figure 3.9 Average precision of Frangi, Objectness and Hessian features in multi-scale
(MS) cases, depending on the applied datasets, D1 to D5.

ments based on the log-Gabor feature G are performed with scale ranging from 4
to 10 and step size 3. Experimental results are shown in Fig. 3.10. From the exper-
iments, we conclude that the single-scale approach of the Gabor feature in needle
detection [28] does not offer sufficient performance for our catheter detection in
tissue-based images.

Based on the comparison between single-scale and multi-scale processing in
different feature types, we have fixed the scale range to MS-15 for Objectness and
Hessian features (see Fig. 3.8, the dark blue has the highest performance, and also
Fig. 3.9). For the statistical features and log-Gabor features, MS-12 and MS-10 are
the best choice, respectively.

B. Feature Comparison and Fusion

Based on the multi-scale approach in different features, their individual and fu-
sion performances in each dataset are shown in Fig. 3.11. The results are demon-
strated under AdaBoost, because it achieves the best performance when com-
pared with other classifiers (under C and are shown in Fig. 3.12). All the results
are obtained by LOOCV and thresholds are tuned to achieve the best F1 score on
the average. More detailed performance information can be referred to Table. 3.3.

From the performances in the table and figures, some observations are made.
For the Phantom dataset, having less complexity and higher image contrast, the
Objectness feature is able to achieve a promising result with a-priori defined de-
scriptors. For ex-vivo datasets using different recording probes and US machines,
the complex anatomical structure, which has a similar appearance as catheters,
makes it difficult for the Objectness feature to describe the 3D space information.
Moreover, when PCA is introduced, more spatial details are lost. Both Hessian
features and log-Gabor features perform similarly in ex-vivo datasets, which may
be explained by exploiting orientation and scale-sensitive features to describe
the spatial information. For the Statistic feature, although it can extract 3D lo-
cal intensity distribution information, the performance has less stability when
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Figure 3.10 Average precision of (a) statistic features and (b) log-Gabor features with
different scales, depending on the applied datasets, D1 to D5.

Figure 3.11 Optimizing the F1 scores when tuning the thresholds, depending on the
applied datasets, D1 to D5. The feature combination is the best choice, which corresponds
to Table 3.3.
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Figure 3.12 Distributions of F1 score for different classifiers (LDA, LSVM, RF and Ad-
aBoost), depending on the applied datasets, D1 to D5.

compared with Hessian and log-Gabor features. For the in-vivo dataset, due to
challenging recording conditions and low-contrast image quality from real blood
in the blood pool, the performances of all features are decreased. Although the
log-Gabor feature introduces more orientation information, due to the low im-
age contrast and the blurry boundary of the catheter, the orientation information
cannot improve the classification performance. In all datasets, the feature com-
bination is able to further improve the classification performance and appears to
be the best choice.

3.5.4 Catheter Localization by Model-Fitting

After voxel-based classification, the SPD-RANSAC algorithm is applied to the
binary images to localize the catheter in the noisy segmented images. The
RANSAC algorithm generates the end-points and the skeleton of the catheter,
which is used to analyze the localization error when compared to the ground
truth. To evaluate the localization accuracy, we consider three types of errors:
tip-point error (TE), end-point error (the average of tip-point error and tail-point
error, EE) and skeleton-point error (SE). As in common practice, we regard the
farthest point from the image border between the two end-points of the catheter
as the tip. [55] The skeleton error is the average distance of five equally-sampled
points (except the endpoints) on the localized skeleton to the annotated skeleton.
For each sampled point, its distance to the ground truth center line is measured.
An example of the three different error types is depicted in Fig. 3.7.

The localization performances from Table 3.4 are expressed in millimeters
(mm) and involve three different model-fitting methods: 1) RANSAC with the
two-point catheter model (R-2), 2) RANSAC with the three-point model (R-3)
and 3) SPD-RANSAC with the three-point model (SR-3). Several slices of the
tissue images are visualized in Fig. 3.13. The localized catheters are overlaid
with colored annotations. To directly visualize in a 3D volume, the correspond-
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ing 3D images are shown in Fig. 3.14. Furthermore, Fig. 3.15 shows an example
of comparing our three-point SPD-RANSAC with a two-point RANSAC model-
fitting [47, 28].

Table 3.4 Obtained average errors in catheter localization, expressed in mean±std.(mm).
TE: tip-point error, EE: end-point error, SE: skeleton-point error. R-2: two-point RANSAC,
R-3: three-point RANSAC, SR-3: three-point SPD-RANSAC. Numbers in bold are the best
results.

Dataset R-2
TE EE SE

D1 4.0±2.6 3.9±1.9 3.0±1.5
D2 4.0±1.8 4.8±0.9 3.1±0.7
D3 9.6±6.0 10.7±6.1 6.7±6.4
D4 4.0±1.3 4.3±1.2 2.9±0.6
D5 3.9±2.8 5.4±1.2 3.7±0.6

Average Error 5.0±3.7 5.5±3.6 3.7±2.2

Dataset R-3
EE SE TE

D1 1.8±0.6 2.1±0.5 1.8±0.4
D2 1.9±0.4 2.5±1.3 2.1±1.1
D3 3.3±1.3 3.5±1.6 3.1±1.4
D4 2.1±0.4 2.2±0.3 2.0±0.1
D5 2.0±0.9 2.0±0.5 1.7±0.3

Average Error 2.1±0.9 2.4±1.0 2.1±0.9

Dataset SR-3
EE SE TE

D1 1.4±0.8 1.4±0.6 1.5±0.5
D2 1.2±0.3 1.7±1.0 1.5±0.6
D3 3.0±1.6 3.3±1.8 3.0±1.8
D4 2.1±0.5 1.9±0.4 1.8±0.2
D5 2.4±2.8 2.4±1.4 1.9±0.8

Average Error 1.9±1.4 2.0±1.2 1.9±1.0

As shown in Table 3.4, the three-point models (R-3 and SR-3) are able to lo-
calize the catheters accurately when compared with the two-point methods (R-
2). This is evident because almost every catheter is curved in the image, even a
slightly curved catheter occurs when compared with the needle detection in the
image. Meanwhile, the SPD-RANSAC algorithm is able to improve the localiza-
tion accuracy when compared with R-3, which directly applies the model-fitting
to the classified volume. As a result, our three-point SPD-RANSAC can achieve
a higher localization performance giving an average localization tip-point error
of only 1.9 mm.
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Figure 3.13 Slices (cropped) from real heart volumes, red color represents annotation
and green color represents fitted catheter. (a) Dataset D2, (b) Dataset D3, (c) Dataset D4
and (d) Dataset D5.

Figure 3.14 Classification results in tissue volumes, prediction (red color voxels) vs. an-
notation (gray color voxels). (a) Dataset D2, (b) Dataset D3, (c) Dataset D4, (d) Dataset
D5.
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Figure 3.15 Comparison between SPD-RANSAC and a simple model-based RANSAC.
(a) Original image. (b) Annotated catheter (red color). (c) SPD-RANSAC fitted catheter
(green color). (d) Two-point RANSAC fitted catheter (blue color).

From the results in classification performance, multi-scale processing together
with feature fusion are robust to classify the catheter voxels using AdaBoost clas-
sifiers. Although the classified volumes include some false positives (as shown
in Fig. 3.14), a-priori knowledge of the catheter shape leads to a correct localiza-
tion result. When an optimized 3D view generation would be implemented and
added to our algorithms or alternatively, a 2D view on slices would be created,
the catheter can be easily found and annotated for surgeons such that the cardiac
intervention becomes easier and obtains a higher safety.

3.6 Conclusions

In this chapter, we have developed a robust and generic method to detect the
catheter position and orientation in noisy 3D US volumetric data for challeng-
ing cardiac interventions. The automated detection of the instrument is aiming
to distinguish the instrument from other anatomical structures in the obtained
data, where the detection is characterized by voxel-based machine learning clas-
sification and model-fitting optimization. In the proposed framework, we have
introduced a novel design and usage of the multi-scale and definition features as
informative descriptors to better distinguish the catheter voxels from anatomical
structures having similar appearance characteristics.

The framework of our method includes two essential stages: (1) classifica-
tion of the catheter voxels and (2) catheter localization. In the first step, catheter
voxel-level classification of the input image is based on the discriminative fea-
tures, which achieves an F1 score of 52%-83% on different experimental datasets.
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Based on the proposed novel discriminative features, the overall performance
of our method is much higher than the state-of-the-art techniques, which is be-
cause of a richer feature definition and multi-frequency exploration. The second
stage of catheter localization includes a catheter-skeleton estimation by a Sparse-
Plus-Dense-RANSAC (SPD-RANSAC) model-fitting algorithm. The positions of
the catheter skeleton are optimized, which achieves a detection error of about 2
mm in the classified volumetric data. Since the detection error of the skeleton
is similar to the catheter diameter, the instrument can be visualized by 3D in-
volume rendering or 2D cross-section slicing. Therefore, a high clinical value can
be achieved such that the sonographer can always locate the instrument during
the operation.

The main contribution of this chapter can be summarized in two aspects: (1) a
novel design of the 3D discriminative feature, which extracts the catheter voxels
in the volumetric data, and (2) a novel design of RANSAC model-fitting, which
improves the efficiency and accuracy of the instrument detection for better re-
sults. These aspects are elaborated below.

• Novel discriminative feature: To classify the catheter voxels, novel multi-scale
and definition features are proposed, which describe the spatial and fre-
quency information in different aspects. A thorough comparison is made
for the classification in all datasets at the voxel level, which shows the pro-
posed features are powerful and obtain higher performance than the state-
of-the-art methods.

• Modified model-fitting: A modified model-fitting algorithm is proposed to
accelerate the fitting efficiency and accuracy. Detailed experimental com-
parisons demonstrate the proposed method achieves faster and more accu-
rate detection results, which is promising for clinical practice.

Further improvements are possible for higher detection performance and cre-
ating a real-time application. For example, tuning the US system to address vary-
ing recording conditions, e.g. adapting image gain or focal depth of the US ar-
ray, may lead to better detection performance and higher robustness. Moreover,
for different US resolutions and catheter appearances, the multi-scale process-
ing with feature fusion (e.g. more features [56]) approach may be simplified or
extended to achieve a better and robust detection accuracy.

With respect to the real-time application, the main challenge is coming from
complex feature extraction during the voxel-level classification, which takes more
than 85% of the whole processing time. Some possible solutions for enhancing
the processing speed are: (1) embedding the feature extraction steps in a parallel
manner on a GPU, which accelerates the computation efficiency, and (2) perform-
ing classification at voxel level can be accelerated by a coarse-to-fine strategy to
reduce the calculation complexity.
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The latter topic is explored in the next chapter (Chapter 4), where we will in-
vestigate an alternative approach, based on a coarse-to-fine strategy. Besides this,
a novel deep learning method is introduced to replace the extensive feature ex-
traction and classification. The coarse-to-fine strategy and the deep learning will
jointly improve the detection efficiency and accuracy in challenging 3D cardiac
US imaging.
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Catheter Detection by

Voxel-of-interest-based CNN
Classification

4.1 Introduction

The previous chapter (Chapter 3) has introduced a fundamental framework to
create an image-based automated system, which distinguishes the catheter in 3D
US data. For this purpose, a dedicated voxel-based classification and a model-
fitting algorithm have been designed and evaluated for detecting the position and
orientation in ultrasound images. It has been shown that the dedicated multi-
scale and definition features generate catheter-like voxel classification results.
This approach can work perfectly only if the spatial features of the catheter and
surrounding tissue are following a-priori knowledge of the handcrafted feature
design and corresponding learning. However, this can be challenged in a case
that a-priori knowledge of the handcrafted features cannot properly extract the
discriminative information, so that the classification results are not stable enough
for clinical practice. In addition, the expensive computation and long-time execu-
tion hampers the application value, which is a real drawback for algorithm usage
during the operation. Therefore, these two technical challenges raised during the
algorithm design are further addressed in the following subsections.

4.1.1 Objective and Brief System Outline

In this chapter, we aim to model the automated medical instrument detection,
especially for RF-ablation catheters, in 3D space by a voxel-level coarse-to-fine
strategy. This method involves a coarse candidate voxel selection and a fine
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catheter-like voxel classification. As a result, the catheter in the 3D US data can be
segmented efficiently. The concept based on a coarse-to-fine strategy is adopted
from various applications [20].

With the obtained voxels and following the general segmentation-modeling
pipeline, the SPD-RANSAC model-fitting algorithm is applied to localize the
catheter with its orientation inside the US data. In more detail, the objective of
this chapter is to design a coarse-to-fine classification, leading to catheter segmen-
tation in 3D US images, that is capable of: (1) efficiently and coarsely selecting the
candidate voxels in complex 3D space for fine classification, and (2) accurately
and robustly classifying the remaining voxels to further refine the segmentation
results.

Figure 4.1 Diagram of the coarse-to-fine catheter detection and segmentation system.

In order to achieve these objectives, we propose a specific design to improve
the efficiency and accuracy of the framework. The design is based on three basic
steps, as shown in Fig. 4.1. First, from the voxel data, voxels are coarsely selected
that could be candidate for the catheter segmentation. Second, the processing
refines the coarse description for a fine catheter segmentation and classifies this
description as being a catheter. Third, the model-fitting algorithm is applied to
localize the instrument and confirm that a catheter is found.

Based on the above design outline, the key challenges originate from the first
two steps in the method: coarse candidate voxel selection and fine catheter voxel
classification. More detailed challenges and corresponding solutions are elabo-
rated in the following subsections.

4.1.2 Specific Challenges for Candidate Voxel Selection

In order to coarsely select the interested voxels with high efficiency from the com-
plex input US data, two essential aspects are considered for the coarse selection:
(1) selecting the voxel-of-interest (VOI) efficiently, and (2) preserving as many
catheter voxels as possible. Each aspect aims at improving the overall catheter
segmentation result in both efficiency and accuracy. We now briefly address the
specific issues and objectives associated with VOI selection and voxel preserva-
tion.
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1. VOI filtering: A straightforward voxel-of-interest selection is to apply a ma-
chine learning classification on the voxels, such as a simplified classifier
based on the Chapter 3. However, the feature extraction and classifica-
tion is expensive and time-consuming, which is not suitable for the coarse
VOI selection. To efficiently select the voxels, a promising choice is to sim-
ply apply a filter on the 3D images without considering a classification
algorithm. Therefore, we propose to consider a Frangi filter as the VOI-
selection approach. Specifically, the Frangi filter is able to efficiently extract
the catheter-like voxels in the 3D images by a-priori knowledge, which has
been proven successful in the past literature [48, 20].

2. Voxel selection: Based on the Frangi filtering, the output indicates the possi-
ble catheter voxels in the 3D space. However, a fixed and empirically de-
termined threshold on the output can lead to unsatisfactory VOI selection
results, which omits most of the background voxels, but also removes most
of the catheter voxels due to appearance variations between the images.
To better preserve the catheter voxels for fine classification, we propose to
apply an adaptive threshold method for each individual image.

4.1.3 Specific Challenges for Voxel Classification

This part aims at performing the second step for which we will explore deep
learning. With the obtained voxels from VOI selection, it is important to classify
the residual voxels by a voxel-based classification method. Nevertheless, a con-
ventional handcrafted design method has limitations in accuracy due to limited
discriminative information capacity. The involved issues are now briefly listed
below.

3. Voxel-level classification: The voxel-level classification can be achieved by the
conventional handcrafted feature design and classification, as discussed in
Chapter 3. This method may be not good enough due to the feature de-
sign being purely based on the experience or a-priori knowledge. In recent
years, the deep learning methods, such as CNN-based classification, have
proven to offer a superior performance in the classification task compare to
the convention handcrafted design, which learns the discriminative infor-
mation by a data-driven approach. Therefore, a CNN-based classification is
considered to replace the conventional feature extraction and classification
for a better voxel-level classification method.

4. 3D processing complexity: With a CNN method, another challenge is the
computation complexity in 3D images. In this chapter, the CNN is used
to classify the voxels by employing the voxel’s regional information, using
a so-called 3D patch. Nevertheless, due to the complex CNN design with
3D filtering on the patch, it is computationally expensive to consider the
voxel-by-voxel classification on the images, even when a coarse selection is
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applied. The challenge is perform the classification in a 3D data patch with
reduced computation cost and sufficient classification accuracy.

5. Imbalanced class distribution: For a common US dataset containing a catheter,
the instrument occupies a small portion of the voxels, which typically
amounts to 1/1000-1/2000. When deep learning is adopted as a starting
point, this means that the catheter class is much smaller than the surround-
ing tissue and background voxels. This poses an imbalanced class distri-
bution problem for CNN learning, so that the CNN could focus on the
majority class instead of the catheter. In such a case, the network would
misclassify the voxels, which omits the most of the catheter voxels, leading
to unsatisfactory results. To address this, a two-stage training scheme is
proposed to overcome the training bias and therefore improve the perfor-
mance.

The sequel of this chapter is organized in the following way. Section 4.2
summarizes the related work in this field. Section 4.3 describes the proposed
method in detail, including every step of the coarse-to-fine classification. Sec-
tion 4.4 demonstrates the considered dataset and experimental results. Finally,
Section 4.5 concludes the chapter and presents some discussions on possible re-
finements.

4.2 Related Work

4.2.1 Recent Methods for Instrument Detection

Medical instrument localization in US imaging is achieved by classifying the US
voxels. Uherčı́k et al. [48, 15] have combined the image intensity with a Frangi
filter response as a discriminating feature for voxel classification in needle local-
ization. A recent study combined Gabor features with Frangi features to localize
the catheter in a phantom heart [28]. Yang et al. [32] have used extended discrim-
inating features within a multi-definition and multi-scale approach for catheter
segmentation on ex-vivo datasets. However, these methods are less robust and
less efficient when the US image has large variations in complex anatomical con-
tent. Recently, deep learning, e.g., convolutional neural networks (CNNs), have
shown significant performance improvement in medical image analysis [9]. For
US imaging, a CNN has been commonly used to classify voxels into different cat-
egories. Two different approaches for categorization exist: voxel-based CNN and
semantic-based CNN. The first approach classifies individual voxels one-by-one
through regional information of the voxels [57, 58, 59, 60]. The second approach
of the semantic segmentation employs fully convolutional networks (FCNs) to
predict segmentation masks directly [61]. Although this has obtained promising
results by making use of the contextual information, the semantic segmentation
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approach requires a large number of training data and has high computational
complexity, which needs a careful trade-off during the algorithm design.

4.2.2 Direction of Our Method with Potential Improvements

As depicted in Fig.4.1, our method consists of three main steps.

• Candidate voxel selection: In the previous section, the pre-selection challenge
has indicated a VOI procedure for finding candidates. The purpose of a
VOI pre-selection procedure is to reduce the number of voxels to be pro-
cessed by the second fine classification stage. To address the inconsistent re-
sponse distribution in the filtered image, resulting from variations in imag-
ing recording conditions and catheter appearance [32], an adaptive thresh-
olding method is required for each image. This allows to adaptively pre-
serve the majority catheter voxels, while omitting most non-catheter voxels
based on the received image.

• Voxel classification through CNN: With the obtained candidate voxels, a dedi-
cated voxel classification method is proposed, which outperforms the hand-
crafted feature design method by employing a deep learning approach.
To further reduce the computation cost and improve the classification ef-
ficiency, a special tri-planar strategy is applied to the voxels in the 3D space
prior to performing the deep learning method for limiting network com-
plexity.

• Catheter localization: For the fine classified voxels, a cubic spline-based
catheter model is fitted to localize the catheter by re-using the model-fitting
algorithm from Chapter 3.

Compared to the recent methods from literature, our contributions can be
summarized as follows. First, we employ a vesselness-based filter to coarsely se-
lect the candidate voxels to reduce the computation load for the CNN. We have
designed a refined algorithm to improve the pre-selection results. Second, we
propose a specific CNN for voxel classification in 3D US, which is in-depth com-
pared with the existing methods. As a result, based on the proposed method, the
catheter can be automatically detected with higher efficiency and accuracy than
state-of-the-art methods.

4.3 Methods

As shown in Fig. 4.1, the proposed coarse-to-fine catheter segmentation and de-
tection method is briefly summarized into three steps, which consists of coarse
voxel-of-interest selection, fine catheter segmentation and a model-fitting algo-
rithm. Each step is described in more detail below, which corresponds with vi-
sual diagram depicted in Fig. 4.2.
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Figure 4.2 Diagram of the coarse-to-fine catheter detection and segmentation system.

1. Candidate voxel selection: VOI selection is applied on the input volume to
coarsely select the voxels of interest for fine CNN-based classification and
catheter segmentation. To achieve this goal, the Frangi vesselness filter [15]
and a specifically designed adaptive thresholding step are applied. More
details are presented in Section 4.3.1.

2. Voxel-level catheter-like classification: For each candidate voxel, a 3D regional
patch is obtained, and three orthogonal planes are extracted and processed
by the CNN for voxel classification. In particular, we propose a simplified
tri-planar-based CNN, called Share-CNN, which reduces the computation
complexity by sharing a single CNN for all orthogonal slices. Further de-
tails are presented in Section 4.3.2.

3. Catheter localization and model-fitting: Following the general computation
vision processing of the Segmentation-Modeling as discussed in Chapter 2,
the SPD-RANSAC algorithm from Section 3.4 is applied to finally localize
the target catheter in complex 3D US images, as briefly addressed in Sec-
tion 4.3.3.

4.3.1 Candidate Voxels Selection

The proposed method uses Frangi vesselness filtering to select the candidate
catheter voxels from 3D US, which enables to dramatically reduce the number of
samples to be classified by the CNN (typically a reduction from ∼ 106 to ∼ 104).
Nevertheless, this simple selection results into a high false positive rate because
of the weak voxel discrimination in noisy and low-quality cardiac 3D images [32].
To address this issue, we introduce an adaptive thresholding method for the VOI
selection.

The 3D US image is first filtered by a Frangi filter with a pre-defined scale and
re-scaled to the unity interval [0; 1], leading to a normalized frame, called VF .
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After the filtering, we apply an adaptive thresholding method to VF to coarsely
select N voxels with the highest vesselness response. The thresholding method
is trying to find out the top N possible voxels in VF . Since the filter response
has a large variance in different images, the adaptive tuning of the threshold can
gradually select approximately N voxels, by iteratively increasing or decreasing
the threshold T , depending on the image itself. The pseudo-code is described
by Algorithm 4.1. Based on the coarsely pre-selected voxels in 3D US, which
form about N candidates voxels, the 3D patches are extracted and processed to
generate three orthogonal slices of each voxel for the CNN. In our experiment,
the initial threshold is empirically set to T = 0.3. Value N is empirically selected
to balance and trade-off the efficiency of CNN classification and classification
performance.

Algorithm 4.1: Adaptive thresholding for candidate voxel selection
Input: filtered volume VF , required voxel Num. N and initial threshold T

Apply threshold to VF by the initial threshold value T . Find the remaining
voxels with amount K, which is larger than T .
if K < N then

while K < N do
T = T − 0.01. Apply thresholding to VF by T , find No. of voxels K
larger than T .

end while
else if K > N then

while K > N do
T = T + 0.01. Do thresholding on VF by T , find No. of voxels K larger
than T .

end while
end if
return The set of approximately N voxels with response larger than
adapted threshold T .

4.3.2 Voxel Classification by CNN

For voxel-wise classification of volumetric data, the 3D regional information is
processed by the CNN to classify the voxels. A straightforward way is to classify
the voxel based on its 3D neighborhoods. For each candidate voxel located at the
center of a 3D cube, the cube is processed by a 3D-CNN [57], as shown in Fig. 4.3
(a). However, when using a 3D data cube as input, this approach includes too
many parameters in the network, which hampers the efficiency of the voxel-wise
classification in 3D US volumes. To preserve the 3D information and yet reduce
the convolution operations, a multi-slice-based method is proposed in [18],
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Figure 4.3 Two configurations of commonly used CNNs. (a) 3D-CNN. (b) IND-CNN.
Note that the network IND-CNN can have more than three branches. The abbreviation
RL&BN&MP stands for ReLu+Batch Normalization+Max pooling.

which effectively reduces the 3D operation to 2D processing. To preserve the 3D
structure information, the authors of [18] employed a multi-view cross-section
method that extracts slices from the 3D cube through different angles. Then
each slice will be processed by an individual CNN using 2D processing. An
example of this method is shown in Fig. 4.3 (b), which is called IND-CNN. The
extracted feature vectors from the slices are concatenated to supply them into
fully-connected layers (FCs). The 3D-CNN processes the information using 3D
operations, which leads to too many computations and large execution times.
Instead, although the IND-CNN keeps 3D information by a slicing approach,
multiple individual CNN branches lead to redundancy in the network, which
results from using a CNN for each slice. Because of these redundancies in the
networks, 3D-CNN and IND-CNN are both sub-optimal choices in terms of
application and computation time. This has motivated our research into an
alternative solution with the aim to achieve a higher efficiency.

Method – proposed network architecture: This chapter proposes a simplified
method to classify the voxels. To this end, we adopt the slice-based strategy,
which is a good start to reduce the complexity of 3D processing. However,
instead of training a CNN for each slice, we propose to train one shared CNN
for all slices. All feature vectors from the slices are concatenated to form a longer
feature vector for classification. This single network is called Share-CNN, which
is depicted in Fig. 4.4 (b). There is a similar structure called RGB-CNN, reported
in [58], which is shown in Fig. 4.4 (a). It extracts three orthogonal slices from
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Figure 4.4 Alternative solutions with simplified CNNs for the network architecture of
Fig. 4.3. (a) RGB-CNN. (b) Share-CNN. The abbreviation RL&BN&MP stands for
ReLu+Batch Normalization+Max pooling.

Figure 4.5 The steps to extract tri-planar slices from the obtained 3D cube of the inter-
ested voxel. The slices are obtained by extracting the planes passing through the center
point of the cube and following the direction of the principal axes of the coordinate system.

the principal directions of the 3D cube, which are then re-organized into RGB
channels. However, this introduces a limitation: the spatial information between
each slice is processed rigidly by convolutional filters at the first stage of the
network. The input stage of the CNN involves only shallow processing, where
low-level features are processed. This simple strategy cannot fully exploit the
spatial relationships between the slices. Alternatively, the proposed Share-CNN
can exploit the spatial correlation at a high-level feature space. Based on the
binary selection of candidate voxels during the pre-selection, a 3D cube is
obtained for each candidate voxel located at the center of the cube. We extract a
cube of size 25 × 25 × 25 voxels, which is larger than a typical catheter diameter
of 4-6 voxels in 3D cardiac US. Then, three orthogonal planes passing through
the center point of the cube are sliced as the input for the CNN. More detailed
demonstration is shown in Fig. 4.5.
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Method – two-stage training: For training with medical images, the class
imbalance is the most challenging issue. In our case, the ratio of catheter voxels
vs. non-catheter voxels is commonly less than 1/1000. As a consequence and
to fully exploit image information, we therefore perform a two-step training
procedure when training the CNNs. First, the number of imbalanced voxels
in training images are resampled on non-catheter voxels to obtain the same
amount as catheter voxels. These balanced samples are used to train the CNNs.
Second, the training images are validated on the trained models to select the
falsely classified voxels, which are used to update the networks for fine-tuned
optimization [59][60]. Specifically, unlike the diagram in Fig. 4.2, the training
process is applied in the whole US image rather than the VOI processed one.
This update step reduces the class imbalance, by removing the easiest sample
points (so-called two-stage training).

Method – loss function adaptation: The parameters of networks are learned by
minimizing the cross-entropy, using the Adam optimizer for faster convergence.
During the two-step training, the cross-entropy is characterized into a different
form to balance the class distribution. In the first training stage, the cross-entropy
is characterized in a standard format. However, during the updating, the func-
tion is redefined as weighted cross-entropy. The difference between the cross-
entropies avoid the bias in the updating stage, which occurs due to the number
of false positives, being usually 5-10 times larger than the positive training sam-
ples in the second stage. As a result of the weighted cross-entropy, the networks
tend to preserve more catheter voxels than discarding them after the classifica-
tion. The weighted cross-entropy loss is formulated by

LosswCE(y, p̂) = −(1− w)y · log(p̂)− w(1− y) · log(1− p̂), (4.1)

where the parameter y indicates the label of the sample, p̂ represents the class
probability of the sample, and parameter w is the sample class ratio among the
training samples.

Method – training details: During the training, the dropout is used to avoid
overfitting with 50% probability in the FC layers, together with an L2 regular-
ization with 10−5 strength. The initial learning rate is set to 0.001 and re-scaled
by a factor 0.2 after every 5 epochs. Meanwhile, to generalize the network in
orientation and image-intensity variation, techniques for data augmentation like
rotation, mirroring, contrast and brightness transformations are additionally ap-
plied. The mini-batch size is 128, and the total training epoch is 20, which in-
volves about 25k steps in the first training, and iterations in the second training
stage require about 100k cycles.
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4.3.3 Catheter Localization

The classified volume may include some outliers, which are generated from the
blurry tissue boundaries or catheter-like anatomical structures. To robustly lo-
calize the catheter, we employ the SPD-RANSAC method to fit a pre-defined
catheter model. To robustly localize the catheter, the classified volume, so-called
dense volume, is processed by connectivity analysis to generate clusters. Then,
the cluster skeletons are extracted to generate the sparse volume. During the fit-
ting stage, three control points are automatically and randomly selected from the
sparse domain and ordered in orientation by principal component analysis. The
re-ordered points ensure the cubic spline-fitting passes the points in sequential
order, which generates the catheter-model skeleton. The localized skeleton with
the highest number of inliers in the dense volume is adopted as the fitted catheter.
More details are explicitly presented in Section 3.4.

4.4 Experimental Results

4.4.1 Datasets

In this study, we have collected a challenging ex-vivo dataset from 4 isolated pig
hearts, which includes 65 volumes. During the recording, the hearts were placed
in a water tank with an RF-ablation catheter (7 French (Fr) ≈ 2.3 mm) inside the
heart chambers. Moreover, to ensure that the images in each heart are indepen-
dent from each other, we changed the relative position between the heart and US
probe to obtain a different appearance of the heart in each captured image. Fur-
thermore, we extracted the catheter and re-inserted it into the heart chambers to
make the images independent, i.e. 1 session for 1 image.

The dataset includes volumes of size ranging from 120 × 69 × 92 to
179× 179× 202 voxels, in which the voxel size was isotropically resampled to the
range of 0.4-0.7 mm. The datasets were manually annotated by clinical experts
to generate the binary annotation mask as the ground truth. Examples of three
cases are shown in Fig. 4.6, which visually compares the recordings on phantom
heart, pig heart and human heart. Compared to the phantom heart and human
heart, the captured pig-heart images are more complex. Compared to the phan-
tom data, real pig tissue has more complex anatomical structures, which makes
it hard to distinguish the catheter from tissue. When compared to the real human
heart, the chambers of the pig heart are collapsed due to the dead tissue, which
leads to a small free space within the heart. Moreover, the human-heart image,
which is shown in the figure, has a larger field of view than the pig-heart record-
ings, as the data was collected for the Transcatheter Aortic Valve Implantation
(TAVI) operation. To fully make use of the limited datasets for deep learning, we
perform threefold cross-validation on all collected images.

77



Arash Pourtaherian Dissertation TU Eindhoven March 21, 2022 14:26 Page 78 Sheet 98/214

�
�	 �
�	

�
�	

4. CATHETER DETECTION BY VOXEL-OF-INTEREST-BASED CNN
CLASSIFICATION

Figure 4.6 Visual appearances within different datasets. (a) Phantom US. (b) Pig heart
US. (c) Human heart US. The arrows are pointing to the catheters.

4.4.2 Voxel-of-Interest Selection

To reduce the number of voxels for classification, we apply the Frangi vesselness
filter to select the candidate voxels. However, it cannot selectively filter out the
catheter voxels from tissue and background with a pre-defined scale, due to too
many false positives [32]. In our method, we first apply the Frangi filter with
scale size equal to 2.5 voxels to filter out most of the tubular-like structures. Then
Frangi responses are re-scaled to the unity interval, which maps response into a
probability-like range.

To evaluate the performance of thresholding, we consider three metrics: re-
callRc (the remaining catheter voxels versus ground-truth catheter voxels), Ratio
(thresholded voxels versus all voxels, to evaluate the voxel preserving ability),
and their fusion score (this mimics the F1 score by replacing precision by Ratio to
evaluate a joint threshold performance), which enables to show the preservation
performance of catheter voxels and removes non-catheter voxels. The metrics of
Ratio and Score are defined in Eqn. (4.2), where TV denotes the remaining num-
ber of voxels after applying the threshold, while AV represents the number of all
voxels. These metrics are specified by

Ratio =
TV
AV

, Score =
2 ·Rc · (1− Ratio)

Rc + (1− Ratio)
. (4.2)

The performances of adaptive thresholding are shown in Fig. 4.7, where the
threshold is chosen to be the required number of voxels N , which ranges from
10k to 190k voxels with a step size of 10k. The metric values are obtained by
averaging the results of all the testing volumes, using threefold cross-validation.
It can be observed that the proposed adaptive thresholding method provides a
more stable voxel distribution, i.e., a smaller fraction of the whole pyramid area
while keeping a higher recall. As a result, the proposed thresholding method
provides a better selection for the voxels of interest. However, this pre-selection
leads to a drop in the recall value. As a consequence, in the following step, a
CNN with high recall for voxel classification is employed to improve the overall
performance of finding catheter voxels.
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Figure 4.7 Performance of applying direct thresholding (top) and adaptive thresholding
(bottom) on Frangi filtered images. Metric 1 is Recall with pink bars, Metric 2 is 1-Ratio in
yellow bars, and Metric 3 is the Score in blue bars, see Eq. (4.2).

4.4.3 Voxel Classification

A. Comparison with existing methods

In the following experiments, three metrics, recall, precision and F2 score are
used for voxel classification at the image level. Specifically, the F2 score is defined
as

F2 =
5 ·Rc · Pr
4 · Pr +Rc

. (4.3)

We first compare the Share-CNN of the refinement step with the start-of-the-art
methods. Two methods using handcrafted features, the Gabor feature with SVM
(GF-SVM) [28] and the multi-scale and multi-definition features with Adaboost-
ing (MF-AdaB) [32], are considered as baseline. For comparison, we also consider
the semantic segmentation method 3D UNet [61]. The performances are listed in
Table 4.1. We can observe that the Share-CNN outperforms conventional meth-
ods with handcrafted features. The standard 3D UNet produces the worst per-
formance on our challenging data. This may be explained by the high complexity
of 3D UNet in their design, resulting in over-fitting. Fig. 4.8 illustrates some ex-
ample results obtained with 3D UNet.

79



Arash Pourtaherian Dissertation TU Eindhoven March 21, 2022 14:26 Page 80 Sheet 100/214

�
�	 �
�	

�
�	

4. CATHETER DETECTION BY VOXEL-OF-INTEREST-BASED CNN
CLASSIFICATION

Figure 4.8 Segmentation results from 3D UNet. (a) Original image, and (b) successful
segmentation. (c) Original image, and (d) segmentation failure.

Figure 4.9 Boxplots of the performance comparison of the Share-CNN against 3D-CNN,
IND-CNN, and RGB-CNN for three different metrics. The known CNNs boxplots are shown
at the left side of the dashed line, while the boxplot of Share-CNN is depicted at the right
side of the dashed line.
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Table 4.1 Average performance of voxel-based classification (mean±std.)

Method Recall (%) Precision (%) F2 score (%)

GF-SVM [28] 29.9± 25.4 9.2± 8.8 19.0± 15.5
MF-AdaB [32] 61.2± 17.6 28.4± 16.6 45.5± 15.6
3D UNet [61] 30.3± 26.3 11.9± 12.7 21.4± 19.5
Share-CNN 72.3± 19.6 46.4± 8.5 63.8± 14.3

B. Comparison with different CNN methods

We further compare the Share-CNN with 3D-CNN, IND-CNN, and RGB-CNN.
The training strategy of these CNNs is the same as the performed strategy for
Share-CNN. The performance comparison is shown in Fig. 4.9, which results in
the following findings.

• Comparison to 3D-CNN: When compared to 3D-CNN, the proposed Share-
CNN has better Recall and higher F2 score, while 3D-CNN achieves better
precision. However, taking 3D data cubes as input, 3D-CNN has too many
parameters in the network, requiring a large amount of training data. In
contrast, the Share-CNN is much simpler. In terms of efficiency, 3D-CNN
executes in about 10 mins. per volume on average, which is almost 5 times
longer than the orthogonal slice approaches.

• Comparison to IND-CNN: The IND-CNN, which is designed to have mul-
tiple branches, delivers comparable performance as the proposed Share-
CNN. This is because both networks fuse the high-level information in a
similar fashion. However, the IND-CNN trains an individual CNN for each
slice, which is computationally complex and leads to redundancy.

• Comparison to RGB-CNN: Compared to RGB-CNN, it can be observed that
the Share-CNN achieves consistently higher performance. This can be ex-
plained by the fact that the RGB-CNN only exploits spatial correlation
among different slices in the lower feature space.

C. Paired t-test between methods

In a further experiment, we have performed a paired t-test to identify clear dif-
ferences of the proposed Share-CNN and other considered networks, i.e., MS-
AdaB, RGB-CNN, IND-CNN, and 3D-CNN. We have adopted the F2 score of
each image as a measure for performing the t-test. In the paired t-tests, the signif-
icance level is set to 0.05. The detailed p-values for the paired t-tests are shown
in Table 4.2. All obtained p-values are smaller than 0.05, except for IND-CNN.
These results show that the Share-CNN performs significantly better than MF-
AdaB, RGB-CNN and 3D-CNN methods (combined with the previous results).
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Although IND-CNN shows little difference with Share-CNN, it has parameter
redundancy that leads to overfitting and computational inefficiency.

Table 4.2 Paired t-test (p-value) between different methods.

Method MS-AdaB RGB-CNN IND-CNN 3D-CNN

Share-CNN 3.2·10−14 3.2·10−6 2.6·10−3 4.4·10−1

D. Ablation study of CNNs

The Share-CNN includes two-stage training and a weighted loss function in the
network. To better understand their influence on the classification performance,
we have performed ablation studies for three different cases: 1) CNN without
two-stage training (denoted as NoBoost), i.e., only trained on re-sampled images,
2) CNN with two-stage training but without weighted loss function (denoted as
NoWeight), 3) the proposed CNN (denoted as Combine). The results of these
ablation studies are listed in Table 4.3. For Share-CNN-NoBoost, although it re-
ceives relatively high Recall performance, the simple sampling strategy leads to
the lowest Precision results, which makes the model-fitting more challenging.
Furthermore, the weighted loss function can re-balance the information distribu-
tion during second-stage training and can maintain a higher recall, while omit-
ting the non-catheter voxels. When compared with the no-weighted case, the
weighted network versions provide lower variance in Precision and F2 scores.

Table 4.3 Performance with ablation studies on proposed Share-CNN (mean±std.)

Method Recall (%) Precision (%) F2 score (%)

Share-CNN-NoBoost 92.4±8.6 12.0±8.5 35.2±17.2
Share-CNN-NoWeight 45.5±20.9 71.3±13.7 47.6±20.4
Share-CNN-Combine 72.3±19.6 46.4±8.5 63.8±14.3

Table 4.4 Performance comparison of CNNs with/without VOI (mean±std.)

Method Recall (%) Precision (%) F2 score (%) Time (sec.)

VOI-90k-IND-CNN 53.3±17.7 58.8±11.7 53.4±15.3 6.9±0.4
VOI-190k-IND-CNN 62.6±19.2 52.6±10.7 59.2±15.9 15.1±1.3
IND-CNN 69.8± 20.1 47.7± 11.0 62.8± 16.1 110.5±59.0

VOI-90k-Share-CNN 53.7±16.4 59.1±11.0 53.9±13.9 6.5±0.4
VOI-190k-Share-CNN 63.1±17.8 53.0±10.0 59.8±14.1 14.1±1.2
Share-CNN 72.3± 19.6 46.4± 8.5 63.8± 14.3 103.4±55.7
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E. Share-CNN Combined with VOI selection

Table 4.4 compares the performance of CNN with or without VOI, where differ-
ent N values (adaptive thresholding to control the voxel cardinality) are consid-
ered. When sacrificing the voxel cardinality size (fewer voxels), the benefit is a
reduced computational complexity, e.g. going from∼100 secs. processing time to
∼10 secs. per volume, while the VOI selection is still able to reduce the number
of false positives at the cost of a slight drop in F2 score (for larger N ). Although
the VOI selection degrades the system performance, it dramatically decreases the
number of voxels to be classified by the CNN. For comparison, IND-CNN is also
included in the table, which shows a small performance degradation in efficiency
and accuracy (with/without VOI selection). Moreover, IND-CNN has also more
parameters in the model and is therefore more complex than Share-CNN. The
execution time is measured using a Titan 1080Ti GPU and Python 3.7 on a stan-
dard PC with 32-GB RAM and 2.4-GHz CPU.

4.4.4 Catheter Localization

Based on voxel classification, the model-fitting is applied to the binary segmen-
tation mask as discussed in Section 4.4.1, to localize the catheter (its skeleton
and end-points) and remove the outliers. We employ the following metrics to
measure the model-fitting performance: skeleton-based metrics, Volumetric Sim-
ilarity (VS), and Average Hausdorff Distance (AHD) (the VS and AHD metrics
are defined in Chapter 2). More specifically, the skeleton-based metrics include
two specific types: (1) End-points error (EE), which is characterized by the av-
erage distance between corresponding end-points on the detected catheter and
the end-points of the annotation; (2) The skeleton error (SE): the average distance
between 5 equally-sampled points on the detected skeleton and the ground-truth
skeleton. This error is defined as taking the shortest distance from each of the five
points on the detected skeleton to the ground-truth skeleton. Those five shortest
distances are averaged. The skeleton error has a more robust performance than
the EE. This performance difference is explained by analyzing the difficult cases.
For example, sometimes the catheter tip is attaching to the tissue, so that it is hard
to distinguish the tip from the tissue in B-mode imaging, as shown in Fig. 4.8 (a).
In such case, the EE metric will give a higher error than the SE. In any case, the
SE metric has an inherently better accuracy because its definition is more generic.
However, the EE could be more informative than the SE, because correctly local-
izing the tip of the catheter can facilitate the success of the intervention.

Here, we compare the catheter localization performance based on MF-AdaB,
Share-CNN, VOI-90k-Share-CNN, and VOI-190k-Share-CNN. The localization
performances are shown in Table 4.5, which are averages of a threefold cross-
validation with five times model-fitting in each volume. The table shows that
the proposed Share-CNN method achieves a better performance with a lower
position error, which is smaller than the diameter of the catheter. Furthermore,
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Table 4.5 Performance comparison on catheter localization. EE: end-point error, SE:
skeleton-point error, VS: Volumetric Similarity, AHD: Average Hausdorff Distance. The
numbers indicate mean±std.

Method EE (mm) SE (mm) VS (%) AHD (voxel)

MF-AdaB 3.33±2.76 2.91±2.55 67.3±20.7 6.71±7.72
Share-CNN 2.25±1.91 1.83±1.28 76.7±13.5 1.72±1.85
VOI-90k-Share-CNN 2.07±1.22 1.71±1.00 77.3±11.6 1.56±2.32
VOI-190k-Share-CNN 2.08±1.22 1.73±0.99 77.8±11.6 1.64±1.82

the results show that the VOI-based CNN can boost the localization precision
in terms of the lowest error. When comparing the results in Table 4.5 and Ta-
ble 4.4, the VOI pre-selection provides a lower F2 score, but better localization
accuracy. This is because VOI pre-selection provides a higher Precision perfor-
mance, so that a better sparse volume can be achieved. The model-fitting relies on
the SPD model-fitting, where fewer outliers would make randomly chosen con-
trol points more stable. Moreover, at the expense of 4% lower F2 score through
VOI-selection, we achieve 5-7 times faster voxel-based classification in the whole
volume, which poses a clear trade-off between classification accuracy and com-
putation efficiency. The whole processing chain based on VOI-190k-Share CNN
takes about 18 secs. execution time (Frangi filtering: 1.5 secs., VOI selection: 0.3
secs., CNN: 14 secs. and SPD-RANSAC: 1.9 secs.). As a conclusion, at the expense
of an acceptable degradation in segmentation performance by using coarse VOI
selection, the overall execution efficiency is drastically improved, while preserv-
ing sufficient detection accuracy.

4.5 Conclusions

In this chapter, we have developed a coarse-to-fine-based catheter detection
method in challenging 3D US data. The automated detection method is aim-
ing to localize and segment the instrument from complex anatomical tissues in
the received data. The proposed algorithm is characterized by three stages of pro-
cessing with increasing accuracy: VOI pre-selection, CNN-based voxel-level clas-
sification and mode-fitting optimization. In the proposed framework, we have
introduced a novel coarse-to-fine segmentation method by combing the a-priori
model matching with state-of-the-art CNN classification, which can robustly and
efficiently extract the catheter voxels from anatomical structures. Despite the rel-
atively low segmentation score of about 60%, the method can be successfully
applied because this detection rate is sufficient for readily initializing the first
stages of processing (VOI pre-selection and CNN-based classification), so that
the detection method can be used smoothly in the experiments.

The framework solves two key challenges for catheter detection in 3D US vol-
umes: (1) efficient coarse candidate selection, and (2) robust and accurate fine
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voxel classification. For the first challenge, VOI pre-selection is applied by com-
bining Frangi vesselness filtering with adaptive thresholding, which efficiently
and drastically discards the non-catheter voxels. As for the second challenge,
a computation-efficient CNN is proposed to accurately and efficiently classify
the resulting voxels from the VOI pre-selection. Based on the proposed novel
framework, the overall performance of our method is much higher than the con-
ventional handcrafted method with 10 times faster detection efficiency. With the
classified voxels, the proposed method can localize the catheter with an aver-
age end-point error of about 2.1 mm, while it overall needs an execution time
of 18 seconds per volume. Therefore, a higher efficiency can be achieved such
that the detection algorithm is more acceptable for clinical application. The pro-
posed algorithm already offers an order of magnitude faster execution, while the
last speed up can come from algorithm optimization and clever mapping on the
CPU.

The main contributions of this chapter are summarized in two aspects: (1)
a novel design of VOI pre-selection, which drastically removes the background
voxels without high computation cost, and (2) a novel design of a tri-planar
CNN for voxel-level classification, which significantly reduces the computation
cost and achieves better performance than the current literature. Further im-
provements are possible for improving the efficiency and accuracy for real-time
performance. The remaining challenges are: (1) the VOI pre-selection still
includes numerous irrelevant voxels, which is due to limited exploitation of
discriminative information, and (2) the CNN-based classification cannot fully
exploit the full semantic information due to the limited scope of the local 3D
patch and the applied tri-planar strategy.

These remaining issues are explored in the next chapter (Chapter 5), which
will investigate an advanced method that still focuses on a coarse-to-fine strat-
egy, but with a much better efficiency and accuracy. Specifically, a slice-based
neural network is employed to coarsely localize the instrument in the 3D US vol-
ume, which is then accurately segmented by a novel proposed 3D neural net-
work. These networks will jointly improve the detection to a semi-real-time per-
formance with a state-of-art accuracy comparable to the data from the latest lit-
erature.
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Instrument Segmentation by
Patch-of-interest-based FCN

5.1 Introduction

The previous chapter has introduced an advanced framework to create an au-
tomated instrument segmentation system, which distinguishes the target in 3D
US by a coarse-to-fine strategy. To delineate the instrument efficiently, a dedi-
cated coarse pre-selection of voxels of interest and a fine voxel classification have
been designed, which are evaluated to detect and segment the instrument in US
images. It has been shown that the dedicated voxel-of-interest pre-selection can
drastically reduce the computation task by a CNN for fine voxel classification.
However, this proposal has still limitations for the clinical real-time applications,
when considering the accuracy of coarse pre-selection and the overall efficiency.
In addition, the tri-planar strategy limits the collection of semantic information
by slicing, which constrains the fine segmentation performance based on voxel-
level classification. This chapter aims at addressing these limitations.

5.1.1 Objective and Brief System Outline

The objective of this chapter is to model the automated medical instrument seg-
mentation in 3D images by a region-of-interest-based semantic segmentation
method. This method involves a fast but coarse region-of-interest selection and
a fine semantic segmentation. As a result, the instrument in the 3D US data can
be segmented more robustly and with higher efficiency (compared to Chapter 4).
Following the general framework of Segmentation-Modeling, which has been pro-
posed in the previous chapters, the proposed method consists of three key steps,
as is depicted in Fig. 5.1. These steps are (1) efficient region-of-interest selection,

87



Arash Pourtaherian Dissertation TU Eindhoven March 21, 2022 14:26 Page 88 Sheet 108/214

�
�	 �
�	

�
�	

5. INSTRUMENT SEGMENTATION BY PATCH-OF-INTEREST-BASED FCN

(2) fine semantic segmentation for medical instrument, and (3) catheter localiza-
tion by model-fitting or other supplementary analysis.

Figure 5.1 Diagram of an improved coarse-to-fine instrument detection and segmentation
system. This chapter focuses on the first two steps of the diagram.

Based on the above approach, the key challenge is to design an efficient and
robust coarse region selection, and then accurately perform (fine) semantic seg-
mentation on the pre-selected space. More detailed challenges and correspond-
ing solution directions are elaborated in the following subsections.

5.1.2 Specific Challenges for Interested Region Selection

In order to coarsely select the interested region or voxels with high efficiency from
complex input US data, two essential aspects are considered for the coarse selec-
tion. (1) Efficiently selecting the region of interest, and (2) discriminate the instru-
ment voxels and omit the non-instrument voxels as much as possible. Although
Chapter 4 has addressed these challenges by a specifically designed Frangi fil-
tering stage, this method has limitations because first, it is computationally ex-
pensive due to iterative filtering at the voxel-level, and second, a pre-defined
vesselness filter limits the finding of discriminative information. We now briefly
address these issues and objectives associated with region-of-interest selection
and discriminative information exploration.

1. Discriminative information exploration: To better exploit discriminative infor-
mation of the instrument, a machine learning method for voxel classifica-
tion is commonly applied, such as voxel-level CNN classification. How-
ever, this method is computationally expensive and time-consuming. An-
other choice is to employ a state-of-the-art Fully Convolutional Network
(FCN) on the image, which can better exploit the semantic information by
a powerful GPU (such as widely adopted UNet [42]). Nevertheless, apply-
ing a 3D FCN on the whole 3D image for segmentation is challenging due
to the complex network design, which requires a large amount of training
images. Therefore, this network is difficult to be trained in our case.

2. Efficient region selection: By employing 2D FCN for semantic segmentation,
the candidate instrument region can be localized. Nevertheless, the itera-
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tive slice-based segmentation is still time-consuming and infeasible for ef-
ficient coarse selection, since it includes redundant computations for the
slice-by-slice processing.

To address these challenges, two directions are jointly considered. First, as a
compromise and to segment the instrument in 3D US, a 2D FCN is considered,
which is applied on the decomposed 3D US data. By doing so, the 2D slices are
extracted from the 3D volume, which thereby reduce the computation cost and
yet still partly exploit the discriminative information. Second, to further improve
the coarse selection efficiency, we propose to apply a spatial downsampling strat-
egy in both input slices and 2D FCN design. By doing so, the interested regions
containing the instrument can be obtained efficiently.

5.1.3 Specific Challenges for Fine Semantic Segmentation

With obtained coarse segmentation results, a fine segmentation is required on
the selected region. A CNN-based fine voxel classification has been proposed in
Chapter 4. However, this method is only classifying the remaining voxels with
voxel-based classification, which is computationally expensive and less accurate
than a 3D FCN. The involved challenges are now briefly listed below.

3. Patch-based segmentation: CNN-based classification only considers the se-
lected candidate voxels for fine segmentation, which omits the misclassi-
fied voxels from the coarse selection steps and therefore obtains worse re-
sults than direct classification on the whole image. In addition, it would
be computationally expensive when applying the CNN on all candidate re-
gions, such as a larger cube containing the segmented instrument from the
first step. Moreover, as discussed in the above, the 3D FCN is challenging
of its own when applied to the whole US images.

4. Exploration of FCN information: With a 3D FCN method, one key challenge
is the trade-off between network complexity and the amount of available
training images. In most cases, the amount of training images are limited,
which leads to a compact and simplified 3D FCN to reduce overfitting.
Another choice is to consider transfer learning by a pre-trained network
resulting from other tasks. Nevertheless, these pre-trained networks are
commonly obtained in 2D format, which is not feasible for 3D US data.

With the above considerations, a patch-based 3D FCN is considered for the
selected region, which can efficiently re-segment the candidate regions with
better results. Here, a patch is a selection of a voxel volume, thereby being
a three-dimensional information blob. To segment such 3D patches by a 2D
pre-trained network, additional information has to be fused into the network.
This extra information is supplied in the form of the direction of principal axis of
the volume, which is then aggregated with a 3D compact FCN at the feature-map
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level. In this way, the fine segmentation performance can be improved.

The sequel of this chapter is organized in the following way. Section 5.2
summarizes the related work in this field, detailing instrument detections by
non-learning approaches and learning-based methods. Section 5.3 describes the
proposed method, including every step of the coarse-to-fine segmentation. Sec-
tions 5.4 and 5.5 demonstrate and present the considered dataset, implementation
details and experimental results. Finally, Section 5.6 concludes the chapter and
presents some discussions on possible refinements.

5.2 Related Work

Image-based instrument detection or segmentation in 3D US has been studied
during the past years, but the amount of studies in this area are still limited. From
the viewpoint of methodology, these works can be classified into two categories:
non-learning-based methods and learning-based methods.

5.2.1 Non-learning-based Methods

Before the popularity of machine learning in computer vision, conventional tech-
nologies were applied to 3D US data to detect medical instruments, by analyzing
geometry and intensity properties of the instruments, such as shapes, intensity
distribution, etc. In [62], the authors proposed to apply Principal Component
Analysis (PCA) on thresholded 3D US volumetric data, which was derived by
applying cluster analysis, to select the most likely region as the detected instru-
ment. In [16], the Radon Transformation was applied on a 3D US volume to
accumulate intensity values, which was used to localize a straight electrode in
3D US. Similar to the Radon Transformation, the authors of [63] proposed to de-
tect the needle by a line-based description in 3D space using 3D Random Hough
Transformation. With a more advanced spatial and instrument model description
in 3D space, the authors of [20] proposed to apply a line filter in 3D US, which
can roughly filter out needle-like structures in 3D images. Then the 3D RANdom
SAmple Consensus (RANSAC) algorithm is applied to select the most likely re-
gion as the target instrument. In the same year, another publication [46] applied
template matching on 3D US volume to detect the catheter with complex post-
processing, which achieved successful detection results with a strong assumption
of catheter direction in the images.

In the above approaches, RANSAC with line filtering achieved a more
promising performance, because of a better thresholding for 3D US and effi-
cient model description by RANSAC. However, the above approaches do still
have limitations. (1) With limited discriminating information by the threshold-
ing method, it is generally hard to extract accurate 3D regions for instrument
detection. (2) Most of the above methods have been validated on simulated 3D
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images or phantom data, which are significantly different than real clinical ap-
plications. (3) Strong assumptions on the instrument shape and direction are
leading to an unsatisfactory generalization of the proposed methods. Therefore,
the above methods do not fully exploit the information of the instruments.

5.2.2 Learning-based Methods

These techniques have been studied in recent years, which classify voxels into the
binary instrument/non-instrument categorization. Handcrafted features were
proposed by considering Frangi vesselness filter [48], Gabor filterbank [28], time-
domain statistical feature [64] or multi-definition features [65], which achieved
reasonable instrument segmentation results albeit with complex post-processing.
However, these methods are less robust or partly inefficient when US images are
recorded from a complex anatomical environment, due to the voxel-based pro-
cessing.

Recently, deep learning, such as convolutional neural networks (CNNs) or
fully convolutional neural networks (FCNs), have been intensively studied and
applied for medical imaging-related areas [9]. CNNs are applied as a classifier
to distinguish the category of the voxels in the 3D US, which are used to seg-
ment medical instruments in the 3D US image. A voxel-of-interest-based CNN
pipeline [19] has been proposed to segment the instrument for cardiac interven-
tion. The Frangi vesselness filter [15] is firstly applied to select the the possible
voxels belonging to the instrument globally, and then a CNN is subsequently
applied to classify the remaining voxels. This method avoids iterative voxel pre-
diction on the full volume and achieves an inference time of 10 seconds on the
average per volume. However, this efficiency is still far from real-time clinical
application. More recently, slice-based semantic segmentation is applied to 3D
US images to segment the instrument efficiently [66, 67]. However, this 2D ap-
proach has limited performance due to the slice-based strategy, which hampers
the 3D information usage. Alternatively, patch-based 2.5D [68] and 3D [69] se-
mantic segmentation methods have been proposed to segment the instrument in
3D US. Nevertheless, similar to voxel-based methods, straightforward iterative
patch-based prediction on a full volume requires considerable computation time,
which is not attractive for real-time applications (typically requires more than
10 seconds per volume). Furthermore, the segmentation performances [68, 69]
are not optimized because of their limited information usage by a single network
designing with limited training samples.

5.2.3 Direction of Proposed Method

To accurately and efficiently segment the instrument in 3D US by a semantic seg-
mentation approach, a coarse-to-fine strategy is adopted for our method, which
contains three levels of processing for the US image.
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• Coarse slice-based segmentation: The 3D volume is decomposed into 2D slices
along principal directions of the volumetric data (i.e. two principal direc-
tions parallel to US cone). These slices are efficiently segmented by a 2D
segmentation network, yielding an initial coarse segmentation.

• Patch-of-interest selection: Based on the segmented slices, a 3D coarse seg-
mentation result can be obtained by combining the segmentations of the
slices into a coarse segmentation result. This 3D coarse result is divided
into 3D patches from the original volumetric data, where patches are se-
lected that contain (parts of) the initial coarse result. Then, corresponding
patches from the original 3D volume constitute the coarse segmentation re-
sult, which is further processed for fine segmentation.

• Fine patch-based segmentation: The patches from the 3D US image are pro-
cessed by a 3D network for fine segmentation, which exploits 3D contextual
information within the selected patches for a better segmentation result.
Therefore, the instrument can be segmented with accurate results, while
avoiding expensive computations on irrelevant regions.

Compared to recent methods from literature, the proposed method efficiently
exploits the discriminative information in coarse region selection, which provides
a better estimation for regions of interest. In addition, a 3D patch-based network
is considered for fine instrument segmentation. Therefore, the overall efficiency
is improved by avoiding the computation cost of using a 3D network on non-
instrument regions.

5.3 Methods

The proposed instrument segmentation method in 3D US images consists of three
steps for a coarse-to-fine strategy, which is depicted in Fig. 5.2. More details are
presented in the paragraphs below.

• Step 1 – Slice-based UNet for coarse segmentation: The input volume is de-
composed to slices along principal directions of the volumetric coordinates,
which are segmented by a slice-based 2D UNet. In addition, to further im-
prove the detection efficiency, a spatial downsampling approach is applied
to the 3D volume. This reduces the number of slices in the volumetric direc-
tion to one half of the amount of slice data. The spatial downscaling of the
individually selected slices is performed in the slice-based UNet inference
step. This downscaling is also implemented in the output layers of the net-
work. As a consequence, the 3D volume is coarsely segmented with high
efficiency.

• Step 2 – Patch-of-interest (POI) selection: Based on the initial coarse segmen-
tation, the 3D coarse segmentation is obtained by combining the segmented
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Figure 5.2 Overview of the proposed method. First, the input volumetric image is de-
composed to 2D slices for a slice-based UNet segmentation. Second, the slice-based
predictions are combined as an initial 3D coarse segmentation. In the second column,
the coarse segmentation volume is divided into 3D patches, and the patches containing
parts of the coarse segmentation of the instrument are selected. Third and in the right
column, the selected patches are segmented by a patch-based FuseNet, which leads to
fine segmentation results. The output volume is finally obtained based on the results of
selected patches with the fine segmentation inside.
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slices into a 3D volume. The 3D image is then divided into small patches,
and the patches containing parts of the coarse segmentation results are se-
lected with the coordinate information. Using that information, the corre-
sponding patches are selected from the original 3D US volume. This collec-
tion of selected 3D patches forms the coarse segmentation result.

• Step 3 – FuseNet fine segmentation: Based on the selected patches from 3D
US, a FuseNet is proposed to perform 3D semantic segmentation. These
patches’ voxels are re-segmented by the FuseNet, which thereby improves
the final performance into a fine segmentation by exploiting more 3D se-
mantic information. To better supervise the FuseNet, a hybrid loss function
is introduced to enable the network to simultaneously learn the pixel-level
and image-level discriminating information.

In the following subsections, the these steps are elaborated in detail. The subsec-
tions follow the order of the processing step from Fig. 5.2.

5.3.1 Slice-based UNet for Coarse Segmentation

When applying 3D UNet to the whole image for ROI-based feature extraction and
segmentation [70], the key challenge is the limited GPU memory for complex 3D
operations. Besides this, the instrument has a large variance in length and loca-
tion inside the 3D space, which is typically ranging from 9 to 100 voxels. As a
consequence, it is challenging to apply the feature-map-based ROI segmentation,
which is designed for colorectal tumor segmentation [70]. Alternatively, when
applying a patch-based segmentation, a two-stage coarse-to-fine strategy [20] is
commonly applied to avoid exhaustive segmentation in 3D space. The 2D slice-
based UNet was originally proposed to segment the instrument [66], which how-
ever processes limited 3D spatial information and obtains worse performance
than 3D UNets. Moreover, iterative slice-by-slice prediction leads to redundant
computations and reduces time efficiency, especially when considering this ap-
proach as a pre-processing method to extract detailed regions of interest. Based
on these considerations, we propose a slice-based UNet with downsampled pre-
diction, using spatial skipping of slices in the slice-taking direction, to improve
the prediction calculation efficiency and provide an initial coarse segmentation
result.

The framework for the coarse segmentation is shown in Fig. 5.3. Considering
a simple example, the input volume with a size of M3 voxels is decomposed into
2D slices along the lateral direction, which is denoted as slice setM. This set is
iteratively downsampled on slice basis to a ratio of K, and calledMK . For each
2D plane inMK , we further extract its two adjacent slices in original slice setM,
however with a spatial gap d1 (in voxels) between two adjacent slices. Based on
these slices, a three-channel image is constituted to mimic RGB imaging and used
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Figure 5.3 Coarse instrument segmentation framework and the corresponding slice-
based UNet. (a) Slicing of the 3D volume and initial segmentation per slice (slices are
spanned along axial and elevation directions in the drawing, and sliced in the lateral direc-
tion). (b) Detailed structure of Slice-based UNet architecture showing the dimensions of
the convolutions.

as the input for the slice-based UNet. The three channels are originated from the
spatial slice dimensions and the direction in which the slicing takes place.

The slice-based UNet is based on the VGG16 encoder [17], since it was proven
to be a successful backbone for the instrument segmentation task in US images
[66, 67]. As is shown in Fig. 5.3, the slice-based UNet has convolutional layers
with 5-level Max-pooling (green layers at the left side of Fig. 5.3 (b)). After the
last Max-pooling layer, the subsequent convolutional layers have kernel num-
bers 1024, 1024, and 2. After those layers, 4 deconvolutional layers are following,
which all have equal kernel sizes of 2 × 2. Moreover, for each deconvolutional
layer, an additional convolution operation is added to improve stability. To ex-
ploit more discriminating information at different scales, skipping connections
are considered to construct the UNet structure. To further improve the perfor-
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mance of UNet, deep supervision [71] is employed at different feature scales at
the decoder side. With the proposed spatial downsampling slicing strategy, the
output volume is obtained with a faster prediction for the initial coarse segmen-
tation. To address the challenging case that the instrument is crossing the slices
with small footprint, an orthogonal slicing strategy along the elevation and lat-
eral directions is adopted in the coarse segmentation [66, 67] as the complemen-
tary to the spatial stride d1. Because more spatial information of the instrument
can be observed, this is better than the case when only applying single direction
slicing during the training.

It is worth to mention that due to the nature of the ultrasound imaging, if the
instrument orientation is parallel with the axial direction and thus perpendicular
to the phased array planes of sound waves, the instrument wave reflection of the
sound wave cannot be captured by the US transceiver. This occurs because there
is only a small circle to reflect. Therefore, when slicing the 3D US volume, the ax-
ial direction is omitted, since the instrument is rarely positioned in parallel with
the axial direction (the physician has learned to position the instrument in the
orientations such that it can be successfully imaged). In addition, the processing
of the US image can be done at a detailed resolution for finding the instrument.
An example case that the instrument is crossing the slice with small footprint is
depicted in Fig. 5.4 (a). The 2D UNet is pre-defined to segment the small footprint
because a small spatial stride d1 is applied in both available slicing directions for
training to capture sufficient discriminative information.

Figure 5.4 Example segmentation result of an extreme case where the instrument is
crossing the slice with a small footprint. (a) Slice view from the plan perpendicular to
the dominant instrument orientation. (b) Slice view from one alternative perpendicular
direction in the same case.

5.3.2 Patch-of-interest (POI) Selection

This subsection applies the second stage of the processing US volume, in order
to find the patches containing the instrument. As a consequence of the decon-
volution operation and input set MK , the output prediction is downsampled
with a ratio of K compared to the original input image in each dimension. The
downsampled 3D prediction is later upsampled to its original size by interpola-
tion. Thresholding and connectivity analysis are applied to select the two largest
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connected components as the POI volume for patch extraction. Given the in-
put image, the 3D volumetric data is divided into small non-overlapping patches
with size D3 voxels. By comparing the coarse segmentation and pre-allocated
patches, patches containing coarse instrument predictions are extracted as the
input for the FuseNet (the second CNN). It is worth to mention that because of
the zero-padding in convolution operations for FuseNet, a (D+S)3-voxels patch
is actually extracted based on the patch above, where the S voxels serve as the
compensation for information leakage at the patch boundary, which is depicted
in Fig. 5.5. In this chapter, we select D = 32 and S = 16 based on empirical
results, which yields a balance between efficiency and accuracy.

Figure 5.5 Input patch of FuseNet, which has a size of (D + S)3 voxels. Parameter D
is the non-overlapping patch size while S is the padding parameter to compensate for the
boundary. (a) 3D patch visualization, where the red patch has a size of D3 voxels and a
dashed patch has a size of (D + S)3 voxels. (b) 2D slice example from the 3D patch.

5.3.3 Patch-based FuseNet for Fine Segmentation

In this section, a novel FuseNet for 3D segmentation is proposed. The overview
of the proposed FuseNet is shown in Fig. 5.6, which consists of two individ-
ual UNet variants with different spatial operations for 3D patch segmentation:
a semi-3D Direction-Fused UNet (DF-UNet) and a full-3D Pyramid-UNet, which
are depicted in Fig. 5.7 and Fig. 5.8, respectively. Intuitively, the DF-UNet exploits
the intra-slice information by using a 2D feature extractor, while it is utilizing the
inter-slice information by high-level tensor operations. This is denoted as 2.5D
feature map, at the top right of Fig. 5.6. Nevertheless, this network cannot cor-
rectly analyze 3D contextual information, due to its 2D feature extraction. In
contrast, the 3D Pyramid-UNet exploits the 3D information in a more straight-
forward way. However, this 3D UNet may not be properly trained with limited
datasets. To make use of these two successful networks and compensate their
limitations, FuseNet is proposed by creating a high-level feature fusion of these
sub-networks. Moreover, it also addresses limitations for an individual network:
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(1) an individual network may not properly exploit the spatial information, es-
pecially DF-UNet, and (2) a single network would lead to knowledge bias. As
a solution, making an ensemble of several networks for prediction can typically
improve the overall performance. From the nature of FuseNet, it exploits the
semantic information from different dimensions and fuses them for instrument
segmentation. The details of the Direction-Fused UNet and 3D Pyramid UNet
are discussed in the sequel.

Figure 5.6 Overview of the patch-based FuseNet, which consists of Direction-Fused
UNet, Pyramid UNet and a feature-fusion part. The feature maps from two different
branches are concatenated and processed by external convolutional operations to gen-
erate the output prediction.

A. Direction-Fused UNet
An input patch with size (D+S)3 voxels is decomposed into D+S planes along
each axis. For each plane, a 3-channel image is formed based on the adjacent
images of the actual plane with a spatial gap of d2 voxels along the axis. This is
visualized in Fig. 5.7 and denoted as a 2.5D image at the bottom. As a result, the
patch leads to D + S different 3-channel images in each direction (padding is
applied at the boundary plane). Then, each image is processed by the 2D UNet,
which is based on a VGG16 encoder and a customized decoder. The encoder is
based on the VGG16 network, from which the dense connections are removed.
Then, the output of the encoder is filtered by three convolutional layers with
filter numbers 1024, 1024, and 2 (the middle of Fig. 5.7 (b)). The decoder stage
includes four deconvolution layers with masks of 2 × 2, 2 × 2, 2 × 2 and 4 × 4

pixels, in sequential order. Furthermore, after each deconvolution layer, an extra
convolution operation is included to smooth the features. To limit the cost of
the GPU memory, we perform summation instead of concatenation for skipping
connections. As shown in Fig. 5.7 (a), the images are processed by the 2D UNet
and its output features are stacked based on the plane’s original positions,
to construct feature maps along three axes together with high-dimensional
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Figure 5.7 Overview of the patch-based Direction-Fused UNet, which is constructed
based on a 2D UNet and feature-space operations. (a) Input 3D patch is decomposed
into adjacent slices in three different directions simultaneously, which are processed by
the 2D UNet to generate slice-based feature maps. The slice-based feature maps are
then permuted to form feature maps in 3D space. (b) Input 2.5D image with stride d2 as
the input for 2D UNet.

transposition. Furthermore, feature maps from different axes are accumulated to
form a fused feature map (top right of Fig. 5.7 (a)). Finally, the final prediction
of the DF-UNet is obtained by applying a 3D convolution and a sigmoid layer
(at the right most of Fig. 5.7 (a)). A further detail of the implementation is to
accelerate the training and inference efficiency. This is achieved by extracting
3-channel images per direction to form a mini-batch for the 2D UNet, rather than
a slice-by-slice processing of the feature extraction.

B. Pyramid-UNet
The proposed Pyramid-UNet is based on a customized 3D UNet, which has a
simpler network architecture and avoids overfitting [61]. For a feature pyramid-
based network that goes deeper in layers, the discriminating information at
the low-level feature map vanishes (pixel-level, bottom branch of Fig. 5.8)
and degrades the segmentation performance. Even though the UNet employs
skipping connections to preserve the low-level information between encoder
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Figure 5.8 Overview of the patch-based Pyramid UNet, which is a 3D UNet with pyrami-
dal input and output. The input 3D patch is reduced by max-pooling operations to gen-
erate low-level feature maps, which are concatenated with high-level features, so that the
degradation of information is compensated. The pyramidal outputs are based on deep
supervision, which therefore allows the network to preserve the discriminating information
at different image scales.

and decoder, it still cannot adequately exploit the information at different
image scales [43, 72]. To preserve more detailed information at different image
scales, we consider to introduce pyramid input branches. The pyramidal inputs
at different scales preserve low-level information within the encoding stage,
which potentially compensates the vanishing of information during the feature
extraction of the UNet. Furthermore, to better supervise and synchronize the
features at different decoder scales, we also use deep supervision [71] and
introduce an extra convolutional block for better stability. By introducing the
pyramidal inputs and outputs to the UNet, the proposed network potentially
preserves more information at different feature scales than the standard UNet
for US images. As depicted in Fig. 5.8, the network has 32 kernels at the very
beginning, which is gradually doubled when the information is passed to deeper
layers in the right direction.

C. Feature Fusion
Based on the Direction-Fused UNet and the Pyramid UNet, feature fusion is per-
formed to combine the features from different feature extractors. As shown in
Fig. 5.6, feature maps extracted from two networks, e.g. denoted by dark-yellow
cubes, are concatenated prior to convolution operations, which is followed by
two convolutional layers with the filter numbers of 24 and 12 in the final 3D con-
volution layer (red cube). The final prediction of FuseNet results from the feature
fuse layer and the sigmoid layer, which is indicated as a red cube in Fig. 5.6.
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5.3.4 Hybrid Loss for Patch-based Fine Segmentation

To better supervise the overall patch-based FuseNet and to enforce it to learn
more contextual information, we propose a hybrid loss function. This is in con-
trast with the conventional voxel-based difference, which can be trained with
cross-entropy or Dice loss. The hybrid loss function includes a class-balanced
focal loss (FL) and a contextual loss (CL). Using a predicted patch and corre-
sponding ground truth, which are denoted as Ŷ and Y , the hybrid loss function
is defined as

LossHybrid(Ŷ , Y ) = LossFL(Ŷ , Y ) + LossCL(Ŷ , Y ), (5.1)

where LossFL denotes the class-balanced focal loss and LossCL is the contextual
loss. For each predicted output of the FuseNet, Eqn. (5.1) is applied with unity
weight for each individual loss, except the outputs from deep supervision in the
Pyramid UNet, which are assigned as 0.6 and 0.4 for the middle and the top
branches in Fig. 5.8, respectively.

The loss function, such as Dice or cross-entropy, is typically applied for seg-
mentation tasks in medical imaging. However, it is not optimal when seg-
mented objects have large size variations and imbalanced class distributions in
the ground truth [73]. Moreover, when the instrument has a small size in 3D
space, then the boundary voxels, which are difficult to classify, are more critical
than easily-classified voxels at the center part of the instrument. The commonly
used loss functions may not be optimal, especially for the POI-based task, which
requires a more accurate segmentation. Therefore, we have adopted the class-
balanced focal loss function, which is based on the binary cross-entropy and the
F -score loss [74, 67]. The latter loss term helps in steering the segmentation. The
proposed focal loss is then defined by

LossFL(Ŷ , Y ) = −
( N∑
i=1

ωci(1− ŷci)σ log(ŷci) +

N∑
i=1

ωni(1− ŷni)σ log(ŷni)
)

+
(

1−
(1 + β2)

∑N
i=1 yciŷci

(1 + β2)
∑N
i=1 yciŷci + β2

∑N
i=1 yciŷni +

∑N
i=1 yniŷci

)γ
,

(5.2)

where yci denotes an instrument voxel from the ground truth, ŷci represents the
voxel’s prediction probability for the instrument class, while yni and ŷni are non-
instrument voxels and their corresponding prediction probability, respectively.
Parameters β and ω are controlling the weight between different classes, which
are calculated as the square root of the inverse of the class ratio. Power parame-
ters γ and σ are controlling the slope of the loss curve, which are empirically set
to γ = 0.3 and σ = 2.

Conventionally, networks are learned by employing a voxel-based loss func-
tion, such as cross-entropy or Dice loss, which ignores the high-level differences
between the prediction and ground truth at a global level. To allow the network
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Figure 5.9 Overview of the patch-based contextual loss, which is constructed based on a
shared encoder for both prediction and ground-truth patch. The feature-space differences
are measured by L2 distance. BN indicates the batch normalization.

to learn a better contextual representation or so-called high-level feature repre-
sentation, we propose a contextual loss, which formulates the contextual differ-
ence in a high-level feature space. The prediction and ground truth are processed
by a contextual encoder, which is depicted in Fig. 5.9, to generate high-level fea-
ture vectors in latent space, which are denoted as SŶ and SY , respectively. As a
consequence, the contextual loss LossCL is characterized by

LossCL(Ŷ , Y ) = ||CE(Ŷ )− CE(Y )||2 = ||SŶ − SY ||2, (5.3)

where || · ||2 denotes the L2 distance and CE(·) represents the context encoder in
Fig. 5.9.

5.4 Experiments and Implementation

5.4.1 Datasets Description

Ex-vivo RF-ablation catheter dataset: The ex-vivo dataset consists of ninety-two
3D cardiac US images from eight porcine hearts. During the recording, the hearts
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were placed in a water tank with an RF-ablation catheter (diameter≈2.3-3.3 mm)
inside the heart chambers. The US probes were placed next to the heart, to
capture the images containing the instrument. Our data collection setup is
visualized in Fig. 5.10 (a) and (b). From the dataset, example 2D B-mode image
is shown in Fig. 5.10 (c). The dataset includes volumes with a size ranging from
120× 69× 92 to 294× 283× 202 voxels, in which the voxel size was isotropically
resampled to the range of 0.4–0.7 mm. The datasets were manually annotated
by technicians with guidance and approval of clinical experts, to generate the
binary segmentation mask as the ground truth.

Figure 5.10 (a) Setup for ex-vivo 3D US dataset collection with an RF-ablation catheter.
(b) Porcine heart placed in the water tank, and the US probe is placed under the heart
while the catheter is going through the vein. (c) Example slice of ex-vivo recordings with
the RF-ablation catheter. (d) Example slice of in-vivo recordings with the guidewire.

In-vivo TAVI guidewire dataset: The collected in-vivo dataset includes eighteen
volumes from two TAVI operations on humans. During the recording, the sono-
grapher recorded images from different locations of the heart chamber without
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any influence on the procedure. The volumes were recorded with a mean volume
size of 201 × 202 × 302, where the volume voxel size was resampled to 0.6 mm.
The applied instrument in the in-vivo dataset is a guidewire (0.889 mm), having
roughly one-third of the diameter of a catheter. The images were manually an-
notated in the same way as the ex-vivo dataset. An example image is shown in
Fig. 5.10 (d).

5.4.2 Training Procedures

The proposed method has separate networks for coarse and fine segmentation
tasks, thus the training procedures are individually described in the sequel. For
the ex-vivo dataset, the images are randomly divided into 62/30 volumes for
training/testing. Considering the limited data in the in-vivo dataset, a threefold
cross-validation is applied with fine-tuning, which is based on the pre-trained
ex-vivo model for the RF-ablation catheter.
A. Training for coarse segmentation: To train the slice-based UNet, each
annotated instrument voxel in the ground truth is used as the center of the
input sliced image, which introduces a translation invariance in a natural way
to facilitate instrument segmentation. Non-instrument slices, i.e. slices using
non-instrument voxels as the center point, are downsampled to the same size
as the instrument voxels, to generate some images without instrument inside.
The network is initialized based on a pre-trained VGG16 encoder, which is
trained by the Adam optimizer with learning rate of 0.00001 using the Dice loss.
The ex-vivo dataset is trained based on the above description, while the in-vivo
dataset is trained with learning rate as 0.00001 for 2,000 iterations, based on the
pre-trained ex-vivo model. During the training, rotation, mirroring and contrast
transformations are applied on-the-fly to augment the amount of training
images. Meanwhile, to learn the case that the instrument is crossing the slices,
the slice sampling is randomly applied along elevation or lateral directions,
following an orthogonal strategy. It is should be noticed that the downsampling
strategy is only applied in the testing stage, to accelerate the inference efficiency
and to avoid possible degradation of the information usage in the training phase.

B. Training for fine segmentation: The training patches are selected from instru-
ment voxels [69], where an instrument voxel is used as the patch center. The
Direction-fused UNet (DF-UNet) and the Pyramid-UNet are initially, separately
trained by the input patches using the Adam optimizer with a mini-batch size
of 4 and 8. More specifically, the learning rate for the DF-UNet is 0.0001 for trans-
fer learning, while it is set to be 0.001 for the Pyramid-UNet to train from scratch.
Each individual training is based on three epochs. Based on the pre-trained net-
works, i.e., DF-UNet and Pyramid-UNet, the feature-fusion part is then jointly
trained with a learning rate of 0.00001 for one epoch, which finally generates the
feature-fuse output. The network is trained first by a standard Dice loss function
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to converge. Then, the parameters are fixed to globally learn the contextual en-
coder for 3,000 iterations, after which the whole networks are jointly trained by
the proposed hybrid loss function until they jointly converge. The ex-vivo dataset
is trained based on the above description, while the in-vivo dataset is trained
with a learning rate of 0.00001 for 2,000 iterations based on the pre-trained ex-
vivo model. This difference in training is caused by the limited training images
for the in-vivo dataset. During the training, rotation, mirroring and contrast trans-
formations are applied on-the-fly to augment the amount of training images.

5.4.3 Evaluation Metrics

To evaluate the performance of the proposed method, we consider the Dice score
(DSC) and Hausdorff Distance (HD) as the evaluation metrics for different sce-
narios. As for coarse segmentation, DSC is used to evaluate the capabilities of the
slice-based UNet, which means that for a higher DSC value a better POI selection
can be achieved with fewer outliers. As for patch-based segmentation, DSC and
HD are used to measure the network performances under different settings for
the instrument segmentation task. Moreover, the average execution time for pre-
diction is also considered for the framework comparison.

5.5 Experimental Results

In this section, we thoroughly validate the proposed POI-FuseNet with respect to
accuracy and efficiency. Meanwhile, several ablation studies are also considered
to validate the proposed components.

5.5.1 Ablation Studies

A. Coarse segmentation performance of the slice-based UNet: Several perfor-
mance comparisons of the slice-based UNet are conducted in this section. First,
the variations of the spatial gap d1 between adjacent slices are validated from 0
to 5. Second, the variations of downsampling ratio K are tested, which is as-
signed to be 0.25, 0.5, and 1.0. The networks of the ex-vivo dataset are initialized
based on the pre-trained VGG16 network for ImageNet, while the networks of
the in-vivo dataset are initialized based on their corresponding ex-vivo models.
The results are summarized by barplots in Fig. 5.11. Meanwhile, the inference
efficiency for the downsampling ratio K = 0.25, 0.5 and 1.0 are about 0.2 sec., 0.6
sec., and 2.6 sec., respectively. These values are obtained by performing hybrid
computations with both CPU and GPU, where the most time-consuming part is
CPU-based slicing. It can be observed that a larger spatial gap d1 provides a
higher performance, which is because more spatial correlations are captured by
the stride of slices. However, a too large stride d1 may degrade the performance
due to spatial decorrelation. For the downsampling ratio, K = 0.5 provides the
best trade-off between efficiency and performance. Although K = 0.25 provides
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a higher segmentation efficiency for 3D US, detailed spatial information is miss-
ing during the slicing, which therefore leads to unacceptable performance. As
a consequence, we have experimentally selected hyperparameters d1 = 2 and
K = 0.5 for the coarse segmentation method, to select the patch-of-interest for
further experiments. Because the length of the instrument inside 3D US volumes
varies, the number of selected patches can range from 2 to 8, which is counted
by automatically matching the coarse prediction to the pre-allocated patches in
3D US images. Based on statistical analysis of the results, the average number of
selected patches by the coarse segmentation is about 5.

Figure 5.11 Barplots of DSC performances using the slice-based UNet for different set-
tings of spatial stride d1, downsampling ratio K, for ex-vivo and in-vivo datasets.

B. Ablation studies of proposed the DF-UNet: The ablation studies of the
Direction-fused UNet (DF-UNet) on variations of the spatial stride d2 between
adjacent slices are validated from 0 to 5. Moreover, we also validate whether
the DF-UNet achieves a higher performance than the UNet without DF, i.e. only
a single branch of the three in Fig. 5.7 (a). The results are depicted in Fig. 5.12,
which are trained with a standard Dice loss. The networks of the ex-vivo data
are trained with an initialized pre-trained VGG16, since it provides a higher
performance than when trained from scratch (w/o TL). Similar to the slice-based
approach, the networks of the in-vivo dataset are initialized based on their
corresponding ex-vivo models. From the results, the DF-UNet achieves a better
performance than training from scratch or only considering a single direction
by using the same d2, which shows a more powerful capability of transferring
the knowledge of the pre-trained ex-vivo dataset. Moreover, with a larger spatial
gap, an improved 3D space information description can be achieved. As for the
in-vivo dataset, spatial gap d2 has less influence and variance on the performance
than the results in the ex-vivo dataset, which is because of the lower image
variation within the TAVI images. Furthermore, the proposed DF-UNet is
consistently better than training from scratch and single-direction fusion in both
datasets. Based on the results, the spatial stride is experimentally selected as
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d2 = 3 for further feature fusion.

Figure 5.12 Barplots of DSC performances for different values of the spatial stride d2
for the Direction-fused UNet (DF-UNet), UNet without DF (w/o DF) and DF-UNet without
transfer learning (w/o TL) in ex-vivo dataset. Results of the DF-UNet, UNet w/o DF and
DF-UNet w/o TL in the in-vivo dataset are also reported.

C. Ablation studies of the proposed Pyramid-UNet: Specifically, to validate the
effectiveness of the components of the Pyramid-UNet, the following configura-
tions are listed.

(1) Compact-UNet trained by the Dice loss (3D Pyramid-UNet without multiple
input/output).
(2) Atrous Spatial Pyramid Pooling (ASPPv1) with dilation rate {1,2,4,8}
based on the encoder of the proposed Compact-UNet under guidance of
Deeplab v3+ [75], which is also trained with the Dice loss.
(3) Using two 3D convolution layers from the Compact-UNet, the ASPP opera-
tion is directly applied on the feature maps at original image resolution, which
means that the ASPP is applied at low-level features directly (input layers). The
adopted dilation rate is the same as in ASPPv1 and is trained with the Dice loss.
The obtained model is denoted as ASPPv2.
(4) The proposed 3D Pyramid-UNet trained with Dice loss.

The results are summarized in Table 5.1. The basic backbone Compact-UNet
provides the baseline performance for the ablation studies. Based on this ar-
chitecture, a pyramid input-output structure is introduced to exploit multi-scale
features, which improves the segmentation performance with better discriminat-
ing information extraction. However, this multiple input and output branches
introduce more computation costs. As shown in Fig. 5.13, Compact-UNet gen-
erates a more noisy feature map where more outliers and blurry boundaries are
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Figure 5.13 Example slices of selected feature maps from the Compact-UNet, Pyramid-
UNet, DF-UNet and FuseNet. Images are re-scaled into the same intensity range for
visualization purposes. The top row contains feature maps from the ex-vivo dataset, while
the bottom row shows feature maps from the in-vivo dataset.

obtained than the Pyramid-UNet. Compared to ASPP networks, the proposed
Pyramid-UNet has a better performance than both ASPP structures from our
case. This performance difference occurs because the Pyramid-UNet structure
exploits richer complex feature relationships at different image scales in both in-
put and output branches. Initially, ASPP has been proposed after a complex and
proper encoder for images, such as a VGG or ResNet encoder [43]. However, in
our approach, the compact network encoder leads to less complex and discrimi-
nating feature maps for ASPP, which cannot represent sufficient information for
further steps.

Table 5.1 Ablation studies of the proposed Pyramid-UNet, measured by the Dice score
(DSC), Hausdorff Distance (HD) (expressed as mean±std), and average prediction times.

Method RF-ablation Catheter ex-vivo
DSC (%) HD (voxels) Time (sec.)

Compact-UNet w. Dice 62.2±20.0 13.3±15.6 ∼10
ASPPv1 w. Dice 63.8±16.7 11.8±18.6 ∼11
ASPPv2 w. Dice 57.8±21.7 14.8±19.3 ∼17
Pyramid-UNet w. Dice 65.8±18.9 11.3±13.8 ∼11

Method TAVI Guidewire in-vivo
Compact-UNet w. Dice 63.8±9.2 9.8±5.5 ∼12
ASPPv1 w. Dice 63.6±9.0 8.9±4.6 ∼13
ASPPv2 w. Dice 62.6±9.5 8.5±3.4 ∼19
Pyramid-UNet w. Dice 64.5±8.3 8.8±3.2 ∼12
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D. Ablation studies of the proposed FuseNet: Moreover, ablation studies on
POI-FuseNet are also performed to validate the effectiveness of its components,
which are gradually introduced to discuss the design of the proposed method.
Besides these, also the training steps will be explained. The main steps are as
follows.

(1) The Direction-fused UNet trained by the Dice loss (DF-UNet) is based on
the configurations in the above sections. (2) The Pyramid-UNet is also trained
with the Dice loss. (3) An EnsembleNet is trained with the Dice loss, which is
our proposed FuseNet without feature fusion layer, which is instead replaced
by the averaged output from two individually trained networks (DF-UNet and
Pyramid-UNet) without joint training. (4) The FuseNet is pre-trained with the
Dice loss. (5) Then, the FuseNet is trained with the Contextual loss (CL) under
the guidance of the Dice loss. Specifically, we fail to obtain the result solely using
CL without Dice loss, which shows the CL is a kind of compensation of pixel-
level loss in high-level space. (6) The FuseNet is trained with the Focal loss (FL).
(7) The FuseNet is trained with the Hybrid loss (HL), which combines the FL and
CL.

The results are shown in Table 5.2. From the results, the DF-UNet and
Pyramid-UNet obtain similar performances, but with different architecture and
information-extraction steps. More specifically, the Pyramid-UNet directly ex-
tracts the 3D information from 3D space, which exploits semantic information
in a straightforward manner. However, this network may not fully exploit in-
formation with limited training samples and complex 3D space. In contrast, the
DF-UNet decomposes the 3D information into 2D slices with tensor operations,
which process the 3D semantic information in a different way than the Pyramid-
UNet. With this intra-slice feature extraction strategy, the DF-UNet could better
exploit semantic information within the slices at the high-level feature space and
combine them by the semi-3D operation. Nevertheless, the DF-UNet is rather
time-consuming, due to the complex 2D-3D transformations in the network de-
sign. Furthermore, the DF-UNet cannot exploit 3D information due to its design
nature. By integrating these two networks with the feature-level fusion, the pro-
posed FuseNet achieves better performance than each individual network. From
the demonstration in Fig. 5.13, fused features from two subnetworks compress
backgrounds, such as tissue and chambers, while improving the confidence of
the instrument-related voxels. More crucially, it is also better than a naive en-
semble without feature fusion, which directly averages the predictions from two
individual networks. Nevertheless, the overall prediction time is drastically in-
creased, due to the dual network-based integration on a single GPU. Compared
to a FuseNet that is trained by a standard Dice loss, the proposed hybrid loss can
further improve the segmentation performance in both datasets. More specifi-
cally, when compared to FuseNet with Dice loss, both contextual loss (CL) and
focal loss (FL) can improve the segmentation results in different aspects. As for
CL, it encourages the contextual-level consistency between the prediction and
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Table 5.2 Results of ablation studies of the proposed FuseNet, measured by the Dice
Score (DSC), Hausdorff Distance (HD), which are expressed by their mean±std. The
average execution time is also measured in seconds (w. means ‘with’).

Method RF-ablation Catheter ex-vivo
DSC (%) HD (voxels) Time (sec.)

DF-UNet w. Dice 64.2±18.4 11.2±13.8 ∼28
Pyramid-UNet w. Dice 65.8±18.9 11.3±13.8 ∼11
EnsembleNet w. Dice 64.1±18.4 11.2±13.8 ∼39
FuseNet w. Dice 67.7±15.9 10.1±13.0 ∼41
FuseNet w. CL 68.9±14.7 8.8±10.2 ∼41
FuseNet w. FL 69.1±11.1 9.0±9.1 ∼41
FuseNet w. HL 70.5±9.2 7.3±3.9 ∼41

Method TAVI Guidewire in-vivo
DF-UNet w. Dice 64.1±7.9 8.2±2.9 ∼32
Pyramid-UNet w. Dice 64.5±8.3 8.8±3.2 ∼12
EnsembleNet w. Dice 63.2±8.3 8.7±3.3 ∼44
FuseNet w. Dice 65.0±8.3 8.3±3.2 ∼47
FuseNet w. CL 65.8±8.2 8.1±3.0 ∼47
FuseNet w. FL 65.9±8.0 8.0±3.0 ∼47
FuseNet w. HL 66.5±7.5 8.2±2.9 ∼47

annotation in high-level latent space. In contrast, the FL addresses the extremely
imbalanced class distributions (instrument voxels are about 1% of the patch vox-
els) and focuses on the hard-classified voxels in 3D space, which leads to higher
performance. Based on these two losses, the proposed hybrid loss (HL) achieves
a higher performance than the individual CL and FL, and it also provides a lower
standard deviation. It is worth to mention that the HL with contextual encoder
is only considered in the training stage, such that the extra prediction complexity
is not introduced during the testing phase. By comparing ex-vivo and in-vivo
datasets, the hybrid loss has more influence on the ex-vivo data, which is ex-
plained by a larger image variance within the dataset. Since the performance
of the network is improved by feature fusion, the prediction time is also in-
creased, because of the augmented complexity of the proposed network archi-
tecture. All the GPU-based computations are measured on a GTX 1080Ti GPU
using Python 3.6 with TensorFlow 1.10.
E. Ablation studies of the proposed POI-FuseNet: The results of the ablation
studies of the proposed patch-of-interest (POI) strategy are presented in Table 5.3.
Specifically, three different K values are validated.

The first validation involves the proposed POI-FuseNet trained with HL with
downsampling ratio 0.25 (POI-FuseNet w. HL, K=0.25). Second, the proposed
POI-FuseNet is validated with the setting but with downsampling ratio 0.5 (POI-
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Table 5.3 Results of ablation studies of the proposed POI-FuseNet, measured by the Dice
Score (DSC), which are expressed by their mean±std. The average execution time is also
measured in seconds. The best settings are indicated in bold symbols (w. means ‘with’).

Method RF-ablation Catheter ex-vivo
DSC (%) HD (voxels) Time (sec.)

FuseNet w. HL 70.5±9.2 7.3±3.9 ∼41
POI-FuseNet w. HL, K=0.25 68.8±11.1 9.1±8.3 ∼0.8
POI-FuseNet w. HL, K=0.5 70.5±9.2 7.3±4.1 ∼1.3
POI-FuseNet w. HL, K=1.0 70.5±9.2 7.5±4.1 ∼3.3

Method TAVI Guidewire in-vivo
FuseNet w. HL 66.5±7.5 8.2±2.9 ∼47
POI-FuseNet w. HL, K=0.25 65.8±7.9 8.1±3.1 ∼0.9
POI-FuseNet w. HL, K=0.5 66.0±8.3 8.2±2.9 ∼1.4
POI-FuseNet w. HL, K=1.0 66.0±7.9 8.0±3.0 ∼3.4

FuseNet w. HL, K=0.5). The third validation is same as the above, but without
downsampling (POI-FuseNet w. HL, K=1.0).

With the introduction of the POI selection by coarse segmentation, the to-
tal prediction time per volume is drastically accelerated because the iteratively
patch-based prediction is avoided. More specifically, when the downsampling
ratio of slice-based UNet is increasing, the performance of POI-FuseNet is im-
proved at the expense of time efficiency. There is only a small difference in perfor-
mance between K = 0.5 and K = 1.0, while the performance is degraded using
K = 0.25 in the ex-vivo dataset. This is because some catheters are partly missing
from the slices due to the larger downsampling value, and therefore only a part
of the catheter can be segmented. As a consequence, a higher K value provides
a better generalization for the POI-FuseNet. Although the coarse segmentations
have different performances due to the different K values, the final prediction
performances of POI-FuseNet show not much differences in the end. Finally, the
proposed FuseNet is trained on the in-vivo dataset by fine-tuning the parameters
of the ex-vivo model, which achieves a 3-5% higher Dice score than training from
scratch. Nevertheless, the overall framework of the proposed POI-FuseNet can-
not be trained in an end-to-end style, which is limited by the coarse-to-fine strat-
egy. This limitation is due to the large memory capacity requirement for complex
3D US images and limited training datasets, when compared to the state-of-the-
art object segmentation methods in the current computer vision field. As a result,
the feature maps at the full-image level cannot be used for POI purpose, such as
in Mask R-CNN [76].
F. Ablation studies of different patch processing: Besides the above ablation
studies in network configurations, we have also validated the proposed patch
processing strategy, which considers zero-padding during the convolutional op-
erations. This means that with a fixed patch size, i.e., D + S = 48, the parame-
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terD indicates a non-overlapping patch size and the parameter S is an extending
parameter to compensate for the information leakage. The total patch size is em-
pirically chosen to trade-off the network complexity, size of the instrument in 3D
US and prediction efficiency [69]. As shown in Table 5.4, we have experimentally
compared different combinations of D and S in terms of DSC and HD to validate
the significant influence of these parameters. Based on the observations on the re-
sults in the table, a patch with S = 0 generates the worst segmentation result w.r.t
full-volume cases, which is because the patch boundaries are affected by padding
operations during the convolution operation. Even the skipping connections are
applied to compensate the information leakage. In contrast, for a setting with
S = 32, it provides slightly better performance than the case of S = 16, while sig-
nificantly degrading the prediction efficiency (even compared to the POI-based
condition, which is at least two times longer). As a conclusion, a proper combi-
nation strategy, i.e., (D,S), of patch-based segmentation should be considered, to
provide stable results for semantic segmentation (D = 32, S = 16 in our case).

Table 5.4 Segmentation performances for different combinations of parameters D and S,
measured by the Dice score (DSC) and Hausdorff Distance (HD), which are expressed
by their mean±std. The (D,S) pair indicates the combination of different values of D +
S = 48. The corresponding average execution times are also measured in seconds. Bold
values denote the setting reported in this chapter, providing a good trade-off.

(D,S)
RF-ablation Catheter ex-vivo

DSC (%) HD (voxel) Time (sec.)

(16,32) 70.7±9.0 7.2±4.2 ∼288
(32,16) 70.5±9.3 7.3±3.9 ∼41
(48,0) 65.3±13.7 10.8±11.1 ∼13

(D,S) TAVI Guidewire in-vivo
(16,32) 67.0±7.7 8.1±3.2 ∼443
(32,16) 66.5±7.5 8.2±2.9 ∼47
(48,0) 65.2±8.4 8.8±3.5 ∼15

5.5.2 Performance Comparison with Learning-based Methods

We have compared the proposed method with the learning-based state-of-the-
art instrument segmentation methods on our challenging datasets, such as Ga-
bor feature extraction with the SVM classifier (GF-SVM) [28], multi-definition
and multi-scale feature fusion with the AdaBoost classifier (MF-AdaB) [65], or-
thogonal slice-based ShareFCN [66], Voxel-of-interest-based CNN (VOI-CNN)
for voxel-based classification [19]. Furthermore, other US-based segmentation
methods, like Prenatal-UNet [61] and Compact-UNet with Anatomically Con-
strained neural network [77], i.e. ACNN, are also considered. The results are
shown in Table 5.5, where DSC is the Dice score and HD is the Hausdorff Dis-
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Table 5.5 Segmentation performances for different methods, measured by the Dice score
(DSC), Hausdorff Distance (HD), which are expressed by their mean±std. The average
execution time is measured in seconds. All the methods are validated on our datasets
(symbol ‘-’ means could not be calculated due to memory limit).

Method RF-ablation Catheter ex-vivo
DSC (%) HD (voxels) Time (sec.)

GF-SVM [28] 3.3±8.5 - >100
MF-AdaB [65] 36.5±19.0 19.1± 8.5 >100
ShareFCN [66] 52.8±21.0 15.6±16.7 ∼3
VOI-CNN [19] 58.5±10.7 11.5± 7.7 ∼10
Prenatal-UNet [61] 24.6±24.9 38.3±22.3 ∼2
ACNN [77] 61.0±18.3 14.6±13.9 ∼10

FuseNet 70.5± 9.3 7.3 ± 3.9 ∼41
POI-FuseNet 70.5± 9.2 7.3 ± 4.1 ∼1.3

Method TAVI Guidewire in-vivo
DSC (%) HD (voxels) Time (sec.)

GF-SVM [28] 1.0±1.7 - >100
MF-AdaB [65] 37.6±23.3 23.9±18.2 >100
ShareFCN [66] 55.9±12.1 11.6± 7.8 ∼4
VOI-CNN [19] 58.6± 7.9 11.0± 5.1 ∼11
Prenatal-UNet [61] 53.2±14.7 18.8±11.1 ∼2
ACNN [77] 63.9± 9.7 8.6 ± 4.7 ∼12

FuseNet 66.5± 7.5 8.2 ± 2.9 ∼47
POI-FuseNet 66.0± 8.3 8.2 ± 2.9 ∼1.4

tance. Meanwhile, some example results are visualized in Fig. 5.14, which qual-
itatively demonstrates the results of voxel-based classification, slice-based seg-
mentation and patch-based segmentation on our datasets.

From the table, several observations and conclusions can be made, which we
have clustered into five topics.

(1) Comparison with handcrafted features: As for handcrafted features with
voxel-based classification, the performances are worse than with deep learning
methods, which are due to the limited 3D information representation after
feature extraction, especially for the Gabor filterbank method. First, it is a single-
scale feature, which means it focuses on a specific spatial resolution. However,
this extraction cannot handle our dataset with different spatial resolutions and
instrument diameters. Second, the Gabor feature mainly focuses on boundary
contrast at the edge in a homogeneous or semi-homogeneous background, which
works properly in needle segmentation for anesthesia by 3D US. Nevertheless,
in our case, the boundary of a catheter can be blurred with a lower contrast
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Figure 5.14 Instrument segmentation results of different methods on example US vol-
umes. Top row: ex-vivo, bottom row: in-vivo. (a) Segmentation results displayed in 3D US
volumes, where the 3D US volume is blue, the ground truth of the instrument is green, and
the instrument segmentation is red. (b) Segmentation results displayed in 2D slices with
corresponding original image, ground truth and segmentations. Green: ground truth. Red:
segmentation. All the 2D images are corresponding to the above 3D images.

114



Arash Pourtaherian Dissertation TU Eindhoven March 21, 2022 14:26 Page 115 Sheet 135/214

�
�	 �
�	

�
�	

5.5. Experimental Results

with anatomical background, which leads to significant difficulties for using
a single-scale Gabor feature with a linear support vector machine. Third, the
experimental settings are clearly different. The original paper applied a leave-
one-out cross-validation method with an image-specific threshold to obtain the
highest performance. However, in our case, we applied a dataset-level threshold,
which leads to a much lower performance than the originally reported value. In
contrast, the multi-scale approach with multi-definition features achieves much
higher performance to about 36% DSC. Because of the multi-scale and definition
features, more instrument-related information can be described from different
viewpoints. Meanwhile, the non-linear Adaptive Boosting classifier provides
a non-linear decision boundary which is more advanced than a simple LSVM,
so that a higher performance is obtained. However, handcrafted feature design
is strongly relying on experience and instrument model estimation, which
therefore limits the information usage from training images. As a comparison,
the proposed POI-FuseNet can extract much more discriminating information
by considering a data-driven method with task-specific network design.

(2) Comparison to VOI-CNN: Compared to VOI-CNN, which is based on a
pre-filtered voxel selection, the proposed patch-based semantic segmentation
method portrays an improved performance. This is because the VOI-CNN
method can degrade the true positive rate by introducing an imperfect voxel
selection, whereas the POI-based method can overcome this degradation. More
specifically for VOI-selection, the interested voxels are obtained from the re-
maining voxels after Frangi filtering, which cannot fully preserve the instrument
voxels by a simple filtering, even when a CNN follows afterwards to classify the
voxels’ category [19]. In contrast, the POI-based approach selects the possible
regions from the 3D volume using patches, which contains full-instrument-
related voxels for a subsequent segmentation by the FuseNet. As a consequence,
the instrument voxels are re-calculated by a more accurate CNN with a higher
accuracy, yielding also a more accurate instrument segmentation.

(3) UNet structure: Compared to a more complex and generalized UNet [61], the
proposed Compact-UNet achieves better performance, because of a smaller input
size, simpler architecture, and task-specific design. Although the Prenatal-UNet
achieves a fast prediction time as a result of larger patch size, i.e. 643 voxels, it is
much more difficult to be trained for our instrument segmentation task, since the
instrument occupies a small volume in a large 3D patch space. From Table 5.5 it
follows that the proposed POI-FuseNet obtains a higher accuracy and efficiency
than the Prenatal-UNet.

(4) Contextual description: When compared to the ACNN employing anatomical
constrained knowledge to formulate the contextual information, the proposed
method achieves a clearly increased performance. This is explained by the
design of the ACNN, which includes a fixed pre-trained shape description
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encoder for ground truth. This is not suitable for prediction with large variations
in location and intensity values. Actually, considering the design of the ACNN,
it is preferably used for anatomical structure segmentation with a fixed global
location and size, which is easily learned and described by an Auto-Encoder.
However, in our case, the instrument is located at any position of the input
patches and within the patches. Moreover, the prediction of the input patch
is ranging from zero to unity, instead of a fixed integer value. This variation
leads to an encoder in ACNN that cannot perfectly represent the contextual
information difference between the ground truth and the prediction. As a
consequence, the ACNN cannot improve performance when compared with the
proposed jointly trained approach. The jointly training procedure enables to
adaptively learn the contextual information with varying instrument locations
and intensity values.

(5) Information exploitation in 2D and 3D: Patch-based semantic segmentation
approaches, i.e., Pyramid-UNet and DF-UNet, achieve a higher performance
than SOTAs because of the richer spatial information usage. Moreover, the DF-
UNet obtains better performance than the Compact-UNet, since the parameters
are initialized from the pre-trained model, which is shown in ablation studies.
With extracted feature maps from two independent networks, the FuseNet
obtains more accurate segmentation results. This accuracy is explained by better
hierarchical exploitation of contextual information among voxels.

From qualitative illustrations in Fig. 5.14, voxel-based classification methods,
i.e. MF-AdB and VOI-CNN, generate a non-smooth surface, which results from
voxel-by-voxel classification with a limited field-of-view. As for slice-based seg-
mentation, i.e. ShareFCN, it generates a smoother surface and boundary, caused
by the semantic information usage. However, when compared to the proposed
patch-based segmentation, i.e. POI-FuseNet, the slice-based method has lower
performance due to the limited and degraded spatial information compared to
real 3D space.

In terms of the prediction efficiency, the proposed POI-FuseNet achieves
a prediction efficiency of ∼1.3 seconds per volume, which includes ∼0.6 sec.
POI pre-processing and 0.7 secs. patch-based refining segmentation. Because
the patch-based segmentation re-calculates the voxels’ category, the proposed
method does not hamper the segmentation accuracy when compared to the VOI-
based CNN [19]. From our experiments, voxel-based methods, such as GF-SVM,
MF-AdaB, or LateCNN, consume more than 100 seconds on our computer plat-
form, which is due to the iterative voxel-by-voxel calculations. As for patch-
based methods on a full volume, they consume about 10-50 seconds to obtain the
final prediction (based on the architecture of the networks), which is still far from
real-time implementation. In contrast, the proposed POI-FuseNet preserves the
segmentation accuracy by the re-calculation of voxels, but also improves the seg-
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mentation efficiency. All the GPU-based methods are measured on a GTX-1080Ti
GPU using Python 3.6 with TensorFlow 1.10.

It is worth to mention that a recent publication [78] has proposed to segment
the needle from full-volume data. However, with our challenging dataset, we
have failed to obtain a successful segmentation result, which may be explained
by the much more simple network architecture and the more challenging task for
cardiac US imaging. Moreover, when compared to our preliminary study [69],
which applies morphology operations to connect the closest component and is
therefore time-consuming for post-processing, the proposed POI-FuseNet omits
this complicated post-processing, so that it is more efficient and robust. Other-
wise, the morphology operations in 3D space would take more than 10 seconds
of processing time for each data volume.

5.5.3 Performance Comparison with Non-learning-based Methods

Besides the comparisons to learning-based methods, we also compare the pro-
posed method with non-learning-based methods, in particular Principal Com-
ponent Analysis on thresholded 3D US (PCA) [62], Parallel Integral Projec-
tion (PIP) [16], Random Hough Transformation (RHT) [63] and line-filter-based
RANSAC (Line-RANSAC) algorithm [20]. Since the above methods are using
different approaches than direct segmentation, we adopt other metrics for com-
parison. Instead of testing volume using DSC and HD, we use success volume
detection and the detection error as the metrics. These metrics represent success
rate and the endpoint error of the instrument detection in terms of voxels. More
specifically, the endpoint error is defined as the average distance of two end-
points of the instrument skeleton from the ground truth, i.e. tip and tail point, to
the instrument axis obtained from the detection.

The experimental results are shown in Table 5.6. From the table, the proposed
deep learning-based method shows 100% success rate with the lowest axis er-
ror, while traditional computer vision techniques have less detection rate with
higher errors. The reasons are explained as follows. First, non-learning methods
segment the images with simple and straightforward thresholding approaches
(PIP does not apply thresholding). These approaches cannot extract accurate
instrument-related voxels and omit background voxels, i.e. voxels from tissue
and heart chambers. Second, non-learning-based methods are focusing on post-
processing to localize the instrument, which heavily relies on the assumption that
the background is not complex, while the instrument has a higher intensity dis-
tribution than the background. This also explains why these methods achieve
promising results on simulated or phantom images. However, real tissue-based
images for cardiac US are much more challenging for non-learning-based meth-
ods, which therefore obtain a much lower success rate. Third, it is worthwhile
to discuss the PIP method, which relies on parallel intensity projection for thin
instrument detection. As can be observed, it can be considered as a failure. This
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occurs because the cardiac instrument has a similar intensity distribution as heart
tissue, which is visible in Fig. 5.10. More crucially, the heart tissue occupies much
more space than the instrument, such that the PIP method automatically con-
verges to the direction with tissue passing through the estimated instrument axes,
such as the heart wall of Fig. 5.10 (d). The experiments with non-learning-based
methods further demonstrate the importance of the segmentation stage, which
promises a robust and accurate instrument detection. It is important to men-
tion that with a thicker instrument, it is much easier to detect the catheter than a
guide-wire from 3D US data. Moreover, for catheter with a different diameter, a
thicker tube would be easier to detect by a non-learning-based method, such as
Line-RANSAC or RHT. However, the complex deep learning method can provide
a more generalized result with sufficient training images.

Table 5.6 Detection performances for different non-learning methods, measured by suc-
cess rate and average endpoint error (EE) in voxels (std. is excluded since we counted
based on successful detection). All methods are validated on the earlier applied datasets.

Method RF-ablation Catheter ex-vivo
Success rate (%) EE (voxels)

PCA [62] 23.3% 3.7
RHT [63] 80% 9.6
PIP [16] 3.3% 13.2
Line-RANSAC [20] 76.7% 4.0
Proposed 100% 1.8

Method TAVI Guidewire in-vivo
PCA [62] 27.8% 4.3
RHT [63] 44.4% 12.6
PIP [16] 0% -
Line-RANSAC [20] 38.9% 3.7
Proposed 100% 2.9

5.6 Discussion and Conclusions

This chapter has proposed an efficient and accurate coarse-to-fine instrument
semantic segmentation method for 3D cardiac US images with high efficiency
and accuracy. The proposed method is characterized by two key neural net-
works to follow a coarse-to-fine strategy. The proposed method solves two
key challenges for medical instrument segmentation in 3D US: (1) efficient and
accurate coarse region-of-interest selection, and (2) robust and accurate fine
semantic segmentation. For the first challenge, a slice-based UNet is proposed by
combining it with spatial downsampling, which efficiently extracts the regions
containing instrument voxels. As for the second challenge, a robust and accurate
semantic segmentation network is proposed, which exploits the contextual
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voxel information for high segmentation performance. Based on the proposed
method, the overall performance is much higher than conventional handcrafted
techniques and a CNN-based classification method. In addition, the overall
computational efficiency is drastically improved to about 1 second per volume.
Therefore, a near real-time performance is achieved, so that the algorithm is
more acceptable for clinical applications.

Discussion: Some aspects of our method still need further discussion and
argumentation.
(1) To train the network, a voxel-level annotation is required, which is extremely
challenging and laborious for low-quality 3D ultrasound imaging. Therefore,
it is difficult to design a system for clinical usage that is based on large-scale
image-based supervised learning using annotations.
(2) For each 3D US volume containing the instrument, the instrument should
be visible in the B-mode US image for achieving a successful segmentation.
However, this visibility is not always ensured during real clinical usage. Since
the relative pose between the US probe and the instrument changes, the instru-
ment may become invisible because of acoustic reflection. This aspect is quite
fundamental and seriously hampers the robustness of the proposed method.
(3) The employed patch-based method in the second stage cannot fully exploit
the semantic information within the whole image context, which is due to the
limited GPU processing power. Therefore, a carefully designed FCN can lead to
a higher performance with better exploration of contextual information.
(4) With the validation on an in-vivo dataset, the proposed method presents
a significant value for clinical applications. Nevertheless, further study on
extended in-vivo data is required to support further evaluation, because of the
limited amount of covered volumes and patients. Also, the proposed method
is only validated for two applications, i.e. a limited dataset for RF-ablation
procedure simulation and static images from TAVI operations. Therefore, its
stability and generalization, such as whether it can be used in other cardiac
operations or US-guided interventions, still needs to be validated in future work.

Conclusion: The proposed method contains the following notable contribu-
tions. (1) A patch-based framework is applied for instrument segmentation in 3D
US, which reduces the computation complexity and maintains the segmentation
performance for the challenging segmentation task. The proposed framework
is based on a patch-of-interest selector, which can efficiently select the most
interesting regions in 3D US, thereby improving the segmentation speed for
real-time applications. (2) The proposed FuseNet combines multi-defined fea-
tures from 2.5D and 3D feature extraction, which improves the segmentation in
complex 3D US volumetric data. With the proposed feature extraction networks,
the FuseNet can extract direction-fused features and full 3D spatial features,
which leads to better information usage than solely considering a 3D UNet.
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(3) A hybrid loss function is proposed to guide the networks to simultane-
ously learn discriminative information at the pixel level and image level. This
approach therefore improves the segmentation performances. The results of
extensive validations experiments performed with the proposed method achieve
a segmentation performance of about 70% Dice score and approximately 1-sec.
execution time per volume.

In the next chapter, a novel coarse detection method and fine segmentation
network will be investigated. This method can reduce the annotation effort
while preserving the segmentation accuracy. Specifically, a reinforcement learn-
ing method is considered to coarsely detect the instrument in 3D US images,
which is then segmented by a semi-supervised learning trained CNN network.
This framework preserves the performance and efficiency, while drastically re-
ducing the annotation effort for the deep learning training.
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6.1 Introduction

The previous chapter has introduced a semantic segmentation framework to de-
tect medical instruments in 3D US, which is based on a patch-based coarse-to-fine
strategy. In the first stage, the instrument region is coarsely localized based on
the global segmentation results, after which the fine segmentation is performed in
the instrument region. These approaches are all trained by using fully supervised
learning. Therefore, the overall segmentation performance heavily relies on the
annotation accuracy. Nevertheless, it is challenging to train CNN networks on a
large-scale image dataset with carefully annotated ground truth. This challenge
lies mainly in the effort for annotation, which is laborious and time-consuming.
As a solution for this challenge, this chapter aims at addressing the training of
deep learning networks with a more efficient approach for annotation.

6.1.1 Objective and Brief System Outline

The objective of this chapter is to develop an automated medical instrument seg-
mentation method with only small annotation effort. This method involves a fast
but coarse region-of-interest selection and a fine semantic segmentation, which
largely follows the strategy of Chapter 5. Nevertheless, in contrast with the pre-
vious chapter, both stages of coarse detection and fine segmentation networks
are trained with much less annotation effort than conventional fully supervised
approaches. This is possible by adopting a method that consists of the same two
key steps, as is depicted in Fig. 6.1, but now the implementation is completely
different in the way that the networks are learned.
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Figure 6.1 Diagram of a coarse-to-fine instrument localization and segmentation system.
The diagram has a similar structure as in the previous chapter, but the training methods
are different, and also the localization in the first stage is modified.

Based on the above approach, the key challenge is to design a coarse local-
ization and accurate segmentation methods without large annotation effort, like
following e.g. a semi-supervised approach. More detailed challenges and corre-
sponding solution directions are elaborated below.

6.1.2 Challenges for Annotation Efficient Coarse-to-fine Segmentation

In order to coarsely select the interested region with high efficiency from com-
plex input US data, Chapter 5 has proposed a slice-UNet for coarse segmentation.
In addition, based on the coarsely selected region, a fine segmentation network
has been proposed, which segments the selected regions by exploiting the fu-
sion of multi-defined features from 2.5D and 3D feature extraction. However,
this method requires careful voxel-level annotation to train the CNNs, which is
expensive and laborious to obtain.

To address this limitation, network design in both coarse and fine stages are
re-considered to work with a reduced annotation effort.

• Coarse localization: To coarsely localize the instrument and to train coarse
segmentation, careful voxel-level annotation is required. With little anno-
tation effort and localizing the instrument efficiently, a region-based anno-
tation can be used, e.g. by indicating an instrument’s center point. In this
way, the network still can efficiently search the target location in the com-
plex 3D US data, so that the laborious voxel-level annotation for all the
training images can be avoided. For instance, reinforcement learning (RL)
is a solution for learning the surroundings of the center point to contribute
the coarse instrument localization.

• Modified learning for fine segmentation: With limited annotation available for
fine segmentation, we aim at using all the US data available from the exper-
iments, and using the coarse localization information. This can be achieved
by employing a training method that learns from the selected surround-
ings of the coarse instrument localization, yet only with limited annotation
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available. For example, semi-supervised learning (SSL) is a method that
adopts unlabeled data for information exploration.

Based on the above challenges and directions, the followed approach of this
chapter is to exploit the RL and SSL training techniques for the primary two steps
for coarse and refined segmentation. The RL is most suited for coarse instrument
localization, because it can work on regions where the instrument is considered
to be present. Accordingly, the SSL training technique is attractive for the refine-
ment segmentation, which is carried out as the second step.

The sequel of this chapter is organized in the following way. Section 6.2 sum-
marizes the related work in this field, detailing coarse detections and SSL-based
methods. Section 6.3 describes the proposed method, including every step of the
coarse-to-fine segmentation and the integration of the proposed learning tech-
niques. Sections 6.4 and 6.5 demonstrate and present the considered dataset,
implementation details and experimental results. Finally, Section 6.6 concludes
the chapter and presents some discussions on possible refinements.

6.2 Related Work

6.2.1 Coarse Detection

A coarse-to-fine strategy normally considers to first locate the instrument region
and then perform fine segmentation. Detection networks can be employed to de-
tect and localize the instrument region in the image. Typical examples for such
networks are the Single Shot Multibox Detector (SSD) [79] and the Faster R-CNN
[80], which are trained with available bounding-box annotations. These CNNs
need to be trained on sufficient data, since they include regression networks with
a complex architecture. In our task, because only limited 3D US images are avail-
able for training, the detection network cannot offer the desired performance.

Another approach to object detection in US is the reinforcement learning (RL)
method for landmark detection [81], which iteratively finds the targets (called
landmarks) in 3D images by a sliding window. Compared to the detection net-
works, which learn the discriminative information of the target by supervised
learning, the RL method models agent-environment interaction to reach the task
solution. Using a Deep Q-network (DQN), the RL method has been applied to
several medical imaging applications with promising results [81, 82, 83]. The
DQN models the movement prediction into a discrete value rather than continu-
ous bounding boxes, which is easier to be trained with limited training images.
In addition, the DQN employs a simplified decision CNN, which is less senstive
to overfitting than detection networks.
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6.2.2 Semi-supervised Learning

To reduce the annotation efforts for CNN training and leverage abundant unla-
beled images, semi-supervised learning (SSL) methods [84, 85, 86, 87, 88, 89] have
been studied for medical image segmentation. The most popular SSL methods
follow a consistency-enforcing strategy [90, 91], which leverages the unlabeled
data by constraining the network predictions to be consistent under perturba-
tions of input or network parameters. A typical example is the student-teacher
model, which is an implementation of a knowledge-distillation strategy [92].
Specifically, the teacher-student model has been proposed to distill the prediction
distribution knowledge from a complex model (so-called teacher), which is then
used to train a simplified and faster model (commonly denoted as student)[93].
The recent SSL methods exploit the teacher-student approach [94], which train
a teacher model based on labeled images, and then the labeled and unlabeled
image predictions from the teacher model are used as supervision for training
the student model. However, for a standard teacher-student model, unlabeled
images cannot be learned by the teacher model, which may lead to unstable pre-
dictions for student supervision. Alternatively, the mean teacher (MT) [90] model
exploits the unlabeled information in both teacher and student models simulta-
neously, which achieves state-of-the-art performance in a variety of applications.
Nevertheless, several limitations exist for a standard MT model in segmentation
tasks. First, a typical MT model expects to minimize the distance between the
predictions from two models [90]. However, a direct distance measure without
prediction selection would lead to performance degradation, which is caused by
too many less confident sample points. As a result, it is challenging for image
segmentation tasks with many unreliable prediction points. Meanwhile, the soft
information components of predicted results are not properly exploited because
of the simple distance measurement. Second, the updating of temporal param-
eters in the MT model leads to information correlation, which unfortunately in-
troduces a knowledge bias [95].

To address the above issues, several solutions have been proposed recently.
An uncertainty-aware self-ensembling model is proposed in [88, 89] to make
use of certainty estimations for the segmentation of unlabeled images, which
enhances the segmentation performance with limited annotations. Although
uncertainty-aware methods [88, 89] achieve superior performances, they are all
based on the mean teacher approach with exponential moving averaging (EMA)
for parameter updating, which still incurs a parameter-correlation problem
between teacher and student models. To overcome the network weight bias
from EMA, a Dual-Student model has been proposed to perform interactive
prediction refinement [95]. Although the Dual-Student model achieves a better
performance than a the MT method, it only exploits the pixel-level information
without considering the contextual information, which may not be sufficient
for the semantic segmentation task. To deal with this problem, a novel hybrid
constraint on predictions is proposed in this chapter, which better exploits
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the voxel-level and contextual-level information simultaneously in unlabeled
images.

Based on the above literature analysis, we first adopt the DQN method as
the localization approach to minimize the annotation effort for coarse region se-
lection, while it also yields an efficient inference procedure. Second, to finely
segment the selected regions with an annotation-efficient solution, we propose a
novel SSL training scheme based on the uncertainty estimation, imposing both a
voxel-level and image-level constraint. In this way, an annotation-efficient solu-
tion can be obtained for medical instrument segmentation in 3D US.

6.3 Proposed Method

6.3.1 Direction of Proposed Method

To accurately and efficiently segment the instrument in 3D US, which is trained
by an annotation-efficient approach, the proposed method contains two levels of
processing for the US image.

• Coarse region detection: The 3D volume is processed by a regional patch-
based RL framework (e.g. DQN), which learns to coarsely localize the in-
strument region in 3D US with an environment-action policy. The method
is trained with a simplified annotation, which reduces the annotation effort
compared to the existing instrument localization methods.

• Fine patch-based segmentation: The patches from 3D US images are processed
by a 3D network for fine segmentation, which is trained by a novel SSL
framework. The proposal is able to exploit unlabeled information at both
the voxel and contextual level, which leverages abundant unlabeled images
for instrument segmentation.

Compared to recent methods from literature, the proposed method efficiently
exploits the contextual information in coarse region selection, which offers a ro-
bust estimation for regions of interest with the annotation-efficient solution. In
addition, a 3D patch-based network is considered for fine instrument segmen-
tation, which is trained on a large number of unlabeled images while using a
few labeled images only. Therefore, the overall annotation effort is significantly
reduced to train a successful segmentation framework.

As shown in Fig. 6.2, the proposed coarse-to-fine instrument segmentation
framework includes two stages. First, the instrument’s center point is local-
ized by the Deep Q-Network (DQN). Second, the Dual-UNet, trained by the SSL
framework, is applied on local patches around the estimated location for fine
instrument segmentation.
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Figure 6.2 Schematic diagram of the proposed framework. (1) Top box: The input 3D
volumetric data is processed by a coarse localization algorithm based on the deep Q-
network, which localizes the instrument center point in 3D space. (2) Bottom box: Local
patches around the detected points are extracted and segmented by the Dual-UNet, which
is trained by the proposed SSL scheme (bottom-left green box). The output of the Dual-
UNet is the average result of two predictions. The predicted patches are combined back
to generate the final prediction output.

6.3.2 Deep Q Learning as a Coarse Selection

The detection of the instrument’s center point in 3D US is modeled under the re-
inforcement learning (RL) framework, which is inspired by behavioral psychol-
ogy. The system performs an interaction between the agent, i.e. human or a
learning agent, with the 3D US image as an environment. Specifically, RL is de-
fined as a computational method to learn the interaction with the environment
so as to maximize the cumulative reward signals [81]: The learning agent with
its current observation state s interacts with the environment E , by performing
successive actions a ∈ A to maximize the expected reward r.

As shown in Fig. 6.2 (upper part), we define the observation state in Cartesian
coordinates as a 3D observation patch with a size of d3 voxels w.r.t. the patch
center point (x, y, z). To interact with the input image (enviroment) E , the action
space A has six elements, which are defined as {±ax,±ay,±az}scale w.r.t. three
different axes with a resolution of step size ’scale’, based on a coarse-to-fine multi-
scale strategy [82, 83]. Based on the setting of scale, e.g. in our case scale∈ {9,3,1},
a multi-scale strategy is performed from large to small scale values in the action
space. For instance with scale=9, parameter +ax indicates that the observation
region is moved forward along the x-axis by 9 voxels. When the action output
falls into local oscillation, i.e. making the observation moving around the region,
the scale is reduced to 3 and the procedure continues in a refined way. Based on a
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multi-scale strategy, the observation-agent interactions can efficiently converge to
the target location [82, 83]. With the observed state s, the agent makes a decision
about an action from A, to iteratively update the location of the 3D patch. After
each action, a reward r of the RL system is specified by

r = sign (D(Ptg, P tt−1)/scale−D(Ptg, P tt)/scale) , (6.1)

where D denotes the Euclidean distance between two points, Ptg being the
ground-truth point, Ptt is the current state, Ptt−1 is the previous state, while
scale represents the step size scale in the environment E , see [81]. As a result, the
reward r ∈ {−1, 0,+1} indicates whether the agent invokes the patch to move
forward or leave it to the instrument center point. With the obtained reward,
the optimized action policy can be implemented by learning a state-action value
functionQ(s, a), which can be approximated by the Deep Q-Network (DQN) [82].

The state-action value function Q(s, a) is commonly called Q-function for Q-
learning, which maps input states to corresponding actions. Nevertheless, the
commonly employed Q-table [81] leads to the curse of dimensionality when us-
ing 3D images, and is therefore impossible to be implemented in practice. Alter-
natively, the observation-action strategy serves as a dimension-reduction projec-
tion, such that it can be approximated by a CNN for image-based observation. As
a result, the Q-function is approximated by the CNN, as proposed in the yellow-
dotted box in Fig. 6.2 (within top box). To train the DQN, the corresponding loss
function is defined as:

LDQN = Es,r,a,â∼M [
(
r + γDQN ·maxâQ(â, ŝ; ω̃)−Q(a, s;ω)

)2
], (6.2)

where the future reward discount parameter γDQN is set to 0.9, â and ŝ are action
and observed state in the next step, respectively. Parameter M is the experience
replay to de-correlate the random samples. Parameters ω and ω̃ are trainable
parameters of the Q-networks for the current and target network, respectively.
The architecture of the adopted Q-network is depicted in Fig. 6.2, where four
recent patches are used as the input [82, 83]. The search is based on historical
prediction and is terminated after local oscillation.

6.3.3 Semi-supervised Dual-UNet for Segmentation

With the coarse localization of the instrument in 3D US, the instrument is then
segmented by the proposed patch-based Dual-UNet, which is trained by a hy-
brid constrained SSL framework. Given the training patches containing N la-
beled patches {(xi, yi)}Ni=1 and M unlabeled patches {xj}Mj=1, where x is the 3D
input patch and y is the corresponding 3D annotation, the task is to minimize the
following hybrid loss function in Eqn. (6.3):

Lhybrid = Lsup + Lsemi, (6.3)
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where the Lsup means the standard supervised loss and Lsemi represents the pro-
posed constraints for semi-supervised learning. They are introduced in the para-
graphs below.

A. Supervised loss function Lsup

In this chapter, we consider the standard cross-entropy and Dice hybrid loss func-
tion as the supervised loss. Given the label y and its corresponding prediction ŷ,
the supervised loss Lsup is defined as

Lsup = BCE(y, ŷ) + DICE(y, ŷ), (6.4)

where the BCE and DICE are abbreviations for binary cross-entropy and binary
Dice loss as defined in [96].

B. Semi-supervised loss function Lsemi

To exploit the unlabeled image under the supervised signal from labeled data,
we propose an SSL training scheme, based on a novel hybrid constraint, which
employs a Dual-UNet as the segmentation network. The proposed Dual-UNet
structure is motivated by the mean-teacher architecture, which learns the net-
work parameters by updating a student network from a teacher network [88, 89].
Intuitively, this method introduces two networks whose parameters are highly
correlated due to the strategy of performing an exponential moving average
(EMA) on the updating process. As a result, the obtained knowledge is biased
and may be not discriminative enough [95]. Alternatively, we propose to use
two independent networks, to learn the discriminating information by knowledge
interaction through uncertainty constraints. Specifically, the hybrid constraint
consists of two types of constraints: a voxel-level constraint and a contextual-
level constraint. As for the voxel-level constraint, an intra-network uncertainty
constraint (Lintra) and an inter-network uncertainty constraint (Linter) are defined
to exploit the voxel-level discriminating information for the predictions of the
unlabeled images. These two constraints are based on the uncertainty estimation
of the predictions, which select the most confident predictions as the supervised
signal. Therefore, the unlabeled images’ predictions are communicated between
two individual networks, which enforce the networks to generate similar predic-
tions with different parameter values. In addition, context-level prediction con-
straints, i.e. label-wise constraint LLCont and network-wise constraint LNCont, are
introduced to exploit the semantic information between unlabeled and labeled
predictions, and contextual similarities between networks, respectively. As a re-
sult, the context-level constraints can leverage complementary information for
voxel-level uncertainty estimations. In our work, we consider the Compact-UNet
as a backbone architecture [69], which has proven to be successful in segmenting
instruments in 3D volumetric data, as shown in Fig. 6.3. Details of the hybrid
constraint components are provided in the sequel.
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Figure 6.3 Overview of the backbone Compact-UNet. The architecture is simplified for
the patch-based binary segmentation in 3D US images. The numbers indicate the filter
aperture sizes of 3× 3× 3×N , where N indicates the number in the figure.

B.1. Intra-network Uncertainty Constraint Lintra: Although there is some literature
directly using the prediction from a network to guide the unsupervised learning
[86, 92], the direct usage of the predictions may include noisy and misclassified
voxels, which leads to unsatisfactory results. To generate reliable predictions
from history and use them to guide the network to gradually learn discriminating
information, we design an uncertainty constraint for each individual network.
Given an input patch, T predictions are generated by T times forward passes,
based on a Monte Carlo Dropout (MCD) approach and patch input with Gaussian
noise (GN) [97]. Therefore, the estimated probability map for a class is obtained
by the average of T times predictions for an input patch, resulting in the averaged
prediction P̂q for network q ∈ {1, 2}. Based on the above probability maps, the
uncertainty Ûq of this map is measured by Ûq = −

∑
c P̂q log(P̂q) for c different

classes and the related loss constraint for network q is formulated by:

Lqintra =

∑
(I(Ûq < τ1)� ||ŷq − P̂q||)∑

I(Ûq < τ1)
, (6.5)

where
∑

is the sum of all voxels of the considered patch. Symbol I is a binary
indicator function, τ1 denotes a threshold to measure the uncertainty [89],
which selects the most reliable voxels by binary voxel-level multiplication �.
Parameter ŷq is the prediction for network q with q ∈ {1, 2}. By following this
approach, the proposed strategy is approximately equal to the mean-teacher
method with the history step equal to unity in the methods [88, 89]. Intuitively,
this constraint selects the reliable voxels from Bayesian predictions, where only
the most confident points are selected to guide the network.

B.2. Inter-network Uncertainty Constraint Linter: Besides the above uncertainty con-
straint for each network, we also propose an uncertainty constraint to measure
the prediction consistency between two individual networks with the purpose to
constrain the knowledge and avoid bias [95]. The proposed inter-network uncer-
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tainty constraint enables the networks to learn the discriminating information,
by comparing the predictions between two networks with stable voxel selection.
With the above definitions of normal prediction (ŷq) and the averaged Bayesian
prediction (P̂q), their corresponding binary predictions are obtained as Cq and
Ĉq , respectively, which are thresholded by 0.5 for a fair class distribution. Based
on these, more stable voxels for each network are defined as

Sq = I(Cq � Ĉq)� (I(Uq < τ2)⊕ I(Ûq < τ2)), (6.6)

where Uq is the uncertainty based on the normal output and Ûq represents the
uncertainty based on Bayesian output. Parameter τ2 is a stronger threshold to
select the more stable voxels for the Network q than in case of using Eqn. (6.5). By
using a voxel-based logical operator OR (⊕), stable instrument voxels are loosely
selected to find the matched prediction voxels from the same-class prediction.
Furthermore, we also define the voxel-level probability distance Dq = ||ŷq − P̂q||,
which indicates the predictions’ consistency. With definitions of stable voxels and
probability distances, the less stable voxels in the stable samples are optimized
to enhance the overall voxel confidence between two networks. Specifically, the
inter-network uncertainty constraint Linter for Network 1 is formulated by:

L1
inter =

∑
(((S1 � S2 � I(D1 > D2))⊕ (S1 � S2 � S2))� ||ŷ1 − ŷ2||)∑

((S1 � S2 � I(D1 > D2))⊕ (S1 � S2 � S2))
, (6.7)

where || · || is the probability distance at the voxel level and (·) stands for a binary
NOT operation. Intuitively, the operation S1 � S2 � I(D1 > D2) selects the less
stable voxels from Network 1 by comparing the probability distance from the
two networks’ stable voxels. As for function S1 � S2 � S2, if the voxels are not
stable for both networks but are stable for the Network 2, then these voxels’
information are used to guide the Network 1 to generate a similar prediction.
This uncertainty constraint enables the unsupervised signal communication
between two individual networks, and train the Network 1. A similar expression
with mirrored indexes is applied to Network 2.

B.3. Label-wise Contextual Constraint LLCont: The above loss constraints on the
intra-/inter-network consider voxel-level consistency of paired predictions, i.e.,
the predictions from two networks for the same input, while ignoring the dif-
ferences between labeled and unlabeled predictions at the contextual level. To
learn the prediction consistency at the contextual level, we also introduce a con-
textual constraint, based on the implementation of adversarial learning. Specifi-
cally, the labeled and unlabeled predictions are analyzed by a classifier, as shown
in Fig. 6.4, to generate the image class: labeled or unlabeled, which are used to
generate the binary cross-entropy (BCE). LLCont is defined as

LqLCont = −BCE( ˆClsq, Clsq), (6.8)
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Figure 6.4 Architecture of the proposed classifier for LLCont. The network distinguishes
the input is labeled or not.

where the Ĉlsq is the predicted class whether the input prediction having a corre-
sponding annotation or not, while Clsq is the prior knowledge of the prediction
having an annotation or not. The negative sign is considered to maximize the
similarity between the labeled predictions and unlabeled predictions, while the
BCE is minimized to distinguish them.
B.4. Network-wise Contextual Constraint LNCont: The label-wise contextual con-
straint focuses on the contextual difference between labeled predictions and unla-
beled predictions, which ignores the contextual information consistency between
two individual networks. To fully exploit this contextual information at network-
level, a network-wise contextual constraint is introduced as well. Specifically, it
has two different processing steps for labeled and unlabeled predictions. (1) The
labeled images’ predictions and corresponding ground truth are processed by
an encoder to generate contextual vectors, which are used to measure the latent
space similarity between prediction and ground truth. (2) As for the unlabeled
predictions from the two networks, their contextual vectors are measured to en-
force themselves to be as similar as possible. The contextual encoder (CE) has a
similar structure with that of Fig. 6.4, but excludes the FC layers and adds one ex-
tra Conv layer (kernel number of 64). The LNCont is defined as the vector distance
by norm-2, and consisting of several components:

LNCont =||CE(ŷl1)− CE(y)||+ ||CE(ŷl2)− CE(y)||
+ ||CE(ŷu1 )− CE(ŷu2 )||,

(6.9)

where ŷ and y are predictions and corresponding annotations, respectively. Pa-
rameters l and u represent labeled and unlabeled patches. This network-wise
constraint compensates the intra-network contextual information usage in LLCont

and enforces the information interaction in a similar way as Linter. Based on the
design, the contextual encoderCE is trained properly from the supervised signal,
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which is simultaneously used to enforce the unlabeled predictions from different
UNets to be the same.

C. Hybrid loss

Based on the above-defined constraints, the proposed hybrid loss function is de-
fined by a weighted summation of the previous constraints, leading to

Lqhybrid = Lqsup + α(Lqintra + Lqinter) + βLqLCont + γLqNCont. (6.10)

Here, parameter q ∈ {1, 2} is the network number in Fig. 6.2, Lqsup denotes the su-
pervised loss of network q, the term Lqintra is the uncertainty constraint to measure
the consistency between outputs for network q, term Lqinter is an uncertainty con-
straint to measure the consistency between the two networks, which exploits the
information from two independent networks to enhance the performance. Term
LqLCont is a label-wise contextual constraint to compensate the information usage
of the voxel-level predictions, based on knowledge between labeled and unla-
beled predictions. Term LNCont is the network-wise contextual constraint based
on the contextual difference between predictions and labels from different net-
works. Finally, coefficients α, β and γ are parameters to balance the weight be-
tween different loss components.

Intuitively, Lsup makes use of labeled information to guide the networks to
converge to correct predictions and optimize the direction in hyperparameter
space. In contrast to supervised information, Lintra focuses on the information
uncertainty for each individual network. Specifically, it considers MCD and GN
to generate noisy and less confident predictions, which are binarized by thresh-
old τ1 to select the reliable predictions in the patch. With these selected voxels,
the probability distances between normal predictions to these voxels are mini-
mized to enhance the confidence of the network, which avoids the voxels with
low confidence or noise from a common Π-model. However, in contrast to the
uncertainty-aware network [88, 89], which employ two separate networks with
historical parameter correlation, the proposed method ensembles two networks
into one with a history step equal to unity. Moreover, instead of intra-network
information usage, Linter focuses on voxel-level uncertainty interactions, which
omits the parameter correlations and generates more diverse network parame-
ters from the random procedures, such as parameter initializations of networks,
and applied MCD and GN techniques. In detail, the Linter loss is designed to se-
lect more stable voxels based on predictions, which are used to reduce the proba-
bility distance between the predictions of these stable voxels from two networks.
As described in the definitions, LLCont is considered to maximize the prediction
similarity between labeled and unlabeled outputs, while LNCont is used to enforce
a higher contextual similarity between the predictions of the two networks.
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6.4 Experiments

6.4.1 Datasets and Preprocessing

Ex-vivo RF-ablation catheter dataset: To validate our instrument segmentation
method, we collected an ex-vivo dataset on RF-ablation catheter for cardiac
intervention, consisting of 88 3D cardiac US volumetric images from 8 porcine
hearts. During the recording, the heart was placed in a water tank with the
RF-ablation catheter (with a diameter of 2.3-3.3 mm) inside the heart chambers.
The phased-array US probe (X7-2t with 2,500 elements by Philips Medical
Systems, Best, the Netherlands) was placed next to the interested chambers
to capture the images containing the catheter, which was monitored by a US
console (EPIQ 7 by Philips). For each recording, we pulled the catheter out
and re-inserted it into the heart chamber, and placed the probe with different
locations and view angles, to minimize the overlap among images. The obtained
volumetric images are re-sampled to the volume size of 160 × 160 × 160 voxels
(where padding is applied at the boundary to make the volume such that it has
equal size in each direction), which leads to a voxel size range of 0.3-0.8 mm.
All the volumes are manually annotated at voxel level. Moreover, the catheter
centers are also marked as the target location for DQN. To validate the proposed
method, 60 volumes are randomly selected as training set, 7 volumes are used as
validation images and 21 volumes are used as testing images. To train the DQN,
60 volumes with target location are used to learn the action policy. To train the
Dual-UNet, 6, 12 and 18 of 60 volumes are selected as the labeled images, while
the remainder are the unlabeled images for SSL training.

In-vivo RF-ablation catheter dataset: To further validate the generalization of
the proposed method, an in-vivo RF-ablation catheter dataset was collected
from 2 live porcine hearts, which includes 13 images with the RF-ablation
catheter in the heart chambers. The data collection was approved by an ethical
committee, and recorded at Utrecht University, the Netherlands. The images
were collected by a phased-array US probe (X7-2t with 2,500 elements by Philips
Medical Systems, Best, the Netherlands). During the recording, a medical doctor
manipulated the catheter to reach different regions of the heart chamber, where
the RF-ablation procedures were performed. Similar to the ex-vivo dataset,
the images are re-sampled to the volume size of 160 × 160 × 160 voxels. The
obtained images are manually annotated at voxel-level. All 13 volumes are used
to validate the generalization of the model, which is trained on the above ex-vivo
dataset.

In-vivo TAVI guide-wire dataset: We also collected an in-vivo TAVI guide-wire
dataset including 18 volumes from 2 TAVI operations. The study was approved
by the institutional review board of Philips (ICBE) and the Catharina Hospital
Eindhoven (Medical Research Ethics Committees United, MEC-U; study ID: non-
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WMO 2017-106). Patients approved the use of anonymous data for retrospective
analysis. During the recording, the sonographer captured images at different
locations in the chamber without interfering the procedure. The volumes were
recorded with a mean volume size of 201× 202× 302 voxels. Similar to the above
ex-vivo dataset, volumes are re-sampled to have a volume size of 160× 160× 160

voxels. The guide-wire (0.889 mm) has the thickness of about 3-5 voxels due to
spatial distortion. The images are manually annotated by a technical expert to
generate the binary segmentation mask as the ground truth. The guide-wire cen-
ter point is marked for DQN training. We have randomly divided the dataset
into three parts: 12 volumes for training, 2 volumes for validation and 4 volumes
for testing. Specifically for the training images, 2, 4 and 6 volumes of 12 images
are selected as the labeled images, while the rest are used as the unlabeled images
for SSL training.

6.4.2 Implementation Details and Training Process

We have implemented the proposed framework in Python 3.7 with Tensor-
Flow 1.10, using a standard PC with a Titan 1080Ti GPU. We have trained the
DQN with the Adam [98] optimizer (learning rate 10−4) for 40 and 20 epochs un-
til converging on the validation datasets for ex-vivo and in-vivo datasets, respec-
tively. Replay memory is set to be 100k with random sampling. Parameters of
the target network are updated for every 2,500 steps. When considering the effi-
ciency and accuracy of the DQN, we define the input state space to 553 voxels for
resized images with the size of 963 voxels for both ex-vivo and in-vivo datasets,
to ensure that the observations can contain sufficient contextual information of
instrument. The total training times for the two datasets are 32 and 16 hours,
respectively.

As for SSL training, the patches are generated by applying random transla-
tions based on the annotated instrument center points. Moreover, the data aug-
mentations with rotation, mirror and intensity re-scales are applied. To adapt the
UNet as a Bayesian network [99] and generate uncertainty prediction, dropout
layers with rate 0.5 are inserted prior to the convolutional layers. Gaussian ran-
dom noise is also considered during uncertainty estimation. For the uncertainty
estimation suggested by [89], T = 8 is used to balance the efficiency and quality
of the estimation. Ex-vivo dataset training is terminated after the loss has con-
verged on the validation dataset, or after 10,000 steps with mini-batch size of 4
using the Adam optimizer (learning rate 10−4) [98], which includes 2 labeled and
2 unlabeled patches. Meanwhile, the training on the in-vivo dataset is terminated
after the loss converged on the validation dataset with mini-batch size of 4 (learn-
ing rate 10−4). Hyperparameters α, β and γ are empirically chosen as 0.1, 0.002
and 0.1, respectively, to balance different loss components. Moreover, a ramp-up
weighting coefficient strategy is considered for threshold parameters to balance
the components confidence during the training. Thresholds τ1 and τ2 are ex-
perimentally selected, based on an uncertainty function with probability as 0.5
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and 0.7 w.r.t. uncertainty estimation U = −
∑
c plog(p), respectively. The total

training times for the two datasets are 14 and 7 hours, respectively.

6.4.3 Evaluation Metrics

As for the experiments using DQN as pre-selection, the metric is the Euclidean
distance between the detected instrument center point and ground-truth center
point in terms of voxels, which is denoted as ’Dis’. Moreover, the success rate
of off-line localization is also considered as an evaluation metric, to evaluate the
detection performance.

To evaluate the overall segmentation performance of the proposed method,
we consider the Dice score (DSC), Volumetric Similarity (VS), and 95-% Haus-
dorff Distance (95HD) as evaluation metrics.

6.5 Results

6.5.1 Performance of DQN for Instrument Localization

In this section experimentally compares the following methods for instrument
localization on our datasets: Single Shot MultiBox Detector (SSD) [79], Faster R-
CNN [80], and the proposed DQN method. We consider different input volume
sizes: 963, 1283 and 1603 voxels, which involves different amounts of contextual
information within the fixed observation space, i.e. 553 voxels for a fixed net-
work structure in DQN. The SSD and Faster R-CNN models are extended into
3D space with a modified backbone network, i.e. 3D ResNet, which reduces the
GPU memory usage, increases the learning speed and keeps sufficient contex-
tual information for handling small instruments. The object scale parameters are
defined based on the size of the instruments for different feature map sizes (five
object scales for SSD as {0.4, 0.4, 0.7, 0.7, 0.9} and two sizes of {48, 72} for Faster
R-CNN). The bounding boxes are generated based on the center point of the in-
strument in 3D space, with the same size in each direction, which is equal to the
length of the instrument. We have failed to train the network with bounding box
following the shape of the instrument (e.g. a box of size [6, 6, 50] for a catheter),
which is too small to map the boxes in the high-level feature maps. Because there
is only one instrument in the image, the number of detected results is set to be
unity after the non-maximum suppression. Data augmentations of shifting, rota-
tion, and resizing are applied during the training. The results are summarized in
Table 6.1, where the distance metric is expressed as the number of voxels in the
resolution of 1603 voxels.

Comparing the SSD and Faster R-CNN, the DQN method provides a stable
and higher performance for several reasons. First, the DQN method includes
a simpler CNN network with discrete prediction space compared to SSD and
Faster R-CNN, thus it is easier to be trained with a limited number of images. In
contrast, the complex network backbone structures of the detection networks are
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Table 6.1 Detection accuracy of different coarse detection methods, which are ranked by
detection distance (Dis) using mean±std for successful detections. The case is considered
successful when Dis<10 voxels.

RF-ablation Catheter DQN
Volume Size Dis (voxel) Success rate

963 voxels 3.8± 1.8 21/21
1283 voxels 4.0± 2.4 21/21
1603 voxels 4.7± 3.3 18/21

RF-ablation Catheter SSD
Volume Size Dis (voxel) Success rate

963 voxels - 0/21
1283 voxels 5.8± 2.1 8/21
1603 voxels 5.3± 2.6 15/21

RF-ablation Catheter Faster R-CNN
Volume Size Dis (voxel) Success rate

963 voxels - 0/21
1283 voxels 5.1± 0.6 3/21
1603 voxels 5.7± 2.2 7/21

TAVI Guide-wire DQN
Volume Size Dis (voxel) Success rate

963 voxels 2.4± 1.0 4/4
1283 voxels 3.2± 2.4 4/4
1603 voxels 3.4± 2.3 4/4

TAVI Guide-wire SSD
Volume Size Dis (voxel) Success rate

963 voxels - 0/4
1283 voxels - 0/4
1603 voxels - 0/4

TAVI Guide-wire Faster R-CNN
Volume Size Dis (voxel) Success rate

963 voxels - 0/4
1283 voxels - 0/4
1603 voxels - 0/4
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easier to overfit on the limited training images. Second, for both SSD and Faster
R-CNN, the bounding boxes are analyzed based on high-level feature maps in
the whole image, where it is hard for the networks to learn the discriminating
information of very small objects with extremely imbalanced class distributions.
Third, these methods have different objective functions. The DQN is trained to
maximize the reward function based on the distance metric loss. In contrast,
the SSD and Faster R-CNN are trained by regression loss and classification loss,
which are difficult to be trained on the limited training data. As can be observed,
when the input volume size decreases, the performances of SSD and Faster R-
CNN are also degrading accordingly, which is because less discriminating infor-
mation is extracted from high-level feature maps. As a conclusion, the bounding-
box-based locators are not feasible for our challenging task with only limited
training data.

From the results, the DQN method provides the best accuracy on both
datasets in the environment of 963 voxels. A larger volume size leads to lower
performance and a higher failure rate. For a fixed observation size (553 voxels)
for the agent of DQN, the larger volume size means the observation may not cap-
ture the whole instrument. In contrast, a smaller volume size would ensure the
observation covers the whole instrument. Because of the multi-scale spatial steps
for interaction, the localization of DQN takes around 0.2, 0.3 and 0.7 seconds for
the 963, 1283 and 1603 cases, respectively, while the SSD and Faster R-CNN are
faster, e.g., about 0.1 seconds for 1603 voxels. The ex-vivo dataset obtains infe-
rior performances due to higher variation of the images when compared to TAVI
operations, which has almost fixed anatomical structures.

6.5.2 Comparisons with Other Methods

With the detected instrument center point, patches with the size of 483 voxels
are extracted around the point for semantic segmentation (i.e. 2 patches for each
direction and 23 patches in total). Performance comparison with the state-of-the-
art methods is presented below.

We compare the proposed method with the state-of-the-art SSL methods, in-
cluding Bayesian UNet (B-UNet) [97], Π-model [86], Adversarial-based segmen-
tation (AdSeg)[84], multi-task attention-based SSL (MA-SSL)[87], uncertainty-
aware-based mean-teacher (UA-MT),[89] and teacher-student-based (TS) knowl-
edge distillation [93] (all of them are based on the Compact-UNet as back-
bone [69]). Specifically, the TS model trains the teacher part with a more com-
plex model by increasing the filter number by a factor of two. The teacher is first
trained on labeled images, which is then used to generate the soft-prediction of
unlabeled images for the student model. The soften parameter of the TS model is
set to 5 for unlabeled images with loss weight 0.5. Results are shown in Table 6.2,
which depicts that the proposed method clearly outperforms the state-of-the-art
SSL approaches. Examples of segmentation results of different SSL methods are
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6.5. Results

Figure 6.5 Examples results via different methods for (L, U)=(18, 42), which are corre-
sponding to Table 6.2. Left: full volume. Right: the enlarged region including the catheter.
Green: annotation, red: segmentation, and blue: heart tissue. All the results are obtained
based on the coarse detection.

shown in Fig. 6.5, where 18 annotated images are used for training. It can be ob-
served that the proposed method provides less outliers than other methods be-
cause of the effective coarse segmentation step and better uncertainty constraints.

Table 6.3 Paired t-tests (p-value) for different SSL methods compared to our method. The
expression e-n stands for ×10−n.

Dataset B-UNet AdSeg Π-model MA-SSL UA-MT KD-TS

RF-ablation Catheter 8.7 e-4 1.6 e-3 3.4 e-8 6.1 e-4 4.0 e-3 4.6 e-4
TAVI Guidewire 6.9 e-3 3.5 e-2 3.3 e-3 2.2 e-2 2.3 e-3 5.9 e-2

From the table, it can be observed that when the number of labeled images in-
creases, the segmentation performances are improved w.r.t available supervised
information except for the Π-model, which is due to the unreliable information
of the predicted unlabeled images. Because of the unreliable information in chal-
lenging 3D US images, the Π-model obtains a lower performance than a simple
Bayesian UNet. Compared to AdSeg, MA-SSL and UA-MT, the proposed method
achieves a better performance, since it exploits uncertainty and contextual infor-
mation, which improves the information usage of unlabeled images. To further
validate the performance differences between different SSL methods, we have
performed a paired t-test with α = 0.05 on two datasets using the DSC metric
in a one-tailed test, which are summarized in Table 6.3. From the table, the pro-
posed method gives larger statistical differences than the other methods on the
RF-ablation Catheter dataset, i.e. p-value<0.01. In contrast, the proposed method
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has less statistical difference on the TAVI Guide-wire data, especially for the KD-TS
model, which is because of limited testing data with only 4 images.

We have also compared the proposed method with supervised learning meth-
ods at the bottom of Table 6.2. The proposed method obtains better results than
voxel-wise Share-CNN for catheter segmentation [19]. The proposed method also
outperforms the supervised learning method with Compact-UNet as backbone
structure, while it achieves similar performance to a more complex Pyramid-
UNet. This is explained by two reasons. (1) The proposed constraint provides
more confident and accurate predictions on unlabeled images, which guides
the network to exploit the most meaningful information. However, for the su-
pervised learning methods with a standard loss, it has less capability of the
discriminating information because noisy labels may exist. (2) The proposed
method represents a semi-supervised learning by a multi-task learning approach,
which exploits the information for different tasks, such that knowledge is better
learned. It is worth to mention that the proposed method is statistically better
than Share-CNN (p-value<0.01), while it has less difference to Compact-UNet
(p-value∼0.03). Compared to Pyramid-UNet, there is no statistical difference
between the segmentation results. These results show that the proposed SSL
method achieves state-of-the-art performance with much less annotation effort.

Although the Dual-UNet has a more complex architecture than standard
UNet, it employs unlabeled images as the support and guidance for SSL training,
which achieves comparable performances with fully supervised learning. Finally,
from the experiments, the proposed two-stage scheme executes in approximately
1 second per volume (0.2-0.3 seconds for DQN pre-selection and 0.7 seconds for
patch-based segmentation). As a comparison, exhaustive patch-based segmen-
tation requires more than 10 seconds per volume [69], while a voxel-of-interest-
based CNN method takes about 10 seconds [19]. Therefore, the proposed method
is 10 times faster.

6.5.3 Ablation Study of Different Loss Components

The ablation studies on different constraint components are summarized in Ta-
ble 6.4, where different numbers of labeled and unlabeled images are considered.
More specifically, the UNet with Mont Carlo operation is denoted as the baseline
and backbone structure for the proposed method, which is trained withLsup only.
For the proposed SSL, constraint components are added one by one to validate
their effectiveness.

Several conclusions can be drawn from the table. (1) The simple backbone
UNet with supervised loss can learn more discriminating information with the
number of available annotations increasing, which however obtains worse per-
formance than the Dual-UNet. This is because randomly initialized parameters
and dropout operations in the Dual-Unet avoid the learning bias with higher
network diversity, which results in more stable predictions. (2) Compared to
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the case with only supervised loss, adding voxel-level constraints, i.e. Lintra

and Linter, allows to select the stable voxels from uncertainty estimations, which
thereby exploits the discriminating information from unlabeled images’ predic-
tions. More specifically, the Lintra constraint focuses on prediction uncertainty
within the network, while the Linter constraint exploits the uncertainties of the
predictions between two individual networks. The results indicate that both con-
straints improve the performance and are complementary to each other. (3) The
contextual-level constraint including label-wise and network-wise constraints,
also contributes to further performance improvement. Specifically, the label-wise
constraint exploits the contextual similarity between labeled and unlabeled im-
ages’ predictions, while the network-wise constraint focuses on prediction sim-
ilarity between different networks of the Dual-UNet. (4) The proposed hybrid
loss gives more significant performance improvement when the amount of la-
beled images are small, which indicates the proposed method is able to exploit
the discriminating information from unlabeled images.

It can be observed that as the number of annotated images increases, the vari-
ance of the segmentation performance is decreasing. This is because a more con-
fident guidance is obtained from available annotations. In the following ablation
studies, we have chosen the cases with the most annotated volumes for both
datasets, i.e. the (18, 42) and (6, 6) combinations for labeled and unlabeled train-
ing images.

6.5.4 Ablation Study of Patch Size of Dual-UNet

To investigate the influence of the patch size, the input patch size of 323, 483

and 643 are examined. The results are shown in Table 6.5. From the results,
patches with 323 voxels obtain a slightly worse performance than 483 voxels,
which however requires about 3 seconds execution time because more patches
are required for a fixed volume size after DQN pre-selection (643 voxels). In
contrast, patches with 643 voxels require similar execution time to 483 voxels
(0.7 second), but obtain a much worse performance with a higher GPU memory
usage (we set batch=1 for this case). Although a larger contextual information
can be captured, the data are easily overfitted compared to the case with a smaller
patch size. As a result, the optimal patch size is considered to be 483 voxels.

6.5.5 Ablation Study of DQN Pre-selection

Experimental results with and without DQN pre-selection are summarized in Ta-
ble 6.6. As can be observed, the DQN pre-selection improves the overall segmen-
tation performance. Example images with and without DQN as the pre-selection
are shown in Fig. 6.6, which demonstrates that the DQN pre-selection can avoid
outliers outside the instrument region.
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Table 6.5 Ablation studies of different patch size for the Dual-UNet. Performance are eval-
uated by the Dice Score (DSC), Volumetric Similarity (VS), and 95-% Hausdorff Distance
(95HD), which are shown in mean±std. The best performances are printed in bold.

Patch Size RF-ablation Catheter
DSC % VS % 95HD (voxels)

323 voxels 68.5±7.9 91.2±6.4 3.3±1.9
483 voxels 69.1±7.3 92.8±4.6 3.0±2.1
643 voxels 66.3±9.6 85.2±11.4 3.7±2.4

Patch Size TAVI Guide-wire
DSC % VS % 95HD (voxels)

323 voxels 66.7±9.5 92.8±3.8 1.6±0.3
483 voxels 68.6±7.9 96.5±3.3 1.7±0.6
643 voxels 62.3±10.0 94.0±3.6 1.9±0.9

Table 6.6 Ablation studies of DQN pre-selection. Segmentation performances are eval-
uated by the Dice Score (DSC), Volumetric Similarity (VS), and 95-% Hausdorff Distance
(95HD), which are shown in mean±std. The best performances are printed in bold.

Patch Size RF-ablation Catheter
DSC % VS % 95HD (voxels)

w/o DQN 44.9±21.3 80.0±13.7 50.0±22.2
w DQN 69.1±7.3 92.8±4.6 3.0±2.1

Patch Size TAVI Guide-wire
DSC % VS % 95HD (voxels)

w/o DQN 57.8±13.9 87.1±5.9 32.3±22.3
w DQN 68.6±7.9 96.5±3.3 1.7±0.6

Figure 6.6 Example volumes of the segmentation results with and without DQN as the
pre-selection. Green: ground truth, red: segmentation result.
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6.5.6 Generalization Against Different Recording Settings

To further validate the generalization of the proposed method, the trained mod-
els of DQN and SSL segmentation steps are directly applied on the in-vivo
RF-ablation catheter dataset (the models are trained on the ex-vivo RF-ablation
catheter dataset with 18 labeled images). The proposed DQN successfully de-
tects the catheter with an accuracy of 6.7 ± 2.4 voxels. Although this is slightly
worse than the results on the ex-vivo RF-ablation catheter dataset, it still can lo-
calize the catheter with 100% successful rate, which highlights the generalization
of the DQN method. Based on the pre-selected regions from DQN, the UNet
segmentation networks are applied to segment the catheter, where the results
are summarized in Table 6.7. As can be observed, although the performances of
the proposed method are somewhat degraded, the overall performance is still
acceptable, since the proposed method produces better results than other state-
of-the-art methods.

Table 6.7 Segmentation performance for different methods on the in-vivo RF-ablation
catheter dataset. Segmentation performances are evaluated by the Dice Score (DSC),
Volumetric Similarity (VS), and 95-% Hausdorff Distance (95HD), which are shown in
mean±std. The proposed method is printed in bold.

Patch Size in-vivo RF-ablation catheter
DSC % VS % 95HD (voxels)

B-UNet[97] 30.3±20.9 61.7±24.6 10.2±10.4
AdSeg[84] 58.9±5.4 82.3±8.9 7.4±6.5
Π-model[86] 38.5±12.8 60.4±21.2 16.1±12.0
MA-SSL[87] 47.3±14.9 82.2±22.5 8.5±3.5
UA-MT[89] 52.4±5.1 83.9±9.6 11.4±4.8
KD-TS [93] 52.8±7.4 80.1±18.8 10.3±4.0
Proposed 63.8±10.1 86.3±12.9 6.2±5.1

6.6 Discussions and Conclusions

This chapter has proposed a method to achieve annotation-efficient deep learn-
ing for instrument segmentation in 3D volumetric US data. A crucial aspect
of the proposed method is that it requires less annotation effort yet obtains
similar performance as the fully supervised learning methods. Our method
avoids laborious and careful annotation work in the 3D dataset by employing
the reinforcement learning and semi-supervised learning techniques. These
subsequent learning techniques are exploited for training a deep q-network
and Dual-UNet for coarse detection and fine segmentation, respectively. This
approach significantly reduces the challenges for training an acceptable model
with sufficient ground truth, and also compares favorably to a state-of-the-art
coarse-to-fine segmentation strategy. Although the voxel-level annotations are
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still required for a part of the training images, the amount of required labeled
images is much smaller than the number of unlabeled training images, which
clearly improves the annotation efficiency of the training framework.

Discussion

Several aspects of our method still need further discussion and argumentation.
(1) Random noise: The Monto Carlo method in the Bayesian network intro-

duces random noise during the training, of which the uncertainty estimation re-
quires more training iterations to converge and stabilize. The random noise in
the training procedure complicates the convergence of the network and therefore
makes it harder for training.

(2) Complex model: As stated in Dual-Student [95], the two individual net-
works can have different complexity and can even have more than three branches
to learn the discriminative information. However, due to the size of 3D UNets
and computation complexity, it is difficult to achieve these forms on a standard
GPU with limited memory. Because of this GPU memory limitation, the pro-
posed method still focuses on a patch-based processing method, which cannot
exploit the full contextual information contained in the whole image.

(3) Model generalization: As can be observed from the results of the generaliza-
tion analysis, the proposed method still has a performance degradation when ap-
plied to unseen datasets under different recording settings. A recent study [100]
has shown that the pre-trained self-supervised feature learning can improve the
generalized performance for the segmentation by better network initialization in-
stead of training from scratch, which can be considered as a research direction for
improving this generalization capability in future work.

(4) Statistical confidence: It is worth to mention that, although the statistical
analysis shows the difference between different methods, the number of testing
samples is limited and effectively less than 30 images. A larger testing dataset is
required for further validation in the future, which indicates a more complex and
larger size dataset should be constituted for further validation.

(5) Clinical validation with in-vivo data: Finally, artifacts and speckle noise are
commonly existing in US imaging, which hampers the segmentation perfor-
mance. Because of the difficulty of collecting realistic in-vivo data, only limited
in-vivo data is used in our experiments. This in-vivo data limitation does not
enable a thorough validation of the proposed method, as the noise components
are commonly occurring in clinical practice. Further in-vivo data collection and
validation should be performed in future to fully validate the effectiveness and
robustness of the proposed method.
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Conclusion

The proposed method contains the following contributions. First, a DQN-driven
instrument localization scheme is proposed, which learns to coarsely localize the
instrument region in 3D US with an environment-action policy. The application
of the deep q-network (DQN) is quite novel for medical instrument localization.
The DQN is trained with a simplified annotation, which reduces the annotation
effort compared to existing instrument localization methods. Second, a Dual-
UNet is proposed for subsequent fine segmentation, which is trained by a novel
semi-supervised learning (SSL) framework. The proposed training strategy is
novel for medical imaging and able to exploit unlabeled information at both
the voxel and contextual level, which leverages abundant unlabeled images
for instrument segmentation. Third, despite the data limitations mentioned
in the preceding discussion, the proposed method is thoroughly evaluated on
multiple challenging datasets compared to the existing methods, using an ex-vivo
RF-ablation catheter dataset, an in-vivo TAVI guide-wire dataset, and an in-vivo
validation dataset. These validations also include extensive ablation experiments
on the proposed method. The proposed method achieves a segmentation perfor-
mance of about 70% Dice score and approximately a one-second execution time
per volume, which offers both high performance and computation efficiency.

In the next chapter (Chapter 7), a novel dimension reduction method will be
investigated for medical instrument detection in a 3D US volume. This method
can reduce the computation cost and yet improve the detection efficiency on the
full-volume processing, which bypasses the compromise using patch-based pro-
cessing with contextual limitations. Specifically, a dimension-reduction module
for general CNNs is designed, which drastically reduces the complexity of the
CNN network, while preserving the detection performance to the state-of-the-art
methods.

146



Arash Pourtaherian Dissertation TU Eindhoven March 21, 2022 14:26 Page 147 Sheet 167/214

�
�	 �
�	

�
�	

C
H

A
P

T
E

R 7
Multi-dimensional CNN for

Instrument Detection in 3D US

7.1 Introduction

The previous chapters have introduced several semantic segmentation frame-
works to localize and segment a medical instrument in 3D US, which are based
on first performing careful voxel-level annotation and then carrying out a second
subsequent dense voxel-level classification procedure. Based on the semantic
segmentation in 3D US, the target instrument is identified and localized in the
complex 3D US data. Although some trade-off techniques are applied to accel-
erate the overall efficiency, such as e.g. using 2D slice-UNet, tri-planar classifica-
tion or applying a coarse-to-fine strategy, these results still require one order-of-
magnitude improvement to achieve real-time performance. Moreover, regional
3D patch-based methods (in Chapters 5 and 6) cannot fully exploit the 3D contex-
tual information during the information encoding, performed at the encoder side
of the 3D UNet. These challenges are mainly due to the huge data size of the 3D
images, complex 3D CNN design and limited computing platform capabilities.
As a solution for these challenges, this chapter aims at addressing the design of
a CNN that can handle the complex 3D operations at the whole image level with
high computation efficiency.

7.1.1 Objective and Brief System Outline

The objective of this chapter is to design a CNN to automatically detect and lo-
calize the medical instrument in full 3D processing, albeit with reduced compu-
tation cost. This method is based on a dimension-reduction procedure for CNN
feature maps, which largely reduces the feature-map size, thereby yielding a sim-
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pler CNN decoder, going by this reduction from a 3D decoder to a 2D decoder.
In addition and in contrast to the previous chapters using dense voxel-level clas-
sification, the prediction of the instrument is generated by a trained annotated
skeleton model, which reduces the manual annotation efforts for CNN training.
The proposed framework and its principal stages are depicted in Fig. 7.1.

Figure 7.1 Diagram of a dimension-reduced medical instrument detection and localization
system. The diagram has a dimension-reduction step to compress a 3D volume into 2D
planes, which are used to predict the instrument skeleton in 2D images. Then, these 2D
images are exploited to reconstruct the 3D data for instrument detection and localization.

Based on the above concept, the key challenge is to design 3D-2D CNN by
a procedure for effective feature-map reduction and associated loss function for
the network training. More detailed challenges and corresponding solution di-
rections are elaborated below.

7.1.2 Challenges for Dimension-reduction CNN

In order to localize the instrument in 3D US by processing whole volumes with
high efficiency and reduced annotation effort, the following considerations have
to be addressed to achieve the correct detection and localization of the target.

• Process the whole 3D US volume efficiently: To process the whole 3D US data
volume in a single GPU hardware with limited memory capacity, a com-
mon practice is to reduce the network design for 3D CNN, such as reducing
the number of filters or the number of scales. However, these approaches
are still focusing on the full-3D format, which is still complex for processing
and requires high GPU cost (because a common UNet structure has a mir-
rored decoder with high computational cost). Instead of this, an alternative
common choice in literature is to reduce the size of the 3D decoder, which
is nevertheless still processing complex 3D information.

• Reduce the annotation effort: The common practice of dense classification
for segmentation is to train a CNN with voxel-level data based on care-
ful voxel-by-voxel annotations, which is rather laborious work. Moreover,
the extremely imbalanced class distribution of the skeleton annotation in
3D images increases the challenges for training a successful network.
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To reduce the computation load and improve the efficiency, one possible di-
rection of the CNN design is to apply a feature-map-reduction procedure, which
compresses the 3D features to a 2D format. As a result, the feature maps are
processed in 2D format for faster processing, yielding to a lower computational
cost than common 3D CNN processing. In addition, the annotation effort can
be reduced by considering the simple skeleton annotation than dense voxel-level
annotation, which can be obtained by finding the instrument tip and tail of the
straight instrument and then connecting them together via a line piece. To make
use of this type of annotation, the loss function should be carefully considered by
exploiting voxel and contextual level information.

Based on the above challenges and directions, the followed approach of this
chapter is to exploit a dimension-reduction module to 3D-2D CNN and its loss
functions, in order to exploit the skeleton-based annotation. Based on these de-
sign steps, the medical instrument can be localized in complex 3D US with high
efficiency and lower annotation effort.

The sequel of this chapter is organized in the following way. Section 7.2 sum-
marizes the related work in this field, detailing efficient medical instrument de-
tection methods based on machine learning. Section 7.3 describes the details of
the proposed method. Sections 7.4 and 7.5 demonstrate and present the con-
sidered dataset, implementation details and experimental results. Finally, Sec-
tion 7.6 concludes the chapter and presents some discussions on possible refine-
ments in the future.

7.2 Related Work on Representative Literature by Machine
Learning

The case study of finding an instrument in 3D US data is only scarcely explored
in literature because it is difficult and the data is noisy. Therefore, this related
work section is based on a selection of representative literature, which describes
instrument detection by machine learning approaches.

Recently, Pourtaherian et al. [28] have studied instrument detection algo-
rithms in 3D US. Their method distinguishes the candidate instrument-like vox-
els by analyzing these voxels with Gabor features. These features introduce more
discriminating information on the distribution of local orientations. After the
voxel-based classification, the instrument is localized with a pre-defined seman-
tic model. Pourtaherian et al. performed an experiment on catheter detection in
an in-vitro dataset, which implicitly shows the necessity for further validation on
ex-vivo or in-vivo datasets. Yang et al. [65] employed more discriminating features
for a supervised learning method with a multi-scale approach, to capture more
contextual information. Although the authors achieved satisfying performance
on different ex-vivo and in-vivo datasets, the limited capacity of handcrafted fea-
tures leads to outliers after segmentation, which requests a complex model-fitting
or post-processing to finally detect the catheter. Furthermore, handcrafted fea-
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ture design requires experience and effort, which is then gradually replaced by
deep learning methods, e.g. CNN methods.

CNNs have achieved a significant success in different recognition tasks in
the medical imaging area [9]. Researchers have proposed medical instrument
detection methods using this deep learning approach in many different appli-
cations and modalities. For example, tri-planar CNN methods for voxel-wise
classification were already introduced for instrument segmentation [66, 19].
However, these approaches require the network to iteratively predict all the
voxels in 3D US, leading to a high computation cost, which is therefore not
suitable for real-time applications. Although Yang et al. [19] have proposed a
pre-filtering-based acceleration method, the 10-sec. prediction time is still too
long for a real-time application, which is typically around 5-10 frames per second
in 3D US-guided operation for most clinical scenarios. Slice-based FCN [66] was
proposed to segment an instrument in 3D US, by decomposing the volume into
adjacent slices using a transfer-learned 2D FCN. Although the authors’ method
achieved impressive segmentation results for instrument segmentation, the
capacity of 3D contextual information extraction is limited due to the slice-based
strategy. To overcome the 3D information compromise, Yang et al. [69] proposed
a patch-based 3D UNet to segment a cardiac catheter in 3D US, which achieved
the satisfied performance. Nevertheless, iterative patch-based operations in a 3D
volume hamper the interpretation of the contextual and semantic information of
the whole image. Instead of patch-based approaches, Arif et al. [78] proposed a
full-3D CNN method for instrument segmentation with 3D UNet as a backbone,
which shows an impressive performance on a challenging dataset. However, the
true 3D operations at both the encoder and decoder sides severely complicate the
network structure and are typically constrained by the bounded GPU memory
size.

Based on the above literature analysis and considering the network complex-
ity, full-image information usage and time efficiency, this chapter aims at detect-
ing the instrument by a multi-dimensional mixture CNN. The considered method
can detect the medical instrument in 3D volumetric data at full-image level, while
achieving high detection efficiency. In addition, a specifically designed loss func-
tion is employed to improve the annotation efficiency and preserves the detection
accuracy.

7.3 Proposed Method

This section proposes a framework to detect a medical instrument in 3D volu-
metric B-mode ultrasound images using a Multi-dimensional Mixture Network
(MixDNet). The proposed framework is depicted in Fig. 7.2, in which the input
3D volume is processed by MixDNet. The outputs of the MixDNet are estimated
instrument skeletons, which are projected along the principal volumetric axes.
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Figure 7.2 Framework of the proposed medical instrument detection method (for testing),
where the green dashed line in the output image is the ground truth, while the red dashed
line indicates the detected instrument (or its principal orientation axis). The 3D ultrasound
volume is processed by MixDNet to generate the instrument prediction on the projected
planes along two of three available principal axial, lateral and elevation directions. Based
on the prediction on the projected planes, the detected instrument is reconstructed and
visualized in a 3D volume, or visualized in a 2D plane by slice selection.

Because this concept unfolds minimally over two axes, multiple skeletons are
used. Based on the estimated skeletons oriented in two of the three available ax-
ial, lateral and elevation directions, the instrument is detected in 3D space, and
visualized in a 2D plane or 3D space. In addition, the voxel-level and image-level
loss functions are proposed to exploit the skeleton-based annotations, which suc-
cessfully train the network for the instrument localization.

7.3.1 Construction of MixDNet

The proposed MixDNet is depicted in Fig. 7.3. In contrast with a standard
encoder-decoder architecture like 3D UNet [42] or Feature Pyramid Nets [72], we
propose a hybrid 2D-3D dimension architecture, which consists of a 3D encoder,
a 3D-to-2D information-reduction layer and a 2D decoder. For the input 3D US
volume, a 3D encoder is applied for high-level feature extraction. The encoded
information is processed by a projection layer to extract the most discriminating
information along the principal axes, which extracts the relevant information
through the dimensions and channels. Then, the compressed features are
processed by a 2D decoder, which decodes the projected features to generate the
instrument skeleton along the principal axes. More specifically, there are two
individual branches of dimension reduction to extract the dimension informa-
tion along the axial or side direction simultaneously, i.e. axial and lateral (or
elevation) direction (following the nature of the US cone) in Fig. 7.3. To reduce
the complexity of the network, reduction blocks at the same image size are
shared. Moreover, the 2D decoder parameters are shared in different directions.

A. 3D Encoder:
Considering the limited GPU memory size of hardware and the complex 3D
convolutional kernels, we have designed a compact 3D encoder to avoid GPU
memory overflow and network overfitting. Specifically, the 3D encoder includes
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a stack of 3D convolutional and Max-pooling layers. After each convolutional
layer, ReLU and and Instance Normalization (IN) layers are inserted to accel-
erate the convergence. Specifically, the IN normalizes the input samples at
single-image level, instead of conventional batch normalization working on the
set of batch images, which is less sensitive to the image variations of the input
batch [101].

B. 3D-to-2D reduction module:
As for the 3D-to-2D reduction module, it is a spatial channel-based attentional
module, which can extract the most relevant information along a specific
dimension, while reducing the size of feature mappings. More specifically, we
design a dimension-reduction (or dimension-projection) block, which is based
on three different operations along one of three principal axes, as is depicted
in Fig. 7.4. The block extracts the first-order statistics along the interested axis,
by maximizing and averaging all possible discriminative information. Then,
the output tensors are concatenated and processed by a convolution operation
to reduce the channel size. Meanwhile, a series of convolution operations are
applied on the input feature maps. First, the channel information is compressed,
which is then followed by two convolutions to obtain the dimension-reduced
feature map. Finally, the obtained feature maps are accumulated to obtain the
final result. This approach is similar to an attention operation, dealing with
spatial and channel information, but consisting of different ways to summarize
them. As for the Avg-pooling-based branch, it can summarize all information
along one dimension, while the Max-pooling operation focuses only on the
maximized signal responses and ignore the minor information. The convolution-
based branch can summarize the channel-based information, which acts as a
compensation for the above non-parametric approaches. As a consequence, the
information can be summarized properly and spatial dimensions are reduced.
As shown in Fig. 7.3, for each feature scale, a scale-specific dimension-reduction
block is designed to fit the convolutional channels. In this paper, the side view is
chosen to be the lateral direction, because of the fixed pose between instrument
and tissue in the datasets.

C. 2D Decoder:
Based on the reduced feature maps from the dimension-reduction blocks, a 2D
decoder is designed to formulate the output, which describes the instrument
skeletons along the axes. The decoder consists of 2D convolutional layers,
followed by a ReLU and Instance Normalization. De-convolutional layers are
applied to upsample the feature maps. More details of the 2D decoder network
are depicted in Fig. 7.3.

The motivation of the proposed structure is explained in follows. (1) The con-
ventional 3D U-Net structure requests a complex encoder and decoder, which
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unfortunately increases the memory usage for limited GPU hardware. More-
over, with the input volume size increased, GPU memory can easily overflow
with a larger mini-batch size, which therefore increases the difficulties to train
the network. (2) In the proposed structure, the decoder part is simplified from
3D space to 2D space, which is based on the prior knowledge of instrument
shapes in 3D images and to reduce the decoder redundancy. More crucially, the
dimension-reduced outputs drastically decrease the class-imbalance challenges,
which makes it easier to train the network. To overcome these challenges and
apply the detection on a whole data volume, we design the proposed structure
to facilitate efficient detection of the instrument.

7.3.2 Multi-level Loss Function

The input of the proposed network is a full-3D B-mode volumetric image, while
the output is in 2D planes, indicating the instrument skeleton projection along
the axes, see Fig. 7.5 as an example to generate a prediction for one dimension.
To guide the MixDNet to learn and generate the correct skeletons in 2D projected
images, we design a multi-level loss function, which is generally formulated by

L(Ŷ , Y ) = αLpixel(Ŷ , Y ) + βLimage(Ŷ , Y ), (7.1)

where the Ŷ is the network prediction and Y is ground truth. Loss component
Lpixel focuses on the prediction of the projected instrument skeleton in a 2D plane
at the pixel level, while the loss component Limage concentrates on a high-level
description of the skeleton at the 2D image level. Parameters α and β are weight
parameters to balance the individual loss functions. More specifically, compo-
nent Lpixel is defined as a weighted binary cross entropy (BCE), specified by

Lpixel(Ŷ , Y ) = −
N∑
j=1

wijy
i
j log(ŷj

i)−
N∑
j=1

wnj y
n
j log(ŷj

n), (7.2)

where N denotes the number of pixels for each 2D prediction or ground-truth
image, superscript i represents the instrument skeleton pixels and superscript n
denotes the group of the non-instrument pixels. The class weight parameter w is
a hyperparameter to control the weight between two different classes, which is
employed because of the extreme imbalance between classes in the ground-truth
images. Moreover, deep supervisions [102] are employed at the 2D decoding
blocks with weight set to 0.1, which are applied after dimension-reduction oper-
ations in Fig. 7.3.

Besides the pixel-level loss function, we also define an image-level loss func-
tion, which enforces the MixDNet to learn high-level information to properly
match the predictions and ground truth in 2D planes. As described in Fig. 7.5,
the constructed projection images, together with corresponding ground-truth im-
ages, are processed by a shared contextual encoder (CE) to generate the high-
level descriptor [69], which can describe the input images in a latent space. For
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Figure 7.5 Overview of the contextual encoder for image-level loss function. The ground
truth and prediction are processed by an encoder to generate high-level feature maps,
which are matched to measure the high-level similarity in an encoded feature space. The
high-level feature maps for ground truth and prediction are represented by heat maps as
shown at the right side. (IN: instance normalization)

the description of each view, its corresponding loss function is defined as the
distance between the descriptor of the prediction and its corresponding ground
truth, leading to

Limage(Ŷ , Y ) = ||CE(Ŷ )− CE(Y )||2, (7.3)

where function CE(·) denotes the contextual encoding net for latent space pro-
jection, || · ||2 stands for the norm-2 distance. As a consequence, Eqn. (7.3) also
holds for any other predictions along different axes. It is worth to mention that
the CE(·) is projection function, which projects complex information into a latent
high-level space. The loss function Limage measures the similarity between two
images in the latent space, and therefore can be sensitive to the shape and loca-
tion differences at the contextual view. Based on the preceding definitions for
Lpixel and Limage, the overall loss function along the two individual axes can be
formulated as a weighted summation, based on the predictions and ground-truth
pairs, i.e. {Ŷaxial, Yaxial} and {Ŷside, Yside}.

7.3.3 Instrument Detection based on 2D Projections

The MixDNet generates the estimated instrument skeletons along different axes
as 2D predicted images, i.e. I2D-axial and I2D-side, as shown in Fig. 7.3. Based on the
2D predictions, the instrument in the 3D volume is obtained by replicating the 2D
images along the feature map reduction-directions. As a result, the imaged 3D
volume I3D with the detected instrument is obtained by

I3D = Rep(I2D-axial, θaxial) + Rep(I2D-side, θside), (7.4)

where the Rep(·, θ) represents the replication function of the 2D prediction along
the specific direction θ, such as e.g. θside for indicating a side-view direction.
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Based on the reconstructed volume, a simple threshold and RANSAC model-
fitting are applied on the sparse volume to find the instrument. Another choice
to detect the instrument from 2D planes is plane extraction, which is inspired
by clinical usage. In practice, sonographers prefer to automatically visualize the
plane containing the instrument, i.e. the instrument axis is in-plane, which can
avoid a complex plane searching to find the correct instrument plane in 3D vol-
umetric data. Exploiting the natural property of ultrasound imaging, i.e. the
propagation of sound waves is always taking place along the axial direction of
the ultrasound probe, the instrument detection can be formulated by two steps:
(1) extract the plane containing the instrument along the axial direction of the
probe, (2) based on the prediction alongside the side-view axis, the instrument
can be extracted from the 2D plane that is spanned between the axial and side-
view axes. These steps are illustrated in Fig. 7.6 with an example.

Figure 7.6 Based on the skeleton predictions in 2D planes, the 3D instrument skeleton
can be obtained by replicating planes. Therefore, the 2D B-mode slice containing the
instrument is obtained by model-fitting and axis estimation along the US cone (the green
dot lines are the axis of the detected instrument in slice containing the instrument).

7.4 Experiments

7.4.1 Datasets and Preprocessing

To validate the proposed instrument detection method, we have collected two
different datasets for different ultrasound-guided operation tasks: RF-ablation
operation for cardiac intervention and needle-based interventions for regional
anesthesia.

157



Arash Pourtaherian Dissertation TU Eindhoven March 21, 2022 14:26 Page 158 Sheet 178/214

�
�	 �
�	

�
�	

7. MULTI-DIMENSIONAL CNN FOR INSTRUMENT DETECTION IN 3D US

RF-ablation catheter dataset: We have collected 94 3D cardiac US data volumes
from eight porcine hearts. During the recording, the heart was placed in a water
tank with a RF-ablation catheter for Electrophysiology (with a diameter of 2.3–
3.3 mm) inside the heart chambers. The phase-array US probe (X7-2t with 2,500
elements by Philips Medical Systems, Best, the Netherlands) was placed next
to the intended chambers to capture the images containing the catheter, which
was monitored by a US console (EPIQ 7 by Philips). The obtained volumetric
images are re-sampled to create a volume size of 160 × 160 × 160 voxels (where
padding is applied at the boundary to make the volume such that it has equal
sizes in each direction, called isotropic), which leads to a voxel size ranging from
0.3–0.8 mm. An example 2D slicing image is portrayed by Fig. 7.7.

Anesthesia needle dataset: A dataset based on needle-based intervention is
collected by a motorized VL13-5 linear-array (VL13-5 with 192 elements by
Philips Medical Systems, Best, the Netherlands) from chicken breast, which was
monitored by a US console (iU22 xMATRIX by Philips). The dataset includes
20 volumetric images with two different types of needles: 17G (diameter of
1.47 mm) and 22G (diameter of 0.72 mm). For each type of needle, 10 images
are collected. To ensure the image independence of tissue appearance, needles
are inserted into different locations of the chicken breast. The images are
isotropically re-sampled to obtain a voxel size of 0.3 mm, which leads to a
volume size of 128 × 128 × 128 voxels. An example of a 2D slicing image is
shown in Fig. 7.7. In contrast with the catheter dataset, the needle has a clear
contrast to the surrounding tissues because of the different material and medium.

Annotation: The ground-truth binary skeleton mask for both datasets are gener-
ated by connecting the annotated instrument endpoints, which are annotated by
a technical expert. This annotation strategy can reduce the annotation difficulty
and effort in 3D US volumetric data, compared to voxel-level annotation [28, 78].
Although the author of [78] proposed to use a dilation operation to instrument
voxels, the deformation and blurry boundaries of the instrument lead to voxel-
based category uncertainties in the automatically generated ground truth for net-
work learning. However, with skeleton-based training giving a sparse annotation
only, it is more challenging for the network to learn the semantic information
when compared to the dense annotation-based instrument segmentation.

7.4.2 Implementation Details and Training Process

Considering the limited dataset and GPU memory (11 GB for a 1080Ti GPU),
the proposed MixDNet has 12 convolutional kernels in the first layer, which are
gradually doubled after each max-pooling operation, except for the deepest level
where two convolutional layers are applied with kernel size 33 × 96 × 96 vox-
els. As a consequence, the MixDNet has a number of hyper-parameters that is
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approximately 1.1 Million, which is smaller than a standard 3D UNet or similar
architectures (commonly about 5-10 Million parameters).

We have trained the proposed network using a stochastic gradient descent
update with the Adam optimizer. As for the catheter dataset, the initial learning
rate is set to 0.001 for a mini-batch size equal to 4. The learning rate is reduced for
every 100 epochs by a factor of 0.1 and the training is terminated after 200 epochs.
During the experiment, 64 volumes are randomly selected as training data and
30 volumes are used as testing images. With respect to the needle dataset, due
to the limited amount of images for training, fivefold cross-validation is applied.
This means that 20 images are randomly divided in to two parts: 16 images are
used for training, while the rest is applied for testing. The procedure is repeated
five times to obtain the overall performance on the average. The initial learn-
ing rate is set to be 0.001 for a mini-batch with size 8 and is terminated after
500 epochs. During the training, mirroring is applied on elevation/lateral direc-
tions and rotation along the axial direction to preserve the global shape infor-
mation of the US data cone. Data-shifting operations within 16 pixels along the
elevation or lateral directions are randomly applied on-the-fly during the train-
ing stage. Moreover, intensity jittering, and image resizing with a scale range of
0.8-1.2 are also randomly applied. During the training, the total number of ob-
served images for the network are 12,800 and 8,000, for the catheter dataset and
the needle dataset after data augmentation, respectively. Data augmentation fa-
cilitates the network to learn more invariant information of the dataset and avoid
overfitting [103]. The parameters α and β are empirically selected as 1.0 and 0.01,
respectively. The proposed method is implemented in Python 3.7 with Tensor-
Flow 1.10.

7.4.3 Evaluation Metrics

Since the ground truth of our datasets is an instrument skeleton indicated by a
line having a diameter of one voxel, standard evaluation metrics such as the Dice
score, are not feasible to evaluate the proposed method. Since the ground truth of
the instrument skeleton is a line-based prediction with one voxel diameter in the
3D space, the Average Hausdorff Distance (AHD) is considered as an evaluation
metric ([104]), because it is more sensitive to voxel mismatch between annotated
voxels and the prediction voxels. Moreover, the AHD is less sensitive to outliers
than a standard Hausdorff Distance, since the detected skeleton of the instrument
is sometimes thicker than the ground truth. Moreover, the axis localization error
is defined with two different metrics: the endpoints error (EE) and the orientation
error (OE), which are introduced in Chapter 2. The EE is defined as the maximum
distance of two endpoints on the instrument skeleton from the ground truth, i.e.
tip and tail point of the ground truth, to the instrument axis obtained from 3D
reconstruction (conservative measure). Similarly, the OE is defined as the angle
difference between the detected instrument axis to the ground-truth skeleton.
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Finally, the execution time for computing the prediction per volume is evaluated
in the experiments.

7.5 Results

This section is organized in two parts. First, ablation studies are performed
of different loss types and effectiveness of going from 3D to the 2D using the
dimension-reduction module. Second, a performance comparison with different
state-of-the-art (SOTA) medical instrument detection methods in 3D US is eval-
uated. In the experiments, we have considered a RANSAC-based model-fitting
as a post-processing step to detect the instrument, which introduces randomness
in the results. We have conducted the detection session five times and have cho-
sen the worst-case results of each method. The proposed method and the SOTA
methods are compared based on these fivefold experiments.

7.5.1 Ablation Study

Two ablation studies have been performed to validate the proposed method.
First, the proposed method with different types of loss functions is compared,
i.e. only standard BCE loss, only with pixel-level loss (weighted BCE), only with
image-level loss and the hybrid loss (see Eqn. (7.1)), as proposed with MixDNet.
Second, with the proposed multi-level loss function, we have performed another
ablation study on the effectiveness of different 2D dimension-reduction methods,
which are discussed in Section 7.3 for each individual branch and their ensem-
ble, i.e. Max-pooling, Avg-pooling, Convolution, Concatenation of Max-pooling
and Avg-pooling (denoted as Max+Avg), and the proposed method. Meanwhile,
we also consider the comparison between a true 3D network and the proposed
MixDNet, i.e. excluding the dimension-reduction blocks and using full-3D con-
volutions in the decoder (due to the limited GPU memory for full-volume op-
erations on a 1080Ti with 11 GB memory, we apply a mini-batch size equal to
unity for the full-3D model). The results of all above ablation studies are listed in
Table 7.1 and Table 7.2.

From the results in Table 7.1, it can be observed that the multi-level loss can
provide a higher performance with both datasets. However, the network cannot
learn meaningful semantic information with only considering image-level loss.
Because the randomly initialized contextual encoder cannot generate a correct
feature representation of both ground truth and prediction from the untrained
network, this fails to guide and constrain the segmentation network to learn
meaningful knowledge after training iterations. As a consequence, the image-
level loss can be only considered as complementary for the pixel-level loss. It
is worth to mention that the BCE loss can lead to a failure in detection, due to
extremely imbalanced classes, which underestimate the detection and generate
empty predictions. To further validate the proposed method, a paired t-test is
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Table 7.1 Ablation study on different loss types for two datasets, using the proposed
network, which are evaluated by the Average Hausdorff Distance (AHD), Endpoints Error
(EE) and Orientation Error (OE) using mean±std. The term ‘Failed’ means that we have
failed to obtain the results. The ∗ means a statistical difference under the metric with a
significance level of 0.05.

Loss Catheter
AHD (voxel) EE (voxel) OE (degree)

BCE 7.2± 8.6 7.5± 19.0 16.1± 19.2
Pixel-level loss 2.6± 1.1 2.6± 0.7 10.5± 6.5
Image-level loss Failed Failed Failed
Proposed 2.4± 0.9 2.3± 0.5 7.3± 2.1∗

Loss Needle
AHD (voxel) EE (voxel) OE (degree)

BCE 16.4± 19.6 11.4± 19.8 23.3± 35.7
Pixel-level loss 5.2± 6.7 2.9± 1.0 5.5± 3.7
Image-level loss Failed Failed Failed
Proposed 3.2± 2.2∗ 2.5± 0.6 5.0± 4.9

performed with a significance level of 0.05, based on the maximum value of 5 ex-
ecution cycles rather than multiple comparisons (same as the rest t-tests). As
shown in Table 7.1, the proposed multi-level loss does not offer a statistically sig-
nificant performance improvement in most metrics. However, we have observed
it performs much better than the pixel-level loss and the standard BCE loss with
the OE metric on the catheter dataset. On the needle dataset, the proposed multi-
level loss performs better than others with the AHD metric.

As shown in Table 7.2, for catheter detection, the proposed dimension reduc-
tion significantly outperforms other modules, except for Max+Avg. Compared to
the Max+Avg approach, the proposed technique does not show statistically dif-
ferent results with the AHD and EE metrics, but performs better with the OE met-
ric. For needle detection, most of the examined dimension-reduction modules
do not show statistically significant differences, only 3D UNet performs much
worse. Considering the needle dataset is with very limited data, more investiga-
tions need to be performed on a larger dataset in the near future.

Example feature maps after the proposed dimension-reduction blocks are
shown in Fig. 7.7 for two different datasets. As can be observed, the feature maps
represent discriminating information from local texture to high-level locations,
ranging from Shallow scale to Deep scale. By comparing the instrument areas
to the B-mode slice, the instrument can be found with a high contrast in feature
maps. However, when it comes to black regions in B-mode, e.g. empty areas, the
corresponding feature maps look rather noisy, which is because they are obtained
by compressing the non-instrument information. This figure demonstrates that
the proposed block can extract the discriminating information along the specific
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Table 7.2 Ablation study on different dimension-reduction modules for two different
datasets, which are evaluated by the Average Hausdorff Distance (AHD), Endpoints Error
(EE) and Orientation Error (OE) using mean±std. The symbol ∗ stands for a statistical
difference using the metric with a significance level of 0.05.

Method Catheter
AHD (voxel) EE (voxel) OE (degree)

3D UNet 5.9± 6.7 5.3± 6.0 26.2± 26.2
Max-pooling 3.2± 2.1 2.8± 1.0 9.4± 4.5
Avg-pooling 3.5± 6.6 2.7± 2.7 8.8± 4.4
Convolution 3.1± 1.3 3.0± 1.0 11.0± 5.6
Max+Avg 2.7± 1.3 2.4± 0.6 9.3± 4.2
Proposed 2.4± 0.9 2.3± 0.5 7.3± 2.1∗

Method Needle
AHD (voxel) EE (voxel) OE (degree)

3D UNet 19.2± 20.2 8.9± 15.2 11.6± 11.3
Max-pooling 4.5± 7.0 2.5± 0.9 5.2± 3.9
Avg-pooling 4.3± 5.0 2.7± 0.7 5.1± 3.5
Convolution 4.3± 4.6 2.8± 0.7 5.4± 3.2
Max+Avg 3.6± 2.4 2.7± 1.0 5.3± 3.7
Proposed 3.2± 2.2 2.5± 0.6 5.0± 4.9

Table 7.3 Performance comparisons with SOTA methods for catheter detection (using the
catheter dataset), which are evaluated by Average Hausdorff Distance (AHD), Endpoints
Error (EE), Orientation Error (OE) and execution time of the inference stage.

Method Catheter
AHD (voxel) EE (voxel) OE (degree) Time (sec.)

Handcrafted [28, 65] 6.6± 10.4 6.5± 7.8 17.0± 17.9 > 600
VOI-PatchCNN [67] 2.8± 1.5 2.8± 1.2 8.2± 3.2 ∼ 10
SliceFCN [67] 4.1± 5.3 3.7± 4.9 9.2± 5.3 ∼ 1.0
Pyramid-UNet [69] 2.6± 1.9 2.4± 1.0 7.5± 3.3 ∼ 48.0
Proposed 2.4± 0.9 2.3± 0.5 7.3± 2.1 ∼ 0.12

feature map axis. With further operations, the instrument skeleton is predicted
in 2D output images, of which examples are shown in Fig. 7.6.

7.5.2 Performance Comparison with SOTA

We have compared the proposed method to many different state-of-the-art
(SOTA) medical instrument detection methods in 3D US with respect to the met-
rics of AHD, EE, OE and inference time. For fair comparison, we have imple-
mented and evaluated all SOTA methods on our datasets with 2 voxels dilation for
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Table 7.4 Performance comparisons with SOTA methods for needle detection (using the
needle dataset), which are evaluated by Average Hausdorff Distance (AHD), Endpoints
Error (EE), Orientation Error (OE) and execution time of inference stage.

Method Needle
AHD (voxel) EE (voxel) OE (degree) Time (sec.)

Handcrafted [28, 65] 7.8± 8.7 7.6± 10.3 8.3± 9.0 > 120
PatchCNN [66] 4.9± 7.3 2.8± 0.7 5.9± 4.7 > 240
ShareFCN [66] 5.9± 8.3 2.6± 0.7 5.1± 2.1 ∼ 1.0
3D UNet [78] 19.2± 20.2 8.9± 15.2 11.6± 11.3 ∼ 0.2
Proposed 3.2± 2.2 2.5± 0.6 5.0± 4.9 ∼ 0.06

skeleton annotation, instead of voxel-accurate annotation, as suggested by [78].
This approach is adopted, since we have failed to obtain successful predictions
with our data, due to the extremely imbalanced skeleton annotations for CNN-
based segmentation methods, or the occurrence of too much false positives after
the handcrafted feature classification method. This method failure in obtaining
predictions also indicates that the SOTA segmentation methods are not feasible
for skeleton-based detection in 3D space, while the proposed method can handle
this and is feasible. The detailed results are listed in Table 7.3 and Table 7.4.

For catheter detection in 3D US, the proposed method is compared in Ta-
ble 7.3 with several catheter detection methods in 3D US volumetric data, based
on multi-scale and definition features with an AdaBoost classifier (handcrafted
from [28, 65]), voxel-of-interest-based patch-wise CNN (VOI-PatchCNN from
[19]), slice-based 2D FCN for 3D US (SliceFCN from [67]) and Pyramid UNet
for patch-based segmentation ([69]). Unfortunately, no other works are avail-
able for catheters by machine learning methods. From the results, the proposed
method achieves a higher detection accuracy with better efficiency. It should be
noticed that the proposed method is solely based on the annotated skeleton, in-
stead of voxel-level annotation, which provides less information than the SOTA
methods. However, experimental results show that our method achieves still
a higher performance even with more challenging training conditions. The pro-
posed approach is therefore more challenging than the reported SOTA references.
Moreover, when considering the execution-time efficiency, the proposed MixD-
Net architecture achieves more than 8 times faster inference. The obtained fast
and accurate results present a promising performance for the requirement of real-
time applications. It is worth to mention that although the patch-based UNet can
be accelerated by patch-of-interest pre-selection, which achieves about 1-second
execution time per volume [105], the proposed method is still faster than the
coarse-to-fine segmentation approach.

For the needle detection in 3D US, the proposed method is compared in Ta-
ble 7.4 with several needle detection methods in 3D US volumetric data, based on
multi-scale and definition features with an AdaBoost classifier (handcrafted from
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[28, 65]), Patch-wise CNN ([66]), ShareFCN ([66]) and 3D UNet ([78]). From the
results, the proposed method achieves a higher performance than state-of-the-art
methods with better efficiency. It is mentioned here that because of the different
tasks and datasets, we could not obtain the results based on the structure of [78].
This is explained by the shallow network in the experiment with just 4 kernels in
the first layer, which cannot handle our complex dataset. In contrast with this, a
more complex and shallower 3D UNet is mentioned and referred to in Table 7.2
and Table 7.4, which obtains a much worse performance due to the extreme class
imbalance and skeleton annotation.

Moreover, paired t-tests are performed based on the metric of the endpoints-
error (EE) with a significance level of 0.05. For the catheter dataset, the proposed
method is statistically better than handcrafted, VOI-PatchCNN and SliceFCN
methods, while there is no statistical difference between the Pyramid-UNet and
the proposed method. For the needle dataset, the proposed method performs
statistically better than handcrafted, PatchCNN and 3D UNet methods, while
there is no statistical difference between the ShareFCN and the proposed method.
However, the proposed method achieves much faster inference time than these
state-of-the-art methods.

In terms of efficiency in execution time, the inference time is about 0.12 sec.
per volume for the catheter dataset and about 0.06 sec. per volume for the nee-
dle dataset on a GTX 1080Ti GPU. It is important to remark that our method
achieves about 6 and 3 seconds inference time for catheter and needle datasets,
respectively, on a standard CPU (2.4-GHz quadcore 8th-generation i5 processor).
This efficiency improvement clearly indicates lower hardware requirements for
the intended real-time application.

7.6 Discussion and Conclusion

This chapter has proposed a highly efficient and accurate medical instrument de-
tection algorithm for usage in 3D volumetric US data by employing deep learn-
ing techniques. This efficiency and good performance is achieved by propos-
ing a novel dimension-reduction module to reduce CNN complexity by reduc-
ing 3D feature maps to a 2D compressed format along principal axes of inter-
est. This algorithm is trained by a multi-level loss function with skeleton-based
annotation, which ensures an accurate detection result. A important aspect of
the proposed method is that despite its high-speed inference time compared to
state-of-the-art methods, it still achieves comparable detection accuracy. The pro-
posed dimension-reduction technique for high-speed calculation avoids overfit-
ting and reduces the computational cost. In addition, the skeleton-based annota-
tion avoids accurate voxel-level ground truth, which clearly improves the anno-
tation efficiency.
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Discussion

To apply our method in real-time applications, there are still a few discussion
points, as listed below.

(1) Clinical validation with in-vivo data: Further validation on in-vivo datasets
is still needed to support the clinical value for the proposed method, which is
considered as future work. More specifically, there are some limitations for both
validated datasets. Since the US images during the procedures are different than
those in our datasets, these differences can introduce and pose challenges. As
for the catheter dataset, the isolated hearts were placed in a water tank. The
heart chambers were filled with water to mimic the intervention procedure, al-
though it should be blood for a real heart. This discrepancy can lead to differ-
ent image noise and contrast levels between the instrument and the surrounding
background. For the needle dataset, the real procedure would introduce more
complex subcutaneous tissue and vessel structures, which complicate processing
of the acquired images. As a consequence, to make the proposed method suitable
for real clinical practice, more studies should be conducted on in-vivo data in the
future.

(2) Video data: The proposed method is applied to static images instead of 3D
US video, which is commonly used during interventions. Therefore, a further
study in 4D US is necessary in the future, which exploits the temporal infor-
mation and possibly increases the detection efficiency. However, this 4D data
requires more advanced processing to handle the temporal domain with image-
to-image fluctuations.

Conclusion

The proposed method contains the following contributions. First, a novel multi-
dimensional hybrid structure for instrument detection in 3D US is proposed.
With this approach, network complexity is reduced and overfitting can be bet-
ter avoided when compared to the traditional full-3D networks. Second, the ob-
tained structure is based on a specifically designed dimension-reduction block,
which reduces the spatial information from 3D to 2D, while extracting the most
relevant instrument information along specific directions in the data volume.
Third, to train the CNN, the proposed multi-level loss function allows the net-
work to learn the information at pixel-level and image-level simultaneously, so
that more context is obtained. In this chapter, the proposed algorithm achieves a
similar or higher performance than state-of-the-art methods with 3-8 times higher
computation efficiency, thereby paving the way for real-time applications.
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Conclusions

This thesis has presented the techniques for medical instrument detection in 3D
ultrasound volumetric data. In this chapter, the contributions and final conclu-
sions presented in individual chapters to implement this system are summarized.
The research questions of Chapter 1 are reconsidered and addressed with our
findings.

8.1 Conclusions on Individual Chapters

Chapter 2: This chapter presents an extensive summary of the commonly
considered techniques and methodologies for image-based instrument detection
methods in 3D volumetric datasets. We have introduced the well-known
feature analysis techniques for instrument-related information measurement.
For classification and detection of the instrument, machine learning techniques,
such as support vector machine, adaptive boosting and deep neural networks
are introduced. Specifically, conventional machine learning algorithms and
state-of-the-art deep learning methods are compared. We have found that
support vector machine or adaptive boosting algorithms can address the medical
instrument detection tasks with a proper quality. When a larger amount of data
are available, deep learning approaches are also attractive as a technical solution,
because of their superior performance and robustness at the expense of more
computation power. A model-fitting algorithm is also introduced for instrument
detection in segmented images, to extract the instrument location and orientation
in 3D volumes. Finally, evaluation method and commonly applied metrics are
discussed, such as the Dice score, endpoint-error measurement, the Hausdorff
distance.
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Chapter 3: This chapter presents novel feature representations for catheter
processing in 3D ultrasound volumes. We have proposed a generic method
of multi-scale and multi-definition feature analysis to detect and localize the
catheter position and orientation in challenging 3D US volumes. With the
specifically proposed multi-scale/definition feature descriptors for catheter
voxel classification, the catheter voxels in the imbalanced 3D US volumes can
be detected by a standard binary adaptive boosting classifier. The classification
results of the proposed features achieve an F1 score of 52-83% on different
experimental datasets (in-vitro to in-vivo), which is superior to the state-of-the-art
computer vision techniques. Subsequently, the model of a curved catheter
is fitted to the detected voxels by the proposed Sparse-plus-dense RANSAC
model-fitting algorithm. The proposed complete system achieves an average
localization error (endpoint-error) of about 2 mm in the challenging datasets.

Chapter 4: For efficient instrument detection, an efficient novel voxel-of-interest-
based catheter detection framework is proposed in this chapter. To reduce
the overall computation complexity, we have introduced a voxel-of-interest
pre-selection step, prior to the voxel-level CNN-based classification, which is
achieved by employing an efficient pre-modeled Frangi vesselness filter. Sub-
sequently, a novel tri-planar CNN is proposed to classify the selected voxels in
the 3D volumes, which partitions the local 3D patches to orthogonal 2D slices to
reduce the computational cost. The evaluation on the challenging ex-vivo dataset
demonstrates that the proposed method drastically accelerates the overall
detection speed with more than 10 times improvement (from several minutes to
around 18 seconds per volume), while preserving a segmentation score of about
60%. In addition, based on the segmented volumes, the SPD-RANSAC is applied
to localize the catheter with a 2.1-mm localization error giving state-of-the-art
performance.

Chapter 5: This chapter presents a novel deep learning method for efficient
and robust localization of the medical instrument in 3D volumes. This method
is based on a patch-of-interest strategy, for which an interested patch-selection
algorithm and an efficient 2D FCN are employed to coarsely segment the
instrument in a slice-by-slice manner. Subsequently, based on this coarse
segmentation, the patches of interest are further partitioned and processed by
a novel FuseNet, which is constructed by two individual and parallel CNNs
for 2.5D and 3D information processing and subsequent fusing their feature
maps. Additionally, to train the overall network, a novel hybrid loss function is
introduced, which simultaneously learns discriminative information at the pixel
level and image level, to enhance the segmentation performance. Extensive vali-
dation has demonstrated that the proposed framework achieves a segmentation
performance about 70% Dice score and processing speed of about 1 second per
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volume, which is much faster and better than the state-of-the-art techniques.

Chapter 6: Accurate voxel-level annotation is expensive and laborious to
obtain for CNN training. In this chapter, to address this challenge for medical
instrument detection, a novel semi-supervised learning framework is proposed,
which consists of a coarse patch selection and fine segmentation. To achieve a
patch selection with minimum annotation effort, a deep reinforcement learning
technique is employed, which is adaptive to the image content to localize the
region-of-interest. Based on the selected patches, a fine segmentation network
is applied based on semi-supervised training, which is achieved by training
under the guidance and constraint of an uncertainty estimation from the pro-
posed Dual-UNet predictions. With extensive validation on ex-vivo and in-vivo
datasets, the proposed method achieves a segmentation performance of about
70% and approximately a one-second execution time per volume. Meanwhile,
the required annotation images are only about 30% of the total set of training
images, which indicates promising results for annotation-efficient solutions.

Chapter 7: Full-image based CNN processing is expensive, time-consuming and
a challenge for 3D volumetric data. To address these issues, a novel multi-
dimensional processing technique is presented in this chapter. The proposed
multi-dimensional method consists of a 3D encoder, 3D-to-2D dimensional re-
duction module and a 2D decoder, which reduces the computational complexity
from 3D to 2D operations by projecting the feature maps along the interested
principal axes. In addition, a multi-level loss function that focuses on both pixel-
level consistency and image-level consistency using a skeleton-based annotation
is employed, to enable the network to learn the information at different image
context levels. Extensive validation on catheter and needle datasets demonstrate
that the proposed method is 3-8 times faster than the current techniques, while it
maintains a comparable detection accuracy to the state-of-the-art methods.

8.2 Discussion on the Research Questions

This section elaborates on the proposed methods and solutions with respect to
the research questions formulated in Section 1.6.

RQ1. Features and modeling of the instrument for an automated
detection system

RQ1a. What are good discriminative shape features for a medical instrument?
In Chapter 3, several 3D discriminative features are proposed for instru-

ment voxel classification, which include novel Hessian matrix-based features,
Gabor features and statistical features. In that chapter, a thorough validation
is performed for classifying the instrument using those features on different
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challenging datasets (in-vitro to in-vivo) at voxel level, which has demonstrated
that the proposed multi-scale and multi-definition features achieve an F1 score
of 52-83%. In addition, the later chapters, such as Chapter 5, with deep learning
methods also exploit the multi-scale discriminative information of the instru-
ment by using pyramidal down- and up-scaling structures, such as commonly
considered in the UNet architecture. Throughout the thesis, multiple experi-
ments have been conducted to show promising results on different datasets.
In conclusion, with experimental validations, the deep learning approaches
with multi-resolution scaling features are attractive for modeling instrument
discriminative information.

RQ1b. Is it possible to model a curved instrument in 3D image data based on position
information, from the initial classification of voxels?

Based on the classification results in Chapter 3, a Sparse-plus-dense RANSAC
algorithm is proposed by spline model-fitting techniques, which successfully
models the curved catheter in 3D volumetric data. The proposed model-fitting
algorithm is indeed based on the initial voxel classification, which achieves an
average localization error of about 2 mm in challenging datasets. However, in
some of the succeeding chapters where the detection plays a role, and are based
on the deep learning approaches, the curvatures of the instruments are measured
or processed by the proposed Sparse-plus-dense RANSAC algorithm as a post-
processing step, because it provides a stable solution. In that case, the curvature
processing is based on the deep learning semantic segmentation.

RQ2. Pre-modeling and robustness of the detection system

RQ2a. For efficient removal of irrelevant voxels, is pre-modeling and selecting the voxel
points in 3D volume data a feasible solution?

In Chapter 4, an efficient Frangi vesselness pre-modeling stage of the catheter
is proposed that removes the background voxels and selects the catheter-like
voxels, prior to subsequent CNN classification. The proposed pre-selection
can efficiently select the voxels-of-interest while removing more than 99% of
the irrelevant voxels with a speed in the order of a second. Similarly, a local
patch-of-interest pre-selection is also proposed to efficiently select the voxel
points from the 3D volume, as shown in Chapters 5 and 6. That method has
proven that it can efficiently exclude the background voxels by pre-selection
and can be combined successfully with subsequent deep learning networks. In
conclusion, both of these approaches have demonstrated their feasibility.

RQ2b. Can we directly describe the instrument within a deep neural network using
(partially) 3D US data, to potentially improve the detection accuracy or improve the
detection efficiency?
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To directly learn the discriminative instrument information in 3D US data
within one network, an experiment is conducted in Chapter 4. This experiment
shows that the F2 score is comparable to more efficient methods, and only indi-
cates a higher precision at the cost of a slightly lower recall. Hence it is possible,
but there are more efficient ways to find the instruments. In the same chapter, a
tri-planar CNN is proposed, which partitions the 3D local patches into orthogo-
nal 2D slices to reduce the computational cost, while still preserving the informa-
tion for instrument detection. In this way, the 3D information is partially used
for classification. The evaluation on the challenging ex-vivo dataset demonstrates
that the proposed CNN improves the segmentation performance to a score of
about 60%, which is higher than the state-of-the-art methods.

RQ3. Exploitation of the 3D context and near-real-time instrument
detection

RQ3a. Can we implement an efficient and robust region-of-interest (ROI) instrument
detection by means of a deep learning method?

To efficiently and robustly select the ROI by a deep learning method, a
patch-of-interest strategy is proposed in Chapter 5, which employs an efficient
2D FCN that coarsely segments the instrument following a slice-by-slice strategy.
Extensive validations on ex-vivo and in-vivo datasets show that the proposed
pre-selection can segment the instrument with a Dice score of about 60% within
only 0.6 seconds. The results ensure a successful and efficient selection of the
ROIs. In addition, the pre-selection using such ROI method enables an efficient
subsequent segmentation, which can be obtained with an overall execution
speed of about 1 second per volume.

RQ3b. Can the instrument be robustly segmented by deep learning after applying the
ROI methods? Does this technique provide a more meaningful semantic model and im-
prove the robustness against challenging volumes containing anatomical structures?

For robust and accurate segmentation of the instrument after the ROI method,
a novel FuseNet is proposed, which is constructed by two individual and parallel
CNNs for 2.5D and 3D information processing. Since both 2.5D and 3D informa-
tion are processed by the FuseNet, a more meaningful segmentation model can be
achieved for challenging 3D US images, so that anatomical structures in the back-
ground or surroundings can be better handled. Extensive validation has demon-
strated that the proposed framework achieves a segmentation performance of
about 70% Dice score, which clearly outperforms the state-of-the-art methods.
However, these Dice scores are based on overlap in the segmentation, which is
not same as being meaningful. We estimate that some of these improved seg-
mentations are certainly more meaningful, while others do not improve the un-
derstanding.
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RQ4. Annotation-efficient training of a deep learning method for
instrument detection

RQ4a. Is it possible to train an efficient coarse localization method to find the sub-volume
containing the instrument without requiring accurate voxel-level annotation?

In Chapter 6, to efficiently localize the instrument without accurate voxel-
level annotation, a deep reinforcement learning method is adopted. This method
can interact adaptively with the input image content to efficiently localize the
region of interest. Compared to bounding-box-based methods, the adopted
and proposed deep Q-network has a specific simple architecture, enabling easy
training and achieving superior performances for our challenging datasets,
resulting in an accuracy of about 4 voxels. Similarly, this is also shown in
Chapter 7, where the instrument is coarsely localized by a multi-dimensional
method without employing accurate voxel-level annotation, e.g. just using an
instrument skeleton, which achieves a localization error of about 3-4 voxels on
the average. These two proposed approaches form a good basis for efficient
coarse localization of the instrument.

RQ4b. How should the region of interest be segmented with a deep learning method,
when the network is trained by only a small amount of annotated data (or even without)
at voxel-level and a large amount of unannotated data?

For training the segmentation network using both a small amount of anno-
tated data at voxel-level and a large amount of unannotated data, an annotation-
efficient semi-supervised learning method is proposed. In order to generate the
constrained loss functions for using the unlabeled images during the training, an
uncertainty estimation based on Bayesian predictions is employed, which is then
exploited to train the segmentation network. With extensive validation on ex-vivo
and in-vivo datasets, the proposed method achieves a segmentation performance
of about 70% Dice score, while the required annotation images are reduced to
only about 30% of the total amount of training images.

In fully training the network without any voxel-level annotations, a multi-
level loss function is considered in Chapter 7 to facilitate the network to learn
the information from different image contexts. Extensive validation experiments
on catheter and needle datasets demonstrate the proposed approach achieves a
comparable detection accuracy (end-points error: 2-3 voxels, orientation error:
5-7 degrees) to the state-of-the-art methods employing semantic segmentation
CNNs.

RQ5. Real-time detection of medical instruments

RQ5. Is it possible to reduce the complexity of a 3D model by decreasing the num-
ber of dimensions in the neural network modeling, rather than reducing the image-
scale/resolution, CNN filter sizes, etc.?
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To reduce the complexity of a 3D model for medical instrument detection, a
novel multi-dimensional CNN is proposed in Chapter 7. The proposed method
avoids to reduce the image-scale, resolution and CNN filter sizes, but instead
reduces the dimensionality of the feature maps from 3D to 2D. This approach
drastically decreases the complexity of the decoder compared to commonly
considered 3D CNN models. The proposed method achieves an inference time
of about 0.1 seconds, being 10 times faster than the commonly considered
methods, which require at least 1-second execution time.

8.3 Utilization and Outlook

The fast development of image processing and artificial intelligence enable to au-
tomate and perform more sophisticated and complicated tasks in many areas of
the growing information society. In the medical domain, US imaging is one of
the essential modalities for treatment and diagnostics, which has been substan-
tially benefiting from this trend, and is already merging within fetal and cardiac
monitoring. Image-guided minimally-invasive intervention is another important
application direction of US imaging, as it can provide simpler and better out-
comes with the aid of AI enabled systems. The research presented in this thesis
has proposed several solutions for automated medical instrument detection and
localization in 3D US volumetric data, which is acquired by standard cardio US
transducers with low spatial resolution. The research experiments have shown
that the developed algorithms are accurate and robust for the detection task by
employing deep learning techniques, which are however computationally com-
plex and expensive to be trained. Therefore, further optimization is required
for a real-time and robust performance in mature future applications with high-
resolution US images.

As for high-resolution US imaging, one of the limitations of the current work
is that the processing-throughput rate of this work is, though approaching the
speed of clinical support, not yet sufficient. For the support of live interventions,
a real-time execution of about 10-20 Hz video frame rate is minimally required.
Therefore, the computational complexity of the considered approaches and re-
lated systems have a direct influence on the applicability in the clinical domain.
Acceleration of the execution efficiency of the proposed method should be fur-
ther optimized in the future, such as a more compact yet accurate deep learning
network design or the throughput optimization of total processing pipeline. In
parallel to software optimization, the actual hardware development also enables
a much faster execution time of a complex algorithm, because parallel GPU pro-
cessing is still expanding over time. As a consequence, it is easier to achieve
higher processing speeds in the upcoming years, which natually leads to a better
applicability of this work.
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In terms of other applications or modalities, the proposed concepts and/or
methods can be easily adopted to different types of operations, such as needle-
based biopsy taking under the guidance of US imaging. In addition, thanks for
the learning capability of the CNNs, many other types of devices, such as stents,
valves, pacemaker leads, etc., can be learned by an end-to-end training strat-
egy. With the ongoing generalization of the proposed methodology, the work in
this thesis can be easily transferred to other image-guided operations, within US
imaging or outside the scope of acoustic imaging, such as X-Ray modalities for
real-time guidance.

From the clinical perspective and considering the unique properties of ultra-
sound like real-time execution and radiation-free imaging, US imaging is increas-
ingly becoming one of the important imaging modalities in the near future for
treatments and diagnostics, when compared to expensive CT with radiation or
MRI imaging. Additionally, US imaging is assumed to be widely applied in many
different applications in regional or local hospitals to be supplementary to CT or
X-Ray imaging, or even replace them for simple tasks, because it is less expensive
and can be equipped with more advanced image processing software. With the
trend of more affordable US machines and advanced US analysis in the future,
a reduction of the hospital referring cost and a better early outcome for patients
may be achieved. Future systems with integration of the proposed artificial intel-
ligence algorithms should eventually improve the outcomes of the operation and
treatment, and facilitate clinicians in training and operations. This enables a sub-
stantially broader usage of US-guided analysis, which indicates a bright future of
US-based image processing.

174



Arash Pourtaherian Dissertation TU Eindhoven March 21, 2022 14:26 Page 175 Sheet 195/214

�
�	 �
�	

�
�	

Bibliography

[1] B. R. Douglas, J. W. Charboneau, and C. C. Reading, “Ultrasound-guided interven-
tion: expanding horizons,” Radiologic Clinics of North America, vol. 39, no. 3, pp.
415–428, 2001.

[2] I. M. Germano, Advanced techniques in image-guided brain and spine surgery. Thieme
Medical Publishers, Incorporated, 2002.

[3] T. M. Peters, “Image-guidance for surgical procedures,” Physics in Medicine & Biol-
ogy, vol. 51, no. 14, p. R505, 2006.

[4] K. Cleary and T. M. Peters, “Image-guided interventions: technology review and
clinical applications,” Annual review of biomedical engineering, vol. 12, pp. 119–142,
2010.

[5] X. Wu, “Fast catheter segmentation and tracking based on x-ray fluoroscopic and
echocardiographic modalities for catheter-based cardiac minimally invasive inter-
ventions,” 2015.

[6] A. Pourtaherian, “Robust needle detection and visualization for 3d ultrasound
image-guided interventions,” Ph.D. dissertation, Department of Electrical Engineer-
ing, 9 2018, proefschrift.

[7] T. M. Peters, “Image-guided surgery: from x-rays to virtual reality,” Computer meth-
ods in biomechanics and biomedical engineering, vol. 4, no. 1, pp. 27–57, 2001.

[8] M. Mischi, “Contrast echocardiography for cardiac quantifications.” 2002.

[9] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A.
Van Der Laak, B. Van Ginneken et al., “A survey on deep learning in medical image
analysis,” Medical image analysis, vol. 42, pp. 60–88, 2017.

[10] W. Xia et al., “In-plane ultrasonic needle tracking using a fiber-optic hydrophone,”
Medical Physics, vol. 42, no. 10, pp. 5983–5991, 2015.
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AdB Adaptive Boosting

AI Artificial Intelligence

ASPP Atrous Spatial Pyramid Pooling

B-mode Brightness mode

BN Batch Normalization

CE Cross Entropy

CL Contextual Loss

CNNs Convolutional Neural Networks

ConvNet Convolutional Neural Network

CRF Conditional Random Field

CT Computed Tomography

DF-UNet Direction-fused UNet

DL Deep Learning

DQN Deep Q-Network

DSC Dice Score

EE End-points Error

EMA Exponential Moving Averaging

FCN Fully Convolutional Neural Network

FL Focal Loss

FN False Negative

FP False Positive
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MCD Monte Carlo Dropout
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MLP Multi-layer Perceptron
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MT Mean-Teacher
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POI Patch-of-interest
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ReLU Rectified Linear Unit

RHT Random Hough Transformation

RL Reinforcement Learning
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SGD Stochastic Gradient Descent
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185



Arash Pourtaherian Dissertation TU Eindhoven March 21, 2022 14:26 Page 186 Sheet 206/214

�
�	 �
�	

�
�	

ACRONYMS

SOTA State-of-the-art

SP Specificity
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