11,042 research outputs found

    Ubiquitous Scalable Graphics: An End-to-End Framework using Wavelets

    Get PDF
    Advances in ubiquitous displays and wireless communications have fueled the emergence of exciting mobile graphics applications including 3D virtual product catalogs, 3D maps, security monitoring systems and mobile games. Current trends that use cameras to capture geometry, material reflectance and other graphics elements means that very high resolution inputs is accessible to render extremely photorealistic scenes. However, captured graphics content can be many gigabytes in size, and must be simplified before they can be used on small mobile devices, which have limited resources, such as memory, screen size and battery energy. Scaling and converting graphics content to a suitable rendering format involves running several software tools, and selecting the best resolution for target mobile device is often done by trial and error, which all takes time. Wireless errors can also affect transmitted content and aggressive compression is needed for low-bandwidth wireless networks. Most rendering algorithms are currently optimized for visual realism and speed, but are not resource or energy efficient on mobile device. This dissertation focuses on the improvement of rendering performance by reducing the impacts of these problems with UbiWave, an end-to-end Framework to enable real time mobile access to high resolution graphics using wavelets. The framework tackles the issues including simplification, transmission, and resource efficient rendering of graphics content on mobile device based on wavelets by utilizing 1) a Perceptual Error Metric (PoI) for automatically computing the best resolution of graphics content for a given mobile display to eliminate guesswork and save resources, 2) Unequal Error Protection (UEP) to improve the resilience to wireless errors, 3) an Energy-efficient Adaptive Real-time Rendering (EARR) heuristic to balance energy consumption, rendering speed and image quality and 4) an Energy-efficient Streaming Technique. The results facilitate a new class of mobile graphics application which can gracefully adapt the lowest acceptable rendering resolution to the wireless network conditions and the availability of resources and battery energy on mobile device adaptively

    A framework for realistic 3D tele-immersion

    Get PDF
    Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite differ- ent from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experi- ence of talking in person. Several causes for these differences have been identified and we propose inspiring and innova- tive solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational expe- rience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic ex- periences to a multitude of users that for them will feel much more similar to having face to face meetings than the expe- rience offered by conventional teleconferencing systems

    A framework for digital sunken relief generation based on 3D geometric models

    Get PDF
    Sunken relief is a special art form of sculpture whereby the depicted shapes are sunk into a given surface. This is traditionally created by laboriously carving materials such as stone. Sunken reliefs often utilize the engraved lines or strokes to strengthen the impressions of a 3D presence and to highlight the features which otherwise are unrevealed. In other types of reliefs, smooth surfaces and their shadows convey such information in a coherent manner. Existing methods for relief generation are focused on forming a smooth surface with a shallow depth which provides the presence of 3D figures. Such methods unfortunately do not help the art form of sunken reliefs as they omit the presence of feature lines. We propose a framework to produce sunken reliefs from a known 3D geometry, which transforms the 3D objects into three layers of input to incorporate the contour lines seamlessly with the smooth surfaces. The three input layers take the advantages of the geometric information and the visual cues to assist the relief generation. This framework alters existing techniques in line drawings and relief generation, and then combines them organically for this particular purpose

    Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework

    Get PDF
    According to the thin client computing principle, the user interface is physically separated from the application logic. In practice only a viewer component is executed on the client device, rendering the display updates received from the distant application server and capturing the user interaction. Existing remote display frameworks are not optimized to encode the complex scenes of modern applications, which are composed of objects with very diverse graphical characteristics. In order to tackle this challenge, we propose to transfer to the client, in addition to the binary encoded objects, semantic information about the characteristics of each object. Through this semantic knowledge, the client is enabled to react autonomously on user input and does not have to wait for the display update from the server. Resulting in a reduction of the interaction latency and a mitigation of the bursty remote display traffic pattern, the presented framework is of particular interest in a wireless context, where the bandwidth is limited and expensive. In this paper, we describe a generic architecture of a semantic remote display framework. Furthermore, we have developed a prototype using the MPEG-4 Binary Format for Scenes to convey the semantic information to the client. We experimentally compare the bandwidth consumption of MPEG-4 BiFS with existing, non-semantic, remote display frameworks. In a text editing scenario, we realize an average reduction of 23% of the data peaks that are observed in remote display protocol traffic

    Distributed OpenGL Rendering in Network Bandwidth Constrained Environments

    Get PDF
    Display walls made from multiple monitors are often used when very high resolution images are required. To utilise a display wall, rendering information must be sent to each computer that the monitors are connect to. The network is often the performance bottleneck for demanding applications, like high performance 3D animations. This paper introduces ClusterGL; a distribution library for OpenGL applications. ClusterGL reduces network traffic by using compression, frame differencing and multi-cast. Existing applications can use ClusterGL without recompilation. Benchmarks show that, for most applications, ClusterGL outperforms other systems that support unmodified OpenGL applications including Chromium and BroadcastGL. The difference is larger for more complex scene geometries and when there are more display machines. For example, when rendering OpenArena, ClusterGL outperforms Chromium by over 300% on the Symphony display wall at The University of Waikato, New Zealand. This display has 20 monitors supported by five computers connected by gigabit Ethernet, with a full resolution of over 35 megapixels. ClusterGL is freely available via Google Code

    Towards a multimedia remote viewer for mobile thin clients

    Get PDF
    Be there a traditional mobile user wanting to connect to a remote multimedia server. In order to allow them to enjoy the same user experience remotely (play, interact, edit, store and share capabilities) as in a traditional fixed LAN environment, several dead-locks are to be dealt with: (1) a heavy and heterogeneous content should be sent through a bandwidth constrained network; (2) the displayed content should be of good quality; (3) user interaction should be processed in real-time and (4) the complexity of the practical solution should not exceed the features of the mobile client in terms of CPU, memory and battery. The present paper takes this challenge and presents a fully operational MPEG-4 BiFS solution

    Interactive Visualization of the Largest Radioastronomy Cubes

    Full text link
    3D visualization is an important data analysis and knowledge discovery tool, however, interactive visualization of large 3D astronomical datasets poses a challenge for many existing data visualization packages. We present a solution to interactively visualize larger-than-memory 3D astronomical data cubes by utilizing a heterogeneous cluster of CPUs and GPUs. The system partitions the data volume into smaller sub-volumes that are distributed over the rendering workstations. A GPU-based ray casting volume rendering is performed to generate images for each sub-volume, which are composited to generate the whole volume output, and returned to the user. Datasets including the HI Parkes All Sky Survey (HIPASS - 12 GB) southern sky and the Galactic All Sky Survey (GASS - 26 GB) data cubes were used to demonstrate our framework's performance. The framework can render the GASS data cube with a maximum render time < 0.3 second with 1024 x 1024 pixels output resolution using 3 rendering workstations and 8 GPUs. Our framework will scale to visualize larger datasets, even of Terabyte order, if proper hardware infrastructure is available.Comment: 15 pages, 12 figures, Accepted New Astronomy July 201

    An Immersive Telepresence System using RGB-D Sensors and Head Mounted Display

    Get PDF
    We present a tele-immersive system that enables people to interact with each other in a virtual world using body gestures in addition to verbal communication. Beyond the obvious applications, including general online conversations and gaming, we hypothesize that our proposed system would be particularly beneficial to education by offering rich visual contents and interactivity. One distinct feature is the integration of egocentric pose recognition that allows participants to use their gestures to demonstrate and manipulate virtual objects simultaneously. This functionality enables the instructor to ef- fectively and efficiently explain and illustrate complex concepts or sophisticated problems in an intuitive manner. The highly interactive and flexible environment can capture and sustain more student attention than the traditional classroom setting and, thus, delivers a compelling experience to the students. Our main focus here is to investigate possible solutions for the system design and implementation and devise strategies for fast, efficient computation suitable for visual data processing and network transmission. We describe the technique and experiments in details and provide quantitative performance results, demonstrating our system can be run comfortably and reliably for different application scenarios. Our preliminary results are promising and demonstrate the potential for more compelling directions in cyberlearning.Comment: IEEE International Symposium on Multimedia 201
    corecore