560 research outputs found

    An Ear Recognition Method Based on Rotation Invariant Transformed DCT

    Get PDF
    Human recognition systems have gained great importance recently in a wide range of applications like access, control, criminal investigation and border security. Ear is an emerging biometric which has rich and stable structure and can potentially be implemented reliably and cost efficiently. Thus human ear recognition has been researched widely and made greatly progress. High recognition rates which are reported in most existing methods can be reached only under closely controlled conditions. Actually a slight amount of rotation and translation which is inescapable would be injurious for system performance. In this paper, a method that uses a transformed type of DCT is implemented to extract meaningful features from ear images. This algorithm is quite robust to ear rotation, translation and illumination. The proposed method is experimented on two popular databases, i.e. USTB II and IIT Delhi II, which achieves significant improvement in the performance in comparison to other methods with good efficiency based on LBP, DSIFT and Gabor. Also because of considering only important coefficients, this method is faster compared to other methods

    Biometric security: A novel ear recognition approach using a 3D morphable ear model

    Get PDF
    Biometrics is a critical component of cybersecurity that identifies persons by verifying their behavioral and physical traits. In biometric-based authentication, each individual can be correctly recognized based on their intrinsic behavioral or physical features, such as face, fingerprint, iris, and ears. This work proposes a novel approach for human identification using 3D ear images. Usually, in conventional methods, the probe image is registered with each gallery image using computational heavy registration algorithms, making it practically infeasible due to the time-consuming recognition process. Therefore, this work proposes a recognition pipeline that reduces the one-to-one registration between probe and gallery. First, a deep learning-based algorithm is used for ear detection in 3D side face images. Second, a statistical ear model known as a 3D morphable ear model (3DMEM), was constructed to use as a feature extractor from the detected ear images. Finally, a novel recognition algorithm named you morph once (YMO) is proposed for human recognition that reduces the computational time by eliminating one-to-one registration between probe and gallery, which only calculates the distance between the parameters stored in the gallery and the probe. The experimental results show the significance of the proposed method for a real-time application

    Formal Models of the Network Co-occurrence Underlying Mental Operations

    Get PDF
    International audienceSystems neuroscience has identified a set of canonical large-scale networks in humans. These have predominantly been characterized by resting-state analyses of the task-uncon-strained, mind-wandering brain. Their explicit relationship to defined task performance is largely unknown and remains challenging. The present work contributes a multivariate statistical learning approach that can extract the major brain networks and quantify their configuration during various psychological tasks. The method is validated in two extensive datasets (n = 500 and n = 81) by model-based generation of synthetic activity maps from recombination of shared network topographies. To study a use case, we formally revisited the poorly understood difference between neural activity underlying idling versus goal-directed behavior. We demonstrate that task-specific neural activity patterns can be explained by plausible combinations of resting-state networks. The possibility of decomposing a mental task into the relative contributions of major brain networks, the "network co-occurrence architecture" of a given task, opens an alternative access to the neural substrates of human cognition

    Cost-effective 3D scanning and printing technologies for outer ear reconstruction: Current status

    Get PDF
    Current 3D scanning and printing technologies offer not only state-of-the-art developments in the field of medical imaging and bio-engineering, but also cost and time effective solutions for surgical reconstruction procedures. Besides tissue engineering, where living cells are used, bio-compatible polymers or synthetic resin can be applied. The combination of 3D handheld scanning devices or volumetric imaging, (open-source) image processing packages, and 3D printers form a complete workflow chain that is capable of effective rapid prototyping of outer ear replicas. This paper reviews current possibilities and latest use cases for 3D-scanning, data processing and printing of outer ear replicas with a focus on low-cost solutions for rehabilitation engineering

    Characterizing Variability of Modular Brain Connectivity with Constrained Principal Component Analysis

    Get PDF
    Characterizing the variability of resting-state functional brain connectivity across subjects and/or over time has recently attracted much attention. Principal component analysis (PCA) serves as a fundamental statistical technique for such analyses. However, performing PCA on high-dimensional connectivity matrices yields complicated "eigenconnectivity" patterns, for which systematic interpretation is a challenging issue. Here, we overcome this issue with a novel constrained PCA method for connectivity matrices by extending the idea of the previously proposed orthogonal connectivity factorization method. Our new method, modular connectivity factorization (MCF), explicitly introduces the modularity of brain networks as a parametric constraint on eigenconnectivity matrices. In particular, MCF analyzes the variability in both intra-and inter-module connectivities, simultaneously finding network modules in a principled, data-driven manner. The parametric constraint provides a compact module based visualization scheme with which the result can be intuitively interpreted. We develop an optimization algorithm to solve the constrained PCA problem and validate our method in simulation studies and with a resting-state functional connectivity MRI dataset of 986 subjects. The results show that the proposed MCF method successfully reveals the underlying modular eigenconnectivity patterns in more general situations and is a promising alternative to existing methods.Peer reviewe

    Visual attention and perception in scene understanding for social robotics

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Spectral methods for multimodal data analysis

    Get PDF
    Spectral methods have proven themselves as an important and versatile tool in a wide range of problems in the fields of computer graphics, machine learning, pattern recognition, and computer vision, where many important problems boil down to constructing a Laplacian operator and finding a few of its eigenvalues and eigenfunctions. Classical examples include the computation of diffusion distances on manifolds in computer graphics, Laplacian eigenmaps, and spectral clustering in machine learning. In many cases, one has to deal with multiple data spaces simultaneously. For example, clustering multimedia data in machine learning applications involves various modalities or ``views'' (e.g., text and images), and finding correspondence between shapes in computer graphics problems is an operation performed between two or more modalities. In this thesis, we develop a generalization of spectral methods to deal with multiple data spaces and apply them to problems from the domains of computer graphics, machine learning, and image processing. Our main construction is based on simultaneous diagonalization of Laplacian operators. We present an efficient numerical technique for computing joint approximate eigenvectors of two or more Laplacians in challenging noisy scenarios, which also appears to be the first general non-smooth manifold optimization method. Finally, we use the relation between joint approximate diagonalizability and approximate commutativity of operators to define a structural similarity measure for images. We use this measure to perform structure-preserving color manipulations of a given image

    Part-based recognition of 3-D objects with application to shape modeling in hearing aid manufacturing

    Get PDF
    In order to meet the needs of people with hearing loss today hearing aids are custom designed. Increasingly accurate 3-D scanning technology has contributed to the transition from conventional production scenarios to software based processes. Nonetheless, there is a tremendous amount of manual work involved to transform an input 3-D surface mesh of the outer ear into a final hearing aid shape. This manual work is often cumbersome and requires lots of experience which is why automatic solutions are of high practical relevance. This work is concerned with the recognition of 3-D surface meshes of ear implants. In particular we present a semantic part-labeling framework which significantly outperforms existing approaches for this task. We make at least three contributions which may also be found useful for other classes of 3-D meshes. Firstly, we validate the discriminative performance of several local descriptors and show that the majority of them performs poorly on our data except for 3-D shape contexts. The reason for this is that many local descriptor schemas are not rich enough to capture subtle variations in form of bends which is typical for organic shapes. Secondly, based on the observation that the left and the right outer ear of an individual look very similar we raised the question how similar the ear shapes among arbitrary individuals are? In this work, we define a notion of distance between ear shapes as building block of a non-parametric shape model of the ear to better handle the anatomical variability in ear implant labeling. Thirdly, we introduce a conditional random field model with a variety of label priors to facilitate the semantic part-labeling of 3-D meshes of ear implants. In particular we introduce the concept of a global parametric transition prior to enforce transition boundaries between adjacent object parts with an a priori known parametric form. In this way we were able to overcome the issue of inadequate geometric cues (e.g., ridges, bumps, concavities) as natural indicators for the presence of part boundaries. The last part of this work offers an outlook to possible extensions of our methods, in particular the development of 3-D descriptors that are fast to compute whilst at the same time rich enough to capture the characteristic differences between objects residing in the same class
    corecore