227 research outputs found

    A combined three-dimensional digitisation and subsurface defect detection data using active infrared thermography

    No full text
    International audienceIn recent years, NonDestructive Testing (NDT) systems have been upgraded with three-dimensional information. Indeed, combine the three-dimensional and thermal information allows a more meaningful analysis. In the literature, the data for NDT and three-dimensional (3D) reconstruction analysis are commonly acquired from independent systems. However, the use of two such systems leads to error analysis during the data registration. In an attempt to overcome such problems, we propose a single system based on active thermography approach using heat point-source stimulation to get the 3D digitization as well as subsurface defect detection. The experiments are conducted on steel and aluminum objects, and a combined 3D / thermal-information is presented

    Wood fiber orientation assessment based on punctual laser beam excitation: A preliminary study

    No full text
    International audienceThe EU imposes standards for the use of wood in structural applications. Local singularities such as knots affect the wood mechanical properties. They can be revealed by looking at the wood fiber orientation. For this reason, many methods were proposed to estimate the orientation of wood fiber using optical means, X-rays, or scattering measurement techniques. In this paper, an approach to assess the wood fiber orientation based on thermal ellipsometry is developed. The wood part is punctually heated with a Nd-YAG Laser and the thermal response is acquired by an infrared camera. The thermal response is elliptical due to the propagation of the heat through and along the wood fibers. An experiment is presented to show the capacity of such techniques to assess fiber orientation on wood specimen. In addition, an appropriate algorithm is given to extract the orientation of the ellipse

    Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    Get PDF
    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation

    On Practical Sampling of Bidirectional Reflectance

    Get PDF

    Autonomous Optical Inspection of Large Scale Freeform Surfaces

    Get PDF

    Material Recognition Meets 3D Reconstruction : Novel Tools for Efficient, Automatic Acquisition Systems

    Get PDF
    For decades, the accurate acquisition of geometry and reflectance properties has represented one of the major objectives in computer vision and computer graphics with many applications in industry, entertainment and cultural heritage. Reproducing even the finest details of surface geometry and surface reflectance has become a ubiquitous prerequisite in visual prototyping, advertisement or digital preservation of objects. However, today's acquisition methods are typically designed for only a rather small range of material types. Furthermore, there is still a lack of accurate reconstruction methods for objects with a more complex surface reflectance behavior beyond diffuse reflectance. In addition to accurate acquisition techniques, the demand for creating large quantities of digital contents also pushes the focus towards fully automatic and highly efficient solutions that allow for masses of objects to be acquired as fast as possible. This thesis is dedicated to the investigation of basic components that allow an efficient, automatic acquisition process. We argue that such an efficient, automatic acquisition can be realized when material recognition "meets" 3D reconstruction and we will demonstrate that reliably recognizing the materials of the considered object allows a more efficient geometry acquisition. Therefore, the main objectives of this thesis are given by the development of novel, robust geometry acquisition techniques for surface materials beyond diffuse surface reflectance, and the development of novel, robust techniques for material recognition. In the context of 3D geometry acquisition, we introduce an improvement of structured light systems, which are capable of robustly acquiring objects ranging from diffuse surface reflectance to even specular surface reflectance with a sufficient diffuse component. We demonstrate that the resolution of the reconstruction can be increased significantly for multi-camera, multi-projector structured light systems by using overlappings of patterns that have been projected under different projector poses. As the reconstructions obtained by applying such triangulation-based techniques still contain high-frequency noise due to inaccurately localized correspondences established for images acquired under different viewpoints, we furthermore introduce a novel geometry acquisition technique that complements the structured light system with additional photometric normals and results in significantly more accurate reconstructions. In addition, we also present a novel method to acquire the 3D shape of mirroring objects with complex surface geometry. The aforementioned investigations on 3D reconstruction are accompanied by the development of novel tools for reliable material recognition which can be used in an initial step to recognize the present surface materials and, hence, to efficiently select the subsequently applied appropriate acquisition techniques based on these classified materials. In the scope of this thesis, we therefore focus on material recognition for scenarios with controlled illumination as given in lab environments as well as scenarios with natural illumination that are given in photographs of typical daily life scenes. Finally, based on the techniques developed in this thesis, we provide novel concepts towards efficient, automatic acquisition systems

    Microstructuring of glass by laser irradiation: applications on microoptics and microfluidics

    Get PDF
    En la presente tesis se propone la fabricación de elementos en vidrio para micro-óptica y microfluídica que exigen microestructuras de alta calidad. Estos elementos son altamente demandados desde sectores industriales, por lo que se precisan técnicas de procesado, rápidas, sencillas y de bajo coste
    • …
    corecore