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Summary (English)

Accurate material models are a key part in producing convincing, photo-realistic,
images in computer graphics. Elaborate analytical models exist, allowing graph-
ics designers to manually design material appearance. However, given the com-
plex nature and wide variability of material appearance, measuring this from
the real world is an impractical and time-consuming process. Having a prac-
tical way of measuring material appearance will not only be of great value to
the graphics community, but also open up for a wide range of new application
areas, including industrial production quality control, digital prototyping and
manufacturing, and interactive real-time product visualization.

In this thesis, the challenge of making material appearance measurements prac-
tical is addressed. Specifically, the Bidirectional Reflectance Distribution Func-
tion (BRDF), which is the quantity describing material appearance, is thor-
oughly analysed using both optimisation tools and multivariate statistics, in
search of making BRDFs more accessible.

The work demonstrated includes an insight into the challenges of fitting ana-
lytical models to measured data and on the compromises one is bound to make
when simplifying the real world with a parametric BRDF model. Specifically we
identify what error measures work well for obtaining perceputally good results
and how a simple BRDF model may be modified to better match real world
data. With an offset in this, a linear, data-driven, BRDF model is proposed
and a framework for reconstructing full and accurate BRDFs from only a few
measurements is presented. It is here demonstrated that with as little as 20
point-samples, a BRDF can accurately be reconstructed. Furthermore utilising
the field of view of a camera, this may be reduced to as little as two images. With
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this, the thesis demonstrates how BRDF measurements can be made practical,
and it exemplifies this with a range of datasets intended for various purposes,
each including high quality measured BRDFs.

Where the classical approach to BRDF capture may take weeks in measurement
time, we here successfully demonstrate that is can in fact be reduced to no more
than minutes or even seconds using our framework.



Summary (Danish)

Nøjagtige materialemodeller er et vigtigt led i at kunne producere overbevisende
og fotorealistiske billeder med computer grafik. Omfattende analytiske modeller
eksisterer, som giver grafiske designere mulighed for at designe materiale udse-
ende. Desværre, givet materialeudseenders komplekse natur og store variation,
er det derimod i dag både en upraktisk og langsommelig proces at måle disse.
Kunne man finde en praktisk måde at måle materiale udseende på ville dette ha-
ve stor værdi, ikke alene for grafikere, men det vil også åbne op for en lang række
af nye anvendelsesområder, heriblandt kvalitetskontrol i industriel produktion,
digital prototyping og manufacturing, samt real-time produkt visualisering.

I denne afhandling adresseres udfordringen i at lave måling af materiale udse-
ende praktisk. Specifikt analyseres ”the Bidirectional Reflectance Distribution
Function” (BRDF’en), som er den størrelse der beskriver materialeudseende, ved
brug af optimeringsværktøjer og multivariat statistik, i håb om at gøre BRDF’er
mere tilgængelige.

Det præsenterede arbejde inkluderer en indsigt i udfordringerne i at fitte ana-
lytiske modeller til målte data og i de kompromiser man er tvunget til at indgå
når den virkelige verden simplificeres ved en parametrisk model. Specifikt iden-
tificerer vi hvilke fejlmål der virker godt til at opnå perceptuelt gode resultater
and hvordan man kan modificere en simpel BRDF model til bedre at matche vir-
kelige data. Med dette som udgangspunkt præsenterer vi en lineær, datadrevet,
BRDF model, samt et framework til at rekonstruere fulde og nøjagtige BRDF’er
fra et meget lille antal målinger. I denne sammenhæng demonstrerer vi at så
lidt som 20 punktmålinger er nok til at en BRDF kan blive korrekt rekonstru-
eret. Ydermere demonstrerer vi at hvis et kameras fulde synsfelt udnyttes kan



iv

antallet af målinger reduceres til så lidt som 2 billeder. Hermed demonstrerer
afhandlingen hvordan BRDF målinger kan gøres praktiske og dette eksemplifice-
res med en række datasæt tiltænkt forskellige formål, hvert indeholdende målte
BRDF’er af høj kvalitet.

Hvor den klassiske tilgang til måling af BRDF’er kan tage uger i måletid, de-
monstreres her succesfuldt at denne måletid faktisk kan reduceres til så lidt som
minutter eller endda sekunder via vores framework.



Preface

This thesis was prepared at the Image Analysis and Computer Graphics Section
at Department of Applied Mathematics and Computer Science at the Technical
University of Denmark (DTU). It was done in fulfilment of the requirements for
obtaining a doctor of philosophy degree (Ph.D.) within the topic of computer
graphics.

The work presented in this thesis was funded by DTU Compute.

The thesis presents research on the challenge of accurately measuring material
appearance in practice. Given the practical nature of this challenge, a sub-
stantial amount of experimental work has laid the foundation of the primarily
theoretical results presented in this thesis. A range of publications was made
during the course of this project, summarised on page xiii. From these, 6 have
been attached in appendices A-F. In addition to the papers closely connected to
the topic of this project, a handful of additional publications were made touch-
ing upon more or less unrelated topics. We annually have a technology showcase
day in the Image Analysis & Computer Graphics section at the Technical Uni-
versity of Denmark, and leading up to this day we usually have a "Hackathon"
where Ph.D. students get together and produce a technology demonstrator. We
have made it into a tradition to make publications out of these demonstrators
and the contributions not included in this thesis are a result of this.

The project has been supervised by Associate Professor Henrik Aanæs and co-
supervised by Associate Professor Jeppe Revall Frisvad and Professor Knut Con-
radsen. The research has been carried out at DTU, but external research was
conducted under supervision of Professors Ravi Ramamoorthi and Henrik Wann
Jensen at the Computer Graphics Lab in the Department of Computer Science
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and Engineering at the University of California, San Diego.

Lyngby, 06-October-2016
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Chapter 1

Introduction

1.1 Scope

This thesis focuses on finding a methodology for developing new low parameter
models for the radiometric appearance of physical objects that better correspond
to the real world. The goal is to enable practical measurement of reflectance by
reducing the number of measurements needed for accurate data-fitting. Con-
tributing to solving these challenges, enables new industrially very relevant ap-
plications of computer graphics within e.g.

• Digital prototyping & manufacturing

• Interactive real-time product visualisation

• Film & gaming industry

• Industrial quality control

As there is quite a gap between the art of measuring reflectance, including
building the equipment to do so, and modelling reflectance mathematically, this
project has indeed had a multidisciplinary nature. Primarily the scientific con-
tributions included here focus on the theoretical and mathematical parts of our
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Figure 1.1: Computer graphics are capable of producing impressive photore-
alistic content. Unfortunately the cost makes it prohibitive for all
but the most high profile applications. Images courtesy of Walt
Disney Pictures, Arnaud Servouze, and 20th Century Fox.

work, and only between the lines is the practical work mentioned. In truth, a
major part of the work carried out in this thesis has revolved around creating a
laboratory facility at DTU Compute capable of accurately measuring material
reflectance and in particular Bidirectional Reflectance Distribution functions
(BRDFs). This work is not directly mentioned and only appendices G-H in-
clude technical notes on the equipment created, however, these have not been
published elsewhere. As such it is worth acknowledging an important part that
is often forgotten, namely that most often it takes more time to experimentally
validate your models than it took to derive them in the first place.

Before continuing, let us make a note on our nomenclature. In this thesis,
we use the terms "BRDF" and "appearance" interchangeably since the BRDF,
although not solely, contributes to a major part of how materials appear to
the human eye. Also, when we talk about "sampling a BRDF" in this thesis
we talk about making individual measurements of the 4D manifold constituting
a BRDF. This should not be confused with "importance sampling a BRDF"
in rendering, where a probability distribution linked to the BRDF is used to
randomly pick a ray direction in a path tracing.

1.2 Motivation

Today the realism of digitally simulated films and computer games is awe inspir-
ing, to the degree that it is difficult to distinguish from reality. This is in part
possible due to very elaborate computer models of the content displayed, such
as people, furniture, trees, and cars. Producing such content is today mostly
a manual process, which makes the cost prohibitive for all but the most high
profile applications, see figure 1.1. A main reason for this cost is the man-
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Figure 1.2: The difference between simple (left) and complex (right) radiomet-
ric models. Today, only simple radiometric features are modeled
from measurements of real life objects. In order to obtain more
realistic digital representations (right), better statistical methods
of parameterizing the radiometric properties must be invented.

ual modelling of the radiometric properties, whereas good methods exist for
automatically generating the geometric models, e.g. via structured light scan-
ners [Aan03, ADSP12]. Off the shelf full appearance digitalization pipelines,
capturing both geometry and radiometry, limit themselves to very simple radio-
metric models. Often these are simply Lambertian or at most simple isotropic
Phong or Ward models. As conceptualised in figure 1.2, we wish to improve this
by pushing the practical models closer to the photorealistic models used in the
high-profile applications.

In this project, we seek to automate the radiometric modelling by applying ad-
vanced statistical methods to images of real world objects. The goal is to enable
digital artists to sample the true radiometric properties of real word objects and
transfer these to the already existing highly detailed geometric models of the
respective objects. The automatic sampling of the visual behaviour, i.e. the
radiometric properties, will thus finalise the automatic pipeline between real
world objects and photorealistic digital representations of these. A tool much
needed within the advancing field of digital prototyping. The intended impact
of this project is to bring down the cost of photorealistic computer graphics to
a point where even small productions will be able to use it and hereby bring
such modelling work back to Denmark from low wage countries. Just as im-
portant, it will also allow for the proliferation of these techniques beyond the
film and gaming industry. Finally, and most importantly, practical material
appearance acquisition is an important step in the current trend of automation
and data exchange in manufacturing technologies (Industry 4.0). If we are to
realise cyber-physical systems with virtual copies of real-world objects, there is
no way around capturing appearance in a practical way.

To motivate the project further, we will in the following present three concrete
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(a) 3D printing (b) Production (c) Prototyping

Figure 1.3: Left: Additive manufacturing process (3D printing) using a
powder-based system, image from [PEAH16]. Center: Casting
with surface roughness. Right: Prototyping of Bang & Olufsen
treble, image courtesy of B&O.

industrial areas where current methods fail to suffice and more practical radio-
metric models are in demand. The cases presented here are only a few examples
of a broad range of application areas that we have identified. Additional areas
are pointed out in publication C.II, and beyond that, even more, have become
apparent to us via industrial collaborations carried out in the duration of this
project and some still ongoing.

Case 1: Additive Manufacturing

An area where this project has a significant relevance is within the field of
additive manufacturing, i.e. the physical realisation of digital 3D models. First
of all, by providing better techniques for acquiring reflectance properties of
printing materials. These measured properties can be applied to an arbitrary
geometry and lighting configuration thereby enabling appearance prediction for
the given materials. This is in itself a valuable asset as it can still take several
hours to fully print a 3D model. Currently, only the processed CAD model is
visualised as a prediction of print result and only very recently has work been
made in estimating the colour transformations occurring during the printing
process [EPA15]. Secondly, the process of 3D printing is a delicate process
often relying on heating or curing. The radiometric properties of the printed
surface are one mean of identifying failures during printing such as color-changes
due to overheating or surface-normal changes due to structural collapses, see
figure 1.3a. Potentially, automatic radiometric inspection could be added as a
feedback loop to provide a new kind of control of 3D printers. This would to a
great extent aid in avoiding failed 3D prints, that due to the slow print-speed
can be a costly affair. For printing aimed at industrial use, a thorough CT-like
radiometric inspection of the inside structure of a printed subject will further be
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able to contribute as quality assurance. This is achievable by capturing every
single layer during the print process and is as such a modality unique to 3D
printing and may serve as another layer of quality documentation.

Case 2: Classical Production

As with additive manufacturing, quality control in more classical kinds of pro-
duction is of great importance, where a consistent quality over enormous batches
has to be ensured. Such quality control is mainly done through visual inspection
by manual labour today, making it a costly affair and for grand scale produc-
tions impossible to perform on a per item level.
Within injection moulding, there is a range of factors affecting the result. De-
pending on e.g. pressure/injection speed, heating, or material purity, mould-
ing defects such as blisters, burn marks or colour streaks may occur, generally
resulting in full batches being discarded. These effects are all linked to the
(spatially varying) radiometric properties of the material, making automated
rapid reflectance acquisition highly relevant. Likewise, the field of metal casting
deals with castings where their surface roughness is dependent on a range of
factors involved in the casting process such as e.g. temperature and material
composition, see figure 1.3b. In many cases surface roughness causes a need for
post-machining of said surfaces making it an unattractive feature and often a
direct quality measure. This roughness also affects the visual appearance of a
surface, and being able to quantify it automatically using radiometry is therefore
of great interest in the casting industry. In both scenarios, rapid appearance ac-
quisition thus has the potential of automating quality control, which is currently
a very labour intensive process.

Case 3: Digital Prototyping

Finally, a third major impact of accurate practical radiometric models are their
predictive powers of future products in a digital manufacturing pipeline, i.e.
visualising how a product will look before it is produced. Resource efficient
product design is extremely important in Denmark due to high wages, mean-
ing that new means of accurately digitising materials are required. Examples
of applications where this will be relevant include the digital prototyping of
LEGO products, predicting the appearance of a metallic finish of B&O Hi-Fi
systems (figure 1.3c), and faithfully modelling of dentures by 3Shape. As for
the latter case, it is today impossible to realistically reproduce how a given pa-
tient’s teeth will look with different types of dentures installed. This makes it
challenging for the dentist to choose the best material tone for a bridge or a
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crown when weighing price against appearance together with the customer. As
for the two former, the current iterative design-process is both costly and slow,
since a range of prototypes has to be produced during development. Especially
in luxury products, the visual aspect is important, and in order to transfer to
this design-process to a simulated environment, with digital prototypes, very
accurate radiometric material models are required. In addition, by practical
acquisition of reflectance functions for the different materials that a designer
can typically choose between, the digital design process becomes more efficient.
One could instantiate a feedback loop where designers ask for specific reflectance
properties and surface engineers try to develop it and measure the new BRDF
for every iteration.

1.3 Methodolgy

The way we have approached this problem is by utilising our unique image cap-
turing experimental facility, built around a six-axis industrial robot, to capture
vast images of relevant real world objects [ADSP12]. This utility provides us
with a unique possibility to acquire a data set of sufficient size, diversity, and
quality. Ensuring a practical focus of the project, we primarily focused on mate-
rials used in industrial production, such as plastics and metallic finishing. These
materials span the problem well, and will allow us to address specific problems
in digital manufacturing. The project has been designed to follow a two-stage
approach, where we will first investigate a model fitting pipeline for fitting the
commonly used radiometric models to captured data, i.e. images. This allows
us to do an automatic radiometric modelling, giving an initial solution to the
problem.
The second and main stage of the project is the investigation into construction
of new radiometric models. The radiometric models mostly used for photore-
alistic computer graphics, model the scattering of light beneath the surface of
the material. The paths of light through a scattering material are typically rep-
resented as manifolds in high dimensional spaces [FCJ07, FCJ12, JM12]. This
implies that these models are computationally complex and therefore imprac-
tical to estimate due to the very large number of observations that would be
required. Here, we propose capturing the radiometric properties of materials,
via our lab equipment, and subsequently, fit low-dimensional approximations
to them. This will enable radiometry acquisition based on a few high-quality
images.
The work in the proposed project requires efforts within the fields of computer
vision, computer graphics, optimisation, and statistical model selection and fit-
ting. Hence, we are dealing with a very multidisciplinary challenge.
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Figure 1.4: Achieved goal of this thesis: Devising a practical BRDF model
allowing fast appearance acquisition and digitisation of new ma-
terials.

1.4 Thesis Outcome

The research carried out during the 3 years of this Ph.D. study has granted
a great insight into the realm of material appearance and computer graphics.
Specifically, it has resulted in the development of a lab-facility capable of densely
measuring BRDFs and produced the know-how associated with such a facility.
We believe this is the first of its kind in Denmark and as such provides Danish
industry with a tool in high demand.

From an academic point of view, this thesis has resulted in a range of publica-
tions. These publications are listed on page xiii. The contributions most relevant
have been included in the appendices. These publications revolve around the
challenge of practically measuring BRDFs and follow the methodology outlined
above. In particular, papers C.IV and C.VI to a great extent succeed in achiev-
ing this by demonstrating a practical model and a minimal sampling scheme,
allowing fast and precise radiometric measurements. Figure 1.4 shows a few
examples of the results obtained in these papers.
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1.5 Thesis Outline

The thesis has been divided into 3 major chapters, Chapter 2: Background,
Chapter 3: Related Work, and Chapter 4: Contributions.
In Chapter 2, we set the stage by presenting our use of notation and defining
necessary quantities related to radiometry and material appearance. In the
sake of brevity, this chapter will not repeat theory presented in the attached
publications. Nor will common mathematical or statistical tools be derived.
In chapter 3, we cover related work that has set the base of this thesis. In
addition, we elaborate on what alternative approaches to our methods have
been proposed, and finally, we touch upon what recent advances have been
made while the work in this thesis was carried out.
Finally and most importantly, chapter 4 presents and explains the contributions
made in this thesis.

In addition to formal chapters, a range of appendices have too been included in
this thesis. These appendices include relevant publications as well as a set of
technical notes made during the project, addressing a range of relevant problems.



Chapter 2

Background

The Bidirectional Reflectance Distribution Function, or BRDF, characterises
what we humans would describe as "surface appearance" or simply, a "mate-
rial". I.e. it is the function that describes objects’ colours and appearance
characteristics such as highlights or lack thereof. This function is of paramount
importance when digitally reproducing the world through computer graphics,
and without, the world of computer graphics would indeed be a dull world! To
humans it gives an indication of surface characteristics: before even touching
an object, through the BRDF, we predict the smooth surface of a brushed sil-
very MacBook, the hard feel of a ceramic cup, or the slimy surface of a wet
fish. Evidently, the BRDF holds a great amount of information, and as such,
having the ability to both quantize and decipher a BRDF is an important tool
in understanding our world.
Formally the BRDF relates the physical units of emitted and received light. We
will return to its precise definition later in this chapter, but before this, we will
set the stage and define relevant quantities and relations. With the definition of
the BRDF, we will further touch upon relevant topics related to the BRDF, such
as popular existing analytical BRDF models and how to measure BRDFs. To
this extent, this chapter seeks to cover, not all, but the relevant theory related
to the topic of this thesis, namely practical sampling of bidirectional reflectance.



10 Background

Point Light

Figure 2.1: Point light source radiating energy uniformly in a sphere. For a
given direction, ω, The amount of radiant flux traveling through
the infinitesimal solid angle ω, per unit solid angle, equals the
radiant intensity.

2.1 Radiometry

As a starting point, we will consider in an ideal point light source, i.e. an in-
finitesimal point radiating electromagnetic energy uniformly in all directions.
The power emanating from this is called the radiant flux, or radiant power, Φ,
and is measured in Watts [W ], i.e. Joules per second.
By definition, the energy of a point light source emanates equally in all direc-
tions. But because we usually deal with objects in relation to a light source,
and we usually deal with light sources that are not ideal point sources, it makes
sense to describe the amount of energy going in a certain direction. In this case,
we define the radiant intensity as the amount of radiant flux moving through an
infinitesimal solid angle, ω, spanned around a given direction, that is, radiant
flux per solid angle:

I =
dΦ

dω

[
W
sr

]
(2.1)

We visualize this in figure 2.1, where the direction is denoted by ω.

2.1.1 Irradiance and Radiance

Alternatively, rather than following the light along a specific ray, we may instead
observe a surface illuminated by the point light source. In this scenario, the term
characterising the flux incident on the surface is called the irradiance, E, and is
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Point Light

Figure 2.2: Left: Geometries concerning irradiance. Position and orientation
of a surface affects the amount of radiant power received by the
surface. Right: Geometries concerning radiance. Here, variabili-
ties like distance and incidence angle are being compensated for.

defined as flux per unit area:

E =
dΦ

dA

[
W
m2

]
(2.2)

Suppose we consider an isotropic point light. At the distance r from the source,
the flux emitted by the source will be distributed across a spherical surface
area with radius r. As a result, irradiance due to a point source is inversely
proportional to the square of the distance to the source. Tilting a surface away
from the light source means that the flux will be distributed over an even larger
surface area. Thus, irradiance is in general proportional to the cosine between
surface normal and light direction. We illustrate this in the left part of figure 2.2
where two different surfaces receive different amounts of power from the light
source due to their distance and orientation relative to the light.

Conversely, we may look at the light leaving a surface. This phenomenon is
described by the quantity radiance, L. Taking the observer of a surface as the
point of reference, the radiance is defined as the flux received per solid angle,
per projected surface area:

L =
d2Φ

dAprojdω
=

d2Φ

dA cos θ dω

[
W

m2·sr
]

(2.3)

where θ is the angle between the surface normal and direction to the observer.
This definition makes good sense considering the radiant flux received by a
camera imaging a surface: First, the received power should be normalised by
the solid angle covered by the aperture of the camera (ω). The greater the
aperture, the higher the power, but a measurement should not be affected by
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Figure 2.3: Directional reflectance, ρ, determines the fraction of flux reflected
off a surface.

the choice of aperture or how close it is to the sample. Secondly, depending on
whether you observe a surface from an oblique angle or from a grazing angle, an
element on the surface will cover more or less of your view, neither should the
measurement be affected by the choice of perspective. Hence, even though the
area you integrate over is A, it only takes up its projected area which is reduced
by a factor of cos θ. The geometry related to this definition is illustrated in the
right part of figure 2.2.

2.1.2 Reflectance

All materials absorb some of the radiant power hitting them. Some materials
absorb very little, like mirrors, other absorb very much of it, like charcoal or solar
cells. In addition, some materials only absorb certain wavelengths, like green
leaves, causing them to have colour. Reflectance is the quantity describing the
amount of power being absorbed by a surface. There exist multiple variants of
reflectance, like e.g. the hemispherical reflectance, describing the total amount
of power leaving a surface relative to the total amount entering, or the spectral
reflectance focusing on the ratio at a specified wavelength. Here we deal with
the directional reflectance, which is the fraction of power from a direction of
incidence reflected in another direction. It is defined as:

ρ =
dΦr
dΦi

(2.4)

where dΦr is the reflected flux and dΦi is flux incident on the surface. To
ensure conservation of energy, the reflected element of flux due to an element
of incident flux from one direction must be in [0, 1]. This implies that for any
passive material (i.e. having no power being added), dΦi ≥ dΦr ≥ 0 , such that
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Figure 2.4: The BRDF (fr) relates the amount of radiance leaving a surface in
a specific direction, ωr relative to the amount of irradiance hitting
the surface from a direction ωi. The red curve illustrates the value
of fr for varying observation directions (varying ωr).

ρ ∈ [0, 1]. In figure 2.3 the concept of reflectance is illustrated, where part of
the flux incident on a surface is absorbed and the remainder is reflected.

Although we commonly do not deal with spectral reflectance on a per wavelength
level when working with computer graphics and BRDFs, it should be mentioned
that it is customary, and also applied here, to split reflectance into the 3 colour
bands R, G, and B, in order to preserve colour information.

2.2 The Bidirectional Reflectance Distribution Func-
tion

Using the above quantities we will now present the precise definition of the
BRDF, which was originally coined by Nicodemus [Nic65]. It is formulated as:

fr(ωi,ωr) = fr(θi, φi, θr, φr) =
dLr(ωr)

dEi(ωi)
=

dLr(ωr)

Li(ωi) cos θi dωi

[
sr−1

]
(2.5)

and describes the ratio between the radiance reflected off a surface in a specific
direction and the irradiance hitting the surface from another specific direction.
In essence, it describes how a surface reflects light. The BRDF depends on the
two directions, ωi and ωr, sometimes expanded to (θi, φi, θr, φr), pointing in
the directions of the light source and observer respectively. Hence, the BRDF is
a 4-dimensional quantity. We visualize this configuration in figure 2.4. With the
red dashed line, the figure also illustrates how the BRDF, fr, may take values
for varying observation directions (varying ωr).
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Given a scene containing various light contributions scattered over the hemi-
sphere and shining onto a point on a surface, the observed reflected radiance
Lo, e.g. by a camera, at a direction ωr can be calculated by plugging the
surface-BRDF into the so-called rendering equation [Kaj86]:

Lo(ωr) = Le(ωr) + Lr(ωr) (2.6)

= Le(ωr) +

∫

Ω

fr(ωi,ωr)Li(ωi) cos θi dωi (2.7)

The term Le describes the radiance emitted by the surface, and for passive
materials, as are the focus of this project, the term can be ignored. In this
case, eq. 2.7 is referred to as the reflected radiance equation, and Lo = Lr.
To keep a consistent notation with r-subscripts we will use Lr rather than
Lo in the remainder of this chapter. Equation 2.7 states that the observed
radiance is found by integrating all cosine-weighted radiance contributions over
the hemisphere, modulated by the BRDF. It may be recognized that this is in
fact a 2D convolution between all lights over the hemisphere (DEi) and the 2D
BRDF slice (fr(ωr)):

Lr(ωr) = fr(ωr)⊗DEi (2.8)

Here D denotes the derivative [MN+95]. This formulation gives rise to an in-
teresting insight, namely that under a point illumination, which corresponds to
a Dirac delta function over the hemisphere, the observed radiance is in fact a
sample of the BRDF itself (since fr ⊗ δ = fr). Symmetrically, the BRDF of
an ideal mirror corresponds also to a Dirac delta function, which implies, more
intuitively, that the radiance observation of a perfect mirror corresponds to an
irradiance sample of a specific position on the hemisphere.

The BRDF is typically formulated in terms of tangent space direction vectors
(or angles) as these ensure invariance towards macroscopic effects such as surface
curvature, while still being able to model the distribution of microscopic surface
variations. It is these variations that are integrated in a resolution cell, like e.g.
a pixel, and give rise to material appearance, as illustrated in the zoom-up in
figure 2.4. There is no clear border between the micro- and macroscopic realm
since it is a matter of choice what curvature should be integrated in the BRDF
and what should not. An extreme example is the BRDF of the moon measured
from space versus measured from a rock sample in a lab. In the former, surface
variations affecting a single resolution cell may constitute mountains, while in
the latter we may deal with surface variations in the micron scale.

A range of extensions to the BRDF exists, each of them seeking to encompass
additional nuances of appearance that the BRDF itself does not capture. The
smallest addition to the BRDF, which is often implicit, is the addition of wave-
length dependency: fr(ωi,ωr, λ), making the function 5D. In practice, this is
often only implemented for the R, G, and B, channels to capture the visual part
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Figure 2.5: Subsurface scattering effects. In scenarios where the re-emitted
ray is within a resolution cell (left) the effects can be captured by
a standard BRDF. In scenarios where it moves significantly further
(right) a subsurface scattering model, BSSRDF, is required.

of the BRDF, but both models and measurements treating this 5th dimension
as a continuous variable have been presented [CT82, Foo97].
Spatial variance is a popular extension to the BRDF for inhomogeneous ma-
terials. In this case, it is called the Spatially Varying Bidirectional Reflectance
Distribution Function (SVBRDF) and has the addition of two extra parameters,
surface coordinates (x, y), resulting in the 6D function fr(ωi,ωr, x, y). This al-
lows modelling materials that vary spatially over a surface. The full 6D function
is often impractical to work with, and in practice, SVBRDFs are implemented
using texture maps holding model parameter values or weights for linear com-
binations of a smaller set of BRDFs.
Finally the Bidirectional Scattering-Surface Reflectance Distribution Function
(BSSRDF) includes subsurface scattering which is not captured by a traditional
BRDF. The diffuse component of materials is caused by very local surface and
subsurface scattering effects that are contained within the area of a single res-
olution cell, dA, as depicted in the left part of figure 2.5. When this is not the
case and the position of the re-emitted ray cannot be assumed to leave the sur-
face at the same place it entered, a BSSRDF is required. This is depicted in the
right of figure 2.5. The BSSRDF adds 2 additional parameters, indicating the
location on the surface at which the light leaves. This makes the BSSRDF an 8D
function: fr(ωi,ωr, xin, yin, xout, yout). Probably the most famous work with
this model is that of Jensen et al. [JMLH01] that also resulted in an Academy
Award in 2004 for its use in the movie industry.

2.2.1 Properties

In contrast to the reflectance, ρ, defined in eq. 2.4, the BRDF is the ratio
of quantities with different units and may therefore take values greater than
1. Instead, energy conservation states that when integrating over all possible
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directions of observation, the BRDF should total to no more than 1:

∀ωi : 0 ≤
∫

Ω

fr(ωi,ωr) cos θr dωr ≤ 1 (2.9)

In fact, as mentioned above, the BRDF of a perfect mirror is a Dirac delta
function, being infinitely large when the observation direction coincides with
the reflected direction of the light, and zero everywhere else. And in contrast, a
perfect diffuse surface with no absorption will have a constant BRDF of fr = 1

π
(since the integral of the cosine over the hemisphere equals π). This property
also becomes clearer with the relationship between the two quantities defined:

fr =
dLr
dEi

=
d
(
d2Φr/ (cos θr dA dωr)

)

d (dΦi/dA)
=

dρ

cos θr dωr
(2.10)

Another important property of the BRDF is that it obeys Helmholtz reciprocity:

fr(ωi,ωr) = fr(ωr,ωi) (2.11)

stating that a ray of light’s path is reversible, meaning that the position of sensor
and light-source may be swapped freely without it affecting the amount of light
measured. In computer graphics, this property is utilized in e.g. raytracing
where rays are shot from the eye, in contrast to bidirectional path tracing or
photon mapping where rays are shot from the light sources. This property is also
very convenient in a measurement scheme since fr(θi, φi, θr, φr) = fr(θi, φi +
π, θr, φr + π), implying that only half the hemisphere needs to be covered: θ ∈[
0, π2

]
and φ ∈ [0, π].

For a large group of materials, rotating the surface around its normal will not
affect the amount of reflected light in any given light/view configuration. Ma-
terials holding this property are called isotropic and materials not holding it
are called anisotropic. Most everyday materials are isotropic and to give a bet-
ter understanding of the difference between to two types, it therefore makes
more sense to give examples of anisotropy. Brushed metal, fabric, and hair are
all well known anisotropic materials. Microstructures in the surfaces (brush
strokes, weaving) cause them to have preferred directions of reflection, making
them vary with rotation. Generally, anisotropic materials are hard to find in
nature and are usually a result of some sort of processing.
As stated, isotropy implies that the BRDF is invariant with respect to rotations
around the surface normal, i.e.

fr(θi, φi, θr, φr) = fr(θi, φi + α, θr, φr + α) ∀ α ∈ R (2.12)

meaning that it is, in fact, possible to represent an isotropic BRDF using only
3 parameters by introducing the relative azimuthal angle, φdiff = (φi − φr):

f isor (θi, φi, θr, φr) = f isor (θi, θr, φdiff) ∈ R3 (2.13)



2.2 The Bidirectional Reflectance Distribution Function 17

Figure 2.6: The Rusinkiewicz half-vector parametrization. Angles are mea-
sured relative to the half-vector, the unit-length average between
light- and observer-directions.

Hence, the isotropic BRDF is a more compact, 3-dimensional, version of the full
BRDF.
In this thesis, only isotropic materials are dealt with. Although this is a limi-
tation, the group of isotropic materials still constitutes a very large fraction of
common material appearance.

We will later touch upon a selection of analytical BRDF models. Models obeying
the law of energy conservation and the Helmholtz reciprocity are, depending on
how they were derived, deemed either physically based or physically plausible.
Models not having these properties are called non-physical. Furthermore, some
of these models are capable of explaining anisotropy, while others are not. This
is linked to the complexity of the models and what material domains they were
targeted for.

2.2.2 Coordinate Frames

As has been used until now, a common coordinate frame used when discussing
BRDFs is the spherical coordinate system (r, θ, φ) depicted in the right of fig-
ure 2.4. Since it is directions that are dealt with, the radial distance, r, is
usually disregarded, resulting in a 2D parametrisation of direction. This is both
a compact and very intuitive representation, making it easy to work with.
An alternative and very interesting representation is the Rusinkiewicz half-
vector parametrization (θh, φh, θd, φd) that is centred around the specular high-
light [Rus98]. We visualise this representation in figure 2.6. In contrast to spher-
ical coordinates, where angles are measured relative to the surface normal, the
Rusinkiewicz parametrization describes coordinates relative to the half-vector,
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Figure 2.7: The MERL BRDF representation, using the isotropic
Rusinkiewicz parametrization with a non-linear θh mapping.
Data is packed into a grid consisting of 90× 90× 180 samples.

h = ωr+ωi
‖ωr+ωi‖ . It is centred around the specular highlight as this is located

at θh = 0. From a physics point of view, models based on the half-vector are
deemed more physically plausible. Finally, isotropy is easily achieved by discard-
ing φh, which describes the entire configuration’s rotation around the surface
normal.
The Rusinkiewicz parametrization is advantageous in analytical models that
seek symmetry around the specular highlight, but especially also in data-driven
models where it is of interest to pack data densely around the highlight to achieve
a high resolution representation of reflections. The MERL format [MPBM03a]
is a very relevant example of where this parametrization is utilised. In this
isotropic 3D representation (θh, θd, φd) BRDFs measured from images of spheres
[MPBM03b] are packed into a 90 × 90 × 180 grid. In order to achieve a high
fidelity highlight, which is perceptually a very important part of the BRDF,
the first axis θh is mapped nonlinearly in this grid. With this non-linear grid-
representation, observations closer to θh = 0 are sampled more densely than
samples further away. We visualize this representation in figure 2.7

2.2.3 Visualization

As a 4D or 3D quantity, visualising a BRDF, i.e. mapping it to a 2D repre-
sentation, can be done in multiple ways and produces very different results.
Depending on what information is sought extracted or conveyed some meth-
ods may be preferred over others. We here present 3 common approaches to
visualising a BRDF.

A traditional and very fast approach to visualising a BRDF is by applying it
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Figure 2.8: Visualizations of 2 BRDFs (rows) using different visualization
methods. 1st. column: 2 point light-sources. 2nd column: Ray-
traced rendering under environment lighting (physically based ren-
der). 3rd column: A normalized slice through the BRDF volume
at φd = 90◦. 4th column (top row) a reference for BRDF slice
interpretation.

to a smooth geometry and rendering it under a point light-source using the
rendering equation (eq. 2.7). Commonly, simple geometry such as spheres or
Stanford dragons are used, and also additional point lights may be added. In
the first column of figure 2.8, we demonstrate this approach where two point
lights, an oblique front light and a grazing back light, are used. As mentioned
earlier, point lights give direct insight into the values of the BRDF but are
perceptually somewhat weak. Alternatively, using a physically based rendering
system, the BRDFs may be rendered in a physical environment [Deb98] as shown
in the second column of figure 2.8. Perceptually this visualisation is very rich
on information to humans, but the integration over the hemisphere washes out
many finer details in BRDFs weakening numerical comparisons. Finally, slices
made through the isotropic BRDF volume shown in figure 2.7, at φd = 90◦,
have been proposed by Burley et al. [Bur12]. Such slices are shown in the third
column of figure 2.8. These give direct insight into the behaviour of isotropic
BRDFs and are able to, in a single image, give an intuition of diffuse, specular,
Fresnel, and retro-reflection components. A reference to the interpretation of
BRDF slices is shown in the 4th column of figure 2.8. In BRDF-model-fitting,
to ease the computational burden, BRDF slices have been used rather than the
full BRDFs, allowing for speeding up computations considerably.
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2.2.4 BRDF Models

By far, the most compact way of representing the 4D BRDF manifold is through
analytical models and hence they are the most commonly used. A wide range of
analytical models exist and it is beyond the scope of this thesis to cover them all
in detail. In this section, a selection of popular BRDF models will be introduced
to give the reader an impression of the main design patterns behind analytical
BRDF models. Afterwards, we will touch upon existing data-driven models.

Disregarding the diffuse BRDF, which under rendering is simply a constant, the
first and probably still most used model is the Phong model [Pho75], adding
specular highlights to a rendering. The model is given by:

I = kd cos θi + ks cos θαro (2.14)

where I is the observed intensity of a pixel, θi is the inclination of the light-
source and θro is the angle between the observer and the reflected light-ray. The
parameters kd and ks specify the diffuse and specular intensities respectively,
and α indicates the specularity of the material. As presented in eq. 2.14, the
Phong model is not an actual BRDF model as it includes the geometrical factor,
cos θi, in the formulation. It can be reformulated as a BRDF with fr = kd +
ks cos θαro/ cos θi, this however leads to a problem with energy conservation as the
BRDF goes to infinity as grazing angles go to the tangential direction [Lew94].
With that said, it is still a perceptually fine model, which is easy and fast to
compute and holds only 3 parameters (7 for RGB), making it the most compact
model beyond the diffuse.

A re-iteration of the Phong model is the Blinn-Phong model [Bli77], addressing
the major drawbacks. This model draws on the half-vector representation in the
specular component, making it physically plausible using the correct parameters.
In its orignal form, it only replaces θro with θh:

I = kd cos θi + ks cos θαh (2.15)

which still has the issue of going to infinity, but it can be modified slightly to
be a physically plausible BRDF for all values [AMHH08]:

fBPr =
ρd
π

+
α+ 8

8π
ρs cos θαh (2.16)

which is the variant we used in our work.

Microfacet models are models that assume a surface to consist of a distribution
of microscopic, randomly oriented, and perfectly reflecting facets as visualised
in figure 2.4. The spread and shape of the distribution determines the specular
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reflection of the surface and for very broad distributions the surface appears
rough, and for narrow distributions, it appears shiny.
The modified Blinn-Phong model (eq. 2.16) can be seen as a microfacet model
with the facets distributed according to a cosine-distribution. Alternatively, the
microfacets may be normally distributed which is the case of the Ward BRDF
model [War92], that in addition to modelling using a different distribution also
introduces anisotropy:

fWard
r =

ρd
π

+
ρs

4π αxαy
√

cos θi cos θr
e
− tan2 θh

(
cos2 φh
α2
x

+
sin2 φh
α2
y

)
(2.17)

Setting αx = αy will, of course, lead to an isotropic BRDF with the same
number of parameters as the Phong and Blinn-Phong models.

The models presented above all have in common that they rely on a single
distribution/lobe modelling a material. Most often nature is not easily ex-
plained using a single parameter distribution. BRDFs are no exception and
empirical studies show that simple models, as presented above, often fail to
accurately model what is measured. Much like Gaussian Mixture Models, the
Lafortune [LFTG97] model seeks to better model measurements by using a lin-
ear combination of cosine-lobes under the constraints of being reciprocal and
energy-conserving:

fr(ωi,ωr) =
n∑

l=1

ρs
[
ωTi M lωr

]αl (2.18)

Here any number of lobes, n, can be used in linear combination to model ap-
pearance. Each lobe has a scaled rotation matrix M l and a specularity term αl
associated with it.

While Phong, Blinn-Phong, Ward, and Lafortune models are all empirically
based, another important branch is the theoretical models based on physical
theory. Such models are generally more flexible and more accurate, but at the
cost of having many tunable parameters. No physical models were used in this
thesis and we will thus only mention a single one briefly, namely the Torrance-
Sparrow model [TS67, Bli77, CT82].
The Torrance-Sparrow model is based on microfacet theory and separates the
distribution of microfacets into 3 components, D, F , and G:

fCT
r =

ρd
π

+
DFG

4 cos θr cos θi
(2.19)

The first component is the distribution factor, which is based on the Beckmann
distribution of microfacets [BS63]:

D =
exp

(
− tan2 θh

m2

)

πm2 cos4 θh
(2.20)
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where m is the root mean squared slope of surface microfacets, i.e. a roughness
term.
The second component is the Fresnel factor, F , modeling the amount of reflected
v.s. transmitted light. Usually Schlick’s approximation [Sch94] is used:

F = f0 + (1− f0)(1− cos θi)
5 where f0 =

(
1− n
1 + n

)2

(2.21)

with n being the material’s refractive index.
Finally, G models the geometrical attenuation caused by selfshadowing effects
in the microfacets:

G = min

(
1,

2 cos θh cos θi
cos θd

,
2 cos θh cos θr

cos θd

)
, (2.22)

using the Rusinkewicz parametrization from figure. 2.6. In this model, we thus
have two parameters affecting the specular component, n and m, and since n
may be wavelength dependent, the number of parameters for an RGB variant
totals 7. Although comparable to the previous models parameter-wise, this
model is computationally heavier to work with.

The models presented above all focus on proper modelling of the specular high-
light. It is from this apparent that the main challenge in faithfully capturing
and modelling appearance lies in getting the highlight right. And from the span
of suggested methods to the pure number of proposed models, it is apparent
that a one-size-fits-all model has not yet been found.

2.2.4.1 Measured BRDFs

One obvious way of getting around the issue of determining a proper analyti-
cal BRDF model is to simply measure the BRDF itself. Obviously, this is not
possible in many cases and even if so the slow acquisition speed when densely
sampling BRDFs is prohibitive. Nonetheless, a span of measured BRDFs exists,
acquired to yield insight into the variability of material appearance. As will be
touched upon in the next section, measuring full BRDFs is a time-consuming
process, which has resulted in most datasets being small and often of low reso-
lution.

The philosophy behind measured BRDFs is to have a lookup table (LUT) of
BRDF values, such that while rendering one would simply look up the value
associated with a given light- and view-direction. The advantage of LUTs com-
pared to analytical models is particularly that they are ground truth and not
approximations, but also that they are extremely fast to compute since they
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require only a memory lookup. The downside is that they are memory-wise
heavy to deal with, and in scenes consisting of many materials the memory con-
sumption quickly exceeds what is available on a graphics card. Also, measured
BRDFs are usually sampled in a somewhat coarse grid, giving rise to the need
for interpolating values when a light/view configuration is not contained in the
LUT. Although interpolation can be performed extremely fast on graphics cards
it still introduces synthetic values to the rendering which may contaminate re-
sults. Furthermore, the BRDFs may not be parameterised in a regular grid,
making such interpolation non-trivial.

Commonly, there are two different representations of measured BRDFs: Reg-
ularly sampled, and irregularly sampled. For example, the MERL represen-
tation [MPBM03a] depicted in figure 2.7 is an example of a regularly sam-
pled BRDF. Reflectance values are stored in a regular grid, making looking up
and interpolating values extremely easy. The MERL format is based on the
Rusinkiewicz parametrization, but one could just as well use standard spherical
coordinates for this.
Irregularly sampled BRDFs are often represented as lists of observations with
no immediate order. An example is the Cornell BRDF format [Foo97]. Of-
ten they are to some extent uniformly distributed, but may lack observations
where e.g. view and illumination coincide (or is close to), or they may have
extra observations around regions of interest such as specular highlights. It is a
bit more tricky to use these formats as LUTs since they involve a (k-) nearest
neighbour search. This can be achieved rather fast through e.g. KD-Trees, but
is nonetheless an overhead compared to regularly sampled BRDFs.

2.2.5 Measuring Reflectance and BRDFs

Measuring a BRDF is in many senses a straightforward task: For every angle of
view and illumination, illuminate a material sample and measure the amount of
received light. This allows calculating the fraction of reflected light compared
to the incident light for all light-/view-configurations which is basically the
definition of the BRDF. We visualise this concept in figure 2.9 where a device
moves a light source and a detector over the entire hemisphere while measuring
the reflectance of a sample. Such a device is called a gonioreflectometer. As
the BRDF is a 4D quantity it is apparent that the process of measuring a full
4D BRDF is indeed very time-consuming. To acquire a full 4D BRDF in 1◦

resolution requires 90 × 180 × 90 × 180 ≈ 2.6 · 108 samples. Could this be
achieved with 1 sample per second it would amount to a measurement of a little
more than 8 years! Thus people often compromise on resolution or stick to
isotropic materials or even the inplane-BRDF (a sweep of θr, with θi fixed and
φr = π − φi).



24 Background

Figure 2.9: Concept of sampling a BRDF. All configurations of (θi, φi, θr, φr)
should be covered. This requires both a movable light source and
a movable detector.

How in practice to achieve the BRDF sampling varies. Gonioreflectometers may
be implemented in different ways. Two different variants that were used in this
Ph.D. project are depicted in figure 2.10. To the left, the UCSD spherical gantry
is shown. This is a classical gantry setup consisting of two arcs holding light
and detector respectively. Each arc is capable of covering the full hemisphere,
allowing full coverage of the BRDF domain. To the right, the DTU robot
system is shown. This setup is based on a multipurpose robot arm holding
the detector, while an arc of LEDs constitutes the variable light. Per default
this only allows 3D isotropic BRDFs to be sampled, but in conjunction with
a rotation table below the target sample, the full 4D BRDF can be sampled.
Also, the θi resolution is constrained to the increments of the LEDs, being 7.5◦.
In both setups, the detectors used are CCD cameras. In such cases, in order to
convert from pixel intensities to radiometric units, proper calibration is needed.
This procedure is described by Debevec in [Deb98].

The canonical approach described above is slow and one obvious mean of speed-
ing up the sampling process is by utilising the parallelism of a camera’s CCD
sensor to acquire multiple reflectance observations per image. This may be
achieved by e.g. taking images of materials shaped as spheres, as was done by
Matusik et al. [MPBM03b], or using curved mirrors to observe a sample from
multiple directions at the same time, like in the work of Ward [War92]. In C.VI
we demonstrate that parallel sampling may also be done by simply moving a
camera very close to the sample, thus taking advantage of the camera’s field of
view.
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Figure 2.10: Two different gonioreflectometers. Left: the UCSD Spherical
Gantry based on two motor-controlled arcs holding a directional
light-source and CCD camera respectively. Right: the DTU
robot system based on a multipurpose robot arm moving the
camera, in conjunction with an arc of LED lights.
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Chapter 3

Related Work

Recall that the aim of this thesis is to acquire BRDFs using few measurements
and to represent BRDFs using a practical model. This chapter covers work that
is relevant towards this endeavour. It mainly falls into two major categories:
related work concerning appearance modelling, and work concerning appearance
acquisition. The works [HF13] and [WK15] are excellent surveys on these topics.
The field of appearance modelling is concerned with creating BRDF models that
faithfully capture material behaviour. The field of appearance acquisition deals
with accurately measuring BRDFs from real-world objects. Although separated
here, the two topics are often intertwined with e.g. data-driven appearance
models based on measured BRDF data, or BRDF measurement procedures es-
timating analytical model parameters rather than a full 4D quantity.

Much of the work that is dealt with here was to a large extent pioneered by
Nicodemus and his group in their work on optical radiation. A great part of this
is summarised in the self-study manual [Nic77]. Specifically, he is to be credited
for the derivation of the BRDF [Nic65], which is the very foundation of not only
this thesis but all the related work mentioned in this chapter. Also, noteworthy,
the concepts of radiance and irradiance were coined in his works [Nic63], and
just as importantly, his guidelines on how to measure these quantities.
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3.1 Appearance Modelling

As described in chapter 2, when modelling appearance, i.e. creating BRDF
models, there are typically two ways to approach this. Either one tries to define a
mathematical model, perhaps based on physical theories or empirical studies, or
one tries to represent the BRDF through measurements (a data-driven model).
While the former has the advantage of being compact, it often oversimplifies
the world. The latter, on the other hand, can be exact but is often impractical
to work with or to obtain.

3.1.1 Analytical Models

Driven by especially the computer graphics industry, the span of analytical
BRDF models is quite large. For the sake of brevity, this section narrows its
focus to analytical models having a connection to the theme of this thesis,
namely practicality. It thus focuses primarily on models designed for matching
real world measurements and considerations on how to fit them.

The Phong model [Pho75] was the first to formulate a plausible model for spec-
ular highlights in the pipeline of early rendering frameworks, taking the first
step towards a better modelling of the real world. This overly simplified model
is neither reciprocal nor energy conserving, making it highly implausible. Blinn
addresses this partly in the Blinn-Phong model [Bli77] in search of being bet-
ter at modelling measurements, by making a correction to the positioning of
the specular lobe. This allows for a more physically plausible behaviour of the
specular lobe, matching real world materials better. Much like the Blinn-Phong
model, the Ward model [War92] suggests a specular lobe centred around the
half-vector, but the falloff is here modelled by a Gaussian rather than a cosine
power. In addition, it allows shaping the specular peak to simulate anisotropy.
These models seek to capture material appearance using a single specular lobe.
Although the models are compact and thus good for data-fitting it is well known
that they generally fail in accurately modelling the full appearance of real ma-
terials [NDM05]. An obvious flaw in these models is the lack of Fresnel effect,
i.e. a strong specular lobe at grazing angles. In addition to this we generally ob-
serve the shape of the specular peak, i.e. its falloff, does not follow observations
properly and either decays too fast or too slow.

Derived in the optics community, the Torrance-Sparrow model [TS67] describes
the interaction between a ray of light and a rough microfacet surface. This
model was later adopted in the computer graphics field by Cook [CT82] and
Blinn [Bli77], addressing many of the shortcomings of the simpler models men-
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tioned above, including the missing Fresnel effect. The nature of the microfacet
model, with the specular component being factored into Distribution, Fresnel,
and Geometry (D,F , and G in eq. 2.19), allows for a broad range of modifi-
cations to be made to it. Specifically, the distribution term D, that in many
senses dominates the shape of the specular lobe, has received a lot of attention.
In search of more accurately modelling real world measurements, alternative
variants have been proposed. Walter et al. propose a distribution of micro-
facets called GGX [WMLT07] rather than the Beckmann distribution [BS63],
providing a wider tail to the specular peak. This distribution is, in fact, equiv-
alent to the Trowbridge-Reitz distribution [TR75] which Disney also uses in a
generalised form called GTR [Bur12]. Likewise, Ashikhmin and Promože [AP07]
suggest a normalised Phong distribution and are able to deduce measurement
strategies for obtaining the model-parameters from new materials. Adding a sec-
ond parameter to D in order to capture the appearance of measured materials
even better, Bagher et al. propose the shifted gamma distribution [BSH12] giv-
ing more flexibility to the falloff, and even adding a third parameter pushing it
to the limit of models suitable for data-fitting, Löw et al. propose a distribution
based on the ABC density model [LKYU12]. Clearly, there is a lot of flexibility
inherent in the microfacet model. Above, only suggestions to modification of
the distribution parameter D have been mentioned. Likewise, modifications to
the Fresnel term F (the standard Schlick approximation [Sch94] is a computa-
tionally advantageous modification), and to the geometrical term G have been
proposed [HTSG91, WMLT07]. Brady et al. [BLPW14] propose a creative ap-
proach based on genetic programming by letting the microfacet model "evolve"
into a format that fits measurements better, modifying all components. Based
on this they present a selection of new parametric models capable of matching
measurements particularly well. An interesting insight the models give is that
a two-parameter D distribution is generally needed.
To this extent, the span of microfacet-based models is vast. Even so, none of the
models have proven to provide consistently good fits to measured data. As the
number of parameters added to the models steadily increases, we move towards
a point where we may need to rethink our strategies if we wish to have our mod-
els remain practical. Recent micro-flake models, with an origin in the microfacet
model, produce impressive and realistic surface effects but at a cost of an even
greater complexity, making them for artistic purposes only [JAM+10, HDCD15].

Attacking the problem at hand from another angle, a range of alternative ap-
proaches have been proposed. Focusing on accurately modelling the specular
peak, rather than trying to capture its falloff curve in one single complex para-
metric distribution, it may be modelled by a combination of simpler distributions
or lobes. The most generalised approach to this is by modelling the entire 3D
or 4D BRDF space by a set of basis functions. Methods based on spherical
harmonics [SAWG91, WAT92], wavelets [SS95, LF97, MPBM03b], and function
decompositions [KM99] have been proposed. All are theoretically capable of
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modelling any BRDF perfectly, but in practice, they require too many coeffi-
cients to approximate data accurately in order to be practical [WLT04]. Lafor-
tune et al [LFTG97] employs a more controlled strategy to accurately match a
broad range of measured materials. The method is based on a generalisation
of the cosine lobe model and allows an arbitrary number of linearly combined
cosine lobes to capture the highlight. The model yields superior results to most
single lobe models such as Ward, Phong and Blinn-Phong. Unfortunately, what
should have been the strength, using multiple lobes tends to make the fitting
process to real data unstable, making it impractical in data-fitting [NDM05].
Finally, layered microfacet models have been proposed, modelling BRDFs as su-
perpositions of multiple semi-transparent microfacet layers [WW07, JdJM14].
These models achieve convincing results, but again, realising that these models
were designed for artistic purposes, we move towards a complexity too high for
the models to be practical in BRDF estimation and data-fitting.

From the above, it is apparent that a broad range of flexible BRDF models
exists and that a massive effort has been devoted into accurately modelling
appearance. Even so, although BRDF models have moved a long way from their
earliest variants, Blinn-Phong, Ward, & Torrance-Sparrow, it is striking that it
is still those very models we see applied in practical settings today. Most likely
this is caused by a combination of computational complexity (we want real-time
visualisation), and the complexity of the optimisation problem (we don’t want
local minima fits). It argues that we are still in need of a practical model with
the simplicity of early models, but with broader coverage of materials.

3.1.2 Data-driven Models

Realising the limitations of analytical models, a completely different strategy is
to simply drive appearance models via real world data, either partially or fully.
The major challenges here are to obtain sufficient and accurate data, and from
these data, to extract the general trends and features constituting real world
BRDFs.

Much work has been devoted into accurately measuring BRDFs from real world
materials. Unfortunately, due to the complexity of the BRDF, the datasets
are few and small. One of the first publicly available datasets is the Cornell
database [Foo97]. It contains irregularly sampled BRDFs of industrial materials
such as paints, ceramics, and metals. One of the major strengths of this dataset
is the multispectral observations, ranging from 400nm to 700nm. Another early
dataset is the Columbia-Utrecht Reflectance and Texture Database [DVGNK99]
consisting of approximately 60 BRDFs coarsely sampled using 205 samples span-
ning the full 4D BRDF domain. It contains a broad range of materials with
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features including: isotropy, anisotropy, microscopic roughness and macroscopic
roughness. Due to its coarse sampling it, unfortunately, fails in fully captur-
ing the material appearances. Probably the most famous dataset is the MERL
database by Matusik et al. [MPBM03a]. It consists of a hundred densely mea-
sured isotropic BRDFs stored in a 90 × 90 × 180 grid. Due to the acquisition
approach, based on images of spheres, the database spans a category of materials
that was able to be shaped into spheres. This span is good, but some wrap-
ping artefacts etc. are present in some materials. In continuation of Matusik’s
work, Ngan et al. [NDM05] present the MIT anisotropic database, consisting of
4 densely sampled anisotropic BRDFs in a 2◦-increment regular grid. To our
knowledge, these measurements are the most comprehensive ones done that are
publicly available. Finally, a recent 4D dataset has been published by Filip et
al. [FV14]. This dataset holds no less than 150 materials, each sampled by ap-
proximately 7000 measurements and interpolated into a regular grid of 80.000
directions. Although not as dense as the measurements by Ngan, the breadth
and relatively high density of this dataset is noteworthy.

McCool et al. [MAA01] are among the first to demonstrate that both complex
analytical BRDF models and measured BRDFs can advantageously be repre-
sented as products of 2D texture maps on a graphics card, i.e. a data-driven
model, providing an at that time so far unachievable real-time performance
compared to the complexity of the data. Later, a data-driven reflectance model
based on the MERL database is suggested by Matusik et al. [MPBM03b]. In this
approach, new materials are modelled purely as linear combinations of measured
BRDFs. Furthermore, Matusik et al. conclude that approximately 800 samples
of a BRDF may be sufficient to accurately reconstruct its full appearance from
the linear basis. Two alternate strategies for decomposing BRDFs are also pro-
posed based on Principal Component Analysis (PCA) [Hot33] and a nonlinear
dimensionality reduction (NLDR) of the MERL database [MPBM03a]. These
decompositions result in dimensionality reductions to 30-40 and 10 parameters
respectively, making them relevant for practical use.
Much like Matusik’s work, Weyrich uses the MERL database to model hu-
man skin through a decomposition based on non-negative matrix factoriza-
tion [WMP+05]. In their results, as little as 6-8 components are sufficient, mak-
ing them comparable to many analytical models. Finally, Hullin et al. [HHA+10]
use the same strategy as Matusik to model fluorescence in re-radiation re-
flectance functions (bispectral BRRDFs) on data from their own image-based
system.

While the methods proposed above seek to capture every facet of the BRDFs
through data, i.e. learn the entire 4D manifold of BRDFs from data, also hybrid
approaches have been proposed. These methods seek to reduce the amount of
data required by using analytical models for well-described phenomena and only
data for effects that are difficult to model.
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The Torrance-Sparrow model [TS67] (eq. 2.19) constitutes a nice framework for
this philosophy as it is by definition composed of three separate terms. Al-
though often approximated, the Fresnel term, F , is a well-modelled quantity.
In contrast, the geometrical factor G, and especially the distribution factor D
have proven difficult to model analytically as the span of proposed distribu-
tions above suggest. Ashikmin et al. [APS00] propose a framework for taking
a tabulated microfacet orientation distribution and automatically produce D
and G such that the resulting BRDF is both energy conserving and recipro-
cal. Ngan et al. [NDM05] employ this framework to model anisotropic BRDFs
with good results compared to ground truth, Wang et al. [WZT+08] apply it
to spatially varying BRDFs, and finally, Ghosh et al. [GHP+08] use it in con-
junction with subsurface-scattering models to reproduce human face appear-
ance. Related, Bagher et al. [BSN16] propose tabulating all three factors of the
Torrance-Sparrow model, and device an optimisation scheme capable of robustly
estimating 1D vectors associated with D, F , and G producing superior results
to previous work.

In the overlap between measured and analytical BRDFs, the problem of model
fitting arises. Before finishing this section we will briefly touch upon what
considerations have been made on this. Realising that parametric models are
only a simplification of the real world, a choice on what features to value higher
than others must be made. Mostly this is linked to what features are visually
most important. In the optimisation pipeline, this basically boils down to the
choice of objective function. Due to the high dynamic range of the BRDF
values, McCool suggests working in a log-domain [MAA01] rather than using the
classical root mean squared (RMS) error. Likewise, Fores et al [FFG12] conclude
that the cube root has a perceptually better weight. Instead of working on the
actual BRDF values, derived quantities such as renderings under environment
lighting have also been proposed as they by nature mimic how we perceive
materials [FDA03]. Unfortunately, the computational cost of producing such
renderings is high compared to the former metrics and furthermore, one still
has to decide on a pixel-error metric afterwards which has been investigated by
e.g. Rushmeier et al. [RWP+95] and more recently by Pereira et al. [PR12].
Finally Havran et al. [HFM16] have recently demonstrated a 3D scene with
optimised geometry, view, and illumination for maximising difference between
anisotropic materials.
The general notion in model-fitting is that fitting to the top of the specular peak,
like the L2 norm does, produces poor results. Although a range of alternative
variants have been proposed that seek a better highlight-compromise, none stand
out particularly better than the others.

Previous work has generally shown that data-driven BRDF models are capa-
ble of producing results superior to those of analytical models. On the other
hand, for material categories that the models have not been trained on, perfor-
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mance may be strikingly poor where even the simplest analytical models can
outperform the data-driven. This issue illustrates the major weakness of the
data-driven BRDF models, namely their dependency on large amounts of train-
ing data. The work of Matusik et al. [MPBM03a] has to a large extent enabled
the first generation of data-driven BRDF models to come into existence, but
even this dataset is limited in many ways. In order to cover a broader range
of BRDFs, or even cover the full 4D manifold, more data is inevitably needed.
This problem leads to the challenge of effectively acquiring BRDFs.

3.2 Appearance Acquisition

Just as there has been considerate efforts in accurately modelling reflectance,
much work has been placed into capturing reflectance. Especially, given the
comprehensiveness of the BRDF, efforts have been made in speeding up the
acquisition process with the goal of making BRDF-capture and data-driven
models practical. The main contributions presented in this thesis primarily lie
in this category, dealing with finding practical data-driven models and practical
BRDF capture techniques.

3.2.1 Traditional and Image-Based BRDF Measurement

The simplest approach to measuring a BRDF is, of course, the canonical ap-
proach of covering all light/view configurations for a flat material sample using
a gonioreflectometer, as done by e.g. White et al. [WSB+98]. Although the
simplicity of the setup makes it appealing, the approach is slow and impractical
for densely sampled BRDFs. This has spawned a range of modifications to the
original setup with the aim of speeding up the acquisition process.

Perhaps the simplest modification is that of Marschner et al. [MWL+00], that
utilises the parallelism of a camera CCD chip by acquiring images of homoge-
neous materials shaped as spheres from a 1D set of light directions. This allows
them to, relatively fast, capture an isotropic 3D BRDF and it is indeed this
approach that was used by Matusik et al. [MPBM03a] to acquire the MERL
database. Related, Ngan et al. [NDM05] use cylinders in a similar setup to cap-
ture 4D anisotropic BRDFs. Both methods are relatively fast compared to the
canonical acquisition approach but suffer from being limited to materials that
can be wrapped around, or shaped into, spheres and cylinders.

Rather than modifying the material sample, a range of methods have been pro-



34 Related Work

posed that utilise mirrors in various configurations to acquire multiple BRDF
samples with a camera. In his "imaging gonioreflectometer" [War92], Ward
utilises a half-sphere mirror and a fisheye-lens to capture 2 of the 4 dimen-
sions of a BRDF in parallel. Likewise, Dana and Wang [DW04] utilize the
focusing property of a concave parabolic mirror to obtain multiple view direc-
tions of a SVBRDF in parallel, and in a similar configuration based on two
opposing parabolic mirrors, Ghosh et al. are also able to speed up BRDF ac-
quisition of isotropic materials to just a few minutes [GAHO07]. Related, Ihrke
et al. [IRM+12] employ a kaleidoscopic mirror-setup to likewise acquire samples
in parallel. Finally, complex setups consisting of full light domes and movable
cameras have been proposed [NSKR13, SSW+14].

The methods presented above all reduce acquisition time considerably and are
in theory all fairly simple. Furthermore, most of them produce "authentic"
measurements of the material that have not been affected by any data-prior.
Unfortunately reproducing these setups in practical settings is generally costly,
making it prohibitive to the majority of users.

The method that we propose has the advantage of being very flexible in that
the user may choose any light/view configuration, be that an e.g. complex
robot-based setup or a simple static experiment with a few cameras and lights,
and obtain good results. The result, however, is biased towards the underlying
data-driven model [NJR15].

3.2.2 Adaptive and Efficient Sampling

As opposed to blindly measuring the full BRDF in a dense grid, Fuchs et
al. [FBLS07] identify that due to the low-frequency nature in large parts of
the BRDF, not all regions of the BRDF domain require the same amount of
attention. Based on how well a neighbourhood of observations is capable of
modelling an observation, an adaptive sampling scheme is devised, seeking to
refine only regions that are in need of additional observations. In a similar ap-
proach, Lensch et al. [LLSpS03] fit a parametric BRDF model to measurements
and based on an uncertainty measure of the fitted parameters, new measure-
ment positions are calculated. In contrast to Fuchs et al, this approach relies
on an analytical model and as a result, the BRDF features measurable by the
method are dictated by the choice of analytical model.

Both of the above approaches combine nicely with many of the proposed hard-
ware improvements mentioned in the previous subsection, this could potentially
speed up the acquisition process further and is a potential area for future re-
search.
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In our optimal sampling framework, we provide the user with a list of tabu-
lated optimum sampling configurations, generated for any predefined number
of measurements. This list is based on how BRDFs generally behave, but the
framework also allows for creating new lists based on specific material categories.

3.2.3 Complex Environment Lighting

Drawing on the convolutional nature of the rendering equation pinpointed by
Ramamoorthi [RH01], a range of BRDF inference approaches has also been
proposed utilising environment illumination.

In a controlled lighting environment, Ghosh et al. [GAHO07] illuminate a ma-
terial sample using a set of orthonormal Zonal Basis functions and based on
these are able to infer BRDFs. An advantage of this setup is that it requires
no moving parts. Similarly, although with a rotating light-arc to reduce cost
and complexity, Tunwattanapong et al. [TFG+13] are capable of inferring both
surface normals and reflectance of highly specular objects using Spherical Har-
monics illumination. Finally Aittala et al. [AWL13] demonstrate that these
concepts may be implemented using standard lab equipment such as an LCD
screen and a DSLR camera, allowing capturing full spatially varying BRDFs by
producing parameter maps for a 2-lobe analytical model. With this approach,
we see a very practical solution to BRDF measurements.

Instead of relying on a controlled lighting environments as the approaches above,
a branch of methods for inferring BRDFs under uncontrolled lighting has also
been proposed. Romeiro et al. [RVZ08] are capable of estimating a data-driven
(bivariate) BRDF model from a known curved surface using only a mirror
light probe as a reference for the environment-lighting. Continuing their work,
Romeiro and Zickler [RZ10], inspired by image-deblurring, furthermore, demon-
strate that under a strong statistical prior the need for a mirror probe can be
removed.

Attacking the problem at hand from a slightly different approach, Wu et al. [WZ15]
use a handheld Microsoft Kinect (RGB-D) sensor in conjunction with a mirror-
sphere to estimate both geometry and reflectance of everyday objects. This
addresses the issue of Romeiro’s work, depending on known geometry in the
scene. Although the approach only produces the parameters of a simple isotropic
Ward BRDF model, it proposes a very practical solution to the challenge of sam-
pling BRDFs. In a very recent publication, Wu et al. [WWZ16] improves their
approach by removing the need for a mirror-sphere and refine their position
estimation. Here they optimise BRDF slices from a discrete set of observation
directions and use a von Mises-Fisher (vMF) distribution fitted to Ward models
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to obtain Ward model parameters. The result is an RGB-D-sensor based frame-
work allowing full characterization of appearance, including both geometry and
reflectance. Although limited to a discretized Ward-model, this approach is
one way of approaching the goal of this PhD project, namely making BRDF
measurements practical.

The mentioned methods produce impressive results given their relatively simple
infrastructure and low acquisition time. In contrast, the mechanics behind are
far from simple and most of the methods rely on delicate non-linear optimisation
and require strong regularisation. As such the methods are susceptible to fall
into local minima or simply fail. Furthermore, they are all based on simplified
BRDFs in some sense, e.g. through a bivariate representation or an analytical
model, meaning that neither of them obtain true measurements. Depending on
the application, these downsides may or may not be prohibitive.

In the framework we present in this thesis, the underlying model is a linear model
learned from training data. The linear model guarantees a global minimum fit
and is very fast to compute (sub-seconds). Additionally, the complexity of the
model scales with the amount of observations fed to it, allowing for a complexity
far beyond that of analytical models.

3.2.4 Rapid Reflectomerty

A final branch of BRDF acquisition approaches that is worth mentioning is a col-
lection of methods based on what we choose to call "rapid reflectometry". These
methods are designed towards estimating BRDFs instantaneously or through a
few strategical snapshots. Especially within industrial settings, these methods
are applicable, where elaborate mechanical or optical infrastructures are not
possible. Indeed this is the category that the major contribution of this thesis
falls into, with the papers C.IV and C.VI on minimal BRDF sampling.

Hertzmann and Seitz [HS03] propose a method that both estimates shape and
reflectance from 14 images with varying illumination and fixed camera. The
method uses a user-defined range of synthetic reference objects and materials to
match observed intensities with surface-normal and -material and are capable
of achieving decent results. Related, Ren et al. [RWS+11] use a physical refer-
ence checkerboard of tiles with known reflectance. Using a video camera and a
moving handheld light-source, both a surface normal map and an SVBRDF is
reconstructed. Much like Hertzmann and Seitz’s synthetic case, the BRDF is
here represented as a linear combination of the reference materials used in the
checkerboard.
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Recently Aittala et al. have presented two approaches for rapidly capturing
SVBRDFs using nothing more than a standard consumer mobile phone that
is equipped with a camera and a flash. By capturing two near-field images
with flash on and off, Aittala et al. [AWL15] are capable of estimating sur-
face normals and the spatially varying parameters of one of the recent models
proposed in [BLPW14]. In their second work [AAL16], using a convolutional
neural network based texture descriptor and simplifying the reflectance model
to a Blinn-Phong, Aittala et al. are able to reduce the requirement to only a
single flash-lit image. Both approaches are based on recognising periodicity in
texture to obtain multiple BRDF samples of every material class.
The 1- and 2-shot approaches presented by Aittala et al. also address the fun-
damental problem raised in this thesis, making BRDF measurements practical.
They are both good solutions that each to a large extent solves the problem. As
with the environment-lighting based methods, these too rely on some non-linear
optimisation and strong regularisation. Currently, computation time and the
risk of optimizers failing may be prohibitive, but the methods are nonetheless
highly relevant.

In contrast to the approaches presented here, our framework revolves around a
well posed optimization problem involving solving a linear system. As stated
earlier, this formulation makes it extremely fast to compute the BRDF recon-
structions and guarantees that an optimum solution is found. Furthermore,
where some of the above methods rely on a reference board consisting of a small
number of material samples, our method uses the entire span of the MERL
database as a reference.

To sum up, it is clear that a substantial effort has been put into simplifying
the task of capturing the BRDF and that there are many strategies for doing
so. It is especially pleasing to observe that while this Ph.D. project was under
way (in the years 2013-2016) similar research has been conducted elsewhere and
competing solutions proposed. This underlines that we are indeed still dealing
with a relevant field of research and that a general solution to our problem has
not yet been found.
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Chapter 4

Contributions

In this chapter, relevant publications made during the studies, and the contri-
butions associated with these will be described in relation to one another. The
individual publications in their entirety may be found in appendices A-F, where
they are presented in their original formatting. For the sake of brevity we will
not elaborate on the technical details of the publications but rather elevate and
discuss primarily the contributions made and the motivation behind.

4.1 Motivation

Although chapter 3 only scratches the surface of what efforts have been put
into modelling and capturing appearance, it is already apparent that this ef-
fort has indeed been vast and is driven by a large community of researchers.
Even so, there is still a broad range of challenges to be solved. In the posi-
tional paper C.II [NEK+15] we take the industry’s point of view and identify
a range of the most pressing challenges within production that are related to
appearance modelling. The common denominator found here is quality assur-
ance and automation hereof. A great part of production quality control consists
of manual visual inspection of produced parts and reflectance is often a good
way of identifying surface defects. Already, as covered in chapters 2 and 3,
an extensive palette of elaborate radiometric models exists, most of them very
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Figure 4.1: Examples of industrial fields where practical reflactance models
may be applied for automatic quality assurance. Left: Additive
manufacturing (3D printing) where a real-time print-quality feed-
back can improve overall quality. Right: Identification of surface
defects in massive objects like wind turbine blades.

accurate in predicting appearance for whatever category of materials they are
designed for. Their accuracy, however, comes at a cost in that their many
parameters make them difficult and often impossible to fit to measured data.
Without accurate low-parameter models, the task of covering the complete 4-
dimensional BRDF manifold becomes impractical from an industrial point of
view, wherefore C.II argues that there is an urgent need for low-parameter, or
parsimonious, reflectance models designed for data-fitting using only a few ob-
servations. Applications of such models include e.g. real-time quality feedback
in additive manufacturing (3D printing), and identification of structural defects
in massive objects like wind turbine blades, both illustrated in figure 4.1. The
paper C.II thus contributes by setting the tone for the future research in practi-
cal reflectance modelling and as a consequence is in many ways the foundation
and motivation of the work carried out in the following.

4.2 Preliminary Investigation

As an initial explorative study, we investigated the famous MERL [MPBM03a]
BRDF database. Our primary goal was here to get an understanding of how
well commonly used BRDF models are able to represent measured materials,
and especially where they fail. It was thus a continuation of the previous work
by Ngan et al. [NDM05]. This investigation led to a number of interesting
insights, one relating to the challenge of choosing a proper visualisation of the
BRDFs, another relating to the choice of error-measure in the fitting process,
and a third revealing unexpected material-properties for a range of the MERL
materials. This initial work was published in C.I [NFCA14]. The following will
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Figure 4.2: Renderings of MERL materials: chrome-steel, nickel, two-layer-
silver, violet-rubber, and red-fabric2. Top row is rendered under
two point-lights: an oblique front-light (ωi = [1, 1, 1]) and a graz-
ing back-light (ωi = [−1,−1,−3]). Bottom row is rendered using
ray-tracing under environment illumination using the HDR Uffizi
scene [Deb98].

briefly touch upon the primary contributions from this publication.

A cornerstone in BRDF analysis is appropriately visualising the BRDF. Al-
though this may sound like a trivial task (since BRDFs are usually what we
plug into the rendering-pipeline), it is difficult to find a visualisation that cap-
tures all or most the nuances of a BRDF.
In essence, rendering a BRDF under a point-light corresponds to convolving it
with a Dirac delta function, i.e. the image you see is, in fact, a subpart of the
BRDF itself, governed by the normals of the rendered geometry. This represen-
tation is, however, unnatural for the human eye to interpret, and in addition, it
is highly dependent upon the position of the light-source.
On the other hand, rendering a BRDF under environment lighting gives a vi-
sualisation that is highly interpretable to the human eye, but the convolution
between environment and BRDF smoothes out any finer details of the BRDF,
and thus easily hides small differences between BRDFs. In figure 4.2, the dif-
ference of these two visualisation methods is shown. In the top row, renderings
are done using two point lights: a front-light at an oblique angle (ωi = [1, 1, 1]),
and a back-light at a grazing angle (ωi = [−1,−1,−3]). In the bottom row, the
renderings are done using ray-tracing under an HDR environment.

In C.I, we settled on using point light sources for BRDF visualisation, and it
was in this context we came up with the oblique/grazing light-configuration,
shown in figure 4.2, that allows visualisation of both primary- and Fresnel-
highlights without the two interfering. This configuration has later proven to
be a significant contribution in that while being very quickly computed it still
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Figure 4.3: Fitting of Phong BRDF model to a fictional BRDF (black), min-
imizing either L1-norm (blue) or L2-norm (green).

gives a great insight into the shape and intensity of the two primary lobes of
the BRDF. Now in relation to this contribution, we found that adding a grazing
back-light reveals, surprisingly, that some materials exhibit Phong-like grazing
angle reflections, while more expectedly other materials exhibit a Blinn-Phong-
like behaviour which is connected to the micro-facet theory [NDM05, AMHH08].
Although we did not pursue this further, we suspect that the fact that some
materials behave Phong-like is related to subsurface scattering effects. This
contribution motivates for a new type of BRDF model that breaks with micro-
facet-theory for grazing angles, and to open the field we introduced a compact
model that allows interpolation between the Phong and Blinn-Phong models.
A final facet of the study done in C.I is the insight in the choice of error-measure
when fitting analytical BRDFs to measured data. A classical choice of measure is
the L2-norm. In practice, however, where models cannot fully capture the data,
the measure seems to favour the peak of the specular highlight and disregard its
base which numerically is much smaller. Instead, we found that the L1-norm
does, in fact, produce a visually better compromise, sacrificing the peak of the
highlight for a better fit to its base. A dummy example that illustrates this is
shown in figure 4.3, where the Phong BRDF model is fitted to a fictional BRDF
minimising either the L1- or the L2-norm. The contribution here lies in giving
a notion of how this choice of norm affects the visual results of model-fittings.

4.3 Experimental Work

It was deemed a strategical advantage to develop in-house BRDF capture know-
how and facilities, especially in relation to result validation, but also to some
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Figure 4.4: Left: Superposition of images of multiple robot poses in the DTU
BRDF capture system. The surface of an orange LEGO brick is
here densely sampled. Right: A rendering of the measured BRDF
applied to the Stanford dragon under point light illumination.

extent to supply potential collaborators from Danish industry with precise re-
flectance capture capabilities. Thus, in parallel to analysing existing mea-
sured BRDF data, extensive laboratory work was carried out to build a flexible
gonioreflectometer. The gonioreflectometer system revolves around a multi-
purpose 6-axis industrial robot. In conjunction with an illumination-arc and
a turntable, the system allows automated dense sampling of BRDFs. The left
image in figure 4.4 illustrates this facility where the BRDF of an orange LEGO
brick is being captured, and to the right, a rendering of the resulting BRDF is
shown. Further details on the system may be found in appendix G.

Only a few fully functional gonioreflectometers exist in the world. The develop-
ment of this measurement system has thus contributed by supplying academia
and industry with a new BRDF capture capacity. This is especially an impor-
tant step for the Danish research community where we believe we are the first in
Denmark capable of capturing the full 3D isotropic BRDF (and in conjunction
with a turntable, even the full 4D BRDF).

The experimental work carried out has had a large role in the execution of
this PhD project and has required a lot of time. Specifically we estimate that
approximately half a man-year has been put into the effort by the author. Even
so, as pointed out in the introduction, this effort is only indirectly credited
through the validations and data captures carried out in the various publications.
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4.4 A Practical BRDF Model

Paper C.V [JNLP15] is a study not related to the topic of this thesis. It was
carried out in the early stages of the PhD project in collaboration with the
Danish company 3-Shape and deals with 3D surface reconstruction of anatom-
ical surfaces (ear canals) with missing data. The paper proposes a statistical
reconstruction model using a prior learned from training data. The company
3-Shape produces 3D scanners for custom hearing aid fitting, where personally
customised hearing aids can be 3D printed based on a 3D scan of the ear canal
using their scanner. However, due to the curvature of the ear and ear canal,
occlusions often occur during the optical 3D scanning, resulting in partial ge-
ometries with missing information. By learning the shape variability of the ear
canal from a large training set of scanned ear canal impressions, we show in C.V
that the missing information can be statistically inferred based on what known
information exists. Rather than performing a smooth, e.g. Poisson-based, hole-
closing, we demonstrate how a data-driven reconstruction-model can produce
more anatomically correct surface reconstructions allowing better fits of the cus-
tomised hearing aids.
Although the field of custom hearing aid fitting seems tangential to the work
in this thesis, we have chosen to include it since it holds inspirational value by
being what inspired the ideas proposed in one of our main contributions, namely
the paper C.IV [NJR15].

Much like a 3D surface can be represented as a hyper-dimensional point be-
longing to a hyper-dimensional distribution, a densely sampled 3D BRDF can
likewise be seen as a quantity in a hyper-dimensional space. Given a sufficient
amount of training-data and under the assumption of normality, the hyper-
dimensional distribution constituting the phenomena of BRDFs may be esti-
mated. Hence, through covariance, given one part of a BRDF, another part
may be predicted or reconstructed.
In C.IV, we demonstrate a framework for reconstructing full BRDFs from only a
few measurements. The goal of this paper was to achieve a better alternative to
interpolation when only a sparse set of BRDF measurements are available. The
BRDF itself is a continuous manifold in 4D space, but must be quantized in some
fixed number of cells in order to be digitally represented. Most often, the BRDF
is sampled uniformly in a fixed grid of angles, say e.g. 5◦ steps, and the limit
to this resolution seems today to be that of the MERL database being approx-
imately 1◦. Measurements, and especially gonioreflectometric measurements,
beyond this resolution, seem infeasible. Hence, the MERL format [MPBM03a]
is an appealing way of representing a BRDF, but the problem of how to best fill
empty cells given a set of measurements from a coarser grid is an open question.
Obviously, there is a high correlation between the bins of a discretized BRDF
since it is a continuous and most often very smooth function. When we as hu-
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Figure 4.5: Conceptual illustration of log-relative mapping. Left are three
fictional BRDFs presented together with a reference BRDF. Nu-
merically, the dominating variation occurs around the specular
highlight. To the right, the BRDFs have been mapped using the
log-relative mapping, i.e. relative to the reference BRDF. Here, a
lot of new variation is revealed because the general high-dynamic
nature of BRDFs has been compensated for.

mans observe a material we only need a very small set of observations for us to
get a clear impression of the BRDF, due to us having a lot of prior knowledge
on how materials generally behave under varying view- and illumination-angles.
It is this knowledge we seek to mimic in the reconstruction framework of C.IV
when populating the MERL format.

An important contribution in C.IV is the use of a log-relative mapping. The
BRDF has a very high dynamic range behaviour, with specular peaks being or-
ders of magnitude larger than the diffuse components. A covariance analysis on
non-mapped BRDFs [MPBM03a], will yield little insight since the vast majority
of all numerical variation is contained in the specular highlights. By looking at
the variation of BRDFs relative to some reference BRDF, a broad range of be-
fore unseen nuances appear, such as the diffuse component, Fresnel effects, and
even retro-reflections. In figure 4.5, this concept is visualised by a fictional ex-
ample, where hidden variation is only revealed by transforming to a log-relative
domain. Performing such a preprocessing step on the MERL database before
analysing variance, gives, as mentioned, a lot of new insight to the data and
in addition conforms well with regions in the BRDF-domain pointed out by
Burley having high significance [Bur12]. We visualise this in figure 4.6 where
the first 4 principal components of the MERL database are visualised as BRDF
slices [Bur12], both with and without the proposed mapping applied. As may
be seen from the figure, the mapping in conjunction with principal component
analysis (PCA) allows for decomposing the data into interpretable components.
We find this highly interesting and see it as an important contribution.

Through the log-relative mapping and PCA a practical, linear, reflectance model
has been proposed based on Tikhonov regularised least squares. This model ad-
dresses one of the primary motivators of this PhD project, namely finding a
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Figure 4.6: First 4 principal components of the MERL database. Top row
shows the principal components of the data using no mapping.
All numerical variation is seen to be contained in the specular
peaks. In the bottom row the principal components of the mapped
data are shown. Here it is seen that the data has been decomposed
into interpretable components. An interpretation reference for the
BRDF slices is presented in the bottom far right [Bur12].

practical and robust reflectance-model that is fast to compute and capable of
handling sparse input data. The model takes any number of measurements and
based on these synthesises the most likely BRDF they originate from.
With a well-defined engine driving the reconstruction framework, we further
pursue in C.IV to determine the optimum conditions for reconstruction, i.e.
what sets of light-/view-configurations combine to construct the best possible
foundation for BRDF reconstruction. This analysis concludes by presenting
tabulated results for the optimum configurations of light and camera for any
number of reflectance samples, a great tool for practitioners. Furthermore, we
make the conclusion that for most materials as little as 20 samples are in fact
adequate to accurately predict the BRDF of an unknown material. With this
contribution, we have demonstrated that with even a few measurements we are
able to achieve a very precise representation of material appearance, much like
we humans are capable of.
With the results from C.IV, designers of industrial applications may settle on
any number of samples meeting their requirements (e.g. real-time processing
or cost), lookup the optimum configuration for their setup, and using this con-
figuration, obtain the best possible appearance estimate of a target. Where
BRDF capture was before a slow process taking from hours to weeks, we have
successfully demonstrated that it can be accurately achieved in seconds.
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Pushing the results of C.IV to its limits, the paper C.VI investigates how the full
CCD information may be utilised to further reduce the number of samples re-
quired to accurately capture a BRDF using our model. Most often, even though
modern cameras are used, BRDFs are measured using point-measurements. I.e.
a single pixel, or the mean of a small group of pixels, constitutes a radiance
estimate, and the remaining information in the image is often simply discarded.
Under the assumption of a flat material sample, and known extrinsic and in-
trinsic camera parameters, we demonstrate how the full field of view of a digital
camera may be utilised to capture thousands of (highly correlated) reflectance
measurements in parallel. With this, we are able to reduce the number of mea-
surements required to faithfully capture the appearance of a sample to as little
as two images. We call this approach "Near Field Capture" since it requires
placing a camera so close that most of its field of view is covered by the material
sample. This may be prohibitive in some applications wherefore the method is
slightly less general, but we nonetheless deem it a valuable contribution to the
field of practical BRDF capture.
Due to the parallelism of the Near Field Capture approach, it also allows for the
capture of spatially varying BRDFs. We demonstrate a simple example of how
to achieve this in C.VI, but it is indeed a vast research area in itself, requiring
much further research. This further broadens the applicability of our model,
and especially within industry and quality assurance, it is important to have
methods capable of measuring beyond homogeneous material samples.

4.5 Applying a Practical Model

The tools described above have contributed to enabling us to effectively capture
material appearance. These capabilities have been applied in a broad range
of research projects. In C.III [ACDC+15] we summarise 3 ongoing projects
at our lab facility, aiming to produce new high-quality datasets. The projects
concern non-rigid structure from motion, multi-view stereo with known BRDF,
and reproduction of scenes containing glass objects. One important facet of
these datasets is the ground truth reflectance data accompanied with them. We
achieve this through our robot-system in conjunction with the reconstruction
framework presented above. This allows densely sampled high-quality BRDFs
that are crucial for accurate appearance modelling. The need for correct ra-
diometric reproduction is especially important in the work [SCN+16], which
elaborates on one of the topics from C.III, where complex scenes containing
glass objects are digitised and reproduced on a per-pixel level. In figure 4.7
we illustrate 3 examples of BRDFs captured in our facility. The materials are
measured from LEGO bricks being blue, green and orange.
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Figure 4.7: Rendering of 3 different LEGO materials: Blue, Green and Or-
ange. That BRDFs were captured by of capturing system and
refined through our reconstruction method.

4.6 Discussion

It is, by all means, fair to conclude that this PhD project succeeded in complet-
ing the task it set out to do, namely formulating a practical BRDF modelling
framework. A contribution that was validated through several application stud-
ies. The work has pushed us to a place now where the next step is to put the
methods into industrial settings. Along with the limitations already identified,
this will inevitably uncover a broad range of new challenges, like e.g. robustness
to variations in surface normals or light-contamination, which will be discussed
in the following in the form of suggestions for future work. The proposed future
work primarily revolves around our data-driven reconstruction framework and
how to improve it, as this is where we see the greatest potential.

Practical testing The work done in the thesis has pushed us to a place
now where one obvious next step is to put the methods into practice. This
will inevitably uncover a long range of new challenges, like e.g. robustness to
variations in surface normals or light-contamination. We are currently taking
the first steps towards this with multiple industrial collaborators and it will be
an active field of research in our section for the coming years.

Additional data Clearly, the major disadvantage of the proposed reconstruc-
tion framework is its dependency on a large set of training data. Although the
MERL database covers a broad range of material samples it definitely does not
cover the entire span of material appearance. Also, the framework currently
only models isotropic materials and the entire category of anisotropic materials
is yet to be incorporated into the framework. Although very difficult to acquire,
the current model needs more training data in order to capture a wider span of
appearance. One shortcut may be to simulate additional training data using ad-
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vanced parametric models with randomly chosen parameters, the cost, however,
will be that the model becomes biased towards synthetic observations.

Model reiteration Although the linear model and data-mapping used in
the reconstruction framework have proven to work well, there may be better
models or mappings for the task. A clear disadvantage of the current method is
its dependency on training data. If possible, a parsimonious analytical BRDF
model - perhaps linear under e.g. a log-relative mapping - would be preferred
over the data-driven. Future research could look into such modifications.

Integration into 3D estimation frameworks Extending existing 3D es-
timation frameworks to also estimate a BRDF is also of great interest, as the
current state of the art relies on very simple BRDF models. An example could
be a structured light scanner where the projector/camera configuration causes
a fixed θd, but model geometry causes variations in the surface normal, creat-
ing multiple samples across the θh, φd plane. A challenge is here to be robust
towards noisy normal estimates and be able to handle spatial variance in the
BRDF. We are currently investigating the possibilities of this in our lab.

Interfacing The parameters of the linear BRDF model corresponds to weights
of the principal components of the dataset. These weights are a very compact
representation, but not usable in standard 3D content creation tools. Creat-
ing plugins allowing the use of either manually defined or measured weights in
standard software would make our results much more useful to practitioners.

Model parameter Estimation Alternatively to implementing the data-driven
model in standard 3D content creation tools, an investigation could be done in
how to convert PC-weights into parameters used by the standard analytical
BRDF models. As is identified in C.IV, the individual components are linked
to different parts of the BRDF, e.g. diffuse, specular, Fresnel, etc. Devising a
mapping from PC-weights to e.g. Torrance-Sparrow model parameters would
be very interesting and could either be used as is or as an initial guess to a
refined model-fitting.
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Chapter 5

Conclusions

This thesis has presented the research carried out during the past 3 years’ Ph.D.
studies, targeted at making appearance modelling practical. This has high rel-
evance in many fields, including e.g. computer graphics, product visualisation,
and production quality inspection. In this effort, a range of scientific contribu-
tions have been proposed, addressing various aspects of the challenge at hand.

The research carried out has to a large extent been governed by an explorative
approach, themed on bringing practicality to the field concerning material ap-
pearance. As such, the path travelled has not been laid out in advance but is a
direct consequence of the findings we did under way. It is to this extent pleasing
to find that a common thread indeed is running through the publications made.

The world needs practical BRDF models. The full 4D BRDF manifold is simply
too vast to work with practically. We see this need in multiple very different
fields and in paper C.II we bring 4 concrete and diverse examples that illustrate
a need for parsimonious, applicable, BRDF models in industry.
We set forth a quest to address this, taking offset in an investigation of where
analytical models come short when comparing to real, measured, data. This
was dealt with in C.I. In parallel, we started developing a laboratory facility,
revolving around our industrial robot, making us capable of measuring our own
BRDFs . In appendices G-H technical notes regarding our system are presented
and in C.III we utilize our facilities to capture novel datasets. This effort in
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itself has been a huge task that has given an invaluable insight and the resulting
facility will be a pivot in much of our future research.

In the search for a flexible low-parameter model, and inspired by our research
on mesh-surface reconstruction presented in C.V, we came up with a data-
driven BRDF model based on the MERL database. The paper C.IV presents
this model, and an important contribution in this publication is the use of a log-
relative domain in which the data-driven model is both linear and compact. The
model further inspired the analysis of, and conclusion on, which measurement-
directions are in fact the optimum in practical systems where the number of
samples is limited. Pushing this approach to its limit, we demonstrated in C.VI
that using the full spatial information from a camera placed close to a sample,
we call it the near-field, allows for reconstructions of materials using as little as
two images, i.e. it enables practical real-time appearance acquisition.

The tools developed have contributed to enabling us to produce new datasets of
BRDFs. In addition to the ones presented in C.III, an additional unique dataset
of transparent objects accompanied with ground truth geometry and material
properties for full scenes has been created for [SCN+16].

The above-mentioned publications have all given new insights to their respective
areas of interest. In the following, we would like to summarise what we see as
the most important highlights of the project:

• Explored the challenges regarding fitting existing models to measured data (C.I).

• Proposed a simple extension to the Phong/Blinn-Phong model, allowing for
better modelling of Fresnel effects (C.I).

• Identified and initiated a dialogue in the scientific community regarding the need
for parsimonious BRDF models (C.II).

• Developed a statistical reconstruction framework for BRDFs (C.IV).

• Derived optimal sampling directions of BRDFs (C.IV).

• Demonstrated that BRDFs can be captured quickly using only a few measure-
ments (C.IV & C.VI).

• Demonstrated that spatial information can be utilised to reduce the required
amount of samples even further (C.VI).

• Employed our findings to produce novel datasets (C.III & [SCN+16]).

• Developed a laboratory facility for accurately measuring BRDFs.
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Based on the above, we are happy to conclude that we to a great extent achieved
the task set out to do, namely devising a low-parameter data-driven BRDF
model, and using this, making appearance acquisition more practical.
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Addressing Grazing Angle Reflections in Phong Models

Jannik Boll Nielsen Jeppe Revall Frisvad Knut Conradsen Henrik Aanæs
Technical University of Denmark

(a) (b)

(c) (d)

Measured [Matusik et al. 2003] Phong (1) Blinn-Phong (2) Our Phong variant (3) Ours w. Fresnel
Figure 1: Measured and fitted BRDFs of the materials: (a) two-layer-silver, (b) violet-rubber, (c) nickel, and (d) red-fabric2. We illuminate
the rendered spheres by a directional light at glancing incidence (NE hemisphere) and one at grazing incidence (SW hemisphere). Our new
Phong model variant is a combination of the Phong and Blinn-Phong variants, which achieves a better fit of the measured BRDFs at grazing
angles. Note that the reflectance at grazing angles is Phong-like for some materials (a) and Blinn-Phong-like for others (c).

The Phong illumination model is used extensively as it is simple
with few parameters. It is however often challenging to fit such a
single lobed model to the bidirectional reflectance distribution func-
tion (BRDF) of a real material, especially at grazing angles (Fig. 1).
The fitting issues are in shortcomings of the model, in choosing er-
ror function, and in initial guess sensitivity [Matusik et al. 2003].
In previous work [Ngan et al. 2005], these issues were bypassed by
using two specular lobes, by ignoring very grazing angles (>80◦),
and, in cases of unsatisfactory fitting quality, by manually restart-
ing the fitting procedure with a different initial guess. In this work,
we also fit Phong models to the BRDFs measured by Matusik et
al. [2003], but we focus on the difficult grazing angles. Our result
is a new Phong variant that fits better to a broader range of mate-
rials, and, for this model, we address the above-mentioned fitting
issues.

Common Phong Model Variants. Our model is a mixture of the
modified Phong model (fP

r ) and the modified Blinn-Phong model
(fBP
r ). These are defined by [Akenine-Möller et al. 2008]

fP
r (~ωi, ~ωo) =

ρd
π

+ ρs
s+ 2

2π
(~ωr · ~ωo)s (1)

fBP
r (~ωi, ~ωo) =

ρd
π

+ ρs
s+ 8

8π
(~ωh · ~n)s , (2)

where ρd and ρs are diffuse and specular reflectance parameters
and s is a shininess parameter, ~ωi is the direction toward the light
source, ~ωo is the direction toward the viewer, ~ωr = 2(~ωi ·~n)~n−~ωi
is the direction of the light reflected perfectly around the surface
normal ~n, and ~ωh = (~ωi + ~ωo)/|~ωi + ~ωo| is the half-vector. The
specular highlights produced by the two variants (1–2) are different,
especially at grazing angles (Fig. 1).

Comparison to Measured BRDFs. When we fit the Phong mod-
els (1–2) to measured BRDFs using nonlinear optimization, we find
examples where the Blinn-Phong variant (2) has the smallest error
(Fig. 1c), but also examples where the Phong variant (1) has the
smallest error (Fig. 1a). While the Blinn-Phong-like reflectance is
probably due to surface microfacets [Ngan et al. 2005], we believe
that the Phong-like reflectance is probably due to subsurface scat-
tering. Thus, although the modified Phong model in theory might
seem physically inappropriate, it does seem to mimic the grazing
angle reflectance of some real materials.

As in previous work [Ngan et al. 2005], we observe that it is im-
portant to multiply the specular reflectance ρs by the Fresnel re-
flectance RF (~ωi · ~ωh, η) [Akenine-Möller et al. 2008], where η is
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the refractive index of the material. This is necessary to model the
effect that the reflectance in general is significantly stronger at graz-
ing angles than at glancing angles (Fig. 1).

Our Phong Model Variant. The existence of both Phong-like,
Blinn-Phong-like, and mixed reflectance behaviour in real-world
materials suggests that a combination could be useful. We thus
propose a model with interpolation of the two different cosines:

fnew
r (~ωi, ~ωo) =

ρd
π

+ks
(
(1− α)(~ωr · ~ωo) + α(~ωh · ~n)4

)s
, (3)

where α ∈ [0, 1] is the interpolation parameter. For simplicity, the
specular coefficient ks replaces the specular reflectance ρs multi-
plied by the energy conservation term s+x

xπ
. We multiply ks by RF

to include Fresnel reflectance. The Blinn-Phong cosine is raised to
the 4th power, as the Phong exponent is roughly 4 times stronger
than the Blinn-Phong exponent [Akenine-Möller et al. 2008].

Effectively, this model enables us to control and shape the re-
flectance at grazing angles of incidence. We can thus approximately
accommodate both grazing angle reflectance due to subsurface scat-
tering and due to microfacets in a simple Phong model.

Fitting Results and Observations. The Euclidean norm (L2) is
not a good error function as it primarily fits the cosine lobe to the
tops of the specular highlights. We solve this issue by using the
L1 norm as it roughly results in a fitting to the base of the specular
highlights. Visually, we find the L1 results more reasonable. We
use consecutive optimizations to obtain a fitting procedure which is
not initial guess sensitive. Our proceduce is: (i) optimize only ρd
and ks, (ii) optimize only s and α (and η), and (iii) optimize s, α,
and ks (and η). This gives robust convergence for all the BRDFs
measured by Matusik et al. [2003]. We present four examples of
such fits in Fig. 1.
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Abstract
In this positional paper, we discuss the potential benefits of using appearance models in additive manufacturing,
metal casting, wind turbine blade production, and 3D content acquisition. Current state of the art in acquisition
and rendering of appearance cannot easily be used for quality assurance in these areas. The common denominator
is the need for descriptive and parsimonious appearance models. By ‘parsimonious’ we mean with few parameters
so that a model is useful both for fast acquisition, robust fitting, and fast rendering of appearance. The word
‘descriptive’ refers to the fact that a model should represent the main features of the acquired appearance data.
The solution we propose is to reduce the degrees of freedom by greater use of multivariate statistics.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Image Processing and Computer Vision]: Dig-
itization and Image Capture—Reflectance

1. Introduction

Much work has gone into formulating radiometric models of
surface reflectance for believable photorealistic rendering of
material appearance. This has led to a number of physically
plausible models with intuitively meaningful parameters that
are appropriate for direct manipulation [MHH∗12]. In this
positional paper, we discuss the use of appearance models in
a different context, namely in quality assurance of physical
and digital products. We argue that this area of application
requires models with few parameters, or parsimonious mod-
els. Through our example use cases, we further argue that
there is a significant need for such parsimonious models, and
that effort should be put into their development.

The need for parsimonious radiometric models manifests
itself when we need to estimate the radiometric properties of
surfaces in practice, e.g. when doing industrial inspection to
ensure that the products have the specified visual properties,
or when we would like to acquire photorealistic models from
images. In such cases, the number of measurements is lim-
ited, maybe 5 to 20 per surface patch. This should be seen in
light of the number of measurements needed to reliably esti-
mate a general bidirectional reflectance distribution function
(BRDF). A BRDF is modeled by a 4D manifold and is typi-
cally measured using a spherical gantry (a gonioreflectome-
ter). This means that a very large number of measurements
is required, which in many cases is practically infeasible.

According to the philosophy associated with Occam’s ra-
zor, the formulation of descriptive and parsimonious models
will also force us to better model and understand the under-
lying radiometric phenomena. Thus, in the end, our models
should hopefully lead to physically plausible models with
few intuitively meaningful parameters as is needed for the
more classical applications of appearance models. We be-
lieve that it is possible to make large advances in this di-
rection, meaning that the task of formulating parsimonious
models does not seem to be a frugal one.

2. Relating to existing models

Previous work has shown that the classical empirically
and physically based computer graphics reflectance mod-
els cannot fit all measured reflectance data well [NDM05].
This has led to a quest for models that provide a better
fit [BSH12, LKYU12]. The cost of a better fit is an increase
in the number of model parameters, and the simplest model
(the Phong model [Pho75]) already has two parameters per
color band and one parameter to describe the material glossi-
ness. As such, the simplest model requires at least seven
measurements although ideally many more to robustly fit
measured reflectance data. In applications of real-time re-
flectance acquisition, this quickly becomes infeasible.

The fitting of most parametric models is far from triv-
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Figure 1: Frog printed out of Polylactic acid (PLA) plastic
using a Fused Deposition Modeling (FDM) printer.

ial. Major challenges include determining what optimizers
to use and what objective functions they should minimize.
For the latter, various suggestions have been proposed in-
cluding L1 minimization [NFCA14] and log-transformation
with cosine-weighting of observed data [NDM05]. To
address the issues of non-linear model fitting, alterna-
tive approaches have been proposed where reflectance
is modeled by linear combinations of basis functions.
Suggestions to basis functions include spherical harmon-
ics [WAT92], wavelets [SS95], and densely sampled refer-
ence reflectances [MPBM03]. The advantage here is that
fitting models to observations becomes extremely easy as
this corresponds to solving a linear system of equations. The
challenge however, which is an unsolved problem, is identi-
fying a sparse set of basis functions that model a wide vari-
ety of material appearances well. We need, as a community,
to work on this.

3. Relevant Cases

To argue relevance, we now describe four cases where we
have identified that the current radiometric models or acqui-
sition methods simply do not suffice. The cases are (1) ad-
ditive 3D printing, where the 3D microstructures caused by
the printing process cannot be modeled well by standard re-
flectance models; (2) real-time monitoring of reflectance in
metal production; (3) estimation of surface reflectance on
massive objects (wind turbine blades); and (4) reflectance
models to be used with 3D scanners to allow simultaneous
acquisition of geometry and appearance. These are all prob-
lems that cannot be solved by conventional methods.

3.1. Additive Manufacturing

For the past decade, additive manufacturing (3D printing)
has been an accepted production method. Today, it is pos-
sible to manufacture products in multiple materials rang-
ing from soft polymers to metals [WC13]. A rapidly grow-

Figure 2: Example of iron casting [VSRT15], where the
mould has introduced a surface roughness affecting the vi-
sual appearance of the product. Image is courtesy of Nikolaj
Kjelgaard Vedel-Smith.

ing market of internet printing services is emerging (shape-
ways.com and i.materialise.com, for example) where users
can upload their own 3D models for printing. Fast and real-
istic material rendering is of great interest to these types of
services, allowing users to previsualize the printed outcome
of their models prior to committing to purchase. However,
accurately obtaining these radiometric models is a challenge.
The layer-like nature of the printing process yields surface
artifacts, the most prominent known as the ‘staircase effect’
which drastically alters material appearance for some mate-
rials. Visually, we observe this as a local anisotropy, often
correlated with the surface curvature, see Figure 1. Thus the
printing process itself must be considered when producing
an accurate model of the printed appearance.

Radiometric model acquisition also has an application
in the quality assurance aspect of additive manufacturing.
So far, most effort has been placed on in-line geometric
verification of parts [HNRP14, PH14] and color verifica-
tion [EPA15]. These optical systems capture each and ev-
ery layer during the print in order to verify its correctness.
Combinations of such systems along with rapid radiometric
acquisition could prove beneficial as slight deviations from
the material optical properties could indicate failure due to
e.g. overheating (color change) or structural collapses (sur-
face normal orientation). In essence, we need to verify the
quality of 3D prints, but practical constraints limit the num-
ber of measurements that it is possible to acquire.

3.2. Metal Casting

Metal casting is still an actively used production method.
Casting allows for the creation of seamless and rigid struc-
tures in various materials. However, post machining of said
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Figure 3: Wind turbine blade right after molding.

objects is in many cases required due to the rough surface
texture resulting from the casting process, see Figure 2. Mea-
surements of surface roughness parameters are useful for in-
dustry and academia in order to optimize the casting proce-
dure as it is related to the overall cast quality. Obtaining sur-
face roughness parameters from optical reflectance is thus
of great interest and is an active field of research [NTH13].
As in the case of additive manufacturing, we see a sce-
nario where practical constraints limit the feasible number
of measurements, thus creating a demand for accurate parsi-
monious reflectance models that enable robust fitting.

3.3. Wind Turbine Blades

One of the most important steps in quality inspection of wind
turbine blades is to find transverse folds in their longitudinal
fiberglass mats. The longitudinal mats run all the way from
the root of the blade to the tip and provide the blade with the
bulk of its rigidity and strength. Multiple layers of longitu-
dinal mats are needed to provide the necessary strength, and
the load must be evenly distributed across the layers. If one
layer has a fold, that layer will be tightened harder than the
rest of the layers, thus carrying more load when the blade
is being operated. Over time, this increased load will wear
the fold-layer down to the point where it snaps and thereby
compromises the entire structure of the blade. Usually, this
sudden release of tension creates a force on the remaining
layers so that these also snap. The result is a broken blade.

Before painting, wind turbine blades are translucent due
to their composition of transparent epoxy resin and fiberglass
(see Figure 3). A fold on a fiberglass mat will create a bulge
beneath the surface which alters the optical properties of the
material. Currently, specially trained quality engineers shine
powerful light parallel to the surface and look for changes in
the reflections. An accurate automated measure of surface
BRDFs could increase the efficiency and accuracy of the
quality assurance by transforming the fold inspection from
a qualitative process into a quantitative process.

Figure 4: Structured Light system scanning a statue.

3.4. Creating 3D Content

Optical 3D scanners are actively used throughout various
fields such as archaeology, biology, production, entertain-
ment, medicine, and art. All aiming to capture high reso-
lution 3D models in a relatively short amount of time. How-
ever, in order to produce realistic and applicable digitization
of scanned objects, their radiometric properties must also be
determined. Many commercial systems provide the ability
to capture surface textures in order to provide more aes-
thetically pleasing models, but are often limited to assuming
Lambertian behaviour or at most a simple parametric model,
such as Phong [Pho75] or Ward [War92]. As indicated in
Section 2, these models fail to fit the reflectance properties
of many real-world materials. Trouble is that we cannot im-
prove the fit by increasing the number of model parameters
as we need to acquire reflectance properties at speeds com-
parable to the 3D scanning process. This underlines the need
for descriptive and parsimonious appearance models.

An interesting property of structured light (SL) scanners
is the fixed angle between observer (camera) and lightsource
(SL projector). This is illustrated in Figure 4. Using only ex-
isting components of such a setup thus poses a constraint
on the observable regions in the BRDF domain. Likewise,
the geometry also dictates illumination and view directions
relative to the surface normal. Hence, again we see a practi-
cal limitation on the available observations, which causes a
demand for parsimonious models that enable robust fitting.

4. Discussion

From the above, it is evident that there are number of rele-
vant cases where today’s methods do not suffice. We believe
that the problems in the mentioned cases can be solved, but
that they require us to approach material appearance model-
ing from a new angle. Specifically, we believe that data anal-
ysis and multivariate statistics should be involved more than
we see it today, and also that we should introduce stronger
priors on the data. Such tools are necessary to considerably
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reduce the degrees of freedom in the problems. A solution of
this kind will greatly contribute to streamlining and automat-
ing the entire production pipeline, which is an essential part
of agile product development.

Conclusively, we would like to reiterate that descriptive
and parsimonious reflectance models seem indispensable if
we are to use material appearance models in the context of
quality assurance of printed, molded, and digitized products.
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1. Introduction
Over the previous years, we have at the Section for Im-

age Analysis and Computer Graphics at the Technical Uni-
versity of Denmark been working on generating high qual-
ity data sets for computer vision via our lab setup using a
6-axis industrial robot. This has provided a new data set
aimed at feature matching [1, 4], and two data sets aimed
at multiple view stereo [14, 16]. The resulting data sets
are publicly available via http://roboimagedata.
compute.dtu.dk/.

The evaluation of computer vision algorithms on these
data sets has provided useful insights on realistic scenarios
by setting a rigorous framework for evaluation. The results
of these efforts have been well received by the community
and the hardware and software platform associated with the
robot is now well developed. We are currently in the pro-
cess of making three new data sets aimed at 3D vision, with
a special focus on the more challenging aspects, such as
radiometry and the modelling of non-rigid objects. The
construction of these data sets all leverage on our robotic
setup’s ability to produce ground truth camera and surface
geometry, as briefly outlined in Section 2, and there is a
great deal of commonality in the making of the data sets.

This abstract describes our current ongoing work on this
data set construction for 3D vision. The data sets include:

1. A direct extension of our large multiple view stereo
(MVS) data set [14], where we are now includ-
ing transparent and semi transparent objects into the
scenes, Section 3. A challenge in doing this is getting
the ground truth geometry of the transparent objects.

2. A data set addressing the radiometric challenges in 3D
vision as presented in Section 4 where we aim at ex-
tending our MVS data set by explicitly measure the
bidirectional reflectance distribution function (BRDF)
of the surfaces. This will have the additional feature to
finally give a data set for evaluating photometric stereo
with a ground truth.

3. An extension of our data set on feature matching to

Figure 1. Photos of the 6-axis industrial robot mounted with two
cameras and a projector. Cameras allow for MVS, and in conjunc-
tion with the projector SL provides ground truth point clouds.

evaluate these algorithm with non-rigid objects, (Sec-
tion 5) where we use actuators to make stop motion
3D data sets. This data set will also evaluate Non-rigid
Structure from Motion (NRSfM) with realistic objects.

2. Brief System Overview
Our experimental setup, cf. [1], is built around a 6-

axis ABB IRB 1600 industrial robot, providing a flexible,
precise, and highly repeatable camera pose. The robot is
mounted with two Point Grey Grasshopper3 3376×2704 8-
bit RGB cameras and a projector (for previously published
datasets the cameras were 1600 × 1200 8-bit Point Grey
Scorpion cameras). From each position ground truth sur-
face point clouds are obtained using structured light (SL),
and stereo images with a 32 cm baseline are captured with
the camera pair. Five individually controlled 6500K LED
tube lights allow for soft natural illumination of scenes from
varying directions. Figure 1 shows the robot.

Previous evaluations of our system [14] have shown that
the ground truth samples obtained through SL have good
accuracy with a surface standard deviation of 0.14 mm. We
expect similar or better performance in this data set. Posi-
tioning repeatability of the robot is very high, with a stan-
dard deviation of 0.0031 mm over two months.

Additional instruments used for generating the data in-
clude a CT (Computed Tomography) scanner for ground
truth geometry of transparent objects (described in Section
3) and an illumination arch for controlled directional light-

1



Figure 2. Preliminary images from our data set. In the first row,
three glass objects (sphere, bowl, teapot) with markers placed on.
On the second row, three calibration and rendering tools part of the
pipeline: a black and white checkerboard (coordinate estimation),
an X-Rite ColorChecker R© (color balance compensation) and a
chrome sphere (environment light evaluation).

ing (described in Section 4).

3. Transparent Objects
Our goal is to extend our original MVS dataset to ac-

count for transparent objects where the focus is on recon-
struction of geometry and appearance. Usually, the radio-
metric behavior of the objects used in 3D reconstructions
is assumed diffuse and opaque. This leads to a number of
simplifications that we cannot apply to transparent objects.
In the case of transparent objects, refraction and reflection
cause distortion effects that complicate reconstruction.

Previous methods acquire data sets useful for image-
based rendering of a transparent object [18, 11]. However,
these methods do not produce an actual triangle mesh and
require special rendering techniques for reconstruction of
the appearance of the transparent object. A survey on meth-
ods that do provide a triangle mesh is available [13]. In
this survey, they note that CT scanning of refractive objects
like glass is costly but straight forward. Thus, we use CT
scanning to obtain ground truth geometry. Another way is
to acquire shape and pose of a transparent object from mo-
tion [3]. In any case, there seems to be no data set, like the
one we propose, which is useful for multiple view recon-
struction of transparent objects.

3.1. Data

Our data set contains a set of multiple view HDR im-
ages of three glass objects with different radiometric prop-
erties (top row of Figure 2). We use a solid sphere, a bowl
with lid (composed of two parts) and a teapot with multiple
thin glass layers (composed of three parts). The walls of
the bowl and the teapot have different thickness. A diffuse

backdrop is provided for the objects. We have made this
as a gradient checkerboard, so that one half of the squares
varies in color from left to right, and the other half varies in
color from top to bottom. In this way, we can see how light
reflects, refracts and scatters through the objects. The re-
fractive index of the glass objects will be estimated directly
from the scanned images, or, if this is unsuccessful, by the
use of a refractometer. We marked the objects with small
black plastic spheres, in order to easily determine their po-
sition relative to the scene. In our data set, we also provide
high-resolution triangle meshes generated from CT scans.
We use these scans as ground truth for either geometrical
reconstruction algorithms or physically based rendering al-
gorithms for appearance modelling.

Our current data set creation procedure is as follows.
First, we choose a sequence of camera positions and ori-
entations for our industrial robot. The robot enables us to
reproduce a given set of positions and orientations with a
very high precision. Then, we capture a first set of images
placing a black and white checkerboard in the scene. This is
done to obtain the camera positions relative to the scanned
objects and calculate camera parameters for the setup. Sec-
ondly, we scan a commercial color checker, which allows
us to compensate for color channel alterations in the final
images. Finally, we scan a chrome sphere to get an HDR
environment map of the surroundings. We use the result-
ing map as a light source in our rendering algorithms [5],
so we can simulate the resulting scene with high precision.
After these three calibration steps, we can finally scan the
glass objects using the same pre-defined path used for the
calibration images.

Once compiled, we are planning to use this data set to
verify that the radiometric models [9] properly describe the
radiometric properties of the scene. To do this we plan to
feed the ground truth of our data into a custom-built ren-
derer based on the NVIDIA OptiX library [20], and see how
well it reproduces the images. If successful, we have a val-
idated computational model, which in principle we ‘just’
have to invert to do 3D reconstruction of transparent ob-
jects. Following this we plan at applying state of the art
3D reconstruction algorithms and quantify how far the state
of the art has come toward solving this central 3D vision
reconstruction problem.

4. BRDF measurements and Photometric
Stereo

The radiometric behaviour of an object plays a crucial
role in MVS. Often this behaviour has been ignored or at
most assumed Lambertian. This allows for acceptable re-
constructions of geometry, but often poor recovery of the
reflectance. For more accurate MVS and reflectance cap-
ture, the BRDF of an object should be taken into account
and this is a problem that receives a growing amount of
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attention [24, 15]. Within the field of photometric stereo,
the reflectance of an object is the key element in recovering
surface normals and thereby indirectly the object’s geom-
etry. Also here, assumptions about reflectance are made,
these include e.g. Lambertian behaviour [27] or isotropic
BRDFs [12].

For both of the above areas, a multi-view data set having
ground-truth reflectance behaviour would be of great value,
and does, to our knowledge, not currently exist. We are
therefore now working on a MVS data set where not only
the ground-truth geometry is given, but also a densely sam-
pled BRDF ground-truth for all materials in the scene. In
the following, we will elaborate on the details of how this
data set will be acquired and what it will include.

4.1. Concept

Turntable

Illumination Arc

Halogen light-bulbs

7.5°

Table / Static Surface

ABB IRB 1600
Industrial Robot

1200 mm.

1200 mm.

BRDF acquisition layout

CCD Camera 
mounted

Figure 3. Schematic of BRDF capturing setup. Setup includes a 6-
axis industrial robot holding a CCD (stereo) camera for view, and
an arc in conjunction with a turntable for illumination.

Capturing the reflectance of a material generally re-
quires four degrees of freedom: polar and azimuthal an-
gle of illumination-direction, and polar and azimuthal an-
gle of view-direction, ρ(ωi, φi, ωv, φv). Utilizing our lab-
facility’s 6-axis industrial robot, mounted with a stereo-
camera setup, all view directions (ωv, φv) can effectively
be captured. For illumination directions (ωi, φi), we utilize
an illumination arc and a rotation-table. The arc holds a
range of halogen light-bulbs and is capable of covering the
polar angle φi in 7.5◦ intervals. The rotation-table turns the
target sample with a resolution of < 1◦, thus densely cover-
ing θi. Figure 3 shows a schematic of the BRDF capturing
setup, and Figure 4 is a photo of an actual acquisition scene.

Using the above described setup, we intend to densely
sample the BRDFs of a collection objects whose sur-
faces consist of one or a few, isotropic, BRDFs. The
BRDFs of each material will be stored in the 3-dimensional
Rusinkiewicz frame for isotropic BRDFs [21], as also done
in the MERL database[17], although with a coarser reso-

Figure 4. Capturing the BRDF of an object with known geome-
try. All illumination directions and view-directions are covered
for each type material present on the object.

lution of 7.5◦ in each dimension. In conjunction with the
densely sampled BRDFs, stereo images of scenes contain-
ing the sampled objects will be acquired for a wide range
of directions. Objects will be of relatively low geometric
complexity, and scenes will consist of one or more of the
objects.

5. Non-Rigid Structure from Motion
Evaluating Non-rigid feature matching and NRSfM al-

gorithms1 in a quantitative manner has in the literature
proven to be problematic. Deformations are inherently a
dynamic process and subject to the physical properties of
the objects in consideration. Thus, evaluating deformation
modelling algorithms require a reasonable number of differ-
ent objects and set of motions. Also, given the dynamic de-
formation objects might change their topology (e.g. stretch-
ing and tearing) and easily self-occluded some parts of the
shape. For this reason, many approaches have provided sev-
eral models that fit specific types of deformation, but that
cannot comprise all of them. For this reason understanding
the real performance of methods on realistic deformations
is necessary to push forward advancements in this field.

The central problem of producing reference ground truth
has been approached from many different angles. Several
works compare their methods using synthetically generated
images, as the true 3D geometry is readily available[26, 22,
19, 10]. Another popular approach is using MOCAP data,
mainly human motion, for generating both test video se-
quence with 3D reference points [7, 26, 2, 10, 25]. Both
falls short, as the former often lacks the complexity found
in real-life scenes and the latter provides only a sparse set of
reference points that are likely not to be possible to detect
from images because of occlusions. As stated in [22, 8],
there is a lack of and a need for a real-life NRSfM sequence
with a dense 3D reference.

1A review on NRSfM methods, updated to 2010, can be found here:
[23]
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Figure 5. Robot arm carrying cameras for capturing stop motion
frame and structured light data. A Gray code pattern is currently
being projected onto the object.

We seek to remedy this situation by providing a video
recording of real objects with dense 3D ground truth for
each frame. It will be accomplished using a stop motion
like animation techniques and structured light 3D scanning,
combined in our unique recording setup.

5.1. Concept

We wish to simulate motion in a manner similar to stop
motion animated films. Here a rigid object is moved into
a certain pose, an image is taken, the object is slightly
changed with a deformation, another image is taken etc.
The result is a sequence that, when played at an interactive
frame rate, provides the illusion of motion. We will apply
the same principle here, in generating a benchmarking data
set for NRSfM with ground truth.
Now one may ask, why not just record the motion using or-
dinary video format? After all, stop motion techniques does
not properly reproduce motion blur artifacts that are present
in standard recorded video sequences. Our approach has
several significant advantages that greatly outweigh the loss
of motion blur. Most importantly, we can obtain a 3D
ground truth for each frame. After adjusting the object into
its current frame position and acquiring an image for the
stop motion sequence, we will perform a 3D scan using
structured light. Utilizing gray code patterns we obtain a
dense ground truth so obtaining both the image frame and a
3D reference for benchmarking and validation.
Another advantage is that we can obtain data from multiple
views by acquiring images at different angles thus providing
data for evaluating multi-view NRSfM (e.g. [6]). Further-
more, this procedure provides a great degree of control over
both camera movement and object pose. As each frame is
recorded independently, time in between becomes a non-
issue.

Figure 6. Actuators for manipulating the geometry of the mask.
The image of the mask has been superimposed on an image of the
actuators, illustrating their functionality.

5.2. Implementation

Such data could be acquired by pure manual effort, how-
ever that would be extremely time consuming and error-
prone. As such, a robotics solution is currently being de-
veloped with a the data acquisition procedure that is pre-
dictably and reproducibly implemented. In detail, a robotic
arm move the camera and the projector needed for data
acquisition and structured light scan. From this the view
position can be determined with high precision and repro-
ducibility. Figure 5 illustrates this setup.
Additionally, object deformation will also be automated and
Figure 6 shows an example with an object where a mask re-
sembling a human face is put on top of two actuators. Ma-
nipulating the actuators deforms the mask geometry, simu-
lating facial movement. Similar results can be obtained with
cloth, paper and other deformable materials.

6. Concluding Remarks
We have here presented our ongoing work on making

high quality data sets for evaluating and developing meth-
ods for 3D vision. A motivation for doing this is that we see
a need for this, especially with respect to making data sets
that are large enough, so that it is possible to reasonably de-
termine if differences in performance are a statistical fluke,
or are in fact statistically significant.

By presenting our ongoing work in this forum, we hope
to get valuable and constructive feedback on how these data
sets in the making could be adapted to serve the needs of
the computer vision communities as best possible.
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Abstract

The bidirectional reflectance distribution function (BRDF) is crit-
ical for rendering, and accurate material representation requires
data-driven reflectance models. However, isotropic BRDFs are 3D
functions, and measuring the reflectance of a flat sample can require
a million incident and outgoing direction pairs, making the use of
measured BRDFs impractical. In this paper, we address the prob-
lem of reconstructing a measured BRDF from a limited number of
samples. We present a novel mapping of the BRDF space, allowing
for extraction of descriptive principal components from measured
databases, such as the MERL BRDF database. We optimize for the
best sampling directions, and explicitly provide the optimal set of
incident and outgoing directions in the Rusinkiewicz parameteriza-
tion for n = {1, 2, 5, 10, 20} samples. Based on the principal com-
ponents, we describe a method for accurately reconstructing BRDF
data from these limited sets of samples. We validate our results
on the MERL BRDF database, including favorable comparisons to
previous sets of industry-standard sampling directions, as well as
with BRDF measurements of new flat material samples acquired
with a gantry system. As an extension, we also demonstrate how
this method can be used to find optimal sampling directions when
imaging a sphere of a homogeneous material; in this case, only two
images are often adequate for high accuracy.

CR Categories: I.4.1 [Image Processing and Computer Vi-
sion]: Digitization and Image Capture—Reflectance I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism—
Color, shading, shadowing, and texture;

Keywords: reflectance, BRDF, MERL, reconstruction

1 Introduction

The bi-directional reflectance distribution function or
BRDF [Nicodemus et al. 1977] characterizes material ap-
pearance, representing the unique reflectance of paints, metals,
plastics, or velvet. The BRDF is a 4D quantity, depending on
incident and outgoing directions, and can be reduced to 3D under
the common assumption of isotropic reflectance. Historically, para-
metric BRDF models such as Phong [1975], Cook-Torrance [1982]
or Lafortune [1997] have been used. In the past two decades,
as the need for more realistic appearance and reproduction of
real-world materials has increased, measured or data-driven

∗jbol@dtu.dk
†henrik@cs.ucsd.edu
‡ravir@cs.ucsd.edu

Figure 1: Rendering of isotropic BRDFs of unknown materials, re-
constructed with our method from only 20 measurements captured
at optimal sample locations (see Fig 10 for error plots).

BRDF models have become more popular, and databases such
as the MERL BRDF database [Matusik et al. 2003a] have been
developed. In principle, it is easy to measure the BRDF using
a gonioreflectometer (we achieve this in practice using a gantry
system with a flat material sample). However, for a dense sampling
of even 100 samples in each direction (critical for capturing sharp
highlights), one would need a million samples or images over the
full 3D isotropic BRDF. This is prohibitive in most applications,
and considerably reduces the practicality of measured BRDFs.

In this paper, we address the fundamental problem of where to sam-
ple an unknown BRDF when only a very limited number of samples
can be acquired. Our goal is to make measured reflectance practical
in computer graphics for product design, virtual reality, appearance
fabrication and entertainment, as well as in industrial quality con-
trol, where appearance must often be monitored in real-time. The
question is how best to orient n light-sources and n cameras, such
that the best impression of the appearance (BRDF) is obtained. We
base our analysis on the MERL isotropic BRDF database [Matusik
et al. 2003a], assuming that this covers the majority of real world
isotropic material variation. We demonstrate that we can recon-
struct a data-driven BRDF from a very small set of (fewer than 20)
measurements. Our specific contributions are as follows:

New BRDF Mapping: We introduce a new mapping of the
BRDF (Sec. 3) that enables a linear approach, with principal com-
ponents from the MERL BRDF database that are highly descriptive
of reflectance phenomena like diffuse and specular reflection, Fres-
nel effects and retroreflection (Fig. 3).

Optimization for Sampling Directions: We identify regions of
importance based on the condition number of subsets of rows from
the principal component matrix of the data [Ipsen and Wentworth
2014] (Sec. 4). The condition number directly relates to the qual-
ity at which one can expect to reconstruct a BRDF, with a given
set of samples known from it. Based on this, we obtain a pri-



Material n = 1 n = 2 n = 3 n = 5 n = 10 n = 20 Projection Reference

black-soft-plastic

blue-acrylic

blue-metallic-paint2

green-fabric

light-red-paint

pink-jasper

silver-metallic-paint

specular-violet-phenolic

two-layer-silver

white-fabric

white-fabric using “soft” PCs

Figure 2: Reconstructions of unknown samples (10 MERL BRDF samples not used at all for computing principal components (PCs) and
sample directions). The BRDFs are rendered as spheres, illuminated by a front-light at a direction of [1, 1, 1], and a back-light causing grazing
angle reflections at [−1,−1,−3]. Reconstructions are made with n = {1, 2, 3, 5, 10, 20} sampling points. In addition, reconstructions using
all possible sampling points are shown. This corresponds to a projection of the data into PC-space and shows the best possible reconstruction.
Finally, the far right column shows reference renderings of the true BRDFs. We see that generally 3-10 measurements are sufficient to capture
the true appearance of a material. For some diffuse materials, more samples are needed to avoid ringing at the highlights. Alternatively, as
mentioned in Sec. 8, a separate “soft” set of principal components can be used to avoid this ringing.



oritized list of light/view direction pairs, which indicates the best
directions to sample from in a point-sampling setup, when only
n samples are to be acquired. The list does not, by far, cover
all variability observable in BRDFs, but it does tell us where the
strategically best places to sample are, ensuring that the maxi-
mum possible amount of unique information is captured with ev-
ery sample. We differ from [Matusik et al. 2003b] in considering a
very small number of measurements (10-20 instead of 800-1000),
and we develop a novel optimization algorithm suited for our pur-
pose. We provide the optimal set of incident and ougoing direc-
tions in the Rusinkiewicz [1998] half-difference parameterization
for n = {1, 2, 5, 10, 20} samples (Table 1 in Sec. 6), which can
directly be used by practitioners.

BRDF Reconstruction and Validation: Inspired by the statis-
tical reconstruction methods of [Blanz et al. 2004], we propose a
similar ridge-regression based method to reconstruct full BRDFs
from this sparse set of samples (Sec. 5). This method penalizes
solutions that statistically deviate from the variability learned by
the MERL database. We validate our directions and reconstruction
method in two ways. First, we (randomly) leave out 10 materials
in the MERL BRDF database, obtaining a slightly different set of
principal components and sampling directions from the remaining
90. We then use these 10 materials as a validation set. Figure 2
shows the accuracy with increasing numbers of samples, demon-
strating that 5-10 samples is often adequate, and 20 BRDF samples
provides accurate results in all cases. Next, we consider flat sam-
ples of new real-world materials. We use n = 20 samples from
five unknown materials, and compare the reconstructions with the
densely measured in-plane reflectances of the materials (Sec. 7).

Extension to Image-Based BRDF Measurement: Our main
contribution is for BRDFs acquired from a sparse set of measure-
ments with a gonioreflectometer (in our case, a gantry setup with a
flat material sample). We also demonstrate an extension to the pop-
ular image-based BRDF measurement method (Sec. 9), that takes
2D images of spheres of homogeneous materials rather than single
measurements [Marschner et al. 2000] (and the approach used to
acquire the database [Matusik et al. 2003a]). We demonstrate that
two images are often adequate in this case (Table 2 and Fig. 12).

2 Related Work

The canonical approach to BRDF acquisition, considered here, is
to sample individual light/view directions for a flat sample using a
gonioreflectometer as done in e.g. [White et al. 1998]. As noted
above, this is slow, and a variety of alternative setups and sampling
strategies leveraging parallel acquisition of multiple BRDF samples
with a CCD camera in conjunction with known curved geometry,
mirror setups, and adaptive sampling schemes have been proposed.

Image-Based BRDF Measurement: Marschner et al. [2000]
proposed a method where a sphere of homogeneous material is im-
aged (2D set of samples) from a 1D set of lighting drections, to
obtain an isotropic 3D BRDF. Other, more complex setups, with
curved mirrors etc. have also been proposed [Ward 1992; Dana
and Wang 2004; Ghosh et al. 2007; Noll et al. 2013; Schwartz
et al. 2014]. Indeed, the approach of Marschner et al. [2000] was
used to acquire the MERL database [Matusik et al. 2003a]. How-
ever, this method is limited to spheres (or samples that can be
painted/wrapped on a sphere). In this paper, we mainly address the
canonical case of gonioreflectometric measurement for a flat sam-
ple, showing how a very sparse set of measurements suffices. We
also demonstrate an extension to image-based BRDF measurement
where two images is adequate, rather than full 1D lighting variation.

Adaptive Sampling: Fuchs et al. [2007] suggest an adaptive
sampling scheme where the observed properties of the BRDF be-
ing measured are taken into account. Here, regions needing to be
refined are detected by evaluating how well a sample is modeled
by its neighboring samples. A major limitation of this method
is that a somewhat dense grid of samples must be acquired be-
fore the refinement procedure converges well. In contrast, our
method is non-adaptive, and we use a very sparse fixed set of
(precomputed and tabulated) sampling directions for any material.
Lensch et. al. [2003] suggest a different approach, where the next
sampling direction is estimated based on an uncertainty measure of
the fitted BRDF parameters. This approach allows for full control
of the number of samples used, but in contrast to our method, it
relies on fitting a parametric model, with the resulting limitations.

Complex Environment Lighting: Some recent work has ex-
plored acquisition of simpler 2D BRDF models under environment
lighting [Romeiro et al. 2008] or even using a controlled environ-
ment [Ghosh et al. 2007; Tunwattanapong et al. 2013; Aittala et al.
2013]. These methods have shown convincing results, where dif-
ferent variants of convolutional theory are used to obtain homo-
geneous or spatially varying BRDFs. However, they require solv-
ing non-linear systems and regularization, while we focus on more
direct measurement of BRDFs from individual samples. Alterna-
tive approaches where the environment is unknown but geometry
is known have also been suggested [Romeiro and Zickler 2010];
however, the ambiguity between environment and BRDF can be
difficult to resolve, requiring various heuristics for regularization.

Rapid Reflectometry: Ren et al. [2011] propose pocket reflec-
tometry, where a reference checkerboard with known reflectance
tiles is used in conjunction with a handheld lightsource and a fixed
camera. Older work simply compares reference BRDFs to the
target-BRDF [Hertzmann and Seitz 2003]. These are somewhat
related to our proposed method in that they reconstruct appearance
based on reference BRDFs, with the difference that they are limited
by the relatively small number of reference BRDFs used and by the
need of physically placing the references in the scene.

Efficient Sampling: Closest to our work is that of Matusik et
al. [2003b], who mention that for n = 800 samples, an unknown
BRDF can be modeled by a linear combination of other BRDF
models from their dataset. Note that this is for measuring indi-
vidual BRDF samples, as in our paper, rather than for image-based
measurement. Their method is closely related to the optimum sam-
pling directions in our work. However, they do not explicitly pro-
vide which directions these 800 samples correspond to, nor investi-
gate how this quality converges. Weyrich et al. [2006] utilizes this
method to reconstruct spatially varying BRDFs of human skin, and
[Hullin et al. 2010] uses it to interpolate fluorescence measurements
for BRRDFs.

We extend the work of Matusik et al. [2003a; 2003b] by introduc-
ing a novel BRDF mapping that makes linear modeling possible
from fewer samples. Our mapping addresses the issues of non-
physical and odd-looking reconstructions, including those having
negative reflectance values. Critically, we focus on optimal min-
imal sampling with n < 20, rather than n = 800, showing that
this much smaller set suffices. We develop an optimization method
that quickly yields optimal sampling locations for small values of
n, compared to the greedy approach [Matusik et al. 2003b]. We
provide tables of the n = 20 optimal directions, that can be used
directly. We also suggest a reconstruction approach that takes into
account the statistical variability of BRDFs based on PCA, rather
than linear combinations of raw measured BRDFs. Finally we dis-
cuss the extension to capturing images of spheres, rather than clas-
sical gonioreflectometric point-sampling.



Materials Standards: In the materials industry, various stan-
dards have been proposed, and are widely used, to characterize
reflectance. For specular or glossy materials, the simplest is the
method of Hunter and Judd [1939], who simply measured the re-
flectance at 60◦ perfect reflection. An extension to this is adding
the near-normal and grazing-angle behavior by measuring the re-
flectance at 85◦ and 20◦ perfect reflection as well [Hunter 1987].
This is also known as the ASTM standard D523. Within the more
complex types of materials, such as car-paint and pearlescent col-
ors, additional information is required. Westlund and Meyer [2001]
describe that the sets of aspecular angles {15◦, 45◦, 110◦} and
{25◦, 45◦, 75◦}, both with 45◦ incident light, have been suggested
for characterizing these more complex materials. Westlund et al.
themselves utilize all five angles ({15◦, 25◦, 45◦, 75◦, 110◦}) to
obtain maximum information about the materials. We adapt these
five directions in our comparison in Sec. 6, showing that our method
provides significantly more accurate results with our five optimized
directions.

Parametric Fits: Finally, considerable effort has been devoted to
fit parametric BRDF models to real-world observations. These in-
clude both empirical ([Phong 1975; Blinn 1977; Ward 1992; Lafor-
tune et al. 1997]) and physically-based ([Torrance and Sparrow
1967; Cook and Torrance 1982]) reflectance models, and recently
also more advanced parametric BRDFs have been proposed, aiming
at reproducing the behaviors observed in MERL ([Löw et al. 2012;
Brady et al. 2014]). As all models are simplifications of the true
behavior, one has to determine what regions of a BRDF the models
should prioritize, i.e., what objective function the optimizers should
minimize. Using the L1-norm to emphasize the base of a specular
peak, rather than the extremum has been suggested, and various
transformations of the observed data have also been proposed such
as square or cubic root, logarithmic, and cosine weighting [Ngan
et al. 2005]. We leverage some of these observations, including log-
arithmic mapping and cosine-weighting in our BRDF remapping,
but also normalize by the average or a reference BRDF. Crucially,
we focus on data-driven reflectance, rather than parametric BRDF
models. It is also important to note that although parametric models
are thought of as compact, even the most simple models, such as the
Phong model, have at least 7 tunable parameters (three if ignoring
color). This calls for at least the same number of samples, but ide-
ally many more to get a robust fit. Given our sparse data, even the
number of parameters in the most simple analytical models is often
comparable to, or exceeds, the number of samples we use. In addi-
tion, our proposed method is based on solving a linear system, thus
eliminating the need for non-linear optimization and the challenge
of local minima.

3 Data and Mapping

We base our analysis on the MERL isotropic BRDF database [Ma-
tusik et al. 2003a]. This database covers 100 materials of varying
reflectance, from soft diffuse materials like rubber, to hard specu-
lar materials like chrome. The reflectance is represented by dense
BRDF measurements in a 3D volume using Rusinkiewicz half-
difference angle coordinates (θh, θd, φd) [Rusinkiewicz 1998]. The
resolution for each RGB color is (90 × 90 × 180), or 1, 458, 000
measurements. We seek to dramatically reduce the number of mea-
surement samples needed to 20 or fewer. Principal Component
Analysis (PCA) has been performed on this dataset before [Ma-
tusik et al. 2003a; Ngan et al. 2006], with the obervation that a
linear transformation on the raw BRDFs, such as PCA, is inferior
to non-linear transformations. Furthermore, Matusik et al. [2003a]
observed that linear combinations of raw BRDFs could give rise to
unrealistic results such as negative reflectance values and “holes”.

Log-Relative Mapping: The poor performance of PCA on raw
BRDF values is closely related to the high dynamic range within the
BRDF (which is several orders of magnitude), combined with the
variation clearly not following a normal distribution. This fact mo-
tivates the use of a mapping of data that preserves inter-BRDF vari-
ation while dampening intra-BRDF variation. This mapping should
at the same time also make the data more normally distributed. We
propose a novel log-relative mapping for this purpose:

ρ 7→ ln

(
ρ cosweight +ε

ρref cosweight +ε

)
, (1)

where ρ is the BRDF, ε is a small constant that avoids division by
zero and sensitivity to camera noise (we use ε = 0.001), and ρref
is a reference BRDF, relative to which the mapping is applied. In
our experiments, we choose the reference BRDF to be the median
value for each (θh, θd, φd), over the entire dataset of BRDFs. We
choose the median rather than the mean, to make the mapping more
robust towards outliers in the dataset. A cosine-weight is applied to
compensate for extreme grazing-angle values, as in previous work,

cosweight = max {cos(n · ωi) cos(n · ωo) , ε} , (2)

where n,ωi,ωo are the normal, illumination-direction, and view-
direction vectors respectively, obtained from converting a BRDF
location (θh, θd, φd) to the Cartesian coordinate frame. The refer-
ence BRDF, ρref , is shown in Fig. 3.

Note that every (θh, θd, φd) BRDF value is essentially compared
individually to a reference BRDF, and the natural logarithm is then
used to weight smaller and greater values equally (i.e., a value half
the size of the reference value should have the same magnitude as
a value twice as big as the reference).

RGB Colors as Independent BRDF Samples: It is apparent
that many (most) BRDF behaviors are covered by the database, with
materials ranging from smooth and soft, to hard and specular, with
varying Fresnel effect (refractive indices), and even retro-reflection.
It is however also apparent that not all color-variation has been cov-
ered, e.g., there is a pink specular material, but not a pink soft ma-
terial. Therefore, we choose to work in grey-scale and treat each
of the 3 color channels of the BRDFs as individual observations.
This allows us to abstract away the color, and effectively have three
times as many observations (material samples), at the cost of the
samples being a little correlated. Our algorithm then simply recon-
structs each color channel of the BRDF separately; this does not
require any additional measurements.

With 100 materials, each having 3 color-channels that are being
treated as individual grey materials, a total of m = 300 BRDFs are
available in the database. Each material can be vectorized as a point
in a p = 90 · 90 · 180 = 1, 458, 000-dimensional space. This gives
an observation matrix Y ∈ Rm×p. As mentioned above, we use
the median of the dataset as the reference BRDF, ρref ∈ Rp:

ρref,i = median
(
Y[1,i], Y[2,i], . . . , Y[m,i]

)
(3)

Using the reference BRDF, all observations (rows) in Y can be
mapped using the mapping in Equation 1, resulting in the mapped
observation matrixX:

Xj,i = mapping(Y[j,i], ρref,i). (4)

Principal Components: Up to k = m = 300 principal com-
ponents may be extracted from X by performing singular value
decomposition (SVD) of the mean-subtracted mapped observation
matrix:

(X − µ̂) = UΣV T , (5)
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Figure 3: BRDF-slices of the first 5 principal components of the MERL database, using the mapping from Equation 1. Slices are made at
φd = 90◦, and an interpretation of them is shown on the far right, adapted from [Burley 2012] . Notice how the primary variation (the first
principal component) is in the specular peak, and the second principal component primarily contributes to the diffuse region of the BRDF.
The third component contracts or widens the specular peak. The fourth component adds Fresnel-effect and finally the fifth both contributes
to Fresnel, shaping the specular peak, and a bit of retro-reflection.

Figure 4: BRDF-slices of the first 5 principal components of the
MERL database without using any mapping. Slices are made at
φd = 90◦. Due to the large dynamic variation in the raw BRDFs,
the specular direction is dominating all variation.

where µ ∈ R1×p is the mean over m rows of X, and µ̂ ∈ Rm×p
simply repeats µ for each row. The columns of V ∈ Rp×k are
eigenvectors of the covariance (X− µ̂)T (X− µ̂), and correspond
to the principal components of the data. The diagonal elements,
σ2
i , of Σ ∈ Rk×k correspond to the variance explained by the ith

principal component.

In Fig. 3, the first 5 principal components are visualized as BRDF-
slices [Burley 2012]. An interpretation reference is shown to the
far right in the figure. The slices reveal very interesting structures
of the principal components: the first principal component largely
models the intensity of the specular peak, by affecting only the re-
gion where θh is close to zero. The second principal component
models diffuse contribution allowing for either raising or lowering
the overall reflectance for all non-grazing angles. The blue band in
the third component allows for widening or contraction of the spec-
ular peak. Finally, the fourth and fifth components model various
combined effects; most notably the Fresnel effect contribution at θd
close to 90◦ and the additional shaping of the specular peak in PC5,
but also a small contribution to the retro-reflective behaviour in the
lower left corner. These informative principal components are a re-
sult of the log-mapping introduced in Equation 1. Without it, the
majority of all numerical variation is concentrated in the specular
peak, drowning all off-peak variation of the BRDFs. This is shown
in Fig. 4, where slices of the first 5 unmapped principal components
are illustrated. Although these components numerically describe
the data well, we see qualitatively that they hold little information
about the overall nature of a BRDF.

Finally, as it will later become convenient, a matrix of scaled prin-
cipal components,Q ∈ Rp×k, can be obtained by:

Q = V Σ. (6)

Here, the length of each principal component has been scaled by
the amount of variance it covers.

4 Optimization of Sampling Directions

Before introducing the optimization scheme used to determine op-
timal sampling directions, we give the general idea behind recon-

struction of BRDFs, as this is the primary driver behind the objec-
tive function used to choose the sampling directions.

Using the scaled principal components Q ∈ Rp×k obtained from
Equation 6, a new BRDF xmay be synthesized using a linear com-
bination c of the principal components (c ∈ Rk×1 is a vector):

x = Qc+ µ, (7)

and likewise, hadx been known, the linear combination of principal
components best modeling it could be found by solving the linear
system for c. The expected sensitivity to errors in this modeling
can be estimated by the condition number κ of the matrixQ:

κ(Q) =
σmax(Q)

σmin(Q)
=
σ1

σk
, (8)

which is the ratio between the maximum and minimum singular val-
ues of Q. The lower the condition number, the less the sensitivity
to noise and numerical errors [Ipsen and Wentworth 2014].

Recall that every (θh, θd, φd) location in the BRDF volume cor-
responds to a specific light/view-direction, and that every location
additionally corresponds to a row in Q. Therefore, the problem of
determining the n best directions for sampling becomes a problem
of determining the reduced matrix Q̃ ∈ Rn×k of n rows from Q,
that minimizes the condition number κ(Q̃).

Minimizing Condition Number: Matusik et al. [2003a] use a
greedy algorithm to evaluate when the condition number of Q̃ sta-
bilizes for increasing n. The strategy is to initially pick n random
rows from Q and then in a random order try to replace rows in Q̃
with random rows from Q, while only keeping the swaps that re-
duce κ(Q̃). Our experience with this approach is that it converges
very slowly for small n (see Fig. 5).

The rows of Q are formed by a vectorization of a discrete three-
dimensional volume holding values that exhibit continuous varia-
tion. This means that the rows ofQ are not uncorrelated, and more
importantly, we can estimate the gradient of a row by looking up
its neighbors in the volumetric representation. Rather than treat-
ing the rows in Q as independent and without structure, as Ma-
tusik et al.’s method does, we thus propose utilizing gradients to
more effectively minimize condition number, κ(Q̃). We found that
standard numerical optimizers have difficulties in solving this min-
imization. This is partly due to the integer steps required when
moving through the BRDF volume, and partly due to the invalid
regions existing in the BRDF volume (views below horizon). We
therefore develop our own simple algorithm. We start with a ran-
dom initialization of r ≤ n sampling points (we used r = 1).
We then randomly pick one of the points, and numerically evalu-
ate the gradient ∇κ =

(
δκ(Q̃)
δθh

, δκ(Q̃)
δθd

, δκ(Q̃)
δφd

)
, moving along this



Figure 5: Comparison of condition number for our and Matusik
et al.’s method. Blue: Condition number reached by our method
at convergence. Orange: condition number reached by Matusik
et al.’s method using the same computation time as our method.
Red: Condition number for Matusik et al.’s method using 5 times
the computation time as our method.

gradient for a pre-determined step-length. This is repeated until
convergence. After convergence if r < n we add a point and repeat
optimization. The method was not very sensitive to step-length. We
chose an initial length of 3◦ (3 cells), and reduced this to 1◦ (1 cell)
when the former step-length had converged.

Algorithm: A summary of the full algorithm to minimize condi-
tion number to choose optimal sampling directions is as follows:

1. Pick r ≤ n random sampling locations in (θh, θd, φd). For a
more robust initial guess, repeat this randomization multiple
times and choose the guess that had the lowest κ(Q̃).

2. Randomly choose one of the r points. Estimate∇κ and move
the point one step-length in this direction if the destination
is a valid location in the BRDF volume. Otherwise, clip ∇κ
accordingly. Repeat until convergence.

3. Optionally reduce step-length and repeat (2).

4. If r < n, add a new point (r++) and repeat (2).

(In the special case of n = 1, the condition number cannot be esti-
mated and instead we utilize the leverage or 2-norm of the rows in
Q̃ as suggested by [Ipsen and Wentworth 2014].)

Validation: This approach works very well for small values of
n, whereas it becomes comparable with the method of [Matusik
et al. 2003a] for very large values (beyond the scope of this paper).
Within our goals of minimal sampling, n < 20, the gains are signif-
icant as shown in Fig. 5. We use our method to find the optimum set
of n rows that minimizes κ(Q̃) and plot this (blue bar). Afterwards
we run Matusik et al.’s method for the same amount of computation
time and plot the obtained condition number (orange bar). Finally
we let Matusik et al.’s method run for 5 times the computation time
we used and plot the obtained condition number (red bar); as can
be seen, the convergence of Matusik’s method is slow, so additional
computation time does not significantly change his results. Our
condition numbers are significantly lower for 5 ≤ n ≤ 20.

To evaluate if our method does in fact converge to a global min-
imum, we first found the ground truth global minimum by brute-
force computations for n = 2, and then repeated the algorithm 50
times with different random initial conditions, plotting the result-
ing sampling locations, the minimum error sampling over all runs
(the final result of our algorithm), and the ground-truth, as shown
in Fig. 6. Red points indicate the first sampling direction and pink
points indicate the second. The blue circles indicate the best solu-
tion found and the white stars (on top of them) indicate the global
minimum found by brute force computations. The red points are

Figure 6: Optimization repeated 50 times for n = 2 sampling
directions. Red corresponds to first sampling direction, purple to
second. The blue circles indicates the best constellation found. The
two white stars indicate the ground truth global minimum found
through brute-force evaluation of all combinations (κ = 1.00008).
Our method is seen to correctly find the global minimum. Notice
that all red points are fairly well clustered around the global mini-
mum, indicating that our method converges well every time. A scat-
tering is seen over φd for the purple points; this is however related
to the fact that φd becomes ambiguous for θd → 0◦.

seen to be well clustered around the global minimum. For the pur-
ple points we observe a lot of scattering over φd; this is however
related to the fact that φd becomes ambiguous for θd → 0◦ as is
the case here. The blue circles and white stars align, showing that
we do in fact find the global minimum κ = 1.0008.

5 Reconstruction

Given a small number of samples n from an unknown BRDF, we
wish to reconstruct the missing elements of the BRDF. We do this
by projecting the known information into the PCA space, and by us-
ing the information of the principal components inQ to reconstruct
the remaining information.

Let x̃ ∈ Rn be the vector of known values of a BRDF, let µ̃ ∈ Rn
be the vector of corresponding mean values from Equation 5, and let
Q̃ ∈ Rn×k be the corresponding rows of the principal components
in Q. The linear combination of principal components, c, that best
models the observed data is then obtained by:

(x̃− µ̃) = Q̃c

c = argmin
c
‖(x̃− µ̃)− Q̃c‖2

=
(
Q̃
T
Q̃
)−1

Q̃
T
(x̃− µ̃), (9)

and the full BRDF, x ∈ Rp, is then reconstructed by using the full
principal components:

x = Qc+ µ. (10)

Finally, we can apply the inverse mapping from Equation 1 to ob-
tain the original unmapped BRDF.

Although the least squares solution above is unbiased, it usually
results in severely over-fitted results, deviating significantly from
ground truth. Blanz et al. [2004] addresses this issue using ridge
regression and we adapt this approach for BRDFs. The length of
the scaled principal components, Q, is proportional to the amount
of variance they explain. Hence, the magnitude of the elements in
c directly links to how much a fit deviates from the mean behavior,
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Figure 7: Optimal sampling directions for n = {1, 2, 5, 10, 20} samples. Each color pair corresponds to a view/illumination-combination.
Notice that for a single observation, the 60◦ constellation is the optimum. When extending to two observations, an off-peak sampling should
be performed, and continuing to 5, 10 and 20 we see that the majority of measurements should lie within the plane of incidence.

i.e., ‖c‖2 is proportional to the unlikelihood of a reconstruction.
Introducing the hyper-parameter η in conjuction with the 2-norm
of c, it is possible to favour reconstructions closer to the observed
distribution of BRDFs:

c = argmin
c
‖(x̃− µ̃)− Q̃c‖2 + η‖c‖2. (11)

This expression has the closed form solution:

c =
(
Q̃
T
Q̃+ ηI

)−1

Q̃
T
(x̃− µ̃), (12)

where I is the identity matrix. As may be seen, a value of η = 0
corresponds to the least squares solution in Equation 9, and for η →
∞, c goes to zero and the reconstruction moves towards the mean
solution µ. We have found that the method is not very sensitive
to the value of η; we use η = 40. For completeness we evaluated
the use of L1 penalized minimization (Lasso, [Tibshirani 1996]) to
obtain a sparser set of PCs, and did not observe better performance.

Finally, recall that as mentioned in Sec. 3 color information has
been removed from the training data. This means that in order
to reconstruct a colored BRDF, each color channel must be recon-
structed separately by Equations 10 and 12.

6 Results

Based on the optimization approach described in Sec. 4, we were
able to obtain a prioritized list of optimal sampling directions for
n = {1, 2, 5, 10, 20} samples, and validate the accuracy of recon-
struction using these directions for both the MERL database mate-
rials, as well as for new measured BRDFs (Sec. 7).

Optimal Sampling Directions: The optimization method was
repeated 50 times in order to verify repeatability, and to enable us
to pick the minimum condition-number solution. In Table 1, these
directions are listed for different values of n, and they are visual-
ized by colored pairs of arrows for view-illumination combinations
in Fig. 7. We emphasize that these directions can be used directly
for minimal sampling of any BRDF within a gonioreflectometer
or gantry-based setup for a flat sample; the implementer need not
re-run our optimization. We will also make the source code for re-
construction, principal components and mean values available on-
line upon publication, to directly allow application of Equations 10
and 12 for BRDF reconstruction from the sparse measured samples.

Note that the computed sampling directions lie primarily in the
plane of incidence and, for some measurements, resemble the as-
pecular directions 15◦, 25◦, 45◦, 75◦, and 100◦ reported by West-
lund and Meyer [2001] to be industry standards for measuring go-
niochromatic surfaces. Intuitively, it makes sense that the single
most important measurement is at the perfect reflection around 60◦

c.f. Fig. 7, in order to determine the intensity of the specular peak.
Likewise, for n = 2, we see that while the first measurement should

n θh[
◦] θd[

◦] φd[
◦]

1 0 66 0

2
2 40 24
29 21 52

5

1 4 36
77 13 86
8 79 85
3 74 145
13 52 80

10

3 12 28
63 19 89
5 77 77
2 60 180
15 4 130
1 6 37
2 79 110
39 76 89
0 71 104
5 75 180

n θh[
◦] θd[

◦] φd[
◦]

20

9 12 69
66 35 103
4 76 150
3 79 107

33 63 105
1 7 174

21 8 180
7 64 180
6 73 180
2 63 95

11 11 124
6 74 123
1 62 129

33 49 24
14 71 55
8 35 180

31 77 91
2 72 130
2 47 113

10 43 68

Table 1: Optimium sampling directions in Rusinkiewicz coordi-
nates [Rusinkiewicz 1998], when n BRDF samples can be acquired.

capture the specular peak, the second measurement moves far off-
peak and measures the diffuse component of the material. It is im-
portant to emphasize, as stated in the introduction, that the reported
sampling directions do not cover the full variability of BRDFs. To
fully capture a BRDF, generally thousands of samples are required
[Lensch et al. 2003]. What these results provide are the strategically
best locations to sample from in a minimal sampling setup, in or-
der to capture as much unique information as possible per sample.
Note also that these directions hold for all BRDFs, and no complex
adaptive acquisition scheme is required.

Reconstruction Quality on MERL Database: To assess the re-
construction quality, we first describe experiments on the MERL
BRDF database itself; the next section discusses validation on new
samples. To avoid overfitting, the data was randomly split into two
groups: 90 materials for training, and 10 materials for testing. The
optimization was performed again on the reduced training-dataset
and although it did not provide exactly the same directions, these
were close to what was observed for the full dataset. Hence, the 10
testing materials are completely separate from the training phase.

We first evaluate the performance of the sampling directions, by
comparing the reconstruction quality using the five industry stan-
dard directions reported by Westlund and Meyer [2001], with the
reconstruction quality using the five optimal directions we have ob-
tained. Using ours and Westlund and Meyer’s [2001] five directions
for sampling—which correspond to five known rows in x andQ—
the testing materials were reconstructed and the results compared
to the ground truth. Fig. 8 shows the root-mean-squared error of
mapped values between reconstruction and ground truth, normal-



Figure 8: RMS error of reconstruction of unknown mapped BRDFs
normalized by mean mapped BRDF value, using (blue) our 5 best
points of sampling, (red) 5 common industry directions [Westlund
and Meyer 2001], and (dashed) all values of the BRDF. For com-
parison we also fitted the Ward parametric model to our 5 samples
(purple), and also evaluated the average of 20 reconstructions us-
ing 5 random directions (green). Each material is represented by 3
datapoints for its R, G, and B errors.

Figure 9: Normalized average reconstruction error of unknown
samples versus number of sampling directions used.

ized by the mean mapped BRDF value, for three different recon-
structions: using our five directions; using the five directions of
Westlund and Meyer [2001]; using all directions (x̃ = x), which
is a projection of the data into PCA space and is the lower limit
for the error. In addition, Fig. 8 also shows the (much higher) error
of the parametric Ward model fitted to our five sampling directions
(purple), as well as the average error of 20 runs where five purely
random sampling directions were used. It is apparent that our pro-
posed five directions outperform the industry sampling directions
in reconstruction quality by up to an order of magnitude, and have
very low error.

An evaluation of reconstruction error for an increasing number of
sampling points is shown in the blue curve in Fig. 9 (the red curve
for sphere sampling corresponds to Sec. 9). The figure shows the
average normalized root-mean-squared error of reconstruction for
the 10 testing materials, using a range of 1 to 20 sampling direc-
tions. Note that already at 4-5 samples the average error is starting
to stabilize. The long tail following indicates that whereas the first
samples yield great improvements to the reconstruction, latter sam-
ples only improve it slowly.

In Fig. 2, reconstructions of the 10 testing materials for an increas-
ing number samples, n = {1, 2, 3, 5, 10, 20}, are shown. The ren-
derings of spheres with the respective materials are done using a
front light at a direction of [1, 1, 1] and a back-light causing graz-
ing angle reflections from a direction of [−1,−1,−3]. In addition
to the low-number sampling directions, projections into PC space
are also shown. These are made by fitting the principal components
to the full BRDFs and illustrate the best possible reconstructions
obtainable by the PCs. Finally, in the last column, reference ren-
derings of the materials are shown. In accordance with Fig. 9, it

is observed that the reconstructions stabilize after n = 5 samples,
and at n = 20 there are no noticeable visual differences between
the reconstruction and the reference. A single outlier is the “white-
fabric” material, where the method has difficulties capturing the
diffuse appearance of the material due to the strong specular prior
in the data. This is addressed in Sec. 8 and a better reconstruction
is shown in the last row of the figure.

In the supplementary material, we also report results on all 100 ma-
terials (without separating training and testing data) for complete-
ness, with comparable results.

7 Validation on New Materials

To validate the reconstruction method with real data, beyond what
is found in the MERL database, the in-plane BRDF of five flat
samples of new materials was densely sampled using a spherical
gantry. The materials evaluated were: a glossy blue book, a brown-
red notebook with a smooth highlight, a specular binder-cover, a
diffuse piece of green cloth, and a diffuse piece of yellow paper.
We considered the BRDF at a single spatial location, the center of
the sample. Note that diffuse materials are not purely Lambertian.
Reference images of the five samples are shown in the lower right
corners in Fig. 10. The in-plane BRDF profiles were densely sam-
pled for all materials with a 1◦ resolution using a 45◦ incident light.
In addition, the BRDF at the best 20 sampling directions, listed in
Table 1, were also acquired, in order to apply our method to recon-
struct the full 3D isotropic BRDF.

Using our proposed reconstruction method from Equation 12, we
reconstruct the full BRDFs, using the best n = 20 samples. In the
left column of Fig. 10, the measured in-plane BRDF values are plot-
ted as solid curves for red, green, and blue channels. The in-plane
reflectances, extracted from the full reconstructed BRDFs are plot-
ted as dashed curves. Note that these plots are 1-D curves extracted
from the full 3D BRDF volumes and as such are only very small
fractions of all the data that has been reconstructed. In general,
there is a very good match, indicating accurate BRDF reproduction
on real samples.

The most significant deviations are observed in the 3rd reconstruc-
tion, the binder-cover, and the 4th reconstruction, the green cloth.
For the binder-cover, the diffuse component remains constant much
longer than what has been learned from the data as being “natural”.
This is most likely caused by a very isotropic subsurface scatter-
ing in the material. For the green cloth, a retroreflective behavior is
observed at the incident light direction. Although retroreflective be-
havior is represented by a few samples in the MERL database, it is
not enough to match the retroreflectivity of the cloth using the first
20 principal components. Note that overall appearance of materials
is reproduced well, with very few BRDF measurements.

Renderings of the materials using the same rendering setup as in
Fig. 2 are shown in the top right corners of Fig. 10. In addition,
renderings of the materials using more complex geometry (Killeroo
model) and high dynamic range environment lighting (Grace Cathe-
dral, [Debevec 1998]) are in Fig. 1. Color variations are due to the
different colors in the environment lighting.

8 Refinement

During reconstructions we noticed that for diffuse materials, a ring-
ing sometimes appeared around the specular peak. This ringing
is caused by the bias towards specular materials in the MERL
database. This bias is not only due to a predominance of specu-
lar materials, but also due to the numerical magnitude that specular
peaks have. A simple way of addressing this ringing, if needed, is



Figure 10: Reconstruction of BRDF from five unknown materials:
A glossy dark-blue book, a soft-specular notebook, a binder-cover,
a piece of green cloth, and a piece of yellow paper. Lower right:
reference photos of the measured materials. Upper right: render-
ings of reconstructed BRDFs with a front light at [1, 1, 1] and a back
light at [−1,−1,−3]. Left: Comparison between the measured in-
plane BRDF values (solid) and the reconstructed in-plane BRDF
values (dashed). Incident light is at 45◦ (marked as solid vertical
line) and perfect reflection at 135◦ (marked with dashed vertical
line). Note that these plots represent a single curve extracted from
the fully reconstructed 3D BRDF volume.

n 1 2 5
θd[

◦] 5 4 70 4 10 31 68 75

Table 2: Optimal sampling directions in Rusinkiewicz coordinates
[Rusinkiewicz 1998], when n images are acquired by imaging a
sphere. For each acquired image, all combinations of (θh, φd) are
captured. Thus, only θd needs to be varied.

splitting up the database into “soft” and “specular” materials, and
using the respective principal components Qsoft, and Qspecular to
reconstruct a material. Determining if a material is specular is eas-
ily done by inspecting the magnitude of the ratio between an in-
peak sample and an out-of-peak sample. This refinement procedure
is not strictly needed, but does in some cases improve reconstruc-
tions. An example of this is shown in the two bottom rows of Fig. 2.
Here, the reconstruction of the diffuse “white-fabric” BRDF has in-
troduced a ringing around the specular highlight, and even at 20
samples the ringing persists. By using “soft” PCs the artifact is ef-
fectively removed, producing convincing results with as few as 3
BRDF measurements.

9 Extension to Image-Based BRDF Capture

An effective way of capturing multiple BRDF samples per image is
from spheres of a homogeneous material [Marschner et al. 2000].
This is how the extensive MERL database was captured [Matusik
et al. 2003b], and is an approach that is often used today. This of
course puts a constraint on the types of BRDFs possible to capture,
as not all materials can be cut or molded into perfect spheres.

For any angle θd ≤ 90◦ between camera and lightsource, an im-
age of a perfect sphere covers all surface normal orientations in the
positive hemisphere. An interesting observation is that an image of
an illuminated sphere (with θd ≤ 90◦) actually corresponds to a
2D slice of the 3D Rusinkiewicz coordinate frame (θh, φd) at θd.
Hence, to capture the full 3D isotropic BRDF, only a sweep over
θd must be made. This leads to a natural extension of our work,
namely in determining the best n slices through the BRDF-volume,
corresponding to the best n angles between camera and illumina-
tion when capturing a BRDF from an image of a spherical material.

We modify the optimization algorithm in Sec. 4. Where a mea-
surement in the point-sampling setup corresponds to a single lo-
cation in the BRDF volume and a single row in Q, a measure-
ment in a spherical-sampling setup corresponds to many rows in
Q. For a given angle θd, let L(θd) be the set of BRDF locations,
(θh, θd, φd), visible on the sphere. Q̃ will now include the set of
rows inQ corresponding to L(θd) for each of the n measurements.
In this case, the condition number κ depends only on the θd values,
so that ∇κ = δκ(Q̃)

δθd
. Using the new Q̃ and ∇κ, the optimization

in Sec. 4 is again used to find the optimal sampling directions θd.

Our results are presented in Table 2 and visualized in Fig. 11. It is
seen that the single most important sample is of the oblique angle
reflection of the material (low θd). The second most important sam-
ple is the grazing angle reflection (high θd). For additional samples,
we observe a spreading over all angles, but with a predominance at
low and high values of θd.

As with the point-sampling setup, we qualitatively evaluate the re-
constructions of the 10 test materials. The results are shown in
Fig. 12 for n = {1, 2, 5} sampling directions. After only two im-
ages, appearance is accurately captured for all materials. A quanti-
tative analysis (red error graph in Fig. 9) confirms this, and shows
that almost optimal reconstruction is achieved with 5 images. In
agreement with Table 2, the first image captures the correct oblique
angle appearance (first column of Fig. 12) and the second image
captures the correct grazing angle appearance (second column). We
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Figure 11: Optimal sampling directions for spheres with n =
{1, 2, 5} images. Black arrows denote the direction to the cam-
era. Orange arrows denote the direction to the light-source (due to
reciprocity these may be interchanged). Notice that θd is the angle
to the half-vector; the angle between view and light is 2θd.

also performed a comparison to randomly chosen sampling direc-
tions. Intuitively, with more samples available from an image, the
difference in error should be lower than for point sampling. We ob-
serve that random sampling results in roughly 35% higher errors for
up to n = 5, after which it converges, approaching our error, again
indicating again that 5 images are sufficient for reconstruction.

For a final validation we used the Cornell Reflectance database [Foo
1997] to simulate additional θd slices completely uncorrelated with
the MERL data. These are shown in the last 3 rows.

10 Conclusions and Future Work

In this paper, we have developed a method for optimal, minimal
sampling of BRDFs. Perhaps surprisingly, we show that n = 20
individual measurements is adequate in most cases for accurate
isotropic BRDF reconstuction, and n = 2 images suffices for
image-based BRDF measurements of spherical samples.

Our method leverages the MERL database [Matusik et al. 2003a],
and proposes a novel mapping of BRDFs, allowing extraction of
very descriptive principal components. A reconstruction approach
based on ridge-regression, that utilizes the learned principal com-
ponents, is described. We believe we are the first to present a BRDF
reconstruction method that utilizes the statistical likelihood of a
synthesized BRDF through the magnitude of the eigenvalue-scaled
principal components. This approach yields better reconstructions
than previous methods, and may have broader applicability.

We also develop a method for determining the regions of greatest
importance, to sample the BRDFs. We provide an explicit table of
the strategically best n = {1, 2, 5, 10, 20} directions for sampling
any unknown BRDF, and validate our results against previous in-
dustry standard sets of directions, as well as with measurements on
new BRDFs not in the MERL database. We also show how the ap-
proach can be extended to sampling spheres via image-based BRDF
measurement. In that case, two images often suffice.

In the future, the approach could also be extended to other ac-
quisition geometries and customized for a particular gantry setup
and near-field views of a homogeneous flat sample, where multiple
light-view directions are available in a single image. Another inter-
esting extension is to allow for capturing spatially varying BRDFs,
since most gonioreflectometers are equipped with cameras. Our
prioritized lists could also be used for importance sampling general
BRDFs for rendering. The descriptive principal components may
also be useful in editing and synthesizing novel BRDFs. In sum-
mary, we believe our results take an important step towards making
rapid acquisition of data-driven reflectance models more practical
in many applications.

Learned principal components, lists for n = [1, 50] sampling direc-
tions, sample code, and reconstructed BRDFs, can be downloaded
from our website: http://brdf.compute.dtu.dk.

Material n = 1 n = 2 n = 5 Reference

black-soft-plastic

blue-acrylic

blue-metallic-paint2

green-fabric

light-red-paint

pink-jasper

silver-metallic-paint

specular-violet-phenolic

two-layer-silver

white-fabric

cayman [Cornell]

garnet-red [Cornell]

krylon-blue [Cornell]

Figure 12: Reconstructions of test samples, simulating BRDF cap-
ture using a sphere [Marschner et al. 2000]. The BRDFs are
rendered as spheres, illuminated by a front light at a direction
of [1, 1, 1], and a back light causing grazing angle reflections at
[−1,−1,−3]. Reconstructions are made with n = {1, 2, 5} sam-
pling directions. The far right column shows reference renderings
of the true BRDFs. We see that two measurements (images) are suf-
ficient to capture the true appearance of a material. The bottom 3
rows show materials from the Cornell Database [Foo 1997].
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Abstract. We present a method for 3D surface recovery in partial sur-
face scans. The method is based on an Active Shape Model, which is
used to predict missing data. The model is constructed using a bootstrap
framework, where an initially small collection of hand-annotated samples
is used to fit to and register unknown samples, resulting in an exten-
sive statistical model. The statistical recovery uses a multivariate point
prediction, where the distribution of the points is given by the Active
Shape Model. We show how missing data in a partial scan, once point
correspondence is achieved, can be predicted using the learned statistics.
A quantitative evaluation is performed on a data set of 10 laser scans
of ear canal impressions with minimal noise and artificial holes. We also
present a qualitative evaluation on authentic partial scans from an actual
direct in ear scanner prototype. Compared to a state-of-the-art surface
reconstruction algorithm, the presented method gives matching predic-
tion results for the synthetic evaluation samples and superior results for
the direct scanner data.

Keywords: Surface recovery · Hole closing · Multivariate statistics ·
Shape modeling · In ear scanning · Active shape model

1 Introduction

Direct surface scanning of humans is an increasingly used modality where the
applications include model creation in the entertainment industry, plastic surgery
planning and evaluation, craniofacial syndrome evaluation [10,14], and in par-
ticular hearing aid production. In this paper, we are concerned with a particular
surface shape namely that of the ear canal. Ear canal surface scans are used in
custom hearing aid fitting. This is a very large industry that probably makes
the ear the most scanned part of the human anatomy. A standard hearing aid
producer generates more than a thousand scans per week. When producing cus-
tom in-the-ear devices like hearing aids and monitors, the standard routine is to
inject silicone rubber into the patients ear and then laser scan this impression.
While this technique normally creates complete surfaces, direct ear scanners are

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-19665-7 18



Anatomically Correct Surface Recovery: A Statistical Approach 213

emerging and it is expected that probe scans with these devices will require
handling of missing data due to occlusion in the complex anatomy of the human
ear and the limited space for the scanner probe. In this paper we present a
method for predicting missing data based on the information in the partial scan.
Hole filling and missing data recovery is a well studied problem, in particular
for 2D images. In 3D, data recovery is sometimes considered a by-product of the
surface reconstruction algorithm. The algorithms used to generate triangulated
surfaces from point clouds will usually try to cover missing areas using some
mathematical or physical assumptions. One series of approaches uses Delaunay
triangulation of border points [12]. Such methods are obviously susceptible to
noise in the border points and will typically require some form of smoothing. An
alternative strategy is to interpolate implicit (signed distance) functions locally
or globally under various forms of regularisation [11,18]. Other methods, inspired
from 2D inpainting approaches have also been investigated [6,7,20]. These are
typically based on a variational definition of the behavior of the surface where
the holes are.

In our method, we predict the missing points based on the existing points in
the scan. Instead of using variational formulations or physical assumptions on
the behaviour of the surface, we utilise population statistics of the given class of
surfaces learned from an annotated and co-registered training set. We base our
population statistics of the ear canal on an extensive statistical shape model of
the ear canal constructed in a bootstrap framework. The method is general and
is applicable to all surface scans, where a statistical shape distribution can be
estimated. The 3D morphable models introduced for the analysis and synthesis
of 3D faces [5] can also be used to recover missing data in surface scans [4]. In
[5] a 3D statistical shape and texture model is built based on a set of registered
training samples and from this a principal component analysis is performed
giving a set of eigenvectors and values. To recover missing data the set of known
points are found in a pre-processing step and the missing data points are found by
computing the optimal linear combination of eigenvectors fitting the known data.
This is combined with a ridge regression regularisation to avoid non-plausible
shapes. The approach described in [5] is similar to our prediction step, but in
contrast we also include the steps needed to identify the missing points in the
described framework. Furthermore, we also weight the geodesic distance from
the missing points to the known points in the prediction.

1.1 Data and Preprocessing

The data consists of 310 scanned left-ear impressions. The scans have been
acquired from a traditional 3D scanner, resulting in meshes of arbitrary tri-
angulation. From this collection, 12 representatives are chosen and from these
point correspondence over the selected impressions is created using the method
initially described in [17]. Furthermore, the Markov Random Field regulariza-
tion of the correspondence field described in [16] was used to further optimize
the dense correspondence. This small subset of impressions with point correspon-
dence form the basis for the bootstrapping framework. This is used to encompass
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the entire collection of ear impressions, with the goal of constructing a statistical
shape model as for example described in [8,17]. The method described in [17]
requires manual annotation of anatomical landmarks which is non-trivial and
therefore an automated method is preferred. A small collection of scans have
been acquired by a prototype in-ear 3D scanner[1]. They are partial in the sense
that some areas of the surface are missing due to noise and/or occlusion. Finally,
a small set of scanned ear-impressions, not part of the original 310 samples, have
had holes cut in them to mimic the nature of the partial scans. We denote these
manually created partial scans as synthesized partial scans. This set is used for
controlled evaluation of our method. In the following, some parameters have been
assigned fixed values manually chosen for our data. These parameters should be
validated for other uses of the framework.

2 Bootstrapped Active Shape Model

In order to accurately recover missing information in a partial scan we construct
a statistical shape model [8]. For this, point correspondence is needed over the
training set. Initially a small subset of samples is manually annotated and reg-
istered using the approach described in [16,17]. Using this subset, an Active
Shape Model (ASM) is constructed as described in [8,17]. The statistical model
is aligned and fitted to each unknown sample. This is done iteratively, allow-
ing co-registration to and inclusion in the ASM, thereby expanding the model
sample by sample. The ASM thus grows in size as the bootstrapping proce-
dure processes unknown samples, allowing it to explain an increasing amount of
shape variation from the dataset. Intuitively this leads to the expectation that
the algorithm will become increasingly better at fitting to unknown shapes and
that later samples are better registered than former, wherefore a revisit of early
registrations may be chosen as a finalising step.

Assuming a collection of m aligned shapes, each consisting of p 3D points
vi = (x1, y1, z1, . . . , xp, yp, zp)

T ∈ Rn. These shapes can be interpreted as being
points in an n = 3p-dimensional space. The average shape is thus v̄ = 1

m

∑m
i=1 vi

and the shape deviation from mean xi = vi − v̄. In order to investigate the
variation of the data, an observation matrix X = (x1, . . . ,xm) ∈ Rn×m can be
constructed. The covariance matrix, Σ, of X is found by

Σ =
1

m
XXT ∈ Rn×n. (1)

Performing an Eigenvalue decomposition of this covariance matrix, thus provides
insight in the primary modes of variation within the dataset Σ = PΛPT , where
P = (p1, . . . ,pm) is a matrix consisting of columns of Eigenvectors and Λ =
diag(λ1, . . . , λm) is a diagonal matrix holding the Eigenvalues. These Eigenvalues
corresponds to the variation expressed of the respective Eigenvector directions,
i.e. λi = σ2

i . In scenarios where m < n, only a subset of the Eigenvalues will be
non-zero, the size of this subset will be denoted m′.
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Given the collection of non-zero Eigenvalues and corresponding Eigenvectors
described above, these can be used as a basis. Any shape ṽ can then be synthe-
sised by a linear combination of the Eigenvectors, weighted by their Eigenvalues:

M(c) = ṽ =

m′∑

i

ciλipi = PΛc, (2)

where c = (c1, . . . , cm′) is a vector of weights determining how much the individ-
ual Eigenvectors contributes in the synthesis. This constitutes the Active Shape
Model and hereby the ASM can be interpreted as a function of the weights in c,
i.e. M(c).

The raw samples to be included in the ASM may not be positioned or oriented
correctly relative to each other. Multiple approaches to automatic alignment of
shapes exists, we have chosen to use 3D Shape Context Descriptors [9].

The descriptors describes a point on a 3D surface by a histogram of its local
neighbourhood, indicating the local geometric distribution of points. Given a
point q on a surface, any neighbouring point’s relative position to q can be
expressed in spherical coordinates (r, θ, ϕ). Here r is the radial distance between
q and a neighbour qn. The inclination angle θ and the azimuthal angle ϕ
requires a choice of reference-frame in order to be intercomparable between dif-
ferently aligned samples. In this experiment, 3D data were acquired from a laser
scanner using a rotating platform. The 3D representations of the ear impres-
sions thus have a consistent vertical axis. This consistency can be utilised to
construct a common frame of reference. In this frame of reference the third
basis element is aligned with the normal of the point q. This is formulated as
b3 = nq = (nx, ny, nz)

T . The first basis element is aligned with the vertical
axis, with the restraint of being orthogonal to b3. Denoting a vector pointing
along the fixed vertical axis v = (0, 1, 0)T , this is found by b1 = v − (v · b̂3)b̂3,

i.e. a vector rejection of v on nq, where b̂ denotes the normalised value of b.
As a result of orthogonal basis vectors in a right-handed coordinate-system, the
second basis element is thus restrained to being b2 = b3 × b1. From this basis,
a rotation matrix, rotating to the local frame of reference can be constructed

R =
[
b̂1 b̂2 b̂3

]
. Any neighbouring point, qn, can thus be described in q’s local

frame of reference by q̃n = R(qn − q). Within this frame of reference, the incli-
nation angle and the azimuthal angle of the point is given by θ = arccos (q̃n,z/r)
and ϕ = arctan (q̃n,y/q̃n,x).

Based on the coordinates (r, θ, ϕ), points in the proximity of q can be grouped
in a discrete set of bins. Hereby a histogram over the 3-dimensional distribution of
points surrounding q can be constructed and used as a feature vector. In our exper-
iment, (r, θ, ϕ) of points within a radius of 10 mm were divided into (8, 13, 4) bins
respectively, yielding a 416-dimensional feature vector or Shape Context Descrip-
tor. The choice of utilising the vertical axis to construct a common frame of refer-
ence poses a constraint on the geometry as points having normals parallel to the
vertical axis cannot be used. In practice this means that perfectly horizontal sur-
faces cannot be evaluated. Through the Hungarian method [13], point-descriptors
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are matched and based on this matching a corresponding transformation can be
computed in a least squares sense. The standard χ2 histogram distance is used as
cost function [3]. An illustration is shown in Fig 1. The resulting set of matched
points is used to compute the optimal translation and rotation in a least squares
sense [9].

Using this method, unknown samples are aligned to the mean of the ASM,
v̄, thus supplying a plausible pre-alignment. Failed pre-alignments are easily
detected by evaluating the average Euclidean point to point distance between
the mean shape and the aligned shape. In our dataset, alignments with average
point-to-point distances above 5 mm are rejected.

Fig. 1. The descriptor in the point marked by the red marker in a) is compared to the
descriptors in all points of b). Colouring in b) corresponds to the χ2 distance between
the descriptors. c) Lines indicating the 100 most significant Shape Context matches
between the two samples.

Given a roughly aligned unknown sample, va, the alignment is refined and
the ASM, M(c), is fitted. This is done in an iterative manner, where an Iterative
Closest Point (ICP) [19] alignment of the sample is followed by an ASM-fitting
of the model, and repeated upon until convergence is met. In our ICP imple-
mentation the points from the ASM surface are matched to their nearest surface
neighbours on the new sample, with the constraint that points connected to a
border should be ignored.

For the fitting, we seek to find a deformation of the Active Shape Model
that minimises the error between the model and the unknown sample. An ASM
constructed from the shape analysis of m samples, each consisting of n points,
will be parametrised in an m′-dimensional space and thus have m′ modes of
variation.

Let qi ∈ R3 be a point belonging to the ASM, M(c), and let q′
i ∈ R3 be the

closest point on the target sample surface va. We seek to find the set of weights
c∗ that minimises the sum of distances between q and q′:

arg min
c

‖M(c) − va‖ = arg min
c

1

m′

m′∑

i=1

‖qi − q′
i‖ (3)

We solve this optimisation problem by utilising an implementation of the Nelder-
Mead method [15]. We reduced the number of parameters used to a number
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corresponding to 99% explained variance af the training data. As the model-
fitting is basically a synthesisation from a k-dimensional (assumed) normal-
distribution, a confidence level for an obtained set of parameters c∗ can thus
be computed by utilising the Mahalanobis distance M between the parameter
set and the ASM distribution since M2 ∼ χ2

n. This allows validation of fittings
by setting a reasonable confidence limit. In our implementation, a confidence
level of 99.9% was used.

Having determined c∗ for M and va, the model mesh M(c∗) = ṽ is propa-
gated to the sample shape va in order to perform a point-wise registration using
the procedure described in [16]. The result is a mesh of p points, following the
shape of va, all with correspondence to the model, M. The quality of the regis-
tration is determined by computing the 20th percentile of the minimum angle in
the projected triangles and rejecting registration where this is below 15◦. This
measure is valid since the model mesh has been optimised and has near equi-
lateral triangles. Secondly, the normals of the projection are compared to the
normals of ṽ. Registrations having an average dot-product between the normals
of ṽ and the projection below 0.75 are rejected.

When an alignment and a registration is obtained using the iterative scheme
above, they are both refined iteratively. During each iteration the registration-
mesh is smoothed using simple meaning of the nearest neighbours. The surface
normals of the smoothed mesh are found and regularised using local averaging
of directions. A new set of correspondence points are found in the sample scan
in the direction of the regularised normals and the alignment, va, is adjusted
accordingly. This process is repeated until convergence. As the sample input scan
is expected to be more densely sampled than M(c∗) the iterative update ensures
a regular mesh with evenly distributed vertices. Each sample that is successfully
fitted is added to the ASM. ASM is hereby improved to cover additional shape
variation.

3 Surface Recovery on Partial Scans

As described, a crucial, and not easily solved, part of recovering missing data is
to co-register a partial mesh with the ASM. This is required in order to obtain
point-correspondence between model and surface, creating a partial scan with
a mesh structure identical to that of the model. The process of co-registering
an unknown scan to the ASM is basically addressed in section 2. In the case of
reconstructing partial scans, however, the exact same approach may not suffice.
This is mainly due to the fact that an automatic alignment between a partial scan
and model may prove to be difficult for Shape Context features. The difficulties
arise in scenarios where the key shape features of the model are not present on
the scan or vice-versa. We limit ourselves to the already existing Shape Context
alignment approach, and where this failed, manual alignment was used. The
result of registering and fitting the ASM to a partial scan is that the ASM
template mesh is deformed and propagated to the partial scans in areas where
there are valid data. The template mesh vertices are marked as missing when
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the corresponding point or area in the partial scan is not present or valid. If
an area is missing in the partial scan, the point projection will often result
in that the project point is placed on a boundary in the partial scans, thus
enabling detection of missing point correspondences. Given a registration, we
aim to recover missing surface data in a partial scan such that the recovered
data are anatomically correct. We approach this by using a statistical model
and define the set of known and unknown data in a partial scan as follows:

missing vertices: sT
1 = (x11, y11, z11, x12, y12, z12, . . .)

known vertices: sT
2 = (x21, y21, z21, x22, y22, z22, . . .)

The correspondence allows for differentiation between known vertices and miss-
ing vertices in the partial scan. We will determine how the unknown data s1

are predicted from known vertices in s2. Without any prior knowledge of the
distribution of data, we consider a shape s consisting of s1 and s2 as belonging
to the normal distribution:

s =

[
s1

s2

]
∈ N

([
μ1

μ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
, ΣT

12 = Σ21 (4)

The expected value of s1 given s2 is E{s1|s2} = μ1 + Σ12Σ
−1
22 (s2 − μ2). With

the variance V{s1|s2} = Σ11 − Σ12Σ
−1
22 Σ21 From the ASM we get an aligned

set of shapes. This training set is denoted Xaligned. From the training set the
covariances Σ11 and Σ12 as well as the means (μ1, μ2) are learned. As there are
far less shapes than points, Σ22 will be singular. Let Σ22 = PΛPT be the Eigen-
value decomposition. We restrict Σ22 to its affine support, i.e. the dimensions
spanned by the Eigenvectors corresponding to the k positive Eigenvalues, such
that Λ∗ = diag(λ1, λ2, . . . , λk) and P∗ = [p1 p2 . . . pk]. The projection of s2

using the k selected Eigenvectors P∗: y2 = P∗Ts2 has affine support for s2 and
the variance:

V{y2} = V{P∗s2} = P∗TΣ22P
∗ = Λ∗ (5)

The covariance of s1 and y2 is:

C{s1,y2} = C{s1,P
∗Ts2} = C{s1, s2}P∗ = Σ12P

∗ (6)

Finally, the prediction of the unknown data s1 can be done using the projection
y2:

E{s1|y2} = μ1 + Σ12P
∗Λ∗−1P∗T(s2 − μ2) (7)

This expected value can be used for any unknown set of vertices s1 given a partial
scan s2, be that a single missing vertex or all the missing data. If every unknown
vertex is predicted according to the described method the known triangulation
from the training set can be propagated to the predicted data set and will then
constitute a full surface reconstruction. The method can also be used to filter
data for noise if the known scan data are also recovered. By varying the number
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k values of Eigenvectors used in the projection the fraction of described variance
can be controlled.

Practically, the set of known vertices found during the registration of the
partial scan is s2 and the full scan as provided by the scanner is sscan. Let s∗

1 be
the predicted missing data, s∗

2 the prediction of the partial scan and s∗ be the
full reconstructed shape. The full average shape is denoted μ. With an initial
registration the algorithm works as follows: We repeat the loop body with two

Algorithm 1. Anatomical surface recovery

1: procedure AnatomicalSurfaceRecovery(Xaligned, s2, sscan) �

2: s∗ ←
[

0
s2

]

3: repeat
4: Procrustes align s∗ to μ and apply same transformation to sscan

5: Predict s∗
1 using the described method � the described variance is

increased in each iteration
6: Predict s∗

2 using the described method � the described variance is
increased in each iteration

7: s∗ ←
[
s∗
1

s∗
2

]

8: Find vertex correspondence between s∗ and sscan

9: Update s2 and s∗ with the correspondence vertices from sscan

10: until convergence
11: return s∗

1 and s∗
2 �

12: end procedure

different recovery approaches. First s∗
1 and s∗

2 are predicted all at once. In the last
few loops the data are predicted vertex by vertex using only the nearest vertices
in the prediction. The vertex distances are found as the geodesic distances on
the mean shape, so these only have to be calculated once. The geodesic distances
are used to ensure topological consistency when selecting a neighbourhood. Our
shape model has 3096 vertices and in the local recovery we only use the 10 nearest
of these. In the local prediction the recovered data is locally very true to the
original scan. We restrict the Eigenvalues in the recovery to the ones describing
30% of the variance and then gradually raise this to 99.9%. Gradually raising
the percentage of described variance helps the algorithm produce anatomically
correct shapes and prevents the influence of bad correspondences in the initial
iterations.

4 Results

Based on the method described in section 2, we were able to construct an exten-
sive Active Shape Model of the left ear based on the available dataset. A total
of 310 samples were processed and from these, 241 passed the automatic quality
verification. As the Active Shape Model processes new samples, the complexity
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of the model increases and thus the fraction of variation explained per principal
component must be expected to drop. The fraction of variation explained by the
10 first principal components were computed as the ASM grew in size and it was
stabilising, indicating that the shape model eventually captures the true class
variability. In the ASM 90% of all variance is contained within the first 37 modes
of variation. We do, however, expect that the automatic registration procedure
has induced an amount of false variation in form of vertex drifting along the
sample surfaces. Such variation of course directly affects the compactness of the
ASM in the form of low-variance principal components, assuming that the drifts
are uncorrelated. The actual shape variation from the ear is therefore expected
to be found within the first principal components. A final manual inspection of
mesh distortions resulted in an additional 80 registrations being removed from
the ASM. Effectively this resulted in the final ASM consisting of 161 shapes.

In order to compare our approach with existing methods for reconstruction,
a collection of 10 scanned ear impressions, not included in the training data, was
chosen and all scans had a reasonable sized hole cut in them. The holes were
cut between first and second bend of the ear canal, in an area that is known
to often be occluded when using experimental optical in-ear scanners. Hereby
any reconstruction of these partial scans can be compared to the ground-truth,
allowing for a quantitative comparison of methods.

For each mesh in the collection of synthesised partial scans the missing data
was recovered. This was done using our method, both with and without smooth-
ing, and the Markov Random Field (MRF) surface reconstruction approach [18].
The MRF approach has previously shown to reconstruct anatomical surfaces
well. All reconstructions were then compared to the ground truth, by computing
a signed distance (based on surface normals) between all reconstructed points
and the original surface. In Fig. 2 the reconstructions of synthetic partial scans
are shown, where the surface values denotes the signed distance between recon-
struction and truth (in millimeters). The average signed point-distances between
surface reconstructions can be seen in the table below:

# MRF Proposed Proposed # MRF Proposed Proposed
+local smoothing +local smoothing

1 -0.07 -0.17 -0.27 6 0.07 -0.05 -0.08
2 0.05 0.01 -0.01 7 0.08 -0.001 0
3 -0.04 0.02 0.001 8 0.01 -0.02 -0.03
4 -0.001 -0.015 -0.02 9 0.02 0.03 0.01
5 -0.07 -0.01 -0.013 10 -0.01 0.07 0.07

A significant outlier in the error is observed in sample #1. After inspection,
this sample revealed an abnormal cavity in the skin of the ear-canal, explaining
the higher error. It should be noted that no prior, neither statistical or physi-
cal, would be able to predict such errors. Although this comparison proves high
performance of our method, it does not fully illustrate the strength of having a
statistically based prior. The MRF approach predicts missing points based on
the existing curvature of data in contrast to our method that predicts missing
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Fig. 2. Reconstruction of missing data for 3 different scans (rows), using Markov Ran-
dom Field (MRF) reconstruction (column 1), our method (column 2) and the smoothed
variant of our method (column 3). Surface values corresponds to the signed distance
between reconstruction and ground truth.

Fig. 3. Partial scans from a prototype direct ear scanner. Raw data is shown with grey.
Surfaces reconstructed using the MRF method are red and the surfaces reconstructed
using the proposed method are green.
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points based on knowledge of the shape variation of an ear population. Effec-
tively this means that where either noisy edges exists or data is sparse, the MRF
approach has little chance of estimating the true surface. In this test each hole
is surrounded by smooth noiseless surface areas providing an optimum setting
for the MRF reconstruction. In the following, we will present a qualitative com-
parison based on authentic optical 3D scans of the ear, suffering from high noise
and sparse point support.

We have tested our algorithm on 12 scans from a prototype direct in ear
scanner [1]. In cases with a lot of noise, our strong prior enables our method to
produce anatomically correct meshes that are also locally true to the covered
areas. Qualitative inspection shows very good hole closing in the 12 scans. In
addition all 12 scans were 3D printed as earplugs and tested by the respective
test subjects with positive feedback. Fig 3 shows scans with a big part of the ear
canal missing. The missing part has been recovered with both the MRF method
and the proposed method. As can be seen, our proposed method produces what
seems to be a much more plausible surface in the missing part.

5 Conclusion

We have shown that we can predict the missing parts of partial scans using a
statistical model. The ability to predict missing data is comparable to state-of-
the-art algorithms, when holes are relatively small and the data is fair without
too much noise. On scans from a real in-ear scanner probe prototype, the quali-
tative results produced with the proposed method are much more plausible when
visually inspected. The more extensive prior knowledge about the shape to be
reconstructed makes the recovery much more robust, when recovering larger
holes. The results also seem invariant to the presence of noise, and as such the
method can also function as a noise filter. Surface reconstruction algorithms that
only use the immediate vicinity in the reconstruction are very sensible to noise
on the edges of the area to be recovered.

After using the proposed data recovery method on 12 scans they were 3D
printed on a stereolithograpy (SLA) machine [2] and worn by the test subjects
for a substantial time. They all proved to be well fitting in the subjects ears
even though the hard material from the SLA machine makes the ear plugs very
susceptible for non-accurate fitting. We have therefore demonstrated a complete
pipeline from direct ear scanning to production of well fitting hearing devices.
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Abstract

We develop a method to acquire the BRDF of a homogeneous flat
sample from only two images, taken by a near-field perspective
camera, and lit by a directional light source. Our method uses
the MERL BRDF database to determine the optimal set of light-
view pairs for data-driven reflectance acquisition. We develop a
mathematical framework to estimate error from a given set of mea-
surements, including the use of multiple measurements in an image
simultaneously, as needed for acquisition from near-field setups.
The novel error metric is essential in the near-field case, where we
show that using the condition-number alone performs poorly. We
demonstrate practical near-field acquisition of BRDFs from only
one or two input images. Our framework generalizes to configu-
rations like a fixed camera setup, where we also develop a simple
extension to spatially-varying BRDFs by clustering the materials.

Keywords: rendering, reflectance, BRDF, MERL, reconstruction

Concepts: •Computing methodologies → Reflectance model-
ing;

1 Introduction

Accurate BRDF models are critical for realistic image synthe-
sis. Many analytic BRDF models have been proposed [Torrance
and Sparrow 1967; Ward 1992]. However, the greatest fidelity
is obtained by data-driven reflectance, such as the MERL BRDF
database of 100 real materials [Matusik et al. 2003a].

In this paper, we focus on the canonical problem of measuring the
3D isotropic BRDF of a flat sample of homogeneous material. The
conventional approach is to use a gonioreflectometer, laboriously
sampling illumination-view pairs [Foo 1997]. However, fully sam-
pling a 3D isotropic BRDF domain can require thousands or mil-
lions of samples, making this approach very expensive. Mirror-
based imaging setups [Ward 1992] can reduce some dimensions,
but still require a large number of samples. They also need more
complex setups, and can be difficult to calibrate.

Recently, [Nielsen et al. 2015] presented a significant reduction in
the number of samples needed to about 20, assuming the BRDF lies
approximately in the subspace of the MERL BRDF database. They
leverage a logarithmic mapping (originally proposed for BRDF fac-
torization by [McCool et al. 2001]). They then optimize sampling
directions to minimze the condition number of the related acquisi-
tion matrix (an approach first proposed by [Matusik et al. 2003b]).
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Figure 1: By utilizing the field of view of a camera (A), many ra-
diance observations can be acquired in parallel, to enable efficient
BRDF measurement from a homogeneous flat material sample (we
assume a near-field camera and distant light source). We demon-
strate that as little as 2 view/light configurations enable accurate
reconstruction for most materials. The two input images are shown
in (B); our acquisition uses data from the circular center of the sam-
ple outlined, which may appear elliptical at oblique angles. Qual-
itatively, the first image captures the overall shape and intensity of
the specular highlight and diffuse color. The second image captures
grazing angles and Fresnel effects, also refining diffuse shading.
From these inputs, we reconstruct a full measured BRDF, which can
be visualized on a sphere or used for rendering (C); input material
samples are shown in the insets and in results in Fig. 11.

However, there are several limitations of [Nielsen et al. 2015]. First,
they use a gantry-based system, where each “measurement” is ac-
tually a full 2D image seen by the camera. However, this additional
information is not used in their work, providing only a single ob-
servation. We seek to exploit the additional degrees of freedom
by acquiring multiple BRDF measurements simultaneously, using
a near-field camera, so each point on the sample corresponds to
a slightly different viewing direction. In this paper, we demon-
strate an improved minimal BRDF sampling method for near-field
acquisition. Indeed, accuracy comparable to the 20 measurements
in [Nielsen et al. 2015] is achievable with only two near-field im-
ages, and high-fidelity results are sometimes achieved with a single
image, with field-of-view only about 25◦, as shown in Figs. 1, 2.

A major technical challenge is finding the optimal light-view direc-
tions. The conventional condition number metric is not adequate,
since it can increase dramatically (or even go to infinity) for a set of
closely-related near-field measurements. While the measurements
are no longer completely independent, they do provide additional
information. Even for the goniometric case in [Nielsen et al. 2015],
we show that condition number does not fully model the error.

We therefore develop an entirely new framework to accurately esti-
mate the error in BRDF acquisition from a set of samples, consid-
ering both deviation from the ideal (noise, BRDF not fitting MERL
data), and accuracy of reconstruction based on where samples are
located (Fig. 3). The condition number only approximates er-
ror from the first term (noise), while we usually want to minimize
the latter term (reconstruction error). Our framework enables sig-
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Figure 2: Simulations on MERL BRDF database for one and two-shot near-field BRDF measurement. BRDFs shown are not used at all in
analysis/choosing the optimal directions. The sample subtends an angle of 25◦ when camera is at the zenith (we consider a circular region,
sample images elliptical when viewed at an oblique angle; see Figs. 4, 9). After sample label, first 3 columns show single image near-field
acquisition, with input, our method and previous work with 5 point samples. The next 4 columns show two image acquisition with inputs,
our method, and previous work with 20 point samples. The reference image is shown rightmost. Single-shot measurement is comparable to 5
samples in [Nielsen et al. 2015]. Near-reference quality images, comparable to 20 samples in [Nielsen et al. 2015], are obtained with two-
shot meaurement. For very broad specularities like light red paint, we do not fully observe the highlights in the input images, and therefore
slightly underestimate their width. The supplementary material has results for simulations on all of the MERL BRDF materials.

nificantly better reconstruction error for the multiple-measurement
near-field setup (Fig. 5). We make the following contributions:

Novel Theoretical Analysis: We develop a new framework to
predict the error in BRDF acquisition from sampling a particular
set of directions (Sec. 4), that extends naturally to multiple mea-
surements and allows for optimization (Sec. 5).

Optimal BRDF Sampling Directions: We provide optimal
light-view directions for the near-field case (Sec. 6), showing how
multiple simultaneous BRDF measurements can dramatically re-
duce the number of images (see Fig. 2 for simulations on MERL
database). The new error framework also provides improved accu-
racy even for point-sampled measurement (Appendix B).

Practical BRDF Acquisition: We develop BRDF measurement
using only two near-field images (two-shot), and we demonstrate
results on several real examples (Sec. 7). We also briefly explore

extensions to a fixed camera setup with two light directions (Sec. 8),
including a simple first step towards acquiring spatially-varying
BRDFs by clustering materials.

2 Related Work

We focus on measured data-driven BRDFs. A few recent works
have evaluated and developed improved parametric fits to the
MERL BRDF database [Ngan et al. 2005; Low et al. 2012; Brady
et al. 2014]. Earlier, Lensch et al. [2003] proposed adaptive sam-
pling of a BRDF, based on the uncertainty of the parametric fit.
Fuchs et al. [2007] also proposed an adaptive sampling approach,
but first require a relatively dense grid of samples. Our approach ac-
tually requires less data (only one or two images), is more accurate,
and requires only linear solution, rather than non-linear optimiza-
tion. Our method is also conceptually related to other areas, such
as the use of key points for animation [Meyer and Anderson 2007].



We briefly review related work in efficient BRDF acquisition below.

Basis and Environment Lighting: One approach to speed up
BRDF acquisition is to use basis functions for complex illumina-
tion [Ghosh et al. 2007; Aittala et al. 2013; Tunwattanapong et al.
2013]. Our setup is simpler and requires fewer measurements, en-
abling direct BRDF measurement from a directional source, with-
out any deconvolution. Other work has dealt with (uncontrolled)
environment lighting [Romeiro et al. 2008; Romeiro and Zickler
2010], but requires non-linear regularization and priors.

Image-Based BRDF Acquisition: The MERL database was
acquired by Matusik et al. using image-based BRDF measure-
ment [Marschner et al. 2000] on spheres. Our approach is con-
ceptually similar, making use of images rather than point measure-
ments, but works with conventional flat surfaces (not all BRDFs are
easily found as, or can be wrapped on, spheres). Earlier, Karner et
al. [1996] fit anisotropic BRDFs to images of a flat sample, but re-
quired a parametric model. A variety of other optical setups acquire
multiple samples simultaneously, including [Ward 1992; Dana and
Wang 2004; Noll et al. 2013]. These methods usually require com-
plex imaging setups, which are hard to calibrate.

One and Two Shot Approaches: Most recently, Aittala et
al. [2015] proposed a two-shot spatially-varying BRDF capture
setup, but it is aimed at reproducing the “texture” of material
samples, rather than a complex measured BRDF. Earlier, [Hertz-
mann and Seitz 2003] used reference BRDFs to recover shape and
spatially-varying reflectance. Ren et al. [2011] developed a pocket
reflectometry method, comparing to reference tiles, using a hand-
held light source and fixed camera. In contrast, we do not require
a physical reference since we can leverage the MERL database,
which also has a much broader set of reference materials.

Industry Material Standards: Beyond computer graphics, the
materials industry has developed a number of standards for mea-
suring and characterizing reflectance. [Hunter and Judd 1939] pro-
poses a single measurement at 60◦ perfect reflection. The ASTM
Standard D523 for measuring gloss adds near-normal and grazing
angle measurements at 85◦ and 20◦ [Hunter 1987]. We extend this
approach by considering near-field measurements. Our optimal sets
of one and two measurements produce results that are close to the
above observations, but are based on rigorously minimizing the ex-
pected error. Moreover, we can recover a full accurate data-driven
BRDF, since we consider multiple measurements over the entire
sample. Additional works in graphics include the five measurement
directions in [Westlund and Meyer 2001], which are improved on
by [Nielsen et al. 2015] and further refined by our method.

3 Background

In this section, we briefly discuss necessary background on using
the MERL database [Matusik et al. 2003a] for BRDF measurement,
following [Nielsen et al. 2015]. We conclude by providing intuition
for why the condition number metric is not ideal, especially in the
near-field lighting case, a result that may also impact other prob-
lems involving sparse sampling and reconstruction in graphics.

BRDF Database and Processing: The database consists of 100
materials. Each material is represented using p = 1, 458, 000 ex-
haustive measurements of the 3D isotropic BRDF volume in the
(θh, θd, φd) parameterization [Rusinkiewicz 1998] (Fig. 4), with
resolution 90 × 90 × 180 degrees. Following [Nielsen et al.
2015], we treat each color channel separately, effectively obtaining
m = 300 database BRDFs. We also apply their log-relative map-
ping (inspired by the logarithmic transform proposed in [McCool
et al. 2001]). BRDF ρ is transformed to ln [(ρw + ε)/(ρrefw + ε)],
where ε = 0.001 avoids division by zero, ρref is the reference or

(per-observation) median BRDF, and the weight w is simply the
maximum of the cosine of incident and outgoing angles. In this pa-
per, we deal only with these log-mapped BRDFs. Inverse mapping
is done at the end to obtain the final measured BRDF.

BRDF Principal Components: Let X ∈ Rm×p be the full ma-
trix of all MERL BRDF observations, where the rows are mapped
BRDFs and the columns are a particular direction. We use the prin-
cipal components Q, obtained by performing a singular-valued de-
composition (SVD) after subtracting the mean BRDF,

X − µ̂ = UΣV T Q = V Σ, (1)

where it is convenient to include the singular values in Q ∈ Rp×k.
k is the number of principal components we consider (in our case,
k = m, but one could use fewer components). The columns of
Q are the scaled eigenvectors of the covariance, and correspond
to a basis for the space of BRDFs. A particular BRDF x may be
obtained as a linear combination of the basis,

x = Qc+ µ, (2)

where c ∈ Rk×1 is a vector of coefficients. µ ∈ Rp×1 is the mean
BRDF, while µ̂ ∈ Rm×p is a matrix, repeating µT over m rows.

Solving for the Measured BRDF: In practice, we observe x at
some sample observations, from which we seek to estimate c,

x̃− µ̃ = Q̃c, (3)

where the tildes indicate that we have a reduced set of observations
at n samples, with µ̃ and x̃ ∈ Rn×1. Q̃ ∈ Rn×k is the set of
rows in Q corresponding to the set of reduced observations. It is
also convenient to define y = x− µ, with ỹ = x̃− µ̃ and Q̃c = ỹ.
Finally, let S ∈ Rn×p be a selection matrix that is zero everywhere,
except that Sij = 1 in row i iff j is the direction corresponding
to observation i. We can now define the reduced Q̃ = SQ and
ỹ = Sy, which will be useful for the error analysis in Sec. 4.

In [Nielsen et al. 2015], n � p,m, and typically n ∼ 20. In our
case, for near-field imaging, we have fewer image captures (typi-
cally only one or two), but we have several observations at each im-
age, since we make use of the full 2D image. n can now be larger
and, in some cases, could even be greater than m. However, the
near-field samples are correlated, having the same light and similar
view directions, so conceptually we still have a reduced matrix.

The above equation can be solved for the coefficients using
Tikhonov regularization (I is the identity matrix. We set η = 40;
we find results are not sensitive to this regularization parameter),

c = argmin| (x̃− µ̃)− Q̃c|2 + η|c|2 =
(
Q̃T Q̃+ ηI

)−1
Q̃T ỹ. (4)

A useful intuition is to consider a closed-form expression for the
regularized inverse. Assuming the full SVD of Q̃ = AΛBT ,

Q̃+
η =

(
Q̃T Q̃+ ηI

)−1

Q̃T = BΛ+
η A

T , (5)

where Λ+
η is a diagonal matrix with the same shape as Λ, but with

a modified set of singular values: σ → σ/(σ2 + η). Note that the
pseudo-inverse Q̃+ and Λ+ are obtained by setting η = 0, in which
case Q̃+ = BΛ+AT as expected. In essence, the regularization
term creates a η−modified pseudo-inverse where the inversion of
small singular values does not blow up.

Optimizing Sampling Directions: In [Matusik et al. 2003b;
Nielsen et al. 2015], the optimal sampling directions (the rows of Q̃



chosen, or equivalently the selection matrix S with Q̃ = SQ) are
found by optimizing (minimizing) the condition number,

κ(Q̃) =
σmax(Q̃)

σmin(Q̃)
, (6)

where σmax and σmin are the maximum and minimum singular val-
ues of Q̃. The condition number is a standard numerical tool, and
reducing it minimizes the sensitivity to noise and related errors.

Formally, consider a matrix equation such as equation 3, with Q̃c =
ỹ (with ỹ = x̃−µ̃ as usual). The condition number is the worst case
(upper bound) estimate of the ratio of fractional error δc in output
to fractional error/noise δỹ in input,

|δc|/|c|
|δỹ|/|ỹ| ≤ κ(Q̃). (7)

3.1 Limitations of Using the Condition Number

The condition number gives good results for point-sampled BRDF
measurement [Matusik et al. 2003b; Nielsen et al. 2015]. It can
be considered a measure of correlation between samples, and min-
imizing it chooses sampling directions that discriminate between
distinct BRDFs. However, we found that it did not easily extend to
near-field measurements, where a large number of related observa-
tions are made (Fig. 5). The observation matrix Q̃ is now often rank
deficient or nearly so, and close-by observations can drive the con-
dition number very large or even to infinity, reducing its ability to
discriminate and choose optimal directions. This leads to the para-
dox where fewer observations are preferred. In the next section, we
formally derive the expected error, considering both reconstruction
error and noise. For near-field BRDF measurement, we achieve a
dramatic improvement; one to two near-field images is adequate.

There are also many technical limitations of condition number.
First, there are two terms related to error: noise or other imperfec-
tions (deviations from MERL data); and reconstruction error caused
by having too few samples (even in the presence of zero noise or de-
viation). κ(Q̃) only bounds the first term (noise/deviations), but the
major component of the error is actually reconstruction error from
having fewer observations than principal components. Second, con-
dition number considers fractional error, assuming the error is pro-
portional to the signal. However, the accuracy of measurements
from real cameras is determined by a number of factors (shot noise,
read noise, dark current), which are constant or proportional to the
square root of intensity, and not the intensity itself. Indeed, well lit
pixels have less relative noise, and in this paper we more accurately
model the noise as a constant magnitude, independent of the signal.
Third, κ only provides a worst-case bound, while we are often inter-
ested in the average error, say over all of the materials in the MERL
BRDF database. Hence, our optimal sampling directions improve
somewhat on [Nielsen et al. 2015] even for point-sampling.

4 Sampling Error Analysis

In this section, we conduct a novel analysis of the BRDF recon-
struction error from a sparse set of samples. This error can be
minimized to find the optimal set of sampling directions, for both
conventional point-wise BRDF acquisition, and near-field image-
based measurement. For completeness, we consider three sources
of error: deviation from the MERL database, sparse sampling, and
noise in measurement. In practice, deviation error from the MERL
database is not easy to predict, nor is the real noise level easy to
evaluate. Therefore, our practical algorithm will focus on mini-
mizing the reconstruction error from sparse sampling, which is the
main factor in choosing suitable directions for BRDF acquisition.

Deviation from BRDF Model: We assume the BRDF being
measured lies in the subspace spanned by the MERL database (and
encapsulated in Q). If this is not the case, we can only find the
best projection of the MERL BRDF data. This error is present even
when we have all observations. Using pseudo-inverse Q+ of Q,

c = Q+(x− µ) = Q+y = Σ−1V T y, (8)

where we expand Q = V Σ. The resulting deviation error is,

Edeviation = |Qc− y| = |(V V T − I)y|. (9)

Note that V ∈ Rp×k is an orthogonal matrix with V TV = I ,
but since k < p, V V T ∈ Rp×p is not the identity. However,
if y is in the MERL BRDF database, it is given as a column of
Y T = (X − µ̂)T = V ΣUT . Using the SVD decomposition, it is
easy to see that (V V T − I)V ΣUT = 0, since V TV = I .

Therefore, Edeviation = 0 if the material is in the subspace Q
spanned by the MERL database, but will be nonzero if it lies out-
side this subspace. This is an intrinsic property of the material, and
independent of the sampling directions chosen.

Projection to Sampling Directions: Choosing a sparse set of
n sampling directions corresponds mathematically to choosing a
particular selection matrix S ∈ Rn×p. Noting that Q̃ = SQ and
ỹ = Sy by definition, so that SQc = Sy, we have

c̄ = (SQ)+η (Sy) , (10)

where in the last line we consider the regularized inverse of SQ, as
per equation 5, and Sy are the observations we actually make with
a camera or a gonioreflectometer. We use the bar on top of c to
denote the recovered coefficients, with error

c− c̄ =
(
Q+ − (SQ)+η S

)
y. (11)

Finally, the reconstruction error is given by

Erecon =
∣∣∣Q
(
Q+ − (SQ)+η S

)
y
∣∣∣ . (12)

This is the critical error we need to minimize, by choosing sam-
pling directions (and hence S) optimally. It provides the error in
reconstruction by measuring only a sparse set of samples, and ap-
plies equally whether those are point samples or multiple simultane-
ous image-based measurements. Note that this error exists even for
noise-free measurements, coming purely from reconstruction error
when using a sparse set of samples. (By using log-mapped BRDFs,
we also limit the ability of intense specularities to unduly influence
reconstruction error.) The condition number does not consider this
term directly, but only sensitivity to noise. Nevertheless, we show
in appendix A that minimizing condition number does adjust SQ
to reduce (but not minimize) Erecon.

Figure 3 shows both deviation and reconstruction errors for the
BRDFs in Fig. 2 (using a different set of 90 MERL materials as our
data/training set). As expected, reconstruction error Erecon domi-
nates in all cases. Blue acrylic has high Edeviation since the star-
shaped highlight deviates significantly from the database.

Noise Error: If we do have noisy data, the image observations y
will be corrupted, and we will measure ȳ = y+4, where4 is the
noise or error at each pixel. The resulting error in the coefficients
is given from equation 10 by (SQ)+η (S4). Therefore,

Enoise =
∣∣∣Q (SQ)+η S4

∣∣∣ . (13)



Figure 3: Comparison ofErecon andEdeviation for all materials in
Fig. 2. Reconstruction error Erecon is dominant for most BRDFs.

Conceptually, the condition number seeks to minimize this term.
However, condition number provides only a worst-case bound, as-
suming the noise is proportional to the signal, which is not a correct
assumption for cameras, where noise levels are relatively indepen-
dent of image intensity. Moreover, our main focus is on recon-
struction error from sampling (equation 12) rather than noise; one
typically acquires high-dynamic range images from high-end cam-
eras where noise is not the most significant challenge. Note that the
condition number analysis also does not consider the full process,
including the η-regularization. Finally, our focus is on near-field
capture where we have several, but closely-related observations.
This can lead to a very large condition number, while in fact the
additional observations help in reducing the error.

The total error is written simply as (the less than sign comes from
the triangle equality, since each error term considers the norm),

Etotal ≤ Edeviation + Erecon + Enoise. (14)

Final Error Metric: For simplicity, we do not explicitly consider
the deviation error, but just include it as part of the noise/error 4.
A final issue is choosing y in equation 12 and 4 in equation 13,
since these quantities depend on the measurements, camera noise,
and are not known a-priori. For y, we minimize over all of the
m materials in the MERL BRDF, essentially finding the sampling
directions that best reconstruct the MERL materials. Define yi =
xi − µ where xi ∈ Rp×1 is a vector corresponding to observations
of BRDF i in the MERL database. For the noise, we assume a
constant user-defined parameter β, corresponding to the noise/error
level, β = | 4 |, and use a noise vector O ∈ Rp×1, where each
element is simply 1. This can be seen as the expected magnitude of
gaussian-distributed noise, where β controls the magnitude. Putting
this together, our final expected error is,

E(S)=

(
1

m

m∑

i=1

∣∣∣Q
(
Q+ − (SQ)+η S

)
yi

∣∣∣
)

+β
∣∣∣Q (SQ)+η SO

∣∣∣ .

(15)
Note that we add errors from reconstruction and noise. Each term
on the right-hand side is a p × 1 vector, and we take its norm. We
also make explicit the dependence of E on selection matrix S.

In this paper, we focus mainly on minimizing the reconstruction
error Erecon by choosing sampling directions. Therefore, we typi-
cally take β = 0, but we also demonstrate nonzero noise β in sup-
plementary material. Finally, we emphasize that we have so far only
defined error; the next section discusses how to choose the sampling
directions, corresponding to the selection matrix S, to minimize this
expected error. In essence, we seek S = argmin E(S).
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Figure 4: Schematic of near-field reflectance acquisition. The half-
diff angles θh, θd, φd are with respect to the center of the sample.

5 Optimal Sampling Directions

We first describe selection of the optimal sampling directions for
measuring individual light-view pairs in a BRDF, as in [Nielsen
et al. 2015]. We refer to this as point sampling, to distinguish from
the near-field image-based BRDF measurement of our method.

5.1 Point-Sampled BRDF Directions

We consider the whole space of valid directions D = {θh, θd, φd}
in the MERL database. Our goal is to find the optimal subset Dn
with n directions, and form the corresponding n-row selection ma-
trix Sn. For point samples, each row in Sn is simply one direction
in Dn. In other words, Snij = 1 iff Dni = j. The optimal Dn (and
Sn) must be chosen to achieve the minimal error in equation 15.

We solve the optimization based on a numerical gradient descent
framework analogous to [Nielsen et al. 2015], which is shown in
that work to be more efficient and higher-quality than the greedy
method of [Matusik et al. 2003b]. (Standard numerical optimizers
do not work well, given the discrete BRDF space D and integer
steps needed, as well as invalid BRDF regions.) However, we re-
place the condition number with the accurate error in equation 15,
and extend the optimization framework to near-field measurements
in Sec. 5.2. We start with an empty set D0 with no directions in it.
Then we iteratively extend Dn to Dn+1 as follows:

1. Randomly pick t candidate directions fromD−Dn (Typically
we use t = 500.). For each candidate direction d, we form
a selection matrix Sd of Dn ∪ d, and evaluate the expected
error E(Sd) from equation 15. An initial Dn+1 and Sn+1 is
created with that Dn ∪ d which has a minimal E(Sd).

2. Randomly choose one of the n + 1 directions in Dn+1,
which we denote as (θh, θd, φd). Numerically esti-
mate the gradient of the error metric 5E(Sn+1) =

( δE(Sn+1)
δθh

, δE(Sn+1)
δθd

, δE(Sn+1)
δφd

). Move the chosen direc-
tion along 5E with one step-length (initial step-length is 3
cells) if the destination is a valid location in D. Repeat until
convergence (finding a new direction each time).

3. Reduce step-length and repeat step 2 until convergence with
step of 1 cell. Then the final Dn+1 and Sn+1 are formed.

5.2 Near-Field BRDF Directions

We now take advantage of sampling directions for all pixels in an
image, instead of only the center of the image for point sampling.
In general, the optimal directions depend on the camera’s projec-
tion matrix and the size of the planar sample. To develop a general
framework, we assume the image of interest is a circle on the plane



with radius r. We assume the camera moves on a hemisphere a
distance R from the center of the circle, and is always pointed to-
wards the center (i.e., the center pixel corresponds to the center of
the sample). We also assume the image always sees the full sample
(circle of interest). The key variable is the ratio ν = r/R, which
determines the linear field of view when the camera is at the zenith.
The angular field of view α = 2 tan−1 ν, which is the angle we use
to denote our near-field setup. A schematic of the setup is shown
in Figs. 1 and 4. Note that the optimization framework is general,
and can also apply to many other configurations. We discuss one-
camera multiple light and one-light multiple view cases in Sec. 8.

The goal is still to find an optimal subset of camera directions Dn.
In this case, each direction represents the direction to the camera
with respect to the center pixel. However, the corresponding selec-
tion matrix is no longer a n-row matrix. We replace Sn with S̄n in
near field acquisition. One direction in Dn forms a set of rows in
S̄n, each of which corresponds to one pixel sample in an image. In
general, there will be many more rows than for point-sampling, but
many of the directions will be very closely related. Our error metric
addresses this directly, and equation 15 still accurately predicts re-
construction error. We can now directly use S̄n instead of Sn, and
iteratively add directions fromD0 toDn as before. To validate the
convergence of our method, we repeated the optimization 50 times
with different random conditions, and fields of view. The results
all converge well. The supplementary material shows convergence
results for n = 2 near-field sampling with 25◦ field of view.

6 Evaluation with Simulations for Near-Field

We now evaluate the minimization of our error metric for near-
field image-based BRDF measurement, using simulations with the
MERL BRDF database. As shown in Fig. 5, our new error met-
ric has significant advantages over using the condition number for
the near-field case. (Visual results on rendered spheres are consis-
tent with these numerical errors; results from minimizing condition
number are often even worse than point-sampled measurements,
far off from ground truth). Moreover, as seen in Fig. 6, our new
image-based method is much more efficient than point-sampling;
both methods capture similar images of a flat sample, but we make
use of the full 2D image. Section 8 applies the framework to other
configurations like fixed camera with multiple lights, or vice versa.

The setup is shown in Fig. 4. For simplicity, we assume a distant
light source, and a near-field camera. In a single image, we capture
a 2D slice of the BRDF (we consider a circular patch). Since we
are assuming a flat sample with distant lighting, the illumination
direction is the same everywhere, but the viewing direction varies
at each pixel, enabling us to capture multiple observations simulta-
neously. It is clearly better to have a wider field of view to capture
greater view variation, but this may require large samples and close
cameras. In fact, we show that a relatively narrow field of view of
about 25◦ suffices for two-shot BRDF acquisition.

We minimize equation 15, choosing the optimal light-view direc-
tions, as explained in Sec. 5.2. To evaluate the reconstruction error
on the MERL BRDF, we use a slightly different set of directions
using 90 training BRDF samples, testing on the 10 other materi-
als not used at all in computing optimal directions. (We use the
same training/test materials as [Nielsen et al. 2015] to enable direct
comparisons to their approach.)

Figure 5 compares our average normalized reconstruction RMS er-
rors for the unknown materials for several fields of view, as a func-
tion of the number of images, and to optimizing condition number
alone. As shown in appendix B, condition number is actually a rea-
sonable heuristic for point-sampled BRDF measurement [Nielsen
et al. 2015], although our error metric performs somewhat better

Figure 5: Comparison of errors on unknown samples from our
method, and from minimizing condition number, for near-field re-
flectance acquisition with different fields of view. It is clear that we
produce better results for near-field reflectance acquisition.

Figure 6: Average RMS error over unknown samples for near-field
reflectance acquisition. We plot the results for a number of different
field of view angles. These results clearly show the benefits of our
method, often requiring an order of magnitude fewer samples than
point-sampled BRDF measurement.

even in that case. However, it breaks down for near-field acqui-
sition as seen in Fig. 5. With several correlated view directions,
condition number becomes very large, losing the ability to discrim-
inate between different sets of light-view directions. In some cases,
it oscillates or does not decrease with increasing samples, while our
method always performs well. The new error metric is essential for
determining optimal light-view directions in the near-field case.

In Fig. 6, we compare RMS errors for several fields of view,
and to point-sampled BRDF measurement (the top red curve is
from [Nielsen et al. 2015] while the improved orange curve is us-
ing our error metric for the point-sampled case). We see that near-
field reflectance acquisition requires almost an order of magnitude
fewer images than point-sampled BRDF measurement. Also note
that near-field acquisition converges quickly with increasing field
of view; while larger fields of view help, 25◦ is already nearly
best (supplementary shows similar curves even for extreme 85◦

and 175◦ fields of view). In fact, errors are comparable to standard
spherical image-based BRDF measurement [Marschner et al. 2000]
(with optimal directions chosen by our error metric; see Fig. 19 in
appendix B). However, our approach applies more generally, to flat
samples that cannot be obtained or wrapped on a sphere.

Figure 7 shows how errors decrease as more training materials are
added to the database (in random order), showing a steady decrease



Figure 7: Average RMS error versus number of materials in
database for 2 shot near-field sampling with 25◦ field of view.
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Figure 8: Tabulation of one and two near-field acquisition direc-
tions for fields of view ranging from 15◦ to 45◦. Note that direc-
tions correspond closely to mirror reflection, imaging the highlight
shape, and more grazing angles for Fresnel and other effects.
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Figure 9: Illustration of one- and two-shot camera/light configura-
tions for a linear field of view of 25◦.

with more example BRDFs. Note that the MERL subspace depends
on the specific BRDFs used, and the error curve can therefore in-
crease slightly with the addition of a new material.

Note that with two-shot imaging, we can obtain essentially the same
accuracy as 20 samples for point-sampled BRDF measurement, and
even single-shot near-field acquisition achieves similar accuracy as
about 5 samples for point-sampled BRDF measurement. These
comparisons, simulated on the MERL data, are shown in Fig. 2.
(We omit green fabric and silver metallic paint, whose results are
very similar to black soft plastic and two layer silver respectively).
We see that two-shot acquisition is adequate in nearly all cases. In
some examples like pink jasper, specular violet-phenolic and white
fabric, a single near-field image is comparable to 20 point-sampled
images. In a few cases, like blue acrylic, two near-field images
are required to achieve reasonable results; severe ringing is present
in reconstruction from a single image. For very broad specularities
like light red paint, we do not observe the full extent of the highlight
in any single image, and slightly underestimate highlight width.

(a) Setup A (b) Setup B

Figure 10: Photograph of our acquisition setup A and B. In setup
A, a 6-axis industrial robot precisely positions the camera, and an
illumination-arc positioned at φ = 0◦ illuminates the sample with
halogen lights in 7.5◦ θd intervals. In setup B, a high-angular-
resolution spherical gantry positions the light. A DSLR camera is
positioned by utilizing the two arms of the gantry and a mirror.

Finally, in Fig. 8, we tabulate our optimal 1,2 directions for near-
field angles of 15◦, 25◦, 35◦ and 45◦. Note that these directions
are with respect to the center of the sample; the local view direction
will vary at each pixel. For one image, we capture a slightly off-
specular direction (θh = 3◦) at an angle of incidence of about 50◦.
Similarly, for two images, the first direction for 15◦ field of view
is an exact specular reflection at 60◦, although this varies some-
what with field of view. This is as expected, imaging the details
of the specular highlight, around the center of the sample, and also
accords well with measurements previously used in the appearance
industry [Hunter and Judd 1939]. For most materials, this measure-
ment also captures the overall diffuse color. The second direction
usually varies somewhat from the specular (more for small fields of
view, less for larger fields of view where diffuse and specular re-
flection are often both available in the same image). Intuitively, the
second direction measures Fresnel effects at grazing angles (large
θd for fields of view 25◦ and higher). It can also help refine the
diffuse shading, especially for materials with broad specular lobes
that cover all of the first image. Figure 9 illustrates the one- and
two-shot light-view pairs for field of view 25◦.

7 Results: Near-Field BRDF Measurements

In this section, we apply the reconstruction method, and opti-
mal sampling directions (Sec. 6, Fig. 8), to image-based near-field
BRDF acquisitions of several real samples captured at two differ-
ent laboratories located in different continents (UCSD in USA and
DTU in Denmark). The two laboratory setups deviate slightly and
will be described next. We used both approaches to demonstrate the
robustness of our method with a variety of simple capture scenar-
ios, which do not require exact configuration or precise alignment
between views. We used a portion of the input sample with field of
view of 25◦, since that achieves near-optimal results (Fig. 6).

Setup A (DTU): In this setup, we utilize a high-precision robot-
vision system to precisely position the camera relative to a material
sample (Fig. 10 left). The angular error of this positioning is less
than 1 degree. The camera used is a Point Grey Grasshopper 3, in-
dustrial CCD camera, mounted with a Kowa LM16SC 16mm lens.
The light-source consists of arc holding halogen light-bulbs, evenly
distributed from 0◦ to 90◦ in 7.5◦ steps.

Setup B (UCSD): We use a (distant) Dolan-Jenner DC 950 light
source mounted on one arm of a spherical gantry; the gantry con-
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Figure 11: Results for near-field BRDF acquisition on real materials. Materials labeled with (A) and (B) are captured by setups A and B.
The material is shown first, followed by comparisons of input photographs and renderings with the measured BRDFs. These include both
original views, as well as two new lightings and views not used as input. All renderings use the BRDF reconstructed from the two captured
images. Good accuracy is obtained for all materials. We also visualize the full BRDF by rendering a sphere lit by an environment map. Note
that we use optimal directions in Fig. 8 from the full MERL data, which differ slightly from those using 90 materials in Fig. 2.

trols two high-precision arms having an angular resolution of 0.1◦.
However, the gantry’s viewing arm/camera is too far away to obtain
near-field images directly. We instead manually position a Canon
EOS 5D Mark III camera mounted on a tripod close to the input
sample (Fig. 10 right). In order to correctly position the camera, we
place the gantry’s two arms at the mirrored direction of the desired
viewing location, and adjust the camera until it points towards both
arms’ center through a mirror. The final position of the camera is
obtained through camera-calibration using a checkerboard.

The setups presented above have different limitations, in that the

light-source confines setup A to a limited set of view/illumination
configurations, whereas the manual positioning of the camera limits
the precision of setup B. In both cases, we find the configuration
that best matches the optimum directions in Figs. 8, 9. We thus
demonstrate that our method is robust towards small variations in
view/light configurations, while still obtaining very good results.

For acquisition, we capture multiple exposures to produce high-
dynamic range images; each exposure is averaged over multiple
images to reduce noise. The resulting values are then log-mapped,
since our framework works with log-mapped BRDFs. Light inten-
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Figure 12: Results for single image near-field BRDF acquisition on real materials, comparing one and two-shot reconstructions.

sity is calibrated using a Spectralon material sample. By proper
modeling of the intrinsic and extrinsic scene-parameters, all ob-
served pixels (BRDF values) can be combined to form x̃ or ỹ =
x̃− µ̃, using their corresponding view/light coordinates. With this,
BRDF coefficients c can be solved from equation 4, and the full
BRDF x recovered using equation 2, with a final step involving un-
doing the logarithmic mapping. We emphasize that all results in
this section were obtained from only two image configurations of a
standard flat planar sample, and in some cases only a single image.

Figure 11 shows several real samples, whose BRDFs we measured
using two-shot near-field acquisition (analogous to Fig. 2 for MERL
simulations). The first 5 rows are captured using setup A, and the
last 5 rows with setup B. The colors differ slightly between the in-
set photograph and the comparisons, because of the off-white color
of the actual light source. We compare the captured image (con-
sidering only the circular region of interest, per Fig. 4) with the
rendering for both light-view input configurations. We also show
two additional light-view configurations for validation, which were
not used at all as an input. The validation configurations are cho-
sen with (θh, θd, φd) = (0◦, 60◦, 0◦) ; (22.5◦, 22.5◦, 0◦) to verify
both specular and diffuse appearance. For visualization, we also
show a rendered sphere with the corresponding BRDF lit by an
environment map. The accompanying video shows the red cover,
white paper and silver macbook under changing viewing directions
with two illumination directions, comparing real and rendered re-
sults, including fading out the illumination to observe highlights
without saturation. It can be seen that the real and rendered im-
ages match well. Even when the actual material has some noise
or a slightly bumpy surface, we recover a smooth BRDF that is an
accurate representation, for both diffuse and more glossy materials.

Finally, Fig. 12 shows what can be achieved with a single-shot cap-
ture (using setup A). In many cases, one input image is adequate
to achieve reasonable results. However, the second input image
does help refine the specular reflection somewhat, when comparing
the rendered spheres. For example, white paper and yellow note-
book are largely diffuse in the first image, and accurate specular
and Fresnel information is only achieved at grazing angles in the
second view. Moreover, in some cases, the diffuse color and shad-
ing can be somewhat refined by using both images.

We briefly discuss some limitations. As with all reconstruction
methods based on the MERL data, we are ultimately limited by

the subspace spanned by that data. Our simulations and experi-
ments indicate excellent agreement with reference measurements,
but there is unavoidable error when the material deviates from the
MERL subspace. Moreover, for small field of view and BRDFs
with broad highlights, our measurements may not capture the full
range of the highlight in a single image, leading to under-estimating
its width in reconstruction (light red paint in Fig. 2). For very dark
materials, the noise can be over-fit, causing a blue tint for the black
metal in the fifth row of Fig. 11. Finally, we do not account for
surface imperfections or normal maps, which also contribute to the
“noise” above. Nevertheless, as seen in Fig. 11, we produce accu-
rate smooth BRDFs consistent with the input data.

8 Extension: Fixed Camera Setup

Our error analysis framework and optimization method for sam-
pling directions is general, and could be applied in future to many
different configurations. In this section, we consider a one-camera
multiple-light case, where we use a single near-field viewing di-
rection, while enabling multiple lighting directions. As before, we
show that good results are achieved with two-shot acquisition with
two lights. Note that we optimize for lights, and the single view
direction, but do so while constraining the camera view to be the
same (fixed) for all lighting directions. Using a fixed camera view
may also enable simpler acquisition hardware in future. We also
briefly discuss the symmetric case of a single fixed light direction,
with multiple views. We consider a field of view of 25◦.

Figure 13 shows the error of fixed camera, multiple light, and fixed
light, multiple view, as a function of the number of images, also
comparing to our point-sampling and near-field results. As before,
our error analysis framework is essential for finding optimal direc-
tions, and condition number does not yield meaningful results.

The errors for one or two images are significantly lower than for
point-sampling, and only somewhat more than the unconstrained
near-field case considered previously (note that one shot acquisi-
tion is the same for fixed or free camera setup). However, the lack
of flexibility when fixing light or view, leads to a slower decrease
in error for more images. Figure 14(a) indicates the optimal two-
image configuration for fixed camera and changing light. The cam-
era is at a 64◦ angle to the surface, with light sources positioned to
enable observation of both diffuse (light close to zenith) and specu-



Figure 13: Average RMS error over unknown samples for fixed
camera/multiple lights, and fixed lighting direction/multiple views.

θh[◦] θd[
◦] φd[

◦]

4 63 90
39 34 124

(a) fixed view 25◦

θh[◦] θd[
◦] φd[

◦]

4 63 90
39 33 126

(b) fixed light 25◦

Figure 14: Optimal configurations and angles for single view, mul-
tiple light and single light, multiple view cases, analogous to Fig. 9.
Angles are shown as standard in-out and Rusinkiewicz coordinates.

lar reflectance (light close to mirror direction). Having the camera
at an angle to the surface enables capture of some Fresnel informa-
tion, but a fixed camera setup will make it harder to fully reproduce
grazing angles. We also show the analogous configuration for fixed
light with multiple views in Fig. 14(b). Since fixed light/fixed view
configurations are symmetric with similar error, we focus on the
fixed camera setup, with only a single viewing direction, and there-
fore simpler calibration and alignment.

Figure 15 shows some synthetic MERL materials reconstructed
with fixed view and two images. Note that the first input image is
mostly specular while the second is mostly diffuse (dark for specu-
lar materials like metallic paint). The results are generally good in
most cases. However, some ringing can be observed on the mostly
diffuse white fabric. This corresponds to the higher error in Fig. 13,
compared to the near-field case where both light and camera can
move. Figure 16 shows comparable results for two real materi-
als captured with setup B. We also show a validation view (spec-
ular with light/camera at 45◦) not used as input. Good results are
achieved with the two-shot fixed camera setup, although there is
minor variance in the shape of the specular highlight.

Simple Extension to Spatially-Varying BRDFs: So far, we
have not considered spatial variation. We take a first step with a
simple extension for specific objects, which have two or more ma-
terials that have good coverage over the field of view (such as stars
spread out on a background). The fixed-camera setup is ideal for
this purpose, since no alignment/calibration between different near-
field views is required. Note that this is an initial effort, and further
work is required to extend the method to general SVBRDFs.

If we can cluster which pixels correspond to which material, we

Material Sample image
1

Sample image
2

Near field 25◦

2 (fixed view)
Reference

blue-
metallic-

paint2

green-
fabric

light-
red-paint

white-
fabric

Figure 15: MERL BRDFs reconstructed with fixed view and two
images. This configuration works well for most materials.

can separately estimate the BRDFs of the materials, using only the
subset of pixels for that BRDF. The key requirement is coverage
over the field of view, to enable one to see the full range of viewing
angles. Using only a subset of pixels does not significantly increase
error, especially since a 2D image already contains thousands to
millions of observations. In practice, we cluster based on color
observed in the second (diffuse) captured image. BRDFs are then
estimated separately for each cluster. Figure 17 shows results for
two greeting cards with spatial variation, acquired using setup B. In
this example, we consider the full field of view, rather than only a
circular region. As seen in Fig. 17, we cluster into three materials,
and recover full BRDFs for all three materials. The rendered images
are close to the captured, with the expected smoothing of surface
roughness. (Microstructure and normal variations in the real object
cause glints and rough specularities, which increase the apparent
size of the highlight for the real object). The validation view, not
used as input, also matches well.

9 Conclusions and Future Work

We have developed a method for acquisition of a full measured
isotropic 3D BRDF from only two perspective images of a flat sam-
ple, lit with a directional light source. This is at least an order of
magnitude reduction in effort over previous comparable techniques
to measure a full BRDF, and requires only a standard flat homoge-
neous material sample. Our method is based on using the full 2D
image information from a near-field view, and finds the best light-
ing and viewing directions by minimizing an estimate of the recon-
struction error. We provide tables of these directions for different
fields of view of the sample, which can directly be used by other re-
searchers. Our major technical contribution is a formal derivation of
reconstruction error, which provides a framework for minimization
for both point-sampled and near-field BRDF acquisition, producing
better results than the previous condition number heuristic.

In future work, we would like to explore other implications of our
method. The new reconstruction error framework could have broad
impact in problems like many light methods or computation of light
transport matrices, where one seeks to reconstruct from a sparse set
of samples. Finally, the one or two-shot nature of our method
opens the possibility of designing new simple hardware, with light
sources and camera in fixed position.
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Figure 16: Acquisition of real BRDFs from two images with fixed
camera. We also show a validation view not used as input.
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Appendix A: Details of Reconstruction Error

We analyze equation 12 in more detail, also relating it to the condition num-
ber metric. It is convenient to denote y = Qc, where c is the accurate
coefficient vector to reconstruct the BRDF. In this case, noting Q+Q = I ,

Erecon =
∣∣∣Q

(
Q+ − (SQ)+η S

)
Qc

∣∣∣ =
∣∣∣Q

(
I − (SQ)+η SQ

)
c
∣∣∣ .
(16)
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Figure 17: Acquisition of spatially-varying BRDFs from two images with fixed camera. Note the close match of captured and rendered
images, including in the validation view, not used as input (rightmost column). Rendered images are under environment lighting. We also
show the 3 material clusters used in each case, and spheres rendered with the full BRDFs recovered for each of the 3 materials.

Now, let us denote the SVD of SQ = Q̃ as AΛBT . From equation 5,
(SQ)+η = Q̃+

η = BΛ+
η A

T . Now,

(SQ)+η (SQ) = BΛ+
η A

TAΛBT = BΛ′BT , (17)

where Λ′ = Λ+
η Λ is a diagonal matrix. If the singular values in Λ are

σ (and those in Λ+
η are σ/(σ2 + η)), then the singular values in Λ′ are

σ2/(σ2 + η). Further simplifying,

Erecon =
∣∣∣Q

(
I −BΛ′BT

)
c
∣∣∣ =

∣∣∣Q
(
BΓBT

)
c
∣∣∣ , (18)

where Γ is also a diagonal matrix with singular values 1 − σ2

σ2+η
=

η/(σ2 + η). To understand Erecon, we care about the singular values in
Γ. The largest singular value is given by the minimum σmin, with value
η/(σ2

min + η). In general, we will reduce Erecon if we avoid small σ.
Indeed, the condition number optimization affects the σ values and tries to
make σmin larger to reduce the condition number. However, it is not ex-
plicitly minimizing the above expression. In contrast, our approach explic-
itly considers the end-to-end system, as well as the effect of Q, the MERL
BRDF materials encoded in the coefficient vector c, and the full spectrum
of singular values, to fully minimize the error Erecon.

Appendix B: Point-Sampled BRDF Measurement

The main text discusses near-field image-based BRDF measurement. Here,
we show that the new error metric also somewhat improves point-sampled
BRDF acquisition. We compare our results to [Nielsen et al. 2015] with
5 directions in Fig. 18. (The dotted black curve at the bottom is the lower
bound when using all of the input directions, essentially the unavoidable
error Edeviation.) Note that this evaluation is identical to Fig. 8 in their
paper, using the same graphs for their method, as well as parametric fits
and the industry-standard 5 directions in [Westlund and Meyer 2001]. It is
clear that we have somewhat lower error. This is not surprising since these
results are computed assuming the observations are accurate without noise,
while the condition number metric measures only sensitivity to noise, not
reconstruction error. The supplementary material shows similar results for
an example with 20 measurements and 2% noise. Nevertheless, minimizing
the condition number is a reasonable heuristic for this setup.

We can also plot the average error over the unknown samples in the MERL
BRDF database vs. the number of measurements n in Fig. 19. For both stan-
dard point-sampled acquisition, and the image-based spherical acquisition
method of [Marschner et al. 2000] (extended to use optimal directions com-
puted with either our error metric or using condition number), our method

Figure 18: Comparison of reconstruction with our new optimized 5 direc-
tions, and those from [Nielsen et al. 2015], parametric fits, and industry-
standard directions. Our method (green curve) produces lower error than
previous work (blue curve) on each BRDF.

Figure 19: Reconstruction error versus number of measurements. We
obtain a smooth graph, strictly lower error than previous work.

gives somewhat lower error. Another important observation is the shape of
the curves. The result from [Nielsen et al. 2015] oscillates somewhat, since
the condition number metric is not directly tied to (or always monotonic
with) the actual error. By minimizing the actual expected reconstruction
error, we obtain a smooth graph. The supplementary material provides our
improved point-sampling directions, and comparisons for a few materials
from the MERL database. In some cases we do qualitatively better, while
there is a minor improvement in other cases. In general, our 5 directions is
comparable to 20 samples using the previous condition number metric.
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In the Section for Image Analysis and Computer Graphics at the Technical Uni-
versity of Denmark we have an ABB welding robot at our hands. By equipping
the robot with a camera and combining this setup with an arc-formed point-light
array, we can semi-densely sample light reflections off a flat material sample for
various configurations of incoming and outgoing light directions. See figure 1
for an illustration of the measurement system.

The basic idea is to move the camera around a sample which is placed under
the light arc, while capturing the sample reflectance under each of the light
sources, thus sampling all combinations of incoming and outgoing light rays.
Remembering that the BRDF obeys Helmholtz reciprocity, we actually sample
both configurations of light and camera positions in one go. In addition, as
previously mentioned, we limit ourselves to isotropic BRDFs, why a rotation
around the surface normal of the incoming and outgoing ray does not change
the BRDF. Thus, we can simply keep the light arc at a fixed position and only
move the camera around, hereby sampling the entire isotropic BRDF.

The factors limiting how dense we can sample surface reflectance are the spacing
between the light-sources in the arc and the resolution of the Cartesian space in
which the robot moves. The robot has a non-uniform grid of reachable positions,
but in general the spacing between two reachable positions is sub-millimeter.
The light arc is constructed with a fixed set of bulbs with a spacing of 7.5◦

and has a radius of 1000[mm]. Thus, the resolution of the robot is orders of
magnitude higher than that of the light arc. However, we have assessed that
a bulb spacing of 7.5◦ provides a good compromise between sample rate and
measurement time, thus providing a semi-dense sampling within a reasonable
time frame.

The light sources in the arc must be as close to point sources as possible. In
theory, with only one light source on, this will ensure that each infinitesimal
point on the sample surface will receive only a single, incoming ray of light. In
effect, we can measure the reflectance of a single ray at an infinitesimal point
by narrowing the camera’s field of view to a fraction of a degree, such that it
observes only a single outgoing ray at a time. That can be done by combining
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Figure 1: Illustration of the surface reflectance measuring system. It contains
the robot, the light arc, a table, a sample stand, and the sample, which is
illustrated by the gray box.

a long focal length and image cropping. However, in practice, it is impossible
to move the camera around the sample while keeping its narrow field of view
exactly aligned with the same infinitesimal point on the surface. Thus, a broader
field of view is used, and the mean value of reflected light within the field of
view is used as an estimate of the point radiance. In addition, light bulbs are
not be perfect point sources as they have a spatial extend. Thus, they would
have to be placed infinitely far away to act as true point sources. As it is not
feasible to have a light arc with an infinite radius, we have compromised by
choosing a sample-to-light distance which is at least three times longer than the
camera-to-sample distance.

The camera is moved around the sample point such that it follows the surface
of a sphere which is centered on the sample point and has a radius of 350[mm].
The camera is oriented such that it always points toward the sphere center. The
reflected light is symmetric around the axis running parallel with, and through,
the light arc. Put in another way, the light reflected to the right of the arc
is identical to that reflected to the left. Thus, if we sample only the first half
of the hemisphere from azimuth 0◦ to 180◦, the other half going from 180◦ to
360◦ is simply identical to the first half, mirrored over the axis of the light arc,
given that the arc is positioned at 0◦. The camera path is defined in spherical
coordinates with a resolution of 7.5◦ in both azimuth and elevation. Thus, the
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Figure 2: Illustration of the camera’s trajectory. The star indicates the sphere
center, the purple dots indicates sample positions, and the green lines indicates
the camera orientation. We do not sample elevations of 0◦ as they cause no
reflection. Thus, the first row is located at an elevation of 7.5◦.

Cartesian equivalent of a given spherical camera position is calculated as follows:

xij = x0 + r sin θi cosφj [mm] (1)
yij = y0 + r sin θi sinφj [mm] (2)
zij = z0 + r cos θi [mm] (3)

Where:
θi is the inclination of sample row i. [rad]
φj is the inclination of sample column j. [rad]

[x0, y0, z0]T is the center of the sphere. [mm]

The orientation of the camera is calculated as follows:

βij = π

2 + θi [rad] (4)

γij = φj [rad] (5)
Where:

βij is the camera pitch. [rad]
γij is the camera yaw. [rad]

The Cartesian coordinates and orientations for each sample point are calculated
and stored in a matrix, which at run time is fed one-by-one to the robot in
order to move it, and thus the camera, around. In practice, the orientation
of the camera is converted to quaternion representation to comply with the
robot controller. The camera trajectory with sample positions are illustrated in
figure 2.
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Figure 3: Illustration of the robot coordinate system and the relative position
of the light arc. The intersection between the two stippled lines indicates the
sphere path center where the sample is placed. The azimuth of the incoming
light is θi = 90◦.

Note that the orientation of the robots coordinate system has to be taken into
account. In practice, points lying on the robots x-axis corresponds to an azimuth
of 0◦. In order to operate the robot within its working area, we had to position
the arc along the robots y-axis, why our coordinate system is rotated by 90◦.
This is illustrated in figure 3.

In order to truly measure the BRDF of a material, we would have to know the
exact irradiance of the light sources in all directions and the correspondence
between camera pixel intensity and radiance. In addition, we would need to
know the exact geometry between the light sources, the sample surface, and
the camera in order to get an accurate measure of the reflectance. This is
difficult and impractical to measure. Instead, we get around this problem by
using Spectralon R©. Spectralon is patented and manufactured by Labsphere.
In short, it is a material which has > 99% diffuse reflectance. Its reflection
is thus very Lambertian, meaning that the relationship between radiance and
irradiance is approximately given by L(L) = nT lE where n and l are the surface
normal and the unit-length incoming light direction, respectively. Note that the
outgoing direction is not a part of the relationship, why the radiance is identical
for all view directions. Thus, Spectralon uniformly spreads the incoming flux at
a point over the hemisphere of that point with very little loss, meaning that the
radiance integrated over the hemisphere is approximately equal to the incoming
irradiance. This allows us to use Spectralon as a reference to which a given
material sample can be compared. Put in another way, we can measure the
BRDF for a given pair of incoming and outgoing directions for a given material
by calculating the ratio between the reflected intensity of the material and the
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Figure 4: Illustration of the measurement process for a single light source. The
image is composed of a sequence of images as the robot sweeps across one row
of the path sphere.

reflected intensity of Spectralon for the same directions. This is defined as
follows:

fr(θi, θo, φo) = I(M)(θi, θo, φo)
I(S)(θi, θo, φo) [sr−1] (6)

Where:
I(M) is the intensity of the material. [ · ]
I(S) is the intensity of Spectrolon. [ · ]

Note that this is a relative measure, why the unit which is used to measure the
intensity is irrelevant. It could be flux, but it could as well be pixel intensity as
a count from 0 to 1 or from 0 to 255.

The above constitutes all the components needed for constructing a BRDF
measurement system. The work flow is defined in table 1 and the process is
illustrated in figure 4.
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Table 1: Work flow to measure a BRDF
Step Time Notes
1 Tool transform 1[h] In practice, the tool trans-

form only has to be estimated
once. However, as the tools
changes with temperature, hu-
midity, and wear and tear, it
is a good idea to re-estimate it
regularly.

2 Alignment of Spectralon to arc 5[min] The surface of the Spectralon
sample has to be carefully
aligned with the center of the
semicircle formed by the light
arc.

3 Spectralon measurement 3[h] As with the tool transform, this
process can be omitted. How-
ever, it should be conducted at
least once for every new mea-
surement day.

4 Alignment of material to arc 5[min] Replace the spectralon sam-
ple with the material sample.
Make sure the surface of the
material align exactly with the
surface of the Spectralon.

5 Material measurement 3[h]
6 BRDF calculation 5[min] Use Equation 6 to calculate the

BRDF of the material.

Total 7[h]:15[min]
Additional samples 3[h]:10[min]
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1 Introduction

When measuring BRDFs in a gonioreflectometer setup, usually one of two strate-
gies is employed: the absolute, or the relative approach.
In the absolute method, the radiance of both the sample and the light-source
are measured, and the two are compared to obtain the reflectance and BRDF.
This, however, requires a direct measurement of the light-source, introducing a
need for very high dynamic range detector, which may be a limiting factor in
many setups.
In the relative method, a reference sample with known reflectance, usually
Spectralon R©, is used to infer the irradiance of the unknown material. Based on
this, the reflectance and BRDF can be estimated using a much lower detector
dynamic range. Obviously this advantage breaks when mirror-like objects are
being measured, as this would correspond to measuring the light-source itself.

In this technical note we explain the relative method in detail, with the inten-
tion of enabling the reader to conduct correct BRDF measurements using this
method. We utilize a camera-based gonioreflectometer and a flat Spectralon R©

reference sample.

2 Experiment Geometry

Before covering the radiance-computations, let us initially define the geometry
of the experiment, with a special emphasis on the camera geometry. In Fig. 1
the layout of a standard measurement is illustrated: A point on a material
sample is illuminated by a light-source from an angle θi, and a camera observes
the point in a single pixel at an angle θo and a distance of r.

In this setup we assume known experiment geometry (θi, θo, r), as well as known
camera parameters (f,D). What is usually unknown, however, is the solid angle,
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Figure 1: Layout with thin lens model camera as a detector. The camera is
placed at a distance r from the sample, at an angle θo relative to the surface
normal. Illumination comes from a point-source at angle θi. The camera has a
focal length f and a lens diameter of D. Ignoring vignetting, any pixel on the
camera CCD will approximately cover the solid angle Ω from the point measured
on the sample.

Ω, observed by a single pixel on the CCD chip. This angle is necessary for scaling
reflectances, as will be shown in Sec. 4.
The angle ω, depicted in Fig. 1 is easily seen to be:

ω = arctan
(
D

2r

)
[rad] (1)

From this, the solid angle Ω, corresponding to a cone with an apex angle of 2ω,
is:

Ω = 2π (1− cos (ω)) (2)

= 2π
(

1− cos
(

arctan
(
D

2r

)))
(3)

= 2π


1− 1√

1 +
(
D
2r
)2


 [sr] (4)

Thus, if ignoring vignetting effects that may occur at non-center pixels, the solid
angle observed by a pixel on the camera CCD is approximately given by Eq. 4.
Note however that this is a very simplified model of the camera system and as
such, Eq. 4 is only an approximation.

The effective diameter, D, of the lens is not (necessarily) the physical diameter
of the optical element. This can be due to the construction of the lens or,
especially, due to the camera-iris controlling the exposure. Instead, D can be
inferred by the focal length f and the f-number (F ) used during acquisition.
The relation between the effective lens diameter and the f-number is given by:

D = f

F
[m] (5)
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3 Camera Exposure Estimation

We here briefly introduce the principles behind converting from pixel intensities,
Z, to exposure values, X, up to a factor of scale.
For convenience we remind the reader of the definition of radiant exposure:

H = E ·∆t,
[
J/m2] (6)

where, E is the irradiance and ∆t is the exposure time in seconds.
In our case we do not know the exact exposure, but only to a factor of scale, and
as such refrain from using H and instead use X to emphasize that the absolute
value is unknown:

X = k ·H (7)

The CCD in a digital camera is usually very linear, i.e. there is a linear relation
between the CCD signal and the irradiance. Often, however, camera manufac-
turers introduce some non-linear mapping, f , for various purposes. As a result,
one cannot expect a linear relationship and should instead estimate a correct
mapping to compensate for any non-linearities.
Debevec and Malik present in [1] an approach for estimating f−1, such that
X = f−1 (Z), under the assumption of f being a monotonically increasing func-
tion. Their method involves capturing a range of images of a scene using a range
of known exposure times, and they show that in log-space the mapping f−1 can
be solved as a linear system. We will not present the details of the method here,
but refer the reader to [1] for more information.

Figure 2: Camera response function, f−1, for a Point Grey Scorpion CCD
camera. The response function was obtained using 5 images acquired with
exposure-times of ∆t = {12.5, 25, 50, 100, 200}ms. As can be seen for pixel
intensities up to around 200-225, the response function is very linear.

The method introduced above enables two important parts of BRDF acquisition:
1) It allows for the conversion to exposure (and irradiance) from pixel-intensities;
and 2) It enables combining multiple images with different exposures into high
dynamic range images.
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In Fig. 2 an example of a measured Camera Response Function, f−1, is shown.
The function was estimated based on 5 images with exposure times of ∆t =
{12.5, 25, 50, 100, 200}ms. For this camera the response function is very linear
for pixel intensities up to 200-225.

4 BRDF Estimation using Spectralon

In the relative method reflectance and BRDF are estimated by inspecting the
ratio between the sensor-irradiance observing an unknown material and the
sensor-irradiance when observing a known reference material from the same di-
rection. In practice this corresponds to, for a given angle, capturing an image of
the unknown material, capturing an image of the reference material, converting
to exposure values, and calculating the ratio between the two. As stated in the
introduction, we use Spectralon as a reference material due to the unique prop-
erty that it has a near unit directional reflectance for all incoming and outgoing
directions.

Let the observed exposure in a pixel imaging the unknown material be denoted
Xmat and let the observed exposure in the same pixel imaging the reference
material be denoted Xref. The ratio of the two scaled exposures will then be
equal to the ratio of the irradiances:

Xmat

Xref
= kHmat

kHref
= Hmat

Href
= Emat ∆t
Eref ∆t = Emat

Eref
(8)

In addition, since the images are acquired with the same imaging device, the
pixel size of the two observations must be equal. We therefore see that the ratio
of irradiances is in fact equal to the ratio of the radiant flux received:

Emat

Eref
=
dΦmat

dA
dΦref

dA

= dΦmat

dΦref
(9)

Let us introduce the solid angle covered by a single pixel, Ωpixel, described in
Sec. 2. The Spectralon material has the unique property that the directional
reflectance is near unity (ρref ≈ 1). This means that the reflected flux, Φref,
equals the received flux from the illumination source, Φill, scaled by the fraction
of the hemisphere covered by the observer solid angle, Ωpixel

π , and a cosine term:

Φref = Φill Ωpixel cos θo
π

(10)

By definition ρmat = dΦmat
dΦill

. Hence we can replace the two, revealing that the
ratio of the observed pixel intensities is in fact the scaled reflectance of the
unknown material:

dΦmat

dΦref
= dΦmat

dΦill Ωpixel cos θo

π

= ρmat π

Ωpixel cos θo
(11)
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We thus see that the ratio between the observed exposure of an unknown ma-
terial sample, and the observed exposure of a Spectralon reference sample, is
closely connected to the reflectance of the unknown material sample:

ρmat = dΦmat

dΦref

Ωpixel cos θo
π

(12)

= Xmat

Xref

Ωpixel cos θo
π

. (13)

The BRDF is defined as the ratio between radiance leaving the sample and the
irradiance hitting the sample:

fmat = dLmat

dEill

[
sr−1] (14)

With radiance being defined as:

Lmat = d2Φmat

dΩ dA cos θo
[
W ·m−2 · sr−1] , (15)

and irradiance defined as:

Eill = dΦill

dA

[
W ·m−2] , (16)

it can be recognized that the BRDF may be rewritten to:

fmat =
d2Φmat

dΩ dA cos θo

dΦill
dA

= d2Φmat

dΦill dΩ cos θo
= dρmat

dΩ cosθo

≈ ρmat

Ωpixel cos θo
[
sr−1] . (17)

We thus see that in order to calculate the approximate BRDF value for a given
view/illumination configuration, the reflectance of the material should be scaled
by the solid angle spanned by a pixel and the cosine of the observer to account
for geometry.
Combining this with the derivation from Eq. 13, we obtain:

fmat ≈ Xmat

Xref π
. (18)

To conclude, the estimation of the BRDF requires only the ratio between the
two exposures captured, Xmat and Xref. If reflectance is needed, knowledge of
the direction from which one is observing a sample, and the size of the solid
angle covered by the camera, is also required.
A summery of the full acquisition procedure is as follows:
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1. From a set of calibration images, recover the inverse response function
(f−1) of the camera, using the method of Debevec and Malik [1].

2. Capture an image of the material sample and another image of a Spec-
tralon reference sample.

3. Convert pixel intensities, Zmat and Zref, to exposures, Xmat and Xref.

4. Estimate the material BRDF, fmat, for the given direction using Eq. 18.

5. (Optionally) Using the known setup parameters, θo, r, D (or f and F ),
estimate the solid angle covered, Ωpixel from Eq. 4, and scale the BRDF
value to a reflectance value using Eq. 13.

5 Different surface normals

In eq. (18) we assume that the surface normal of the reference (Spectralon)
sample is equal to that of the material sample. Furthermore, we assume that the
exposures of the reference and material were obtained from the same physical
distance. In scenarios where more complex geometry is being observed this
assumption breaks, and the light-source intensities inferred by the reference
sample should be scaled accordingly. The scenario is depicted in Fig. 3, where
d is the distance from the light-source to the observed point on the surface, and
θi is the angle between the surface normal at the same point and the direction
to the light-source.

θi,ref

Illu
mination

dref
θi,mat

Illu
mination

dmat

Spectralon reference Material sample

Figure 3: A case where the normal of the material sample is not equal to the
normal of the reference (Spectralon) sample. d is the distance from the light-
source to the observed point and θi is the angle between the surface normal and
the direction to the light-source.

To compensate for the change in surface normal, we simply normalize by the
cosine term the reference was observed under and scale by the cosine term the
material was observed under:

fmat ≈ Xmat

Xref
cos(θi,mat)
cos(θi,ref ) π

≈ Xmat

Xref π

cos(θi,mat)
cos(θi,ref ) (19)
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To address the difference in distance to the samples, knowing that the intensity
of light follows the inverse square law, we can scale by the squared ratio of
distances.

fmat ≈ Xmat

Xref π

cos(θi,ref )
cos(θi,mat)

d2
mat

d2
ref

(20)

Equation (20) thus constitutes the BRDF conversion that fully compensates for
differing surface normals and observation illumination distances as depicted in
figure 3. Note that Xref , θi,ref and dref , providing the illumination information
in the scene, are all constant and can be precomputed:

kill = cos(θi,ref )
Xref d2

ref π
(21)

fmat ≈ Xmat
d2
mat

cos(θi,mat)
kill (22)
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Proper radiometric modelling is crucial for reproducing scene-appearance ac-
curately. This section describes how the radiometric scene-properties can be
acquired. We separate this task into two subtasks:

1. Capturing and modelling global radiometric effects.

2. Capturing and modelling local radiometric effects.

In the global radiometric effects, we seek to capture and model illumination-
sources affecting our scene. This is effectively done through the use of high
dynamic range environment maps, under the assumption that the lights can in
fact be modelled as being infinitely far away.

In the following subsections we describe the details concerning capturing and
modelling environment maps.

1 Global Effects: Environment Map

To model global lighting effects we utilize the method of Debevec et al. [1] to
capture a floating point precision spherical image of the surrounding scene. By
assuming all elements captured in this spherical image are infinitely distant, all
pixels composing the image may be treated as distant light sources allowing
faithful environment lighting of local geometry. Here, we denote this image as
an ”environment map” and in fig 1 an example of such a map is shown. We
employ the latitude-longitude panoramic format proposed by Reinhard et al. [3]

There are different approaches to capturing a spherical image of the surrounding
scene using e.g. mirror spheres, stitching multiple images together, or panoramic

1



Figure 1: A 360◦ × 180◦ image of the scene surroundings. We denote this an
”environment map”

Figure 2: Mirror probe placed in scene for environment capture

cameras. Here, we utilize a highly polished bearing as a mirror sphere probe.
In fig 2 a sample image of a scene with our probe is shown. By knowing the
position of the camera and the fact that it is a sphere being observed, every
pixel in the environment map has a unique location on the probe image, with
the exception of the singularity directly behind the mirror probe. We will now
describe the details in doing this probe unwrapping. For simplicity we assume
an orthographic projection, i.e. assuming parallel view directions for all pixels
of the sphere, but the extension to a perspective projection is trivial and only
requires additional knowledge of the camera Field of View and distance to probe.

Let Env(φ, θ) be the environment map (fig. 3, right) where φ ∈ [−π, π] is the
azimuthal angle and θ ∈ [0, π] is the inclination. Furthermore, let Probe(x, y)
be the cropped probe image (fig. 3, center), where x, y ∈ [0, 1]. For a given
resolution of φ and θ we wish to go through all locations in the environment map
and lookup the corresponding intensity in the probe image. As with almost any
image re-sampling, to ensure a smooth result with no holes or discontinuities,
it is important that the mapping is done from the end-result’s (environment
map’s) point of view, and not from the source’s.

We define our coordinate system such that the direction to the camera is aligned
with the x-axis (fig. 3, left), i.e. V = [1, 0, 0]T . For a given location in the

2



Figure 3: Unwrapping of spherical probe. The camera is assumed distant and
aligned with the x-axis (left), such that an orthogonal projection of the XY-plane
is observed (center). Every pixel/location in the environment map (right) thus
has a unique location in the probe image, with the exception of the singularity
precisely behind the sphere.

environment map, (φs, θs), the direction vector to this pixel, or light-source, is:

L =



cos(φs) sin(θs)
sin(φs) sin(θs)

cos(θs)


 (1)

Now since we are dealing with perfect reflections, we know that at any point
on the sphere probe, the view- and light-directions, L and V , are symmetrical
around the surface normal, N . Hence, for sampling direction (φs, θs) in the
environment map, the surface normal required to cause the reflection can be
calculated as the normalized average of light and view:

N = L+ V

‖L+ V ‖ (2)

Also here we see the singularity when L = −V . This is however of minor
importance in practice.

Since the geometry being dealt with is a sphere, there is a unique location in
the probe image (fig. 3, center) that holds the normal determined in eq. 2. By
having the camera aligned with the x-axis of the world-coordinate system, the
probe image will be aligned with the y/z-plane. The y- and z- components of N
are thus directly related to the sampling position, (xs, ys), in the probe image:

[
xs

ys

]
=
[
(Ny + 1)/2
(Nz + 1)/2

]
(3)

Thus we get:
Env(φs, θs) = Probe(xs, ys) (4)

Let us take a simple example, where we wish to lookup the environment map
intensity at the direction (φs, θs) = (0◦, 90◦), i.e. in the camera direction. Here,
we see that:

L(0, π/2) = [1, 0, 0]T (5)
N = (L+ V )/‖L+ V ‖ = [1, 0, 0]T (6)[
xs

ys

]
=

[
(Ny + 1)/2
(Nz + 1)/2

]
=
[
(0 + 1)/2
(0 + 1)/2

]
=
[
(0.5
0.5

]
(7)
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Correctly we get that the sampling location is located in the center of the
captured probe image (fig. 3, center).

There may be scenarios where it is inconvenient to define the global coordinate
system’s x-axis as aligned with the camera direction. One example is if the cam-
era was not level when capturing the probe image. This would cause a ”wavy”
horizon in the environment map, since the horizon at θ = π/2 is misaligned with
the true horizon. Another example could be if two images, taken from different
angles, were to be merged to get rid of the before mentioned singularity.

In such cases we simply need to do a basis rotation before looking up values.
Let Ṽ be the non-x-axis-aligned direction to the camera and let L̃ be the light
direction we wish to lookup. The normal in this non-aligned system, Ñ is again
found through eq. 2. In order to be able to obtain sampling coordinates through
eq. 3, Ñ needs to be realigned to the system where V aligns with this x-axis.
This may be done by the rotation matrix, R:

B1 = Ṽ

B2 = [0, 0, 1]T ×B1

B3 = B1 ×B2

R = [B1 B2 B3]T (8)

Hereby the aligned normal, N , is obtained through:

N = RÑ = R
(
(L̃+ Ṽ )/‖L̃+ Ṽ ‖

)
(9)

Allowing use of an arbitrary view direction, Ṽ .

The mapping operations presented above are highly parallelizable. In prac-
tice it is thus desirable to do these calculations on a GPU. In code sample 1,
an OpenGL implementation using the GLSL shader language, shows how this
mapping can be implemented on the graphics card. Using this approach, a 2K
environment map is easily calculated in less than a second.

While we went into detail on how to unwrap a spherical probe image for use in
rendering, we will omit the details on how to obtain high dynamic range images
of the probes. Instead we refer the reader to Debevec and Malik’s well written
paper, ”Recovering high dynamic range radiance maps from photographs” [2].

4



Code sample 1: GLSL fragment shader for sphere-unwrapping.
#v e r s i o n 330
#d e f i n e M PI 3.14159265
uniform vec2 uvSize ; // S i z e o f environment map ( width , h e i g h t )
uniform vec2 p r o b e I m a g e S i z e ; // S i z e o f probe image
uniform vec2 probe Center ; // Center o f probe in image
uniform f l o a t pr obeRadiu s ; // Radius o f probe in image
uniform sampler2D probeIm ; // Texture c o n t a i n i n g probe image
uniform f l o a t th etaOffse t = 0 . 0 ; //Camera o f f s e t in s p h e r i c a l ←↩

c o o r d i n a t e s
uniform f l o a t phiOffset = 0 . 0 ;

out vec4 FragColor ; //Output i n t e n s i t y

void main ( )
{

vec2 pNorm = vec2 ( gl FragCoord ) / uvSize ; // Normalized output p i x e l ←↩
c o o r d i n a t e

f l o a t az = pNorm . x ∗2∗ M_PI ; // output azimuthal ang le
f l o a t inc = pNorm . y∗ M_PI ; // output i n c l i n a t i o n
vec3 V = vec3 ( cos ( phiOffset ) ∗ s i n ( M_PI/2+ thetaOffset ) ,

s i n ( phiOffset ) ∗ s i n ( M_PI/2+ thetaOffset ) ,
cos ( M_PI/2+ th etaOffset ) ) ; //View v e c t o r

vec3 L = vec3 ( cos ( az ) ∗ s i n ( inc ) ,
s i n ( az ) ∗ s i n ( inc ) ,
cos ( inc ) ) ; // Light v e c t o r

vec3 N = normal ize ( V+L ) ; // S u r f a c e normal

// Create bas i sc hange matrix to a l i g n V with x−a x i s :
vec3 B1 = V ;
vec3 B2 = c r o s s ( vec3 ( 0 , 0 , 1 ) , B1 ) ; // Assuming camera i s h o r i z o n t a l
vec3 B3 = c r o s s ( B1 , B2 ) ;
mat3x3 R = mat3x3 ( B1 , B2 , B3 ) ;
vec3 Nr = t r a n s p o s e ( R ) ∗N ;

vec2 probeCoord = vec2 ( Nr . y , Nr . z ) ; // Normalized probe c o o r d i n a t e to←↩
lookup

vec2 p r o b e T e x C o o r d = ( probeCenter + probeCoord ∗ probeRadius ) /←↩
p r o b e I m a g e S i z e ; // Texture c o o r d i n a t e s

FragColor = t e x t u r e ( probeIm , p r o b e T e x C o o r d ) ; // sample value and ←↩
output

}
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