207 research outputs found

    Optimum Illuminant Determination Based on Reduced and Optimized Multispectral Spectroscopy to Enhance Vein Detection

    Get PDF
    Venepuncture as a mode of gaining intravenous access has been a prime practice in surgical procedures and other conventional drug administering into a patient. Biomedical engineering has stressed relatively high scale of importance in the spectroscopic analysis of vein imaging as a sparky approach to promote a non-invasive catheterization. However, medical personnel are challenged by the physiological circumstances of skin tone, presence of scars and irregularity of the epidermal topology, when performing subcutaneous vein localization, which led them to increase number of insertion attempts. Hence, this paper proposes an optimized solution to provide enhanced visual aids for personnel to achieve successful vein catheterization at first attempt

    A Portable Multispectral Vein Imaging System

    Get PDF
    Phlebotomy may cause unnecessary injuries to a patient whose veins are not easily visible to a healthcare professional. To mitigate this problem we designed a new system to image subcutaneous veins. Multispectral images were obtained using a microprocessor, an IR (infrared) camera, different wavelengths of NIR (near-infrared) sources, and an IR band-pass filter. Raw vein images were enhanced, colored, and displayed on a monitor using an easy-to-use interface. The mean dice similarity index (DSI) between the vein border specified by a doctor on the raw images manually and the automated segmented by the proposed system is determined as 0.92 ± 2.1 for 20 subjects. Also, the average peak signal-to-noise ratio (PSNR) obtained a high value of 68.37 ± 1.56 from the enhanced image. Phlebotomists can easily observe the subcutaneous veins in real-time with the three different options using the proposed device. As a result, this study advances the vein imaging field which has the potential to reduce injury to the patient during venipuncture

    Augmented reality based real-time subcutaneous vein imaging system

    Get PDF
    A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed

    Remote Non-invasive Stereoscopic Imaging of Blood Vessels: First In-vivo Results of a New Multispectral Contrast Enhancement Technology

    Get PDF
    We describe a contactless optical technique selectively enhancing superficial blood vessels below variously pigmented intact human skin by combining images in different spectral bands. Two CMOS-cameras, with apochromatic lenses and dual-band LED-arrays, simultaneously streamed Left (L) and Right (R) image data to a dual-processor PC. Both cameras captured color images within the visible range (VIS, 400–780 nm) and grey-scale images within the near infrared range (NIR, 910–920 nm) by sequentially switching between LED-array emission bands. Image-size-settings of 1280 × 1024 for VIS & 640 × 512 for NIR produced 12 cycles/s (1 cycle = 1 VIS L&R-pair + 1 NIR L&R-pair). Decreasing image-size-settings (640 × 512 for VIS and 320 × 256 for NIR) increased camera-speed to 25 cycles/s. Contrasts from below the tissue surface were algorithmically distinguished from surface shadows, reflections, etc. Thus blood vessels were selectively enhanced and back-projected into the stereoscopic VIS-color-image using either a 3D-display or conventional shutter glasses. As a first usability reconnaissance we applied this custom-built mobile stereoscopic camera for several clinical settings: • blood withdrawal; • vein inspection in dark skin; • vein detection through iodide; • varicose vein and nevi pigmentosum inspection. Our technique improves blood vessel visualization compared to the naked eye, and supports depth perception

    Optimum Illuminant Determination Based on Reduced and Optimized Multispectral Spectroscopy to Enhance Vein Detection

    Get PDF
    Venepuncture as a mode of gaining intravenous access has been a prime practice in surgical procedures and other conventional drug administering into a patient. Biomedical engineering has stressed relatively high scale of importance in the spectroscopic analysis of vein imaging as a sparky approach to promote a non-invasive catheterization. However, medical personnel are challenged by the physiological circumstances of skin tone, presence of scars and irregularity of the epidermal topology, when performing subcutaneous vein localization, which led them to increase number of insertion attempts. Hence, this paper proposes an optimized solution to provide enhanced visual aids for personnel to achieve successful vein catheterization at first attempt

    Innovative algorithm to evaluate the capabilities of visual, near infrared, and infrared technologies for the detection of veins for intravenous cannulation

    Get PDF
    Intravenous cannulation is the process of inserting a cannula into a vein to administrate medication, fluids, or to take blood samples. The process of identification and of locating veins plays an important role during the intravenous cannulation procedure to reduce health care costs and the suffering of patients. This paper compares the three technologies used to assess their suitability and capability for the detection of veins to support the cannulation process. Three types of cameras are used in this study; a visual, an infrared, and a near infrared. The collected images, 103 in total, from the three technologies have been analyzed using a wide range of image processing techniques and compared with identification templates to evaluate the performance of each technology. The results show that the near infrared technology supported by suitable LED illumination is the most effective for the visualization of veins. However, infrared thermography is found to be successful when followed by a cold stimulation

    NEAR INFRARED IMAGING FOR SUBCUTANEOUS VEINS LOCALIZATION USING WEARABLE OPTICAL IMAGING DEVICE

    Get PDF
    Intravenous (IV) catheterization is a basic need for medical treatment. Skilled trained medical practices such as doctor, nurse or even paramedic need to learn as this their basic knowledge. To perform this treatment, they need to locate veins they can get by visual or feel it with their fingers. This technique has its own downside as sometimes different patient have differ skin tone and deepness of their veins. Sometimes patients also get scars or even some of them have thick hair. To attempt venipuncture, sometimes they need to repeat it two or three times if it does not succeed. This is due to non-visibility to locate patient’s veins. This may result severe pain to the patient and leave a bigger impact to their health. These inaccurate catheter insertions need to be overcome with a device that can help medical practitioners to locate veins from patients easily and fast for venipuncture process. Today’s technology give human to look through human’s body but non of them have a capability to locate and display subcutaneous veins structure right in front of their eyes for a user to perform iv catheterization process. In this project, near infrared (NIR) imaging technique will be choose as it has several advantages in compared to the other techniqu

    Preventing Plasmon Coupling between Gold Nanorods Improves the Sensitivity of Photoacoustic Detection of Labeled Stem Cells in Vivo

    Get PDF
    © 2016 American Chemical Society.Gold nanorods are excellent contrast agents for imaging technologies which rely on near-infrared absorption such as photoacoustic imaging. For cell tracking applications, the cells of interest are labeled with the contrast agent prior to injection. However, after uptake into cells by endocytosis, the confinement and high concentration in endosomes leads to plasmon band broadening and reduced absorbance. This would limit the potential of multispectral optoacoustic tomography in terms of spectral processing and, consequently, sensitivity. Here, we show that steric hindrance provided by silica coating of the nanorods leads to the preservation of their spectral properties and improved photoacoustic sensitivity. This strategy allowed the detection and monitoring of as few as 2 × 104 mesenchymal stem cells in mice over a period of 15 days with a high spatial resolution. Importantly, the silica-coated nanorods did not affect the viability or differentiation potential of the transplanted mesenchymal stem cells

    Imaging of peripheral vascular malformations - current concepts and future perspectives

    Get PDF
    Vascular Malformations belong to the spectrum of orphan diseases and can involve all segments of the vascular tree: arteries, capillaries, and veins, and similarly the lymphatic vasculature. The classification according to the International Society for the Study of Vascular Anomalies (ISSVA) is of major importance to guide proper treatment. Imaging plays a crucial role to classify vascular malformations according to their dominant vessel type, anatomical extension, and flow pattern. Several imaging concepts including color-coded Duplex ultrasound/contrast-enhanced ultrasound (CDUS/CEUS), 4D computed tomography angiography (CTA), magnetic resonance imaging (MRI) including dynamic contrast-enhanced MR-angiography (DCE-MRA), and conventional arterial and venous angiography are established in the current clinical routine. Besides the very heterogenous phenotypes of vascular malformations, molecular and genetic profiling has recently offered an advanced understanding of the pathogenesis and progression of these lesions. As distinct molecular subtypes may be suitable for targeted therapies, capturing certain patterns by means of molecular imaging could enhance non-invasive diagnostics of vascular malformations. This review provides an overview of subtype-specific imaging and established imaging modalities, as well as future perspectives of novel functional and molecular imaging approaches. We highlight recent pioneering imaging studies including thermography, positron emission tomography (PET), and multispectral optoacoustic tomography (MSOT), which have successfully targeted specific biomarkers of vascular malformations

    Multidimensional imaging for skin tissue surface characterization

    Get PDF
    Human skin, the outer and largest organ covering our body, can be described in terms of both its 3D spatial topography and its 2D spectral reflectance. Such a characterization normally requires the application of separate procedures using different kinds of equipment, where spectral reflectance can only be obtained from a small patch of the skin surface. This paper investigates the integration of multiple imaging modalities to simultaneously capture both spectral and spatial information from the skin surface over a wide area. By extending the imaging spectrum from the visible to the near-infrared (NIR), we improve general recovery, obtain a more detailed skin profile, and are able to identify the distribution of various principal chromophores within the deeper dermal layers. Experiments show that new dimensions of skin characterization can be generated through the recovered geometrical and spectral information, so that an enhanced visibility of important skin physiological phenomena can be achieved. © 2013 Elsevier B.V. All rights reserved
    corecore