142,098 research outputs found

    3D User Interfaces

    Get PDF
    Bakalářská práce se zabývá 3D uživatelskými rozhraními. Jsou v ní představeny některé existující přístupy k těmto rozhraním. Dále uvádí různé druhy vstupních a výstupních zařízení sloužících pro interakci člověka s počítačem. Hlavním předmětem práce je návrh, implementace a testování aplikace demonstrující koncept prohlížeče hierarchických struktur, který je předveden na souborovém systému. K jejímu vytvoření byl využit soubor nástrojů OpenSceneGraph. Nakonec jsou zde také zmíněny ohlasy uživatelů na toto rozhraní a možnosti jeho dalšího vývoje.This bachelor's thesis deals with the area of 3D user interfaces. It introduces several existing approaches to this topic as well as various types of I/O interaction devices. The main goal of this work was to design and implement concept 3D interface for hierarchical structures browser, that was demonstrated as a file-browser application. Final application was developed using OSG, undertaking simple user experience evaluation.

    An Introduction to 3D User Interface Design

    Get PDF
    3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article

    Evaluating distributed cognitive resources for wayfinding in a desktop virtual environment.

    Get PDF
    As 3D interfaces, and in particular virtual environments, become increasingly realistic there is a need to investigate the location and configuration of information resources, as distributed in the humancomputer system, to support any required activities. It is important for the designer of 3D interfaces to be aware of information resource availability and distribution when considering issues such as cognitive load on the user. This paper explores how a model of distributed resources can support the design of alternative aids to virtual environment wayfinding with varying levels of cognitive load. The wayfinding aids have been implemented and evaluated in a desktop virtual environment

    3D User Interfaces for General-Purpose 3D Animation

    Get PDF
    Draft submission, Appeared as "3D User Interfaces for General-Purpose 3D Animation"Modern 3D animation systems let a growing number of people generate increasingly sophisticated animated movies, frequently for tutorials or multimedia documents. However, although these tasks are inherently three dimensional, these systems' user interfaces are still predominantly two dimensional. This makes it difficult to interactively input complex animated 3D movements. We have developed Virtual Studio, an inexpensive and easy-to-use 3D animation environment in which animators can perform all interaction directly in three dimensions. Animators can use 3D devices to specify complex 3D motions. Virtual tools are visible mediators that provide interaction metaphors to control application objects. An underlying constraint solver lets animators tightly couple application and interface objects. Users define animation by recording the effect of their manipulations on models. Virtual Studio applies data-reduction techniques to generate editable representations of each animated element that is manipulated.71-78Pubblicat

    Navigation and interaction in a real-scale digital mock-up using natural language and user gesture

    Get PDF
    This paper tries to demonstrate a very new real-scale 3D system and sum up some firsthand and cutting edge results concerning multi-modal navigation and interaction interfaces. This work is part of the CALLISTO-SARI collaborative project. It aims at constructing an immersive room, developing a set of software tools and some navigation/interaction interfaces. Two sets of interfaces will be introduced here: 1) interaction devices, 2) natural language (speech processing) and user gesture. The survey on this system using subjective observation (Simulator Sickness Questionnaire, SSQ) and objective measurements (Center of Gravity, COG) shows that using natural languages and gesture-based interfaces induced less cyber-sickness comparing to device-based interfaces. Therefore, gesture-based is more efficient than device-based interfaces.FUI CALLISTO-SAR

    Interactive form creation: exploring the creation and manipulation of free form through the use of interactive multiple input interface

    Get PDF
    Most current CAD systems support only the two most common input devices: a mouse and a keyboard that impose a limit to the degree of interaction that a user can have with the system. However, it is not uncommon for users to work together on the same computer during a collaborative task. Beside that, people tend to use both hands to manipulate 3D objects; one hand is used to orient the object while the other hand is used to perform some operation on the object. The same things could be applied to computer modelling in the conceptual phase of the design process. A designer can rotate and position an object with one hand, and manipulate the shape [deform it] with the other hand. Accordingly, the 3D object can be easily and intuitively changed through interactive manipulation of both hands.The research investigates the manipulation and creation of free form geometries through the use of interactive interfaces with multiple input devices. First the creation of the 3D model will be discussed; several different types of models will be illustrated. Furthermore, different tools that allow the user to control the 3D model interactively will be presented. Three experiments were conducted using different interactive interfaces; two bi-manual techniques were compared with the conventional one-handed approach. Finally it will be demonstrated that the use of new and multiple input devices can offer many opportunities for form creation. The problem is that few, if any, systems make it easy for the user or the programmer to use new input devices

    3D User Interfaces for Collaborative Work

    Get PDF

    Interactive natural user interfaces

    Get PDF
    For many years, science fiction entertainment has showcased holographic technology and futuristic user interfaces that have stimulated the world\u27s imagination. Movies such as Star Wars and Minority Report portray characters interacting with free-floating 3D displays and manipulating virtual objects as though they were tangible. While these futuristic concepts are intriguing, it\u27s difficult to locate a commercial, interactive holographic video solution in an everyday electronics store. As used in this work, it should be noted that the term holography refers to artificially created, free-floating objects whereas the traditional term refers to the recording and reconstruction of 3D image data from 2D mediums. This research addresses the need for a feasible technological solution that allows users to work with projected, interactive and touch-sensitive 3D virtual environments. This research will aim to construct an interactive holographic user interface system by consolidating existing commodity hardware and interaction algorithms. In addition, this work studies the best design practices for human-centric factors related to 3D user interfaces. The problem of 3D user interfaces has been well-researched. When portrayed in science fiction, futuristic user interfaces usually consist of a holographic display, interaction controls and feedback mechanisms. In reality, holographic displays are usually represented by volumetric or multi-parallax technology. In this work, a novel holographic display is presented which leverages a mini-projector to produce a free-floating image onto a fog-like surface. The holographic user interface system will consist of a display component: to project a free-floating image; a tracking component: to allow the user to interact with the 3D display via gestures; and a software component: which drives the complete hardware system. After examining this research, readers will be well-informed on how to build an intuitive, eye-catching holographic user interface system for various application arenas

    Parametrizable cameras for 3D computational steering

    Get PDF
    We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical manner. Each view can be coupled to objects present in the interface, parametrized to (simulation) data, or adjusted through direct manipulation or user defined camera controls. Although our focus is on 3D interfaces for computational steering, we think that the concept is valuable for many other 3D graphics applications as well
    corecore