
1

Animating Spaceland1

Jean-Francis Balaguer
Enrico Gobbetti

CRS4
Center for Advanced Studies, Research, and Development in Sardinia

Via Nazario Sauro, 10
09123 Cagliari, Italy

E-mail: {balaguer | gobbetti}@crs4.it

DRAFT SUBMISSION

IEEE Computer
Appeared as "3D User Interfaces for General-Purpose 3D Animation"

29(8) August 1996

© IEEE

Abstract
Modern 3D animation systems allow a rapidly growing community to create and animate increasingly sophisticated
worlds. Despite the inherent three-dimensionality of these tasks, the user interfaces of such systems are still
predominantly two-dimensional, using 2D input devices and techniques which severely limit the range of tasks that can
be accomplished interactively. In particular, these limitations make it very difficult to interactively input complex 3D
movements. In this paper, we present Virtual Studio, a 3D animation environment where all the interaction is done
directly in three dimensions. 3D devices allow the specification of complex 3D motion while virtual tools are visible
mediators that provide interaction metaphors to control application objects. An underlying constraint solver, that
automatically maintains multi-way relationships, provides the ability to tightly couple application and interface objects.
The animation is defined by recording the effect of the user's manipulations on the models, taking into account the
temporal aspect of the interaction. Data reduction techniques are applied to obtain editable representation of continuous
parameters' evolution.

Keywords
3D Interaction, 3D Virtual Tools, Virtual Environment, 3D Animation, Object-Oriented Graphics, Hierarchical
Constraints, Data Reduction.

1See Edwin Abbott, FLATLAND, a Romance of Many Dimensions, Basil Blackwell, Oxford.
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by P-arch

https://core.ac.uk/display/51248962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

1. Introduction
The continued improvement and proliferation of graphics hardware for workstations and personal computers has
brought increasing prominence to a newer, dynamic style of software application program. Highly interactive graphical
interfaces that allow the presentation and the direct manipulation of information in a pictorial form are now an
important part of most of modern software applications, and are often considered essential for making computers easy
to use. The latest graphics workstations have become true digital media platforms that combine sound generation,
interactive 3D graphics and movie playback capabilities. The relatively low cost of these workstations, comparable to
that of high-end personal computers, makes it possible for a large community of users to benefit from this evolution.
Multi-media authoring tools allow the creation of increasingly sophisticated presentations that effectively convey ideas.
Hyper-media documents are increasingly being used to build multi-media tutorials, catalogs or guided tours where users
can interactively access information under various forms, from simple text and static images to animated sequences
with sounds. With interactive CD and interactive digital cable television, hyper-media documents will be brought to a
wide audience directly through their TV set. Computer animation and multi-media are also being used more and more
as a means to facilitate learning in such diverse areas as architecture, biology, mathematics, art, and computer science.
The rapid development of these new diffusion channels requires the production of a large numbers of animated
sequences, a growing portion of which will be devoted to 3D computer graphics movies [12]. These animations need to
be produced rapidly, at low cost, and often by people working alone who are not professional animators.

1.1 Current animation systems
A number of professional 3D animation systems are currently available for use on desktop graphics workstations [11].
The goal of most of these systems is to offer comprehensive modeling, rendering, and animation capabilities for the
production of commercial special effects or animation. Even if such systems can be used to generate low-cost short
animation sequences, such as those in tutorials or multi-media documents, their use for this task has several drawbacks.

First of all, the large amount of functionality that these systems must offer, in order to be capable of producing high-
quality movies, makes them too complex and too expensive to be used by non-professional animators for the creation of
short sequences. Taking advantage of the potential of these animation systems clearly requires time and effort to
understand them and to develop technical skills [11]. If such efforts are well spent for professional animators, they
represent too large an investment for infrequent users.

The inadequacy of current systems' user interfaces is another reason why they are not well suited to the rapid
production of animation sequences of limited complexity. Despite the inherent three-dimensionality of these tasks, such
systems still predominantly use 2D input devices and techniques [5]. Traditional 2D widgets are the most common way
of interacting with the objects that comprise the simulated world, but the complete separation between interface and
application offered by this solution makes it difficult for the user to correlate the manipulation with its resulting effect
on the object. In such systems, direct interaction with the synthetic world is generally limited to interactive viewing,
selecting or positioning of objects, and the specification of 3D information is normally obtained by gestural
interpretation of mouse motion. The limitation of the device to two dimensions reduces the range of possible
movements that can be specified in a single interaction task and forces users to change program and mental modes in
order to input spatial information.

This kind of user interface does not take advantage of 3D space and puts severe limitations on the tasks that can be
accomplished interactively in a graphics application. In particular, the users of an interactive 3D animation system are
generally confined to the specification of key postures, which are then interpolated to produce smooth motion, since the
limitations of the interface make it very difficult to interactively input complex 3D movements. This inability to specify
the timing of an animation in an interactive way is a major drawback in all cases where the spontaneity of the animated
object's behavior is important [6][9].

1.2 Towards a new generation of animation systems
In order to provide animators with tools allowing them to create animations by straight-ahead actions, and not only by
using pose-to-pose techniques, we have to change the way the interface of current graphics systems is conceived.
Recent research work has shown how high-bandwidth interaction with 3D objects and environments can be obtained for
virtual environments [8] and performance animation systems [9] by means of devices allowing the control of multiple
degrees of freedom. More conventional configurations can be used as well, together with applications whose interaction
metaphors exploit the greater possibilities of 3D [4][5][10]. However, very few attempts have been made to apply the
results of this research to enhance the animation capabilities of current general-purpose animation systems.
Performance animation systems, built around custom multiple degrees of freedom devices for motion capture, are not
general enough to define all aspects of an animation, while the advanced 3D interaction capabilities of other systems are
currently confined to modeling aspects.

In this paper, we describe Virtual Studio, an integrated 3D animation environment designed to provide all the
interactivity of a performance animation approach to a general-purpose multi-track system. Virtual Studio exploits the
expressiveness of state-of-the-art 3D interfaces to allow interaction with all aspects of synthetic worlds entirely in three
dimensions (see figure 1). 3D devices allow the specification of complex 3D motion, while virtual tools are visible
mediators that provide interaction metaphors to control application objects. An underlying constraint solver, that

3

automatically maintains multi-way relationships, provides the ability to tightly couple application and interface objects.
The expressive power of this user interface paradigm makes it possible to define a large variety of animations by
recording the effects and the timing of user manipulations on models. Data reduction techniques are automatically
applied to obtain editable representations of continuous parameter evolution, overcoming in this way one of the major
limitations of current performance animation systems [9].

Figure 1. Virtual Studio

The remainder of the paper describes the various aspects of Virtual Studio, with an emphasis on the interactive
definition of complex 3D animations. First, we will give an overview of the system. Next, we will concentrate on how
the user interacts with a synthetic environment through direct manipulation and virtual tools, and on how these
techniques can be used to interactively define animations. The system's capabilities are then illustrated by an example.
The paper concludes with a discussion of the results obtained and a view of future work.

2. System Overview
Virtual Studio is an animation environment built on top of VB2 [3][4], a graphics architecture based on objects and
constraints. Its goal is to allow the manipulation and the animation of all aspects of synthetic worlds entirely in three
dimensions.

Rendering
Application

DataGlove

Spaceball

Mouse

MID I
Sound

EyePhone

Rendering

Graphics
Engine

Figure 2. Overall structure of VB2 applications

A VB2 application is composed of a group of processes communicating through inter-process communication (IPC).
Figure 2 shows the typical configuration of an interactive application. Processes are represented as circles, while arrows
indicate the information flow between them. Each of the processes is continuously running, producing and consuming
asynchronous messages to perform its task. A central application process manages the model of the virtual world, and
simulates its evolution in response to events coming from other processes which read the input device sensors at
specified frequencies. Sensory feedback to the user can be provided by several output devices. Visual feedback is

4

provided by real-time rendering on graphics workstations, while audio feedback is provided by MIDI output and
playback of prerecorded sounds. The application process is by far the most complex component of the system. This
process has to respond to asynchronous events by making the virtual world's model evolve from one coherent state to
the next and by triggering appropriate visual and audio feedback.

The following sections briefly describe the device configurations used and the dynamic model of the application
process. References [3] and [4] provide more details on these subjects.

2.1 Device Configurations
In order to interact with three-dimensional environments in an effective way, the user should be able to directly specify
3D motions and should be provided with enough depth cues to understand the structure of the 3D world [8]. For this
purpose, we use two hardware configurations built out of off-the-shelf equipment, which are described in the following
sections.

2.1.1 Immersive Configuration
The goal of Virtual Studio's immersive configuration is to convince the users that they are part of the world they
manipulate (figure 3). Visual feedback is provided by rendering a pair of stereo images on a single graphics workstation
connected to a VPL Eyephone through a custom-made image splitter. The 3D input device used for manipulation is the
VPL DataGlove. Both the Eyephone and the DataGlove use a Polhemus Isotrak device to track user's motion. Posture
recognition based on finger flexion is used to let the user input commands and categorical information [3].

Figure 3. Immersive configuration

2.1.2 Desktop Configuration
Virtual Studio's desktop configuration uses a Spaceball and a mouse as input devices, and LCD shutter glasses for
binocular perception of the synthetic world. The Spaceball is used for the continuous specification of spatial
transformations, while the mouse is used as a picking device. Both user's hands can therefore be used simultaneously to
input information (figure 4). Since one of our research goals is to explore all the possibilities of 3D interaction, we do
not provide any two-dimensional interface. Keyboard commands are used instead of hand postures to change the
visibility of objets and to trigger animation playback.

Although this configuration does not fully provide the illusion of immersion, we usually find it more effective for
our application than the immersive one, mainly because of the low quality of our virtual reality equipment [1][3]. In
particular, the low resolution of the Eyephone and the small working volume of the Polhemus trackers do not permit a
comfortable interaction with complex 3D scenes.

Figure 4. Desktop configuration

5

2.2 Dynamic model
During interaction, the user is the source of a flow of information propagating from input device sensors to manipulated
models. In order to obtain animated and interactive behavior, the system has to update its state in response to changes
initiated by sensors attached to asynchronous input devices such as timers or trackers. The application is represented as
a network of interrelated objects whose behavior is specified by the actions they take in response to changes in other
objects on which they depend. The maintenance of the relationships between objects is delegated to a constraint-based
change propagation mechanism. As presented in [3], the various aspects of the system's state and behavior are
represented using different primitive elements:

• active variables are used to store the state of the system;

• domain-independent hierarchical constraints [2], are used to declaratively represent long-lived multi-way

relations between active variables;

• daemons are used to react to variable changes for imperatively sequencing between different system states.

In this way, imperative and declarative programming techniques can be freely mixed to model each aspect of the system
with the most appropriate means. As explained in [3], daemons and constraints locate their variables through indirect
expressions, so as to allow an effective use of a constraint model in the context of dynamic applications. A central state
manager is responsible for adding, removing, and maintaining all active constraints using an efficient local propagation
algorithm, as well as managing the system time and activating daemons. A priority level is associated with each
constraint to define the order in which constraints need to be satisfied in case of conflicts. This way, both required and
preferred constraints can be defined for the same active variable. Reference [3] provides a detailed presentation of the
state manager behavior and of the constraint solving techniques.

3. Interaction
In Virtual Studio, the users interact with simulated scenes entirely in three dimensions. A 3D cursor, controlled by the
Spaceball or the DataGlove using a node-in-hand metaphor, is used to select and manipulate objects in the synthetic
world. Direct manipulation and virtual tools are the two major techniques used to input information. Both techniques
involve using mediator objects that transform the motion of the cursor into modifications of the manipulated objects. As
we will see later, the true three-dimensionality of this interface is a key feature when it comes to defining animations.

3.1 Direct manipulation
The direct manipulation of aspects of three-dimensional objects is obtained by attaching constraints which directly
relate the 3D cursor's active variables to variables in the dynamic model. While the interaction constraints remain
active, the user can manipulate the model through the provided metaphor. The deactivation of the interaction constraints
terminates the direct manipulation. Second-order constraints that depend on Boolean state variables are generally used
to trigger activation and deactivation of interaction constraints. This interaction technique is used, for example, when
grabbing 3D objects. While grabbed, the objects are constrained to follow the motion of the cursor. Since the cursor is
controlled by a 6 degrees of freedom device, the user can interactively define complex 3D paths.

3.2 Virtual tools
The system can guide the user to understand a model's behavior and interaction metaphors by using mediator objects
that present a selective view of the model's information and offer an interaction metaphor to control this information.
We call these objects virtual tools [4].

Figure 5. Virtual tools

Virtual tools are first class objects, like the widgets of UGA [5], which encapsulate a visual appearance and a behavior

6

to control and display information about application objects. The visual appearance of a tool must provide information
about its behavior and offer visual semantic feedback to the user during manipulation. The tool's behavior must ensure
the consistency between its visual appearance and the information about the model being manipulated, as well as allow
information editing through a physical metaphor. The tool's behavior is defined by an internal constraint network, while
the information required to perform the manipulation is represented by a set of active variables. The models that can be
manipulated by a tool are those whose external interface matches that of the tool. The visual appearance is described
using a modeling hierarchy.

In Virtual Studio, virtual tools are fully part of the synthetic environment (figure 5). As in the real world, the user
configures his workspace by selecting tools, positioning and orienting them in space, and binding them to the models he
intends to manipulate. The binding action consists in selecting an active part of the tool, called binder and identified by
a "pointing hand" icon, and then dragging a line from the tool to the model. At the moment of binding, the tool changes
its visual appearance from the box that represents it in its unbound state to a shape that provides information about its
behavior and offers semantic feedback during manipulation. When the user binds a tool to a model, he initiates a bi-
directional information communication between these two objects through the activation of the tool's binding
constraints which maintain the coherence between the model's and the tool's information (see figure 7). Unbinding a
tool from a model, expressed by dragging the line from the tool's binder to the empty space, detaches it from the objects
it controls by deactivating the binding constraints, changes its visual appearance back to the unbound version, and
moves it back to a default place, called the Shelf. Figure 6 illustrates the different interaction steps.

Figure 6. Interactively binding, manipulating and unbinding a tool.

Information control

Information display

Model

v1

v2

Tool

v1

v2

c1

c2

bound
bound.v1

bound.v2

out_variable

in_variable

Constraint

in_out_variable

direct reference
indirect reference

Instance

(a) (b)

Figure 7a. Design notation
Figure 7b. Model and virtual tool

Virtual tools are not limited to simple editing tasks, but provide a mean to encapsulate any kind of behavior. Multiple
binders may be used to connect tools to several models in order to realize complex behaviors that require information
from more than a single object, as when constraining transformation components (see figure 8). Thanks to bi-directional
constraints, multiple tools may be attached to a single model in order to simultaneously manipulate different parts of the
model's information, or the same parts using multiple interaction metaphors. The underlying constraint solver

7

automatically ensures the correct behavior of the application, therefore freeing the programmer from the tedious task of
maintaining dependency relationships by hand.

Figure 8. At the top of the image we see a light tool, a composite tool that displays and controls the
information contained in a light source. The tool is composed of a cone tool, which
controls the light projection, a body, that allows to control its position and orientation by
grabbing and moving it, and of two binders (the objects in front of the light) that make it
possible to connect the tool to other objects so as to constrain the light's position or
orientation. For example, by connecting the arrow-shaped binder of the light tool to a
model, we force the light source to always point towards the selected object.

4. Animation
Virtual tools and 3D devices provide the expressive power required for continuous control of many aspects of the
synthetic world and for specification of three-dimensional motion. The system can exploit the virtual tool's full range of
interaction techniques and behaviors to define animations of discrete and continuous attributes. This is done by
recording the effects of the user's manipulations and taking into account the temporal aspect of the interaction. In this
way, the animator has continuous control over the animation shape and timing, while key parameter based techniques
offer control only at a limited number of points. Key parameter techniques, also available in Virtual Studio, will not be
discussed here.

Recording the evolution of discrete parameters simply involves the insertion of a change value event in a temporal
track. When defining the animation of continuous parameters, the amount of data collected by recording the interactive
session is much too large to allow effective editing. 3D devices, being sampled typically between 10 and 30 Hz,
recording a ten seconds animation, will result in the accumulation of one to three hundreds samples for each parameter
influenced by the manipulation. This problem has to be faced each time some continuous information is captured by
sampling the user's motion with a device, and in particular in performance animation systems [1][8]. In order to allow
effective editing, a more compact representation of continuous parameter evolution must be built out of the interactive
input data.

Data reduction or curve fitting techniques have been successfully applied in drafting and modeling tools for the
interactive specification of 2D or 3D curves or surfaces [1]. In an animation system, since both the geometry and timing
of the interactive plots need to be preserved, data reduction must be performed simultaneously in space and time.
Moreover, general purpose animations need to control the evolution of parameters of various dimensions with different
levels of continuity. In Virtual Studio, we use an incremental version of the Lyche and Mörken algorithm [7] to re-
represent the interactive plot of parameter evolution with an n-dimensional B-spline, parameterized on time, which
preserves the geometry and timing of the initial data. Since the spline's control polygon is defined by a much smaller
number of points, the animation can be effectively edited with standard spline editing tools. Our incremental algorithm
reduces the initial data by considering successive portions that are spliced together preserving continuity up to the
second derivative. By putting constraints on the start and end tangents of the portion being reduced, we are able to
compute the approximation using only local information [1]. In this way, the maximum time and the memory
requirements of reducing a portion are constant for a given number of samples. Data reduction may therefore be
performed concurrently with interactive parameter input, and the responsiveness of the application can be ensured when
handling animations defined by any number of samples.

Continuous control and data reduction let users hand sketch the animation of continuous parameters much in the
same way curves can be hand drawn in most drafting tools. The mediation of virtual tools makes it possible to sketch
the evolution of geometric as well as non geometric attributes, while constrained or free motion can be easily specified
with 3D devices. Since these devices offer continuous and simultaneous specification of three-dimensional
transformations, subtle synchronizations between the position and orientation components of an animation path can be
directly specified.

8

 Track

Discrete Track

Interaction
Metaphor

Edition

Data
Reduction

Record

Record

Figure 9. Interactive animation specification

In Virtual Studio, animations are defined by first expressing the desire to record interactive parameter evolution. A
controller object is connected to each animatable model and is responsible for monitoring model state changes. While
recording, all changes are handled by the controller to feed the animation tracks. Continuous tracks apply the data
reduction algorithm to the incoming information, while discrete tracks simply store a change value event (see figure 9).
Each track is represented as a time interval, whose start and end time variables may be constrained to specify animation
synchronization. When tracks are made visible, the start and end time variables can be manipulated through the
associated binders. Figure 10 shows an animated camera tool together with the camera position track. Synchronizations
between the evolution of different parameters may be obtained by interactively connecting together time binders of the
associated tracks.

During playback, information propagates from the animation tracks through the controllers and down to the models
(see figure 11). All connections are realized by bi-directional constraints. Since the priority of playback constraints is
lower than that of interaction constraints, the user can take interactive control over animated models during playback.
Therefore, animations which take into account the evolution of the environment and which present complex
synchronizations with the animation of other models can be easily specified by interacting with the system during
playback.

Figure 10. Camera tool and camera position track

CAMERA

global_transf

c_split
position

orientation

angle

CONTROLLER

position

orientation

angle

=
TRACK

value

TRACK

value

TRACK

value=

=

active

model controller

CONNECTOR

=
=
=

Figure 11. Connecting a controller to a camera.

5. Evaluation
In order to illustrate how the user can define an animation with Virtual Studio, we will explain the successive steps
required to create a simple animation sequence.

The example scene is composed of three elements: a character, a light and a camera. An appropriate virtual tool has
been connected to each scene element to be manipulated, and controller objects have been bound to each element in
order to allow animation recording and playback. Figure 12 shows the initial configuration of the scene.

9

Figure 12. The scene to animate

The storyboard of the simple animation is as follows: the character will walk along a circular path and will stop near the
starting point. Simultaneously, the light will follow a vertical path, while continuously aiming at the character's head.
During the character's animation, the camera will stay at a fixed position, while always looking at the character's head.
At the end of the character's motion, the camera will move towards the character's head and the light will fade out.

In order to define this sequence, the user performs the following steps:

• light's animation: the light tool is grabbed and the desired motion is interactively described in space and time

by means of a 3D device (figures 13 and 14);

• addition of a lookat constraint: the light tool is constrained to permanently aim at the character's head by

interactively adding a lookat constraint between the tool and the character's head. During playback, newly

added behaviors participate in the animation and may override previously recorded motion. The light's

orientation is now determined by the lookat constraint while its position is animated using the recorded

information (figures 15 and 16);

• character's animation: a walk tool encapsulating a walking engine is connected to the character in order to

provide a walking behavior to the model. The character is animated by grabbing the walk tool and by

sketching the path the character has to follow. The light animation is automatically updated due to the lookat

constraint (figure 17);

• synchronization of light's and character's animations: by connecting together the start binders and the end

binders of the character's and light's tracks, both motions are made to perform in parallel. The animation of the

light's orientation is again updated by the lookat constraint in response to timing changes (figure 18);

• definition of the camera's motion: the orientation binder of the camera tool is connected to the character's

head; the position component of the path is subsequently sketched using the 3D device. At the end of the

specification, the start binder of the camera's track is connected to the end binder of the character's track. The

animation of the camera is now automatically scheduled after the animation of the character (figure 19);

• definition of light's fade out: Another way to synchronize animations is to interact with the environment

during animation playback. Here, we define the animation of the light's intensity, a non geometrical attribute,

using the mediation of a tool allowing the remote control of light's parameters. The resulting spline is

automatically synchronized with the rest of the animation. During playback, information propagates from the

animation tracks, through the light and down to the connected tools, which are forced to display the light state

changes (figure 20).

10

Figure 13. The animator grabs the tool connected to the light source to define the animation. The 3D
path described with the device is recorded and re-represented as a B-spline using our
incremental data reduction algorithm.

Figure 14. Three frames from the resulting sequence. The spline reproducing the interactively
described motion and its control polygon are now shown.

Figure 15. In order to have the light continuously pointing towards the character, a lookat constraint
is interactively added by connecting the tool's orientation binder to the character's head. A
line from the orientation binder to the head indicates the existence of the connection.

Figure 16. Due to the lookat constraint, the recorded animation of the light's orientation is now
invalidated and the animation of the orientation component is fully determined by the
constraint.

11

Figure 17. The animator sketches the path that the character has to follow. The behavior of the walk
tool realizes the walking cycle animation along the path and filters the information during
the interaction so as to translate the 3D motion specification to a 2D path on the floor.

Figure 18. Synchronization constraints have been introduced interactively between the character's
and light's tracks. Now both motions are performed in parallel.

Figure 19. The animation has now been extended with the camera's motion. A synchronization
constraint has been used to specify that the camera's motion must start when the animation
of the character terminates.

12

Figure 20. By interacting with the environment
during play-back, animations containing
complex synchronizations with other
animations can be easily specified. In
this example, a light fade-out animation,
synchronized with the camera's motion,
has been defined using a tool allowing
the remote control of light parameters.
During playback, all the connected tools
display the light's state changes.

13

Thanks to the expressive power provided by 3D devices and virtual tools, the animator has been able to set up a first
version of this sequence in less than five minutes. Since data reduction was applied when defining the evolution of all
the continuous parameters, the resulting animation can now be edited using standard spline edition tools. The animator
can therefore benefit at the same time from the expressiveness of straight-ahead animation specification and from the
precision of key-frame techniques.

As shown by the lookat and the walking engine examples, virtual tools are not limited to simple editing tasks, but
provide a mean to interactively add behavior to objects of the synthetic environment. Secondary animations can be
automatically generated by virtual tools, simplifying that way the task of the animator that can concentrate his efforts to
the definition of high level goals.

6. Implementation and Results
Virtual Studio is implemented in the object-oriented language Eiffel on Silicon Graphics workstations, and is currently
composed of over 700 classes.

Complex environments composed of thousands of variables and constraints can be manipulated and animated at
interactive speed. The environment used for creating the example animation of the previous section was composed of
5632 constraints and 13659 active variables at the moment figure 20 was generated. The example scene was composed
of 3000 polygons illuminated by a spot light and a directional light. The redraw rate was 10 frames per second on a
Silicon Graphics Crimson VGX. Despite the complexity of the constraint network, the redraw time was still the limiting
factor: on average, 80% of the application time was spent in the rendering operation.

7. Conclusions and Future Work
We have demonstrated that 3D devices and virtual tools provide enough expressive power to rapidly prototype complex
3D animated environments. By recording the effects of manipulations and applying data reduction techniques, we are
able to sketch animations and obtain editable representations of parameter evolution. We believe that Virtual Studio
provides a good basis for integrating a large variety of interaction and animation techniques. We are currently extending
it with tools to control the timing of animations and the deformations of objects.

Acknowledgments
We would like to thank Russell Turner for reviewing the content of this paper, Ronan Boulic for providing the walking
engine, Marc Ledin and Gilles Van Ruymbeke for designing and building the VB2 image splitter.

This research was conducted by the authors at the Swiss Federal Institute of Technology in Lausanne and was partly
sponsored by Le Fonds National Suisse pour la Recherche Scientifique.

References
[1] Balaguer JF (1993) Virtual Studio: Un système d'animation en environnement virtuel. PhD Thesis. EPFL DI-

LIG, Switzerland.
[2] Borning AH, Freeman-Benson BN, Wilson M (1992) Constraint Hierarchies. Lisp and Symbolic Computation

5(3): 221-268.
[3] Gobbetti E (1993) Virtuality Builder II: Vers une architecture pour l'interaction avec des mondes synthétiques.

PhD Thesis. EPFL DI-LIG, Switzerland.
[4] Gobbetti E, Balaguer JF (1993) VB2: A Framework for Interaction in Synthetic Worlds. Proc. UIST.
[5] Conner DB, Snibbe SS, Herndon KP, Robbins DC, Zeleznik RC, Van Dam A (1992) Three-Dimensional

Widgets. SIGGRAPH Symposium on Interactive 3D Graphics: 183-188.
[6] Lasseter J (1987) Principles of Traditional Animation Applies to 3D Computer Animation. Proc SIGGRAPH:

35-44.
[7] Lyche T, Mörken K (1987) Knot Removal for Parametric B-spline Curves and Surfaces, Computer Aided

Geometric Design 4: 217-230.
[8] Bryson S, Pausch R, Robinett W, van Dam A (1993), Implementing Virtual Reality, SIGGRAPH Course Notes

43.
[9] ACM SIGGRAPH (1993), Character Motion Systems, Course Notes 01.
[10] Gleicher M (1993) A Graphics Toolkit Based on Differential Constraints, Proc. UIST: 109-120.
[11] Forcade T (1993) Evaluating 3D on the High End. Computer Graphics World, Oct/Nov.
[12] Owen GS, Blystone RV, Miller VA, Mones-Hattal B, Morie J (1993) Facilitating Learning with Computer

Graphics and Multimedia. Panel discussion. Proc SIGGRAPH: 383-384.

14

Jean-Francis Balaguer is a 3D interaction consultant for the Center for Advanced Studies, Research, and
Development in Sardinia. He received his M.S. in computer science from the Institut National des Sciences Appliquées
(INSA) in Lyon, France and his PhD in computer science from the Swiss Federal Institute of Technology in Lausanne.
His research interests include 3D interaction, virtual reality, computer animation and object-oriented graphics. Jean-
Francis Balaguer can be reached at CRS4, Via Sauro 10, 09123 Cagliari, Italy or on E-mail at balaguer@crs4.it.

Enrico Gobbetti is a 3D interaction consultant for the Center for Advanced Studies, Research, and Development in
Sardinia. He received his M.S. and his Ph.D. in computer science from the Swiss Federal Institute of Technology in
Lausanne. His research interests include object-oriented and constraint programming, 3D interaction, time-critical
graphics, computer animation, and virtual reality. Enrico Gobbetti can be reached at CRS4, Via Sauro 10, 09123
Cagliari, Italy or on E-mail at gobbetti@crs4.it.

