120 research outputs found

    3D Estimation and Visualization of Motion in a Multicamera Network for Sports

    Full text link

    Examining the robustness of pose estimation (OpenPose) in estimating human posture

    Get PDF

    Multicamera System for Automatic Positioning of Objects in Game Sports

    Get PDF
    Garantir um sistema com múltiplas câmaras que seja capaz de extrair dados 3D da posição de uma bola durante um evento desportivo, através da análise e teste de técnicas de visão computacional (calibração de câmaras e reconstrução 3D)

    Doctor of Philosophy

    Get PDF
    dissertation3D reconstruction from image pairs relies on finding corresponding points between images and using the corresponding points to estimate a dense disparity map. Today's correspondence-finding algorithms primarily use image features or pixel intensities common between image pairs. Some 3D computer vision applications, however, don't produce the desired results using correspondences derived from image features or pixel intensities. Two examples are the multimodal camera rig and the center region of a coaxial camera rig. Additionally, traditional stereo correspondence-finding techniques which use image features or pixel intensities sometimes produce inaccurate results. This thesis presents a novel image correspondence-finding technique that aligns pairs of image sequences using the optical flow fields. The optical flow fields provide information about the structure and motion of the scene which is not available in still images, but which can be used to align images taken from different camera positions. The method applies to applications where there is inherent motion between the camera rig and the scene and where the scene has enough visual texture to produce optical flow. We apply the technique to a traditional binocular stereo rig consisting of an RGB/IR camera pair and to a coaxial camera rig. We present results for synthetic flow fields and for real images sequences with accuracy metrics and reconstructed depth maps

    Validity and reliability of NOTCH® inertial sensors for measuring elbow joint angle during tennis forehand at different sampling frequencies

    Get PDF
    Portable and low-cost motion capture systems are gaining importance for biomechanical analysis. The aim was to determine the concurrent validity and reliability of the NOTCH® inertial sensors to measure the elbow angle during tennis forehand at different sampling frequencies (100, 250 and 500 Hz), using an optical capture system with sub-millimetre accuracy as a reference. 15 competitive players performed forehands wearing NOTCH and an upper body marker-set and the signals from both systems were adjusted and synchronized. The error magnitude was tolerable (5-10◦) for all joint-axis and sampling frequencies, increasing significantly at 100 Hz for the flexion–extension and pronation-supination angles (p = 0.002 and 0.023; Cohen d > 0.8). Concordance correlation coefficient was very large (0.7–0.9) in all cases. The within-subject error variation between the test–retest did not show significant differences (p > 0.05). NOTCH® is a valid, reliable and portable alternative to measure elbow angles during tennis forehand

    Capturing Hand-Object Interaction and Reconstruction of Manipulated Objects

    Get PDF
    Hand motion capture with an RGB-D sensor gained recently a lot of research attention, however, even most recent approaches focus on the case of a single isolated hand. We focus instead on hands that interact with other hands or with a rigid or articulated object. Our framework successfully captures motion in such scenarios by combining a generative model with discriminatively trained salient points, collision detection and physics simulation to achieve a low tracking error with physically plausible poses. All components are unified in a single objective function that can be optimized with standard optimization techniques. We initially assume a-priori knowledge of the object’s shape and skeleton. In case of unknown object shape there are existing 3d reconstruction methods that capitalize on distinctive geometric or texture features. These methods though fail for textureless and highly symmetric objects like household articles, mechanical parts or toys. We show that extracting 3d hand motion for in-hand scanning e↵ectively facilitates the reconstruction of such objects and we fuse the rich additional information of hands into a 3d reconstruction pipeline. Finally, although shape reconstruction is enough for rigid objects, there is a lack of tools that build rigged models of articulated objects that deform realistically using RGB-D data. We propose a method that creates a fully rigged model consisting of a watertight mesh, embedded skeleton and skinning weights by employing a combination of deformable mesh tracking, motion segmentation based on spectral clustering and skeletonization based on mean curvature flow
    • …
    corecore