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A B S T R A C T   

Portable and low-cost motion capture systems are gaining importance for biomechanical analysis. The aim was to 
determine the concurrent validity and reliability of the NOTCH® inertial sensors to measure the elbow angle 
during tennis forehand at different sampling frequencies (100, 250 and 500 Hz), using an optical capture system 
with sub-millimetre accuracy as a reference. 15 competitive players performed forehands wearing NOTCH and 
an upper body marker-set and the signals from both systems were adjusted and synchronized. The error 
magnitude was tolerable (5-10◦) for all joint-axis and sampling frequencies, increasing significantly at 100 Hz for 
the flexion–extension and pronation-supination angles (p = 0.002 and 0.023; Cohen d > 0.8). Concordance 
correlation coefficient was very large (0.7–0.9) in all cases. The within-subject error variation between the 
test–retest did not show significant differences (p > 0.05). NOTCH® is a valid, reliable and portable alternative 
to measure elbow angles during tennis forehand.   

1. Introduction 

Inertial measurement units (IMUs) are sensors used commonly in 
medical rehabilitation, performance and kinematics analysis in sports 
[1,2]. In tennis, the use of this type of technology has become increas-
ingly frequent [3], since it is an economical and portable alternative that 
allows to estimate kinematic parameters such as the body segments’ 
orientation, position and joint angles [4–6], the energy transition be-
tween segments during the strokes [7] or the ball speed based on a 
racket-mounted motion sensor [8]. All this makes IMUs suitable to 
collect data in a natural environment and perform in-field tennis 
biomechanical analyses, which provide more valid results than labora-
tory tests [9]. 

Optical motion capture systems (OS) are the gold standard for 
measuring kinematics parameters, and are widely used in sport sciences 
and tennis studies [10]. In fact, these systems have been improved over 
the last two decades and the measurement error of current OS systems 
is<0.5 mm [11]. Despite the fact that OS have been proven to be ac-
curate tools to analyse sport kinematics [11], using them outside the 
laboratory is an added difficulty [12]. The increase in costs and the 

complexity of the data processing reduce the extent of this approach in 
actual field applications. Thus, for example, to evaluate the hitting ki-
nematics of a tennis forehand on an indoor tennis court [13], set up a 
system of 8 infrared cameras, which is not a viable solution for many 
research institutes. OS systems also involve precise and time-consuming 
marker placement. The simplest OS based model to assess elbow kine-
matics –which could be measured using only two IMUs, one on the arm 
and other on the forearm– are based on 5 reflective markers [13–14]. 
For this reason, validation of more portable systems, such as IMUs or 
wearable ultrawideband transceivers mounted on body segments [15], 
is necessary to be able to evaluate tennis players in real-game situations 
[9]. Another alternative could be mocap markerless systems [16–18] but 
they still have the problem of complicated assembly and are difficult to 
use in conditions where player occlusion can occur. 

IMUs usually contain three different types of sensors: magnetometer, 
accelerometer and gyroscope. Joint kinematics is computed by the use 
sensor fusion algorithm, combining accelerometer and magnetometer 
measurements with gyroscope measurements [19]. From this, it follows 
that the algorithm will only work properly if all three sensors are 
capable of measuring the full range of accelerations and angular 
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velocities (in the particular case of the accelerometer and gyroscope). 
This is not a concern in the case of slow-motion gestures such as walking 
or moving arms to bring an object but in ballistic and explosive skills, 
such as tennis strokes involving high rotational velocities, it could be a 
problem. The sensors have proven to be valid and reliable even in sports 
activities such as football [20] or swimming [21]. These studies have 
established a good agreement and tolerable values for the root mean 
square error (between 5◦ and 10◦) for measuring upper limbs kine-
matics, since the differences in the magnitude of the error can be 
attributed to biomechanical models and different calibration methods 
[22]. Upper limbs angular velocities in tennis strokes – such as arm in-
ternal rotations or wrist flexion movements – sometimes exceed 2000 
degrees per second [23], and most of the commercial sensors are limited 
to this range. For this reason, and especially in this case, sensors capable 
of capturing higher angular velocities are needed. Only two studies have 
been found that have evaluated the validity and reliability of the sensors 
in tennis strokes. One of them evaluates the accuracy of the gyroscopes 
[24], while the other evaluates the accuracy of the sensors Xsens® MVN 
system for measuring 3D joint angles [25]. Xsens® MVN system proved 
to be valid to measure the kinematics of the arm for the majority of the 
variables analyses, but not for the elbow joint angle in transverse plane 
[25]. There are also other recent studies that analyse the validity of an 
IMU system to measure the kinematics of ballistic gestures, but these 
works do not analyses the kinematics of the upper limbs, which is where 
the highest angular velocities are reached. For example, Harnett et al., 
[26] analyse the validity of some IMUs to study the kinematics of the 
knee, pelvis and trunk in the case of cricket and find no statistically 
significant differences with the reference system for the trunk lateral 
bending and knee flexion. The IMUs that has been proposed to be vali-
dated in this study (NOTCH®) only has only been previously validated 
during functional daily task movements [27]. Despite previous valida-
tion studies, until now, there is scarce literature for the accuracy of the 
IMUs for measuring explosive upper limbs movements involving high 
rotational velocities and large ranges of movements, such as the tennis 
forehand. 

The upper limbs kinematics of the tennis forehand is crucial to 
achieve high performance in tennis, as it contributes to achieve greater 
ball velocity [28,29], ball spin [30] or higher stroke accuracy [10,31]. 
For example, Pedro et al. [6] conclude that the extension movement of 
the elbow is the second largest contributor to racket speed, after the 
horizontal flexion of the upper arm around the shoulder joint. Genovois 
et al., [30] indicate that during the backswing and forward swing of a 
topspin forehand, the forearm is more extended than during a flat 
forehand drive. In the impact and the follow-through, the elbow flexion 
and forearm pronation are also more pronounced in the topspin fore-
hand drive [30]. In the case of table tennis, inertial sensors allowed to 
differentiate the kinematics of the upper segments between able-bodied 
and wheelchair-bound players during forehand and backhand strokes 
[32,33]. In addition to improving the performance-related biomechan-
ical factors, the implementation of these sensors for the upper limbs 
kinematics analysis could aid to assess the risk of musculoskeletal injury, 
considering that inefficient joint actions can increase the risk of injury 
[34]. For example, there is a relation between hitting technique and 
elbow epicondylitis [35], a common tennis injury, and IMUs could serve 
to prevent the mechanical load on the elbow from being excessively high 
[36]. 

Sampling means taking a certain number of samples every second 
from a continuous analog signal [37]. Sampling frequency (i.e. the 
amount of data collected per second) is something that has traditionally 
concerned researcher in the field [38–39]. From a theoretical overview, 
the optimal sample rate should be calculated following the Nyquist–-
Shannon sampling theorem which states that, under suitable assump-
tions, in an analog-to-digital conversion the minimum sampling 
frequency necessary to avoid ambiguity and loss of information (e.g., 
aliasing) in the reconstruction of the original analog signal is equal to 
twice its maximum frequency [37]. From an operational point of view 

instrumental sampling frequency is usually selected by using a reference 
system and assessing the error trade-off of the signal in relation to the 
sampling rates [38–39]. There are no studies that analyse the influence 
of the sampling frequency on the accuracy of the IMUs for measure ki-
nematics variables in the particular case of tennis [40]. In this vein, 
some authors suggest that 200 Hz is the recommended sampling rate 
needed to analyse the kinematics in tennis strokes [41], but this issue 
has not been analysed in depth. In fact, IMU validation studies in tennis 
have used a single sampling frequency, which coincide with the 
maximum sampling range of the devices evaluated. For example, Pedro 
et al., [25] analysed the Xsens® MVN system at 240 Hz or Delgado- 
García et al., [24] analysed the Nexgen® Ergonomic system at 128 Hz 
(Table 1). NOTCH® inertial sensors have not yet been evaluated, 
although their price and features make them ideal for use in tennis. In 
fact, some companies have already used them to design software to 
evaluate batting or swinging technique (4dmotionsports.com). If the 
researcher wants to make long-time recordings (such as a complete 
tennis match), it seems more convenient to use lower sampling fre-
quencies so as not to saturate the memory of the devices and to be able to 
use popular mathematics software, limited from a computational point 
of view, such as Microsoft Excel. In other words, lower sampling rates 
would result in a lower data load, longer battery life, and higher effi-
ciency of data processing [42]. Similarly, it would be interesting to use 
higher sampling frequencies to see if the error decreases akin to other 
gestures of a ballistic nature [39]. On this line low sampling frequencies 
could lead to missing peaks or spikes, a signal distortion and finally in a 
loss of information [39]. 

The aim was to determine the concurrent validity and reliability 
(within-subject error variation) of the NOTCH® inertial sensors to 
measure elbow joint angle during tennis forehand at different sampling 
frequencies (100 Hz, 250 Hz and 500 Hz), by comparing data with a OS 
(gold standard, 500 Hz) in a sample of competitive tennis players. Based 

Table 1 
Feature comparisons between NOTCH® and other IMUs presenting validation 
studies in tennis.   

NOTCH® Xsens® MVN Nexgen® I2M 

Reference of the validation 
study 

– [18] [19] 

Approximate cost of the 
system used in the study 

<500 
USD 

>3.5 K USD >10 K USD 

Sampling frequency*1 (Hz) 500 Hz 240 Hz 128 Hz 
Accelerometer maximum 

range (g) 
± 32 ± 16 ± 6 

Gyroscope maximum range 
(◦/s) 

± 4000 ± 2000 ± 2000 

Magnetometer maximum 
range (Gauss) 

± 16 ± 8 ± 6 

Experimental conditions – Laboratory Laboratory 
Optical system used as 

reference criterion 
system 

– Qualisys AB Optitrack 
(Natural Point) 

Number of participants 
included 

– 18 4 

Level of expertise of 
participants 

– Experienced and 
intermediate 

Beginner and 
competitive 

Stroke analysed – Forehand All 
Number of strokes 

analysed per participant 
– 3 100 

Kinematic variable studied – Joint angle Sensor angular 
velocity 

Error reported relative to 
the reference (RMSE) 

– 1.5–13.1◦/s 4.4–35.4◦/s 

Reliability outcome – – 0.41–0.58◦/s*2 

*1 Refers to the maximum sampling frequency (in the case of the Notch) or the one 
used in the validity study in the case of the IMU Xsens® MVN and Nexgen® I2M 
systems. 
*2 In this case, the reliability was studied by rotating the sensors on the same axis, 
not in tennis hits. 
RMSE: Root Mean Square Error  
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on previous research, we hypothesise that NOTCH® is a low-cost and 
portable alternative (< $500 USD) that includes all instrumentation and 
data processing for measuring elbow joints angles in tennis forehand. 
Considering that there is a relationship between a proper technique and 
injuries, the confirmation of this hypothesis could help sport scientists 
measure upper limb kinematics and mechanical loads as well as prevent 
the appearance of tennis injuries, such as the tennis elbow, during field- 
based experimentation. Studying the validity and reliability of NOTCH® 
inertial sensors is also necessary to know if they are suitable for pro-
gramming specific software for the evaluation of sport technique in the 
case of tennis. 

2. Methods 

2.1. Participants 

Data were collected from 15 healthy players (all male) with experi-
ence in regional competitions. The anthropometric characteristics of the 
participants were as follows: mean (SD); age 22.4 (6.5) years; height 
177.3 (5.5) cm; weight 75.4 (6.2) kg; BMI 21.1 (1.8) Kg/m2. According 
to the International Tennis Federation classification, 10 players had an 
international tennis number of between 2 and 3 (advanced tennis 
players), and five players had an international tennis number of 4 [43]. 
All participants met the inclusion criteria: (1) to have the license form 
the National Tennis Federation and (2) to not suffer any injuries within 
the 6 months prior to the data collection. After receiving detailed in-
formation on the objectives and procedures of the study, each subject 
signed an informed consent form in order to participate, in compliance 
with the ethical standards of the World Medical Association’s Declara-
tion of Helsinki (2013). It was made clear that the participants were free 
to leave the study if they saw fit. The study was approved by the Insti-
tutional Review Board. 

2.2. Procedures 

Participants were individually tested within one day. First, the 
anthropometric characteristics (weight [kg], body fat [%] and height 
[cm]) were measured using a bioimpedance meter (Inbody 230, Inbody 
Seoul, Korea) and a precision stadiometer (SECA 222, SECA Corp., 
Hamburg, Germany). All measurements were taken with the partici-
pants wearing underwear. 

Two IMUs and retroreflective markers (eight anatomical markers 
and two clusters) were affixed on the dominant arm of the tennis players 
(Fig. 1), according to the University of Western Australia’s upper body 
marker set with an extensive use in sport science and tennis studies 
[23,44]. Subsequently, the players performed the hitting test, using their 
own racket. They performed six series of 10 forehand recordings with 
the IMUs at 100 Hz, 250 Hz, and 500 Hz. Two series were recorded at 
each sampling frequency in order to analyse the reliability of the IMUs 
(within-subject error variation). The OS was recorded simultaneously at 
500 Hz. All forehands performed in the study were carried out by hitting 
a pendulum ball (Fig. 1). 

2.3. Data collection 

The elbow joint angle during tennis forehand was measured under 
laboratory conditions using the NOTCH® IMU system and OS (Quali-
sys®, Gothenburg, Sweden) with submillimetre accuracy [11]. Flexion 
and extension angles (Fle/Ext [◦]), corresponding to the sagittal plane of 
the elbow and pronation and supination angles (Pron/Sup [◦]), corre-
sponding to the transverse plane of the elbow were measured. The 
following lines explain in detail the characteristics of the IMUs and OS 
devices and the data collection:  

- NOTCH® IMUs system (Wearnotch, Notch Interfaces, Inc., New 
Jersey, USA): It is a wireless IMU-based system embedded with nine- 
axis inertial sensors (three-axis gyroscope, three-axis accelerometer, 
three-axis magnetometer), with a maximum range of measurement 
of ± 32 g, ± 4000◦/s and a maximum sampling rate of 500 Hz 
(Table 1). The system has been previously validated through func-
tional daily task movements [27]. The elbow joint angles from the 
NOTCH® system were downloaded, thanks to an extended license 
(which costs $50 USD per year). Static and dynamic sensor calibra-
tions were conducted with the purpose to ensure their optimal per-
formance. A ‘steady pose’ (anatomical position) was collected prior 
to each forehand measured, The steady pose was used to capture the 
orientation of the arm, and thus the NOTCH® IMUs algorithms 
joined it to a predefined skeleton pose. The IMU was mounted in a 
rigid plastic case attached to manufacturer-made straps, which were 
positioned in the segments of the participant. Elbow joint angles 
measured during all forehands performed during the study were 
transferred from the NOTCH® Pioneer application to an Android 
device (Nokia 6.1., Espoo, Finland) via Bluetooth, and then to a 
server computer for their analysis. Additionally, NOTCH® uses 
proprietary sensor fusion, filtering methods, and algorithms to 
calculate joint angles that are restricted for the user.  

- Qualisys® optoelectronic system (Qualisys®, Gothenburg, Sweden) 
consists of nine infrared high-speed cameras (Oqus 300, Qualisys, 
Sweden), alongside which the Qualisys Track Manager (version 2.17, 
Qualisys, Gothenburg, Sweden) software was used. All forehands 
performed during the study were recorded at a sampling frequency of 
500 Hz, and the data were down-sampled to 100 Hz, 250 Hz and 500 
Hz to compare the signals with that of the IMUs. An upright static 
trial was used to create the upper limbs segment (i.e., arm and 
forearm) and the joint centres (i.e., elbow) posteriorly used in the 
motion trials. To avoid the brightness disturbances that could be 
confused with the retroreflective markers, care was taken with the 
lighting conditions. A calibration wand manufactured by Qualisys® 
was used for spatial calibration, following the manufacturer’s 
guidelines. The calibration was repeated until obtaining the best 
possible calibration parameters (the average residuals of the cameras 
being below 0.4 mm). 

2.4. Signal processing and filtering 

The 3D marker trajectories during the standing position and fore-
hand drive trials were identified by the OS system and exported to C3D 

Fig. 1. Set up of the experiment (a) indicating the infrared camera model used, 
the biomechanics marker set and the pendulum ball that the player should hit. 
The biomechanical markers used (b): (1) Acromion; (2) back of the humeral 
head; (3) front of the humeral head; (4–6) cluster of the arm; (7) lateral epi-
condyle; (8) medial epicondyle; (9–11) cluster of the forearm; (12) radius styloid 
process; (13) ulna styloid process. S1 is the IMU sensor located in the arm and S2 
is the IMU sensor located in the forearm. 
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format in the Qualisys Track Manager. Then, using the Visual 3D soft-
ware (V6, C-motion, Inc. Germantown, USA), and based on the Uni-
versity of Western Australia’s upper body marker set, the positions and 
orientations of the dominant arm and forearm were reconstructed and 
used to compute the elbow joint angles (flexion/extension and prona-
tion/supination). Two different Cardan sequences (AP-AXIAL-ML and 
ML-AP-AXIAL) were used to calculate pronation-supination and flex-
ion–extension (the motive underlying this relevant decision is explained 
in the document provided as supplementary material). The elbow joint 
angle was then filtered forward and backward through an 18 Hz second- 
order Butterworth filter to obtain the result of a zero-lag fourth-order 
filter. To select the cut-off frequency of the said filter, an analysis of the 
residuals was previously carried out [45] using an Excel ad-hoc tool. 
Based on previous literature [46], every frequency between 1 Hz and 32 
Hz at 1 Hz intervals was tested. Residuals (RMSE) were plotted against a 
cut-off frequency, and a straight line of the best fit was projected back to 
the y-axis from the linear portion of the residual-frequency curve. A 
horizontal line was then extended from the vertical-intercept back to the 
residual-frequency curve, and the frequency at which the two lines meet 
was chosen as the optimal cut-off frequency [47]. This was done for each 
subject, and the rounded mean (without decimal places) of the cut-off 
frequency was considered (18 Hz). Finally, elbow joint angles (Fle/Ext 
and Pron/Sup) from the IMUs and OS were synchronised using an Excel 
spreadsheet, using a cross-correlation based phase shift technique [20]. 
This procedure of synchronising signals has been used previously in 
studies to analyse the validity of biomechanical analysis instruments 
[20,48]. This type of synchronisation was chosen given the impossibility 
of conducting it via electrical pulse (start/stop). The angles from the 
IMUs were processed unfiltered, as the interest of the study is to analyse 
the data directly provided by the devices, without any additional data 
processing. Despite the above, the NOTCH® signal had to be slightly 
transformed, based on the aforementioned cross-correlation technique, 
in order to compare it with the OS signal. This transformation is better 
explained in a document that is added as supplementary material. 

2.5. Statistical analysis 

Descriptive statistics are represented as mean and standard deviation 
(SD). Tests of normal distribution and homogeneity, determined by the 
Shapiro–Wilk and Levene’s tests, respectively, were conducted on all 
data prior to analysis. In order to determine the validity of the system 
regarding the reference system (IMUs vs OS), the linear relationship and 
level of agreement between both signals (IMUs vs OS) were evaluated 
using Lin’s concordance correlation coefficient (Lin’s CCC) [49], with a 
high Lin’s CCC indicating the absence of systematic error difference 
between measurements [50]. The following criteria were adopted to 
interpret the magnitude of correlations between measurement variables: 
< 0.1 (trivial), 0.1–0.3 (small), 0.3–0.5 (moderate), 0.5–0.7 (large), 
0.7–0.9 (very large) and 0.9–1.0 (almost perfect) [51]. The magnitude of 
the error was also quantified by calculating the root mean square error 
(RMSE) between the two motion capture systems. The RMSE interpre-
tation was based on a previous study [52] as follows: good (RMSE ≤ 2◦), 
acceptable (2◦ < RMSE ≤ 5◦), tolerable (5◦ < RMSE ≤ 10) and un-
bearable accuracy (RMSE > 10). For comparing the error of measure-
ment (RMSE) at different sampling rates (100 Hz vs 250 Hz vs 500 Hz), 
one-way repeated measures ANOVA followed by Bonferroni multiple 
post-hoc comparison tests were carried out. To evaluate the reliability of 
the sensors of the elbow, a student’s t-test for dependent samples was 
conducted, considering the RMSE and Lin’s CCC in the two measure-
ments (test–retest), at each sampling frequency (within-subject error 
variation). The magnitude of the differences was interpreted using the 
Cohen’s d effect size (ES) (between-group differences) [53] and reported 
as follows: trivial (<0.2), small (0.2–0.49), medium (0.5–0.79), and 
large (≥0.8) [53]. All data analyses were performed using Excel 2016 
and Real Statistic Using Excel Packages [54,55], and the level of sig-
nificance used was p < 0.05. 

3. Results 

Fig. 2 shows two examples of the elbow joint angle obtained using 
the IMUs superimposed on the one obtained with the OS – one for the 
flexion/extension and another for the pronation/supination. 

3.1. Validity 

Table 2 shows a comparative analysis (RMSE and Lin’s CCC) between 
IMUs and OS elbow joint angles at different sampling frequencies (100 
Hz, 250 Hz and 500 Hz) during tennis forehand. All the comparisons 
showed a tolerable RMSE (RMSE < 10). Relative to the correlation 
analysis (Lin’s CCC), very large correlations (r > 0.81) were obtained in 
all associations between both systems. 

3.2. Differences in the error of measurement as a function of sampling 
frequency 

Repeated measures ANOVA showed differences between the RMSE 
at different sampling frequencies (p = 0.0024), and the Bonferroni post- 
hoc analysis showed no significant differences when comparing 100 Hz 
vs 250 Hz, 250 Hz vs 500 Hz or in flexion/extension nor pronation/ 
supination (p > 0.05) (Table 3). Instead, significant differences were 
found between 100 Hz and 500 Hz in flexion/extension (p = 0.001) and 
pronation/supination (p = 0.023), with a large effect size (≥0.8) in both 
cases (Table 4). 

3.3. Reliability 

The comparative analyses of the RMSE between the test–retest at 
different sampling frequencies, and in the two anatomical movements 
analysed showed no significant differences (p > 0.05) in any case 
(Table 4). This indicates that the error was consistent between mea-
surements. Regarding the Lin’s CCC between devices, it always 
remained above 0.8, and no significant differences (p > 0.05) were 
found between the test–retest or in any comparisons. 

4. Discussion 

The aim of the present study was to analyse the concurrent validity 
and reliability of a IMUs system for measuring the elbow joint angle 
during forehand strokes, comparing the data against an OS (gold stan-
dard). The RMSE of the transformed signal was tolerable (5◦ < RMSE ≤
10) for all anatomical movements and sampling frequencies. The Lin’s 
CCC between both devices was very large (0.7–0.9) in all cases. The 
RMSE increased significantly (p > 0.05) in the recordings made at 100 
Hz as compared to those made at 500 Hz, for both planes of the elbow 
(flexion/extension and pronation/supination), with a large effect size 
(≥0.8) in both planes. The within-subject error variation between 
test–retest showed no significant differences in any of the elbow planes 
and sampling frequencies used, and the level of agreement also 
remained > 0.8 in all cases. 

Previous studies [22,25] have suggested that a RMSE below 10◦

demonstrates very good accuracy of the IMU devices. The error of 
measurement of the IMUs were below this threshold for the two planes 
of the elbow and all the sampling frequencies used. If we compare the 
results with those of studies that have analysed IMU validity, we will 
find similar values for the agreement and RMSE scores, relative to the 
upper limb kinematics. For example, Fantozzi et al. [21] found RMSE of 
15◦ and 10◦ in the sagittal and transverse planes of the elbow while 
swimming, whereas Barreto et al. [56] found similar correlation co-
efficients and RMSE in the elbow during gymnastics skills. Tennis 
strokes have a particular idiosyncrasy as they are usually executed at a 
high-speeds, thereby achieving high angular velocities, especially in the 
last segments of the kinetic chain (that is, at the elbow and at the wrist). 
For this reason, validation studies of the specific IMUs for this sport 
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should be carried out, especially considering that the speed could affect 
the accuracy of the measurement [24]. A similar study [25] analysing 
IMU accuracy while performing tennis forehands reported a Lin’s CCC 
> 0.9 and a RMSE below 2◦ in the sagittal plane of the elbow (flexion/ 
extension), only slightly better than the present investigation. In 
contrast, for the elbow pronation-supination angle, data from the pre-
sent work (Table 2) showed a higher level of agreement and a lower 

Fig. 2. Elbow joint angles during tennis forehand obtained from the OS and IMUs synchronised at 500 Hz of one of the study participants.  

Table 2 
RMSE and Lin’s CCC between elbow joint angles (Fle/Ext and Pron/Sup) ob-
tained from IMUs and OS during tennis forehand at different sampling fre-
quencies (100 Hz, 250 Hz and 500 Hz).  

Sample Frequency Elbow joint angle RMSE* Lińs CCC* 

100 Hz Fle/Ext  8.66◦ 0.81 
Pron/Sup  8.53◦ 0.83 

250 Hz Fle/Ext  7.53◦ 0.85 
Pron/Sup  7.66◦ 0.86 

500 Hz Fle/Ext  5.76◦ 0.89 
Pron/Sup  6.66◦ 0.86 

* RMSE: Root Mean Square Error; Lińs CCC: Lińs Concordance Correlation 
Coefficient. 

Table 3 
Bonferroni post-hoc test (from repeated measures ANOVA) between elbow joints 
angles obtained at the different sampling frequencies.  

Condition Mean RMSE (◦) (SD) p- 
value* 

ES* 

Fle/Ext 100 Hz vs Fle/Ext 250 Hz 8.78 (1.67) vs 7.27 
(1.94)  

0.266  0.62 

Fle/Ext 100 Hz vs Fle/Ext 500 Hz 8.78 (1.67) vs 5.77 
(1.79)  

0.001*  1.54 

Fle/Ext 250 Hz vs Fle/Ext 500 Hz 7.27 (1.94) vs 5.77 
(1.79)  

0.068  0.91 

Pron/Sup 100 Hz vs Pron/Sup 250 
Hz 

8.41 (1.89) vs 7.67 
(1.15)  

0.508  0.48 

Pron/Sup 100 Hz vs Pron/Sup 500 
Hz 

8.41 (1.89) vs 6.67 
(1.61)  

0.023*  1.23 

Pron/Sup 250 Hz vs Pron/Sup 500 
Hz 

7.67 (1.15) vs 6.67 
(1.61)  

0.204  0.75 

* p-value: significant differences for values lower than 0.05; *ES: Effect size (D- 
Cohen). 
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RMSE than in the study of Pedro et al. [25] (they reported Lin’s CCC of 
0.79 and RMSE of 13.1◦). The differences in precision of the different 
IMUs evaluated could be predominantly attributed to the biomechanical 
models and different calibration methods [22]. The threshold beyond 
which the error will be considered large also depends on the objectives 
of the investigation. For example, [57] found differences of about 16◦ for 
the elbow flexion angle at impact between prepubescent’s and adults. 
This value is higher than the error of measurement (RMSE) of the 
NOTCH® sensors, thus concluding that this device is sufficiently accu-
rate to detect the differences in this particular case. On the other hand, 
[13] found differences between elite- and high-performance players 
below one degree for the elbow flexion angle during the forehand 
strokes, probably requiring, in this case, a more accurate system. 

In the present study, it was found that the error (measured as RMSE) 
increased significantly (p < 0.05), if we compare the recordings made at 
100 Hz and 500 Hz. This result supports the hypothesis of previous 
studies [40,58] which indicate that a minimum sampling frequency of 
200 Hz is required for an accurate upper limb’s kinematic analysis of 
tennis strokes. Despite the differences found, the level of agreement and 
the magnitude of the error of the recordings made at 100 Hz were very 
large (0.8–0.9) and tolerable (RMSE < 10◦) in all cases, with values 
similar to that of the literature [21,22]. Therefore, recording at 100 Hz 
with the present sensors could be appropriate when the researcher is 
interested in collect long recordings and wants to measure, for example, 
the physical load in a competition [59,60]. In this case, the sampling rate 
required does not have to be as high as when the main interest of the 
research is, for example, comparing the hitting kinematics between 
players of different levels of performance [10,13]. Finally the magnitude 
of the error remained constant (p > 0.05) throughout the course of the 
test–retest, and the level of agreement was > 0.8 in all planes of the 
elbow and sampling frequencies used, which indicates the reliability of 
the IMUs. 

Summarising, NOTCH® IMUs could be an alternative (transforming 
the signal by using a simple linear equation) to other sensors that have 
been more tested in the scientific field and are supported by a large 
number of high-impact publications [25]. The sensors used in the pre-
sent manuscript have three notable advantages over other models used 
for biomechanical analysis: I) low price, which allows laboratories with 
a limited budget to use them; II) the measurement range of gyroscopes 
(±4000 degrees per second) that allows evaluating ballistic gestures 
such as tennis strokes, where sometimes 2000◦/s are exceeded [23]; III) 
their capability to measure at high sampling rates (500 Hz) which allow 
them to analyse tennis strokes in detail, and even capture the moment of 
the ball impact with the tennis racket. Another real use of these sensors 
would be the design and implementation of systems for the detection, 
classification and evaluation of strokes in real competition situations 
[61–64]. Finally, the NOTCH® sensor can be considered an economical 

and valuable tool for field-based experimentation. 
Study limitations are associated with iron structures within labora-

tories that may interfere with electronic devices for data collection and 
the sample size used since it was not determined by statistical methods. 
Despite this, level of agreement between both measurement systems was 
strong, and the differences (measured as RMSE) seem small enough to 
detect differences in elbow angulations during tennis forehand. IMUs 
allow evaluating in natural playing conditions, something which, until 
recently, was difficult to do with traditional photogrammetric systems. 
Others limitations of the study is that the IMU and OS system signals 
could not be synchronised by electrical pulse and that the S2 and fore-
arm marker cluster were not attached together. Therefore, we believe 
that work that analyses the validity of these devices in a controlled 
laboratory situation is very necessary and should be done before using 
them to evaluate the kinematics of hitting the field. Further research is 
required to check the validity and reliability of the NOCTH® measure-
ments in different anatomical joints and strokes. Also, future studies 
could include other IMUs (e.g., Xsens) attached to the same location as 
NOTCH® (on top of each other), and the same analysis could be per-
formed on both. This is because, obtaining RMSEs of < 10◦ in a limited 
testing condition (limited number of trials, limited duration of the test, 
limited number of participants, limited type of motions) does not truly 
reveal the validity of the IMUs. However, given the errors of another 
well-established IMU, such as Xsens, a reader could understand the true 
potential of the NOTCH® sensors. Also, it would be important to 
conduct an independent study to validate the orientation measured with 
proprietary sensor fusion of NOTCH®. The characteristics of these sen-
sors (high sampling frequency and high measurement ranges of the 
accelerometer, gyroscope and magnetometer) and the possibility of 
programming them via an API provided by the manufacturers (wear 
notch.com) make them ideal for advanced biomechanics assessment in 
tennis. 

5. Conclusions 

This is the first study to analyse the validity of IMUs for measuring 
elbow joint angles by comparing data with an optoelectronic system, at 
different sampling frequencies during tennis forehand. The results 
indicate that the NOTCH® inertial measurements system is a valid and 
reliable tool to measure elbow joint angles during tennis forehand. Even 
though all sampling frequencies analysed (100 Hz, 200 Hz and 500 Hz) 
showed good validity and reliability scores, the best results were ob-
tained at 500 fps, so it is recommended to use this sampling frequency 
for short recordings (wherein the memory or the computation time is not 
a concern). Finally, although a simple signal transformation must be 
applied before use, NOTCH® sensors can help develop and refine 
technical actions and to correct biomechanical inefficiencies. Also, the 
potential of a low-cost tool will be an aid for tennis coaches and sports 
science researchers, who have limited access to laboratory evaluations. 
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Table 4 
Comparison of the RMSE and Lin’s CCC between test–retest at different sampling 
rate and in different anatomical movements (Fle/Ext and Pron/Sup).  

Sample 
rate 

Elbow 
joint 
angle 

RMSE (◦) mean 
(SD) 

p- 
value 

Lin’s CCC mean 
(SD) 

p- 
value 

Test Re-test Test Re-test 

100 Hz Fle/Ext 8.78 
(1.67) 

9.14 
(2.50)  

0.48 0.81 
(0.14) 

0.81 
(0.13)  

0.75 

Pron/ 
Sup 

8.41 
(1.89) 

8.67 
(1.92)  

0.65 0.83 
(0.06) 

0.82 
(0.08)  

0.55 

250 Hz Fle/Ext 7.27 
(1.94) 

6.71 
(1.49)  

0.12 0.85 
(0.1) 

0.88 
(0.07)  

0.23 

Pron/ 
Sup 

7.67 
(1.15) 

7.58 
(1.83)  

0.86 0.86 
(0.08) 

0.87 
(0.07)  

0.69 

500 Hz Fle/Ext 5.77 
(1.79) 

6.06 
(2.24)  

0.71 0.89 
(0.06) 

0.86 
(0.09)  

0.24 

Pron/ 
Sup 

6.67 
(1.61) 

6.57 
(1.37)  

0.89 0.86 
(0.07) 

0.89 
(0.06)  

0.17 

* p-value: significant differences for values lower than 0.05. 
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Ortega, What is the most suitable sampling frequency to register accelerometry- 
based workload? A case study in soccer, Proceedings of the Institution of 
Mechanical Engineers, Part P: Journal of Sports Engineering and Technology 235 
(2) (2021) 114–121, https://doi.org/10.1177/1754337120972516. 

[40] M. Rana, V. Mittal, Wearable sensors for real-time kinematics analysis in sports: a 
review, IEEE Sens. J. 21 (2) (2020) 1187–1207. 

[41] J. Chow, L. Carlton, Y.T. Lim, W.S. Chae, J.H. Shim, A.N.N. Kuenster, K. Kokubun, 
Comparing the pre-and post-impact ball and racquet kinematics of elite tennis 
players’ first and second serves: a preliminary study, J. Sports Sci. 21 (7) (2003) 
529–537. 

[42] S. Zhang, P. Murray, R. Zillmer, R.G. Eston, M. Catt, A.V. Rowlands, Activity 
classification using the genea: Optimum sampling frequency and number of axes, 

E.J. Ruiz-Malagón et al.                                                                                                                                                                                                                       

https://doi.org/10.1016/j.measurement.2022.111666
https://doi.org/10.1016/j.measurement.2022.111666
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0005
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0005
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0005
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0015
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0015
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0020
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0020
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0020
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0025
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0025
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0025
https://doi.org/10.3390/s22031283
https://doi.org/10.1109/IECON.2015.7392454
https://doi.org/10.1109/IECON.2015.7392454
https://doi.org/10.1145/3302506.3310404
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0045
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0045
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0045
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0050
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0050
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0050
https://doi.org/10.1016/j.jbiomech.2020.109820
https://doi.org/10.1016/j.jbiomech.2020.109820
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0060
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0060
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0060
https://doi.org/10.1080/14763141.2010.535841
https://doi.org/10.1080/14763141.2010.535841
https://doi.org/10.1080/02640414.2014.962569
https://doi.org/10.1080/02640414.2014.962569
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0075
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0075
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0075
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0075
https://doi.org/10.1109/IRC.2019.00036
https://doi.org/10.1109/TSP.2017.8076091
https://doi.org/10.1109/TSP.2017.8076091
https://doi.org/10.1109/IMVIP.2011.12
https://doi.org/10.1109/IMVIP.2011.12
https://doi.org/10.1371/journal.pone.0213064
https://doi.org/10.1371/journal.pone.0213064
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0100
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0100
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0100
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0105
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0105
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0105
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0105
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0110
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0110
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0110
https://doi.org/10.1080/02640414.2014.962572
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0120
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0120
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0120
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0120
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0120
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0125
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0125
https://doi.org/10.7717/peerj.13228
https://doi.org/10.7717/peerj.13228
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0135
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0135
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0135
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0140
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0140
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0145
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0145
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0145
https://doi.org/10.1080/14763141.2018.1461915
https://doi.org/10.1080/14763141.2018.1461915
https://doi.org/10.1080/17461391.2011.566363
https://doi.org/10.1080/17461391.2011.566363
https://doi.org/10.3390/s21196576
https://doi.org/10.3390/s21196576
https://doi.org/10.3390/s21248303
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0170
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0170
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0175
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0175
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0175
https://doi.org/10.1080/14763141.2018.1535619
https://doi.org/10.1080/14763141.2018.1535619
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0185
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0185
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0185
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0190
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0190
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0190
https://doi.org/10.1177/1754337120972516
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0200
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0200
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0205
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0205
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0205
http://refhub.elsevier.com/S0263-2241(22)00874-0/h0205


Measurement 201 (2022) 111666

8

Med. Sci. Sports Exerc. 44 (11) (2012) 2228–2234, https://doi.org/10.1249/ 
MSS.0b013e31825e19fd. 

[43] (ITF), I. T. F. (2017). About International Tennis number. http://www.itftennis.com/ 
home.aspx. 

[44] D.G. Lloyd, J. Alderson, B.C. Elliott, An upper limb kinematic model for the 
examination of cricket bowling: A case study of Mutiah Muralitharan, J. Sports Sci. 
18 (12) (2000) 975–982. 

[45] D.A. Winter, Biomechanics and motor control of human movement, John Wiley & 
Sons, 2009. 

[46] D.W.T. Wundersitz, K.J. Netto, B. Aisbett, P.B. Gastin, Validity of an upper-body- 
mounted accelerometer to measure peak vertical and resultant force during 
running and change-of-direction tasks, Sports Biomechanics 12 (4) (2013) 
403–412, https://doi.org/10.1080/14763141.2013.811284. 

[47] W.B. Edwards, T.R. Derrick, J. Hamill, Time series analysis in biomechanics, 
Handbook of Human Motion (2017) 1–24. 

[48] L. Li, G.E. Caldwell, Coefficient of cross correlation and the time domain 
correspondence, J. Electromyogr. Kinesiol. 9 (6) (1999) 385–389, https://doi.org/ 
10.1016/S1050-6411 (99)00012-7. 

[49] I. Lawrence, K. Lin, A concordance correlation coefficient to evaluate 
reproducibility, Biometrics (1989) 255–268. 

[50] L. Lin, A.S. Hedayat, B. Sinha, M. Yang, Statistical methods in assessing agreement: 
Models, issues, and tools, J. Am. Stat. Assoc. (2002), https://doi.org/10.1198/ 
016214502753479392. 

[51] W. Hopkins, S. Marshall, A. Batterham, J. Hanin, Progressive statistics for studies 
in sports medicine and exercise science, Medicine Science in Sports Exercise 41 (1) 
(2009) 3. 

[52] J.L. McGinley, R. Baker, R. Wolfe, M.E. Morris, The reliability of three-dimensional 
kinematic gait measurements: a systematic review, Gait & posture 29 (3) (2009) 
360–369. 

[53] Cohen J. Statistical power analysis for the behavioral sciences. Vol. 2nd, Statistical 
Power Analysis for the Behavioral Sciences. 1988. 567 p. 

[54] Zaiontz C. (2018). Real Statistics Using Excel. www.real-statistics.com. 
[55] J. Vanrenterghem, Biomechanics Toolbar, Retrieved from, http://www.biomech 

anicstoolbar.org/, 2016. 

[56] J. Barreto, C. Peixoto, S. Cabral, A.M. Williams, F. Casanova, B. Pedro, A.P. Veloso, 
Concurrent Validation of 3D Joint Angles during Gymnastics Techniques Using 
Inertial Measurement Units, Electronics 10 (11) (2021) 1251. 

[57] D. Whiteside, B. Elliott, B. Lay, M. Reid, The effect of age on discrete kinematics of 
the elite female tennis serve, Journal of Applied Biomechanics 29 (5) (2013) 
573–582. 

[58] F. Tubez, C. Schwartz, J. Paulus, J.L. Croisier, O. Brüls, V. Denoël, B. Forthomme, 
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