2,362 research outputs found

    Robust Cardiac Motion Estimation using Ultrafast Ultrasound Data: A Low-Rank-Topology-Preserving Approach

    Get PDF
    Cardiac motion estimation is an important diagnostic tool to detect heart diseases and it has been explored with modalities such as MRI and conventional ultrasound (US) sequences. US cardiac motion estimation still presents challenges because of the complex motion patterns and the presence of noise. In this work, we propose a novel approach to estimate the cardiac motion using ultrafast ultrasound data. -- Our solution is based on a variational formulation characterized by the L2-regularized class. The displacement is represented by a lattice of b-splines and we ensure robustness by applying a maximum likelihood type estimator. While this is an important part of our solution, the main highlight of this paper is to combine a low-rank data representation with topology preservation. Low-rank data representation (achieved by finding the k-dominant singular values of a Casorati Matrix arranged from the data sequence) speeds up the global solution and achieves noise reduction. On the other hand, topology preservation (achieved by monitoring the Jacobian determinant) allows to radically rule out distortions while carefully controlling the size of allowed expansions and contractions. Our variational approach is carried out on a realistic dataset as well as on a simulated one. We demonstrate how our proposed variational solution deals with complex deformations through careful numerical experiments. While maintaining the accuracy of the solution, the low-rank preprocessing is shown to speed up the convergence of the variational problem. Beyond cardiac motion estimation, our approach is promising for the analysis of other organs that experience motion.Comment: 15 pages, 10 figures, Physics in Medicine and Biology, 201

    Left-ventricular epi- and endocardium extraction from 3D ultrasound images using an automatically constructed 3D ASM

    Get PDF
    © 2014 Taylor & Francis.In this paper, we propose an automatic method for constructing an active shape model (ASM) to segment the complete cardiac left ventricle in 3D ultrasound (3DUS) images, which avoids costly manual landmarking. The automatic construction of the ASM has already been addressed in the literature; however, the direct application of these methods to 3DUS is hampered by a high level of noise and artefacts. Therefore, we propose to construct the ASM by fusing the multidetector computed tomography data, to learn the shape, with the artificially generated 3DUS, in order to learn the neighbourhood of the boundaries. Our artificial images were generated by two approaches: a faster one that does not take into account the geometry of the transducer, and a more comprehensive one, implemented in Field II toolbox. The segmentation accuracy of our ASM was evaluated on 20 patients with left-ventricular asynchrony, demonstrating plausibility of the approach

    Post-processing approaches for the improvement of cardiac ultrasound B-mode images:a review

    Get PDF

    Three-dimensional myocardial strain estimation from volumetric ultrasound: experimental validation in an animal model

    Get PDF
    Although real-time three-dimensional echocardiography has the potential to allow for more accurate assessment of global and regional ventricular dynamics compared to the more traditional two-dimensional ultrasound examinations, it still requires rigorous testing and validation against other accepted techniques should it breakthrough as a standard examination in routine clinical practice. Very few studies have looked at a validation of regional functional indices in an in-vivo context. The aim of the present study therefore was to validate a previously proposed 3D strain estimation-method based on elastic registration of subsequent volumes on a segmental level in an animal model. Volumetric images were acquired with a GE Vivid7 ultrasound system in five open-chest sheep instrumented with ultrasonic microcrystals. Radial (epsilon(RR)), longitudinal (epsilon(LL)) and circumferential strain (epsilon(CC)) were estimated during four stages: at rest, during esmolol and dobutamine infusion, and during acute ischemia. Moderate correlations for epsilon(LL) (r=0.63; p<0.01) and epsilon(CC) (r=0.60; p=0.01) were obtained, whereas no significant radial correlation was found. These findings are comparable to the performance of the current state-of-the-art commercial 3D speckle tracking methods

    Foetal echocardiographic segmentation

    Get PDF
    Congenital heart disease affects just under one percentage of all live births [1]. Those defects that manifest themselves as changes to the cardiac chamber volumes are the motivation for the research presented in this thesis. Blood volume measurements in vivo require delineation of the cardiac chambers and manual tracing of foetal cardiac chambers is very time consuming and operator dependent. This thesis presents a multi region based level set snake deformable model applied in both 2D and 3D which can automatically adapt to some extent towards ultrasound noise such as attenuation, speckle and partial occlusion artefacts. The algorithm presented is named Mumford Shah Sarti Collision Detection (MSSCD). The level set methods presented in this thesis have an optional shape prior term for constraining the segmentation by a template registered to the image in the presence of shadowing and heavy noise. When applied to real data in the absence of the template the MSSCD algorithm is initialised from seed primitives placed at the centre of each cardiac chamber. The voxel statistics inside the chamber is determined before evolution. The MSSCD stops at open boundaries between two chambers as the two approaching level set fronts meet. This has significance when determining volumes for all cardiac compartments since cardiac indices assume that each chamber is treated in isolation. Comparison of the segmentation results from the implemented snakes including a previous level set method in the foetal cardiac literature show that in both 2D and 3D on both real and synthetic data, the MSSCD formulation is better suited to these types of data. All the algorithms tested in this thesis are within 2mm error to manually traced segmentation of the foetal cardiac datasets. This corresponds to less than 10% of the length of a foetal heart. In addition to comparison with manual tracings all the amorphous deformable model segmentations in this thesis are validated using a physical phantom. The volume estimation of the phantom by the MSSCD segmentation is to within 13% of the physically determined volume

    Deep learning for fast and robust medical image reconstruction and analysis

    Get PDF
    Medical imaging is an indispensable component of modern medical research as well as clinical practice. Nevertheless, imaging techniques such as magnetic resonance imaging (MRI) and computational tomography (CT) are costly and are less accessible to the majority of the world. To make medical devices more accessible, affordable and efficient, it is crucial to re-calibrate our current imaging paradigm for smarter imaging. In particular, as medical imaging techniques have highly structured forms in the way they acquire data, they provide us with an opportunity to optimise the imaging techniques holistically by leveraging data. The central theme of this thesis is to explore different opportunities where we can exploit data and deep learning to improve the way we extract information for better, faster and smarter imaging. This thesis explores three distinct problems. The first problem is the time-consuming nature of dynamic MR data acquisition and reconstruction. We propose deep learning methods for accelerated dynamic MR image reconstruction, resulting in up to 10-fold reduction in imaging time. The second problem is the redundancy in our current imaging pipeline. Traditionally, imaging pipeline treated acquisition, reconstruction and analysis as separate steps. However, we argue that one can approach them holistically and optimise the entire pipeline jointly for a specific target goal. To this end, we propose deep learning approaches for obtaining high fidelity cardiac MR segmentation directly from significantly undersampled data, greatly exceeding the undersampling limit for image reconstruction. The final part of this thesis tackles the problem of interpretability of the deep learning algorithms. We propose attention-models that can implicitly focus on salient regions in an image to improve accuracy for ultrasound scan plane detection and CT segmentation. More crucially, these models can provide explainability, which is a crucial stepping stone for the harmonisation of smart imaging and current clinical practice.Open Acces

    Ultrafast Ultrasound Imaging

    Get PDF
    Among medical imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), ultrasound imaging stands out due to its temporal resolution. Owing to the nature of medical ultrasound imaging, it has been used for not only observation of the morphology of living organs but also functional imaging, such as blood flow imaging and evaluation of the cardiac function. Ultrafast ultrasound imaging, which has recently become widely available, significantly increases the opportunities for medical functional imaging. Ultrafast ultrasound imaging typically enables imaging frame-rates of up to ten thousand frames per second (fps). Due to the extremely high temporal resolution, this enables visualization of rapid dynamic responses of biological tissues, which cannot be observed and analyzed by conventional ultrasound imaging. This Special Issue includes various studies of improvements to the performance of ultrafast ultrasoun
    corecore