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Abstract

Medical imaging is an indispensable component of modern medical research as well as clinical

practice. Nevertheless, imaging techniques such as magnetic resonance imaging (MRI) and

computational tomography (CT) are costly and are less accessible to the majority of the world.

To make medical devices more accessible, a↵ordable and e�cient, it is crucial to re-calibrate our

current imaging paradigm for smarter imaging. In particular, as medical imaging techniques

have highly structured forms in the way they acquire data, they provide us with an opportunity

to optimise the imaging techniques holistically by leveraging data. The central theme of this

thesis is to explore di↵erent opportunities where we can exploit data and deep learning to

improve the way we extract information for better, faster and smarter imaging.

This thesis explores three distinct problems. The first problem is the time-consuming nature

of dynamic MR data acquisition and reconstruction. We propose deep learning methods for

accelerated dynamic MR image reconstruction, resulting in up to 10-fold reduction in imaging

time. The second problem is the redundancy in our current imaging pipeline. Traditionally,

imaging pipeline treated acquisition, reconstruction and analysis as separate steps. However,

we argue that one can approach them holistically and optimise the entire pipeline jointly for a

specific target goal. To this end, we propose deep learning approaches for obtaining high fidelity

cardiac MR segmentation directly from significantly undersampled data, greatly exceeding the

undersampling limit for image reconstruction. The final part of this thesis tackles the problem

of interpretability of the deep learning algorithms. We propose attention-models that can

implicitly focus on salient regions in an image to improve accuracy for ultrasound scan plane

detection and CT segmentation. More crucially, these models can provide explainability, which

is a crucial stepping stone for the harmonisation of smart imaging and current clinical practice.
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Chapter 1

Introduction

Medical imaging is an indispensable component of modern medical research as well as clinical

practice. Despite advances in these imaging techniques, the high demand for the cost as well as

the requirement of expert knowledge makes it di�cult for them to be used in many scenarios.

As such, many parts of the world still do not have su�cient accessibility to these techniques.

To make medical devices more accessible, a↵ordable and e�cient, it is crucial to reflect upon

our current imaging paradigm, reformulate and re-calibrate our problems for smarter imaging.

As each medical imaging technique has a highly structured form in the way it acquires images,

one can gather a significant amount of highly correlated data. From such data, one can iden-

tify whether there is a redundancy in the information extracted due to sub-optimal imaging

procedures. This redundancy in turn provides us with an opportunity to optimise the imaging

process holistically. In particular, machine learning algorithms are the techniques which can

learn the relationship between di↵erent variables in data and optimise the task that one is in-

terested in. The central theme of this thesis is to explore di↵erent opportunities where we can

exploit implicit or explicit redundancy to improve the way we extract information for better,

faster and smarter imaging.

In this section, we take a deeper look into the challenges in current medical imaging in order

to motivate the need for smarter imaging protocols. We then highlight the key opportunities

that the thesis attempts to address by leveraging advanced information processing techniques

1
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such as deep learning.

1.1 Challenges in modern medical imaging

While medical imaging devices are indispensable for modern medical research, diagnosis, treat-

ment planning and monitoring, many parts of the world still do not have easy access to them.

According to world health organization (WHO) report in 2017, while 54% of countries1 have

at least one MRI unit per million population, the numbers are 0% and 30% for low- and

lower-middle-income countries respectively, which accounts for the population size of 3.6 bil-

lion [Ban16]. Similarly, for CT, the global average is 70%, whereas the number drops to 14%

and 60% for the nations with lower income levels [Org17]. The primary reasons of the limited

accessibility is due to the vast cost associated with procurement, operation and maintenance,

as well as the expert knowledge required to operate them. As such, even if most low-income

nations can secure their primary health-care system, there is a huge barrier before these medical

imaging devices are incorporated in their national health-care policies.

As of 2016, the leading causes of death for all income groups include cardiovascular diseases,

stroke, lung diseases such as chronic obstructive pulmonary disease and cancers, dementia and

related disorders (to list a few). While the top leading cause of death for low-income group are

more often related to communicable diseases and nutritional conditions, nevertheless, ischaemic

heart diseases and stroke still rank within the top five [Org18]. Medical imaging devices can

help early diagnosis of these diseases and improve the population health. Therefore, there is an

urgent need for the improved dissemination of medical imaging devices across all income levels.

For the better dissemination of medical imaging tools, we need imaging devices that are cheaper,

more e�cient and easier to use. In order to achieve this goal, we need to reflect upon our current

technology stack and rethink how we can optimise the e�ciency to maximise the utilisation of

these imaging tools.

1The report is based on “Global Atlas of Medical Devices”, which contained 121 countries from African,
American, European, Miditerranean, South-East Asian and Western Pacific regions.
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As a research community in medical image analysis, we believe that we can make significant

impacts to reduce the operational, maintenance and educational cost by exploiting advanced

signal processing techniques and automated/semi-automated methods. In particular, with the

emergence of advanced machine learning techniques such as deep learning, we believe that we are

in a good position to address these challenges. In the following, we highlight the opportunities

that are targeted and tackled in this thesis.

1.1.1 Limitations of acquisition

Medical imaging techniques are inherently complex. Scientists have come up with numerous

ways to exploit di↵erent branches of physics: nuclear physics, electromagnetism and acoustics.

However, each approach has its own limitations. For example, MRI is a non-ionising and

non-invasive imaging technique that can o↵er high-resolution imaging with various contrast

mechanisms, yet it is an expensive, slow imaging modality. MRI is dependent on nuclear

magnetic resonance (NMR) physics and to obtain a high-quality image, MRI requires a magnet

that can produce a strong, homogeneous magnetic field, where the cost of the device increases

linearly with the strength of the magnet. Another limitation of MRI is the slow acquisition

speed due to its acquisition process, which has a fundamental limit on how fast the data can

be acquired due to physiological and hardware constraints. Slow image acquisition limits the

availability of the devices, especially for techniques like dynamic MRI, where each clinical

examination can last up to 45 minutes [BC17].

X-ray, CT, single photon emission CT (SPECT) and positron emission tomography (PET) are

imaging modalities that rely on high-energy electromagnetic radiation. These types of tech-

niques image the attenuation of the emitted radiation doses. They are often cheaper and faster

than MRI, however, there is an inherent risk associated with radiation exposure, particularly

to the increased rate of cancer incidence [Pea+12; Mat+13; Jou+17].

Another important imaging modality is medical ultrasound (US), which is a cheap and safe

imaging modality. US operates by emitting radiofrequency waves and measures the delay in

reflected echo to form the image contrast [Sza04]. However, the technology has a much lower
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signal-to-noise ratio (SNR) than other imaging modalities, containing many acoustic-based

artefacts [Ste+04; Pra+14], which can limit the interpretability and reproducibility of the

imaging technique for sonographers who are less skilled [Cha+09].

All imaging techniques therefore have their strengths and weaknesses, and their reliability also

depends on applications. Therefore, there is a scope and opportunity to improve the imaging

techniques by advancing the algorithms. In particular, most imaging techniques rely on physical

principle and do not exploit the enormous amount of data available to optimise the acquisition

technique. For each imaging modality, an image is acquired in its respective sensory domain,

which is subsequently decoded by inversion techniques. It is expected that huge amounts of

redundant data can be exploited to improve the inversion processes, which in return could

improve image quality and/or diagnostic output.

1.1.2 Information extraction and processing

In current medical imaging pipelines, there are four major distinct stages: acquisition, recon-

struction, analysis (post-processing) and diagnosis. Even though one starts with acquiring an

enormous amount of raw data, by the time the data reaches post-processing stage, the infor-

mation is stripped down to only a few relevant quantities such as presence of abnormality, size

and characteristics of the underlying anatomy. In other words, most information is discarded

by the time it reaches the diagnostics stage. For example, cardiac MR can be a time-consuming

process, yet the radiologist may only be interested in a few quantitative values such as ejection

fraction or ventricular mass, before further decisions can be made.

One of the reasons for this ine�ciency is that currently, the development of medical images is

often focussed on achieving the best image quality, even though ultimately, the most important

metric is the diagnostic quality itself. In practice, perfect images are often not necessary and

in fact, clinicians and radiologist already live with non-ideal imaging conditions and image

artefacts. For example, MRI often contains non-ideal artefacts introduced by either system

imperfections or patient motion. In some cases, the images are not usable, however, in many

cases, doctors can nevertheless extract required information despite the artefacts. On the
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other hand, currently, automated methods such as segmentation tools are often not robust to

these image imperfections. For US, image artefacts, such as acoustic shadow, are inherent to

the acquisition physics and they can be problematic for subsequent analysis. In often cases,

dedicated post-processing techniques are required to specifically correct for them [Men+19].

Therefore, from an application perspective, it is beneficial to approach the medical imaging

pipeline holistically, treating the acquisition, reconstruction and analysis as a joint step to

be optimised for given target information. We call this paradigm application-driven imag-

ing. Reducing the magnitude of acquired data needed to achieve target goals will ultimately

lead to more e�cient and smarter imaging. This is possible because from information theory

perspective, the data already contains all the information needed2. Therefore, ine�ciency in

information processing is another opportunity for advanced data processing algorithms such

as machine learning and deep learning. These techniques in principle should be able learn to

extract target information more robustly with minimal amount of input, as long as the raw

data encapsulates such information.

1.1.3 Interpretation of automated methods

Today, there are increasing numbers of automated/semi-automated approaches that can assist

radiologists and clinicians in the current medical imaging diagnostics. For example, this includes

automated image segmentation, registration or even image enhancement. These techniques are

largely beneficial as they can reduce the burden of tedious manual tasks. As technology evolves,

it is expected that one sees an ever-increasing prevalence of these approaches in future.

However, as automated approaches become more pervasive, it will become increasingly impor-

tant to gain confidence in the mechanics of these algorithms. Having su�cient understandings

of how the automated methods work is crucial for dealing with situations such as when they fail.

This is especially the case for advanced image reconstruction techniques and holistic approaches

that address the aforementioned challenges.

2Data processing inequality, the fundamental result in information theory, states that no post-processing of
data can increase the amount of information conveyed in it [MM03].
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Moreover, understanding the methods will not only provide the confidence for the operators

but is also likely to improve the methods themselves. By unravelling how machine learning

techniques handle information, it can also facilitate our new understanding of the problems.

Machine learning techniques such as neural networks often implicitly find correlation in data,

however, less e↵ort has been put to make them interpretable. Addressing this knowledge gap

can also help advance the field.

1.2 Objectives and contributions

In this thesis, the aforementioned three problems are targeted as the key opportunities where

emerging technologies and algorithms can provide a significant impact and bring us closer to

smarter imaging. In particular, at its core, the thesis tackles these challenges by exploiting

data and advanced algorithms based on deep learning. In the last decade, deep learning has

made a tremendous impact for individual tasks in computer vision as well as medical imaging.

We believe that deep learning, though not limited, is also the key for more advanced imaging

approaches in future. The contribution of the thesis is the following:

Deep learning approaches for accelerated dynamic MR data reconstruction

The first challenge identified is the limitation and ine�ciency in the current acquisition tech-

niques. For MRI, this is the time-consuming nature of the imaging modality. Inspired by recent

advances in deep learning, we propose a framework for reconstructing dynamic sequences of

2D cardiac magnetic resonance (MR) images from undersampled data using deep learning to

accelerate the data acquisition process. We show that the proposed methods consistently out-

perform state-of-the-art compressed sensing methods and are capable of preserving anatomical

structures more faithfully up to 11-fold reduction in imaging duration. To this end, we present

two approaches: a deep cascade of convolutional neural networks (CNNs) and convolutional

recurrent neural network (CRNN). The former exploits the redundancy in data, whereas the
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latter exploits the redundancy in both data and the reconstruction process itself for e�cient

reconstruction.

This contribution has been published in the following:

• Schlemper, J., Caballero, J., Hajnal, J. V., Price, A. N., Rueckert, D. (2017). A deep

cascade of convolutional neural networks for MR image reconstruction. Abstract 0643,

25th Annual Meeting and Exhibition International Society of Magnetic Resonance in

Medicine, 2017.

• Schlemper, J., Caballero, J., Hajnal, J. V., Price, A., Rueckert, D. (2017, June). A deep

cascade of convolutional neural networks for MR image reconstruction. In International

Conference on Information Processing in Medical Imaging (pp. 647-658). Springer, Cham.

• Schlemper, J., Caballero, J., Hajnal, J. V., Price, A. N., Rueckert, D. (2017). A deep

cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE

transactions on Medical Imaging, 37(2), 491-503.

• Qin, C.†, Schlemper, J.†, Caballero, J., Price, A. N., Hajnal, J. V., Rueckert, D. (2018).

Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE

transactions on medical imaging, 38(1), 280-290.3

Cardiac MR segmentation from undersampled k-space using deep learning

The second challenge identified is the ine�ciency in the way information is extracted and pro-

cessed. For MRI, reconstruction from undersampled k-space (sensory domain) data enables the

accelerated acquisition of MRI but is a challenging problem. However, in many diagnostic sce-

narios, perfect reconstructions are not necessary as long as the images allow clinical practitioners

to extract clinically relevant parameters. For the case of cardiac cine imaging, often quanti-

tative values such as ventricular volume and ejection fraction are used before making further

3†This is a joint work where each author contributed equally.
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decisions for the patient diagnosis. In this thesis, we present a novel deep learning framework

for reconstructing such clinical parameters directly from undersampled data, expanding on the

idea of application-driven MRI. We propose two deep architectures, an end-to-end synthesis

network and a latent feature interpolation network, to predict cardiac segmentation maps from

extremely undersampled dynamic MRI data, bypassing the usual image reconstruction stage

altogether. We perform a large-scale simulation study show that with the proposed approaches,

an accurate estimate of clinical parameters such as ejection fraction can be obtained from very

limited amount of raw data per time-frame.

This contribution has been published in the following:

• Schlemper, J., Oktay, O., Bai, W., Castro, D.C., Duan, J., Qin, C., Hajnal, J.V. and

Rueckert, D., 2018, September. Cardiac MR segmentation from undersampled k-space

using deep latent representation learning. In International Conference on Medical Image

Computing and Computer-Assisted Intervention (pp. 259-267). Springer, 2018.

Attention gated networks: learning to leverage salient regions in medical images

The third challenge identified was the need for interpretability of the imaging and analysis

techniques as they become more advanced and complex. To this end, we propose a novel atten-

tion gate (AG) model for medical image analysis that automatically learns to focus on target

structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress

irrelevant regions in an input image while highlighting salient features useful for a specific task.

This enables us to eliminate the necessity of using explicit external tissue/organ localisation

modules when using convolutional neural networks (CNNs). The proposed AG models are

evaluated on a variety of tasks, including medical image classification, object localisation and

segmentation. For classification, we demonstrate the use case of AGs in scan plane detection

for fetal ultrasound screening. We show that the proposed attention mechanism can provide

e�cient object localisation while improving the overall prediction performance by reducing

false positives. For segmentation, the proposed architecture is evaluated on two large 3D CT
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abdominal datasets with manual annotations for multiple organs. Moreover, AGs guide the

model activations to be focused around salient regions, which provides better insights into how

model predictions are made.

This contribution has been published in the following:

• Schlemper, J., Oktay, O., Chen, L., Matthew, J., Knight, C., Kainz, B., Glocker, B.,

Rueckert, D., Attention-gated networks for improving ultrasound scan plane detection.,

International Conference on Medical Imaging with Deep Learning, 2018.

• Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., Mori, K.,

McDonagh, S., Hammerla, N. Y., Kainz, B., Glocker, B., Rueckert, D., Attention U-Net:

learning where to look for the pancreas. International Conference on Medical Imaging

with Deep Learning, 2018.

• Schlemper, J., Oktay, O., Schaap, M., Heinrich, M., Kainz, B., Glocker, B., Rueckert,

D. (2019). Attention gated networks: Learning to leverage salient regions in medical

images. Medical Image Analysis, 53, 197-207.

1.3 Thesis overview

This thesis is structured as follows:

• Chapter 2 provides the background for medical imaging acquisition and reconstruction

techniques. In particular, it will put a special emphasis on MRI acquisition and recon-

struction in detail to provide explanations to why accelerated imaging is desired. The

chapter will also briefly cover the fundamentals and the application areas of CT and US,

highlighting their respective challenges.

• Chapter 3 provides the background for deep learning in order to provide the reader with

su�cient knowledge to understand the methodologies proposed in the thesis. It will also
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highlight state-of-the-art approaches that are being used for various tasks in medical

image analysis, including classification, segmentation and image reconstruction.

• Chapter 4 and Chapter 5 presents the proposed deep learning approaches for dynamic

MR image reconstruction. Chapter 4 covers the approach called a deep cascade of CNN’s,

whereas Chapter 5 covers the approach based on convolutional recurrent neural network.

• Chapter 6 builds on top of the preceding chapters but takes a step further. In this chapter,

we present our proposed approach for direct cardiac segmentation from undersampled cine

data, in order to directly obtain clinically relevant parameters from data.

• Chapter 7 addresses the problem of interpretability. In particular, we present the pro-

posed attention-gated networks for improved performance and interpretability, which is

important for understanding the neural network-based model which can extract informa-

tion in an end-to-end fashion.

• Chapter 8 concludes the thesis by summarising the achievements in the thesis, as well as

highlight possible and promising future directions.



Chapter 2

Overview of medical imaging

techniques

2.1 Introduction

This chapter provides the background information on how images are acquired for each of

the medical imaging techniques. In particular, this chapter presents an in-depth description for

magnetic resonance imaging (MRI) acquisition and reconstruction, highlighting its fundamental

problem of sampling requirement and the limited acquisition speed. This section serves as a

motivation for the proposed work on accelerated MR imaging in Chapter 4, Chapter 5 as well

as direct segmentation from raw data in Chapter 6.

The second part of the section then briefly covers other imaging modalities, in particular, com-

putational tomography (CT) and medical ultrasound (US). This part provides basic background

required for understanding the context of the attention-based methods proposed in Chapter 7.

11
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Figure 2.1: (left) The fundamental components of MRI. During an MRI scan, a patient is put
into a large cylindrical magnet, which produces a homogeneous magnetic field within the core.
A radio-frequency (RF) coil is used to transmit the RF pulse as well as detect the changes in
the magnetisation of the body. (right) The configuration of three linear gradient coils. The
gradient coils are used to generate linearly varying magnetic field strength along each orthogonal
direction. The gradient coils are used to encode the spatial distribution of the magnetisation
strength of the underlying object, which is subsequently decoded to form an image (Image
courtesy: Maglab [Mag18]).

2.2 Magnetic resonance imaging

The presentation of this section is based on [Nis]. The section will only provide the minimal

core concepts required to understand how raw MR data is transformed into an image. For

more detail, we refer the readers to the common textbooks [Nis; Haa+99]. The second half

surveys the current reconstruction methods for accelerated imaging, including parallel imaging

and compressed sensing. The final part introduces the concept of dynamic MR imaging, which

is relevant to subsequent chapters.

2.2.1 Imaging principle

Magnetic resonance imaging (MRI) operates by measuring the net magnetisation of hydrogen

atoms 1H abundant in a biological specimen. Hydrogen, being an atom with an odd number

of protons, possesses angular momentum called spin. Under the influence of a homogeneous

magnetic field B0, two phenomena occur to the spins of hydrogen atoms. Firstly, the spins
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align with B0 in parallel or anti-parallel direction, which results net magnetisation M of the

body in the direction of B0. Secondly, the polarised spins now exhibits resonance at Larmor

frequency !:

! = �B (2.1)

where � is the gyro-magnetic ratio and B is the external magnetic field strength. In MRI,

we denote the main static magnetic field as B0 = (0, 0, B), which by convention is pointing

towards z-direction (longitudinal axis). At equilibrium state, the net magnetisation is denoted

M0 = (0, 0,M0). In a typical high-field MRI device, the main homogeneous magnetic field B0

is generated by a cylindrical superconducting magnet – see Fig. 2.1.

2.2.2 Radio-frequency pulse

By applying a polarised radio-frequency (RF) pulse B1(t) tuned to Larmor frequency, the

net magnetisation M is excited out of its equilibrium state. For the sake of discussion, we

assume RF pulse polarised in transverse direction (xy-plane), resulting in the magnetisation M

precessing along xy-plane at Larmor frequency !. From Faraday’s law of induction, a rotating

magnetisation vector induces an electromotive force (EMF) proportional to the magnetic field

strength. Therefore, by placing a conducting material near the body, the magnitude of the

rotating magnetic field can be measured from the induced current. In MRI machine, the

component to generate the RF pulse is called RF transmit coil and the component that is

used to detect the signal is called RF receiver coil (c.f. Fig. 2.1). The net magnetisation can

therefore be measured using the induced current in RF receiver coil that is oriented to detect

changes in magnetisation in the xy-plane.

The amplitude and the duration of B1(t) determines how farM is tipped towards the transverse

plane. The resulting angle from the longitudinal axis is called flip angle ✓. When the RF pulse

B1 is switched o↵, the magnetisation naturally returns to the original equilibrium state M0.

Di↵erent body tissues have di↵erent rates in which they return to the equilibrium state (c.f.



14 Chapter 2. Overview of medical imaging techniques

Figure 2.2: (a) The net magnetisation under the influence of B0. (b) Under the influence of
B1(t), the spins exhibit resonance and the net magnetisation is tipped towards transverse plane.
(c) Once the RF pulse B1 is switched o↵, the net magnetisation returns to the equilibrium state.
The rate of recovery of the longitudinal component is called T1 decay, and (d) the rate of signal
decay along the transverse direction is called T2 decay. Note that in reality, M is precessing
about B0, however, this detail is omitted here for illustration purposes.

Fig. 2.2). Flip angle, T1 and T2 decay are amongst others the parameters that influence the

final image contrast. This will be elaborated in Section 2.2.9.

2.2.3 Bloch equation

The above outlines the principle of how the net magnetisation is detected and measured. How-

ever, it does not provide us with the ability to distinguish the signals generated from di↵erent

spatial locations. In order to do so, linear gradient coils in three orthogonal directions are

used to encode the spatial distribution of the magnetisation strength into a set of weighted

measurements (c.f. Fig. 2.1). The measurements are subsequently decoded by solving a linear

equation. The gradient magnetic field is denoted as G(t) = (Gx(t), Gy(t), Gz(t)).

We denote the time varying net magnetisation vector at time t as M(t) = (Mx(t),My(t),Mz(t))

and the applied external magnetic field at time t as B(t) = (Bx(t), By(t), Bz(t)) as the applied

external magnetic field at time t, which contains the influence of the static magnetic field

B0, the RF pulse B1(t) and the linear gradient coils G(t). Under the influence of B(t), the
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trajectory of M(t) is governed by Bloch equation:

dM(t)

dt
= M(t)⇥ �B(t)�

Mx(t)

T2
i�

My(t)

T2
j �

Mz(t)�M0

T1
k (2.2)

The first cross product term in Bloch equation describes the direction in which the torque

acts on M when subjected to the external magnetic field B, which causes the excitation. This

encompasses the aforementioned discussion of the e↵ect of B0 and B1(t). The latter three terms

describe the change of signal in longitudinal and transverse directions in the absence of B1.

Bloch equation can be extended to study the behaviour of a non-homogeneous object M(r, t)

under time-varying in-homogeneous magnetic field B(r, t), where the solution can be obtained

locally at each coordinate r 2 R3.1 By acquiring multiple measurements of M(r, t) under the

influence of time-varying B(r, t), one can infer the spatial distribution of M (i.e. form the

image). This process is hereby explained.

Recall that the RF receiver coil measures the sum of all contributions of the magnetic field

from all spatial positions under the influence of B0. This can now be written as:

s(t) =

Z

r2V

M(r, t)dr

=

Z

r2V

M�(r)e�t/T2(r)e�◆!0t exp

✓
�◆�

Z
t

0

G(⌧) · rd⌧

◆
dr

(2.3)

where the second line of Eq. (2.3) is obtained as a solution of Bloch equation and it consists of

four terms and V is the volume under the influence of B0. Before describing each term, note

that as the RF receiver coil only measures the transverse component of the magnetisation, the

longitudinal component can be ignored. To describe the two-dimensional transverse component,

complex-valued notations are used: i.e., Mxy = Mx + ◆My, Bxy = Bx + ◆By. Note that the

measurement s(t) is now also complex-valued.

In the second line of Eq. (2.3), M�(r) is the initial condition at t = 0, i.e., state of magnetisation

at position r right after B1 is applied. The second term e�t/T2(r) is the spatially varying T2

exponential decay e↵ect, which reduces the detectable magnetisation in the transverse direction

1In practice, local objects do give microscopic susceptibility e↵ect, called T
⇤
2 e↵ect, which can cause dephasing

of the neighbouring tissues, but for modelling purposes this is neglected for simplicity.
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after time t. The third term e�◆!0t describes the precession of the net magnetisation M at

frequency !0 induced by the static magnetic field B0. The final exponential term describes

the e↵ect of gradient magnetic field strength to the precession frequency at position r after

applying the gradient magnetic field over the duration t. For example, applying the gradient

magnetic field G(t) alters the precession frequency at location r to be !(r) = �(B0 + G · r).

As such, under the presence of the additional gradient coil, the phase di↵erence accumulates

over the duration t. The RF receiver coil receives the aggregation of such position-dependant

behaviours as a single measurement as a function of t. The subsequent section describes how

multiple of these measurements can be used to form an image.

2.2.4 Signal equation

In order to form an image from the measurement signal s(t), the following is noted. Firstly,

the relaxation term e�t/T2(r) is ignored in the modelling process, assuming the measurement is

taken instantaneously. Secondly, one often demodulates the incoming signal, which removes

the precession factor e◆w0t. Lastly, M�(r) = 0 for all r 62 V. Therefore, Eq. (2.3) is simplified

to:

s(k) =

Z

r2R3

M�(r)e�◆2⇡k·rdr, (2.4)

where s(t) is re-parameterised as s(k), k 2 R3, and

k(t) =
�

2⇡

Z
t

0

G(⌧)d⌧. (2.5)

Eq. (2.4) is called signal equation, which shows that the acquired signal s(k) and the MR image

M�(r) to be reconstructed have Fourier relationship. The idea of the traditional MRI is to form

the image M� by acquiring a su�cient set of signals {s(k)}k2R3 and perform inverse Fourier

transform. In the subsequent three sections, we describe how these measurements are obtained

and present one instance of the reconstruction methods called Cartesian reconstruction. For

this we need the notion of k-space and sampling trajectory.
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Figure 2.3: The schematic of 2D Cartesian imaging as described in Section 2.2.6. From left:
(a) a sequence diagram, (b) slice-selection step, (c) phase- and frequency-encoding steps, (d)
reconstruction using the inverse Fourier transform. (a) A sequence diagram summarises the
information such as when the RF pulse is emitted, when the gradient coils are switched on, for
which duration, etc.. The height and the width of the boxes in the sequence diagram show the
amplitude and the duration of the selected magnetic field respectively. The gradient is negative
if it is below the horizontal line. In 2D Cartesian sampling, The process is repeated for di↵erent
values of phase-encoding, which is indicated by di↵erent colours. (b) The illustration of the
slice-selection step, where Gz is applied and the rectangular RF pulse at (1) is used to only
excite the specific slice. (c) The phase- and frequency-encoding steps are performed to traverse
k-space, where the data is acquired over a rectangular grid. (4) Once enough samples are
acquired (the blue points in (c)), the image is reconstructed by taking the inverse Fourier
transform of the k-space samples.

2.2.5 k-space

The space in which the signal s(k) : R3
! C is acquired is referred to as k-space (c.f. Fig. 2.3).

k-space encodes the frequency information of the object M�(r) (referred to as an MR image

hereafter) and the sample k corresponds complex sinusoidal basis e�◆2⇡k (c.f. Eq. (2.4)). The

measurement s(k) at location k expresses the amplitude and phase of the basis, which shows

the relative contribution of the given basis to an MR image. Therefore, an MR image M� can

be seen as a linear combination of sinusoidal waves. MR image acquisition corresponds to a

traversal in k-space, measuring s(k(t)) as t is varied over some duration. Note hat k-space can

also be defined over two-dimension (2D) for the case when 2D imaging is performed.

2.2.6 Sampling trajectory

In order to reconstruct an image M� from a set of k-space samples, k-space must be su�ciently

covered, i.e. a su�cient number of uniform samples in k-space needs to be acquired, before
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a linear inversion can be performed. The way in which the k-space samples are acquired is

called sampling trajectory. Sampling trajectory k(t) is controlled by applying the gradient coil

G(t). While in theory, an arbitrary sampling pattern can be achieved, in practice, in order

to e�ciently sample k-space, the sampling trajectory must consider what can be achieved by

continuously adjusting gradient coil.

Cartesian sampling

The most common sampling trajectory is 2D Cartesian sampling pattern, shown in Fig. 2.3.

This sampling pattern reconstructs one 2D image slice at a time and it acquires data on a

uniform rectangular k-space grid. For this reason, it is also called rectilinear sampling. In

Cartesian sampling, three steps are involved: (1) slice-selection, (2) phase-encoding and (3)

frequency-encoding.

(Step 1) slice-selection: In order to perform an imaging of a 2D slice, we select a thin slab of

body along z-axis by only exciting [zi � �z/2, zi + �z/2] for the i-th slice. This is achieved

by switching on G = (0, 0, Gz) to give a linear variation in !0 along z when the RF pulse is

emitted. RF pulse also is tuned such that it only excites a specific range of resonant frequencies

[!0 � �Gzz,!0 + �Gzz].2 After slice-selection, the problem is reduced to the imaging of a 2D

slice and a pixel in the slice represents the signal contribution along z:

m(x, y) =

Z
z��z/2

z��z/2

M�(x, y, ⇠)d⇠ (2.6)

In addition, 2D k-space is used to describe the acquisition, where the acquired signal is indexed

by s(kx, ky).

(Step 2) phase-encoding: In phase-encoding step, the ky location is selected. To do so, G =

(0, Gy, 0) is switched on for ty such that ky = �

2⇡Gyty (c.f. Eq. (2.5)). Immediately after

2The requirement for exciting rectangular frequency profile meant that sinc-like signal needs to be emitted,
hence the shape of RF in Fig. 2.3, step 1.
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phase-encoding step, the received signal has the form:

s(kx(t), ky) =

Z
m(x, y)e�◆2⇡(kyy+kx(t)x)dxdy (2.7)

at time t.

(Step 3) frequency-encoding: During frequency-encoding step, G = (Gx, 0, 0) is switched on,

such that kx(t) =
�

2⇡Gxt. During this process, the signal is acquired at a sampling rate �k for

the duration of t0.

Two subtleties are noted: firstly, as applying Gz during slice-selection causes the dephasing

of precession frequency within the excited slice (c.f. the last term of Eq. (2.3)), a refocussing

gradient �G0

z
is applied instantaneously to o↵set this. Secondly, �G0

x
is switched on for some

time tx such that the starting point of the sampling is kx = �kx-max (e.g. �kx�max = � �

2⇡G
0

x
tx

and kx�max = � �

2⇡Gxt0).

These three steps provide us with multiple measurements of s(ky, kx). In particular, in one

iteration of the above three steps, one acquires the set of signal s(kx, ky) for ky = �

2⇡Gyty

and kx 2 {�kx-max,�kx-max + �k, ..., kx-max � �k, kx-max}. The three steps are repeated to

obtain the samples for di↵erent values of ky’s. Once “enough” samples are acquired, the image

can be reconstructed. Let NPE be the number of phase encoding performed, and NFE =

2kx-max/�k. The reconstruction is of m(x, y) on a rectangular grid is performed using inverse

Fourier transform as:

m(x, y) ⇡
NPEX

ky=0

NFEX

kx=0

s(kx, ky)e
◆2⇡

⇣
kxx
NFE

+
kyy
NPE

⌘

(2.8)

where (x, y) and (kx, ky) are enumerated based on the rectangular grid indices. The recon-

structed MR image m(x, y) is a complex-valued quantity, which contains both the spatial dis-

tribution of the magnetisation amplitude I(x, y) = |m(x, y)| and the phase ✓(x, y) = \m(x, y).

The magnitude component conveys the anatomical information and therefore I is used in the

most clinical practices. To reconstruct the entire 3D volume, the above process is repeated for
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di↵erent zi’s.

Non-Cartesian and 3D sampling

2D Cartesian imaging is a common choice in clinical settings as the implementation is simple

and fairly robust to system imperfections. However, other sampling trajectories exist, includ-

ing radial [Kno+11b], spiral [Del+10] and variable density [Kno+11a] trajectories as well as

optimised sampling patterns [Laz+19], which in general are referred to as nonuniform/non-

Cartesian sampling patterns. Non-Cartesian sampling patterns are attractive due to their

motion robustness [Pip99; For+01], however, the reconstruction process is more involved. This

is because the k-space measurements no longer align on the rectilinear grid, so one cannot

perform discrete Fourier transform for the inversion. In this case, one requires non-uniform

discrete Fourier transform (NUDFT) [Fes07]. Note that Cartesian sampling can also be per-

formed in 3D: in this case, instead of performing a slice-selection step, the whole volume is

excited and it performs phase encoding along two axis (y� and z�), followed by frequency

encoding. Similarly, any of the non-Cartesian trajectories can be extended to 3D acquisitions.

2.2.7 Sampling requirement

As highlighted above, MR images are reconstructed from a finite set of k-space measurements.

In this section, we discuss how many samples are actually required in order to form an image.

Such sampling requirement precisely is governed by Nyquist-Shannon sampling theorem (NS

theorem), which is (informally) stated as:

Theorem 2.1 (Nyquist-Shannon sampling theorem). A bandlimited continuous-time signal can

be sampled and perfectly reconstructed from its samples if the waveform is sampled over twice

as fast as its highest frequency component.

A signal is called bandlimited by B if the signal has maximum highest frequency component

less than B. NS-theorem says that any sampling rate less than 2B will result in aliasing. For
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Figure 2.4: The e↵ects of violating Nyquist sampling requirement. From left: fully sampled,
reduced kmax, increased �k, and random undersampling. The top row shows the sampling
patterns in k-space, whereas the bottom row shows the corresponding resultant aliasing in
image domain. In particular, reducing kmax reduces the image resolution, which results in
blurry images. When �k is increased, the FOV is reduced and the replicas are overlapped
with each other, causing a wrap-around artefact. When k-space is randomly undersampled,
the aliasing appears as incoherent noise. (The brain data shown is taken from [Pau17])
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MRI, NS-theorem translates to two fundamental imaging consideration: field-of-view (FOV)

and image resolution. Recall that in Section 2.2.6, we defined two variables: sampling frequency

�k and maximum frequency kmax.3 These quantities are directly related to an FOV and an

image resolution.

Field-of-view The sampling frequency �k a↵ects the FOV inversely:

FOV =
1

�k
. (2.9)

When signal is discretely sampled in k-space at rate �k, it creates replicas in image domain

separated by 1/�k. Therefore, if FOV is less than the actual underlying object, then the

replicas will overlap, creating a wrap-around artefact.4

Image resolution The maximum frequency kmax obtained in k-space a↵ects the image res-

olution in the following way:

�x =
1

kmax
, (2.10)

where �x is called the e↵ective resolution of the image, which can be measured in mm/pixel.

E↵ective resolution expresses the how much physical space is occupied by one pixel. Therefore,

if kmax is too low, the e↵ective image resolution also becomes low, resulting in blurring of the

image. This implies that if high resolution image is required, then the maximum extent of the

k-spaced measurements needs to be increased.

Lastly, note that sampling k-space in finite extent also creates ringing artefact.5

3�k and kmax can di↵er for each x- and y-axis but the behaviour is the same so we ignore the axis information
here.

4More precisely, if s(k) is the underlying signal, the discrete sample can be written as s0(k) = s(k)III(k/�k),
where III(k/�k) is a Dirac train separated by k/�k, expressing the sampled locations. Taking the Fourier
transform of s0 results in a convolution between F{s} and the comb function III(�k). Convolving with comb
function creates a replica separated by �k.

5More precisely, these two artefact can be understood as following: Finite extent in k-space meant that
essentially we are multiplying measured signal s with a rectangular function ⇧kmax in frequency domain: s00 =
s(k)⇧kmax(k). Taking a Fourier transform of s00 gives you x convolved with sinc function. Convolution with
sinc function essentially blurs the image by aggregating the local pixel values. In addition, the rippling nature
of sinc function also gives ringing artefact in the image.
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The e↵ects of violating NS-theorem are illustrated in Fig. 2.4. Therefore, these two behaviours

define the sampling requirements for MR image acquisition: firstly, one needs a sampling rate

that is faster than the size of the object such that the object is contained in the FOV. Secondly,

one must increase the extent of k-space such that the desired object can be resolved at a

su�cient resolution.

2.2.8 Image artefacts

In general, a sampling pattern that does not satisfy NS sampling requirement is referred to as

an undersampling pattern, and the violation of the sampling requirement results in aliasing.

The previous section provided with three types of artefacts: blurring, wrap-around and ringing

artefact. More generally, depending on the undersampling trajectory, various artefacts can be

observed. For example, random undersampling of k-space can result in complicated noise-like

artefact (c.f. Fig. 2.4). Similarly, undersampling based on radial or spiral trajectories can create

di↵erent coherent artefacts.

Besides from undersampling, there are multiple sources of image artefacts: system imperfec-

tions, chemical properties and patient motion. Firstly system imperfections can significantly

degrade the image quality. Typically, the acquisition model such as Bloch equation and Fourier

relationship assumes an idealised condition (e.g. perfectly homogeneous magnetic field). In the

presence of system imperfections such as B0 inhomogeneity and eddy current, the actual be-

haviour of the MR physics can deviate from the model, which as a result can cause unexpected

distortions in the image. Secondly, chemical properties of the underlying object can also a↵ect

the precession frequency, causing further distortions. Lastly, the imaging model assumes that

the underlying object is static over the course of imaging. Therefore, patient motion, blood

flow, etc., can significantly degrade the image quality. An in-depth overview of image artefact

can be found in [Fer+13].

Another source that can a↵ect the image quality is the system noise. In MR imaging devices,

thermal noise inevitably a↵ects the measurements. As outlined in Eq. (2.1), the net magneti-

sation strength is proportional to B0. Therefore, if B0 is low, then the signal of the image will
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also be low, resulting in images with low signal-to-noise ratio (SNR). This is the primary reason

why high-field magnets are preferred in MRI, despite the increase in the cost.

2.2.9 Image contrast

Unlike many other imaging modalities, MRI is a unique technique that allows the generation of

images with di↵erent contrasts even for the same anatomy. As outlined in Fig. 2.2 as well as in

Bloch equation (Eq. (2.2)), the signals from di↵erent tissues decay according to their respective

T1 and T2 decay parameters. This means that by acquiring data at di↵erent time points during

the signal decay, one can acquire images with di↵erent contrasts. The time between the end of

the excitation (the application of B1) and the signal acquisition (e.g. frequency encoding) is

called echo time (TE).

As can be seen from Eq. (2.2), it is assumed that each measurement is instantaneous. In

practice, due to T2 and T2* e↵ects, the signal decays over time. As such, in order to obtain

k-space samples with a consistent contrast, it requires one to repeat the measurement by

reapplying RF pulse. The time between successive RF pulses is called repetition time (TR).

Based on di↵erent combinations of flip angle, TE and TR, images with di↵erent contrasts can

be created, such as T1-weighted images and T2-weighted images. All above considerations can

be summarised in a sequence diagram, where an example for Cartesian sampling is shown in

Fig. 2.3. A sequence diagram conveys information such as when the RF pulse and the gradient

coils are switched on and when the measurements are being made. There are di↵erent imaging

techniques, and the presented example of Cartesian sampling technique is called spin-echo

imaging. There are other sequences such as gradient-echo, fast spin-echo, balanced steady-

state free-precession (bSSFP) sequence, echo planar imaging, and so on.

2.2.10 Limitation of acquisition speed

So far, we have covered the physics behind MR image acquisition and the imaging considerations

in terms of the sampling requirement and image contrast. This section concludes the review
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by describing how all of these create an inherent limitation on the acquisition speed of an MRI

device. For MRI image acquisition, the total scan duration for a 3D volume can be given as:

Ttotal = TR ⇥
#{samples needed per image}

#{samples acquired per TR}
⇥#{image slices} (2.11)

As one can see, the acquisition time required for MRI is directly proportional to the duration

of TRs required and the number of image slices to be reconstructed. Unfortunately, this time

cannot be easily reduced for the following reasons. Firstly, as outlined in Section 2.2.9, note

that TR depends on the desired image contrast. Secondly, there are hardware and physiological

constraints that prevent one from traversing k-space faster, limiting the number of samples that

can be acquired per TR. This is because, as seen in Eq. (2.4), the speed in which k-space can

be traversed is proportional to the duration and the amplitude of the gradient coil G. In order

to traverse k-space in a shorter amount of time, the gradient amplitude needs to be increased.

However, the speed in which the magnetic field can be increased, called slew rate, is limited. In

addition, a fast change in magnetic field can cause peripheral nerve stimulation (PNS) in the

body. As such, there is a fundamental upper bound on the k-space traversal speed for safety

reasons.

We further note that in some cases, images may not have su�cient SNR. For example, if an

imaging sequence has a long TE, then the net magnetisation along the transverse direction is

inherently lower due to T2 decay. In some cases, multiple signal averaging is required, which

increases the acquisition time by Navg.

Therefore, there is a fundamental limit to MR acquisition speed for reconstructing high-quality

images. This has motivated the research community to study methods to reduce the acquisition

time. In particular, the main paradigm in which this is achieved is through undersampling of

the data, i.e. by reducing the number of samples needed per image. In the previous sections, we

highlighted that Nyquist sampling requirement is needed for an alias-free image reconstruction.

However, it turns out that certain families of aliasing patterns exhibit coherent or incoherent

patterns that can be exploited for image recovery. The following sections now survey accelerated

reconstruction techniques.
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2.2.11 Accelerated MR image reconstruction

From this section onwards, let x 2 CN denote a discrete, combined complex-valued MR image

to be reconstructed, represented as a vector with N = NxNyNz where Nx, Ny, and Nz are the

width, height and depth of the image. The image can be 2D (Nz = 1) or 3D. Let y 2 CM ,

M = nsample, represent all the k-space measurements (e.g. s(k)) flatted into a vectorised format.

Then, the acquired discrete set of samples in k-space can be expressed as:

y = Ax+ e (2.12)

where A 2 CM⇥N is called a forward model, or a Fourier encoding matrix, and e is a zero-mean

complex Gaussian noise with imaging specific noise variance: ei ⇠ N (0, �). For example, for

2D Cartesian sampling described in the previous sections, A represents the sampled Fourier

coe�cients. In general, A is generic and it can express Cartesian or nonuniform data acquisi-

tion, as well as incorporating multiple weighted measurements for the case of parallel imaging

techniques. Our problem is to reconstruct x from y, formulated as an unconstrained optimiza-

tion:

argmin
x

R(x) + �kAx� yk22 (2.13)

where R is called regularisation functional on x and � is a hyper-parameter often associated

with the noise level of the input. The regularisation functional R encodes our prior knowledge

about the image to be reconstructed. The form of R is explained in subsequent sections.

Parallel MRI

In parallel imaging, data is acquired using Ncoil receiver coils, where each receiver coil is more

sensitive to signals generated in the proximity of the coil, as shown in Fig. 2.5. Mathematically,

the coil sensitivity maps can be expressed by spatially varying weights S(i)
2 CN⇥N for the coil

i, and the image seen by the coil i can be expressed as S(i)x. Then, for each receiver coil, the
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Figure 2.5: Parallel Imaging uses multiple receiver coils. The use of multiple weighted images
can be seen as a “spatial encoding” – they provide explicity redundancy in . data to enable
accelerated MR image reconstruction. (The knee image shown here is from fastMRI challenge
dataset [Zbo+18])

measurement data will have the form:

y(i) = FS(i)x+ e(i). (2.14)

Provided that the coil sensitivity is known, the coil images can be combined into a single image

in an SNR optimal way pixel-wise [Roe+90]. Without loss of generality, assume that for each

pixel p, the coil is normalised: i.e.
P

Ncoil
i=1 S(j)H

p S(j)
p = 1. Then, for each pixel p, the coil

combination is given by:

xp =
NcoilX

i=1

S(i)H
p

x(j)
p

(2.15)

The idea of accelerated reconstruction started with the observation that the images from mul-

tiple receiver coils can provide explicit redundancy in data [SM97; Jak+98; Hei+01]. In order

to accelerate imaging, one can perform a regular undersampling with undersampling factor R.

For example, for R = 2, every other line is skipped along phase-encoding direction. As it was

discussed in Section 2.2.7, this reduces the FOV by a factor of 2, causing a wrap-around arte-

fact. However, because there are multiple coil images with di↵erent coil sensitivity maps, the

overlapped pixel contribution can be inverted from the redundant information. This approach

is called sensitivity encoding (SENSE).
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More generally, consider a forward matrix A of the form:

A(�,),⇢ = e◆k·r⇢s�(r⇢) (2.16)

This is a forward matrix for parallel reconstruction setting, where A 2 CNcoilM⇥N . �, , ⇢ index

coil, k-space and pixel position respectively. If the number of samples MNcoil is greater than

number of image pixels N , then the system of equation Ax = y is over-determined and it can

be solved using pseudo-inverse:

x ⇡
�
AHA

��1
AHy (2.17)

For the case of regular Cartesian undersampling (e.g. skipping every R phase encoding steps),

Eq. (2.17) reduces to solving the pseudo-inverse using only the pixels that are overlapped

due to the reduced FOV. In particular, with no undersampling factor, the solution reduces to

Eq. (2.15). In case where undersampling pattern is non-Cartesian, then the full matrix inversion

is required. As A is a large matrix, the direct calculation of the pseudo-inverse is prohibitive.

CG-SENSE [Pru+01] is an e�cient algorithm which solves the inversion iteratively.

Another well-known approach is GRAPPA. The idea of GRAPPA is to exploit the redundancy

in k-space representations of the coil images to synthesise the missing k-space points from their

neighbouring points. This can be done due to following two observations. Firstly, since a coil

sensitivity map has a smoothly varying profile in image domain, the corresponding frequency

domain representation has a small support around zero, only containing low frequencies. Sec-

ondly, since an element-wise multiplication is a convolution in frequency domain, this meant

that each k-space representation of the coil image is simply the convolution between the k-space

representation of x and a small kernel. Therefore, one should be able to learn a transition-

invariant deconvolution kernel to “undo” the e↵ect of the coil sensitivity to each coil image.

This deconvolution kernel is estimated from a small set of auto-calibration lines, which is a

fully-sampled low-frequency region.

SENSE and GRAPPA achieve similar acceleration rates but they have slightly di↵erent arte-
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facts due the di↵erent approximation techniques being employed. Nevertheless, SENSE and

GRAPPA are are related and this is generalised in E-SPIRIT [Uec+14].

g-factor When parallel imaging for accelerated MR image reconstruction is performed, the

SNR of the reconstructed image decreases due to two factors. Firstly, since the amount of data

aquired is reduced by a factor R, the SNR is reduced by
p
R. Secondly, when the acceleration

factor is increased in SENSE/GRAPPA, the FOV is reduced, causing the underlying object to

wrap around in the limited FOV. However, noise also wraps around, where the source cannot

be distinguished. As a result, one observes spatially variant noise amplification. This is called

g-factor [AVT14]. The resulting SNR of the accelerated image is therefore given by:

SNRR =
SNRfull

g
p
R

. (2.18)

where SNRfull is the SNR of the fully-sampled image. g-factor for GRAPPA is similar but is

given by the interpolation kernel. Due to such SNR consideration, there is a fundamental limit

to how much the image can be accelerated using parallel imaging. In order to overcome this

barrier, powerful nonlinear reconstruction is needed that can infer the underlying information,

overcoming the e↵ect of noise.

For more in-depth survey of parallel MRI, we refer the readers to [Des+12; LN07].

Compressed sensing MRI

Compressed sensing is a complementary technique to perform accelerated MR image recon-

struction. Whereas parallel imaging relies on explicit redundancy from multiple coil images,

compressed sensing relies on implicit redundancy in data. This technique is now surveyed.

In Eq. (2.12), if M << N , the equation is under-determined and ill-posed. In this case,

there are infinitely many solutions. In order to obtain a unique solution, one must supplement

the inverse problem with additional constraints using regularisation R, as seen in Eq. (2.13).

Compressed sensing (CS) [Don+06; EK12; Can08] is a theoretically sound framework which
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can recover a unique solution for such ill-posed system, exploiting the sparsity of the signal. In

general, there are three requirements:

• a sparsity of the signal,

• incoherent sampling measurements and

• a nonlinear optimisation algorithm.

Firstly, for CS to apply, the measured image must have a sparse representation. Data is

called sparse if the data points can be represented by a linear combination of only a few basis

points. Natural images and medical images indeed admit sparse representations, which can be

demonstrated from JPEG compression.

The second requirement is that the acquisition matrix needs to be incoherent. If the measure-

ments are coherent, then the aliasing is structured and there is no way of distinguishing whether

such structure is an aliasing or an actual part of the image that can be sparsely represented. It

turns out that the random acquisition in k-space is indeed su�ciently incoherent, generating

noise-like artefact in image domain (c.f. Fig. 2.4).

Once above two conditions are met, then the signal can be reconstructed by solving the following

optimisation problem:

argmin
x

kAx� yk22

s.t. k�xk0  k

(2.19)

where � is a sparsifying transform of x and k.k0 is an `0 norm, which counts the number of

non-zero entries and k is the maximum number of coe�cients that are allowed in the sparse

representation. In practice, solving for such sparse solution is an NP-hard problem, as selecting

k non-zero entries is combinatorial in nature. However, it turns out that the convex relaxation

of Eq. (2.19) robustly converges to the same sparse solution:

argmin
�

k�k1 + �kA�H� � yk22 (2.20)
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where x = ��, where � is the corresponding sparse representation of x. The Eq. (2.20) is

called LASSO. The attractiveness of CS is that there is a theoretical guarantee on the number

of measurements M required to perfectly reconstruct x of the dimensionality N that is k-sparse

in �.

The analysis of CS almost directly translates to the case of MRI reconstruction problem. As

the acquisition time is proportional to the number of samples required in k-space, CS o↵ers a

great potential for accelerating MR image reconstruction. In particular, Eq. (2.20) has the form

of Eq. (2.13), where regularisation R corresponds to `1 norm in sparse domain. Therefore it

can be e�ciently solved using convex or nonlinear optimisation algorithms. The first successful

application of CS is by Lustig et al. in [Lus+05], where the authors have showed that 2 to

4 fold acceleration can be achieved for brain images, and up to 20-fold acceleration for MR

angiography applications.

Since their seminal work was published in 2005, CS-MRI has become an active area of research.

As aforementioned, for CS, the number of required samples for the near perfect reconstruction is

directly related to the sparsity of the signal. Therefore, the natural question in CS is the optimal

sparse representation for a specific application area. For CS-MRI, many sparse representations

for medical imaging applications have been proposed, leading to advanced regularisation terms

such as total generalised variation (TGV) [Kno+11b] and structured sparsity [CH12]. One

notable approach is dictionary learning, which is an approach that tries to jointly optimise

for the reconstruction and the optimal sparse basis. By making the sparse representation

adaptive, further acceleration can be achieved [RB11; Cab+14b]. CS-MRI has successfully

been integrated with parallel imaging, such as `1-SPIRIT [Mur+12].

More recently, low-rank approaches have been studied in the context of CS-MRI. Low rank

approaches can be seen as a generalisation of compressed sensing to multi-dimensional data.

In particular, by assuming the low-rankness (e.g. sparsity in spectral domain), one can per-

form matrix completion from limited number of samples. For parallel imaging, block-structure

Hankel matrix can be defined for the acquired multi-coil data, which is low-rank. This can be

used as a constraint to recover parallel imaging, such as SAKE, LORAKS, p-LORAKS [Shi+14;
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Hal13; HZ16]. The framework is generalised to annihilating filter-based low rank Hankel matrix

approach (ALOHA) approach [JLY16].

CS-MRI techniques are currently gradually being deployed in clinical settings and it is still an

active area of research [Vas+11; Hea19]. However, CS-MRI has several limitations. Firstly, it

is still an open question what the optimal sparse representation is for a particular application.

For example, for MR angiography where the images are sparse in image gradient domain,

total variation (TV) provides a su�cient regularisation. However, for Muscoskeletal imaging

where texture of the image is important, TV can yield undesirably blocky artefacts. Secondly,

even with the suitable regularisation, the quality of the reconstruction still largely depends

on the weighting term �. As can be seen from Eq. (2.12), � term balances between the data

fidelity and regularisation term. The optimal lambda is application specific, which depends on

the suitability of the regularisation term and the noise level present in the data. Therefore,

typically, a hyper-parameter search is required. Some methods exist to automatically estimate

the appropriate values of lambda from the noise-level of the data. However, it is still unclear if

this approach can necessarily provide a good perceptual quality independent of the applications.

Lastly, CS-MRI techniques often only consider a single image recovery. This motivates more

powerful approach such as bi-level optimisation and machine learning approaches, which are

surveyed in the next chapter.

2.2.12 Dynamic MRI

In dynamic MRI, the aim is to characterise the anatomies in motion. The application area

includes cardiovascular MR (CMR) and/or perfusion imaging such as late-Gadolinium enhanced

imaging (LGE-MRI). In this section, we focus our attention on CMR due to the relevance for

the subsequent chapters, but the principle applies for other dynamic imaging applications.

CMR is a gold-standard clinical tool for the evaluation of cardiac morphology and function

[CBR13]. In cardiac cine imaging, an accurate tracking of the cardiac phases is required. A

cardiac cycle can be monitored using electrocardiogram (ECG) and is typically characterised by

QRS-complex. There are two dominant cardiac phases, which are called systolic and diastolic
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Figure 2.6: ECG triggering and retrospective ECG gating for dynamic MRI. ECG triggering
starts the acquisition once the ‘R‘ wave is detected. On the other hand, retrospective ECG
gating continuously acquire data over multiple cardiac phases, where the data is retrospectively
binned to create the images. (Image courtesy: [Rid10])

phases. In systolic phase, the myocardium contracts to perform ejection of blood. In diastolic

phase, the myocardium is relaxed and the ventricular volume increases. While ECG can be used

to monitor the cardiac phases, cine-imaging can enable accurate depiction and quantification

of the anatomy.

While the underlying imaging principle of dynamic imaging is identical to that of static imaging,

it has several unique challenges. Firstly, it is not possible to obtain an image with both high

temporal and spatial resolution from a single cardiac cycle as the duration of one cardiac cycle

is too short. This forces one to use imaging techniques with TR’s that are much shorter than

one cardiac cycle. This restricts the imaging protocols to be gradient echo techniques, including

refocussed gradient echo (GRE), bSSFP or echo-planar imaging (EPI). Nevertheless, often the

k-space signals are acquired over several cardiac cycles, which are retrospectively combined into

an image sequence of a single heart-beat.

For this binning to work, there is a need for the synchronisation of the imaging protocol and

the cardiac cycles. There are two ways in which this can be achieved: ECG triggering and

retrospective ECG gating. In ECG triggering, the ‘R’ wave of the cardiac phase is detected,
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which triggers the imaging protocol. This enables one to acquire the image at a specified cardiac

phase, specified by trigger delay. The alternative is to use retrospective ECG gating. In this

latter approach, the data is continuously acquired during the cardiac cycle while the patient’s

cardiac cycle is monitored using ECG. At the end of data acquisition, the data is retrospectively

binned into correct cardiac phases. While the latter is typically more e�cient, if the patient

has arrhythmia (high beat-to-beat duration variability), then cine-imaging itself is challenging

and in this case ECG triggering may be more suitable if only a static image of systolic phase

needs to be acquired.

The second problem is motion. In addition to cardiac motion, there is also a respiratory motion,

which can introduce serious image degradation for CMR if not handled appropriately. There

are three ways in which this can be addressed: breath-hold acquisition, respiratory gating

and respiratory binning techniques. The most common approach in current CMR protocols

is the breath-hold acquisition, in which the patient is asked to hold the breath during signal

acquisition [Sta+16]. While this is the simplest and e�cient for cine imaging, it also induces

significant demand on patients and is di�cult for uncooperative patients. Respiratory gating

and respiratory binning are used when imaging is too time-consuming or when breath-hold

is unsuitable, such as 3D imaging [Bus+19] and cardiac magnetic resonance fingerprinting

[Cru+19]. For more in-depth survey of CMR techniques, refer to [Rid10; BRR12].

Therefore, accelerating CMR protocol is of high interest as reducing the acquistion time not

only reduces the demand on patient but also improves the image quality by reducing the

chance for motion artefact to influence. Indeed, CMR is suitable for CS-based accelerated

reconstruction techniques because CMR image sequence exhibits high spatio-temporal corre-

lation between each time frame, which therefore admits sparse representation in image and

time domains. To this end, k-t SENSE and k-t BLAST were proposed [TBP03], which ex-

ploits the spatio-temporal correlation to perform parallel imaging techniques. This was later

improved by k-t FOCUSS [JYK07] to include compressed sensing. For CMR, cardiac images

are static for most of the anatomy except for the cardiac anatomy. This characteristics can be

precisely captured by combining compressed sensing and low-rank approaches. In particular,

the static part is reconstructed using low-rank constraint and the remaining moving anatomy
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are reconstructed using sparsity constraint. Well-known implementations of these approaches

are k-t SLR [Lin+11], L+S [OCS15] and STORM [PJ15]. Dictionary learning method has also

been extended for dynamic MRI [Cab+14b]. For free-breathing approaches, there are notable

methods such as XD-GRASP [Fen+16].

2.3 Computational tomography

Computational Tomography (CT) in essence reconstructs image from the measurements of

projections, which is an extension of an X-ray technique proposed by Hounsfield in 1970 [Hou73;

SB95]. Modern CT acquires data by passing multiple X-rays along patient. The attenuation of

X-ray depends on tissue density, which is called attenuation coe�cient. The spatially varying

distribution of attenuation coe�cient forms the basis of CT images.

In modern 2D CT imaging, the emitted X-rays form a fan-beam geometry. The emission source

and the radially laid out detectors are rotated to obtain measurements from all angles. The

complete set of line integrals is called Radon transform, which uniquely determines the object x.

A set of Radon transformed data is called a sinogram. CT therefore defines an inverse problem

similar to MRI: the forward matrix A expresses the di↵erent line integrals parameterised by

the fan-beam angles [SP15].

Fourier slice theorem tells that the 1D Fourier transform of Radon projections of an object

and the parallel line in 2D Fourier transform of an object are the same. In particular, the

underlying object is uniquely determined by Radon transform, provided that there are su�cient

measurements. In practice, the reconstruction are made from finite set of samples, as in MRI.

There are many reconstruction techniques for CT imaging: analytical methods and iterative

methods. For analytical method, filtered back projection (FBP) is the most common approach,

which weighs each projection by Radon kernels. Di↵erent kernel provides trade-o↵ between

noisiness and sharpness. On the other hand, iterative reconstructions solves the regularised

inverse problem as seen in Eq. (2.13). Iterative reconstructions are attractive as they enable one

to incorporate the prior knowledge about the underlying anatomy, which enables compressed
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sensing based reconstructions. While iterative approaches are more computationally expensive

than FBP, owing to the advances in hardware, the iterative approaches are gaining popularity.

Modern CT enables one to acquire very high resolution images (e.g. 1024 ⇥ 1024 pixels for

a 2D slices). The main concern, however, is the risk of radiation exposure [Jou+17; Pea+12;

Mat+13]. The added lifetime risk of developing cancer by a single abdominal CT is estimated

to be one in 2,000 [Sch16]. To this end, a significant amount of e↵ort has been put to reduce

the dosage. The major classes of approaches for reduced-dose imaging are low-dose CT [Tea11;

Kan+96; Nai+90], limited angle CT [HW83; Dav83; DB98], and interior tomography [WY13].

A number of compressed sensing based methods have been utilised for these problems [SP08;

Ham+13; MF15; McC+16] and more recently, deep learning techniques (surveyed in Chapter 3).

The major challenge is that the image quality is inherently linked to the dosage used. In essence,

the variance of measurement increases if the dose is reduced, yielding a noisier image. Therefore,

obtaining good image quality from reduced dosage is still an ongoing research.

CT has a wide range of application, especially when a high resolution image is required where

the object may be susceptible to motion, or in a time constraint environment such as emergency

room [Nov+99; GR08]. This includes lung CT [Kan+96] , CT cardiac screening [Nik+04;

Hau+09], high resolution breast CT [Boo+01] and whole body CT [Hub+09].

2.4 Ultrasound imaging

In this section, we provide a brief overview of medical ultrasound. An excellent overview of the

imaging technique can be found in [CSJ11; Fin92; WTF92].

Diagnostic ultrasound (US), or ultrasonography, is a noninvasive imaging technique used to

visualise internal body structures as well as motion using ultrasound physics, introduced in

1960’s for medical use [Org+98]. US consists of a transducer, transmitter pulse generator,

amplifier, analog-to-digital converter and computer processing unit which post-processes the

image and display. B-mode US is the most fundamental imaging technique, where a linear

array of transducers are used to simultaneously emit a radio-frequency wave to scan a two-



2.4. Ultrasound imaging 37

dimensional plane. When the emmitted pulse hits an object (or change in medium), reflection

occurs. The ultrasound in essence visualises an internal organ by measuring the delay in echo

arrival [Fin92; WTF92].

Many extensions of B-mode US exists. Firstly the B-mode US can be extended to image the

underlying object in real-time. In M-mode US, a rapid sequence of B-mode scans are performed.

A three-dimensional imaging is also possible by performing successive two-dimensional scans of

adjacent planes, or by using two-dimensional array of transducers. Another notable variation of

US is doppler-mode US. In this technique, the doppler shift cause by the reflection from moving

objects is measured, which allows one to compute, for example, flow information [CSJ11].

As ultrasound is cheap and safe to use, it is an indispensible part of modern diagnostic imaging.

However, the acquisition physics yields a fundamental limitation to the image quality and the

produced images contain many artefacts. For example, an object that is either reflective or

attenuating can disrupt the echo, creating shadows in the image where no signal can be detected.

Another source of artefact is a circular object, which can cause a refraction that results in added

noise in the images. US is often employed in a clinical settings where a real-time imaging is

required. As such, it is also challenging to employ computationally expensive reconstruction

techniques for post-processing the images to mitigate these image artefacts. Nevertheless,

compressed sensing approach have been proposed to improve image quality [Ach+10; Qui+10;

Wag+12; LPF13]. More recently deep learning methods are also investigated to adaptively

postprocess the image [KHY19].

Today, medical US has a wide impact for clinical practice both in developed and developing

world. The application area includes echocardiography [NQ14], obstetrics and gynaecology

[Cal88; Cam13] and disease monitoring in developing countries [Cal88; Met91] to list a few.

However, in the views of ultrasonography’s widespread application, the training of the sono-

graphers as well as maintaining the qualitative diagnosis has become an important challenge.

A poor use of the device can result in misdiagnosis and errors in interpretation, which can be

harmful in some cases [LL91].
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2.5 Summary

In this section, we highlighted some of the challenges in each medical imaging devices. In par-

ticular, we delved in to MRI acquisition, which serves as a key example how imaging approach

creates fundamental limitation to the acquisition. We also briefly surveyed CT and US and

outlined their applications and limitations. For the case of MRI, the fundamental limitation is

the acquisition speed. The section surveyed the advanced reconstruction techniques that can

reduce the acquisition times. However, we also highlighted that these reconstruction approaches

still require di�cult hyper-parameter tuning to get the best image quality. In addition, as these

approaches do not exploit available data or past scans fully, it leaves a room for improvement.

In the next chapter, deep learning techniques are surveyed.
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Deep learning for medical imaging

3.1 Introduction

Deep learning [LBH15] is a sub-field of machine learning, which mainly studies artificial neu-

ral network. Deep learning gained its popularity in 2012 when it achieved the state-of-the-art

performance for ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a large-scale

image classification task including nearly 1000 di↵erent target classes [KSH12]. The basic theo-

retical foundation of artificial neural network has been laid out much earlier in 1960-90’s [Ros61;

R+88; L+95; HS97], however, the modern success of deep learning rooted in the availability

of large scale data, improved techniques for building and extracting complex representation of

data and the availability of the improved computational resources. This chapter provides the

background on deep learning techniques and define the necessary terminologies that appear in

this thesis. The deep learning techniques introduced in this thesis, in particular, convolutional

neural network and recurrent neural network form the basis of the methods presented in the

subsequent four chapters.

In general, there are three types of learning problems: supervised learning, unsupervised learn-

ing and reinforcement learning. In this thesis, we are mainly concerned with supervised learning

approaches. The presentation is inspired by the statistical learning theory in [Vap13].

39



40 Chapter 3. Deep learning for medical imaging

3.2 Supervised learning

The goal of supervised learning is to learn a mapping from an input space to an output space

given training data of known input-output pairs. For example, for a given patient, we would

like to predict whether the patient will develop congenital heart diseases (CHDs) in the next

5 years. In this case, the input variables may contain a set of patient information such as age,

sex, height, weight, exercise frequency, etc., whereas the output can be a binary answer (yes

or no), a probability (from 0 to 1) or the names of diseases. Supervised learning techniques

allow one to train a model which attempts to perform such predictions from historical data of

patients who did and did not develop CHDs.

We define the terminologies for this section. We denote an input space as X , where we prescribe

a random variable (r.v.) X and a probability distribution PX to it.1 Similarly, define an

output space Y , the corresponding r.v. Y and the probability distribution PY . The joint

probability distribution on X⇥Y is defined as PXY (X, Y ), which, by Bayes’ rules, can be written

a product of a marginal distribution PX(X) and a conditional distribution PY |X(Y |X), i.e.

PX(X)PY |X(Y |X).2 Training data D is a finite set of input-output pairs: D = {(xi, yi)}Ni=1 ✓

(X ⇥ Y)N , which are the samples from the joint distribution P (X, Y ). A set of possible mapping

h : X ! Y is called hypothesis space H. The discrepancy between the true response y and

the prediction h(x) is quantified by a loss function ` : Y ⇥ Y ! R�0. An example of loss is

Euclidean distance `(y, y0) = ky � y0k2.

The goal of supervised learning is to learn a mapping h 2 H, which takes x 2 X as input

and predict the most likely output y 2 Y , i.e. h(x) = argmax
y⇤P (Y = y⇤|X = x) ⇡ y. In

a more mathematical terminology, the goal of supervised framework is to find a hypothesis (a

mapping) h 2 H which minimises risk :

R(h) =

Z

(x,y)2X⇥Y

`(y, h(x))dP (x, y), (3.1)

1For completeness: we define a probability space (X , BX , PX ), where X is a sample space, BX , called event
space, is a Borel-algebra of X , PX : BX ! R is the probability measure defined on event space, X : X ! R is a
random variable corresponding to PX , i.e. PX : R! R is a push-forward measure: PX(S ✓ R) = PX (X�1(S)) =
PX ({! 2 X s.t. X(!) 2 S}).

2From here on, we drop the subscript on P if it is obvious: e.g. PY (Y ) = P (Y )



3.2. Supervised learning 41

i.e., the sum of loss over all input-output pairs weighted by the joint distribution. In practice,

one does not have the access to the joint distribution P (X, Y ) but only limited numbers of

training data D, which captures the likely input-output pairs. In empirical risk minimisation

(ERM) principle, the following functional is minimised instead:

Remp(h) =
1

N

NX

i=1

`(y, h(x)) (3.2)

In ERM principle, the model h is said to have generalisation property if minimising the empirical

risk Remp results in minimising the risk R. Generalisation is the key ingredient for making the

model work on unseen cases.

The central theme of supervised learning is to find a suitable hypothesis space H (e.g. possible

model configurations) and a learning algorithm A, which is a sequence of steps that allows one

to obtain a model that can generalise to unseen data points, all in a reasonable amount of

computation. Currently there is no learning algorithms that can achieve this goal in a practical

(computationally e�cient) way, which makes the field of supervised learning largely based on

empirical evidences. A field that aims to characterise and quantify the bounds for generalisation

property is called statistical learning theory [Vap13] and it is still an ongoing area of research.

From a practical point of view, there are a few important concepts to have in mind when

designing the hypothesis space H and the learning algorithm A. The first concept is the ex-

pressiveness of the hypothesis space. Expressiveness describes whether the selected hypothesis

space can capture a diverse range of the representations of data. For example, it may be pos-

sible to predict the likelihood of a patient developing CHDs using a linear model (e.g. a linear

combination of input). However, for a large scale image classification task, linear models may

not be able to capture the underlying nonlinear correlation. In this case, the expressiveness of

linear models is limited. Secondly, a model is said to have a robustness property if the output

does not change under a small perturbation of input and output. Another notion is stability,

which is concerned with how consistently the model can be obtained from a perturbation in

training data.
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Finally, another important notion is inductive bias. Inductive bias is an assumption of the

existence or the superiority of a certain class of algorithms over the other for a task. An

illustrative example is Occam’s Razor, which roughly states that, simple explanations should

be preferred over the complex ones. Another example is, a certain class of H or a learning

algorithm A may bias the model h to converge towards a minima of Remp which generalises

better. As such, the problem of generalisation is often rephrased as the problem of finding the

correct inductive bias. It is believed that the techniques used in current deep learning have the

relevant inductive bias that makes themselves generalisable for many tasks in visual, audio and

language processing.

3.3 Deep learning and neural network

Deep Learning is a field where one uses deep feed-forward neural networks (DNN’s) for the

hypothesis space H. Specifically, a feed-forward neural network is a parametric function f :

X ⇥⇥! Y given the parameter space ⇥ and is defined as:

f(x; ✓) = fL(fL�1(...f1(f0(x; ✓0); ✓1)...; ✓L�1); ✓L) (3.3)

fi(⇠; ✓i) = �i(W
T

i
⇠ + bi), ✓i = {Wi, bi}. (3.4)

A neural network has learnable model parameters ✓ = {W0, b0,W1, b1, . . . ,WL, bL} 2 ⇥, which

are called weights. Each fi is called layer i. Typically, the input to each layer is expressed

as a vector x 2 Rli . As such, Wi’s and bi’s are 2D matrices and 1D vectors respectively. The

dimensionality li of each layer (also called the number of features) can be arbitrarily specified

by the designers. Note that if fi : R3
! R64 (a layer with li = 64 features), then the dimensions

of the associated weights are Wi 2 R
3⇥64 and bi 2 R64. In addition to the network parameters,

DNN’s have many hyper-parameters, such as the depth L of the network, the number of features

li, and the choice of nonlinear activation functions �i’s. In general, fi is called a fully-connected

(FC) or dense layer if the 2D weight matrix has dense nonzero-entries. The evaluation of f

on x is often called forward-propagation. Given empirical risk Remp, the network is typically



3.3. Deep learning and neural network 43

......

Co
nv
+P
oo
lin
g

Co
nv
+P
oo
lin
g

Den
se

Dense...Input 
Output 

...

... ...

Forward Propagation

Backpropagation

Loss 

Dense

 

Figure 3.1: The schematic of how the network trained via backpropagation. The network
architecture shown here is a convolutional neural network (see Section 3.4). Image adopted
from [Sch+19c].

trained using gradient descent algorithm:

✓ = ✓ � ↵r✓Remp (3.5)

where ↵ 2 R is called a step size or a learning rate. The core idea of gradient descent is to

iteratively find a small perturbation of the network parameters that can move the network per-

formance towards lower empirical risk. Note that since the network has a multi-layer structure,

the gradient can be computed in a layer-wise fashion via chain rule. For example, the gradient

of the weight ✓i for the layer i can be computed as:

r✓iRemp =
@Remp

@fL

T @fL
@fL�1

T

. . .
@fi
@✓i

(3.6)

This update rule is often called backpropagation. The Jacobian of each layer @fL

@fL�1

T

can be

computed by chain rule. Let fi is the output of layer i and zi = Wifi�1 + bi, then

@fi
@fi�1

T

=
@�(zi)

@zi

T @(Wifi�1 + bi)

@fi�1

T

(3.7)

Gradient descent requires evaluating the loss on all training dataset, which can be computa-

tionally expensive for large-scale problems. This is mitigated by performing mini-batch update,

which computes Remp using m data points instead, much smaller than the size of training data.

The idea is that the risk computed with batch size m well-approximates the original empirical
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risk Remp. Secondly, ↵ is often empirically chosen to be a small fixed number. This technique

is called stochastic gradient descent (SGD).

DNN’s are also expressive and it can represent a wide range of functions. To this end, we state

Kolomogorov-Arnold representation theorem [BG09]:

Theorem 3.1. Let f : [0, 1]n ! R be an arbitrary multivariate continuous function. Then it

has the representation

f(x1, . . . , xn) =
2nX

q=0

�q

 
nX

p=1

 q,p(xp)

!
(3.8)

with continuous one-dimensional inner and outer function �q and  q,p. All these functions �q,

 q,p are defined on the real line. The inner functions  q,p are independent of f .

Informally, the theorem states that a two-layer neural network is su�cient to express most

functions, provided it has enough dimensionality. It is important to note that it does not provide

a way of constructing such optimal neural network, neither guarantees that such network can be

trained using SGD or other optimisation techniques. Therefore, while KAR theorem guarantees

the expressiveness of the DNN’s in theory, more heuristics are needed to make them work well

in practice. As it turns out, convolutional neural network and recurrent neural network are

DNN’s which can implicitly provide a structural information, makes them e↵ective for many

tasks in computer vision, audio and natural language processing. These two techniques are

now reviewed.

3.4 Convolutional neural network

Convolutional neural network (CNN) is a neural network architecture that has been shown

to be extremely e↵ective for numerous applications in computer vision in the recent years.

Unlike the standard DNN’s with FC layers, CNN first extracts features locally, which can build

complex image representations while maintaining spatial correspondences. The building blocks
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of CNN’s are convolutional layers, nonlinearity layers, pooling layers, normalisation layers and

(possibly) fully connected layers.

Convolutional layer A convolutional layer is a variant of FC layer where W has a form of

Toeplitz matrix, i.e. the layer multiplication can be performed as a convolution:

W Tx = w�⇤ x (3.9)

More specifically, for an input tensor x 2 RNx⇥Ny⇥Nc (e.g. a 2D image with Nc channels) and

a weight w 2 Rkx⇥ky⇥Nc⇥Nc0 and bias b 2 RNc0 , convolution layer f is defined as:

[f(x;w,b)]lmn =
l+kx/2X

i=l�kx/2

m+ky/2X

j=m�ky/2

Nc0X

k=0

wijknxijk + bn (3.10)

Weights in convolution layers are often called convolutional kernels. Convolutional layers have

hyper-parameters such kernel width (kx, ky), number of features Nc0 , stride and dilation factors.

Compare to FC-layer in feed-forward networks, convolutional layer has much less parameters

as the weight is shared across the image spatially. This enables the network to extract local

features and build complex representations before they are aggregated for further analyses.

Nonlinearity layer The second component is a nonlinearity layer. A standard choice of a

nonlinearity is rectified-linear unit (ReLU), which is defined element-wise as:

ReLU(x) =

8
><

>:

x if x � 0

0 otherwise
(3.11)

ReLU is a nonlinear activation function which solved gradient vanishing problem of other non-

linearities like sigmoid and tanh functions, enabling training of extremely deep networks. There

are other variations such as leaky ReLU.
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Pooling layer A pooling layer is used to locally aggregate the statistics of the intermediate

features within a certain pooling window. If a pooling window size is px ⇥ py, a max-pooling

layer on x is defined as:

[maxpool(x)]lmc = max
i2[l�px/2,...,l+px/2]

j2[m�py/2,...,m+py/2]

xijc (3.12)

Since the layer aggregates the local values, CNN’s with pooling layers are less sensitive to local

perturbation. This attribute is often informally known as translational invariance. The second

use case of pooling layer is to reduce the spatial dimension of input tensor. Often, the stride

of the operation is matched by the pooling window. This meant that the output of pooling is

down-scaled by a factor proportional to the pooling window size. Once the representation is

down-scaled, the network can learn a representation which aggregates the local information and

increasingly build a complex hierarchical representation. Besides from max-pooling, average-

pooling is also used commonly.

Normalisation layer The final component is a normalisation layer. The most commonly

used normalisation technique is batch-normalisation (BN) [IS15], which normalises the interme-

diate tensor by mini-batch statistics and have two learnable parameers �, �. It first computes

mean and variance of the batch, then applies them to whiten the feature representations. The

learnable parameters are used to rescale the data:

µB =
1

m

mX

i=1

xi

�2
B
=

1

m

mX

i=1

(xi � µB)
2

BN�,�(xi) = �

 
xi � µBp
�2
B
+ e

!
+ �

(3.13)

where m here is the batch size, xi is i-th data in the batch. BN can help accelerate learning by

normalising the statistics of each layer every time. The precise reasons of the e↵ectiveness of BN

is still not fully understood, although empirically it is observed that BN’s allow larger learning
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...

...

unfold

Figure 3.2: The schematic of an RNN architecture. Each arrow represents a multiplication
with the weights and is followed by a nonlinearity layer which is not shown in the diagram. For
RNN, the parameters are shared across the unfolding.

rate as well as provide robustness to some domain shift between train and test data [Bjo+18;

San+18]. Besides from BN, other normalisation schemes exist, such as batch-renormalisation

[Iof17], group normalisation, instance normalisation [UVL16] and layer normalisation [WH18].

3.5 Recurrent neural network

Recurrent neural network is designed such that features with long-term temporal dependency

can be extracted. A vanilla RNN is usually expressed as following. Let x be our data. Suppose

we have a temporal component to x, e.g. x = (x1, x2, . . . , xT ) (note that here the subscripts do

not represent the indices in a batch, but the temporal indices). Then, suppose one desires to

make a prediction at every time step t, then we have an RNN of the form:

h0 = 0

ht = �h
�
W T

x
xt +W T

h
ht�1 + bh

�

ot = �o
�
W T

o
ht + bo

�
(3.14)

where ht is called hidden state, ot is the output at time step t, ✓ = {Wx,Wh,Wo, bh, bo}. In

particular, RNNs combines the previous hidden state ht�1 and the current input xt, to create a
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new hidden state ht. This structure enables the network to extract features with high temporal

dependencies. RNN’s are often used in natural language processing such as translation or

sentence generation. For many tasks, oi is not required and only the final output oT is needed,

such as text classification. A popular architecture includes bidiretional RNN [HWW15], gated

recurrent units (GRUs) [Chu+14], long-short term memory (LSTM) [HS97].

3.6 Learning the network

CNN and RNN’s are expressive and exhibits useful inductive biases for learning image features

and temporally dependant features respectively. However, while these networks are extremely

powerful, proper training methodologies are required to obtain good performances from them.

In fact, the second aspect of the modern success of deep learning is the improve techniques

to train these networks. This section lists the common tricks used to improve the network

performance.

Optimiser Currently, most of the successful learning algorithms for large-scale optimisation

problems (e.g. deep learning) are based on first-order stochastic optimisation techniques. As

aforementioned, in SGD, a fixed learning rate and the minibatch update are two sources of

stochasticity. The current understanding is that the stochasticity is important for the generali-

sation, as the stochastic nature of the training enables the networks to skip spurious minimums

and allow the models to converge to a good local minimum. The exact reason for the e↵ective-

ness of stochastic first-order gradient optimisation method is still an active area of research.

There are many methods that have been proposed which try to improve upon either the con-

vergence rate or generalisation property of the vanilla SGD. Essentially, the most important

consideration is how to set the learning rate ↵ at each iteration of gradient descent, often called

annealing schedule. The problem is that the learning rate needs to be adaptive to avoid being

stuck in slow update process as well as converging to poor local minimum, or if learning rate is

too high, the method will diverge. Classically, methods such as SGD with momentum [Sut+13]
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and Nesterov momentum [Nes83] have been popular for accelerating the convergence rate.

However, for large scale non-convex optimisation problems such as training deep networks, the

improvement from the momentum is not universally observed. More recently, advanced learn-

ing algorithms have been proposed which can adaptively adjust the learning rate. RMSProp is

an optimiser [HSS12] which scales the gradient based on the current root-mean-square error.

Adam [KB15] (predecessors are AdaDelta [Zei12] and AdaMax [DHS11]), is an optimiser which

monitors the statistics (variance) to adjust the learning rate and momentum. While SGD with

well-chosen annealing schedule works well in practice, the latter methods with adaptive learn-

ing rates are gaining popularity [Rud16]. Note that while the latter methods can adaptively

change the learning rate, it is nevertheless often combined with annealing schedules.

Training, validating and testing Given dataset D with a suitable choice of architecture

f , loss function ` and optimisation algorithm A, one trains a network. In a typical setting, the

available dataset is split into training, validation and testing subsets. The network is trained on

training set, whereas small number of cases are reserved for validation set, often called held-out

set. The aim of validation set is ensure that the network is not overfitting the training data

(testing data is assumed inaccessible during training).

Usually one pass of gradient update is called update iteration and one pass through the entire

dataset is called epoch. Usually, the training process is monitored by plotting Remp against

epoch. The convergence criteria refers to the mechanism to tell when the network training is

done. Early-stopping is a technique where one terminates the training if validation error stops

decreasing (i.e. to prevent overfitting).

Typically, the methods are evaluated using n-fold cross-validation process. In n-fold cross val-

idation, the dataset is split into n small chunks, of which n � 1 is used for training and the

remaining is used for validation. The idea is that we don’t draw conclusion after successful per-

formance from particular validation data. By averaging out the result of cross-fold validation,

we can get robust statistics.
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Preventing overfitting Despite better models, it is well possible that the network overfit

the training data. The techniques to avoid overfitting are called regularisation techniques.

One popular technique is weight regularisation [GBC16]. Typically, this is added to training

objective to constrain the magnitude of weights. The intuition is that highly nonlinear function

is not robust to small perturbation, if its the weights have extremely large coe�cients. Usually

this constraints the norm of the weights ✓ by various norm such as `1, `2 norms. Note that

adding these regularisation is equivalent to applying a prior to the weights p(✓), where for `2

norm, we have a prior that has zero-mean Gaussian with small variance. For `1 norm, this is

equivalent to Laplace prior. Besides from regularising the norm, one also sometimes explicitly

constraint the scale of norm, which are often called clipping.

Another very e↵ective way of regularisation is data augmentation. The idea of data augmen-

tation is to increase variation in training data so the network does not overfit on specific

characteristic of the training data distribution, but also capture the plausible variation.

3.7 Deep learning for medical imaging

Due to its empirical success, deep learning methods are already widely applied for various

medical imaging problems. While it is out-of-scope for the thesis to provide a comprehensive

survey, this section highlights some of the work as illustrative examples of how deep learning

is commonly applied for medical imaging problems. Numerous great surveys can be found at

[Lit+17; RNZ18; LL19; Zah+18; Mai+19].

3.7.1 Medical image classification

Image classification is a process of predicting the label of a given input image. Formally this

can be formulated as follows: each image x 2 X has an associated label y 2 Y , where y belongs

to one of C target classes. To train a network for image classification tasks, one first expresses

the labels as one-hot encoding vectors. A one-hot encoding vector y is a C-dimensional vector
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such that if the label y belongs to i-th class, then yi = 1 and yj 6=i = 0 . The task of the

network is then to predict the one-hot encoding vector y given x. In particular, the output of

the network ypred = q(y|x) is a C-dimensional probability vector, where the i-th entry expresses

the likelihood of an input image x belonging to the i-th class. Since the output of the network

is a probability vector, it sums to one. This behaviour is typically achieved through a softmax

layer:

q(y = c|x) = [softmax(z)]c =
ezcP
n

j=1 e
zj

(3.15)

where z is the output of the network before softmax layer. Let p(y|x) be the probability

distribution of the image belonging to the target labels and Let q(y|x) be the network output.

Then, the network is trained using cross-entropy loss, which is defined as:

`CE(p, q) = �
CX

i=0

p(y = i|x) log q(y = i|x) (3.16)

In most scenarios, each image belongs to one class (i.e. if x has label c, p(y = c|x) = 1 and 0

otherwise), the loss simplifies to:

`CE(p, q) = � log q(y = c|x) (3.17)

Neural networks can then be trained using the strategy defined in Section 3.6. Image classifica-

tion is a task that popularised the deep learning approaches when it achieved the state-of-the-art

performance for ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [KSH12]. In

medical image analysis, image classification has a wide range of important applications. This

includes exam classification which can be used for screening [KCB16; Ant+16; Cio+17; WB16],

lesion class or pathology classifications [Spa+16; GHT17; She+15; Est+17; Clo+19], image scan

plane classification for ultrasound [Bau+16; Sch+18b] and MRI, as well as classifying image

quality or image artefact [Oks+18; Oks+19].

Compared to computer vision problems, medical image classification problems have their unique

challenges. Firstly, it is non-trivial to acquire a large number of data containing pathology,
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so there is a need for addressing a class imbalance problem. To address this, often transfer

learning is employed to train a deep network [KCB16; Ant+16]. Typically in transfer learning,

the networks trained for large scale image classification tasks are then finetuned for the target

application. The most standard choices of the architectures are VGG [SZ14], Resnet [He+15]

and DenseNet [Hua+17]. The second challenge is that the medical images are often three

dimensional or non-Euclidean, so often it is the case the networks are extended to three-

dimensional [HGE16] or even on non-Euclidean graphs [Ars+18]. Finally, the object that

contributes to the image label (e.g. lesion) is extremely small compared with respect to the

entire image [ZDG19; Paw+19]. To address this, features at multiple levels are often aggregated

to improve the performance [Dou+16]. In general, the trend in image classification follows the

trend in computer vision. For the extensive list of applications, refer to [Lit+17].

3.7.2 Medical image segmentation

The goal of image segmentation is to classify each pixel in the input image into one of the

C target classes. More formally, for an input image x 2 RNx⇥Ny , the goal is to obtain the

segmentation map y 2 RNx⇥Ny⇥C . Thus, the network outputs C-dimensional probability vector

for each pixel: ypred�i = q(yi = c|xi) where yi is the label for i-th pixel. The loss function that

can be used for segmentation is similar to classification, except that the label prediction is now

obtained per pixel and the loss is aggregated for all pixels:

`CE(p, q) = �

Nx⇥NyX

i

log q(yi = c|xi) (3.18)

Image segmentation is one of the fundamental tasks in medical image analysis due to the range

of application areas: organ and structure segmentation [Bai+18; SEG17a; Cer+18b; Sin+18]

and legion segmentation [Kam+17; CBR17; Bow+17; Che+18]. The segmented structures

serve as important features for further analyses [Bel+19]. For segmentation tasks, most ar-

chitecture is based on multi-scale analyses. This include FCN [Bai+18], Unet [RFB15] and

DeepMedic [Kam+17]. Ensembling of the networks is also an e↵ective technique to get stable

results [Kam+18]. In many cases, the deep learning based segmentation achieves human level
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performance for many application areas, i.e., it is within the inter-observer range of the manual

annotators [Bai+18; Sin+18; Ber+18].

The main challenges of medical image segmentation is similar to image classification. Firstly,

there is a problem of class imbalance in the target labels [LKG19; Has+18]. For example, lesions

are often much smaller than the background. As larger structures have more pixels associated

with it, a network trained with cross entropy loss tends to bias the predictions towards getting

the larger structures correctly. Dice loss [Sud+17] and their extensions [SEG17b] are considered

to be more robust to small structures.

Secondly, collecting a large dataset with manual annotations is challenging, so often one needs

to work with small dataset. A various approach has been proposed, including weakly super-

vised segmentation [Raj+16; Can+18], as well as data augmentation approaches [Che+19a;

Cha+19b; Bow+18]. Another key problem in medical imaging is that even for images of the

same underlying anatomy, the image statistics can di↵er based on the scanner type (MRI/CT),

image contrast, noise and resolution and the networks can fail to generalise across unseen scan-

ner protocols. To this end, many approaches to extract common feature has been proposed

[Che+19c; Dou+18; Ouy+19a].

An interesting property of medical image analysis that is di↵erent from computer vision is that

the target anatomy is often highly structured. Many approaches exploit shape priors [Bif+19;

Cer+18a]. In [Okt+17], low-dimensional representation of the anatomy is first learnt to anatom-

ically constrain the network reconstruction via loss function. In [Che+19b], 3D features of the

anatomy is learnt, which is combined to improve the segmentation from multiple 2D views. In

[Qin+18a; Qin+18b], the motion field constraint is used to improve CMR segmentation. The

shape prior approaches are also combined with traditional optimisation approaches, such as

atlas-based registration [Dua+19].
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Figure 3.3: U-net architecture proposed by Ronneberger et al. for image segmentation [RFB15].

Figure 3.4: Deep Medic architecture proposed by Kamnitsas et al. for brain lesion segmentation
[Kam+17].

Figure 3.5: FCN architecture used by Bai et al. for cardiac image segmentation [Bai+18].
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Figure 3.6: Variational network architecture proposed by Hammernik et al. for accelerated MR
image reconstruction [Ham+18].

3.7.3 Medical image reconstruction

Image reconstruction is another branch were deep learning is making a significant impact. As

briefly surveyed in Chapter 2, image reconstruction problems generally fall under the category

of inverse problem, which includes wide class of problems such as image denoising, inpaint-

ing, deblurring, single-image super resolution, accelerated MR reconstruction, CT and PET

reconstruction, and so on.

Accelerated MR image reconstruction In general, currently there are mainly three dif-

ferent types of approaches for deep learning based MR image reconstruction. The first approach

is an end-to-end learning approach, which, to the best of our knowledge, was brought to at-

tention by Wang et al. [Wan+17b]. Wang et al. demonstrated that the undersample images

could be reconstructed using 3-layer CNN. In the following year, more powerful networks were

employed, mainly based on U-net type architectures [Han+18]. At the same time, Zhu et al.

proposed AUTOMAP [Zhu+18a] to learn image reconstruction directly from k-space using a

combination of FC layers and convolution layers. More recently, Han et al. proposed to re-

construct undersampled MR images directly in k-space, followed by inverse Fourier transform

[HY18]. The latter method is inspired by the connection between low-rank approaches and the

deep learning architecture.

The second class of approaches is called an unrolled method. To the best of our knowledge,

Hammernik et al. proposed a network architecture called variational network (VN) [Ham+18].
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The idea of unrolled approach is to first formulate the general inverse problem as in traditional

optimisation algorithm (c.f. Eq. (2.13)), then explicitly write out the optimisation algorithm,

such as gradient descent. It turns out that under certain assumptions on the regularisation

terms, the gradient descent steps can be explicitly written as a convolutional layers and nonlin-

earity layers. From this observation, a network architecture, where optimisation step is unrolled,

is proposed. Di↵erent optimisation algorithms can be “unrolled”, which results in di↵erent

network architectures. For example, alternate direction methods of multipliers (ADMM) is

extended to Deep-ADMM network [S+16]. Shortly after, we proposed Deep Cascade of CNN’s

(DC-CNN), which was inspired by unrolling of dictionary learning MRI approaches [RB11].

Later on, the model was theorised as an unrolling of variable-splitting approaches [Qin+19].

A number of variations have been proposed, such as a model based on proximal update rules

[Mar+17] as well as extension of DC-CNN to parallel image reconstruction [AMJ17].3

Finally, the third type of approaches is to combine deep learning with traditional optimisation

algorithms. In this case, the regularisation R in Eq. (2.13) is replaced by prior based on deep

learning. [Zha+17a; Ric+17; TBK17]. Tezcan et al. have shown that the method is highly

adaptive to unseen data corruption [TBK17]. Alternatively, deep neural network architecture

can be directly used as a constraint in GRAPPA type approaches [Akc+18].

Another important consideration for the reconstruction task is the loss function for training

the network. A standard choice is `2 loss between the target image and the reconstruction from

the neural networks. However, for image restoration tasks, `2 is often associated with blurring.

As such, `1 loss or structural similarity (SSIM) loss are preferred [Zha+16; Ham+17b]. SSIM

is a reference-based image quality metric and for two images x and y, it is defined as:

SSIM(x, y) =
(2µxµy + C1) (2�xy + C2)�
µ2
x
µ2
y
+ C1

� �
�2
x
+ �2

y
+ C2

� (3.19)

where µ(·), �(·) are the local mean and variance of each pixel in the image respectively and

3While one of the main contributions of the thesis is the development of the novel deep learning architectures
for MR image reconstruction, a considerable amount of progress has been made at the same time. As such,
this section is written to be chronologically up-to-date, although comparison with all other methods within the
thesis is out-of-scope. Nevertheless, most of the proposed approaches mentioned here only addresses 2D image
reconstruction, whereas the subsequent chapters are concerned with dynamic MRI applications.
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�xy is the local covariance of each pixel in x and y. Another notable approach for improving

the sharpness of the image is to use generative adversarial networks (GAN) [Goo+14]. GAN

is a framework that consists of two networks, generator and discriminator. The general idea

behind GAN is the discriminator D✓D is designed to distinguish (classify) between real images

x ⇠ pX (x) and the network generated images xrec ⇠ pG(x), whereas the generator G✓G is trained

to fool the discriminator – i.e. the generator tries to compromise the classification accuracy of

the discriminator D. In this way, the generator can learn to create images that appears like real

images from pX (x). The adversarial training can be done by minimising the following objective

function:

min
✓G

max
✓D

Ex⇠pX (x) [logD✓D(x)] + Exrec⇠pG(x) [log(1�D✓D(G✓G(xrec)))] (3.20)

For image restoration tasks, the input to the generator is corrupted image. In practice, GAN

loss is often combined with perceptual loss [JAF16; Led+17]. Several authors have applied

GAN-based approach for MR reconstruction [Yan+18; Sei+18; Mar+19a; QNJ18]. However,

one issue associated with GAN is the di�culty of evaluating the e↵ectiveness of it. While GAN

can generate sharp, realistic looking reconstructions, it can hallucinate features if the network

is over-parameterised [Yan+18; CLH18]. Therefore, while these models often outperform the

networks without GAN in terms of mean opinion scores (MOS) of the radiologists, some e↵ort

is required to guarantee that hallucination does not occur. In particular, currently there is no

rigorous theory which characterises the behaviour of GAN.

Most deep learning approaches are shown to outperform traditional compressed sensing based

approaches. However, currently there is no general consensus on what the optimal architecture

is. To this end, Zbontar et al. [Zbo+18] have organised a large-scale accelerated MR image

reconstruction challenge, which enables the comparison of the submitted models.

Finally, we note that neural network based reconstruction approaches are also adopted for

reduced dosage CT [Wur+18; Ham+17a; Jin+17; Hau+19] and PET reconstructions [Gon+18],

including both the unrolled approaches as well as the direct reconstruction approaches.
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3.7.4 Summary

This section surveyed the deep learning techniques which are the core of the thesis. We first

provided generic definition of the supervised learning framework, then presented the theory

of neural network. We then surveyed the techniques that led to the success of modern deep

learning. We then highlighted some of the successful applications of deep learning techniques

for medical image analysis, including classification, segmentation and reconstruction. The

subsequent chapters will now present the proposed deep learning approaches which attempt to

solve the current insu�ciency in medical imaging pipelines.
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4.1 Introduction

In many clinical scenarios, medical imaging is an indispensable diagnostic and research tool.

One such important modality is Magnetic Resonance Imaging (MRI), which is non-invasive and

o↵ers excellent resolution with various contrast mechanisms to reveal di↵erent properties of the

underlying anatomy. However, MRI is associated with an inherently slow acquisition process.

This is because data samples of an MR image are acquired sequentially in k-space and the speed

at which k-space can be traversed is limited by physiological and hardware constraints [Lus+08].

A long data acquisition procedure imposes significant demands on patients, making this imaging

modality expensive and less accessible. One possible approach to accelerate the acquisition

process is to undersample k-space, which in theory provides an acceleration rate proportional

to a reduction factor of a number of k-space traversals required. However, undersampling in

k-space violates the Nyquist-Shannon theorem and generates aliasing artefacts when the image

is reconstructed. The main challenge in this case is to find an algorithm that can recover

an uncorrupted image taking into account the undersampling regime combined with a-priori

knowledge of appropriate properties of the image to be reconstructed.

Using Compressed Sensing (CS), images can be reconstructed from sub-Nyquist sampling, as-

suming the following: firstly, the images must be compressible, i.e. they have a sparse rep-

resentation in some transform domain. Secondly, one must ensure incoherence between the

sampling and sparsity domains to guarantee that the reconstruction problem has a unique

solution and that this solution is attainable. In practice, this can be achieved with random

subsampling of k-space, which produces aliasing patterns in the image domain that can be re-

garded as correlated noise. Under such assumptions, images can then be reconstructed through

nonlinear optimisation or iterative algorithms. The class of methods which apply CS to the

MR reconstruction problem is termed CS-MRI [Lus+08]. In general, these methods use a fixed

sparsifying transforms, e.g. wavelet transformations. A natural extension of these approaches

has been to enable more flexible representations with adaptive sparse modelling, where one

attempts to learn the optimal sparse representation from the data directly. This can be done

by exploiting, for example, dictionary learning (DL) [RB11].
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Figure 4.1: An example of the image acquisition with Cartesian undersampling for a sequence
of cardiac cine images. (a) A ground truth sequence that is fully-sampled in k-space, shown
along x-y and y-t for the image frame and the temporal profile respectively. (b) A Cartesian
undersampling mask that only acquires 1/12 of samples in k-space, where white indicates the
sampled lines. Each image frame is undersampled with the mask shown along kx-ky. The
undersampling pattern along the temporal dimension is shown in ky-t. (c) The zero-filled
reconstruction of the image acquired using the 12-fold undersampling mask. (d, e) 4-fold
Cartesian undersampling mask and the resulting zero-filled image. Note that the aliasing
artefact becomes more prominent as the undersampling factor is increased.

To achieve more aggressive undersampling, several strategies can be considered. One way is to

further exploit the inherent redundancy of the MR data. For example, in dynamic imaging, one

can make use of spatio-temporal redundancies [Cab+14b], [JYK07], [QJ16], or when imaging

a full 3D volume, one can exploit redundancy from adjacent slices [Hir+15]. An alternative

approach is to exploit sources of explicit redundancy of the data to turn the initially under-

determined problem arising from undersampling into a determined or overdetermined problem

that is easily solved. This is the fundamental assumption underlying parallel imaging [Uec+14].

Similarly, one can make use of multi-contrast information [HCA14] or the redundancy gener-

ated by multiple filter responses of the image [PL14]. These explicit redundancies can also be

used to complement the sparse modelling of inherent redundancies [JLY15], [Lia+09].

Recently, deep learning has been successful at tackling many computer vision problems. Deep

neural network architectures, in particular convolutional neural networks (CNNs), are becom-

ing the state-of-the-art technique for various imaging problems including image classification

[He+16], object localisation [Ren+15] and image segmentation [RFB15]. Deep architectures are

capable of extracting features from data to build increasingly abstract representations, replacing

the traditional approach of carefully hand-crafting features and algorithms. For example, it has

already been demonstrated that CNNs outperform sparsity-based methods in super-resolution

[Don+14] in terms of both reconstruction quality and speed [Shi+16]. One of the contributions
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of our work is to explore the application of CNNs in undersampled MR reconstruction and

investigate whether they can exploit data redundancy through learned representations. In fact,

CNNs have already been applied to compressed sensing from random Gaussian measurements

[Kul+16]. Despite the popularity of CNNs, there has only been preliminary research on CNN-

based MR image reconstruction [Ham+18], [S+16], [Wan+16], hence the applicability of CNNs

to this problem for various imaging protocols has yet to be fully explored.

In this work we consider reconstructing dynamic sequences of 2D cardiac MR images with

Cartesian undersampling, as well as reconstructing each frame independently, using CNNs. We

view the reconstruction problem as a de-aliasing problem in the image domain. Reconstruction

of undersampled MR images is challenging because the images typically have low signal-to-noise

ratio, yet often high-quality reconstructions are needed for clinical applications. To resolve this

issue, we propose a deep network architecture which forms a cascade of CNNs.1 Our cas-

cade network closely resembles the iterative reconstruction of DL-based methods, however, our

approach allows end-to-end optimisation of the reconstruction algorithm. For 2D reconstruc-

tion, the proposed method is compared to Dictionary Learning MRI (DLMRI) [RB11] and

for dynamic reconstruction, the method is compared to Dictionary Learning with Temporal

Gradient (DLTG) [Cab+14b], kt Sparse and Low-Rank (kt-SLR) [Lin+11] and Low-Rank Plus

Sparse Matrix Decomposition (L+S) [OCS15], which are the state-of-the-art compressed sens-

ing and low-rank approaches. We show that the proposed method outperforms them in terms

of reconstruction error and perceptual quality, especially for aggressive undersampling rates.

Moreover, owing to GPU-accelerated libraries, images can be reconstructed e�ciently using the

approach. In particular, for 2D reconstruction, each image can be reconstructed in about 23ms,

which is fast enough to enable real-time applications. For the dynamic case, sequences can be

reconstructed within 10s, which is reasonably fast for o↵-line reconstruction methods.

1Code available at https://github.com/js3611/Deep-MRI-Reconstruction
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4.2 Problem formulation

Let x 2 CN represent a sequence of 2D complex-valued MR images stacked as a column vector,

where N = NxNyNt. Our problem is to reconstruct x from y 2 CM (M ⌧ N), undersampled

measurements in k-space, such that:

y = Fux+ e (4.1)

Here Fu 2 C
M⇥N is an undersampled Fourier encoding matrix and e 2 CM is acquisition noise

modelled as additive white Gaussian (AWG) noise. In the case of Cartesian acquisition, we

have Fu = MF, where F 2 CN⇥N applies two-dimensional Discrete Fourier Transform (DFT)

to each frame in the sequence and M 2 CM⇥N is an undersampling mask selecting lines in k-

space to be sampled for each frame. The corresponding subset of indices sampled in k-space is

indicated by ⌦. For the fully-sampled case, M = N , the sequence is reconstructed by applying

the 2D inverse DFT (IDFT) to each frame. However, Eq. (4.1) is underdetermined even in the

absence of noise, and hence the inversion is ill-posed; in particular, applying IDFT, which in this

case is also called zero-filled reconstruction, results in a sequence of aliased images xu = FH

u
y

due to sub-Nyquist sampling. Note that FH

u
is the Hermitian of the encoding matrix, which

first maps y 2 CM to the k-t coordinate and then applies the 2D IDFT frame-wise. Examples

of the aliased images are shown in Fig. 4.1. Therefore, in order to reconstruct x, one must

exploit a-priori knowledge of its properties, which can be done by formulating an unconstrained

optimisation problem:

min.
x

R(x) + �ky � Fuxk
2
2 (4.2)

R expresses regularisation terms on x and � 2 R allows the adjustment of data fidelity based

on the noise level of the acquired measurements y. For CS-based methods, the regularisation

terms R typically involve `0 or `1 norms in the sparsifying domain of x. Our formulation is

inspired by DL-based reconstruction approaches [RB11], in which the problem is formulated

as:

min.
x,D,{�i}

X

i

�
kRix�D�

i
k
2
2 + ⌫k�

i
k0

�
+ �ky � Fuxk

2
2 (4.3)
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HereRi is an operator which extracts a spatio-temporal image patch at i, �
i
is the corresponding

sparse code with respect to a dictionary D. In this approach, the regularisation terms force

x to be approximated by the reconstructions from the sparse code of patches. By taking the

same approach, for our CNN formulation, we force x to be well-approximated by the CNN

reconstruction:

min.
x

kx� fcnn(xu|✓)k
2
2 + �kFux� yk22 (4.4)

Here fcnn is the forward mapping of the CNN parameterised by ✓, possibly containing millions

of adjustable network weights, which takes in the zero-filled reconstruction xu and directly

produces a reconstruction as an output. Since xu is heavily a↵ected by aliasing from sub-Nyquist

sampling, the CNN reconstruction can therefore be seen as solving a de-aliasing problem in

the image domain. The approach of Eq. (4.4), however, is limited in the sense that the

CNN reconstruction and the data fidelity are two independent terms. In particular, since the

CNN operates in the image domain, it is trained to reconstruct the sequence without a-priori

information of the acquired data in k-space. However, if we already know some of the k-

space values, then the CNN should be discouraged from modifying them, up to the level of

acquisition noise. Therefore, by incorporating the data fidelity in the learning stage, the CNN

should be able to achieve better reconstruction. This means that the output of the CNN is

now conditioned on ⌦ and �. Then, our final reconstruction is given simply by the output,

xcnn = fcnn(xu|✓,�,⌦). Given training data D of input-target pairs (xu,xgnd) where xgnd is a

fully-sampled ground-truth data, we can train the CNN to produce an output that attempts

to accurately reconstruct the data by minimising an objective function:

L(✓) =
X

(xu,xgnd)2D

` (xgnd,xcnn) (4.5)

where ` is a loss function. In this work, we consider an element-wise squared loss, which is

given by ` (xgnd,xcnn) = kxgnd � xcnnk
2
2.
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4.3 Data consistency layer

Denote the Fourier encoding of the image reconstructed by CNN as scnn = Fxcnn = Ffcnn(xu|✓).

scnn(j) represents an entry at index j in k-space. The undersampled data y 2 CM can be

mapped onto the vectorised representation of k-t coordinate (CN) by s0 = FFH

u
y, which fills

the non-acquired indices in k-space with zeros. In order to incorporate the data fidelity in the

network architecture, we first note the following: for fixed network parameters ✓, Eq. (4.4) has

a closed-form solution srec in k-space, given as in [RB11] element-wise:

srec(j) =

8
>><

>>:

scnn(j) if j 62 ⌦

scnn(j)+�s0(j)
1+� if j 2 ⌦

(4.6)

The final reconstruction in the image domain is then obtained by applying the inverse Fourier

encoding xrec = FHsrec. The solution yields a simple interpretation: if the k-space coe�cient

srec(j) is initially unknown (i.e. j 62 ⌦), then we use the predicted value from the CNN. For

the entries that have already been sampled (j 2 ⌦), we take a linear combination between the

CNN prediction and the original measurement, weighted by the level of noise present in s0. In

the limit �!1 we simply replace the j-th predicted coe�cient in ⌦ by the original coe�cient.

For this reason, this operation is called a data consistency step in k-space (DC). In the case

of where there is non-neglegible noise present in the acquisition, � = q/� must be adjusted

accordingly, where q is a hyper-parameter and �2 is the power of AWG noise in k-space (i.e.

<(ei),=(ei) ⇠ N(0, �/
p
2)). In [Cab+14b], it is empirically shown that p 2 [5⇥ 10�5, 5⇥ 10�6]

for �2
2 [4⇥ 10�8, 10�9] works su�ciently well.

Since the DC step has a simple expression, we can in fact treat it as a layer operation of the

network, which we denote as a DC layer. When defining a layer of a network, the rules for

forward and backward passes must be specified in order for the network to be end-to-end train-

able. This is because CNN training can e↵ectively be performed through stochastic gradient

descent, where one updates the network parameters ✓ to minimise the objective function L by

descending along the direction given by the derivative @L/@✓T . Therefore, it is necessary to
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define the gradients of each network layer relative to the network’s output. In practice, one

uses an e�cient algorithm called backpropagation [R+88], where the final gradient is given by

the product of all the Jacobians of the layers contributing to the output. Hence, in general, it

su�ces to specify a layer operation fL for the forward pass and derive the Jacobian of the layer

with respect to the layer input @fL/@xT for the backward pass.

Forward pass The data consistency in k-space can be simply decomposed into three op-

erations: Fourier transform F, data consistency fdc and inverse Fourier transform FH . The

data consistency fdc performs the element-wise operation defined in Eq. (4.6), which, assuming

s0(j) = 0 8j 62 ⌦, can be written in matrix form as:

fdc(s, s0;�) = ⇤s+
�

1 + �
s0 (4.7)

Here ⇤ is a diagonal matrix of the form:

⇤kk =

8
>><

>>:

1 if j 62 ⌦

1
1+� if j 2 ⌦

(4.8)

Combining the three operations defined above, we can obtain the forward pass of the layer

performing data consistency in k-space:

fL(x,y;�) = FH⇤Fx+
�

1 + �
FH

u
y (4.9)

Backward pass In general, one requires Wirtinger calculus to derive a gradient in complex

domain [Ami+11]. However, in our case, the derivation greatly simplifies due to the linearity

of the DFT matrix and the data consistency operation. The Jacobian of the DC layer with

respect to the layer input x is therefore given by:

@fL
@xT

= FH⇤F (4.10)
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Note that unlike many other applications where CNNs process real-valued data, MR images

are complex-valued and the network needs to account for this. One possibility would be to

design the network to perform complex-valued operations. A simpler approach, however, is

to accommodate the complex nature of the data with real-valued operations in a dimensional

space twice as large (i.e. we replace CN by R2N). In the latter case, the derivations above still

hold due to the fundamental assumption in Wirtinger calculus.

The DC layer has one hyperparameter � 2 R. This value can be fixed or made trainable. In

the latter case, the derivative @fdc

@�
(a column vector here) is given by:


@fdc(s, s0;�)

@�

�

j

=

8
>><

>>:

0 if j 62 ⌦

s0(j)�scnn(j)
(1+�)2 if j 2 ⌦

(4.11)

and the update is �� = Je

@fdc

@�
where Je is the error backpropagated via the Jacobians of the

layers proceeding fdc.

4.4 Cascading network

For CS-based methods, in particular for DL-based methods, the optimisation problem such

as in Eq. (4.3) is solved using a coordinate-descent type algorithm, alternating between the

de-aliasing step and the data consistency step until convergence. In contrast, with CNNs, we

are performing one step de-aliasing and the same network cannot be used to de-alias iteratively.

While CNNs may be powerful enough to learn one step reconstruction, such a network could

show signs of overfitting, unless there is vast amounts of training data. In addition, training

such networks may require a long time as well as careful fine-tuning steps. It is therefore best

to be able to use CNNs for iterative reconstruction approaches.

A simple solution is to train a second CNN which learns to reconstruct from the output of

the first CNN. In fact, we can concatenate a new CNN on the output of the previous CNN

to build extremely deep networks which iterate between intermediate de-aliasing and the data
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consistency reconstruction. We term this a cascading network. In fact, one can essentially view

this as unfolding the optimisation process of DLMRI. If each CNN expresses the dictionary

learning reconstruction step, then the cascading CNN can be seen as a direct extension of

DLMRI, where the whole reconstruction pipeline can be optimised from training, as seen in

Fig. 4.4. In particular, owing to the forward and back-backpropagation rules defined for the

DC layer, all subnetworks can be trained jointly in an end-to-end manner, yielding one large

network.

4.5 Data sharing layer

For the case of reconstructing dynamic sequences, the temporal correlation between frames can

be exploited as an additional regulariser to further de-alias the undersampled images. For this,

we use 3D convolution to learn spatio-temporal features of the input sequence. In addition,

we propose incorporating features that could benefit the CNN reconstruction, inspired by data

sharing approaches [Rie+88], [Ras+95], [ZBF10]: if the change in image content is relatively

small for any adjacent frames, then the neighbouring k-space samples along the temporal-axis

often capture similar information. In fact, as long as this assumption is valid, for each frame, we

can fill the entries using the samples from the adjacent frames to approximate missing k-space

samples. Specifically, for each frame t, all frames from t�nadj to t+nadj are considered, filling

the missing k-space samples at frame t. If more than one frame within the range contains

a sample at the same location, we take the weighted average of the samples. The idea is

demonstrated in Fig. 4.2.

An example of data sharing with nadj = 2 applied to the Cartesian undersampling is shown in

Fig. 4.3(a). As data sharing aggregates the lines in k-space, the resulting images can be seen as

a zero-filled reconstruction from a measurement with lower undersampling factor. In practice,

however, cardiac sequences contain highly dynamic content around the heart and hence combin-

ing the adjacent frames results in data inconsistency around the dynamic region, as illustrated

in Fig. 4.3(b,c,d). However, for CNN reconstruction, we can incorporate these images as an
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Figure 4.2: The illustration of data sharing approach. The acquired lines, which can be seen
as nadj = 0, are colour-coded for each time frame. For each nadj, the missing entries in each
frame are aggregated using the values from up to ±nadj neighbouring frames. The overlapped
lines are averaged.

extra input to train the network rather than treating them as the final reconstructions. Note

that the reduction in the apparent acceleration factor is non-trivial to calculate: if each frame

samples 10% of k-space, combining 5 adjacent frames in theory should cover 50%. However,

one often relies on variable density sampling, which samples low-frequency terms more often,
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Figure 4.3: The illustration of data sharing approach applied to the image and the mask from
Fig.4.1(a,b). In this figure, (a) shows the appearance of the resulting sequence for nadj = 2. (b)
The entries in k-space that are either acquired or aggregated using the data sharing approach
with nadj = 2, which conceptually defines a sampling mask. (c) For a comparison, we show the
resulting zero-filled reconstruction if (b) were treated as a mask. (d) The error map between
the (a) and (b). One can observe their similarity except for the data inconsistency of the
dynamic content around the heart region. Note that for nadj = 2, the obtained image has
the appearance similar to acceleration factor around 4 (rather than 12/5 = 2.4, which is the
maximum achievable from 5 frames) due to overlapping lines.

yielding overlapped lines between the adjacent frames. Therefore, the apparent acceleration

factor is often much less. As a remedy, regular sampling can be considered. However, regular

sampling results in coherent artifact in the image domain, the removal of which is a di↵erent

problem from the one we address here, which attempts to resolve incoherent aliasing patterns.

Alternatively, one can perform a sampling trajectory optimisation to reduce the overlapping

factor, however, this is out-of-scope for this work and will be investigated in future.

For our network, we implement data sharing (DS) layers which take an input image and gen-

erate multiple “data-shared” images for a range of nadj. The resulting images are concatenated

along the channel-axis and treated as a new input fed into the first convolution layer of the

CNNs. Therefore, using the images obtained from data sharing can be interpreted as trans-

forming the problem into joint estimation of aliasing as well as the dynamic motion, where the
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CNN1 DC CNN2 DC . . . CNNnc DCInput Output

k-space samples . . .

xu DS C1 C2 . . . Cnd�1 Crec
xcnn1 xcnni F fdc F

H xrec

y

Figure 4.4: A cascade of CNNs. DC denotes the data consistency layer and DS denotes the
data sharing layer. The number of convolution layers within each network and the depth of
cascade is denoted by nd and nc respectively. Note also that DS layer only applies when the
input is a sequence of images.

e↵ect of aliasing is considerably smaller. Note that for the cascading network architecture, from

the second subnetwork onwards, the input to each subnetwork is no longer ”undersampled”,

but instead contains intermediate predicted values from the previous subnetwork. In this case,

we average all the entries from the adjacent frames and update the samples which were not

initially acquired. For this work, we allocate equal weight on all adjacent k-space samples,

however, in future, more elaborate averaging schemes can be considered.

4.6 Architecture and implementation

Incorporating all the new elements mentioned above, we can devise our cascading network

architecture. Our CNN takes in a two-channeled sequence of images R2NxNyNt , where the

channels store real and imaginary parts of the zero-filled reconstruction in the image domain.

Based on literature, we used the following network architecture for the CNN, illustrated in Fig.

4.4: it has nd � 1 3D convolution layers Ci, which are all followed by Rectifier Linear Units

(ReLU) as a choice of nonlinearity. For each of them, we used a kernel size k = 3 [Sze+15] and

the number of filters was set to nf = 64. The final layer of the CNN module is a convolution

layer Crec with k = 3 and nf = 2, which projects the extracted representation back to the image

domain. We also used residual connection [He+16], which sums the output of the CNN module

with its input. Finally, we form a cascading network by using the DC layers interleaved with the

CNN reconstruction modules nc times. For DS layer, we take the input to each subnetwork,

generating images for all nadj 2 {0, 1, . . . , 5}. As aforementioned, the resulting images are
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concatenated along the channel-axis and fed to the first convolution layer. We found that this

choice of architecture works su�ciently well, however, the parameters were not optimised and

there is therefore room for refinement of the results presented. Hence the result is likely to

be improved by, for example, incorporating pooling layers and varying the parameters such as

kernel size and stride [RFB15], [YK15].

Our model can also be used for 2D image reconstruction by setting Nt = 1 and use 2D con-

volution layers instead, however, data sharing does not apply to 2D reconstruction. For the

following experiments, we first explore the network configurations by considering 2D MR image

reconstruction. We identify our network by the values of nc, nd and the use of data sharing.

For example, D5-C2 means a network with nd = 5, nc = 2 with no data sharing. D5-C10(S)

corresponds a network with nd = 5, nc = 10 and data sharing.

As mentioned, pixel-wise squared error was used as the objective function. As the proposed

architecture is memory-intensive, a small minibatch size is used to train the cascade networks.

We used minibatch size 1 for all the experiments but we did not observe any problem with

the convergence. We initialised the network weights using He initialisation [He+15]. The

Adam optimiser [KB15] was used to train all models, with parameters ↵ = 10�4, �1 = 0.9 and

�2 = 0.999 unless specified. We also added `2 weight decay of 10�7.

4.7 Experimental results

4.7.1 Setup

Dataset Our method was evaluated using the cardiac MR dataset consisting of 10 fully

sampled short-axis cardiac cine MR scans. Each scan contains a single slice SSFP acquisition

with 30 temporal frames with a 320 ⇥ 320 mm field of view and 10 mm slice thickness. The

data consists of 32-channel data with sampling matrix size 192⇥ 190, which was zero-filled to

the matrix size 256 ⇥ 256. The raw multi-coil data was reconstructed using SENSE [Pru+99]

with no undersampling and retrospective gating. Coil sensitivity maps were normalized to a
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Figure 4.5: The detail of the Cartesian undersampling mask employed in this work. Note that
the mask can be seen as a 3D volume indexed by (kx, ky, t). For each image frame t, we fully
sample along kx-axis and undersample in ky direction. We always acquire the 8 central lines
and the remaining lines are sampled according to a zero-mean Gaussian distribution with the
tail that is marginally o↵set so it will never reach zero.

body coil image to produce a single complex-valued image set that could be back-transformed

to regenerate complex k-space samples or further processed to form final magnitude images.

For the following experiments, we perform retrospective undersampling, simulating a practical

single-coil acquisition scenario.

Undersampling In this work, we focus on Cartesian undersampling, where one fully samples

frequency-encodes (along kx) and randomly undersamples the phase encodes (along ky). In

addition, we pair consecutive phase encodes, which has been reported to reduce eddy current

which is a source of image degredation [BMS05]. For each frame, the eight lowest spatial

frequencies are always acquired and other frequencies have a probability of being acquired

determined by a zero-mean Gaussian variable density function that is marginally o↵set, such

that the probability of acquisition never reaches zero even at the highest frequencies. An

implementation of this approach can be found in [JYK07], and an example of a 2D mask and

its e↵ect on the magnitude of a temporal frame is shown in Fig. 4.5. For each experiment,

the undersampling rate is fixed and will be stated. For training, the sampling masks were

generated on-the-fly to allow the network to learn the di↵erences between potential aliasing

artefacts and the underlying signal better. Note that for each acceleration factor acc, one can
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generate
�

ky

ky/acc

�
di↵erent masks.

While Cartesian acquisition is the most common protocol in practice and o↵ers straightforward

implementation using fast Fourier transform (FFT), other practical sampling strategies such

as radial [BUF07] or spiral [Lus+05] could be considered, which achieve greater aliasing inco-

herence. Nevertheless, they require the use of methods such as nonuniform Fourier transforms

and gridding [Fes07] which could propagate interpolation errors.

Data Augmentation Typically, deep learning benefits from large datasets, which are often

not available for medical images. Our dataset is relatively small (300 images), however, the

literature suggests that it is still possible to train a network by applying appropriate data aug-

mentation strategies [RFB15]. Therefore, we follow that practice and apply data augmentation

including rigid transformation and elastic deformation to counter overfitting. Specifically, given

each image (or a sequence of images), we randomly apply translation up to ±20 pixels along x

and y-axes, rotation of [0, 2⇡), reflection along x-axis by 50% of chance. Therefore, from rigid

transformation alone, we create 0.3 million augmented data per image. Combined with the

on-the-fly generation of undersampling masks, we generate very large dataset. For the dynamic

scenario, we further added elastic deformation, using the implementation in [S+03], with pa-

rameters ↵ 2 [0, 3] and � 2 [0.05, 0.1], sampled uniformly, as well as reflection along temporal

axis. Note that while strong elastic deformation may produce anatomically unrealistic shapes

its use is justified as our goal is to train a network which learns to de-alias the underlying

object in the image, rather than explicitly learning the anatomical shapes.

Evaluation Methodology For the 2D experiments, we split the dataset into training and

testing sets including 5 subjects each. Each image frame in the sequence is treated as an

individual image, yielding a total of 150 images per set. Note that typically, a portion of

training data is treated as a validation set utilised for early-stopping [Bis06], where one halts

training if the validation error starts to increase. Initially, we used 3-2-5 split for training,

validation and testing. However, even after 3 days of training cascade networks, we did not

observe any decrease in the validation error. Therefore, we instead included the validation set
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in the training to further improve the performance but fix the number of backpropagation to be

an order of 105, which we empirically found to be su�cient. For the dynamic experiments, we

used 7-3 split for training and testing and an order of 104 for the number of backpropagation.

To evaluate the performances of the trained networks, we used mean squared error (MSE) as

our quantitative measure. The reconstruction signal-to-noise ratio from undersampled data

is highly dependent on the imaging data and the undersampling mask. To take this into

consideration for fair comparison, we assigned an arbitrary but fixed undersampling mask for

each image in the test data, yielding a fixed number of image-mask pairs to be evaluated.

4.7.2 Reconstruction of 2D images

Trade-o↵s between nd and nc

In this experiment we compared two architectures: D5-C2 (nd = 5, nc = 2) and D11-C1

(nd = 11, nc = 1) to evaluate the benefit of the DC step. The two networks have equivalent

depths when the DC layers are viewed as feature extraction layers. However, the former can

build deeper features of the image, whereas the latter benefits from the intermediate data

consistency step. The undersampling rate was fixed to 3-fold and each network was trained

end-to-end for 3⇥ 105 backpropagations.

The MSE’s on the training and test data are shown in Fig. 4.6. Note that a gap between

the performance on training and test set may exist by the nature of the dataset (e.g. due

to image features, initial level of aliasing, etc.) and therefore it is more informative to study

in combination the rate of improvement and the slope at the tail of the curves to assess the

overfitting process. Indeed, one can observe that D11-C1 eventually started to overfit the

training data after about 1.2⇥105 backpropagations. As one would expect, since our dataset is

small, deep networks can overfit easily. On the other hand, both train and test errors for D5-C2

were notably lower and had relatively tighter gap, showing better generalisability compared to

D11-C1. This is suggestively because the architecture employs two data consistency steps and

rebuilds the representations at each cascading iteration. This suggests that it is more beneficial
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Figure 4.6: A comparison of the networks with and without the intermediate DC step. D5-C2
shows superior performance over D11-C1. In particular, D5-C2 has considerably lower test
error, showing an improved generalization property.

to interleave DC layers projecting the acquired k-space onto intermediate reconstructions with

the CNN image reconstruction modules, which appears to help both the reconstruction as well

as the generalisation. Nevertheless, there is a considerable gap between train and test data even

for D5-C2. However, we note from the figure that even after 3⇥105 backpropagations, the test

error is still improving. Therefore, although it seems that the network gets more optimised to

the features in training data quickly, it still learns features generalisable to test data. Having

more training data is likely to accelerate the learning process.

E↵ect of cascading iterations nc

In this experiment, we explored how much benefit the network can get by increasing the cas-

cading iteration. We fixed the architectures to have nd = 5, but varied the cascading iteration

nc 2 {1, 2, 3, 4, 5}. For this section, due to time constraints, we trained the networks using a

greedy approach: we initialised the cascading net with nc = k using the net with nc = k � 1

that was already trained. For each nc, we performed 105 backpropagations. Note that the

greedy approach leads to a satisfactory solution, however, better results can be achieved with

random initialisation, as initialising a network from another networks convergence point can

make it more likely that it gets stuck in suboptimal local minima.
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Figure 4.7: The e↵ect of increasing cascading iteration nc. One can see that the reconstruction
error on both training and test data monotonically decreases as nc increases. However, the rate
of improvement is reduced after nc = 3.

Reconstruction errors for each cascading network of di↵erent nc are shown in Fig. 4.7. We

observed that while deeper cascading nets tend to overfit more, they still reduced the test error

every time. The rate of improvement was reduced after 3 cascading layers, however, we see

that the standard deviation of error was also reduced for the deeper models. In the interest

of space, we have not shown the resulting images of each D5-Cnc but we have observed that

increasing nc resulted in images with more of the subtle image details correctly reconstructed

and there was also less noise-like aliasing remaining in the images.

On the other hand, in Fig. 4.8, we show the intermediate reconstructions from each subnetwork

within D5-C5 to better understand how the network exploits the iterative nature internally. In

general, we see that the cascading net gradually recovers and sharpens the output image. Al-

though the reconstruction error decreased monotonically at each cascading depth, we observed

that the output of the fourth subnetwork appears to be more grainy than the output of the

preceding subnetwork. This suggests the benefit of the end-to-end training scheme: since we

are optimising the whole pipeline of reconstruction, the additional CNNs are internally used to

rectify the error caused by the previous CNNs. In this case, the fourth subnetwork appears to

counteract over-smoothing in the third subnetwork.
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Figure 4.8: 2D reconstruction results of D5-C5 for one of the test subjects. Here we inspect
the intermediate output from each subnetwork in D5-C5. (a) Ground truth (b) The input to
the network that was 3x undersampled image. The output of (c) first, (d) second, (e) third, (f)
fourth cascading subnetwork respectively. (g,h) The final output and the corresponding error.
Note that this is not the reconstruction results from the networks in Experiment in 4.7.2.

Comparison with DLMRI

In this experiment, we compared our model with the state-of-the-art dictionary learning-based

method, DLMRI, for reconstructing individual 2D cardiac MR images. The comparison was

performed for 3-fold and 6-fold acceleration factors.

Models For CNN, we selected the parameters nd = 5, nc = 5. To ensure a fair comparison,

we report the aggregated result on the test set from two-way cross-validation (i.e. two iterations

of train on five subjects and test on the other five). For each iteration of the cross validation,

the network was end-to-end trained using He intialisation [He+15]. For 6-fold undersampling,

we initialised the network using the parameters obtained from the trained models from 3-fold

acceleration. Each network was trained for 3⇥ 105 backpropagations, which took one week to

train per network on a GeForce TITAN X, however, our manual inspection of the loss curve

indicates that the training error plateaued at much early stage, approximately within 3 days.

For DLMRI, we used the implementation from [RB11] with patch size 6 ⇥ 6. Since DLMRI
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Table 4.1: The result of 2D reconstruction. DLMRI vs. CNN across 10 scans

3-fold 6-fold

Models MSE (SD) ⇥10�3 MSE (SD) ⇥10�3

DLMRI 2.12 (1.27) 6.31 (2.95)

CNN (2D) 0.89 (0.46) 3.42 (1.65)

is quite time consuming, in order to obtain the results within a reasonable amount of time,

we trained a joint dictionary for all time frames within the subject and reconstructed them in

parallel. Note that we did not observe any decrease in performance from this approach. For

each subject, we ran 400 iterations and obtained the final reconstruction.

Results The means of the reconstruction errors across 10 subjects are summarised in Table.

4.1. For both 3-fold and 6-fold acceleration, one can see that CNN consistently outperformed

DLMRI, and that the standard deviation of the error made by CNN was smaller. The re-

constructions from 6-fold acceleration is in Fig. 4.9. Although both methods su↵ered from

significant loss of structures, the CNN was still capable of better preserving the texture than

DLMRI (highlighted in red ellipse). On the other hand, DLMRI created block-like artefacts

due to over-smoothing. 6x undersampling for these images typically approaches the limit of

sparsity-based methods, however, the CNN was able to predict some anatomical details which

was not possible by DLMRI. This could be due to the fact that the CNNs has more free pa-

rameters to tune with, allowing the network to learn complex but more accurate end-to-end

transformations of data.

Comparison of Reconstruction Speed While training the CNN is time consuming, once it

is trained, the inference can be done extremely quickly on a GPU. Reconstructing each slice took

23±0.1 milliseconds on a GeForce GTX 1080, which enables real-time applications. To produce

the above results, DLMRI took about 6.1± 1.3 hours per subject on CPU. Even though we do

not have a GPU implementation of DLMRI, it is expected to take longer than 23ms because

DLMRI requires dozens of iterations of dictionary learning and sparse coding steps. Using a

fixed, pre-trained dictionary could remove this bottleneck in computation although this would
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Figure 4.9: The comparison of 2D reconstructions from DLMRI and CNN for test data. (a)
The original (b) 6x undersampled (c,d) DLMRI reconstruction and its error map (e,f) CNN
reconstruction and its error map. There are larger errors in (d) than (f) and red/orange ellipses
highlight the anatomy that was reconstructed by CNN better than DLMRI.

likely be to the detriment of reconstruction quality.

4.7.3 3D experiments

For the following experiments, we split our dataset into training and testing sets containing

seven and three subjects respectively. Compared to the 2D case, we have significantly less

data. As aforementioned, we applied elastic deformations in addition to rigid transformation

to augment the training data input in order to increase the variation of the examples seen by

the network. Furthermore, working with a large input is a burden on memory, limiting the

size of the network that can be used. To address this, we trained our model on an input size

256⇥Npatch⇥30, where the direction of patch extraction corresponds to the frequency-encoding

direction. In this way, we can train the network with the same aliasing patterns while reducing

the input size. Note that the extracted patches of an image sequence will have di↵erent k-space
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Figure 4.10: The e↵ect of data sharing. The network with data sharing shows superior perfor-
mance over the other. In particular, it has considerably lower test error, showing an improved
generalisation property.

values compared to the original data once the field-of-view (FOV) is reduced. As such, this

trick only works for training where the patches can be treated as the new instances of training

data. In particular at test time, since only the raw data with full FOV is available, the CNN

must also be applied to the entire volume in order to perform data consistency step correctly.

E↵ect of data sharing

In this experiment, we evaluated the e↵ect of using the features obtained from data sharing.

We trained the following two networks: D5-C10(S) (nd = 5, nc = 10 with data sharing) and

D6-C10 (nd = 6, nc = 10 without data sharing). In the second network, the data sharing is

replaced by an additional convolution layer to account for the additional input. We trained each

model to reconstruct the sequences from 9-fold undersampling for 2.5⇥ 104 backpropagations.

Their learning is plotted in Fig. 4.10. We can notice that there is a considerable di↵erence in

their errors. The error of the D5-C10(S) was smaller for both train and test, suggesting that it

was able to learn a strategy to de-alias image that generalises better. Moreover, by using data

sharing, the network was able to learn faster. The visualisation of their reconstructions can be

found in the following section.



82 Chapter 4. Convolutional neural network for dynamic MRI reconstruction

Comparison with state-of-the-art

In this experiment, we compared our model with state-of-the-art methods: DLTG [Cab+14b],

kt-SLR [Lin+11] and L+S [OCS15] for reconstructing the dynamic sequence. We compared

the results for 3, 6, 9 and 11-fold acceleration factors.

Models For the CNN, we used nd = 5, nc = 10 with data sharing as explained above. We

also set the weight decay to 0 as we did not notice any overfitting of the model. Contrary to

the 2D case, we trained each network as follows: we first pre-trained the network on various

undersampling rates (0-9x) for 5⇥ 104 backpropagations. Subsequently, each network was fine-

tuned for a specific undersampling rate using Adam with learning rate reduced to 5⇥ 10�5 for

104 backpropagations. We performed three way cross validation (where for two iterations we

train on 7 subjects then test on 3 subjects, one iteration where we train on 6 subjects and test

on 4 subjects) and we aggregated the test errors. The pre-training and the fine tuning stages

took approximately 3.5 days and 14 hours respectively using a GeForce GTX 1080. Since the

training is time consuming, we did not train the networks longer but we speculate that the

network will benefit from further training using lower learning rates. For DLTG, we used the

default parameters described in [Cab+14b]. For kt-SLR, we performed grid search to identify

the optimal parameters for the data, which were µ1 = 10�5, µ2 = 10�8, ⇢ = 0.1. Similarly for

L+S, the optimal parameters were �L = 0.01 �S = 0.01.

Result The final reconstruction error is summarised in Fig. 4.11. we see that CNN consis-

tently outperforms state-of-the-art methods for all undersampling factors. For a low accelera-

tion factor (3x undersampling), all methods performed approximately the same, however, for

more aggressive undersampling factors, CNN was able to reduce the error by a considerable

margin. For aggressive undersampling rates, the performance of kt-SLR and L+S degraded

much faster. These methods employ low-rank and simple sparsity constraints. We speculate

that they underperformed in this regime because the data is not exactly low-rank (as our tem-

poral dimension is already small) as well as the sparsifying transforms (temporal FFT for L+S
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Figure 4.11: The reconstruction errors of CNN vs state-of-the-art methods across 10 subjects
for di↵erent undersampling rates. Note that we average over the test error from all iterations
of cross-validation.

and temporal gradient for kt-SLR) lack adaptability to data compared to CNN and DLTG.

The visualisation of reconstruction from 9-fold undersampling is shown in Fig. 4.12, includ-

ing the reconstruction from the CNN without data sharing and DLTG. The reconstructions

of kt-SLR and L+S were omitted as their quantitative error were already much worse. One

can see that, as with the 2D case, at aggressive undersampling rate dictionary-learning based

method produced blocky artefacts, whereas the CNN methods were capable of reconstructing

finer details (indicated in red ellipse). On the other hand, for the CNN without data sharing,

one can notice grainy noise-like artefacts. Even though it was able to reconstruct the under-

lying anatomy more faithfully than DLTG, the overall error was worse. However, this artefact

was not present in the images reconstructed by the CNN with data sharing. Although the

quantitative result is not shown, CNN without data sharing in fact outperformed DLTG for

low acceleration factor (3x) but not for more aggressive undersampling factor. This suggests

that when the aliasing is severe, more drastic transformation is required, in which case for CNN

to do better, we either need to increase depth, which would increase its computation cost, or

increase the training samples. This confirms the importance of data sharing and the necessity

to exploit the domain knowledge to simplify the learning problem for the case when the data

is limited. Temporal profiles from the reconstructions are shown in Fig. 4.13. Even though
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Figure 4.12: The comparison of cardiac MR image sequence reconstructions from DLTG and
CNN. Here we show nth slice from one of the test subjects (a) The original (b) 9x undersampled
(c,d) CNN with data sharing and its error map (e,f) CNN without data sharing and its error
map (g,h) DLTG reconstruction and its error map. Red ellipses highlight the anatomy that
was reconstructed by CNN better than DLTG.

the data sharing itself results in data inconsistency in highly dynamic regions, the CNN was

able to rectify this internally and reconstructed the correct motion with errors smaller than

the other methods. This suggests the CNN’s capability solve the joint de-aliasing and implicit

estimation of dynamic motion.

Reconstruction with Noise This section analyses the impact of acquisition noise in recon-

struction performance. In this experiment we fixed the acceleration factor to be 3 and varied

the level of noise in the data. Specifically, we tested for noise power �2
2 [10�9, 4 ⇥ 10�8].

For fully-sampled reconstruction, the noise power is equivalent to peak signal-to-noise (PSNR)

values of 41.84 dB and 25.81 dB for 10�9 and 4 ⇥ 10�8 respectively, where PSNR was cal-

culated as 10 log10(1/MSE). The result is summarised at Fig 4.14, where we aggregate the

reconstruction error from all 10 subjects. The input level of noise is indicated by PSNRf and

for consistency, the reconstruction results are also indicated by PSNR (higher the better). For

DLTG, we used the value � = 5⇥ 10�6 as recommended in [Cab+14b]. DLTG showed decent

robustness to noise, owing to the nature of underlying K-SVD, which has the e↵ect of sparse
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Figure 4.13: The comparison of reconstructions along temporal dimension. Here we extract a
110th slice along y-axis from the previous figure. (a) The original (b) 9x undersampled (c,d)
CNN with data sharing and its error map (e,f) CNN without data sharing and its error map
(g,h) DLTG reconstruction and its error map.

coding denoising. For kt-SLR and L+S, we used the same parameters as before. They showed

some robustness for small noise but they did not perform well in the presence of aggressive

noise, as the implementations (and the data consistency step in particular) do not explicitly

account for them. Changing such implementation is likely to improve the result.

For CNN, we used the model D5-C10(S) as before and tested the following two variations.

Firstly, we tested the performance of CNN from the previous section, which were trained in

the absence of noise, denoted as CNN-NAD (blue curve). It can be seen that for the low level

of noise (PSNR > 35 dB), CNN-NAD were able to maintain similar performance as the rest

of the methods. However, the performance degraded almost at the same rate as kt-SLR and

L+S for the high level of noise. We then trained CNN-NAD to adapt for noise as following.

Firstly, we added noise in training data, where we randomly sample the noise power in the

range [10�9, 4⇥ 10�8]. Secondly, we modified our data consistency layers to account for noise.

In particular, we initialised � for each DC layer as � = q/� = 0.025 (as in DLTG), made the

parameters trainable. We trained the network for 3 ⇥ 104 backpropagations and the result is
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Figure 4.14: The aggregated test error across 10 subjects with injected noise. For di↵erent
value of input noise power, PSNRf is shown. The corresponding reconstruction PSNR for
CNN-NAD, CNN-AD, DLTG, kt-SLR and L+S are shown.

denoted as CNN-AD (green curve). Interestingly, the performance for very small noise (> 38

dB) became worse compared to the original CNN. However, for further acceleration, it showed

significant improvement for all level of noise, showing better robustness compared to other

methods. We also observed that after fine-tuning, � was increased to 0.5. This signifies that

DLTG and CNN, even though the reconstruction framework shows similarity in terms of the

iterative nature, are fundamentally di↵erent approaches and the required parameters also vary.

Note that since we trained the network for a wide range of noise, the performance is likely to be

improved if a narrower range of noise is selected for training. In practice, measuring the level

of noise a-priori is non-trivial. However, our CNN showed the adaptability to the pre-specified

range which indeed can be simulated in practice.

Reconstruction speed Similar to the 2D case, the DLTG takes 6.6 hours per subject on

CPU. For the CNN, each sequence was reconstructed on average 8.21s±0.02s on GPU GeForce

GTX 1080. This is significantly slower than reconstructing 2D images as introducing a temporal

axis greatly increases the computational e↵ort of the convolution operations. Nevertheless, the

reconstruction speed of our method is much faster than DLTG and is reasonably fast for o✏ine

reconstruction.
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Figure 4.15: The reconstruction with noise �2 = 4⇥ 10�8. The aggregated test error across 10
subjects with injected noise. For di↵erent value of input noise power, PSNRf is shown. The
corresponding reconstruction PSNR for CNN, finetuned CNN, DLTG, kt-SLR and L+S are
shown.

4.7.4 Memory requirement

The memory requirement of the CNNs is based on the number of the network parameters, the

number and the sizes of the intermediate activation maps and the space needed for computing

the layer operations. The total number of the network parameters is simply given by the sum

of all the layer parameters. Each convolution layer has (kxkyktn0

f
+ 1)nf parameters, where

kx, ky, kt are the kernel sizes along x, y and t, n0

f
and nf are the number of features of the

incoming and current convolution layers respectively and one for the bias. For each DC layer,

we also store one parameter for �. For 2D reconstruction (kt = 1) and D5-C5 has about

0.6 million parameters, which occupies 2.3MB of the storage assuming single-precision floating

point is used (Nprecision = 4 bytes). For dynamic reconstruction, D5-C10(S) has 3.4 million

parameters, which occupies about 13.6MB.

At the training stage, more than three times the number of parameters are required for com-

puting the gradient. In addition, all the intermediate activation maps need to be stored to

perform the backpropagation e�ciently. For the proposed architecture, most of the activa-

tion maps are of the convolution layer Ci’s; hence, the sum can be roughly estimated by

NbatchNxNyNtNfnc(nd�1)Nprecision. With the input sizeNbatch⇥Nx⇥Ny⇥Nt = 1⇥256⇥256⇥1,

the memory required for the activation maps of D5-C5 is 335MB. For the dynamic models, the

memory requirement further increases by the size of the temporal dimension Nt = 30. There-
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fore, the aforementioned trick of cropping the images along Ny is necessary to fit the model.

For D5-C10(S), with the input size 1 ⇥ 256 ⇥ (256/8) ⇥ 30, 2.4GB is required for storing the

activation maps alone. Finally, to obtain the total memory consumption for the training stage,

this value needs to be further multiplied by factors based on the implementation of backprop-

agation, operations including convolution and FFT as well as any compilation optimisation

performed by the library. For example, most implementations of backpropagation require twice

the value above accounting for forward- and backward- passes. We report that for our Theano

implementation of D5-C10(S), the largest mini-batch size we could fit for the given input size

on GeForce GTX 1080 (8GB) was 1.

At the testing stage, the memory requirement is much less because the intermediate activa-

tion maps do not need to be stored if only the forward pass needs to be performed. In this

case, the memory overhead is only the single largest activation map, which is Ci, scaled by

implementation-specific factors. Note that as aforementioned, the patch extraction cannot be

used at test time. Nevertheless, we did not observe any problem using D5-C10(S) for input

size 1⇥ 256⇥ 256⇥ 30 on GeForce GTX 1080.

4.7.5 Analysis of data consistency layer

In this section, we explore the benefit of using the DC layer in mathematical terms. In partic-

ular, we are interested to see how incorporating the DC layer influences the learning process of

the network. Firstly, we show that the benefit of the DC layer is that it modifies the objective

function so it allocates more weight to errors generated by the entries in k-space that were not

initially sampled in x̂u. Secondly, we show that while a data consistency layer saturates the

error through the backward pass, the extent is small so that normalisation layers, such as batch

normalisation, are not required for the training.

Let xt be the target and xo be the output of the DC layer fL, where

xo = fL(xL�1, x̂u) = F�1(⇤FxL�1 +
�

1 + �
x̂u)
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and xl�1 is the input to the layer (which is the output of the CNN module). Our objective

function is based on an `2 norm: kxt � xok
2
2, which can be rewritten as follows. First define a

diagonal, projection matrix ⇧⌦, which has 1 on the ith entry if i 2 ⌦ and 0 otherwise as well

as its additive inverse ⇧⌦c = I �⇧⌦. These projection matrices are used for separating the

contributions of di↵erent entries in k-space:

xt = F�1(⇧⌦ +⇧⌦c)x̂t

= F�1(x̂⌦ + x̂⌦c)
(4.12)

We also note that ⇧Ax̂A = x̂A. Now, the entries in ⌦ are given by x̂u, so Eq. (4.12) can be

written as:

xt = F�1(x̂⌦c +
⌘ + �x̂u

1 + �
)

where auxiliary variable ⌘ was introduced for convenience. In noiseless case, i.e. � ! 1, we

have (⌘ + �x̂u)/(1 + �)! x̂u. Now the di↵erence in the `2 norm above can be decomposed as

follows:

xt � xo = F�1(x̂t � x̂o)

= F�1

✓
(x̂⌦c +

⌘ + �x̂u

1 + �
)� (⇤FxL�1 +

�

1 + �
x̂u)

◆

= F�1

✓
⇧⌦c [x̂⌦c ] +⇧⌦[

⌘

1 + �
]� (⇧⌦c +

1

1 + �
⇧⌦)[FxL�1]

◆

= F�1 ⇧⌦c [x̂⌦c � FxL�1]| {z }
(*)

�F�1 1

1 + �
⇧⌦[⌘ � FxL�1]

| {z }
(**)

(4.13)

We note that (*) corresponds to the di↵erence of variables where no k-space values have been

sampled, whereas (**) aggregates the error for the entries in ⌦. In the noiseless setting, i.e.

� ! 1, we have (**) ! 0, indicating that in such case, we only consider the error from the

entries in ⌦c. This intuitively makes sense as initial measurements do not contribute to the

final error. In general, we can see that the e↵ect of the data consistency layer is that it allocates
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more importance on the error that comes from k-space entries that were not sampled initially.

Now we turn our consideration to its e↵ect on the backpropagation. Recall that the Jacobian

of the layer is given by: F�1⇤F. the DFT matrices are orthogonal and hence preserves the

matrix norm, however, ⇤ clearly attenuates the entries in ⌦. Therefore we have:

kF�1⇤Fxk22 = (F�1⇤Fx)H(F�1⇤Fx) = x̂H⇤H⇤x̂

= k⇤x̂k22

 kx̂k22 = kFxk
2
2 = kxk

2
2

(4.14)

Notice however, we can write the Jacobian of the error e = xt � xo in k-space as follows:

e = e⌦ + e⌦c = F�1ê⌦ + F�1ê⌦c

where the scaling constant was omitted for simplicity. Backpropagating through the data

consistency layer gives us:

F�1⇤Fe = F�1(⇧⌦c +
1

1 + �
⇧⌦)Fe

= F�1(⇧⌦c +
1

1 + �
⇧⌦)(ê⌦c + ê⌦)

= F�1ê⌦c +
1

1 + �
F�1ê⌦

= e⌦c +
1

1 + �
e⌦

(4.15)

The layer inevitably reduces the magnitude of the error, however, for the noiseless case, we have

e⌦/(1 + �) ! 0 so the Jacobian reduces to an identity map. With noise, the error from ⌦ is

attenuated. Nevertheless, this makes sense as e⌦ is contributed by x̂u, i.e. changing the network

parameter ✓ in the direction of minimising e⌦ gives relatively small improvement compared to

updating the entries in ⌦c. In the pathological case where � ! 0 then the Jacobian of the

data consistency layer again behaves as an identity map, which essentially says there is no data
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consistency being imposed.

4.8 Discussion and conclusion

In this work, we evaluated the applicability of CNNs for the challenge of reconstructing un-

dersampled cardiac MR image data. The experiments presented show that using a network

with interleaved data consistency stages, it is feasible to obtain a model which can reconstruct

images well. The CS and low-rank framework o↵ers a mathematical guarantee for the signal

recovery, which makes the approach appealing in theory as well as in practice even though the

required sparsity cannot generally be genuinely achieved in medical imaging. However, even

though this is not the case for CNNs, we have empirically shown that a CNN-based approach

can outperform them. In addition, at very aggressive undersampling rates, the CNN method

was capable of reconstructing most of the anatomical structures more accurately based on the

learnt priors, while classical methods do not guarantee such behaviour.

Note that remarkably, we were able to train the CNN on the small dataset. We used several

strategies to alleviate the issue of overfitting: firstly, as we employed the iterative architecture,

each subnetwork has relatively small receptive field. As a result, the network can only per-

form local transformations. Secondly, we applied intensive data augmentation so the network

constantly sees a variation of the input, which makes it more di�cult to overfit to any specific

patterns. However, we speculate that given more training data, we can drop the data aug-

mentation and let the network learn coarse features by incorporating, for example, dilated or

strided convolution, which could further improve the performance.

It is important to note that in the experiments presented the data was produced by retrospective

undersampling of back transformed complex images (equivalent to single-coil data) obtained

through an original SENSE reconstruction. Although the application of CNN reconstruction

needs to be investigated in the more practical scenario of full array coil data from parallel MR,

the results presented show a great potential to apply deep learning for MR reconstruction.

The additional richness of array coil data has the potential to further improve performance,
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although it will also add considerable complexity to the required CNN architecture.

In this work, we were able to show that the network can be trained using arbitrary Cartesian

undersampling masks of fixed sampling rate rather than selecting a fixed number of undersam-

pling masks for training and testing. In addition, we were able to pre-train the network on

various undersampling rates before fine-tuning the network. This suggests that the network

was capable of learning a generic strategy to de-alias the images. A further investigation should

consider how tolerant the network is for di↵erent undersampling patterns such as radial and

spiral trajectories. As these trajectories provide di↵erent properties of aliasing artefacts, a

further validation is appropriate to determine the flexibility of our approach. However, radial

sampling naturally fits well with the data sharing framework and therefore can be expected to

push the performance of the network further. The data sharing approach may also make it

feasible to adopt regular undersampling patterns which are intrinsically more e�cient. Another

interesting direction would be to jointly optimise the undersampling mask using the learning

framework.

Although CNNs can only learn local representations which should not a↵ect global structure, it

remains to be determined how the CNN approach operates when there is a pathology present

in images, or other more variable content. We have performed a cross-validation study to en-

sure that the network can handle unseen data acquired through the same acquisition protocol.

Generalisation properties must be evaluated carefully on a larger dataset. However, CNNs are

flexible in a way such that one can incorporate application specific priors to their objective

functions to allocate more importance to preserving features of interest in the reconstruction,

provided that such expert knowledge is available at training time. For example, analysis of

cardiac images in clinical settings often employs segmentation and/or registration. Multi-task

learning is a promising approach to further improve the utility of CNN-based MR reconstruc-

tions.

To conclude, mainly two things can be noted from this chapter. Firstly, the network architecture

was by no-mean optimal. In a way, it was a brute-force unrolling of the traditional method.

In the next chapter, we investigate how this data representation can be made more optimal by
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changing the architecture. Secondly, as suggested above, deep learning based reconstruction is

beneficial over traditional approach because it is also flexible framework to harness data. In

particular, we can try to extend our modelling to do direct estimation of parameters, which is

investigated in Chapter 6.



Chapter 5

Recurrent neural network for dynamic

MRI reconstruction

This section is based on the following publication:1

• Qin, C.†, Schlemper, J.†, Caballero, J., Price, A. N., Hajnal, J. V., Rueckert, D. (2018).

Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE

transactions on medical imaging, 38(1), 280-290.

5.1 Introduction

Dynamic MRI is a non-invasive imaging technique which attempts to reveal both spatial and

temporal profiles of the underlying anatomy, which has a variety of applications such as car-

diovascular imaging and perfusion imaging. As aforementioned in Chapter 2, the acquisition

speed is fundamentally limited due to both hardware and physiological constraints as well as

the requirement to satisfy the Nyquist sampling rate. Long acquisition times are not only a

burden for patients but also make MRI susceptible to motion artefacts.

1† the authors contributed equally.
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In Chapter 4, we first surveyed the state-of-the-art compressed sensing approaches which were

proposed in hopes to accelerate the image acquisition time. We then pointed out that the

compressed sensing is often associated with its own di�culty to optimise the regularisation

terms as well as is limited as it does not harness available data. We argued that deep learning

is a natural candidate that can implicitly exploit the learnt representation based on large-scale

data. In particular, we proposed a deep cascade of CNN’s for accelerated MR image recon-

struction. We showed that the proposed method outperformed the state-of-the-art compressed

sensing methods including dictionary learning and low-rank approaches. However, the pro-

posed architecture was naive in the sense it was a brute-force unrolling of optimisation similar

to that of dictionary learning optimisation. In this chapter, the network architecture is first

formalised using variable-splitting scheme. We then depart from this framework and present a

more general approach for the reconstruction process.

In particular, in this work, we propose a novel convolutional recurrent neural network (CRNN)

method to reconstruct high quality dynamic MR image sequences from undersampled data,

termed CRNN-MRI. Firstly, we formulate a general optimisation problem for solving accel-

erated dynamic MRI based on variable splitting and alternate minimisation. We then show

how this algorithm can be seen as a network architecture. In particular, the proposed method

consists of a CRNN block which acts as the proximal operator and a data consistency layer

corresponding to the classical data fidelity term. In addition, the CRNN block employs recur-

rent connections across each iteration step, allowing reconstruction information to be shared

across the multiple iterations of the process. Secondly, we incorporate bidirectional convolu-

tional recurrent units evolving over time to exploit the temporal dependency of the dynamic

sequences and e↵ectively propagate the contextual information across time frames of the input.

As a consequence, the unique CRNN architecture jointly learns representations in a recurrent

fashion evolving over both time sequences as well as iterations of the reconstruction process,

e↵ectively combining the benefits of traditional iterative methods and deep learning.

To the best of our knowledge, this is the first work applying RNNs for dynamic MRI reconstruc-

tion. The contributions of this work are the following: Firstly, we view the optimisation problem

of dynamic data as a recurrent network and describe a novel CRNN architecture which simul-
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taneously incorporates the recurrence existing in both temporal and iteration sequential steps.

Secondly, we demonstrate that the proposed method shows promising results and improves

upon the current state-of-the-art dynamic MR reconstruction methods both in reconstruction

accuracy and speed. Finally, we compare our architecture to 3D CNN which does not impose

the recurrent structure. We show that the proposed method outperforms the CNN at di↵erent

undersampling rates and speed, while requiring significantly fewer parameters.

5.2 Related work

One of the main challenges associated with recovering an uncorrupted image is that both the

undersampling strategy and a-priori knowledge of appropriate properties of the image need

to be taken into account. Methods like k-t BLAST and k-t SENSE [TBP03] take advantage

of a-priori information about the x-f support obtained from the training data set in order to

prune a reconstruction to optimally reduce aliasing. An alternative popular approach is to

exploit temporal redundancy to unravel from the aliasing by using CS approaches [JYK07;

Cab+14b] or CS combined with low-rank approaches [Lin+11; OCS15]. The class of methods

which employ CS to the MRI reconstruction is termed as CS-MRI [Lus+08]. They assume that

the image to be reconstructed has a sparse representation in a certain transform domain, and

they need to balance sparsity in the transform domain against consistency with the acquired

undersampled k-space data. For instance, an example of successful methods enforcing sparsity

in x-f domain is k-t FOCUSS [JYK07]. A low rank and sparse reconstruction scheme (k-t SLR)

[Lin+11] introduces non-convex spectral norms and uses a spatio-temporal total variation norm

in recovering the dynamic signal matrix. Dictionary learning approaches were also proposed to

train an over-complete basis of atoms to optimally sparsify spatio-temporal data [Cab+14b].

These methods o↵er great potential for accelerated imaging, however, they often impose strong

assumptions on the underlying data, requiring nontrivial manual adjustments of hyperparam-

eters depending on the application. In addition, it has been observed that these methods tend

to result in blocky [Ham+18] and unnatural reconstructions, and their reconstruction speed is

often slow. Furthermore, these methods are not able to exploit the prior knowledge that can
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be learnt from the vast number of MRI exams routinely performed, which should be helpful to

further guide the reconstruction process.

Recently, deep learning-based MR reconstruction has gained popularity due to its promising

results for solving inverse and compressed sensing problems. In particular, two paradigms have

emerged: the first class of approaches proposes to use convolutional neural networks (CNNs) to

learn an end-to-end mapping, where architectures such as SRCNN [Don+14] or U-net [RFB15]

are often chosen for MR image reconstruction [LYY17; HYY17; Wan+16; Wan+17b]. The

second class of approaches attempts to make each stage of iterative optimisation learnable by

unrolling the end-to-end pipeline into a deep network [Ham+18; AO18; S+16; Sch+17; AO17].

For instance, Hammernik et al. [Ham+18] introduced a trainable formulation for accelerated

parallel imaging (PI) based MRI reconstruction termed variational network, which embedded a

CS concept within a deep learning approach. ADMM-Net [S+16] was proposed by reformulat-

ing an alternating direction method of multipliers (ADMM) algorithm to a deep network, where

each stage of the architecture corresponds to an iteration in the ADMM algorithm. In Chap-

ter 4, we proposed a cascade network which simulated the iterative reconstruction of dictionary

learning-based methods for dynamic MR reconstructions [Sch+17; Sch+18a]. Most approaches

so far have focused on 2D images, whereas only a few approaches exist for dynamic MR re-

construction [Sch+18a; BRE17]. While they show promising results, the optimal architecture,

training scheme and configuration spaces are yet to be fully explored.

More recently, several deep learning methods on 2D MR image reconstruction were proposed

[Ham+18; AMJ17; Mar+17], which share similar idea with our proposed method that integrates

data fidelity term and regularisation term into a single deep network so that to enable the end-

to-end training. In contrast to these methods which use shared parameters over iterations,

as we will show, our architecture integrates hidden connections over optimisation iterations

to propagate learnt representations across both iteration and time, whereas such information

is discarded in the other methods. Such proposed architecture enables the information used

for the reconstruction at each iteration to be shared across all stages of the reconstruction

process, aiming for an iterative algorithm that can fully benefit from information extracted at all

processing stages. As to the nature of the proposed RNN units, previous work involving RNNs
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only updated the hidden state of the recurrent connection with a fixed input [Gre+15; LH15;

KWW16], while the proposed architecture progressively updates the input as the optimisation

iteration increases. In addition, previous work only modelled the recurrence of iteration or time

[HWW15] exclusively, whereas the proposed method jointly exploits both dimensions, yielding

a unique architecture suitable for the dynamic reconstruction problem.

5.3 Problem formulation

Let x 2 CD denote a sequence of complex-valued MR images to be reconstructed, represented

as a vector with D = DxDyT , and let y 2 CM (M << D) represent the undersampled k-

space measurements, where Dx and Dy are width and height of the frame respectively and T

stands for the number of frames. Our problem is to reconstruct x from y, which is commonly

formulated as an unconstrained optimisation problem of the form:

argmin
x

R(x) + �ky � Fuxk
2
2 (5.1)

Here Fu is an undersampling Fourier encoding matrix, R expresses regularisation terms on x

and � allows the adjustment of data fidelity based on the noise level of the acquired measure-

ments y. For CS and low-rank based approaches, the regularisation terms R often employed

are `0 or `1 norms in the sparsifying domain of x as well as the rank or nuclear norm of x respec-

tively. In general, Eq. 5.1 is a non-convex function and hence, the variable splitting technique

is usually adopted to decouple the fidelity term and the regularisation term. By introducing

an auxiliary variable z that is constrained to be equal to x, Eq. 5.1 can be reformulated to

minimise the following cost function via the penalty method:

argmin
x,z

R(z) + �ky � Fuxk
2
2 + µkx� zk22 (5.2)
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where µ is a penalty parameter. By applying alternate minimisation over x and z, Eq. 5.2 can

be solved via the following iterative procedures:

z(i+1) = argmin
z

R(z) + µkx(i)
� zk22 (5.3a)

x(i+1) = argmin
x

�ky � Fuxk
2
2 + µkx� z(i+1)

k
2
2 (5.3b)

where x(0) = xu = FH

u
y is the zero-filled reconstruction taken as an initialisation and z can be

seen as an intermediate state of the optimisation process. For MRI reconstruction, Eq. 5.3b

is data consistency (DC) step presented in the previous chapter, which admits a closed-form

solution [Sch+17]:

x(i+1) = DC(z(i);y,�0,⌦) = FH⇤Fz(i) + �0
1+�0

FH

u
y,

⇤kk =

8
>><

>>:

1 if k 62 ⌦

1
1+�0

if k 2 ⌦

(5.4)

in which F is the full Fourier encoding matrix (a discrete Fourier transform in this case),

�0 = �/µ is a ratio of regularisation parameters from Eq. 5.4, ⌦ is an index set of the acquired

k-space samples and ⇤ is a diagonal matrix. Please refer to [Sch+17] for more details of

formulating Eq. 5.4 as a data consistency layer in a neural network. Eq. 5.3a is the proximal

operator of the prior R, and instead of explicitly determining the form of the regularisation

term, we propose to directly learn the proximal operator by using a convolutional recurrent

neural network (CRNN).

Previous deep learning approaches such as Deep-ADMM net [S+16] and deep cascade of CNN’s

[Sch+17] unroll the traditional optimisation algorithm. Hence, their models learn a sequence of

transition x(0)
! z(1) ! x(1)

! · · ·! z(N)
! x(N) to reconstruct the image, where each state

transition at stage (i) is an operation such as convolutions independently parameterised by ✓,

nonlinearities or a data consistency step. However, since the network implicitly learns some

form of proximal operator at each iteration, it may be redundant to individually parameterise

each step. In our formulation, we model each optimisation stage (i) as a learnt, recurrent,
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Figure 5.1: (a) Traditional optimisation algorithm using variable splitting and alternate min-
imisation approach, (b) the optimisation unrolled into a deep convolutional network incorpo-
rating the data consistency step, and (c) the proposed architecture which models optimisation
recurrence.

forward encoding step fi(x(i�1), z(i�1);✓,y,�,⌦). The di↵erence is that now we use one model

which performs proximal operator, however, it also allows itself to propagate information across

iteration, making it adaptable for the changes across the optimisation steps. The detail will be

discussed in the following section. The di↵erent strategies are illustrated in Fig 5.1.

5.4 CRNN for MRI reconstruction

RNN is a class of neural networks that makes use of sequential information to process sequences

of inputs. They maintain an internal state of the network acting as a ”memory”, which allows

RNNs to naturally lend themselves to the processing of sequential data. Inspired by iterative

optimisation schemes of Eq. 5.3, we propose a novel convolutional RNN (CRNN) network. In

the most general scope, our neural encoding model is defined as follows,

xrec = fN(fN�1(· · · (f1(xu)))), (5.5)

in which xrec denotes the prediction of the network, xu is the sequence of undersampled images

with length T and also the input of the network, fi(xu;✓,�,⌦) is the network function for each

iteration of optimisation step, and N is the number of iterations. We can compactly represent
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Figure 5.2: (a) The overall architecture of proposed CRNN-MRI network for MRI reconstruc-
tion. (b) The structure of the proposed network when unfolded over iterations, in which

x(0)
rec = xu. (c) The structure of BCRNN-t-i layer when unfolded over the time sequence. The

green arrows indicate feed-forward convolutions which are denoted by Wl. The blue arrows
(Wi) and red arrows (Wt) indicate recurrent convolutions over iterations and the time sequence
respectively. For simplicity, we use a single notation to denote weights for these convolutions
at di↵erent layers. However, in the implementation, the weights are independent across layers.

a single iteration fi of our network as follows:

x(i)
rnn

= x(i�1)
rec

+ CRNN(x(i�1)
rec

), (5.6a)

x(i)
rec

= DC(x(i)
rnn

;y,�0,⌦), (5.6b)

where CRNN is a learnable block explained hereafter, DC is the data consistency step treated

as a network layer, x(i)
rec is the progressive reconstruction of the undersampled image xu at

iteration i with x(0)
rec = xu, x

(i)
rnn is the intermediate reconstruction image before the DC layer,

and y is the acquired k-space samples. Note that the variables xrec,xrnn are analogous to x, z

in Eq. 5.3 respectively. Here, we use CRNN to encode the update step, which can be seen

as one step of a gradient descent in the sense of objective minimisation, or a more general
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approximation function regressing the di↵erence z(i+1)
�x(i), i.e. the distance required to move

to the next state. Moreover, note that in every iteration, CRNN updates its internal state

H given an input which is discussed shortly. As such, CRNN also allows information to be

propagated e�ciently across iterations, in contrast to the sequential models using CNNs which

collapse the intermediate feature representation to z(i).

In order to exploit the dynamic nature and the temporal redundancy of our data, we further

propose to jointly model the recurrence evolving over time for dynamic MRI reconstruction.

The proposed CRNN-MRI network and CRNN block are shown in Fig. 5.2(a), in which CRNN

block comprised of 5 components:

1. bidirectional convolutional recurrent units evolving over time and iterations (BCRNN-t-i),

2. convolutional recurrent units evolving over iterations only (CRNN-i),

3. 2D convolutional neural network (CNN),

4. residual connection and

5. DC layers.

We introduce details of the components of our network in the following subsections.

CRNN-i

As aforementioned, we encapsulate the iterative optimisation procedures explicitly with RNNs.

In the CRNN-i unit, the iteration step is viewed as the sequential step in the vanilla RNN.

If the network is unfolded over the iteration dimension, the network can be illustrated as in

Fig. 5.2(b), where information is propagated between iterations. Here we use H to denote

the feature representation of our sequence of frames throughout the network. H(i)
l

denotes the

representation at layer l (subscript) and iteration step i (superscript). Therefore, at iteration

(i), given the input H(i)
l�1 and the previous iteration’s hidden state H(i�1)

l
, the hidden state H(i)

l
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at layer l of a CRNN-i unit can be formulated as:

H(i)
l

= �(Wl ⇤H
(i)
l�1 +Wi ⇤H

(i�1)
l

+Bl). (5.7)

Here ⇤ represents convolution operation, Wl and Wi represent the filters of input-to-hidden

convolutions and hidden-to-hidden recurrent convolutions evolving over iterations respectively,

and Bl represents a bias term. Here H(i)
l

is the representation of the whole T sequence with

shape (batchsize, T, nc, Dx, Dy), where nc is the number of channels which is 2 at the input and

output but is greater while processing inside the network, and the convolutions are computed

on the last two dimensions. The latent features are activated by the rectifier linear unit (ReLU)

as a choice of nonlinearity, i.e. �(x) = max(0, x).

The CRNN-i unit o↵ers several advantages compared to independently unrolling convolutional

filters at each stage. Firstly, compared to CNNs where the latent representation from the

previous state is not propagated, the hidden-to-hidden iteration connections in CRNN-i units

allow contextual spatial information gathered at previous iterations to be passed to the future

iterations. This enables the reconstruction step at each iteration to be optimised not only based

on the output image but also based on the hidden features from previous iterations, where

the hidden connection convolutions can ”memorise” the useful features to avoid redundant

computation. Secondly, as the iteration number increases, the e↵ective receptive field of a

CRNN-i unit in the spatial domain also expands whereas CNN resets it at each iteration. This

property allows the network to further improve the reconstruction by allowing it to have better

contextual support. In addition, since the weight parameters are shared across iterations,

it greatly reduces the number of parameters compared to CNNs, potentially o↵ering better

generalisation properties.

In this work, we use a vanilla RNN [Elm90] to model the recurrence due to its simplicity. Note

this can be naturally generalised to other RNN units, such as long short-term memory (LSTM)

and gated recurrent unit (GRU), which are considered to have better memory properties, al-

though using these units would significantly increase computational complexity.
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BCRNN-t-i

Dynamic MR images exhibit high temporal redundancy, which is often exploited as a-priori

knowledge to regularise the reconstruction. Hence, it is also beneficial for the network to learn

the dynamics of sequences. To this extent, we propose a bidirectional convolutional recurrent

unit (BCRNN-t-i) to exploit both temporal and iteration dependencies jointly. BCRNN-t-i

includes three convolution layers: one on the input which comes into the unit from the previous

layer indicated by the green arrows in Fig. 5.2(c), one on the hidden state from the past

and future time frames as shown by the red arrows, and the one on the hidden state from the

previous iteration of the unit (blue arrows in Fig. 5.2(c)). Note that we simultaneously consider

temporal dependencies from past and future time frames, and the encoding weights are shared

for both directions. The output for the BCRNN-t-i layer is obtained by summing the feature

maps learned from both directions. The illustration figure of the unit when it is unfolded over

time sequence is shown in Fig. 5.2(c).

As we need to propagate information along temporal dimensions in this unit, here we introduce

an additional index t in the notation to represent the variables related with time frame t.

Here H(i)
l,t

represents feature representations at l-th layer, time frame t, and at iteration i,
�!
H(i)

l,t
denotes the representations calculated when information is propagated forward inside the

BCRNN-t-i unit, and similarly,
 �
H(i)

l,t
denotes the one in the backward direction. Therefore,

for the formulation of BCRNN-t-i unit, given (1) the current input representation of the l-th

layer at time frame t and iteration step i, which is the output representation from (l � 1)-th

layer H(i)
l�1,t, (2) the previous iteration’s hidden representation within the same layer H(i�1)

l,t
, (3)

the hidden representation of the past time frame
�!
H(i)

l,t�1, and the hidden representation of the

future time frame
 �
H(i)

l,t+1, then the hidden state representation of the current l-th layer of time

frame t at iteration i, H(i)
l,t

with shape (batchsize, nc, Dx, Dy), can be formulated as:

�!
H

(i)
l,t

= �(Wl ⇤H
(i)
l�1,t +Wt ⇤

�!
H

i

l,t�1 +Wi ⇤H
(i�1)
l,t

+
�!
B l),

 �
H

(i)
l,t

= �(Wl ⇤H
(i)
l�1,t +Wt ⇤

 �
H

(i)
l,t+1 +Wi ⇤H

(i�1)
l,t

+
 �
B l),

H
(i)
l,t

=
�!
H

(i)
l,t

+
 �
H

(i)
l,t
,

(5.8)

Similar to the notation in Section 5.4, Wt represents the filters of recurrent convolutions
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evolving over time. When l = 1 and i = 1, H(1)
0,t = xut , that is the t-th frame of undersampled

input data, and when l = 1 and i = 2, ...T , H(i)
0,t = x(i�1)

rect , which stands for the t-th frame of the

intermediate reconstruction result from iteration i� 1. For H(0)
l,t
,
�!
H(i)

l,0 and
 �
H(i)

l,T+1, they are set

to be zero initial hidden states.

The temporal connections of BCRNN-t-i allow information to be propagated across the whole T

time frames, enabling it to learn the di↵erences and correlations of successive frames. The filter

responses of recurrent convolutions evolving over time express dynamic changing biases, which

focus on modelling the temporal changes across frames, while the filter responses of recurrent

convolutions over iterations focus on learning the spatial refinement across consecutive iteration

steps. In addition, we note that learning recurrent layers along the temporal direction is di↵erent

to using 3D convolution along the space and temporal direction. 3D convolution seeks invariant

features across space-time, hence several layers of 3D convolutions are required before the

information from the whole sequence can be propagated to a particular time frame. On the other

hand, learning recurrent 2D convolutions enables the model to easily and e�ciently propagate

the information through time, which also yields fewer parameters and a lower computational

cost.

In summary, the set of hidden states for a CRNN block to update at iteration i is H =

{H(i)
l
,H(i)

l,t
,
 �
H(i)

l,t
,
�!
H(i)

l,t
}, for l = 1, . . . , L and t = 1, . . . , T , where L is the total number of layers

in the CRNN block and T is the total number of time frames.

5.4.1 Network learning

Given the training data S of input-target pairs (xu,xt), the network learning proceeds by

minimising the pixel-wise mean squared error (MSE) between the predicted reconstructed MR

image and the fully sampled ground truth data:

L (✓)=
1

nS

X

(xu,xt)2S

kxt � xreck
2
2 (5.9)
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where ✓ = {Wl,Wi,Wt,Bl}, l = 1 . . . L, and nS stands for the number of samples in the

training set S. Note that the total number of time sequences T and iteration steps N assumed

by the network before performing the reconstruction is a free parameter that must be specified

in advance. The network weights were initialised using He initialisation [He+15] and it was

trained using the Adam optimiser [KB15]. During training, gradients were hard-clipped to the

range of [�5, 5] to mitigate the gradient explosion problem. The network was implemented in

Python using Theano and Lasagne libraries.

5.5 Experiments

5.5.1 Dataset and implementation details

The proposed method was evaluated using a complex-valued MR dataset consisting of 10 fully

sampled short-axis cardiac cine MR scans. Each scan contains a single slice SSFP acquisition

with 30 temporal frames, which have a 320 ⇥ 320 mm field of view and 10 mm thickness.

The raw data consists of 32-channel data with sampling matrix size 192 ⇥ 190, which was

then zero-filled to the matrix size 256⇥ 256. The raw multi-coil data was reconstructed using

SENSE [Pru+99] with no undersampling and retrospective gating. Coil sensitivity maps were

normalised to a body coil image and used to produce a single complex-valued reconstructed

image. In experiments, the complex valued images were back-transformed to regenerate k-space

samples, simulating a fully sampled single-coil acquisition. The input undersampled image

sequences were generated by randomly undersampling the k-space samples using Cartesian

undersampling masks, with undersampling patterns adopted from [JYK07]: for each frame

the eight lowest spatial frequencies were acquired, and the sampling probability of k-space lines

along the phase-encoding direction was determined by a zero-mean Gaussian distribution. Note

that the undersampling rates are stated with respect to the matrix size of raw data, which is

192⇥ 190.

The architecture of the proposed network used in the experiment is shown in Fig. 5.2: each
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iteration of the CRNN block contains five units: one layer of BCRNN-t-i, followed by three

layers of CRNN-i units, and followed by a CNN unit. For all CRNN-i and BCRNN-t-i units,

we used a kernel size k = 3 and the number of filters was set to nf = 64 for Proposed-A

and nf = 128 for Proposed-B in Table 5.1. The CNN after the CRNN-i units contains one

convolution layer with k = 3 and nf = 2, which projects the extracted representation back to

the image domain which contains complex-valued images expressed using two channels. For all

convolutional layers, we used stride = 1 and paddings with half the filter size (rounded down)

on both size. The output of the CRNN block is connected to the residual connection, which

sums the output of the block with its input. Finally, we used DC layers on top of the CRNN

output layers. During training, the iteration step is set to be N = 10, and the time sequence

for training is T = 30. Note that this architecture is by no means optimal and more layers

can be added to increase the ability of our network to better capture the data structures (see

Section 5.5.4 for comparisons).

The evaluation was done via a 3-fold cross validation, where for two folds we train on 7 subjects

then test on 3 subjects, and for the remaining fold we train on 6 subjects and test on 4

subjects. While the original sequence has size 256 ⇥ 256 ⇥ T , For the training, we extract

patches of size 256⇥Dpatch⇥ T , where Dpatch = 32 is the patch size and the direction of patch

extraction corresponds to the frequency-encoding direction. Note that since we only consider

Cartesian undersampling, the aliasing occurs only along the phase encoding direction, so patch

extraction does not alter the aliasing artefact. Patch extraction as well as data augmentation

was performed on-the-fly, with random a�ne and elastic transformations on the image data.

Undersampling masks were also generated randomly following patterns in [JYK07] for each

input. During test time, the network trained on patches is directly applied on the whole

sequence of the original image. The minibatch size during the training was set to 1, and we

observed that the performance can reach a plateau within 6⇥ 104 backpropagations.
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5.5.2 Evaluation method

We compared the proposed method with the representative algorithms of the CS-based dynamic

MRI reconstruction, such as k-t FOCUSS [JYK07] and k-t SLR [Lin+11], and two variants of

3D CNN networks named 3D CNN-S and 3D CNN in our experiments. The built baseline

3D CNN networks share the same architecture with the proposed CRNN-MRI network but

all the recurrent units and 2D CNN units were replaced with 3D convolutional units, that is,

in each iteration, the 3D CNN block contain 5 layers of 3D convolutions, one DC layer and

a residual connection. Here 3D CNN-S refers to network sharing weights across iterations,

however, this does not employ the hidden-to-hidden connection as in the CRNN-i unit. The

3D CNN-S architecture was chosen so as to make a fair comparison with the proposed model

using a comparable number of network parameters. In contrast, 3D CNN refers to the network

without weight sharing, in which the network capacity is N = 10 times of that of 3D CNN-S,

and approximately 12 times more than that of our first proposed method (Proposed-A). For

the 3D CNN approaches, the receptive field size is 11 ⇥ 11 ⇥ 11, as the receptive field size is

“reset” after each data consistency layer. In contrast, for the proposed method, due to the

hidden connections between iterations and bidirectional temporal connections, by tracing the

longest path of the convolution layers involved in the forward pass, including both temporal

and iterative directions, in theory, the receptive field size is 309⇥ 309⇥ 30 (154 layers of CNNs

for the middle frame in a sequence of 30 frames). However, the network still may predominantly

rely on local features coming from the partial reconstruction. Nevertheless, the RNN has the

ability to exploit the features with larger filter size if needed, which is not the case for 3D

CNNs.

Reconstruction results were evaluated based on the following quantitative metrics: MSE, peak-

to-noise-ratio (PSNR), structural similarity index (SSIM) [Wan+04] and high frequency error

norm (HFEN) [RB11]. The choice of the these metrics was made to evaluate the reconstruction

results with complimentary emphasis. MSE and PSNR were chosen to evaluate the overall

accuracy of the reconstruction quality. SSIM put emphasis on image quality perception. HFEN

was used to quantify the quality of the fine features and edges in the reconstructions, and here
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Table 5.1: Performance comparisons (MSE, PSNR:dB, SSIM, and HFEN) on dynamic cardiac
data with di↵erent acceleration rates. MSE is scaled to 10�3. The bold numbers are better
results of the proposed methods than that of the other methods.

Method k-t FOCUSS k-t SLR 3D CNN-S 3D CNN Proposed-A Proposed-B

Capacity - - 338,946 3,389,460 262,020 1,040,132

6⇥

MSE 0.592 (0.199) 0.371(0.155) 0.385 (0.124) 0.275 (0.096) 0.261 (0.097) 0.201 (0.074)

PSNR 32.506 (1.516) 34.632 (1.761) 34.370 (1.526) 35.841 (1.470) 36.096 (1.539) 37.230 (1.559)

SSIM 0.953 (0.040) 0.970 (0.033) 0.976 (0.008) 0.983 (0.005) 0.985 (0.004) 0.988 (0.003)

HFEN 0.211 (0.021) 0.161 (0.016) 0.170 (0.009) 0.138 (0.013) 0.131 (0.013) 0.112 (0.010)

9⇥

MSE 1.234 (0.801) 0.846 (0.572) 0.929 (0.474) 0.605 (0.324) 0.516 (0.255) 0.405 (0.206)

PSNR 29.721 (2.339) 31.409 (2.404) 30.838 (2.246) 32.694 (2.179) 33.281 (1.912) 34.379 (2.017)

SSIM 0.922 (0.043) 0.951 (0.025) 0.950 (0.016) 0.968 (0.010) 0.972 (0.009) 0.979 (0.007)

HFEN 0.310(0.041) 0.260 (0.034) 0.280 (0.034) 0.215 (0.021) 0.201 (0.025) 0.173 (0.021)

11⇥

MSE 1.909 (0.828) 1.237 (0.620) 1.472 (0.733) 0.742 (0.325) 0.688 (0.290) 0.610 (0.300)

PSNR 27.593 (2.038) 29.577 (2.211) 28.803 (2.151) 31.695 (1.985) 31.986 (1.885) 32.575 (1.987)

SSIM 0.880 (0.060) 0.924 (0.034) 0.925 (0.022) 0.960 (0.010) 0.964 (0.009) 0.968 (0.011)

HFEN 0.390 (0.023) 0.327 (0.028) 0.363 (0.041) 0.257 (0.029) 0.248 (0.033) 0.227 (0.030)

Time 15s 451s 8s 8s 3s 6s

we employed the same filter specification as in [RB11; Mia+16] with the filter kernel size 15⇥15

pixels and a standard deviation of 1.5 pixels. For PSNR and SSIM, it is the higher the better,

while for MSE and HFEN, it is the lower the better.

5.5.3 Results

The comparison results of all methods are reported in Table 5.1, where we evaluated the

quantitative metrics, network capacity and reconstruction time. Numbers shown in Table

5.1 are mean values of corresponding metrics with standard deviation of di↵erent subjects

in parenthesis. Bold numbers in Table 5.1 indicate the better performance of the proposed

methods than the competing ones. Compared with the baseline method (k-t FOCUSS and k-t

SLR), the proposed methods outperform them by a considerable margin at di↵erent acceleration

rates. When compared with deep learning methods, note that the network capacity of Proposed-

A is comparable with that of 3D CNN-S and the capacity of Proposed-B is around one third of

that of 3D CNN. Though their capacities are much smaller, both Proposed-A and Proposed-B

outperform 3D CNN-S and 3D CNN for all acceleration rates by a large margin, which shows

the competitiveness and e↵ectiveness of our method. In addition, we can see a substantial

improvement of the reconstruction results on all acceleration rates and in all metrics when
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Figure 5.3: Mean PSNR values (Proposed-B) vary with the number of iterations at test time
on data with di↵erent acceleration factors. Here AF stands for acceleration factor.

the number of network parameters is increased for the proposed method (Proposed-B), and

therefore we will only show the results from Proposed-B in the following. The number of

iterations used by the network at test time is set to be the same as the training stage, which is

N = 10, however, if the iteration number is increased up to N = 17, it shows an improvement

of 0.324dB on average. Fig. 5.3 shows the model’s performance varying with the number of

iterations at test time. Similarly, visualisation results of intermediate steps during the iterations

of a reconstruction from 9⇥ undersampling data are shown in Fig. 5.4, where we can observe

the gradual improvement of the reconstruction quality from iteration step 1 to 10, which is

consistent with the quantitative results as in Fig. 5.3.

A comparison of the visualisation results of a reconstruction from 9⇥ acceleration is shown

in Fig. 5.5 with the reconstructed images and their corresponding error maps from di↵erent

reconstruction methods. As one can see, our proposed model (Proposed-B) can produce more

faithful reconstructions for those parts of the image around the myocardium where there are

large temporal changes. This is reflected by the fact that RNNs e↵ectively use a larger receptive

field to capture the characteristics of aliasing seen within the anatomy. Their temporal profiles

at x = 120 are shown in Fig. 5.6. Similarly, one can see that the proposed model has overall

much smaller error, faithfully modelling the dynamic data. It could be due to the fact that

spatial and temporal features are learned separately in the proposed model while 3D CNN seeks
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(a) 9x Undersampled

(b) Ground Truth

(c) Iteration 1

(d) Iteration 2

(e) Iteration 3

(f) Iteration 4

(g) Iteration 5

(h) Iteration 6

(i) Iteration 7

(j) Iteration 8

(k) Iteration 9

(l) Iteration 10

Figure 5.4: Visualisation results of intermediate steps during the iterations of a reconstruc-
tion. (a) Undersampled image by acceleration factor 9 (b) Ground Truth (c-l) Results from
intermediate steps 1 to 10 in a reconstruction process.

Figure 5.5: The comparison of reconstructions on spatial dimension with their error maps. (a)
Ground Truth (b) Undersampled image by acceleration factor 9 (c,d) Proposed-B (e,f) 3D CNN
(g,h) 3D CNN-S (i,j) k-t FOCUSS (k,l) k-t SLR

invariant feature learning across space and time.

In terms of speed, the proposed RNN-based reconstruction is faster than the 3D CNN ap-

proaches because it only performs convolution along time once per iteration, removing the

redundant 3D convolutions which are computationally expensive. Reconstruction time of 3D

CNN and the proposed methods reported in Table 5.1 were calculated on a GPU GeForce GTX

1080, and the time for k-t FOCUSS and k-t SLR were calculated on CPU.
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Figure 5.6: The comparison of reconstructions along temporal dimension with their error maps.
(a) Ground Truth (b) Undersampled image by acceleration factor 9 (c,d) Proposed-B (e,f) 3D
CNN (g,h) 3D CNN-S (i,j) k-t FOCUSS (k,l) k-t SLR

5.5.4 Variations of architecture

In this section we show additional experiments to investigate the variants of the proposed

architecture. First, we study the e↵ects of recurrence over iteration and time, separately and

jointly. In this study, we performed experiments on data set with undersampling factor 9, and

the number of iterations was set to be 2 in order to simplify and speed up the training. Results

are shown in Table 5.2, where we present the mean PSNR value via 3-fold cross validation.

To isolate the e↵ects of both recurrence in the module, we proposed to remove one of the

recurrence each time. By removing the recurrence over time, the network architecture degrades

to 4 CRNN-i + CNN layers, and it doesn’t exploit temporal information in this case. If the

recurrence over iterations is removed, the network architecture then becomes BCRNN-t + 4

CNN layers, without any hidden connections between iterations. Note that in all architectures,

the last CNN layer only has 2 filters, which is used to simply aggregate the latent representation

back to image space. Therefore, we employ a simple convolution layer for this. From Table

5.2, it can be observed that by removing any of the recurrent connections, the performance

becomes worse compared with the proposed architecture with both recurrence jointly. This

indicate that both of these recurrence contribute to the learning of the reconstruction. In

particular, it is also been observed that by removing the temporal recurrence, the network’s
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Table 5.2: Performance comparisons on investigating the e↵ects of each recurrence in the
module. Reported results are the mean PSNR on data with undersampling factor 9 via 3-fold
cross-validation. For this study, the number of iteration was set as 2.

Architectures PSNR (dB)

4 CRNN-i + CNN (only iteration) 21.41
BCRNN-t + 4 CNN (only temporal) 26.62

BCRNN-t-i + 3 CRNN-i + CNN (Proposed) 27.98

Table 5.3: Performance comparisons with di↵erent model architectures. Reported results are
the mean PSNR on data with undersampling factor 9 via 3-fold cross-validation. (FPT: forward
pass time; BPT: backward pass time)

Architectures PSNR (dB) FPT BPT Training Time

4 BCRNN-t-i + CNN 34.18 0.94s 5.97s 96h
Proposed-A 33.28 0.45s 1.39s 38h
Proposed-B 34.38 0.90s 2.59s 58h

performance degrades greatly compared with the one removing the iteration recurrence. This

can be explained that by removing the temporal recurrence, the problem degrades to a single

frame reconstruction, while dynamic reconstruction has been proven to be much better than

single frame reconstruction as there exists great temporal redundancies that can be exploited

between frames.

In addition, we performed experiments on some other variants of the architecture, in particular,

4 layers of BCRNN-t-i with one layer of CNN, which has the highest capacity amongst all

di↵erent combinations. Here we set the number of iterations to be 10. It can be observed

that by incorporating temporal recurrent connections over all layers does improve the results

over Proposed-A due to the more information propagated between frames. However, such

design also increases the computations and more significantly, time required for training the

network. Considering the trade o↵ between performance and training time as well as the

hardware constraints, we chose the particular design proposed. We agree that there could

be more versions of the architectures that can lead to better performance and our particular

design is by no means optimal. However, here we mainly aim to validate our proposed idea

of exploiting both temporal and iterative reconstruction information for the problem, and the

proposed architecture is satisfactory to show this.
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Figure 5.7: Cosine distances for the feature maps extracted from ith-layer of the subnetworks
across 10 cascades/iterations. Top row shows i = 1, which corresponds to BCRNN-t-i unit for
CRNN, 1st convolution layers for 3D-CNN and 3D-CNN-S. Bottom row shows i = 4, which
corresponds to the third CRNN-i unit for CRNN, 4th convolution layers for 3D-CNN and
3D-CNN-S. In general, the distribution of cos(✓) is closer to 0 for CRNN than for the CNN’s.

Figure 5.8: Examples of the feature maps from the CRNN-MRI (Proposed-A), 3D CNN and
3D CNN-S, at iteration 10

5.5.5 Feature map analysis

In this section we study further whether the proposed architecture helps to obtain better fea-

ture representations. CRNN (Proposed-A), 3D-CNN and 3D-CNN-S all have the subnetworks

composed of 5 units/layers with 64 channels for the first four, allowing us to directly compare

the i-th layer of representations of the subnetworks for i = 1, . . . , 4. From one test subject,

we extract the feature representations of the subnetwork across 10 cascades/iterations. By

treating each channel as a separate feature map, we obtain 640 feature maps for each layer i

aggregated across iteration. We use the cosine distance d(A,B) = ATB/kAkkBk = cos(✓) to

compute the similarity between these activation maps for i 2 {1, 4}. If two feature maps are

orthogonal, then cos(✓) = 0 and if two feature maps are linearly correlated, then cos(✓) = 1.
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Geometrically, this supports the interpretation that if the cosine distance is small for all the

feature map pairs, then the network is likely to be capturing diverse patterns. The result is

summarised in Fig. 5.7, where the similarity measure is visualised as a matrix, as well as their

distributions is plotted for each network.

We can see that for both i 2 {1, 4}, the layers from CRNN appears to have geometrically more

orthogonal feature maps. One can also observe that in general, layer 1 has higher redundancy

compared to layer 4. In particular, the diagonal yellow stripes can be observed for CNN-S

and CRNN, due to parameter-sharing for each cascade. This is not observed in 3D-CNN, even

though many features do have high similarity. In Fig. 5.8 we show examples of the feature

maps from layer 4 (3rd CRNN-i for CRNN, 4th convolution layers for 3D-CNN and 3D-CNN-

S) at iteration/cascade 10 of each network during the forward pass. We selected 16 feature

maps out of 64 by firstly clustering them into 16 groups, and then randomly chose one feature

map from each group to show as representative feature maps in Fig. 5.8. These feature maps

show the activations learned from di↵erent networks and are colour-coded (blue corresponds

to low activation whereas red corresponds to high activation). We see that CRNN’s features

look significantly di↵erent from CNN. In particular, one can observe that some are activated

by the dynamic region, and some are particularly sensitive to regions around the left and/or

right ventricle.

5.6 Discussion

In this work, we have demonstrated that the presented network is capable of producing faithful

image reconstructions from highly undersampled data, both in terms of various quantitative

metrics as well as inspection of error maps. In contrast to unrolled deep network architectures

proposed previously, we modelled the recurrent nature of the optimisation iteration using hid-

den representations with the ability to retain and propagate information across the optimisation

steps. Compared with 3D CNN models, the proposed methods have a much lower network ca-

pacity but still have a higher accuracy, reflecting the e↵ectiveness of our architecture. This is
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due to the ability of the proposed RNN units to increase the receptive field size while iteration

steps increase, as well as to e�ciently propagate information across the temporal direction. In

fact, for accelerated imaging, higher undersampling factors significantly add aliasing to the ini-

tial zero-filled reconstruction, making the reconstruction more challenging. This suggests that

while the 3D CNN possesses higher modelling capacity owing to its large number of parame-

ters, it may not necessarily be an ideal architecture to perform dynamic MR reconstruction,

presumably because the simple CNN is not as e�cient at propagating the information across

the whole sequence. Besides, for the 3D CNN approaches, it is also observed that it is not

able to denoise the background region. This could be explained by the fact that 3D CNN only

exploits local information due to the small receptive field size it used, while in contrast, the

proposed CRNN improves the denoising of the background region because of its larger receptive

field sizes.

Furthermore, when exploring the intermediate feature activations, we observed that the pair-

wise cosine distances for CRNN were smaller than those for the 3D-CNNs. We speculate that

this is because CRNN has hidden connections across the iterations allowing it to propagate

information better and make the end-to-end reconstruction process more dynamic, generating

less redundant representations. On a contrary, 3D-CNNs needs to rebuild the feature maps at

every iteration, which is likely to increase repetitive computations. In addition, qualitatively,

the activation map of CRNN showed high sensitivity to anatomical regions/dynamic regions.

This is likely due to the fact that CRNN has increased receptive field size as well as temporal

units, allowing the network to recognise larger/dynamic objects better. In CNNs, one can also

observe that there are features activated by the myocardial regions, however, the activation is

more homogeneous across the image, due to smaller receptive field size. This hints that CRNN

can better capture high level information.

In this work, we modeled the recurrence using the relatively simple (vanilla) RNN architecture.

For the future work, we will explore other recurrent units such as LSTM or GRU. As they

are trained to explicitly select what to remember, they may allow the units to better control

the flow of information and could reduce the number of iterations required for the network to

generate high-quality output. Also, incorporating recurrent redundancy in k-space domain into
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the proposed CRNN-MRI network is likely to improve the result, and will form part of our

future work. In addition, we have found that the majority of errors between the reconstructed

image and the fully sampled image lie at the part where motion exists, indicating that motion

exhibits a challenge for such dynamic sequence reconstruction. Thus it will be interesting

to explore more e�cient ways that can improve the reconstruction quality while faithfully

preserving cardiac motion. Additionally, current analysis only considers a single coil setup. In

the future, we will also aim at investigating such methods in a scenario where multiple coil data

from parallel MR imaging can be used jointly for higher acceleration acquisition.

5.7 Conclusion

Inspired by variable splitting and alternate minimisation strategies, we have presented an end-

to-end deep learning solution, CRNN-MRI, for accelerated dynamic MRI reconstruction, with

a forward, CRNN block implicitly learning iterative denoising interleaved by data consistency

layers to enforce data fidelity. In particular, the CRNN architecture is composed of the proposed

novel variants of convolutional recurrent unit which evolves over two dimensions: time and

iterations. The proposed network is able to learn both the temporal dependency and the

iterative reconstruction process e↵ectively, and outperformed the other competing methods in

terms of both reconstruction accuracy and speed for di↵erent undersampling rates.

Several key points were highlighted in this chapter. Firstly, dynamic data inherently carries

the su�cient information needed for near-perfect reconstruction even from 10-fold accelerated

data. Secondly, deep learning indeed can extract such information even from small number of

parameters, as long as the network architecture enables that. This suggests that deep learning

indeed has the capacity to directly infer information for subsequent analysis, provided that

good network architecture can be found, which can extract such information. This is what is

explored in the next chapter, where we perform segmentation of cardiac images directly from

undersampled k-space data.



Chapter 6

Deep learning for direct cardiac

segmentation from k-space data

This section is based on the following publications:

• Schlemper, J., Oktay, O., Bai, W., Castro, D.C., Duan, J., Qin, C., Hajnal, J.V. and

Rueckert, D., 2018, September. Cardiac MR segmentation from undersampled k-space

using deep latent representation learning. In International Conference on Medical Image

Computing and Computer-Assisted Intervention (pp. 259-267). Springer, 2018.

6.1 Introduction

Cardiovascular MR (CMR) imaging enables accurate quantification of cardiac chamber vol-

ume, ejection fraction and myocardial mass, which are crucial for diagnosing, assessing and

monitoring cardiovascular diseases (CVDs), the leading cause of death globally. However, as

aforementioned in the previous chapters, one limitation of CMR is the slow acquisition time.

A routine CMR protocol can take from 20 to 60 minutes, which makes the tool costly and

less accessible to worldwide population. In addition, CMR often requires breath-holds which

can be di�cult for patients; therefore, accelerating the CMR acquisition is essential. Over the

118
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last decades, numerous approaches have been proposed for accelerated MR imaging, including

parallel imaging, compressed sensing [Lus+08] and, more recently, deep learning approaches

[Ham+18].

Reconstructing images from accelerated and undersampled MRI is an ill-posed problem and,

essentially, all approaches must exploit some type of redundancies or assumptions on underlying

data to resolve the aliasing caused by sub-Nyquist sampling. In the case of dynamic cardiac

cine reconstruction, high spatiotemporal redundancy and sparsity can be exploited, however,

the acceleration factor for a near perfect reconstruction is currently limited up to 9 [Sch+18a],

as seen from the previous chapters. We argue that one e↵ective way of pushing the acceleration

factor even higher is to move to the concept of application-driven MRI [Cab+14a]. The key

insight is that in many cases, the images are not an end in themselves, but rather means of

accessing clinically relevant parameters which are obtained as post-processing steps, such as

segmentation or tissue characterisation. Therefore, it is more e↵ective to instead combine the

reconstruction and post-processing steps and tailor the acquisition protocol to obtain the final

results as accurately and e�ciently as possible. In particular, if the end-goal is significantly

more compressible than the original image, then one can expect further acceleration and still

obtain satisfactory results [GG15; Guo+17]. This work focuses on a scenario where we obtain

cardiac segmentation maps directly from heavily undersampled dynamic MR data.

Our contribution is the following: firstly, we propose two network architectures to learn such

a mapping. The first model, Syn-net, exploits the spatiotemporal redundancy of the input to

directly generate the segmentation map. However, under heavy aliasing artefact, the extracted

features may not be useful for segmentation. To address the latter case, we propose the second

model, LI-net, which first predicts the low dimensional latent code of the corresponding segmen-

tation map, which is subsequently decoded. Secondly, we extensively evaluate the two models

with large-scale simulation studies to demonstrate the e↵ectiveness of the proposed approaches

for various acceleration factors. In particular, we show that for the case where undersampled

image contains su�cient geometrical information, Syn-net outperforms LI-net but in a more

challenging scenario where only one line of k-space is sampled per frame, LI-net outperforms

Syn-net. Finally, we study the latent space structure of these architectures to demonstrate that
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the models learn useful representations of the data. This work potentially enables interesting

future works in which reconstruction, post-processing and analysis stages are integrated to yield

smarter imaging protocols.

6.2 Proposed methods

End-to-End Synthesis Network (Syn-net): Let D ✓ X ⇥ Y be dataset of fully-sampled

complex valued (dynamic) images x = {xi 2 C | i 2 S}, where S denotes indices on a pixel

grid, and the corresponding segmentation labels y = {yi | i 2 S} represent di↵erent tissue

types with yi 2 {1, 2, . . . C}. Let u = {ui 2 C | u = FH

u
Fux} denote an undersampled image,

where Fu is the undersampling Fourier encoding matrix. Let p(yi | x) be the true distribution

of i-th pixel label given an image, and r(u | x,M) represent the sampling distribution of the

undersampled images given an image x and a (pseudo) random undersampling mask generator

M. We aim to learn a synthesis network q(yi |u, ✓), termed Syn-net, which uses a convolutional

neural network (CNN) to model the probability distribution of segmentation maps given the

undersampled image parameterised by ✓. We train the network by the following modified

cross-entropy (CE) loss:

L(✓) =
X

(x,y)2D

Eu⇠r

"
X

i2S

p(yi | xi) log q(yi | ui, ✓)

#
, (6.1)

where we take the expectation over di↵erently undersampled images. In practice, we generate

one di↵erent undersampling pattern on-the-fly for each mini-batch training as an approximation

to the expectation. For the network architecture, we use an architecture inspired by the state-

of-the-art segmentation network, U-net [RFB15], shown in Fig. 6.1.

Latent Feature Interpolation Network (LI-net): Syn-net assumes that the input data

contains su�cient geometrical information to generate the target segmentation. For heavily

undersampled (and therefore aliased) images, this assumption may not be valid as the aliasing

could mislead the network from identifying the correct boundaries. In the latter case, synthesis
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Figure 6.1: (Left) The detailed architecture of Syn-net: the changes in the number of features
are shown above the tensor. (Right) For LI-net, the two-stage training strategy is outlined.
The same encoder and decoder as Syn-net can be used for LI-Net

is still possible as long as the target domain has a compact, discriminative latent representation

h 2 H that can be predicted, an approach motivated by TL-network [Gir+16]. Such a network

can be trained in following steps. In stage 1, one trains an auto-encoder (AE) in the target

domain y =  (�(y; ✓enc); ✓dec), y 2 Y , which is a composition of encoder � : Y ! H and

decoder  : H ! Y , parameterised by ✓enc and ✓dec respectively and H is a low-dimensional

latent space. The AE can be trained using the `2 norm or CE loss. In stage 2, one trains a

predictor network ⇧ : X ! H, parameterised by ✓pred. For a given input-target pair (x, y), the

predictor attempts to predict the latent code h = �(y; ✓enc) from x. This is trained using the `2

norm in the latent space: dH(y, x) = k�(y; ✓enc)� ⇧(x; ✓pred)k2. Once the predictor is trained,

one can obtain an input-output mapping by the composition ŷ =  (⇧(x; ✓dec); ✓pred).

In our work, the AE is trained to learn the compact representation of segmentations and the

predictor is trained to interpolate these from dynamic undersampled images, hence termed a

latent feature interpolation network (LI-net). In stage 1, we train the AE using CE loss. In

stage 2, we modify our objective to further encourage the network to produce a consistent

prediction for di↵erently undersampled versions of the same reference image. This constraint is

implemented by forcing the network to produce the same latent code for undersampled images

as for the fully-sampled image. Furthermore, we add a CE term dCE(y, �⇧(u)) to ensure that
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an accurate segmentation can be obtained from the code. Therefore, our objective term is as

follows (here �i’s are hyper-parameters to be adjusted based on the preferred end-goal):

L(✓pred) =
X

(x,y)2D

Eu⇠r

h
dH(y, u) + �1dH(y, x)

+ �2k⇧(x)� ⇧(u)k2 + �3dCE(y, � ⇧(u))
i
. (6.2)

6.3 Experiments and results

Dataset and Undersampling: Experiments were performed using 5000 short-axis cardiac

cine MR images from the UK Biobank study [Pet+16], which is acquired using bSSFP sequence,

matrix size Nx ⇥ Ny ⇥ T = 208 ⇥ 187 ⇥ 50, a pixel resolution of 1.8⇥1.8⇥10.0mm3 and

a temporal resolution of 31.56ms. Since the manual annotations are only available at end-

systolic (ES) and end-diastolic (ED) frames but we are interested in segmenting the entire

time sequence, we use [Bai+18], which well agrees with the manual segmentations, to generate

the labels for the left-ventricular (LV) cavity, the myocardium and the right-ventricular (RV)

cavity for all time-frames including apical, mid and basal slices, which were then treated as the

ground truth labels for this work. We split the data into 4000 training subjects and 1000 test

subjects, and we simulated random undersampling using variable density 1D undersampling

masks. These masks were generated on-the-fly. As only the magnitude images were available

we synthetically generated the phase maps (smoothly varying 2D sinusoid waves) on-the-fly to

make the simulation more realistic by removing the conjugate symmetry in k-space. Di↵erent

levels of acceleration factors (1/nl) were considered, nl 2 [1, 100] where nl is the number of

lines per time-frame. Note for fully-sampled image, nl = 168.

Model and Parameters: The input to the network is 2D+t undersampled data and the

output is a sequence of segmentation map. Note that z-slices were processed separately due to

large slice thickness. The detail of the Syn-net is shown in Fig. 6.1. To make a fair comparison

between the two architectures, we used the encoding path of Syn-net as both encoder � and
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predictor ⇧, and the decoding path as decoder  . The size of the latent code was set to be

|h| = 1024. Note that fully-connected layers are used to join the encoder, the latent code and the

decoder. They were trained with mini-batch size 8 using Adam with initial learning rate 10�4,

which was reduced by a factor of 0.8 every 2 epochs. The AE in LI-net was trained for 30 epochs

to ensure that the Dice scores for each class reached 0.95. For both models, we first trained

the network to perform segmentation from fully-sampled data as a warm start. The number

of lines was gradually reduced and by 10th epoch, we uniformly sampled nl from [0, 168]. The

training error for both models plateaued within 50 epochs. For LI-net, the hyper-parameters

for the loss function were empirically chosen to be �1 = 1, �2 = 10�4, �3 = 10, which we found

to work su�ciently. For data augmentation, we generated a�ne transformations on-the-fly. We

used PyTorch for implementation.

Evaluation: We first took the trained models and evaluated their Dice scores for LV, my-

ocardium (Myo) and RV for nl 2 [1, 100]. For each subject, we only included ES and ED frames

but aggregated the results across all short-axis slices. The Dice scores versus the number of

acquired k-space lines are shown in Fig. 6.2. The networks maintained the performance up to

about 20 lines per frame, demonstrating the capability of the models to directly interpolate the

anatomical boundary even in the presence of the aliasing artefact. In general, Syn-net showed

superior performance, indicating that the extracted spatiotemporal features are directly use-

ful for segmentation. In particular, we report that the LI-net underperformed as it does not

employ the skip-connection as Syn-net does, which limits how accurately it can delineate the

boundaries. We speculate, however, increasing the capacity of network is likely to improve the

results. Interestingly, LI-net outperformed Syn-net for the case of segmentation from 1 line,

suggesting that in more challenging domains the approach of LI-net to interpolate the latent

code is still a viable option.

In the second experiment, the models were further fine-tuned for a fixed number of lines for nl 2

{1, 10, 20} separately. From the obtained segmentation maps, we computed LV ES/ED volumes

(ESV/EDV) RV ESV/EDV, LV mass (LVM) and ejection fraction (EF). The mean percentage

errors across all test subjects were reported in Table 6.1. Syn-net consistently performs better
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Figure 6.2: Dice scores of Syn-net vs LI-net. The second row expands nl 2 [1, 10], the solid
lines and the shaded areas show the mean and the standard deviation respectively.

Figure 6.3: Visualisation of the ground truth image overlaid with the obtained segmentations.
LI-net produced more anatomically regularised, consistent segmentations. Syn-net produced
segmentations that are occasionally anatomically implausible but more faithful to the boundary.

than LI-net and has relatively small errors (< 7.7%) for all values for nl 2 {10, 20}. Both

models showed low error for EF, where the correlation coe�cient was 0.81 for both models for

nl = 20. The examples of the segmentation maps are shown in Fig. 6.3. Note that due to heavy

aliasing artefact of the input image, we instead visualised the temporally averaged image for

x-y plane, which was obtained by combining all k-space lines across the temporal axis into a

single kx-ky grid.

Although in theory we expect the reconstructed segmentation maps to be independent of the

aliasing artefact present in the input, this is not always the case (Fig. 6.3). To measure such

variability, we define within subject distances : given a fully-sampled image, we undersample it

di↵erently for ntrial = 100 times. From the predicted segmentation maps given by a model, we
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Table 6.1: Average percentage errors (%) for each clinical parameter

LV ESV LV EDV RV ESV RV EDV LVM EF

nl 1 10 20 1 10 20 1 10 20 1 10 20 1 10 20 1 10 20

LI-net 7.9 3.6 3.2 15.8 7.9 7.0 11.7 6.5 6.6 18.4 10.5 10.6 25.0 13.7 12.9 8.8 5.5 4.9
Syn-net 9.0 4.2 3.4 14.6 7.2 6.1 9.9 4.9 4.1 13.4 7.7 6.5 11.4 6.8 5.8 8.2 5.5 4.6

Table 6.2: The within-subject and between-subject distances of the segmentations

HD (Within) MD (Within) HD (Between) MD (Between)

Myo RV Myo RV Myo RV Myo RV

nl 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10

LI-net 3.63 2.58 4.68 3.67 1.47 0.92 1.71 1.14 9.69 10.30 12.55 14.31 4.40 4.94 5.02 5.91
Syn-net 6.47 3.23 6.96 5.05 1.83 0.99 2.15 1.34 10.62 10.34 11.56 15.22 4.16 4.81 4.78 6.03

computed the mean shape, to which we then calculated mean contour distance (MD) and Haus-

dor↵ distance (HD) of individual predictions. Small distances indicate that the segmentation is

consistent. However, if the network simply produces a population mean shape independent of

the input, then the above distances can be very low even without producing useful segmenta-

tions. To get a better picture, we also measured the between subject distances, which computes

MD and HD between the population mean shape (a mean predicted shape across all subjects)

and the individual subject mean shapes. For both experiments, nsubject = 100 subject were

used and the averaged distances are shown in Table 6.2. Indeed, we see that LI-net shows lower

values for within subject distances, indicating that it produces more consistent segmentations

than Syn-net (p ⌧ 0.01, Wilcoxon rank-sum). High between subject distances indicate that

both models are generating segmentation maps closer to subject-specific means than to the

population mean.

Finally, we investigate the latent space of the models. For 5 subjects, we generated 50 under-

sampled images for each number of lines nl 2 {1, 5, 10, 15, 20}. Here all undersampled images

have the same target segmentation per subject. For LI-net, we plotted the predicted latent code

h 2 H for these images. For Syn-net, we plotted the activation map before the first upsampling

layer to see whether the network exploits any latent space structure for generating the seg-

mentations. We visualised them using Principal Component Analysis (PCA) and t-distributed
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Figure 6.4: Visualising the distribution of the latent representations of LI-net and Syn-net.
(Left to right) LI-net PCA, LI-net t-SNE, Syn-net PCA, Syn-net t-SNE. The darkest points
are the latent representations of the fully sampled images, for reference.

stochastic neighbour embedding (t-SNE) with d = 2, as shown in Fig. 6.4, where subjects are

colour-coded and brighter means higher acceleration factor.

For LI-net, both for PCA and t-SNE, the latent space is clearly clustered by individual subjects,

indicating that the predictions are indeed consistent for di↵erent undersampling patterns. In

addition, as the latent code is discriminative for each subject, it enables fitting a classifier for

subject-based prediction tasks. On the other hand, for Syn-net, although there are per-subject

clusters, there is also a clear tendency to favour clustering the points by the acceleration factors,

as seen in the t-SNE plot. Note that since Syn-net also exploits skip connections, one can

conclude that the network exploits di↵erent reconstruction strategies for di↵erent acceleration

factors. Another interesting observation is that in Syn-net PCA, the distances between all the

points are reduced as the acceleration factor is increased. This means that the latent features

for Syn-net are less discriminative when images are heavily aliased. However, the extracted

features become gradually more discriminative as more lines are sampled.

6.4 Conclusion and discussion

In this work we explored an application-driven MRI, where our end-goal was to extract seg-

mentation maps directly from extremely undersampled data, bypassing image reconstruction.

Remarkably, when at least 10 lines per frame are acquired, we showed that we could already

compute clinical parameters within 10% error. Even though Syn-net provided better perfor-
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mance overall, and LI-net exhibited more well-behaved latent-space structure. In future work,

the latent code of LI-net could be used as a feature for classification tasks, where we may be

able to classify whether a patient is abnormal, directly from a few lines of k-space. This work

opens a huge avenue for future research where joint pipelines can be exploited for smarter MR

imaging that is both fast and accurate.

This chapter highlighted that the network can indeed extract the quantitative values directly,

however, the result depended on the network architecture. For example, LI-net managed to

extract regular shapes, however, lost spatial information. On the other hand, Syn-net was

sensitive to noise and aliasing. How can we characterise the behaviour of the network based on

its architecture? How can one provide a consistent approach to understand what these models

are doing, so we know when the network fails, why that was the case? Indeed, it is crucial to be

able to explain the mechanics of these networks. The next chapter investigates one possibility

of providing the explainability to the deep learning models using attention-gates.
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Attention models for interpretable

automated methods

This section is based on the following publications:1

• Schlemper, J.†, Oktay, O.†, Chen, L., Matthew, J., Knight, C., Kainz, B., Glocker, B.,

Rueckert, D., Attention-gated networks for improving ultrasound scan plane detection.,

International Conference on Medical Imaging with Deep Learning, 2018.

• Oktay, O.†, Schlemper, J.†, Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., Mori, K.,

McDonagh, S., Hammerla, N. Y., Kainz, B., Glocker, B., Rueckert, D., Attention U-Net:

learning where to look for the pancreas. International Conference on Medical Imaging

with Deep Learning, 2018.

• Schlemper, J.†, Oktay, O.†, Schaap, M., Heinrich, M., Kainz, B., Glocker, B., Rueckert,

D. (2019). Attention gated networks: Learning to leverage salient regions in medical

images. Medical image analysis, 53, 197-207.

1† the authors contributed equally.
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7.1 Introduction

Automated medical image analysis has been extensively studied in the medical imaging com-

munity due to the fact that manual labelling of large amounts of medical images is a tedious

and error-prone task. Accurate and reliable solutions are required to increase clinical work flow

e�ciency and support decision making through fast and automatic extraction of quantitative

measurements.

With the advent of convolutional neural networks (CNNs), near-radiologist level performance

can be achieved in automated medical image analysis tasks including classification of Alzheimer’s

disease [Sar+17], skin lesions [Est+17; KH16] and echo-cardiogram views [Mad+18], lung nod-

ule detection in CT/X-ray [Lia+17; Zhu+18b] and cardiac MR segmentation [Bai+18]. An

extensive list of applications can be found in [Lit+17; Zah+18]. High representation power,

fast inference, and weight sharing properties have made CNNs the de facto standard for image

classification and segmentation.

Methods for existing applications rely heavily on multi-stage, cascaded CNNs when the target

organs show large inter-patient variation in terms of shape and size. Cascaded frameworks

extract a region of interest (ROI) and make dense predictions on that particular ROI. The

application areas include cardiac MRI [KKK18], cardiac CT [Pay+17], abdominal CT [Rot+17;

Rot+18] segmentation, and lung CT nodule detection [Lia+17]. However, this approach leads

to excessive and redundant use of computational resources and model parameters; for instance,

similar low-level features are repeatedly extracted by all models within the cascade.

To address this general problem, we propose a simple and yet e↵ective solution, named attention

gate (AG). By incorporating AGs into standard CNN models, model parameters and interme-

diate feature maps are expected to be utilised more e�ciently while minimising the necessity

of cascaded models to solve localisation and classification tasks separately. In more detail, AGs

automatically learn to focus on target structures without additional supervision. At test time,

these gates generate soft region proposals implicitly on-the-fly and highlight salient features

useful for a specific task. In return, the proposed AGs improve model sensitivity and accuracy



130 Chapter 7. Attention models for interpretable automated methods

for global and dense label predictions by suppressing feature activations in irrelevant regions.

In this way, the necessity of using an external organ localisation module can be eliminated while

maintaining the high prediction accuracy. In addition, they do not introduce significant com-

putational overhead and do not require a large number of model parameters as in the case of

multi-model frameworks. CNN models with AGs can be trained from scratch in a standard way

similar to the training of fully convolutional network (FCN) models. Similar attention mech-

anisms have been proposed for natural image classification [Jet+18] and captioning [And+17]

to perform adaptive feature pooling, where model predictions are conditioned only on a subset

of selected image regions. In this work, we generalise this design and propose image-grid based

gating that allows attention coe�cients to be specific to local regions.

We demonstrate the performance of AG in real-time fetal ultrasound scan plane detection and

CT pancreas segmentation. The first task is challenging due to low interpretability of the im-

ages and localising the object of interest is key to successful classification of the plane. To this

end, we incorporate AGs into a variant of a VGG network, termed AG-Sononet, to demon-

strate that attention mechanism can automatically localise the object of interest and improve

the overall classification performance. The second task of pancreas segmentation is challenging

due to low tissue contrast and large variability in organ shape and size. Moreover, we extend a

standard U-Net architecture (Attention U-Net). We choose to evaluate our implementation on

two commonly used benchmarks: TCIA Pancreas CT -82 [Rot+16] and multi-class abdominal

CT -150. The results show that AGs consistently improve prediction accuracy across di↵er-

ent datasets and training sizes while achieving state-of-the-art performance without requiring

multiple CNN models.

7.1.1 Related work

Attention Gates: AGs are commonly used in classification tasks such as in the analysis of

citation graphs [Vel+17] and natural images [Jet+18; Wan+17a]. Similarly in the context of

natural language processing (NLP), such as image captioning [And+17] and machine translation

[BCB14; LPM15; She+17; Vas+17], there have been several use cases of soft-attention models
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to e�ciently use the given context information. In particular, given a sequence of text and a

current word, a task is to extract a next word in a sentence generation or translation. The

idea of attention mechanisms is to generate a context vector which assigns weights on the

input sequence. Thus, the signal highlights the salient feature of the sequence conditioned on

the current word while suppressing the irrelevant counter-parts, making the prediction more

contextualised.

Initial work on attention modelling has explored salient image regions by interpreting gradient

of output class scores with respect to the input image. Trainable attention, on the other hand,

is enforced by design and categorised as hard- and soft-attention. Hard attention [M+14], e.g.

iterative region proposal and cropping, is often non-di↵erentiable and relies on reinforcement

learning for parameter updates, which makes model training more di�cult. [YM17] used re-

cursive hard-attention to detect anomalies in chest X-ray scans. Contrarily, soft attention is

probabilistic, end-to-end di↵erentiable, and utilises standard back-propagation without need for

posterior sampling. For instance, additive soft attention is used in sentence-to-sentence trans-

lation [BCB14; She+17] and more recently applied to image classification [Jet+18; Wan+17a].

In computer vision, attention mechanisms are applied to a variety of problems, including image

classification [Jet+18; Wan+17a; Zha+17d], segmentation [RZ16], action recognition [Liu+17;

Pei+16; Wan+17c], image captioning [Lu+16; Xu+15], and visual question answering [NHK16;

Yan+15]. [HSS17] used channel-wise attention to highlight important feature dimensions, which

was the top-performer in the ILSVRC 2017 image classification challenge. Similarly, non-local

self attention was used by [Wan+17c] to capture long range dependencies.

In the context of medical image analysis, attention models have been exploited for medical

report generation [Zha+17c; Zha+17b] as well as joint image and text classification [Wan+18].

However, for standard medical image classification, despite often the information to be classified

are extremely localised, only a handful of works use attention mechanisms [Gua+18; Pes+17].

In these methods, either bounding box labels are available to guide the attention, or local

context is extracted by a hard-attention model (i.e. region proposal followed by hard-cropping).

2D Ultrasound Scan Plane Detection: Fetal ultrasound screening is an important diag-
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nostic protocol to detect abnormal fetal development. During screening examination, multiple

anatomically standardised [NHS15] scan planes are used to obtain biometric measurements as

well as identifying abnormalities such as lesions. Ultrasound su↵ers from low signal-to-noise

ratio and image artefacts. As such, diagnostic accuracy and reproducibility is limited and

requires a high level of expert knowledge and training. In the past, several approaches were

proposed [Che+15; Yaq+15], however, they are computationally expensive and cannot be de-

ployed for the real-time application. More recently, [Bau+16] proposed a CNN architecture

called Sononet. It achieves very good performance in real-time plane detection, retrospective

frame retrieval (retrieving the most relevant frame) and weakly supervised object localisation.

However, it su↵ers from low recall value in di↵erentiating di↵erent planar views of the cardiac

chambers, which requires the method to be able to exploit the subtle di↵erences in the local

structure and it makes the problem challenging.

Pancreas Segmentation in 3D-CT Images: Early work on pancreas segmentation from ab-

dominal CT used statistical shape models [CSL16; SNS16] or multi-atlas techniques [Oda+17;

Wol+13]. In particular, atlas approaches benefit from implicit shape constraints enforced by

propagation of manual annotations. However, in public benchmarks such as the TCIA dataset

[Rot+16], Dice similarity coe�cients (DSC) for atlas-based frameworks are relatively low, rang-

ing from 69.6% to 73.9% [Oda+17; Wol+13]. A classification based framework was proposed

by [Zog+15] to remove the dependency of atlas to image registration. Recently, cascaded multi-

stage CNN models [Rot+17; Rot+18; Zho+17] have been proposed to address the problem.

Here, an initial coarse-level model (e.g. U-Net or Regression Forest) is used to obtain a ROI

and then a cropped ROI is used for segmentation refinement by a second model. Similarly,

combinations of 2D-FCN and recurrent neural network (RNN) models are utilised by [Cai+17]

to exploit dependencies between adjacent axial slices. These approaches achieve state-of-the-

art performance in the TCIA benchmark (81.2% � 82.4% DSC). Without using a cascaded

framework, the performance drops between 2.0 and 4.4 DSC points. Recently, [Yu+17] pro-

posed an iterative two-stage model that recursively updates local and global predictions, and

both models are trained end-to-end. Besides standard FCNs, dense connections [Gib+17] and

sparse convolutions [HBO18; HO17] have been applied to the CT pancreas segmentation prob-
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lem. Dense connections and sparse kernels reduce computational complexity by requiring less

number of non-zero parameters.

7.1.2 Contributions

In this work, we propose a novel soft-attention gating module that can be utilised in CNN

based standard image analysis models for dense label predictions. Additionally, we explore the

benefit of AGs to medical image analysis, in particular, in the context of image classification

and segmentation. The contributions of this work can be summarised as follows:

• We take the attention approach proposed by [Jet+18] a step further by proposing grid-

based gating that allows attention gates to be more specific to local regions. This improves

performance compared to gating based on a global feature vector. Moreover, our approach

is not only limited to adaptive pooling [Jet+18] but can be also used for dense predictions

as in segmentation networks.

• We propose one of the first use cases of soft-attention in a feed-forward CNNmodel applied

to a medical imaging task that is end-to-end trainable. The proposed attention gates

can replace hard-attention approaches used in image classification [YM17] and external

organ localisation models in image segmentation frameworks [KKK18; Oda+17; Rot+17;

Rot+18]. This also eliminates the need for any bounding box labels and backpropagation-

based saliency map generation used by [Bau+16].

• For classification, we apply the proposed model to real-time fetal ultrasound scan plane

detection and show its superior classification performance over the baseline approach.

We show that attention maps can used for fast (weakly-supervised) object localisation,

demonstrating that the attended features indeed correlate with the anatomy of interest.

• For segmentation, an extension to the standard U-Net model is proposed that provides

increased sensitivity without the need of complicated heuristics, while not sacrificing

specificity. We demonstrate that accuracy improvements when using U-Net are consistent

across di↵erent imaging datasets and training sizes.
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• We demonstrate that the proposed attention mechanism provides fine-scale attention

maps that can be visualised, with minimal computational overhead, which helps with

interpretability of predictions.

7.2 Methodology

7.2.1 Convolutional neural network

CNNs are now the state-of-the-art method for many tasks including classification , localisation

and segmentation [Bai+18; Kam+17; Kam+18; Lee+15; Lit+17; LSD15; RFB15; Rot+17;

Rot+18; XT15; Zah+18]. CNNs outperform traditional approaches in medical image analysis

while being an order of magnitude faster than, e.g., graph-cut and multi-atlas segmentation

techniques [Wol+13]. The success of CNNs is attributed to the fact that (I) domain specific

image features are learnt using stochastic gradient descent (SGD) optimisation, (II) learnt ker-

nels are shared across all pixels, and (III) image convolution operations exploit the structural

information in medical images in an optimal fashion. However, it remains di�cult to reduce

false-positive predictions for small objects that show large shape variability. In such cases, in

order to improve the accuracy, current frameworks [Gua+18; KKK18; Rot+17; Rot+18] rely

on additional preceding object localisation models to simplify the task into separate localisation

and subsequent classification/segmentation steps, or guide the localisation using weak labels

[Pes+17]. Here, we demonstrate that the same objective can be achieved by integrating at-

tention gates (AGs) in a standard CNN model. This does not require the training of multiple

models and a large number of extra model parameters. In contrast to the localisation model

in multi-stage CNNs, AGs progressively suppress feature responses in irrelevant background

regions without the requirement to crop a ROI between networks.
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Figure 7.1: Axial (a) and sagittal (f) views of a 3DCT scan, (b,g) attention coe�cients, image feature

activations before (c,h) and after attention gating (d,e,i,j). Similarly, (k-n) visualise the gating on a

coarse scale skip connection. The filtered feature activations (d,e,i,j) are collected from multiple AGs,

where a subset of organs is selected by each gate and activations consistently correspond to specific

structures across di↵erent scans.

7.2.2 Attention gate module

We now introduce Attention Gate (AG), which is a mechanism which can be incorporated in

any existing CNN architecture. Let xl = {xl

i
}
n

i=1 be the activation map of a chosen layer l 2

{1, . . . , L}, where each xl

i
represents the pixel-wise feature vector of length Fl (i.e. the number

of channels). For each xl

i
, AG computes coe�cients ↵l = {↵l

i
}
n

=1, where ↵
l

i
2 [0, 1], in order

to identify salient image regions and prune feature responses to preserve only the activations

relevant to the specific task as shown in Figure 7.1. The output of AG is x̂l = {↵l

i
xl

i
}
n

i=1, where

each feature vector is scaled by the corresponding attention coe�cient.

The attention coe�cients ↵l

i
are computed as follows: In standard CNN architectures, to cap-

ture a su�ciently large receptive field and thus, semantic contextual information, the feature-

map is gradually downsampled. The features on the coarse spatial grid level identify location

of the target objects and model their relationship at global scale. Let g 2 RFg be such global

feature vector and provide information to AGs to disambiguate task-irrelevant feature content

in xl

i
. The idea is to consider each xl

i
and g jointly to attend the features at each scale l that

are most relevant to the objective being minimised.
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Figure 7.2: Schematic of the proposed additive attention gate (AG). Input features (xl) are
scaled with attention coe�cients (↵) computed in AG. Spatial regions are selected by analysing
both the activations and contextual information provided by the gating signal ( g ) which is
collected from a coarser scale. Grid resampling of attention coe�cients is performed using
trilinear interpolation.

There are two commonly used attention types: multiplicative [LPM15] and additive attention

[BCB14]. The former is faster to compute and more memory-e�cient in practice since it can be

implemented as a matrix multiplication. However, additive attention is experimentally shown

to be performing better for large dimensional input features [Bri+17]. For this reason, we use

the latter to obtain the gating coe�cient as can be seen in Figure 7.2, which is formulated as

follows:

ql
att,i

=  T
�
�1 (W

T

x
xl

i
+W T

g
g + bxg )

�
+ b (7.1)

↵l = �2( q
l

att
(xl , g ; ⇥att) ), (7.2)

where �1(x) is an element-wise nonlinearity (e.g. rectified linear-unit) and �2(x) is a normal-

isation function. For example, one can apply sigmoid to restrict the range to [0, 1], or one

can apply softmax operation ↵l

i
= eq

l
att,i/

P
i
eq

l
att,i such that the attention map sums to 1.

AG is therefore characterised by a set of parameters ⇥att containing: linear transformations

Wx 2 R
Fl⇥Fint , Wg 2 R

Fg⇥Fint ,  2 RFint⇥1 and bias terms b 2 R , bxg 2 RFint . The linear

transformations are computed using channel-wise 1⇥ 1⇥ 1 convolutions.

We note that AG parameters can be trained with the standard back-propagation updates with-

out a need for sampling based optimisation methods as used in hard-attention [M+14]. While

AG does not require auxiliary loss function to optimise, we found that using deep-supervision
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[Lee+15] encourages the intermediate feature-maps to be semantically discriminative at each

image scale. This ensures that attention units, at di↵erent scales, have an ability to influ-

ence the responses to a large range of image foreground content. We therefore prevent dense

predictions from being reconstructed from small subsets of gated feature-maps.

Multi-dimensional attention

In case of where multiple semantic classes are present in the image, one can learn multi-

dimensional attention coe�cients. This is inspired by the approach of [She+17], where multi-

dimensional attention coe�cients are used to learn sentence embeddings. Thus, each AG learns

to focus on a subset of target structures. In case of multi-dimensional AGs, each ↵l corresponds

to a vector and produce x̂l = [↵l

(1)�x
l, . . . ,↵l

(m)�x
l] where ↵l

(k) is k-th sub AG and� is element-

wise multiplication operation. In each sub-AG, complementary information is extracted and

fused to define the output of skip connection.

Gating signal and grid attention

As the gating signal g must encode global information from large spatial context, it is usually

obtained from the coarsest scale activation map. For example in classification, one could use the

activation map just before the final softmax layer. In the context of medical imaging, however,

since most objects of interest are highly localised, flattening may have the disadvantage of

losing important spatial context. In fact, in many cases a few max-pooling operations are

su�cient to infer the global context without explicitly using the global pooling. Therefore, we

propose a grid attention mechanism. The idea is to use the coarse scale feature map before any

flattening is done. For example, given an input tensor size of Fl⇥Hx⇥Wx, after r max pooling

operations, the tensor size is reduced to Fg ⇥Hg ⇥Wg = Fg ⇥Hx/(2r)⇥Wy/(2r). To generate

the attention map, we can either downsample or upsample the coarse grid to match the spatial

resolution of xl. In this way, the attention mechanism has more flexibility in terms of what to

focus on a regional basis. For upsampling, we chose to use bilinear upsampling. Note that the

upsampling can be replaced by a learnable weight, however, we did not opt for this for the sake
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Figure 7.3: A block diagram of the proposed Attention U-Net segmentation model. Input image
is progressively filtered and downsampled by factor of 2 at each scale in the encoding part of
the network (e.g. H4 = H1/8). Nc denotes the number of classes. Attention gates (AGs) filter
the features propagated through the skip connections. Schematic of the AGs is shown in Figure
7.2. Feature selectivity in AGs is achieved by use of contextual information (gating) extracted
in coarser scales.

of simplicity. For segmentation, one can directly use the coarsest activation map as the gating

signal.

Backward pass through attention gates

Information extracted from coarse scale is used in gating to disambiguate irrelevant and noisy

responses in input feature-maps. For instance, in the U-Net architecture, gating is performed on

skip connections right before the concatenation to merge only relevant activations. Additionally,

AGs filter the neuron activations during the forward pass as well as during the backward pass.

Gradients originating from background regions are down weighted during the backward pass.

This allows model parameters in shallower layers to be updated mostly based on spatial regions

that are relevant to a given task. The update rule for convolution parameters in layer l� 1 can

be formulated as follows:

@(x̂l

i
)

@ (�l�1)
=
@
�
↵l

i
f(xl�1

i
;�l�1)

�

@ (�l�1)
= ↵l

i

@(f(xl�1
i

;�l�1))

@ (�l�1)
+

@(↵l

i
)

@ (�l�1)
xl

i
(7.3)
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where the first gradient term on the right-hand side is scaled with ↵l

i
.

7.2.3 Attention gates for segmentation

In this work, we build our attention-gated segmentation model on top of a standard 3D U-Net

architecture. U-Nets are commonly used for image segmentation tasks because of their good

performance and e�cient use of GPU memory. The latter advantage is mainly linked to ex-

traction of image features at multiple image scales. Coarse feature-maps capture contextual

information and highlight the category and location of foreground objects. Feature-maps ex-

tracted at multiple scales are later merged through skip connections to combine coarse- and

fine-level dense predictions as shown in Figure 7.3. The proposed AGs are incorporated into the

standard U-Net architecture to highlight salient features that are passed through the skip con-

nections. For AGs, we chose sigmoid activation function for normalisation: �2(x) =
1

1+exp(�x) .

While in image captioning [And+17] and classification [Jet+18] tasks, the softmax activation

function is used to normalise the attention coe�cients �2, however, sequential use of softmax

yields sparser activations at the output. For dense prediction task, we empirically observed

that sigmoid resulted in better training convergence for the AG parameters.

7.2.4 Attention gates for classification

For attention-gated classification model, we chose Sononet [Bau+16] to be our base architecture,

which is a variant of VGG network [SZ14]. The di↵erence is that Sononet can be decoupled

into feature extraction module and adaptation module. In the adaptation module, the number

of channels are first reduced to the number of target classes C. Subsequently, the spatial

information is flattened via channel-wise global average pooling. Finally, a softmax operation

is applied to the resulting vector and the entry with maximum activation is selected as the

prediction. As the network is constrained to classify based on the reduced vector, the network

is forced to extract the most salient features for each class.

The proposed attention mechanism is incorporated in the Sononet architecture to better ex-
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Figure 7.4: The schematics of the proposed attention-gated classification model, AG-Sononet.
The proposed attention units are incorporated in layer 11 and layer 14. The attention maps are
summed along the spatial axes, resulting in vectors with Fli features. The vectors are combined
using fully connected layers at aggregation stage to yield final predictions.

ploit local information. In the modified architecture, termed Attention-Gated Sononet (AG-

Sononet), we remove the adaptation module. The final layer of the feature extraction module

is used as gridded global feature map g. We apply the proposed attention mechanism to layer

11 and 14 just before pooling, We empirically found that attention gates were less e↵ective if

applied to the earliest layer. We speculate that this is because first few layers only represent

low-level features, which is not discriminative yet to be attended. The proposed architecture is

shown in Figure 7.4. After the attention coe�cients {↵l

i
}
n

i=1 are obtained, the weighted average

over the spatial axes is computed, yielding a vector of length Fl at scale l: x̃l =
P

n

i=1 ↵
l

i
xl

i
.

In addition, we also perform the global average pooling on the coarsest scale representation.

The prediction is given by fitting a fully connected layer on the concatenated feature vector

{x̃l1 , x̃l2 , x̃l3} (e.g. l1 = 11, l2 = 14, l3 = 17). We note that for AG-sononet, we normalised the

attention coe�cients as ↵l

i
= (↵l

i
�↵l

min
/
P

j
(↵l

j
�↵l

min
)), where ↵l

min
= minj ↵l

j
, as we realised

that softmax output was often too sparse, making the prediction more challenging.

Given the attended feature vectors at di↵erent scales, we highlight that the aggregation strategy

is flexible and that it can be adjusted depending on the target problem. We empirically observed

that a combination of deep-supervision [Lee+15] for each scale followed by fine-tuning using a

new FC layer fitted on the concatenated vector gave the best performance.

The simplest is to just fit a fully connected layer on the concatenated vector as mentioned
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above. However, we noticed that sometimes the network abandons the fine-scale attention

mechanisms as it is non-trivial to train. An alternative approach is to fit a separate fully

connected (FC) layer at each scale and make separate predictions. The final prediction is then

given by either weighted mean or max operations. One can also use deep-supervision [Lee+15]

to force each scale to learn a useful prediction as well as when combined. We empirically

observed that first training the network at each scale, then fine-tuning using a new FC layer

fitted on the concatenated vector worked the best. In the experimentation, we considered

variations described below.

7.3 Experiments and results

The proposed AG model is modular and independent of application type; as such it can be

easily adapted for pixel and image level classification tasks. To demonstrate its applicabil-

ity to image classification and segmentation, we evaluate the proposed attention based FCN

models on challenging abdominal CT multi-label segmentation and 2D ultrasound image plane

classification problems. In particular, pancreas boundary delineation is a di�cult task due to

shape-variability and poor tissue contrast, similarly image quality and subject variability intro-

duce challenges in 2D-US image classification. Our models are compared against the standard

3D U-Net and Sononet in terms of model prediction performance, model capacity, computation

time, and memory requirements.

7.3.1 Evaluation datasets

In this section, we present the image datasets used in classification and segmentation experi-

ments.
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3D-CT abdominal image datasets

For the experiments, two di↵erent CT abdominal datasets are used: (I) 150 abdominal 3D

CT scans acquired from patients diagnosed with gastric cancer (CT -150). In all images, the

pancreas, liver, and spleen boundaries were semi-automatically delineated by three trained

researchers and manually verified by a clinician. The same dataset is used by [Rot+17] to

benchmark the U-Net model in pancreas segmentation. (II) The second dataset2 (CT -82)

consists of 82 contrast enhanced 3D CT scans with pancreas manual annotations performed

slice-by-slice. This dataset (NIH-TCIA) [Rot+16] is publicly available and commonly used

to benchmark CT pancreas segmentation frameworks. The images from both datasets are

downsampled to isotropic 2.00 mm resolution due to the large image size and hardware memory

limitations.

2D fetal ultrasound image dataset

Our dataset consisted of 2694 2D ultrasound examinations of volunteers with gestational ages

between 18 and 22 weeks. The dataset contains 13 types of standard scan planes and back-

ground, complying the standard specified in the UK National Health Service (NHS) fetal

anomaly screening programme (FASP) handbook [NHS15]. The standard scan planes are:

Brain (Cb.), Brain (Tv.), Profile, Lips, Abdominal, Kidneys, Femur, Spine (Cor.), Spine (Sag.),

4CH, 3VV, RVOT, LVOT. The dataset further includes large portions of frames which con-

tain anatomies that are not part of the scan plane, labelled as “background”. The details of

the image acquisition protocol as well as how scan plane labels are obtained can be found in

[Bau+16]. The data was cropped to central 208 ⇥ 272 to prevent the network from learning

the surrounding annotations shown in the ultrasound scan screen.

2
https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT
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7.3.2 Model training and implementation details

The datasets used in this manuscript contain large class imbalance issue that needs to be

addressed. For ultrasound dataset, due to the nature of screening process, the background

label dominates the dataset. To address this, we used a weighted sampling strategy, where we

matched the probability of sampling one of the foreground labels to the probability of sampling

a background label. For the segmentation models, the class imbalance problem is tackled

using the Sorensen-Dice loss [Dro+16; MNA16] defined over all semantic classes. Dice loss is

experimentally shown to be less sensitive to class imbalance in segmentation tasks.

For both tasks, batch-normalisation, deep-supervision [Lee+15], and standard data-augmentation

techniques (a�ne transformations, axial flips, random crops) are used in training attention and

baseline networks. Intensity values are linearly scaled to obtain a normal distribution N(0, 1).

For classification models, we empirically found that optimising with Stochastic Gradient De-

scent with Nesterov momentum (⇢ = 0.9) worked the best. The initial learning rate was set

to 0.1, which was subsequently reduced by a factor of 0.1 for every 100 epoch. We also used

a warm-start learning rate of 0.01 for the first 5 epochs. For segmentation models, we used

Adam with ↵ = 10�4, �1 = 0.9, �2 = 0.999. The batch size for the Sononet models was set to

64. However, for the 3D-CT segmentation models, gradient updates are computed using small

batch sizes of 2 to 4 samples. For larger segmentation networks, gradient averaging is used

over multiple forward and backward passes. This is mainly because we propose a 3D-model

to capture su�cient semantic context in contrast to the state-of-the-art CNN segmentation

frameworks [Cai+17; Rot+18]. Gating parameters are initialised so that attention gates pass

through feature vectors at all spatial locations. Moreover, we do not require multiple training

stages as in hard-attention based approaches therefore simplifying the training procedure.

Implementation details:

The architecture for AG-sononet is shown in Fig. 7.4. The parameters for AG-Sononet was

initialised using a partially trained Sononet. We compare our models with di↵erent capacities,
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Table 7.1: Multi-class CT abdominal segmentation results obtained on the CT -150 dataset: The
results are reported in terms of Dice score (DSC) and mesh surface to surface distances (S2S).
These distances are reported only for the pancreas segmentations. The proposed Attention
U-Net model is benchmarked against the standard U-Net model for di↵erent training and
testing splits. Inference time (forward pass) of the models are computed for input tensor of size
160⇥ 160⇥ 96. Statistically significant results are highlighted in bold font.

Method U-Net Att U-Net U-Net Att U-Net

Train/Test Split 120/30 120/30 30/120 30/120

Pancreas DSC 0.814±0.116 0.840±0.087 0.741±0.137 0.767±0.132

Pancreas Precision 0.848±0.110 0.849±0.098 0.789±0.176 0.794±0.150

Pancreas Recall 0.806±0.126 0.841±0.092 0.743±0.179 0.762±0.145

Pancreas S2S Dist (mm) 2.358±1.464 1.920±1.284 3.765±3.452 3.507±3.814

Spleen DSC 0.962±0.013 0.965±0.013 0.935±0.095 0.943±0.092

Kidney DSC 0.963±0.013 0.964±0.016 0.951±0.019 0.954±0.021
Number of Params 5.88 M 6.40 M 5.88 M 6.40 M
Inference Time 0.167 s 0.179 s 0.167 s 0.179 s

(a) (b) (c) (d)

Figure 7.5: (a-b) The ground-truth pancreas segmentation, (c) U-Net and (d) Attention U-Net. The

missed dense predictions by U-Net are highlighted with red arrows.

with the initial number of features 8, 16 and 32. For U-net and Attention U-net, the initial

number of features is set to F1 = 8, which is doubled after every max-pooling operation. Our

implementation using PyTorch [Pas+17] is publicly available3.

7.3.3 3D-CT abdominal image segmentation results

The proposed Attention U-Net model is benchmarked against the standard U-Net [RFB15]

on multi-class abdominal CT segmentation. We use CT -150 dataset for both training (120)

and testing (30). The corresponding Dice scores (DSC) and surface distances (S2S) are given

in Table 7.1. The results on pancreas predictions demonstrate that attention gates (AGs)

increase recall values (p = .005) by improving the model’s expression power as it relies on

3
https://github.com/ozan-oktay/Attention-Gated-Networks
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Table 7.2: Segmentation experiments on CT -150 dataset are repeated with higher capacity U-
Net models to demonstrate the e�ciency of the attention models with similar or less network
capacity. The additional filters in the U-Net model are distributed uniformly across all the
layers. Segmentation results for the pancreas are reported in terms of dice score, precision,
recall, surface distances. The models are trained with the same train/test data splits (120/30)

.

Method # of Pars DSC Precision Recall S2S Dist (mm) Run Time

U-Net 6.44 M .821±.119 .849±.111 .814±.125 2.383±1.918 .191 s
U-Net 10.40 M .825±.104 .861±.082 .807±.121 2.202±1.144 .222 s

Table 7.3: Pancreas segmentation results obtained on the TCIA Pancreas-CT Dataset [Rot+16].
The dataset contains in total 82 scans which are split into training (61) and testing (21) sets.
The corresponding results are obtained before (BFT) and after fine tuning (AFT) and also
training the models from scratch (SCR). Statistically significant results are highlighted in bold
font.

Method Dice Score Precision Recall S2S Dist (mm)

B
F
T U-Net 0.690±0.132 0.680±0.109 0.733±0.190 6.389±3.900

Attention U-Net 0.712±0.110 0.693±0.115 0.751±0.149 5.251±2.551

A
F
T U-Net 0.820±0.043 0.824±0.070 0.828±0.064 2.464±0.529

Attention U-Net 0.831±0.038 0.825±0.073 0.840±0.053 2.305±0.568

S
C
R U-Net 0.815±0.068 0.815±0.105 0.826±0.062 2.576±1.180

Attention U-Net 0.821±0.057 0.815±0.093 0.835±0.057 2.333±0.856

AGs to localise foreground pixels. The di↵erence between predictions obtained with these two

models are qualitatively compared in Figure 7.5. In the second experiment, the same models are

trained with fewer training images (30) to show that the performance improvement is consistent

and significant for di↵erent sizes of training data (p = .01). For both approaches, we observe

a performance drop on spleen DSC as the training size is reduced. The drop is less significant

with the proposed framework. For kidney segmentation, the models achieve similar accuracy

since the tissue contrast is higher.

In Table 7.1, we also report the number of trainable parameters for both models. We observe

that by adding 8% extra capacity to the standard U-Net, the performance can be improved by

2-3% in terms of DSC. For a fair comparison, we also train higher capacity U-Net models and

compare against the proposed model with smaller network size. The results shown in Table 7.2

demonstrate that the addition of AGs contributes more than simply increasing model capacity

(uniformly) across all layers of the network (p = .007). Therefore, additional capacity should

be used for AGs to localise tissues, in cases when AGs are used to reduce the redundancy of
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Table 7.4: State-of-the-art CT pancreas segmentation methods that are based on single and
multiple CNN models. The listed segmentation frameworks are evaluated on the same public
benchmark (CT -82) using di↵erent number of training and testing images. Similarly, the FCN
approach proposed in [Rot+17] is benchmarked on CT -150 although it is trained on an external
dataset (Ext).

Method Dataset Pancreas DSC Train/Test # Folds

Hierarchical 3D FCN [Rot+17] CT -150 82.2± 10.2 Ext/150 -
Dense-Dilated FCN [Gib+17] CT -82 & Synapse4 66.0± 10.0 63/9 5-CV
2D U-Net [HBO18] CT -82 75.7± 9.0 66/16 5-CV
HN 2D FCN Stage-1[Rot+18] CT -82 76.8± 11.1 62/20 4-CV
HN 2D FCN Stage-2[Rot+18] CT -82 81.2± 7.3 62/20 4-CV
2D FCN [Cai+17] CT -82 80.3± 9.0 62/20 4-CV
2D FCN + RNN [Cai+17] CT -82 82.3± 6.7 62/20 4-CV
Single Model 2D FCN [Zho+17] CT -82 75.7± 10.5 62/20 4-CV
Multi-Model 2D FCN [Zho+17] CT -82 82.2± 5.7 62/20 4-CV

training multiple, individual models.

Comparison to state-of-the-Art CT abdominal segmentation frameworks

The proposed architecture is evaluated on the public TCIA CT Pancreas benchmark to com-

pare its performance with state-of-the-art methods. Initially, the models trained on CT -150

dataset are directly applied to CT -82 dataset to observe the applicability of the two models on

di↵erent datasets. The corresponding results (BFT) are given in Table 7.3. U-Net model out-

performs traditional atlas techniques [Wol+13] although it was trained on a disjoint dataset.

Moreover, the attention model performs consistently better in pancreas segmentation across

di↵erent datasets. These models are later fine-tuned (AFT) on a subset of TCIA dataset (61

train, 21 test). The output nodes corresponding to spleen and kidney are excluded from the

output softmax computation, and the gradient updates are computed only for the background

and pancreas labels. The results in Table 7.3 and 7.4 show improved performance compared

to concatenated multi-model CNN approaches [Cai+17; Rot+18; Zho+17] due to additional

training data and richer semantic information (e.g. spleen labels). Additionally, we trained

the two models from scratch (SCR) with 61 training images randomly selected from the CT -82

dataset. Similar to the results on CT -150 dataset, AGs improve the segmentation accuracy and

lower the surface distances (p = .03) due to increased recall rate of pancreas pixels (p = .09).
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Table 7.5: Test results for standard scan plane detection. Number of initial filters is denoted
by the postfix “-n”. Time taken for forward (Fwd) and backward (Bwd) passes were recorded
in milliseconds.

Method Accuracy F1 Precision Recall Fwd/Bwd (ms) #Param

Sononet-8 0.969 0.899 0.878 0.922 1.36/2.60 0.16M
AG-Sononet-8 0.977 0.922 0.916 0.929 1.92/3.47 0.18M
Sononet-16 0.977 0.923 0.916 0.931 1.45/3.92 0.65M
AG-Sononet-16 0.978 0.929 0.924 0.934 1.94/5.13 0.70M
Sononet-32 0.979 0.931 0.924 0.938 2.40/6.72 2.58M
AG-Sononet-32 0.980 0.933 0.931 0.935 2.92/8.68 2.79M

Results from state-of-the-art CT pancreas segmentation models are summarised in Table 7.4

for comparison purposes. Since the models are trained on the same training dataset, this

comparison gives an insight on how the attention model compares to the relevant literature. It

is important to note that, post-processing (e.g. using conditional random field) is not utilised in

our framework as the experiments mainly focus on quantification of performance improvement

brought by AGs in an isolated setting. Similarly, residual and dense connections can be used as

in [Gib+17] in conjunction with AGs to improve the segmentation results. In that regard, our

3D Attention U-Net model performs similar to the state-of-the-art, despite the input images are

downsampled to lower resolution. More importantly, our approach significantly improves the

results compared to single-model based segmentation frameworks (see Table 7.4). We do not

require multiple CNN models to localise and segment object boundaries. Lastly, we performed

5-fold cross-validation on the CT -82 dataset using the Attention U-Net for a better comparison,

which achieved 81.48± 6.23 DSC for pancreas labels.

7.3.4 2D fetal ultrasound image classification results

The dataset was split to training (122, 233), validation (30, 553) and testing (38, 243) frames on

subject basis. For evaluation, we used macro-averaged precision, recall, F1, overall accuracy,

the number of parameters and execution speed, summarised in Table 7.5.

In general, AG-Sononet improves the results over Sononet at all capacity levels. In particular,
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Table 7.6: Class-wise performance for AG-Sononet-8. In bracket shows the improvement over
Sononet-8. Bold highlights the improvement more than 0.02.

Precision Recall F1

Brain (Cb.) 0.988 (-0.002) 0.982 (-0.002) 0.985 (-0.002)
Brain (Tv.) 0.980 (0.003) 0.990 (0.002) 0.985 (0.003)
Profile 0.953 (0.055) 0.962 (0.009) 0.958 (0.033)
Lips 0.976 (0.029) 0.956 (-0.003) 0.966 (0.013)
Abdominal 0.963 (0.011) 0.961 (0.007) 0.962 (0.009)
Kidneys 0.863 (0.054) 0.902 (0.003) 0.882 (0.030)
Femur 0.975 (0.019) 0.976 (-0.005) 0.975 (0.007)
Spine (Cor.) 0.935 (0.049) 0.979 (0.000) 0.957 (0.026)
Spine (Sag.) 0.936 (0.055) 0.979 (-0.012) 0.957 (0.024)
4CH 0.943 (0.035) 0.970 (0.007) 0.956 (0.022)
3VV 0.694 (0.050) 0.722 (-0.014) 0.708 (0.021)
RVOT 0.691 (0.029) 0.705 (0.044) 0.698 (0.036)
LVOT 0.925 (0.022) 0.933 (0.027) 0.929 (0.024)
Background 0.995 (-0.001) 0.992 (0.007) 0.993 (0.003)

Figure 7.6: The figure shows the attention coe�cients (↵ls2 , ↵ls3 ) across di↵erent training epochs
(3, 6, 10, 60, 150). The images are extracted from sagittal and axial planes of a 3D abdominal
CT scan from the testing dataset. The model gradually learns to focus on the pancreas, kidney,
and spleen.

AG-Sononet achieves higher precision. AG-Sononet reduces false positive examples because the

gating mechanism suppresses background noise and forces the network to make the prediction

based on class-specific features. As the capacity of Sononet is increased, the gap between the

methods is tightened, but we note that the performance of AG-Sononet is also close to the one

of Sononet with double the capacity. In Table 7.6, we show the class-wise F1, precision and

recall values for AG-Sononet-8, where the improvement over Sononet is indicated in brackets.

We see that the precision increased by around 5% for kidney, profile and spines. For the most

challenging cardiac views, we see on average 3% improvement for 4CH and 3VV (p < 0.05).
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7.3.5 Attention map analysis

The attention coe�cients of the proposed U-Net model, which are obtained from 3D-CT test

images, are visualised with respect to training epochs (see Figure 7.6). We commonly observe

that AGs initially have a uniform distribution and pass features at all spatial locations. This is

gradually updated and localised towards the targeted organ boundaries. Additionally, at coarser

scales AGs provide a rough outline of organs which are gradually refined at finer resolutions.

Moreover, by training multiple AGs at each image scale, we observe that each AG learns to

focus on a particular subset of organs.

Object localisation using attention Maps

With the proposed architecture, the localisation maps can obtained for almost no additional

computational cost. In Figure 7.7, we show the attention maps of AG-Sononet across di↵erent

subjects, together the red bounding box annotation generated using the attention maps. We

see that the network consistently focuses on the object of interest, consistent with the blue

ground truth annotation. We note, however, attention map outlines the discriminant region;

in particular, it does not necessarily coincide with the entire object. Nevertheless, as it does

not use guided backpropagation for localisation (a strategy in [Bau+16]), attention models are

advantageous for real-time applications.

Finally, in Figure 7.7, we show the attention maps of AG-Sononet-FT across di↵erent subjects,

together with the bounding box annotation generated using the attention maps. We see that the

network consistently focuses on the object of interest, which indicates that the network indeed

learnt the most important feature for each class. We note, however, attention map outlines the

discriminant region; in particular, it does not necessarily coincide with the entire object. This

behaviour makes sense because some part of object will appear in background label (i.e. when

the ideal plane is not reached). Qualitatively, however, the bounding boxes well agree with the

annotated ground truth. Most crucially, the attention map is obtained for almost no additional

computational cost; In comparison, [Bau+16] requires guided backpropagation for localisation,
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Figure 7.7: Examples of the obtained attention map and generated bounding boxes (red) from
AG-Sononet-FT across di↵erent subjects. The ground truth annotation is shown in blue. The
detected region highly agrees with the object of interest.

which limits the localisation speed. This highlights the advantage of attention model for the

real-time applications.

7.4 Weakly supervised object localisation (WSL)

In [Bau+16], WSL was performed by exploiting the pixel-level saliency map obtained by guided-

backpropagation, followed by ad-hoc procedure to extract bounding boxes. The same heuristics

can be applied for the given network, however, owing to the attention map, we can devise a more

e�cient way of performing object localisation. In particular, we generate object location by

simply: (1) blur the attention maps, (2) threshold the low activations, (3) perform connected-

component analysis, (4) select a component that overlaps at each scale and (5) apply bounding
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box around the selected components. In this heuristic, backpropagation is not required so it

can be executed e�ciently. We note, however, attention map outlines salient region used by the

network to perform classification; in particular, it does not necessarily agree with the object of

interest. This behaviour makes sense because some part of object will appear both in the class

as well as background frame until the ideal plane is reached. Therefore, the quantitative result

is shown in 7.7, however, the result is biased. We however define new metric called Relative

Correctness, which is defined as 50% of maximum achievable IOU (due to bias). We see that

in this metric, the method achieves very high results, indicating that it can detect relevant

features of the object of interest in its proximity.

Table 7.7: WSL performance for the proposed strategy with AG-Sononet-16. Correctness (Cor.)
is defined as IOU > 0.5. Relative Correctness (Rel.) is defined as IOU > 0.5⇥max(IOUclass).

IOU Mean (Std) Cor. (%) Rel. (%)

Brain (Cb.) 0.69 (0.11) 0.96 0.96
Brain (Tv.) 0.68 (0.12) 0.96 0.96
Profile 0.31 (0.08) 0.00 0.80
Lips 0.42 (0.18) 0.36 0.60
Abdominal 0.71 (0.10) 0.96 0.96
Kidneys 0.73 (0.13) 0.92 0.98
Femur 0.31 (0.11) 0.02 0.58
Spine (Cor.) 0.53 (0.13) 0.56 0.76
Spine (Sag.) 0.53 (0.11) 0.54 0.94
4CH 0.61 (0.14) 0.76 0.86
3VV 0.42 (0.14) 0.34 0.62
RVOT 0.56 (0.15) 0.70 0.76
LVOT 0.54 (0.15) 0.62 0.80

7.5 Discussion

In this work, we considered soft-attention mechanism and discussed how to incorporate this

idea into segmentation and scan plane detection frameworks to better exploit local structures

in CT abdominal and fetal ultrasound images. In particular, we highlighted several aspects:

gridded attention mechanisms, a normalisation strategy for the attention map, and aggrega-

tion strategies. We empirically observed and reported that using soft-max as the activation

function tends to generate a map that is sparsely activated and is overly sensitive to local
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intensity changes. The latter is problematic as in ultrasound imaging, image quality is often

low. In the classification setting, We found that dividing the activations by the sum of the

activations helped generate attention map with larger contextual support. As demonstrated in

the segmentation framework, Sigmoid function is a good alternative as it only normalises the

range and allows more information to flow. However, we found that training is non-trivial due

to the gradient saturation problem.

We noted that training the attention-mechanism was slightly more complex than the standard

network architecture. In particular, we observed that the strategy employed to aggregate the

attention maps at di↵erent scales a↵ects both the learning of the attention mechanism itself and

hence the performance. Having a loss term defined at each scale ensures that the network learns

to attend at each scale. We observed that first training the network at each scale separately,

followed by fine-tuning was the most stable approach to get the optimal performance.

There is a vast body of literature in machine learning exploring di↵erent gating architectures.

For example, highway networks [GSS16] make use of residual connections around the gate

block to allow better gradient back-propagation and slightly softer attention mechanisms. Al-

though our segmentation experiments with residual connections have not provided any signifi-

cant performance improvement, future work will focus on this aspect to obtain a better training

behaviour.

Lastly, we note that the presented quantitative comparisons between the Attention 3D-Unet and

state-of-the-art 2D cascaded models might not be su�cient enough to draw a final conclusion, as

the proposed approach takes advantage of rich contextual information in all spatial dimensions.

On the other hand, the 2D models utilise the high resolution information present in axial

CT planes without any downsampling. We think that with the advent of improved GPU

computation power and memory, larger capacity 3D-CT segmentation models can be trained

with larger image grids without the need for image downsampling. In this regard, future

research will focus more and more on deploying 3D models, and the performance of Attention

U-Net can be further enhanced by utilising fine resolution input batches without any additional

heuristics.
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7.6 Conclusion

In this work we proposed a novel and modular attention gate model that can be easily incorpo-

rated into existing segmentation and classification architectures. Our approach can eliminate

the necessity of applying an external object localisation model by implicitly learning to high-

light salient regions in input images. Moreover, in a classification setting, AGs leverage the

salient information to perform task adaptive feature pooling operation.

We applied the proposed attention model to standard scan plane detection during fetal ultra-

sound screening and showed that it improves overall results, especially precision, with much

less parameters. This was done by generating the gating signal to pinpoint local as well as

global information that is useful for the classification. Similarly, experimental results on CT

segmentation task demonstrate that the proposed AGs are highly beneficial for tissue/organ

identification and localisation. This is particularly true for variable small size organs such as

the pancreas, and similar behaviour is observed in image classification tasks.

Additionally, AGs allow one to generate fine-grained attention map that can be exploited

for object localisation. We envisage that the proposed soft-attention module could support

explainable deep learning, which is a vital research area for medical imaging analysis.



Chapter 8

Conclusion

8.1 Summary

Medical imaging is an indispensable component of modern medical practice, however, due to

high operational and maintenance costs as well as the current sub-optimal data processing

pipelines, the medical devices remain less accessible to large population groups in the world.

The objective of the thesis was to explore the approaches that can help us transition into smarter

imaging protocols. In particular, three main problems were identified in this thesis. First one

was the limitation in the current acquisition protocol. The second was the limitation in the

current data processing pipeline, where we argued that combining acquisition, reconstruction

and post-processing can allow us to optimise directly for the end-goal. The third problem

addressed was the interpretability of automated methods in order to improve their reliability.

In this final chapter, we highlight the achievements of this thesis. The remainder of the chapter

outlines the promising future directions and introduce some of our preliminary work that has

already been done, in the hopes of reaching the goal of smarter imaging.

154
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8.1.1 Achievements

Accelerated dynamic MR data reconstruction

Medical imaging devices are inherently complex and obtaining good image quality is a challeng-

ing task. For MRI, long acquisition time is required in order to produce high quality images. In

particular, for cardiac MRI, one needs to acquire image of moving anatomy, which is extremely

time-consuming and prolonged acquisition time is a burden for patients but also susceptible

to motion artefact. Therefore, improving the acquisition speed for dynamic MRI is extremely

beneficial.

In Chapter 4 and Chapter 5, we presented two approaches for accelerating dynamic MR image

reconstruction, where we showed that the proposed method consistently outperforms state-of-

the-art compressed sensing methods and is capable of preserving anatomical structure more

faithfully up to 11-fold undersampling. In addition, both approaches enabled the reconstruc-

tion on GPU in less than 10 seconds. This is a clinically viable solution, compared to other

compressed sensing methods, which can be time-consuming due to their iterative nature. This

achievement should be able to improve the e�ciency of the data acquisition, making the device

more available, or able to provide this imaging technology in more time-critical environments.

Application-driven MRI : direct MR segmentation from undersampled k-space

In current medical imaging pipelines, there are four major distinct stages: acquisition, recon-

struction, analysis and diagnosis. Typically, each step is optimised individually with respect

to the final image quality. However, in many diagnostic scenarios, perfect reconstructions are

not necessary as long as the images allow clinical practitioners to extract clinically relevant

parameters. From this point of view, we argued that it is more e�cient to optimise the process

with the final goal in mind. we called this paradigm application-driven imaging.

In Chapter 6, we present a novel deep learning framework for extracting clinical parameters di-
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rectly from undersampled cardiac MR data. We proposed two deep architectures, an end-to-end

synthesis network and a latent feature interpolation network, to predict cardiac segmentation

maps from extremely undersampled dynamic MRI data. In particular, we were able to recon-

struct from less than 10 k-space lines per image. This highlights that for certain applications,

even dramatically undersampled data have su�cient information to extract the clinical output.

We envisage that the future of image acquisition with options to image specifically for out-

put, and machine learning algorithms can aid making decisions about whether further in-depth

imaging is required or not in a real-time fashion.

Interpretation of automated methods via attention models

It is expected that automated/semi-automated approaches in medical imaging analysis will be

prevalent in the near future. However, it is increasingly important that one can gain su�cient

understandings of how the automated methods work, such that if they fail, one knows how to

deal with them. This aspect is especially important when we consider accelerated imaging or

application-driven imaging, where multiple stages are combined holistically. In addition, un-

derstanding the method will not only provide the operators with the confidence in the methods

but will also provide the scientist with the opportunity to improve the methods themselves. By

unravelling how machine learning techniques handle information, it may facilitate the discovery

of the new understandings of the problems.

In Chapter 7, we proposed the use of AG models for medical image analysis that automati-

cally learns to focus on target structures of varying shapes and sizes. In particular, we applied

AG networks for two tasks: CT segmentation and ultrasound scan plane detection and local-

isation. In CT segmentation, we saw that attention model can enhance the performance of

segmenting small organs by ignoring the background information. Similar result was observed

for ultrasound scan plane detection, where despite ultrasound having noisy backgrounds and

low interpretability even for a clinician, the AG models were able to find consistent landmarks

where it can perform plane classification. This ability was even utilised for weakly supervised
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localisation, where despite not overlapping exactly with the anatomy, it often pointed to a

subset of it, and we saw high consistency scores.

8.2 Limitations and future work

In this thesis, we have presented three methodologies which addressed each problem respec-

tively. Nevertheless, there is still substantial work that needs be done before these methods

could be deployed in practice. The last part of the thesis will highlight some of the existing

issues and introduce our preliminary work which attempts to address them.

Prospective evaluation

For MRI reconstruction and direct segmentation, despite working with real imaging data, we

still simulated the undersampling from fully sampled data. Ideally, the evaluation should be

done with true data distribution, i.e. from raw undersampled data. In order to do so, we first

need to extend our model to be able to cope with the common acquisition protocols.

There are two things we need to address in particular: non-Cartesian data and parallel imaging.

While most imaging in a clinical setting uses Cartesian acquisition, non-Cartesian acquisition

is often considered to be more robust to motion, as well as providing an e�cient traversal of

k-space and su�ciently incoherent artefact, which makes them well-suited for denoising type

of reconstruction approaches. Recently, we have proposed a deep learning approach to handle

non-Cartesian data in [Sch+19d] and achieved a state-of-the-art result for brain imaging. A

sample reconstruction from the proposed approach is shown in Fig. 8.1. Similarly, we have

recently extended our methods that appeared in Chapter 4 to parallel imaging reconstruction

[Sch+19a; DSR19] for static images. The comparison with the state-of-the-art methods is

shown in Fig. 8.2. The next step is to extend them for a dynamic imaging case so that we can

study the realistic potential for these accelerated imaging techniques.
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Figure 8.1: (Work from [Sch+19d]). The visualisation of the reconstructions of T2 weighted
brain image, where images were undersampled with variable density sampling with AF 4.

Clinical evaluation

The second challenge is to prove the utility of the method with respect to clinical, diagnostic

values. Currently, the evaluation is predominantly based on quantitative metrics, such as PSNR

and SSIM for image reconstruction. For image segmentation, this is typically done by dice score.

However, until clinical trials are performed, the true utility of these methods remain unclear. In

Chapter 6, we evaluated the results with clinical values such as ejection fraction and ventricular

volumes, which brings us slightly closer to studying the diagnostic relevance.

In [Sch+18d], we worked on cardiac di↵usion tensor imaging reconstruction. Although only

preliminary results were achieved, we performed the evaluation of the methods with respect to

clinically relevant parameters such as fractional anisotropy, mean di↵usivity and helix angle and

show that the proposed DL reconstruction methods indeed provides the values more correlated

with the ground truth measurements. The visualisation of these parameters is shown in Fig. 8.3.

Uncertainty estimation

As highlighted in Chapter 3, the current supervised learning framework focuses on obtaining the
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Figure 8.2: (Work from [DSR19]). The visual comparison of the parallel reconstruction of
Cartesian undersampled knee-image for AF 4 (top) and 6 (bottom). From left to right: zero-
filling results, Variational network [Ham+18], VS-Net (proposed), and ground truth.

best point estimate/prediction given input data. In practice, however, there are many sources

of error in data acquisition or modelling. The best practice is to device a model that can

accommodate with such sources of uncertainty. For example, for reconstruction task, if certain

parts of the image are highly corrupted due to aliasing, the network should be less confident

about its reconstruction. Rather than the model attempting to provide the best guess, it seems

logical to equip these methods with the notion of uncertainty estimate. Uncertainty is somewhat

complementary to attention-gate that we introduced in Chapter 7. While the latter provides

the explainability of the how method works, the uncertainty estimates could potentially be

used to explain when the method fails.

We have made a preliminary progress in applying Bayesian deep learning to MR image re-

construction. In [Sch+18d], we tried sub-network-dropout as a proxy for modelling the model

uncertainty, which is also called epistemic uncertainty. In [Sch+18c], we modelled both epis-

temic and aleatoric uncertainty. The sample reconstructions and the uncertainty estimates

are shown in Fig. 8.4. So far we observed that the uncertainty prediction is sensitive to edge,

however, we also see correlation with the pixel intensity. Therefore, the output result does

not seem to truly capture the underlying data/model uncertainty we expect to see. Recitfying
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Figure 8.3: (Work from [Sch+18d]) The comparison of the di↵usion tensor parameters and
error maps from the proposed deep learning approach vs. baseline methods. From top to
bottom: fractional anisotropy (FA), mean di↵usivity (MD) (10�3mm2s�1) and Helix-angle (HA)
(degrees).

the uncertainty estimate is called calibration. We envisage the progress in this direction is

important for the correct deployment of the Bayesian deep learning based models.

Theoretical guarantee

So far, deep learning has demonstrated its e↵ectiveness for a wide range of applications. How-

ever, it is still an active area of research to investigate what makes them so work so well from

a theoretical point of view. In other words, currently, most of the intuition underpinning the

generalisation property of the deep neural networks is still empirical. Therefore, it is crucial to

establish a theoretical framework that can explain its performance, so that one can characterise

how these networks can fail in (realistic) the worst cases.

For the case of accelerated MR reconstruction, a variety of methods have been proposed, which

generally fall in the category of k-space domain method, image domain methods, end-to-end

learning method and iterative methods. For k-space methods, [YHC18] establishes a link be-

tween low-rank based approach (ALOHA) and deep networks. For the iterative methods, there

are some preliminary work which attempts to quantify generalisation risk [Mar+19b]. AU-

TOMAP [Zhu+18a] is a prototypical approach which tries to learn the direct mapping from

k-space to the output image space. Remarkably, despite having a large number of parameters,
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Figure 8.4: (Work from [Sch+18c]) The visualisation of epistemic and aleatoric uncertainty
generated by two variants of the reconstruction networks, overlaid on the ground-truth image.

the method achieved robustness, however the theory behind its e↵ectiveness is still non-existent.

In [Sch+19b], we proposed a variant of approach called dAUTOMAP, which dramatically re-

duces the number of parameters by assuming the kernel-separability of the domain transform,

and achieved a competitive performance to AUTOMAP (see Fig. 8.5 for the architecture). This

highlights that there indeed is a lot of scope to improve the architectural design. However, it

remains unknown how many parameters one needs to achieve the su�cient expressibility and

generalisation given a task and the variation in the dataset. The problem of lack of theoretical

development is not unique to MR reconstruction. For application-driven MRI, it is important

that one can guarantee that the measured data actually contains su�cient information for one

to obtain the clinical output. Therefore, a theoretical bound on how many k-space data sample

is required would be an ideal addition to the proposed method. To this end, information theo-

retic approaches, such as data-processing inequality, might be one of the possible directions for

theoretical analysis.

Domain adaptation, semi-supervised and unsupervised approaches

Currently in deep learning, the most successful branch is supervised learning. Supervised
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Figure 8.5: (Work from [Sch+19b]). A network architecture called dAUTOMAP. dAUTOMAP
directly learns the domain transformation from raw k-space to an output image space. Unlike
AUTOMAP [Zhu+18a], it exploits kernel-separability to significantly reduce the number of
parameters.

learning was also utilised throughout this thesis. However, this is limiting in a sense, as it

requires us to provide the model with a large amount of training data. This means that the

application of supervised learning restricted to the cases where one can acquire true ground

truth. This is problematic as in many cases, it is not possible to obtain perfect ground truth for

inverse problems. In addition, whenever the domain between training and test environments

deviates, one might need to retrain the algorithm with new examples, which is both time-

consuming and ine�cient. Therefore, in order to make supervised learning applicable to a

wider range of problems, one must investigate how the learnt models can be generalised to an

unseen distribution, solve the problem from limited number of examples, or solve the problem

without requiring the ground truth data.

One promising approach is domain adaptation and transfer learning. These approaches bridge

the gap between two domain distributions, called domain shift. For accelerated MR recon-

struction, in [Ouy+19b] we proposed to train on a generic, large simulation-based dataset,

then apply to other domain without any fine-tuning. We saw that the proposed approach had

similar or better performance compared to training on real images. Studying the domain shift

problem for di↵erent tasks (classification, segmentation and reconstruction) seems important
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for us to better understand the subtle di↵erences between these problems.

Another possible direction is unsupervised learning. In this formulation, the goal is to learn

the prediction without having any ground truth data. Some work already exists, which em-

ploys Stein’s unsupervised risk estimator (SURE). It was first used for image denoising, which

was subsequently extended for image reconstruction. [ZSC18; Sha+18; Cha+19a; Leh+18].

Unsupservised learning approaches can be useful for the problems where it is di�cult to

simulate the forward model, or it is extremely di�cult/time consuming to obtain correct

ground truth data. It can be expected to see the deep learning community shift towards

semi-supervised/unsupervised learning problems.

8.3 Final remark

The main goal of the work covered in thesis is to introduce deep learning approaches that can

be used to improve medical imaging techniques holistically rather than focussing on medical

image analysis and post-processing. While the techniques introduced in the thesis require more

in-depth evaluation to be carried out in the future, we believe that the thesis serves as a great

starting point for the broad spectrum of research in this direction. In our e↵ort to accelerate

the field, we make all the code from the main chapters publicly available. They can be found

in the following Github pages:

• Ch 4 and 5: https://github.com/js3611/Deep-MRI-Reconstruction

• Ch. 6: https://github.com/js3611/DirectCardiacSegmentation

• Ch. 7: https://github.com/ozan-oktay/Attention-Gatd-Networks

• Ch. 8: https://github.com/js3611/dAUTOMAP
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