39 research outputs found

    An instrumentation tool for threaded Java application servers

    Get PDF
    Rapid development of e-business services has extended the use of application servers on companies. The Java platform has an important presence on this sector because of its portability and development facilities. Java application servers are becoming a key component in these environments, thus the knowledge of these servers behavior requires the use of new tools to overcome the limitations of existing ones in both offered information and semantics of execution. The natural environment for e-business applications is composed by medium-range parallel servers executing Java based threaded applications. So, understanding threaded Java application servers on parallel environments is the main target of our tool: JIS (Java Instrumentation Suite). This paper describes the design and implementation of JIS and highlights some of the main functionalities. Our initial implementation targets the JVM version 1.3 running Jakarta Tomcat v4.0 on top of a Linux parallel platform with a 2.4.16 kernel.Peer ReviewedPostprint (published version

    Performance Evaluation of Unified Parallel C Collective Communications

    Get PDF
    This is a post-peer-review, pre-copyedit version. The final authenticated version is available online at: http://dx.doi.org/10.1109/HPCC.2009.88[Abstract] Unified Parallel C (UPC) is an extension of ANSI C designed for parallel programming. UPC collective primitives, which are part of the UPC standard, increase programming productivity while reducing the communication overhead. This paper presents an up-to-date performance evaluation of two publicly available UPC collective implementations on three scenarios: shared, distributed, and hybrid shared/distributed memory architectures. The characterization of the throughput of collective primitives is useful for increasing performance through the runtime selection of the appropriate primitive implementation, which depends on the message size and the memory architecture, as well as to detect inefficient implementations. In fact, based on the analysis of the UPC collectives performance, we proposed some optimizations for the current UPC collective libraries. We have also compared the performance of the UPC collective primitives and their MPI counterparts, showing that there is room for improvement. Finally, this paper concludes with an analysis of the influence of the performance of the UPC collectives on a representative communication-intensive application, showing that their optimization is highly important for UPC scalability.Ministerio de Ciencia e Innovación; TIN2007-67537-C03-02Xunta de Galicia; 3/2006 DOGA 13/12/200

    Complete instrumentation requirements for performance analysis of web based technologies

    Get PDF
    In this paper we present the eDragon environment, a research platform created to perform complete performance analysis of new Web-based technologies. eDragon enables the understanding of how application servers work in both sequential and parallel platforms offering a new insight in the usage of system resources. The environment is composed of a set of instrumentation modules, a performance analysis and visualization tool and a set of experimental methodologies to perform complete performance analysis of Web-based technologies. This paper describes the design and implementation of this research platform and highlights some of its main functionalities. We will also show how a detailed analytical view can be obtained through the application of a bottom-up strategy, starting with a group of system events and advancing to more complex performance metrics using a continuous derivation process.We acknowledge the European Center for Parallelism of Barcelona (CEPBA) and CEPBA-IBM Research Institute (CIRI) for supplying the computing resources for our experiments. This work is supported by the Ministry of Science and Technology of Spain and the European Union (FEDER funds) under contract TIC2001–0995-C02–0 I and by Direcció General de Recerca of the Generalitat de Catalunya under grant 2001FI 00694 UPC APTIND.Peer ReviewedPostprint (author's final draft

    Switch-based packing technique to reduce traffic and latency in token coherence

    Full text link
    Token Coherence is a cache coherence protocol able to simultaneously capture the best attributes of traditional protocols: low latency and scalability. However it may lose these desired features when (1) several nodes contend for the same memory block and (2) nodes write highly-shared blocks. The first situation leads to the issue of simultaneous broadcast requests which threaten the protocol scalability. The second situation results in a burst of token responses directed to the writer, which turn it into a bottleneck and increase the latency. To address these problems, we propose a switch-based packing technique able to encapsulate several messages (while in transit) into just one. Its application to the simultaneous broadcasts significantly reduces their bandwidth requirements (up to 45%). Its application to token responses lowers their transmission latency (by 70%). Thus, the packing technique decreases both the latency and coherence traffic, thereby improving system performance (about 15% of reduction in runtime). © 2011 Elsevier Inc. All rights reserved.This work was partially supported by the Spanish MEC and MICINN, as well as European Commission FEDER funds, under Grants CSD2006-00046 and TIN2009-14475-C04-01.Cuesta Sáez, BA.; Robles Martínez, A.; Duato Marín, JF. (2012). Switch-based packing technique to reduce traffic and latency in token coherence. Journal of Parallel and Distributed Computing. 72(3):409-423. https://doi.org/10.1016/j.jpdc.2011.11.010S40942372

    Topology control in Heterogeneous Wireless Sensor Network

    Get PDF
    Topology of a Wireless Sensor Network determines the connectivity of the wireless network and topology Control is the important technique of extending network lifetime while preserving network connectivity. In this paper, we consider a heterogeneous multi-hop wireless sensor network consisting of sensor nodes and relay nodes. Relay nodes strategically deployed for fault tolerance and virtual backbone creation. We propose topology control algorithm based on hybrid approaches to maximize the topological network lifetime of the WSN. The experimental performance evaluation demonstrates the topology control with efficient use of relay nodes maximizes the network lifetime of WSNs

    A Comparison of Prediction Algorithms for Prefetching in the Current Web

    Full text link
    [EN] This paper reviews a representative subset of the prediction algorithms used for Web prefetching classifying them according to the information gathered. Then, the DDG algorithm is described. The main novelty of this algorithm lies in the fact that, unlike previous algorithms, it creates a prediction model according to the structure of the current web. To this end, the algorithm distinguishes between container objects and embedded objects. Its performance is compared against important existing algorithms, and results show that, for the same amount of extra requests to the server, DDG always outperforms those algorithms by reducing the perceived latency up to 70% more without increasing the complexity order.This work has been partially supported by the Spanish Ministry of Science and Innovation under Grant TIN2009-08201, the Generalitat Valenciana under Grant GV/2011/002 and the Universitat Politecnica de Valencia under Grant PAID-06-10/2424.Josep Domenech; Sahuquillo Borrás, J.; Gil Salinas, JA.; Pont Sanjuan, A. (2012). A Comparison of Prediction Algorithms for Prefetching in the Current Web. Journal of Web Engineering. 11(1):64-78. http://hdl.handle.net/10251/44349S647811

    Path-Based partitioning methods for 3D Networks-on-Chip with minimal adaptive routing

    Full text link
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Combining the benefits of 3D ICs and Networks-on-Chip (NoCs) schemes provides a significant performance gain in Chip Multiprocessors (CMPs) architectures. As multicast communication is commonly used in cache coherence protocols for CMPs and in various parallel applications, the performance of these systems can be significantly improved if multicast operations are supported at the hardware level. In this paper, we present several partitioning methods for the path-based multicast approach in 3D mesh-based NoCs, each with different levels of efficiency. In addition, we develop novel analytical models for unicast and multicast traffic to explore the efficiency of each approach. In order to distribute the unicast and multicast traffic more efficiently over the network, we propose the Minimal and Adaptive Routing (MAR) algorithm for the presented partitioning methods. The analytical and experimental results show that an advantageous method named Recursive Partitioning (RP) outperforms the other approaches. RP recursively partitions the network until all partitions contain a comparable number of switches and thus the multicast traffic is equally distributed among several subsets and the network latency is considerably decreased. The simulation results reveal that the RP method can achieve performance improvement across all workloads while performance can be further improved by utilizing the MAR algorithm. Nineteen percent average and 42 percent maximum latency reduction are obtained on SPLASH-2 and PARSEC benchmarks running on a 64-core CMP.Ebrahimi, M.; Daneshtalab, M.; Liljeberg, P.; Plosila, J.; Flich Cardo, J.; Tenhunen, H. (2014). Path-Based partitioning methods for 3D Networks-on-Chip with minimal adaptive routing. IEEE Transactions on Computers. 63(3):718-733. doi:10.1109/TC.2012.255S71873363

    Memory-Access-Aware Data Structure Transformations for Embedded Software with Dynamic Data Accesses

    Get PDF
    Embedded systems are evolving from traditional, stand-alone devices to devices that participate in Internet activity. The days of simple, manifest embedded software [e.g. a simple finite-impulse response (FIR) algorithm on a digital signal processor DSP)] are over. Complex, nonmanifest code, executed on a variety of embedded platforms in a distributed manner, characterizes next generation embedded software. One dominant niche, which we concentrate on, is embedded, multimedia software. The need is present to map large scale, dynamic, multimedia software onto an embedded system in a systematic and highly optimized manner. The objective of this paper is to introduce high-level, systematically applicable, data structure transformations and to show in detail the practical feasibility of our optimizations on three real-life multimedia case studies. We derive Pareto tradeoff points in terms of accesses versus memory footprint and obtain significant gains in execution time and power consumption with respect to the initial implementation choices. Our approach is a first step to systematically applying high-level data structure transformations in the context of memory-efficient and low-power multimedia systems
    corecore