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Abstract 

In this paper we present the eDragon environment, a 
research platform created to perform complete 
performance analysis of new Web-based technologies. 
eDragon enables the understanding of how application 
servers work in both sequential and parallel platforms 
offering a new insight in the usage of system resources. 
The environment is composed of a set of instrumentation 
modules, a performance analysis and visualization tool 
and a set of experimental methodologies to perform 
complete performance analysis of Web-based 
technologies. This paper describes the design and 
implementation of this research platform and highlights 
some of its main functionalities. We will also show how a 
detailed analytical view can be obtained through the 
application of a bottom-up strategy, starting with a group 
of system events and advancing to more complex 
performance metrics using a continuous derivation 
process. 

1. Introduction

Rapid development of e-business services has 
extended the use of web and application servers on 
companies, generating a high demand of tools to design, 
implement and analyse the applications offering these 
services. Most of these applications are built around Java 
(mainly because of its portability and development 
facilities). Java application servers are becoming a key 
component in these environments and therefore, the 
optimization of their behaviour in terms of performance is 
becoming important. The potential parallelism that exists 
in concurrent requests as well in the applications offering 
the service makes the use of parallel platforms necessary. 
Ensuring an efficient utilization of the resources (e.g. 
processors, memory, input/output, …) is important in 
order to achieve good response times and throughput. 

Different approaches are used in existing tools to carry 
on the analysis process of Java applications. All of them 
report about the behaviour of the applications in terms of 
object creation, loop structures, execution patterns or time 
consumption inside functions. However, they do not 
consider system status nor the interaction between the 
applications and the underlying operating system. For 
example, these tools can detect which loop in a program 
is consuming 80% of the total execution time but they are 
not able to indicate how much real processor usage has 
been done inside of that loop because they don’t extract 
low-level information of the system status.  

Figure 1 shows the different layers existing in Java-
based environments and how their instrumentation is 
performed by currently existing tools and by our proposal 
(Java Instrumentation Suite, JIS). Some of the tools 
oriented to study application servers [6][7][8][9] report 
different metrics that measure the application server 
performance, collecting information through the JVM 
Profiler Interface (JVMPI [1]). This limits the kind of 
information that they can get and therefore, their ability to 
perform a fine-grained analysis of the multithreaded 
execution and the scheduling issues involved in the 
execution of the threads that come from the Java 
application. The basic actions performed by current web-
based technologies are the following: reading/writing 
contents from/to disks; receiving/sending data from/to 
networks; and finally, processing data coming from disks 
and networks. This implies that, mainly, three basic 
system resources support web-based technologies and 
applications: processors, disks and networks. Thus, a 
general requirement in order to perform complete 
performance analysis of web-based technologies and 
applications is to be able to obtain detailed information 
about the usage of these resources. Currently, the user 
relies on the use of system utilities (such as sar, mpstat, 
or iostat on Linux, as proposed in [2]) to collect this 
information and relate it with the information provided by 
the above-mentioned tools, thus restricting the analysis 
possibilities. In addition to that, understanding these 
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complex systems requires a methodology to derive 
metrics from the simple resource usage indicators.   

 

 
Figure 1. Layers in Java-based technologies and 
instrumentation. 

 
This paper describes the design and implementation of 

a complete and integrated environment to instrument 
application servers and analyse and visualize their 
performance. The eDragon [3] environment is composed 
of a set of instrumentation tools (JIS), an analysis and 
visualization tool (Paraver [5]) and an experimental 
methodology based on a bottom-up strategy over 
collected data in combination with basic operational 
analysis concepts (as shown in Figure 2). The 
environment is being designed to perform an integral 
analysis of applications based on Java multithreaded 
technology, specially focusing on application severs and 
new Web technologies. It can also be used in all Java 
environments independently of their nature, as it has been 
successfully tested in Java numerical applications 
[11][19] as well as on Web servers such as Tomcat [13].  

 

 
 

Figure 2. System performance indexes derivation process 
 
The remaining of this paper is organized as follows. 

Section 2 introduces some preliminary concepts about 
Web-based applications that we consider necessary to 
follow the paper. Section 3 describes the instrumentation 
methodology used in eDragon. Section 4 presents the 
visualization tool (Paraver) and analysis methodology. 

Some preliminary experiences using the eDragon 
environment are described and analysed in Section 5. 
Section 6 concludes the paper and outlines some future 
work. 

 
2. Basic concepts about web based applica-
tions 

 
Applications based on the web, as understood in the 

scope of this paper, and running on top of application 
servers are a case of multi-tier application. They are 
mainly composed of a Client and a Server tier. The client 
tier is responsible of interacting with application users 
and to generate requests to be attended by the server; it 
can be considered as a user interface of the application. 
The server tier implements the logic of the application 
and is responsible of serving user-generated requests.  

Web contents can be basically divided depending on 
their nature as static or dynamic. Static contents are those 
served to clients without any kind of process. HTML files 
are the best example of static contents: when requested, 
they are read from disk and sent to clients directly and 
without any modification. Dynamic contents are those 
requiring some process before being sent to clients. 
Typical dynamic contents are server scripts, which are 
processed and generated results (typically formatted as an 
HTML page) are sent to clients. 

Servlets are more sophisticated dynamic contents than 
basic server scripts. They are associated with an 
execution framework composed of auxiliary objects, 
allowing fast and easy programming of relatively 
complex algorithms on server machines. Servlets’ results 
can be sent to clients as HTML contents. A typical servlet 
example is to generate HTML reports based on 
information extracted from data sources. 

Enterprise Java Beans (EJB) are more complex objects 
than servlets and are the base of porting the object 
components paradigm to application servers. Currently, 
J2EE [10] compliant application servers must support 
EJB objects on their frameworks. As the complexity of 
web components is increased, also the complexity of 
implemented applications running on application servers 
is increased. EJB allow developers to implement real 
distributed applications based on the Web easily and 
rapidly.  J2EE compliant Application Servers are 
composed of two different layers: Web container and EJB 
container, considering servlets as a part of the Web 
container.  

The execution schema of web servers is usually 
implemented as follows: one thread is responsible of 
accepting new incoming connections on the server’s 
listening port and assigning to them a socket structure. 
After this, the acceptor thread assigns the created socket 
structure to another thread (which will be responsible of 



 

attending and serving received requests) and continues 
accepting new connections. Threads serving requests are 
commonly chosen from a pool of threads in order to avoid 
excessive thread creation overheads. The Tomcat [13] 
web server used in this paper also follows the described 
working schema.  

 
3. Fine-grain system instrumentation 

 
Instrumentation is the first step when trying to study 

an already implemented application. Although in some 
cases source code distributions are available, most 
commercial applications are not open source. In order to 
obtain information about the activity of applications, 
support from the system must be provided. Some 
environments offer system tools that give information 
about system status and applications status. Other 
environments do not offer this kind of facilities and it is 
required to introduce creative solutions to obtain the 
desired information.  
JIS (Java Instrumentation Suite) is the instrumentation set 
of tools developed in the eDragon project to study Java-
based applications, covering different available platforms 
[12]. The final result of an instrumentation performed by 
JIS is an application post-mortem trace, ready to be 
analysed with Paraver [5]. These traces reflect the activity 
of each Java thread in the application (through a set of 
predefined states that are representative of their parallel 
execution) and collect the occurrence of some predefined 
events along the whole application lifetime. Paraver 
traces contain three types of records: state, events and 
communication. State records represent thread states 
along time (running, ready or blocked). For example, 
Figure 3 shows the aspect of a JIS-generated trace 
visualised with Paraver. On the y-axis application’s 
threads are disposed and on the x-axis time is represented. 
Event records characterize punctual events in the trace 
(I/O operations, context switches, socket operations and 
user-defined events are available on JIS, among others). 
Finally, communication records are used on JIS to track 
resource sharing among threads as, for example, sockets 
being (re)used by different threads. 
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Figure 3. Thread state representation on Paraver 
 
JIS differs from other analysis environments for Java 

applications in the degree of detail offered about system 
resources. Most of existing tools [6][7][8][9] focus on 
offering detailed information about the behaviour of 
studied applications forgetting the interaction of these 
applications with the underlying operating system. JIS 
comes to cover this lack of detail on system status when 
instrumenting Java applications. The resources observed 
by JIS are diverse, going from thread status (in relation to 
CPU state) up to the length and duration of I/O 
operations.  

As said above, the eDragon environment focuses its 
analysis purposes on application servers and new Web 
technologies. This fact has forced us to introduce some 
specific requirements on data acquisition in order to cover 
all demanded system status aspects necessary to perform 
a complete modelling process of the behaviour of this 
kind of applications. 

 
3.1. Platforms 

 
Currently, the eDragon environment is available for 

three platforms: Linux over IA32 architectures, AIX over 
IBM machines and IRIX running on SGI computers. 
Particularities of each platform have been overcome on 
JIS by dividing its architecture in three layers; two of 
them are system-independent and the other one depends 
on specific system characteristics, as shown in Figure 4. 
In this design, platform-independent layers can be reused 
on different versions of the tool. This paper focuses on 
the implementation on top of Linux and IA32 
architectures, running JDK1.3. 

 



 

 

 
 

Figure 4. JIS architecture 
 

3.2. Collected information, instrumentation levels 
and architecture issues 

 
In order to perform a complete system instrumentation 

allowing a global vision not just of the behaviour of the 
application but the reasons of that behaviour, it’s required 
to collect information from some different sources. Our 
proposal focuses on thread status, I/O operations (over 
storage devices as well as sockets), network devices and 
memory usage. Information generated by applications 
through user events must also be considered as an 
important information source because it allows a put-
together process between system status and application 
behaviour. 

Applications can be modelled from their interaction 
with the system and from their semantics. Interaction 
between application and system means knowing how 
application particularities related with the system (number 
of threads created, degree of activity of these threads, 
amount of I/O operations done, usage of network 
resources, …) affect the resulting performance of 
applications. On another hand, this information should 
have some degree of relation with application semantics 
to make it comprehensible. No system activity related 
with an application can be understood without knowing 
what was that application doing or trying to do at each 
moment in time. So, collecting information concerning 
the behaviour of applications and information about 
system resources consumption and putting all them 
together requires a new concept of instrumentation tool, 
which is one of the contributions of our paper.  

All the information sources mentioned above can be 
classified in different levels depending on how they can 
be accessed to obtain data. JIS instruments a Java 
application at three different levels: Application Level, 
Java Virtual Machine level and System level, as shown in 
Figure 4. This multi-level architecture is justified by the 
different nature of data sources implied in the 
instrumentation process.  

 

 
 

Figure 5. JIS instrumentation process 
 
Information collected by the different JIS layers is 

finally merged in order to produce a final trace. Figure 5 
shows how the JIS instrumentation process works. The 
following subsections describe in detail the architecture 
of the different JIS levels on the IA32 Linux 
implementation.  

 
3.2.1. Application level. This is the highest level 
considered by JIS and it is optional (it depends on source 
code availability). The objective of this level is to 
generate some especial events when passing by some 
points on the studied server to introduce some application 
semantics on the final trace.  

It consists in having a shared library, loaded in 
memory in the same process as the Java Virtual Machine 
(and, in fact, the Java application), with a common Java 
Native Interface (JNI [4]). This allows the use of native 
code (compiled C code on the case of JIS) inside the Java 
code. In this way, Java written applications can invoke 
native methods in the shared library that generate JIS 
events. These events can be visualized inside the trace 
using Paraver.  

Application level instrumentation is specially useful 
when instrumenting Web servers like Tomcat. User-
events are inserted before and after serving requests in 
order to make this information available to Paraver. This 
makes possible the identification of individual service 
requests and to know their time boundaries. 

As the source code of applications is not always 
available, other techniques can be used to extract 
information about application level on some systems. For 
instance, when instrumenting IBM WAS (WebSphere 
Application Server [16]), we use its tracing facility[17]. 
Other application servers, such as JBoss [18] also 
implement alternative methods to offer detailed 
information about their execution that can be used and 
incorporated to JIS generated traces. 



 

3.2.2. JVM level. Java semantics are just considered 
inside the JVM. Because of this, comprehensive 
instrumentation of Java applications must include internal 
JVM information. Current versions of JVM implement a 
Profiler Interface called JVMPI [1]. JVMPI is a common 
interface designed to introduce hooks inside JVM code in 
order to be notified about some predefined Java events. 
This facility is used by JIS to include information about 
Java application semantics on its instrumentation process. 
This means that a developer analysing own applications 
will be able to see system state information during 
execution expressed in relation with some of the 
developed Java application semantics. 

The JVMPI is based on the idea of creating a shared 
library which is loaded on memory together with the JVM 
and which is notified about selected internal JVM events. 
Choosing hooked events is done at JVM load time using a 
standard implemented method on the library that is 
invoked by the JVM. Events are notified through a call to 
a library function that can determine, by parsing received 
parameters, what JVM event is taking place. The 
treatment applied to each notified event is decided by the 
profiler library, but should not introduce too much 
overhead in order to avoid an excessive slow down of the 
instrumented applications. Some of available events are: 
start and end of garbage collecting, class load and unload, 
method entry and exit and thread start and end. 

On JIS, two events are mainly considered to perform 
application instrumentation. These are Java thread start 
and Java thread end. Importance of these events comes 
from their associated information: they contain 
information about the internal JVM thread name (that one 
defined by the developer) and allow JIS to match Java 
threads with kernel threads. Both of them are very useful 
for developers to understand system information when 
visualized, because they make it possible to put in relation 
system extracted data with defined information during 
development time. 

Optionally, other JVM events can be chosen to be 
incorporated on instrumented information depending on 
developers’ requirements. Activation of many event 
notifications can result in severe overheads like in the 
case of the method entry and method exit events, because 
of their high notification frequency. 

 
3.2.3. System level. To perform useful application 
instrumentation, continuous system state information 
must be offered to developers. On the Linux version of 
JIS, considering the open platform characteristics of 
Linux systems, we decided to extract system information 
directly from inside kernel. This task was divided in two 
layers: one based in a kernel source code patch and the 
other in a system device and its corresponding driver 
(implemented in a Linux kernel module).  

The kernel module implements five basic features:  

1. Interception of system calls. 
2. Implementation of a device driver for the 

instrumentation device. 
3. Creation of an event buffer shareable by system 

space and user space through a memory map. 
4. Creation of a user space system instrumentation 

control interface through the ioctl system call. 
Interception of system calls is done by modifying the 

global system call table in order to use an own function 
instead of the original system call. After the call is 
intercepted, the original system call function is invoked in 
order to preserve the original system behaviour. 

The instrumentation driver requires a device that 
controls it. The driver is implemented inside the Linux 
kernel module and is used to implement basic functions 
operable over the device and to allocate the system events 
buffer. Basic implemented functions are: open, close, 
ioctl and mmap.  

Open and close calls are used to be able to work with 
the device. Ioctl call is used to control the system space 
instrumentation from the user space code. This means that 
when the JVM notifies to the JIS shared library the start 
of the shutdown process through the JVMPI, the library 
indicates to the kernel module that the instrumentation 
process is concluded, and this communication is done 
using the ioctl call. Finally, the mmap call is implemented 
to allow the user space instrumentation code to work 
transparently with the system space buffer and be able to 
merge both event buffers, system and space one, into a 
unique final trace. 

Some system events cannot be extracted by any other 
way than inserting hooks inside the kernel source. These 
special events are related to kernel threads state and other 
ways of obtaining this information are not enough. For 
instance, Linux offers an interesting way to extract 
process status on system: the proc file system. The 
problem comes with the way this system interface divides 
the two main process status: Runnable and Blocked. 
Runnable implies that a process is ready to run on a 
processor, but doesn’t give information about if it’s really 
running or if it’s waiting for a processor to start 
execution. This issue makes the proc file system 
insufficient to determine thread status at each moment in 
time. Thus, the kernel patch was used to obtain 
information about the state of the threads of the system at 
each moment in time. 

A simplified Linux thread state diagram is shown in 
Figure 6. This is not a complete diagram of possible 
thread states on Linux, but it is the one considered in JIS. 
Other states are not considered relevant to study the 
behaviour of applications in this environment. 
 



 

 

 
 
Figure 6. Thread states considered by JIS and intercepted 
functions to detect transitions 

 
3.2.4. Merging all. System space and user space captured 
events must be put together to generate the final trace. 
The merging process is done when the JVM is shut down. 
A global memory buffer is allocated, user and system 
space events are read sequentially, time ordered and 
inserted to the corresponding buffer position. Finally, the 
buffer is dumped in order to create the final trace file. 

An important issue while merging events is how to 
share user space and system space buffers in user space. 
Our decision was to map system space buffer in a user 
space memory region through the implementation of the 
mmap operation on the instrumentation device. This 
allows user space processes to work transparently with 
kernel memory, making it possible to implement a buffer 
merging process independently of source buffers location. 

 
3.3. Overheads 

 
The instrumentation process of JIS introduces some 

overheads during the execution of the application.  
Nevertheless, this overhead is low enough not to affect 
the conclusions extracted from applications analysis. As 
described in the previous paragraph, once the application 
execution is finished, the instrumentation library joins the 
per-thread buffers into a single trace (ordered in time) 
suitable to be visualized with Paraver. This adds an extra 
overhead to the whole execution time of the job that does 
not have any impact in the trace. 

In order to measure the overheads of the tool, some 
experiments have been done. Two kernel applications 
have been run without instrumentation and with different 
levels of instrumentation. Their execution times have 
been studied to determine the impact of the 
instrumentation on the performance of applications. 

The applications that have been used are distinguished 
by their focus of study: one is CPU intensive and the 
other is I/O intensive. This first one is a LU benchmark 
and the second one is the core of the Tomcat Web Server 
[13] used to transmit disk files (html files) in 2 KB 
chunks to connected clients. Tests have been repeated 
with different configurations of the applications, and 

obtained results are presented in Table 1 and Table 2. On 
them, execution times with no instrumentation, with 
system instrumentation (context switches and I/O 
operations are captured) and with JVM level 
instrumentation (obtaining thread names when created) 
through JVMPI are reported. Times are mean values with 
corresponding standard deviations. Overheads are 
indicated between parentheses. As it can be seen, low-
order overheads are introduced to execution times when 
instrumenting applications. Activating JVM information 
through the JVMPI results in an increase of overheads 
respect to produced ones with only system level 
instrumentation. Observed overheads can be considered 
acceptable in order to not to perturb the behaviour of 
applications. 
 

Table 1. CPU intensive application overhead results 
 

 
 
 

Table 2. I/O intensive application overhead results 
 

 
 

 
4. Analysis and visualization 

 
Paraver [5] is a flexible performance visualization and 

analysis tool. Based on an easy-to-use Motif GUI, Paraver 
was developed to respond to the need to have a qualitative 
global perception of the application behaviour by visual 
inspection and then to be able to focus on the detailed 
quantitative analysis of the problems. Paraver provides a 
large amount of information useful to improve the 
decisions on whether and where to invert the 
programming effort to optimise an application. 

Expressive power, flexibility and the capability of 
efficiently handling large traces are key features 
addressed in the design of Paraver. The clear and modular 
structure of Paraver plays a significant role towards 
achieving these targets. 

Paraver offers a minimal set of views on a trace. The 
philosophy behind the design was that different types of 



 

views should only be supported if they provide 
qualitatively different types of information. Frequently, 
visualization tools tend to offer many different views of 
the parallel program behaviour. Nevertheless, it is often 
the case that only a few of them are actually used by 
developers. The other views are too complex, too specific 
or not adapted to the developer needs. 

Following the philosophy of Paraver, derived metrics 
are simple and powerful: the user can combine two 
displaying windows of a tracefile using very simple 
operators (add, product, maximum, etc.) to obtain new 
semantic functions. 

A requirement for Paraver was that the whole 
operation of the tool has to be very fast in order to make it 
usable and capable to maintain the developer interest. 
Handling traces in the range of tenths to hundreds of MB 
is an important objective of Paraver to enable the analysis 
of real programs. Easy window dimensioning, forward 
and backward animation and zooming are supported. 
Several windows with different scales can be displayed 
simultaneously. Even on very large traces, the 
quantitative analysis can be carried out with great 
precision because the starting and end point of the 
analysis can be selected on different windows. All these 
facilities make possible a complete analysis of 
instrumented applications, qualitatively and 
quantitatively. 

 
5. Experiences with the eDragon environ-
ment 

 
The eDragon environment has already been used to 

perform some exploratory approximations to different 
consolidated and emerging topics related with Web 
technologies. 

In the following subsections, three different 
experimental uses of the eDragon are reported to show 
the analysis capabilities of the proposed environment. 
First, we use it to visually analyze sources of parallelism 
in application servers; second, we show how it can be 
useful to detect situations in which bad resources usage 
implies degradation in performance; and finally, we show 
how the detailed information provided by our approach 
can complement the high-level approaches to system 
characterization 

Before describing them, we present the environment 
that we have used. As said before, the focus of this 
proposal is put on application servers. This kind of Java 
applications are usually accessed through a provided Web 
interface. Thus, the first experimental scenario for the 
proposed environment was created through static content 
services on a Web server. In order to introduce a certain 
degree of complexity on the studied system, no pure static 
content Web servers (as apache) were chosen but a Java 
servlet-based version of Web Servers was considered: 

Tomcat 4.0. This Web server presents as a particularity 
that when running stand-alone, serves static contents 
through a special dedicated servlet. It makes possible to 
study the invocation process of servlets on Tomcat 
through static content services. 

In order to perform some realistic experiments with 
our environment over Tomcat, a static workload generator 
was required. We use SURGE [14] which generates a 
static-content workload based on empirical observation of 
real web sever logs. On another hand, some basic 
dynamic content tests were done using a servlet-
implemented version of a LU reduction kernel. 

The instrumentation of Tomcat services was 
performed using all the different levels of instrumentation 
that JIS offers. System level instrumentation was turned 
on while executing the SURGE benchmark, as well as 
JVM instrumentation used to capture thread names, and 
application instrumentation through JNI calls to JIS. This 
last issue was completed with the modification of an 
extension Java library (implementing functions of the 
javax package) in order to introduce application-
generated events on the final trace indicating the 
beginning and end of each one of the services made by 
the Web server.  

Tomcat follows a connection service schema where 
incoming requests are initially attended by an 
HttpConnector object, which makes an accept operation 
over a socket and chooses an HttpProcessor object from 
an object pool to process it. Both HttpProcessor and 
HttpConnector objects contain a background thread inside 
of them and are the origin of all possible parallelism 
inside Tomcat.  

Some special requirements were imposed when 
instrumenting applications if Web-based applications 
were in mind. One of these requirements was to introduce 
on traces the possibility of following connections since 
arrived to the server up to being completely served. It was 
accomplished by identifying connections with one unique 
identifier assigned sequentially on accepted connections 
and inserting it on all following socket operations. 
Additionally, it was necessary to detect activities over 
sockets from different threads, as when connection 
acceptor threads assign sockets to request processor 
threads. It was achieved by inserting Paraver’s 
communication events between threads when sockets 
“passed” from one thread to others. These events are 
represented on Paraver as yellow lines going from one 
thread to other, as visible on Figure 7. All lines are 
originated on the HttpConnector thread because the 
original socket accept operations are performed by this 
thread. 

 



 

 

5.1 First experimental use 
 

The first experimental use of the eDragon environment 
was based on doing visual inspections of Paraver traces 
trying to detect potential sources of parallelism. Traces 
were generated executing over Tomcat a SURGE-
generated workload.  

Observing the trace generated when executing the 
SURGE workload, it’s possible to remark some execution 
properties of this Web server. As shown in Figure 7, the 
HttpConnector thread (used to accept new incoming 
connections) is presented on the 13th row. The following 
threads are the HttpProcessor threads, used to serve 
received requests. Some HttpProcessor threads (e.g. the 
first 5 ones in this execution) are created when the server 
is started. When the number of concurrent requests grows, 
some new HttpProcessors are dynamically created and 
added to the thread pool. It shows how Tomcat manages 
dynamic thread creation in function of system load. 
Concurrent service of requests is an important source of 
parallelism exploitation.  

 

 
 
Figure 7. Paraver visualization of a SURGE generated 
workload over Tomcat v4.0 
 

A dynamic web-content approach was also done with 
the eDragon environment. An LU reduction kernel 
implemented as a servlet was executed with 2 parallel 
threads and instrumented. The resulting Paraver trace can 
be seen in Figure 8. Three threads are really implied in the 
execution of this kernel. One of them, the 3rd one in the 
trace, is the application main thread and is responsible of 
coordinating the work done by the other threads. Working 
threads can be seen on the 4th and 5th row on the trace 
and are responsible of performing the LU computation in 
parallel. 
 

 
 
Figure 8. Paraver visualization of a LUAppl benchmark 
implemented as a servlet over Tomcat v4.0 

 
5.2 Second experimental use 
 

As a second experimental use of the eDragon 
environment, it was used to look for performance 
degradation scenarios caused by bad resource 
management. A deeper study of some generated traces 
allowed us to detect some resource problems while 
serving concurrent requests. For example, Figure 9 shows 
the sequential service of two concurrent request services. 
If more resources were available (or better used) the two 
services could have been attended in parallel. Again, a 
potential focus of parallelism was detected by a simple 
visual study of generated traces using Paraver. 
 

 
 

Figure 9. Concurrent service of requests 
 



 

5.3 Third experimental use 
 
Finally, a third experimental use of the eDragon 

environment was done to determine how system load 
could affect Tomcat performance. First of all, we 
considered service times by using application-level events 
inserted before and after a call to the service method of 
the Servlet class. As all servlets are serviced by invoking 
this method, it was possible to determine (inserting events 
on the final trace) where services started and finished. 
After it was done, we required knowing the size of each 
one of those services, because we wanted to normalize the 
service time per connection. Service size was calculated 
by putting in relation the size of all write operations done 
over the connection socket during the time of its 
corresponding service. It was possible by using Paraver 
statistical facilities. Finally, we determined the system 
load at each moment by considering it as the number of 
concurrent connections on service at each moment. As a 
result, we could consider a size-normalized time per 
service for each service and put it in relation with the 
system load at each moment. Resulting numbers are 
represented in Figure 10.  Units are nanoseconds per byte 
on the y-axis and number of concurrent connections in 
service on the x-axis. As it can be seen, the number of 
concurrent connections introduces an important 
degradation of per-service performance on Tomcat. 
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Figure 10. Response time per byte as a function of system 
load 

  
It’s important to remark two interesting issues in this plot. 
First it shows a saturation point of the server when 
serving 18 concurrent connections. After this point 
important performance degradation is observed. Second 
there is a strange behaviour with 10 concurrent 
connections. It was a good opportunity to check the 

usefulness of the eDragon environment to determine what 
happened on the system during that time. It was possible 
to determine the different periods of time in which ten 
concurrent connections were being serviced on the 
system. With this information and doing a qualitative 
visual analysis of the trace it was possible to detect a long 
inactivity period on the system, which can be seen on 
Figure 11. As it can be observed, there’s a period of 
inactivity in all threads of Tomcat. We couldn’t determine 
what was happening on the system during that time, but 
we can observe that CPU resources were busy working 
for other system processes. It’s important to highlight that 
this is an important contribution of our environment. 
Currently available performance analysis tools can’t offer 
this grain of detail of the use of system resources. Most of 
them could make developers think that there were some 
programming bugs in their applications, like inefficient 
loops or bad used locks. With the eDragon environment 
it’s possible to determine that the problem was in the 
system behaviour and not in the application semantics. 

 

 
 
Figure 11. Paraver visualization of a system inactivity 
period 
 



 

 

6. Concluding remarks and future work 
 
In this paper we have presented eDragon, a research 

environment that allows a detailed time-analysis of Java 
applications and a deeper insight into performance 
analysis. We highlight some conclusions drawn from our 
initial experimentation that shows the usefulness of the 
environment. 

This instrumentation and analysis is in fact a first step 
in the eDragon project in the design of a platform for 
doing research on scheduling mechanisms and policies 
oriented towards optimising the execution of 
multithreaded Java Applications Servers on parallel 
environments focused on new Web paradigms as Web 
Services and eBusiness extensions. 

Our main contribution with this paper is the creation of 
a new performance analysis environment based on a 
bottom-up strategy to characterize applications’ 
behaviour. It adds to existing tools the possibility of 
studying the real state of the underlying system with 
detail. Our proposal extracts detailed system information 
in order to perform a complete instrumentation of studied 
applications. The amount of collected information is 
variable and can be modified in order to adapt 
instrumentation to different environments. 

The developed environment has been proved in 
practice with some experimental scenarios and has 
successfully been used to extract first conclusions about 
performance on the Tomcat Web server. It has also 
pointed good perspectives for the optimisation of 
application servers through coarse-grain parallelization at 
the level of requests service. 

To the best of our knowledge, our system is the first 
proposal that offers a so fine degree of detail on system 
resources instrumentation. Benefits of the environment 
will allow us to entry on new computing fields never 
explored before with so much detail. From our point of 
view, an improvement on Application Servers should be 
reached by introducing a certain grade of cooperation 
between the operating system and the application server. 
Following steps should drive application servers to an 
autonomic optimal working level based on self-tuning 
techniques. 

Future research on application servers’ topics will be 
based in more complex scenarios than the ones presented 
in this paper (as for example, EJBs and web services). 
Commercial application servers based on the J2EE 
technology will be used and specific benchmarks, as the 
SPECjAppServer [15], will be considered. 
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