
Complete Instrumentation Requirements for
Performance Analysis of Web Based Technologies

David Carrera Jordi Guitart Jordi Torres
Eduard Ayguadé Jesús Labarta

European Center for Parallelism of Barcelona (CEPBA)
Computer Architecture Department, Technical University of Catalonia

C/ Jordi Girona 1-3, Campus Nord UPC, Mòdul C6, E-08034,
Barcelona (Spain)

{dcarrera, jguitart, torres, eduard, jesus}@ac.upc.es

Abstract

In this paper we present the eDragon environment, a
research platform created to perform complete
performance analysis of new Web-based technologies.
eDragon enables the understanding of how application
servers work in both sequential and parallel platforms
offering a new insight in the usage of system resources.
The environment is composed of a set of instrumentation
modules, a performance analysis and visualization tool
and a set of experimental methodologies to perform
complete performance analysis of Web-based
technologies. This paper describes the design and
implementation of this research platform and highlights
some of its main functionalities. We will also show how a
detailed analytical view can be obtained through the
application of a bottom-up strategy, starting with a group
of system events and advancing to more complex
performance metrics using a continuous derivation
process.

1. Introduction

Rapid development of e-business services has
extended the use of web and application servers on
companies, generating a high demand of tools to design,
implement and analyse the applications offering these
services. Most of these applications are built around Java
(mainly because of its portability and development
facilities). Java application servers are becoming a key
component in these environments and therefore, the
optimization of their behaviour in terms of performance is
becoming important. The potential parallelism that exists
in concurrent requests as well in the applications offering
the service makes the use of parallel platforms necessary.
Ensuring an efficient utilization of the resources (e.g.
processors, memory, input/output, …) is important in
order to achieve good response times and throughput.

Different approaches are used in existing tools to carry
on the analysis process of Java applications. All of them
report about the behaviour of the applications in terms of
object creation, loop structures, execution patterns or time
consumption inside functions. However, they do not
consider system status nor the interaction between the
applications and the underlying operating system. For
example, these tools can detect which loop in a program
is consuming 80% of the total execution time but they are
not able to indicate how much real processor usage has
been done inside of that loop because they don’t extract
low-level information of the system status.

Figure 1 shows the different layers existing in Java-
based environments and how their instrumentation is
performed by currently existing tools and by our proposal
(Java Instrumentation Suite, JIS). Some of the tools
oriented to study application servers [6][7][8][9] report
different metrics that measure the application server
performance, collecting information through the JVM
Profiler Interface (JVMPI [1]). This limits the kind of
information that they can get and therefore, their ability to
perform a fine-grained analysis of the multithreaded
execution and the scheduling issues involved in the
execution of the threads that come from the Java
application. The basic actions performed by current web-
based technologies are the following: reading/writing
contents from/to disks; receiving/sending data from/to
networks; and finally, processing data coming from disks
and networks. This implies that, mainly, three basic
system resources support web-based technologies and
applications: processors, disks and networks. Thus, a
general requirement in order to perform complete
performance analysis of web-based technologies and
applications is to be able to obtain detailed information
about the usage of these resources. Currently, the user
relies on the use of system utilities (such as sar, mpstat,
or iostat on Linux, as proposed in [2]) to collect this
information and relate it with the information provided by
the above-mentioned tools, thus restricting the analysis
possibilities. In addition to that, understanding these

© 2003 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/ISPASS.2003.1190243

complex systems requires a methodology to derive
metrics from the simple resource usage indicators.

Figure 1. Layers in Java-based technologies and
instrumentation.

This paper describes the design and implementation of

a complete and integrated environment to instrument
application servers and analyse and visualize their
performance. The eDragon [3] environment is composed
of a set of instrumentation tools (JIS), an analysis and
visualization tool (Paraver [5]) and an experimental
methodology based on a bottom-up strategy over
collected data in combination with basic operational
analysis concepts (as shown in Figure 2). The
environment is being designed to perform an integral
analysis of applications based on Java multithreaded
technology, specially focusing on application severs and
new Web technologies. It can also be used in all Java
environments independently of their nature, as it has been
successfully tested in Java numerical applications
[11][19] as well as on Web servers such as Tomcat [13].

Figure 2. System performance indexes derivation process

The remaining of this paper is organized as follows.

Section 2 introduces some preliminary concepts about
Web-based applications that we consider necessary to
follow the paper. Section 3 describes the instrumentation
methodology used in eDragon. Section 4 presents the
visualization tool (Paraver) and analysis methodology.

Some preliminary experiences using the eDragon
environment are described and analysed in Section 5.
Section 6 concludes the paper and outlines some future
work.

2. Basic concepts about web based applica-
tions

Applications based on the web, as understood in the

scope of this paper, and running on top of application
servers are a case of multi-tier application. They are
mainly composed of a Client and a Server tier. The client
tier is responsible of interacting with application users
and to generate requests to be attended by the server; it
can be considered as a user interface of the application.
The server tier implements the logic of the application
and is responsible of serving user-generated requests.

Web contents can be basically divided depending on
their nature as static or dynamic. Static contents are those
served to clients without any kind of process. HTML files
are the best example of static contents: when requested,
they are read from disk and sent to clients directly and
without any modification. Dynamic contents are those
requiring some process before being sent to clients.
Typical dynamic contents are server scripts, which are
processed and generated results (typically formatted as an
HTML page) are sent to clients.

Servlets are more sophisticated dynamic contents than
basic server scripts. They are associated with an
execution framework composed of auxiliary objects,
allowing fast and easy programming of relatively
complex algorithms on server machines. Servlets’ results
can be sent to clients as HTML contents. A typical servlet
example is to generate HTML reports based on
information extracted from data sources.

Enterprise Java Beans (EJB) are more complex objects
than servlets and are the base of porting the object
components paradigm to application servers. Currently,
J2EE [10] compliant application servers must support
EJB objects on their frameworks. As the complexity of
web components is increased, also the complexity of
implemented applications running on application servers
is increased. EJB allow developers to implement real
distributed applications based on the Web easily and
rapidly. J2EE compliant Application Servers are
composed of two different layers: Web container and EJB
container, considering servlets as a part of the Web
container.

The execution schema of web servers is usually
implemented as follows: one thread is responsible of
accepting new incoming connections on the server’s
listening port and assigning to them a socket structure.
After this, the acceptor thread assigns the created socket
structure to another thread (which will be responsible of

attending and serving received requests) and continues
accepting new connections. Threads serving requests are
commonly chosen from a pool of threads in order to avoid
excessive thread creation overheads. The Tomcat [13]
web server used in this paper also follows the described
working schema.

3. Fine-grain system instrumentation

Instrumentation is the first step when trying to study

an already implemented application. Although in some
cases source code distributions are available, most
commercial applications are not open source. In order to
obtain information about the activity of applications,
support from the system must be provided. Some
environments offer system tools that give information
about system status and applications status. Other
environments do not offer this kind of facilities and it is
required to introduce creative solutions to obtain the
desired information.
JIS (Java Instrumentation Suite) is the instrumentation set
of tools developed in the eDragon project to study Java-
based applications, covering different available platforms
[12]. The final result of an instrumentation performed by
JIS is an application post-mortem trace, ready to be
analysed with Paraver [5]. These traces reflect the activity
of each Java thread in the application (through a set of
predefined states that are representative of their parallel
execution) and collect the occurrence of some predefined
events along the whole application lifetime. Paraver
traces contain three types of records: state, events and
communication. State records represent thread states
along time (running, ready or blocked). For example,
Figure 3 shows the aspect of a JIS-generated trace
visualised with Paraver. On the y-axis application’s
threads are disposed and on the x-axis time is represented.
Event records characterize punctual events in the trace
(I/O operations, context switches, socket operations and
user-defined events are available on JIS, among others).
Finally, communication records are used on JIS to track
resource sharing among threads as, for example, sockets
being (re)used by different threads.

Thread lifecycle
blocked

running

ready

Figure 3. Thread state representation on Paraver

JIS differs from other analysis environments for Java

applications in the degree of detail offered about system
resources. Most of existing tools [6][7][8][9] focus on
offering detailed information about the behaviour of
studied applications forgetting the interaction of these
applications with the underlying operating system. JIS
comes to cover this lack of detail on system status when
instrumenting Java applications. The resources observed
by JIS are diverse, going from thread status (in relation to
CPU state) up to the length and duration of I/O
operations.

As said above, the eDragon environment focuses its
analysis purposes on application servers and new Web
technologies. This fact has forced us to introduce some
specific requirements on data acquisition in order to cover
all demanded system status aspects necessary to perform
a complete modelling process of the behaviour of this
kind of applications.

3.1. Platforms

Currently, the eDragon environment is available for

three platforms: Linux over IA32 architectures, AIX over
IBM machines and IRIX running on SGI computers.
Particularities of each platform have been overcome on
JIS by dividing its architecture in three layers; two of
them are system-independent and the other one depends
on specific system characteristics, as shown in Figure 4.
In this design, platform-independent layers can be reused
on different versions of the tool. This paper focuses on
the implementation on top of Linux and IA32
architectures, running JDK1.3.

Figure 4. JIS architecture

3.2. Collected information, instrumentation levels
and architecture issues

In order to perform a complete system instrumentation

allowing a global vision not just of the behaviour of the
application but the reasons of that behaviour, it’s required
to collect information from some different sources. Our
proposal focuses on thread status, I/O operations (over
storage devices as well as sockets), network devices and
memory usage. Information generated by applications
through user events must also be considered as an
important information source because it allows a put-
together process between system status and application
behaviour.

Applications can be modelled from their interaction
with the system and from their semantics. Interaction
between application and system means knowing how
application particularities related with the system (number
of threads created, degree of activity of these threads,
amount of I/O operations done, usage of network
resources, …) affect the resulting performance of
applications. On another hand, this information should
have some degree of relation with application semantics
to make it comprehensible. No system activity related
with an application can be understood without knowing
what was that application doing or trying to do at each
moment in time. So, collecting information concerning
the behaviour of applications and information about
system resources consumption and putting all them
together requires a new concept of instrumentation tool,
which is one of the contributions of our paper.

All the information sources mentioned above can be
classified in different levels depending on how they can
be accessed to obtain data. JIS instruments a Java
application at three different levels: Application Level,
Java Virtual Machine level and System level, as shown in
Figure 4. This multi-level architecture is justified by the
different nature of data sources implied in the
instrumentation process.

Figure 5. JIS instrumentation process

Information collected by the different JIS layers is

finally merged in order to produce a final trace. Figure 5
shows how the JIS instrumentation process works. The
following subsections describe in detail the architecture
of the different JIS levels on the IA32 Linux
implementation.

3.2.1. Application level. This is the highest level
considered by JIS and it is optional (it depends on source
code availability). The objective of this level is to
generate some especial events when passing by some
points on the studied server to introduce some application
semantics on the final trace.

It consists in having a shared library, loaded in
memory in the same process as the Java Virtual Machine
(and, in fact, the Java application), with a common Java
Native Interface (JNI [4]). This allows the use of native
code (compiled C code on the case of JIS) inside the Java
code. In this way, Java written applications can invoke
native methods in the shared library that generate JIS
events. These events can be visualized inside the trace
using Paraver.

Application level instrumentation is specially useful
when instrumenting Web servers like Tomcat. User-
events are inserted before and after serving requests in
order to make this information available to Paraver. This
makes possible the identification of individual service
requests and to know their time boundaries.

As the source code of applications is not always
available, other techniques can be used to extract
information about application level on some systems. For
instance, when instrumenting IBM WAS (WebSphere
Application Server [16]), we use its tracing facility[17].
Other application servers, such as JBoss [18] also
implement alternative methods to offer detailed
information about their execution that can be used and
incorporated to JIS generated traces.

3.2.2. JVM level. Java semantics are just considered
inside the JVM. Because of this, comprehensive
instrumentation of Java applications must include internal
JVM information. Current versions of JVM implement a
Profiler Interface called JVMPI [1]. JVMPI is a common
interface designed to introduce hooks inside JVM code in
order to be notified about some predefined Java events.
This facility is used by JIS to include information about
Java application semantics on its instrumentation process.
This means that a developer analysing own applications
will be able to see system state information during
execution expressed in relation with some of the
developed Java application semantics.

The JVMPI is based on the idea of creating a shared
library which is loaded on memory together with the JVM
and which is notified about selected internal JVM events.
Choosing hooked events is done at JVM load time using a
standard implemented method on the library that is
invoked by the JVM. Events are notified through a call to
a library function that can determine, by parsing received
parameters, what JVM event is taking place. The
treatment applied to each notified event is decided by the
profiler library, but should not introduce too much
overhead in order to avoid an excessive slow down of the
instrumented applications. Some of available events are:
start and end of garbage collecting, class load and unload,
method entry and exit and thread start and end.

On JIS, two events are mainly considered to perform
application instrumentation. These are Java thread start
and Java thread end. Importance of these events comes
from their associated information: they contain
information about the internal JVM thread name (that one
defined by the developer) and allow JIS to match Java
threads with kernel threads. Both of them are very useful
for developers to understand system information when
visualized, because they make it possible to put in relation
system extracted data with defined information during
development time.

Optionally, other JVM events can be chosen to be
incorporated on instrumented information depending on
developers’ requirements. Activation of many event
notifications can result in severe overheads like in the
case of the method entry and method exit events, because
of their high notification frequency.

3.2.3. System level. To perform useful application
instrumentation, continuous system state information
must be offered to developers. On the Linux version of
JIS, considering the open platform characteristics of
Linux systems, we decided to extract system information
directly from inside kernel. This task was divided in two
layers: one based in a kernel source code patch and the
other in a system device and its corresponding driver
(implemented in a Linux kernel module).

The kernel module implements five basic features:

1. Interception of system calls.
2. Implementation of a device driver for the

instrumentation device.
3. Creation of an event buffer shareable by system

space and user space through a memory map.
4. Creation of a user space system instrumentation

control interface through the ioctl system call.
Interception of system calls is done by modifying the

global system call table in order to use an own function
instead of the original system call. After the call is
intercepted, the original system call function is invoked in
order to preserve the original system behaviour.

The instrumentation driver requires a device that
controls it. The driver is implemented inside the Linux
kernel module and is used to implement basic functions
operable over the device and to allocate the system events
buffer. Basic implemented functions are: open, close,
ioctl and mmap.

Open and close calls are used to be able to work with
the device. Ioctl call is used to control the system space
instrumentation from the user space code. This means that
when the JVM notifies to the JIS shared library the start
of the shutdown process through the JVMPI, the library
indicates to the kernel module that the instrumentation
process is concluded, and this communication is done
using the ioctl call. Finally, the mmap call is implemented
to allow the user space instrumentation code to work
transparently with the system space buffer and be able to
merge both event buffers, system and space one, into a
unique final trace.

Some system events cannot be extracted by any other
way than inserting hooks inside the kernel source. These
special events are related to kernel threads state and other
ways of obtaining this information are not enough. For
instance, Linux offers an interesting way to extract
process status on system: the proc file system. The
problem comes with the way this system interface divides
the two main process status: Runnable and Blocked.
Runnable implies that a process is ready to run on a
processor, but doesn’t give information about if it’s really
running or if it’s waiting for a processor to start
execution. This issue makes the proc file system
insufficient to determine thread status at each moment in
time. Thus, the kernel patch was used to obtain
information about the state of the threads of the system at
each moment in time.

A simplified Linux thread state diagram is shown in
Figure 6. This is not a complete diagram of possible
thread states on Linux, but it is the one considered in JIS.
Other states are not considered relevant to study the
behaviour of applications in this environment.

Figure 6. Thread states considered by JIS and intercepted
functions to detect transitions

3.2.4. Merging all. System space and user space captured
events must be put together to generate the final trace.
The merging process is done when the JVM is shut down.
A global memory buffer is allocated, user and system
space events are read sequentially, time ordered and
inserted to the corresponding buffer position. Finally, the
buffer is dumped in order to create the final trace file.

An important issue while merging events is how to
share user space and system space buffers in user space.
Our decision was to map system space buffer in a user
space memory region through the implementation of the
mmap operation on the instrumentation device. This
allows user space processes to work transparently with
kernel memory, making it possible to implement a buffer
merging process independently of source buffers location.

3.3. Overheads

The instrumentation process of JIS introduces some

overheads during the execution of the application.
Nevertheless, this overhead is low enough not to affect
the conclusions extracted from applications analysis. As
described in the previous paragraph, once the application
execution is finished, the instrumentation library joins the
per-thread buffers into a single trace (ordered in time)
suitable to be visualized with Paraver. This adds an extra
overhead to the whole execution time of the job that does
not have any impact in the trace.

In order to measure the overheads of the tool, some
experiments have been done. Two kernel applications
have been run without instrumentation and with different
levels of instrumentation. Their execution times have
been studied to determine the impact of the
instrumentation on the performance of applications.

The applications that have been used are distinguished
by their focus of study: one is CPU intensive and the
other is I/O intensive. This first one is a LU benchmark
and the second one is the core of the Tomcat Web Server
[13] used to transmit disk files (html files) in 2 KB
chunks to connected clients. Tests have been repeated
with different configurations of the applications, and

obtained results are presented in Table 1 and Table 2. On
them, execution times with no instrumentation, with
system instrumentation (context switches and I/O
operations are captured) and with JVM level
instrumentation (obtaining thread names when created)
through JVMPI are reported. Times are mean values with
corresponding standard deviations. Overheads are
indicated between parentheses. As it can be seen, low-
order overheads are introduced to execution times when
instrumenting applications. Activating JVM information
through the JVMPI results in an increase of overheads
respect to produced ones with only system level
instrumentation. Observed overheads can be considered
acceptable in order to not to perturb the behaviour of
applications.

Table 1. CPU intensive application overhead results

Table 2. I/O intensive application overhead results

4. Analysis and visualization

Paraver [5] is a flexible performance visualization and

analysis tool. Based on an easy-to-use Motif GUI, Paraver
was developed to respond to the need to have a qualitative
global perception of the application behaviour by visual
inspection and then to be able to focus on the detailed
quantitative analysis of the problems. Paraver provides a
large amount of information useful to improve the
decisions on whether and where to invert the
programming effort to optimise an application.

Expressive power, flexibility and the capability of
efficiently handling large traces are key features
addressed in the design of Paraver. The clear and modular
structure of Paraver plays a significant role towards
achieving these targets.

Paraver offers a minimal set of views on a trace. The
philosophy behind the design was that different types of

views should only be supported if they provide
qualitatively different types of information. Frequently,
visualization tools tend to offer many different views of
the parallel program behaviour. Nevertheless, it is often
the case that only a few of them are actually used by
developers. The other views are too complex, too specific
or not adapted to the developer needs.

Following the philosophy of Paraver, derived metrics
are simple and powerful: the user can combine two
displaying windows of a tracefile using very simple
operators (add, product, maximum, etc.) to obtain new
semantic functions.

A requirement for Paraver was that the whole
operation of the tool has to be very fast in order to make it
usable and capable to maintain the developer interest.
Handling traces in the range of tenths to hundreds of MB
is an important objective of Paraver to enable the analysis
of real programs. Easy window dimensioning, forward
and backward animation and zooming are supported.
Several windows with different scales can be displayed
simultaneously. Even on very large traces, the
quantitative analysis can be carried out with great
precision because the starting and end point of the
analysis can be selected on different windows. All these
facilities make possible a complete analysis of
instrumented applications, qualitatively and
quantitatively.

5. Experiences with the eDragon environ-
ment

The eDragon environment has already been used to

perform some exploratory approximations to different
consolidated and emerging topics related with Web
technologies.

In the following subsections, three different
experimental uses of the eDragon are reported to show
the analysis capabilities of the proposed environment.
First, we use it to visually analyze sources of parallelism
in application servers; second, we show how it can be
useful to detect situations in which bad resources usage
implies degradation in performance; and finally, we show
how the detailed information provided by our approach
can complement the high-level approaches to system
characterization

Before describing them, we present the environment
that we have used. As said before, the focus of this
proposal is put on application servers. This kind of Java
applications are usually accessed through a provided Web
interface. Thus, the first experimental scenario for the
proposed environment was created through static content
services on a Web server. In order to introduce a certain
degree of complexity on the studied system, no pure static
content Web servers (as apache) were chosen but a Java
servlet-based version of Web Servers was considered:

Tomcat 4.0. This Web server presents as a particularity
that when running stand-alone, serves static contents
through a special dedicated servlet. It makes possible to
study the invocation process of servlets on Tomcat
through static content services.

In order to perform some realistic experiments with
our environment over Tomcat, a static workload generator
was required. We use SURGE [14] which generates a
static-content workload based on empirical observation of
real web sever logs. On another hand, some basic
dynamic content tests were done using a servlet-
implemented version of a LU reduction kernel.

The instrumentation of Tomcat services was
performed using all the different levels of instrumentation
that JIS offers. System level instrumentation was turned
on while executing the SURGE benchmark, as well as
JVM instrumentation used to capture thread names, and
application instrumentation through JNI calls to JIS. This
last issue was completed with the modification of an
extension Java library (implementing functions of the
javax package) in order to introduce application-
generated events on the final trace indicating the
beginning and end of each one of the services made by
the Web server.

Tomcat follows a connection service schema where
incoming requests are initially attended by an
HttpConnector object, which makes an accept operation
over a socket and chooses an HttpProcessor object from
an object pool to process it. Both HttpProcessor and
HttpConnector objects contain a background thread inside
of them and are the origin of all possible parallelism
inside Tomcat.

Some special requirements were imposed when
instrumenting applications if Web-based applications
were in mind. One of these requirements was to introduce
on traces the possibility of following connections since
arrived to the server up to being completely served. It was
accomplished by identifying connections with one unique
identifier assigned sequentially on accepted connections
and inserting it on all following socket operations.
Additionally, it was necessary to detect activities over
sockets from different threads, as when connection
acceptor threads assign sockets to request processor
threads. It was achieved by inserting Paraver’s
communication events between threads when sockets
“passed” from one thread to others. These events are
represented on Paraver as yellow lines going from one
thread to other, as visible on Figure 7. All lines are
originated on the HttpConnector thread because the
original socket accept operations are performed by this
thread.

5.1 First experimental use

The first experimental use of the eDragon environment
was based on doing visual inspections of Paraver traces
trying to detect potential sources of parallelism. Traces
were generated executing over Tomcat a SURGE-
generated workload.

Observing the trace generated when executing the
SURGE workload, it’s possible to remark some execution
properties of this Web server. As shown in Figure 7, the
HttpConnector thread (used to accept new incoming
connections) is presented on the 13th row. The following
threads are the HttpProcessor threads, used to serve
received requests. Some HttpProcessor threads (e.g. the
first 5 ones in this execution) are created when the server
is started. When the number of concurrent requests grows,
some new HttpProcessors are dynamically created and
added to the thread pool. It shows how Tomcat manages
dynamic thread creation in function of system load.
Concurrent service of requests is an important source of
parallelism exploitation.

Figure 7. Paraver visualization of a SURGE generated
workload over Tomcat v4.0

A dynamic web-content approach was also done with
the eDragon environment. An LU reduction kernel
implemented as a servlet was executed with 2 parallel
threads and instrumented. The resulting Paraver trace can
be seen in Figure 8. Three threads are really implied in the
execution of this kernel. One of them, the 3rd one in the
trace, is the application main thread and is responsible of
coordinating the work done by the other threads. Working
threads can be seen on the 4th and 5th row on the trace
and are responsible of performing the LU computation in
parallel.

Figure 8. Paraver visualization of a LUAppl benchmark
implemented as a servlet over Tomcat v4.0

5.2 Second experimental use

As a second experimental use of the eDragon
environment, it was used to look for performance
degradation scenarios caused by bad resource
management. A deeper study of some generated traces
allowed us to detect some resource problems while
serving concurrent requests. For example, Figure 9 shows
the sequential service of two concurrent request services.
If more resources were available (or better used) the two
services could have been attended in parallel. Again, a
potential focus of parallelism was detected by a simple
visual study of generated traces using Paraver.

Figure 9. Concurrent service of requests

5.3 Third experimental use

Finally, a third experimental use of the eDragon

environment was done to determine how system load
could affect Tomcat performance. First of all, we
considered service times by using application-level events
inserted before and after a call to the service method of
the Servlet class. As all servlets are serviced by invoking
this method, it was possible to determine (inserting events
on the final trace) where services started and finished.
After it was done, we required knowing the size of each
one of those services, because we wanted to normalize the
service time per connection. Service size was calculated
by putting in relation the size of all write operations done
over the connection socket during the time of its
corresponding service. It was possible by using Paraver
statistical facilities. Finally, we determined the system
load at each moment by considering it as the number of
concurrent connections on service at each moment. As a
result, we could consider a size-normalized time per
service for each service and put it in relation with the
system load at each moment. Resulting numbers are
represented in Figure 10. Units are nanoseconds per byte
on the y-axis and number of concurrent connections in
service on the x-axis. As it can be seen, the number of
concurrent connections introduces an important
degradation of per-service performance on Tomcat.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Figure 10. Response time per byte as a function of system
load

It’s important to remark two interesting issues in this plot.
First it shows a saturation point of the server when
serving 18 concurrent connections. After this point
important performance degradation is observed. Second
there is a strange behaviour with 10 concurrent
connections. It was a good opportunity to check the

usefulness of the eDragon environment to determine what
happened on the system during that time. It was possible
to determine the different periods of time in which ten
concurrent connections were being serviced on the
system. With this information and doing a qualitative
visual analysis of the trace it was possible to detect a long
inactivity period on the system, which can be seen on
Figure 11. As it can be observed, there’s a period of
inactivity in all threads of Tomcat. We couldn’t determine
what was happening on the system during that time, but
we can observe that CPU resources were busy working
for other system processes. It’s important to highlight that
this is an important contribution of our environment.
Currently available performance analysis tools can’t offer
this grain of detail of the use of system resources. Most of
them could make developers think that there were some
programming bugs in their applications, like inefficient
loops or bad used locks. With the eDragon environment
it’s possible to determine that the problem was in the
system behaviour and not in the application semantics.

Figure 11. Paraver visualization of a system inactivity
period

6. Concluding remarks and future work

In this paper we have presented eDragon, a research

environment that allows a detailed time-analysis of Java
applications and a deeper insight into performance
analysis. We highlight some conclusions drawn from our
initial experimentation that shows the usefulness of the
environment.

This instrumentation and analysis is in fact a first step
in the eDragon project in the design of a platform for
doing research on scheduling mechanisms and policies
oriented towards optimising the execution of
multithreaded Java Applications Servers on parallel
environments focused on new Web paradigms as Web
Services and eBusiness extensions.

Our main contribution with this paper is the creation of
a new performance analysis environment based on a
bottom-up strategy to characterize applications’
behaviour. It adds to existing tools the possibility of
studying the real state of the underlying system with
detail. Our proposal extracts detailed system information
in order to perform a complete instrumentation of studied
applications. The amount of collected information is
variable and can be modified in order to adapt
instrumentation to different environments.

The developed environment has been proved in
practice with some experimental scenarios and has
successfully been used to extract first conclusions about
performance on the Tomcat Web server. It has also
pointed good perspectives for the optimisation of
application servers through coarse-grain parallelization at
the level of requests service.

To the best of our knowledge, our system is the first
proposal that offers a so fine degree of detail on system
resources instrumentation. Benefits of the environment
will allow us to entry on new computing fields never
explored before with so much detail. From our point of
view, an improvement on Application Servers should be
reached by introducing a certain grade of cooperation
between the operating system and the application server.
Following steps should drive application servers to an
autonomic optimal working level based on self-tuning
techniques.

Future research on application servers’ topics will be
based in more complex scenarios than the ones presented
in this paper (as for example, EJBs and web services).
Commercial application servers based on the J2EE
technology will be used and specific benchmarks, as the
SPECjAppServer [15], will be considered.

7. Acknowledgements

We acknowledge the European Center for Parallelism

of Barcelona (CEPBA) and CEPBA-IBM Research

Institute (CIRI) for supplying the computing resources for
our experiments. This work is supported by the Ministry
of Science and Technology of Spain and the European
Union (FEDER funds) under contract TIC2001-0995-
C02-01 and by Direcció General de Recerca of the
Generalitat de Catalunya under grant 2001FI 00694 UPC
APTIND. We also acknowledge Javier Bartolomé for his
work on first prototypes of JIS.

8. References

[1] D. Viswanathan and S. Liang, Java Virtual Machine
Profile Interface. IBM System Journal, Vol 39, No. 1, 2000.
[2] E. Cecchet, J. Marguerite and W. Zwaenepoel
Performance and scalability of EJB applications) Proceedings
of Oopsla'02 November 4–8, 2002 Seattle, Washington, USA
[3] eDragon Project. www.cepba.upc.es/eDragon.
[4] Sun Microsystems. Java Native Interface. March 2000.
http://java.sun.com/products/jdk/1.3/docs/guide/jni
[5] Paraver tool. www.cepba.upc.es/paraver.
[6] Sitraka JProbe. www.sitraka.com/software/jprobe/
[7] Performance tuning toolkit for Java-based application
development. www.sitraka.com/software/performasure.
[8] Precise/Insight. A new Perspective on Performance
Management. www.precise.com/pdfs/InsightWhitePaper.pdf
[9] Alexandre Polozoff. Using Introscope for Network
Management in Large-Scale WebSphere Application Server
Environments. www.wilytech.com/solutions_introscope.html
[10] Java 2 Enterprise Edition (J2EE).
http://java.sun.com/j2ee.
[11] J. Guitart, J. Torres, E. Ayguadé and J. M. Bull.
Performance Analysis Tools for Parallel Java Applications on
Shared-memory Systems, 30th International Conference on
Parallel Processing (ICPP'01), pp. 357-364, Valencia, Spain.
September 3-7, 2001
[12] D. Carrera, J. Guitart, J. Torres, E. Ayguadé and J.
Labarta. An Instrumentation Tool for Threaded Java Application
Servers. XIII Jornadas de Paralelismo, Lleida, 2002.
[13] Jakarta Tomcat servlet container.
http://jakarta.apache.org/tomcat/
[14] P. Barford and M. Crovella. “Generating representative
workloads for network and server performance evaluation”. In
Proceedings of ACM SIGMETRICS '98, pages 151--160,
Madison, WI, June 1998.
[15] SPECjAppServer Benchmark.
http://www.spec.org/osg/jAppServer.
[16] WebSphere Application Server.
http://www-3.ibm.com/software/webservers/appserv/
[17] Logs and Traces: WebSphere Application Server.
http://www-3.ibm.com/software/webservers/appserv/doc/v40/
aee/wasa_content/0803.html
[18] JBoss EJB server. http://jboss.org.
[19] J. Oliver, J. Guitart, E. Ayguadé, N. Navarro and J.
Torres. Strategies for Efficient Exploitation of Loop-level
Parallelism in Java. Concurrency and Computation: Practice and
Experience (Java Grande 2000 Special Issue), Vol.13 (8-9), pp.
663-680. ISSN 1532-0634, July 2001.

