Switch-based packing technique to reduce traffic and latency in token coherence

Abstract

Token Coherence is a cache coherence protocol able to simultaneously capture the best attributes of traditional protocols: low latency and scalability. However it may lose these desired features when (1) several nodes contend for the same memory block and (2) nodes write highly-shared blocks. The first situation leads to the issue of simultaneous broadcast requests which threaten the protocol scalability. The second situation results in a burst of token responses directed to the writer, which turn it into a bottleneck and increase the latency. To address these problems, we propose a switch-based packing technique able to encapsulate several messages (while in transit) into just one. Its application to the simultaneous broadcasts significantly reduces their bandwidth requirements (up to 45%). Its application to token responses lowers their transmission latency (by 70%). Thus, the packing technique decreases both the latency and coherence traffic, thereby improving system performance (about 15% of reduction in runtime). © 2011 Elsevier Inc. All rights reserved.This work was partially supported by the Spanish MEC and MICINN, as well as European Commission FEDER funds, under Grants CSD2006-00046 and TIN2009-14475-C04-01.Cuesta Sáez, BA.; Robles Martínez, A.; Duato Marín, JF. (2012). Switch-based packing technique to reduce traffic and latency in token coherence. Journal of Parallel and Distributed Computing. 72(3):409-423. https://doi.org/10.1016/j.jpdc.2011.11.010S40942372

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020