
XIII JORNADAS DE PARALELISMO—LLEIDA, SEPTIEMBRE 2002 1

Abstract— Rapid development of e-business services has
extended the use of application servers on companies. The
Java platform has an important presence on this sector
because of its portability and development facilities. Java
application servers are becoming a key component in these
environments, thus the knowledge of these servers
behavior requires the use of new tools to overcome the
limitations of existing ones in both offered information and
semantics of execution. The natural environment for e-
business applications is composed by medium-range
parallel servers executing Java based threaded
applications. So, understanding threaded Java application
servers on parallel environments is the main target of our
tool: JIS (Java Instrumentation Suite). This paper
describes the design and implementation of JIS and
highlights some of the main functionalities. Our initial
implementation targets the JVM version 1.3 running
Jakarta Tomcat v4.0 on top of a Linux parallel platform
with a 2.4.16 kernel.

Keywords— Java, Application Server, Instrumentation,
Web Services, Parallel Execution

I. INTRODUCTION

APID development of e-business services has
extended the use of application servers on

companies, generating a high demand on tools to design,
implement and analyze applications offering these
services. Computing requirements of these kind of
applications make necessary the use of powerful
machines, basically parallel computers. The maximum
performance of this kind of machines is exploited by
using a threaded model for applications development.

Although a number of tools have been developed to
monitor and analyze the performance of parallel
applications [4][10][14][15][19][20], only a few of them
target multithreaded Java programs. As studied on [3],
different approaches are used to carry on the
instrumentation process. Paradyn [20] allows users to
insert and remove instrumentation probes during
program execution by dynamically relocating the code
and adding pre- and post-instrumentation code. Jinsight
[14] works with traces generated by an instrumented
Java Virtual Machine (JVM). [4] bases their work on the
instrumentation of the Java source code, thus requiring

European Center for Parallelism of Barcelona (CEPBA)
Computer Architecture Department, Technical University of Catalonia
C/ Jordi Girona 1-3, Campus Nord UPC, Mòdul C6, E-08034,
Barcelona (Spain)
{dcarrera, jguitart, torres, eduard, jesus}@ac.upc.es

the recompilation of the application. TAU [15] acts as
JVMPI profile agent [17] with big performance delays.

All of them report different metrics that measure and
breakdown, in some way, the application performance.
However, none of them enables a fine-grain analysis of
the multithreaded execution and the scheduling issues
involved in the execution of the threads that come from
the Java application. The Java Instrumentation Suite
(JIS) enables this detailed analysis of the application
behavior by recording the state of each thread along the
execution of the application. The instrumentation is
done using system monitoring techniques at the JVM
process level (avoiding modifications and recompilation
of the source code of neither the JVM nor Java
applications).

Originally JIS was a part of Barcelona Java Suite
(BJS) [1] at CEPBA [5]. Recently JIS became a part of
the eDragon project [7] developed at CIRI [6]. The
project is an umbrella project for experimentation and
development of technologies for analyzing and
optimizing the performance of Dynamic E-Business
Applications. The environment integrates techniques
and tools proposed in different research frameworks,
enabling the exploitation of their combined potential and
the development of new proposals.

Current implementations of the JVM allow Java
threads to be scheduled by the virtual machine itself (the
so-called green threads model) or by the operating
system (the so-called native threads model). When using
green threads, the operating system does not know
anything about threads that are handled by the virtual
machine. From the point of view of the operating
system, there is a single process and a single thread; it is
up to the virtual machine to handle all the details of the
threading API. In the native threads model, threads are
scheduled by the operating system that is hosting the
virtual machine. Current implementations of JVM tend
to use, for performance reasons, the native threads
model. JIS allows the analysis of threaded applications
running on these two execution models. However it is
designed targeting native threads based executions.

JIS has been successfully tested in both Sun and IBM
Linux versions of the JVM. All traces shown in this
paper have been captured from the IBM implementation
of the JVM. Currently, we are developing JIS versions
for other platforms, as IBM and IRIX.

The remaining of this paper is as follows. Section II
describes the basic components of JIS. Some
preliminary experiments using JIS are reported in
Section III and IV. Section V concludes this paper and
outlines future research activities in this topic.

An Instrumentation Tool for Threaded Java
Application Servers

David Carrera, Jordi Guitart, Jordi Torres, Eduard Ayguadé and Jesús Labarta

R

D. CARRERA ET AL.: AN INSTRUMENTATION TOOL FOR THREADED JAVA APPLICATION SERVERS

II. JIS ARCHITECTURE

JIS uses traces in order to analyze the behavior of
threaded applications. These traces reflect the activity of
each Java thread in the application (through a set of
predefined states that are representative of the parallel
execution) and collect the occurrence of some
predefined events along the whole application lifetime.

Generated traces can be analyzed and visualized with
Paraver [12]. Paraver is a tool developed at CEPBA to
analyze parallel applications from a qualitative and
quantitative point of view.

In order to gather useful information, traces must
contain continuous detailed system state and
comprehensive semantic application information. Both
they must be combined to allow developers
understanding what are happening in the system and
why it is happening. JIS approaches this idea by
combining two execution state data extraction levels.
One is based on the Java Virtual Machine Profiler
Interface (JVMPI) [17] and the other on the Linux
Kernel. Information generated by both them is merged
to be complemented and produce final trace
comprehensive by developers. Both levels work on the
same way: as soon as events are captured, they are
inserted on a memory buffer for each thread
(independent for each level). When the buffer is full, the
runtime system automatically dumps it to disk.

A. User space instrumentation (JVMPI based)

Java semantics are just considered inside the JVM.
Because of this, comprehensive instrumentation of Java
applications must be composed, in part, by internal JVM
information. Current versions of JVM implement a
Profiler Interface called JVMPI that is a common
interface designed to introduce hooks inside JVM code
in order to be notified about indicated Java events. This
facility is used by JIS to include information about Java
application semantics on its instrumentation process.
This means that a developer analyzing own applications
will be able to see system state information during
execution expressed in relation with some of the
developed Java application semantics.

The JVMPI is based on the idea of creating a user
shared library which is loaded on memory together with
the JVM and which is notified about selected internal
JVM events. Choosing hooked events is done at JVM
load time using a standard implemented method on the
library that is invoked by the JVM. Events are notified
through a call to a library function that can determine,
by parsing received parameters, what JVM event is
taking place. The treatment applied to each notified
event is decided by the profiler library, but should not
introduce too much overhead in order to avoid slowing
down instrumented applications in excess.

On JIS, two events are mainly considered to perform
application instrumentation. These are Java thread start
and Java thread end. Importance of these events comes
from their associated information: they contain
information about the internal JVM thread name (that
one defined by the developer) and allow JIS to match
Java threads with kernel threads. Both informations are

very useful for developers to understand system
information when visualized, because they make it
possible to put in relation system extracted data with
defined information during development time.

Optionally, other JVM events can be chosen to be
incorporated on instrumented information depending on
developers’ requirements. Activation of many event
notifications can result in severe overheads like in the
case of the method entry and method exit events,
because of their high notification frequency.

B. System space instrumentation

To perform useful application instrumentation,
continuous system state information must be offered to
developers. Other versions of JIS, previously designed
and targeting other platforms [9] used dynamic code
interposition in order to capture references to threads
library functions for thread state detection during
execution.

In our case, considering the open platform
characteristics of Linux systems, we decided to extract
system information directly from inside kernel. This task
was divided in two layers: one based in a kernel source
code patch and the other in a system device and its
corresponding driver (implemented in a Linux Kernel
Module, LKM). Figures 1 and 2 show JIS architecture
schema and interfaces between JIS levels.

Figure 1. JIS architecture divided on user space and kernel space levels

Figure 2. JIS instrumentation process

Linux Kernel

JIS kernel
module

JVM
JVMPI

JIS - JVMPI

XIII JORNADAS DE PARALELISMO—LLEIDA, SEPTIEMBRE 2002 3

1) Kernel module

The kernel module implements five basic
functionalities of JIS:

1. Interception of desired system calls
2. Implementation of a device driver for

instrumentation device
3. Creation of an event buffer shareable by system

space and user space through a memory map
4. Creation of an user space system instrumentation

control interface through the ioctl system call
5. Creation of a native interface for easy event

generation from user Java code

Interception of system calls is done by modifying the
global system call table in order to use an own function
instead of the original system call. After the call is
intercepted, the original system call function is invoked
in order to preserve the original system behavior.

The instrumentation driver requires a device that
controls it. The driver is implemented inside of the
Linux Kernel Module and is used to implement basic
functions operable over the device and to allocate the
system events buffer. Basic implemented functions are:
open, close, ioctl and mmap.

Open and close calls are used to be able to work with
the device. Ioctl call is used to control the system space
instrumentation from the user space code. This means
that when the JVM notifies to the JIS shared library the
start of the shutdown process through the JVMPI, the
library indicates to the kernel module that the
instrumentation process is concluded, and this
communication is done using the ioctl call. Finally, the
mmap call is implemented to allow the user space
instrumentation code to work transparently with the
system space buffer and be able to merge both event
buffers, system and space one, into a unique final trace.

Java allows the use of native code (compiled C code
on the case of JIS) inside the Java code. This invocation
method is called JNI (Java Native Interface) [11]. In
order to allow Java developers using JIS to introduce
events (similar to checkpoints) inside of their original
Java code, a native interface for Java is implemented on
JIS. On this way, Java written codes can invoke native
methods that finish generating JIS events inside of the
user space buffer. These events can be visualized inside
the trace using Paraver.

The access to system and user space buffers is done
without requiring system locks. Atomic operations are
used to fetch and increment pointers indicating the
current insertion position on buffers. With this
technique, spin locks use inside the kernel is avoided.

2) Kernel source patch

Some system events cannot be extracted by any other
way than inserting hooks inside the kernel source. These
special events are related to kernel threads state and
other ways of obtaining this information are not enough.

Linux offers an interesting way to extract process2
status on system: the proc file system. The problem
comes with the way this system interface divides the two
main process status: Runnable and Blocked. Runnable
implies that a process is ready to run on a processor, but
doesn’t give information about if it’s really running or if
it’s waiting for a processor to start execution. This issue
makes the proc file system insufficient to determine
thread status continuously.

The kernel patch implies that 4 events are captured and
inserted in the kernel module allocated buffer from
inside the kernel (together with the events generated
through system call interception inside the kernel
module). Captured events, and their corresponding
patched kernel function, are:

1. Kernel thread creation (schedule)
2. Kernel thread destruction (exit)
3. Kernel thread block (schedule)
4. Kernel thread awake (wakeup)

Figure 3. Thread states considered by JIS and intercepted functions to

detect transitions

Simplified Linux thread state diagram can be seen on
Figure 3. This isn’t the complete diagram of possible
thread states on Linux, but is the considered one on JIS.
Other states are not really relevant to study application
behavior. JIS captured thread states are represented on
Paraver as shown on Figure 4.

Thread lifecycle
blocked

running

ready

Figure 4. Thread state representation on Paraver

2 On Linux systems using the linuxthreads implementation of POSIX
threads, talking about processes is equivalent to talking about threads
because this concrete implementation uses the Linux clone system call
to create new threads, which means that threads are, in fact, cloned
processes sharing required resources.

D. CARRERA ET AL.: AN INSTRUMENTATION TOOL FOR THREADED JAVA APPLICATION SERVERS

C. Merging all

System space and user space captured events must be
put together to generate the final trace. The merging
process is done when the JVM is shut down. A global
memory buffer is allocated and user space events and
system space events are read sequentially and time-
ordered and inserted to the corresponding buffer
position.. Finally, the buffer is dumped in order to create
the final trace.

An important issue while merging events is how to
share user space and system space buffers in user space.
Our decision was to map system space buffer in a user
space memory region through the implementation of the
mmap operation on the instrumentation device. This
allows user space processes to work transparently with
kernel memory, making it possible to implement a
buffer merging process independently of source buffers
location.

III. ANALYZED APPLICATIONS

JIS was designed to allow Java application
instrumentation independently of their nature. It
performs successful instrumentation of classical
numerical applications [8] as well as of conceptually
new web applications.

However, the main targeted applications by JIS are
related with new web technologies. JIS is oriented
towards complete instrumentation of applications
constructed over the infrastructure of a web application
server. The chosen platform for JIS tests is Tomcat v4.0
[16], because of being the reference implementation of
Sun Java Servlets and JSPs specifications and because
of its source code availability, that have made possible
to insert user events inside of the server to increase
comprehension on the behavior of Tomcat.

A. Web content workload over Tomcat v4.0

First approximation to application servers is done
through static content services. This means serving
static HTML pages on Tomcat. This web server presents
a special characteristic when running alone
(alternatively it can be configured as an extension of
Apache Web Server for dynamic content services) and
serving static contents: it gives service using a special
servlet. This makes possible to study servlet invocation
process on Tomcat through static content services.

In order to study Tomcat on a real environment a
workload was necessary. The chosen one was SURGE
[2]. It generates a workload based on empirical
observation of real web server logs.

Some non-static content approximations have also
been done to test JIS capacities on typical application
server environments. Executing LUAppl benchmark
taken from [13] as a servlet over Tomcat has been one of
the selected dynamic-content tests. LUAppl consists on
a LU reduction kernel over a two-dimensional matrix of
double-precision elements

B. IBM Web Services Toolkit over Tomcat v4.0

Web services are a still in construction new concept
that tries to group a few technologies and put them to
work together in order to create a new global platform
for e-business. Interoperation, portability and location
independency are some of the key ideas behind Web
Services.

eDragon project is orienting their research topics
towards Application Servers. Web Services, as a
particular web application seen from the server side,
results an interesting case to study.

Three protocols are the basis of Web Services. These
are:

1. SOAP: a lightweight XML based protocol for

exchange of information in a decentralized,
distributed environment.

2. UDDI: is an XML-based framework that provides
standard APIs by which businesses participating in
online exchanges can identify who they are and
what types of products or services they provide.

3. WSDL: An XML format for describing network
services as a set of endpoints operating on messages
containing document or procedure info.

Because Web Services concepts and standards are still

under construction, an easy to use platform had to be
found in order to begin experimentations. IBM Web
Services Toolkit [18] is a packed downloadable set of
tools prepared to introduce developers on the world of
Web Services and allow them to start testing the system
quickly. It’s distributed supporting two different
platforms on server side: IBM WebSphere Application
Server (WAS) and Tomcat v4.0. In our case, Tomcat
was chosen because of the same reasons detailed in the
previous point.

IV. FIRST RESULTS

In this section, we highlight some conclusions drawn
from our initial experimentation with JIS. The main idea
is to show the usefulness of the tool in both analyzing
the behavior of threaded Java application servers and
understanding the behavior of the JVM itself. The
current implementation targets the Linux IA32
architecture. The used configuration consists in a
tetraprocessor machine with Pentium III processors at
800 MHz and the JVM version 1.3 running Jakarta
Tomcat v4.0.

JIS offers different views of the application. On one
side, JIS allows a global view of the application, which
allow us to recognize, for example, the execution
paradigm (master/slave, work queuing...), the
application concurrency and/or parallelism degree, ... On
another side, JIS allows a more detailed analysis
(timing) of the behavior and to detect, among other
things, load unbalancing at the thread level or critical
points that may create some possible bottlenecks.

XIII JORNADAS DE PARALELISMO—LLEIDA, SEPTIEMBRE 2002 5

A. Web content workload over Tomcat v4.0

Visualization of JIS generated traces on Paraver made
visible some of the behavior patterns present on this
server. Things like dynamic thread creation as a load
function and per connection service timers could be
modeled with Paraver facilities.

To allow a visual following of received connections
some adaptations had to be done on JIS. The main one
was the introduction of the called “communication
events” on the trace (originally incorporated on Paraver
to represent MPI messages) representing different thread
interaction with sockets.

Tomcat follows a connection service schema based on
the creation of objects called HttpProcessor. These
objects have as function to process incoming
connections and serve results directly to clients.
Incoming requests are initially attended by an
HttpConnector object, which makes the accept over a
socket and chooses an HttpProcessor object to process it.
Both HttpProcessor and HttpConnector objects contain a
background thread inside of them.

Relation between HttpConnector and HttpProcessor
objects is represented by a communication event. It can
be observed on Figure 5 as a vertical line. When a
communication occurs between two objects (and
threads, in fact) a socket is assigned to a new
HttpProcessor object. HttpProcessor threads run
concurrently and are the base of parallelism on Tomcat.
However, observed results show a low degree of
parallelism on requests service possibly because of short
duration of static requests and particularities of the
workloads (specially important are off times: time of
inactivity on clients between requests bursts).

Figure 5. Paraver visualization of a SURGE generated workload over
Tomcat v4.0

Figure 6. Paraver visualization of a LUAppl benchmark implemented

as a servlet over Tomcat v4.0

A non-static content test (a LUAppl benchmark taken
from [13] running as a servlet with 2 threads) is shown
on Figure 6.

B. IBM Web Services Toolkit over Tomcat v4.0

Web services are composed operations are basically
composed by three roles:

1. Service Interface Provider (sip)
2. Service Provider (sp)
3. Service Requestor (sr)

These roles can be identified in Figure 7 on the three
marked areas. Information visualized on Paraver is just
that one happened on the server. Tomcat was
implementing the first two roles and was responding
with services execution in the third one (the service
requestor). More detailed view of a service requestor
role is shown on Figure 8.

sip sp sr

Figure 7. Web Services roles as traced with JIS on the server side

sr

Start of service event

End of service event

Figure 8. Service Requestor role in detail

C. Overheads study

The instrumentation process of JIS introduces some
overhead during the execution of the application.

D. CARRERA ET AL.: AN INSTRUMENTATION TOOL FOR THREADED JAVA APPLICATION SERVERS

Nevertheless, this overhead is low enough not to affect
the conclusions extracted from applications analysis.

As explained in section II.c, once the application is
finished, the instrumentation library joins the per-thread
buffers into a single trace (ordered in time) suitable for
visualized with Paraver. This adds an extra overhead to
the whole execution time of the job that does not have
any impact in the trace.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the design of JIS (Java
Instrumentation Suite), a set of tools designed to analyze
the behavior of threaded applications running on the
JVM.

JIS allows a detailed time-analysis of the application
and visualizes the thread scheduling activity done by the
JVM. We have shown the usefulness of the JIS
environment with application servers. This
instrumentation is in fact a first step in the eDragon
project in the design of a platform for doing research on
scheduling mechanisms and policies oriented towards
optimizing the execution of multithreaded Java
Application Servers on parallel environments focused on
new Web paradigms as Web Services and eBusiness
extensions.

Particularities of Application Servers (like sockets
reuse by different threads) have been considered to
extend traditional instrumentation techniques to allow
better comprehension of this kind of applications.

Increasing JIS instrumentation capabilities is an easy
task considering its architecture. Adding new system
call interceptions should result in more detailed
applications description with the advantage of reusing
all the structural facilities offered by the tool.

Future work will pass by exploiting JIS to research on
new topics. Benefits of the tool will allow us to entry on
new computing fields never explored before with so fine
grain of detail.

VI. ACKNOWLEDGMENTS

We acknowledge the European Center for Parallelism
of Barcelona (CEPBA) and CEPBA-IBM Research
Institute (CIRI) for supplying the computing resources
for our experiments. This work is supported by the
Ministry of Science and Technology of Spain and the
European Union (FEDER funds) under contract
TIC2001-0995-C02-01 and by Direcció General de
Recerca of the Generalitat de Catalunya under grant
2001FI 00694 UPC APTIND.

VII. REFERENCES

[1] Barcelona Java Suite (BJS)

http://www.cepba.ucp.es/BJS

[2] P. Barford and M. Crovella. “Generating representative

workloads for network and server performance evaluation”. In
Proceedings of ACM SIGMETRICS '98, pages 151--160,
Madison, WI, June 1998.

[3] J. Bartolomé and J.Guitart, A Survey on Java Profiling Tools.

Research Report number: UPC-DAC-2001-13 / UPC-CEPBA-
2001-10.

[4] A. Bechini and C.A. Prete. Instrumentation of Concurrent

Java Applications for Program Behaviour Investigation, In
proceedings of 1st Annual Workshop on Java for High-
performance Computing, 1999 ACM International Conference
on Supercomputing ICS. Rhodes (Greece), June 1999.

[5] European Center for Parallelism of Barcelona (CEPBA)

http://www.cepba.upc.es

[6] CEPBA-IBM Research Institute (CIRI)

http://www.ciri.upc.es

[7] Barcelona eDragon Project

http://www.ciri.upc.es/eDragon

[8] J. Guitart, J. Torres, E. Ayguadé and J. M. Bull. Performance

Analysis Tools for Parallel Java Applications on Shared-memory
Systems, 30th International Conference on Parallel Processing
(ICPP'01), pp. 357-364, Valencia, Spain. September 3-7, 2001

[9] J. Guitart, J. Torres, E. Ayguadé, J. Oliver and J. Labarta. Java

Instrumentation Suite: Accurate Analysis of Java Threaded
Applications. 2nd Workshop on Java for High Performance
Computing (part of the 14th ACM International Conference on
Supercomputing ICS'00), pp. 15-25, Santa Fe, New Mexico
(USA). May 7, 2000.

[10] M. Ji, E, Felton and K. Li. Performance Measurements for

Multithreaded Programs. ACM SIGMETRICS/Performance,
1998.

[11] Sun Microsystems. Java Native Interface. March 2000.

http://java.sun.com/products/jdk/1.3/docs/guide/jni/

[12] J. Labarta, S. Girona, V. Pillet, T. Cortés and L. Gregoris.

DiP: A Parallel Program Development Environtment. In
proceedings of the 2th. Int. Euro-Par Conference. Lyon (France).
August 1996. http://www.cepba.upc.es/paraver

[13] J. Oliver, J. Guitart, E. Ayguadé, N. Navarro and J. Torres.

Strategies for Efficient Exploitation of Loop-level Parallelism in
Java. Concurrency and Computation: Practice and Experience
(Java Grande 2000 Special Issue), Vol.13 (8-9), pp. 663-680.
ISSN 1532-0634, July 2001. (Also as Research Report number:
UPC-DAC-2000-55 / UPC-CEPBA-2000-24, September 2000.

[14] W. Pauw, O. Gruber, E. Jensen, R. Konuru, N. Mitchell, G.

Sevitsky, J. Vlissides and J. Yang. Jinsight: Visualizing the
execution of Java programs. IBM Research Report, February
2000.

[15] S. Shende and A. Malony. Performance Tools for Parallel

Java Environments. Proc.of the Second Annual Workshop on
Java for High-Performance Computing, ICS00. St. Fe, New
Mexico, May 7, 2000.

[16] Tomcat web site

http://jakarta.apache.org/tomcat/

[17] D. Viswanathan and S. Liang, Java Virtual Machine Profile

Interface. IBM System Journal, Vol 39, No. 1, 2000.

[18] IBM Web Services Toolkit

http://www.alphaworks.ibm.com/tech/webservicestoolkit

[19] P. Wu and P. Narayan. Multithreaded Performance Analysis

with Sun WorkShop Thread Event Analyzer. Authoring and
Development Tools, Sunsoft, Technical White Paper. April 1998.

[20] Z. Xu, B. Miller and O. Naim. Dynamic Instrumentation of

Threaded Applications. In proceedings of the 1999 ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming.

