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Memory-Access-Aware Data Structure
Transformations for Embedded Software

With Dynamic Data Accesses
Edgar G. Daylight, David Atienza, Arnout Vandecappelle, Francky Catthoor, and Jose M. Mendias

Abstract—Embedded systems are evolving from traditional,
stand-alone devices to devices that participate in Internet activity.
The days of simple, manifest embedded software [e.g. a simple
finite-impulse response (FIR) algorithm on a digital signal pro-
cessor DSP)] are over. Complex, nonmanifest code, executed on a
variety of embedded platforms in a distributed manner, charac-
terizes next generation embedded software. One dominant niche,
which we concentrate on, is embedded, multimedia software. The
need is present to map large scale, dynamic, multimedia software
onto an embedded system in a systematic and highly optimized
manner. The objective of this paper is to introduce high-level,
systematically applicable, data structure transformations and to
show in detail the practical feasibility of our optimizations on
three real-life multimedia case studies. We derive Pareto tradeoff
points in terms of accesses versus memory footprint and obtain
significant gains in execution time and power consumption with
respect to the initial implementation choices. Our approach is
a first step to systematically applying high-level data structure
transformations in the context of memory-efficient and low-power
multimedia systems.

Index Terms—Data structure transformations, dynamic data
access, multimedia, power consumption.

I. INTRODUCTION

DATA structure analysis for dynamic data accesses is
mainly done in the computer science community at a

high level of abstraction under the implicit assumption that the
platform contains one monolithical memory. Exploiting plat-
form related knowledge such as available on-chip and off-chip
memory footprint, cache size, and number of SDRAM banks,
is mainly done in the system engineering community (i.e., at
a lower abstraction level) when the refined data structure has
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Fig. 1. Adding an array of links on top of an array of records.

already been chosen. A convergence of these two communities
is desirable since this leads to large decreases in cost, as we
will show.

In this article, we apply systematic, high-level, data-structure
transformations in the context of low power, embedded software
design for dynamic, multimedia applications. We present trans-
formations that have a direct and large impact on memory foot-
print, execution time, and power consumption. Memory foot-
print and execution time are measured on the TriMedia platform
and power consumption is estimated analytically based on an
SDRAM memory model.

A simple example of such a high-level data structure trans-
formation is presented in Fig. 1. The initial data structure 1 is
transformed into data structure 2 by adding links to data struc-
ture 1. These links allow easy traversal through the data struc-
ture which usually results in a decrease of the average amount
of data accesses. The memory footprint on the other hand has
increased due to the additional links. A tradeoff is present be-
tween data accesses and memory footprint.

The traversal operation, used in the above example, is an ac-
cess operation in which all stored records (R) in the data struc-
ture need to be consulted. Due to the dynamic behavior of the
multimedia application, it is not a priori known, which records
are stored in the data structure. Traversal is a very dominant ac-
cess operation in multimedia applications as we demonstrate in
all of our case studies. This implies that power consumption can
decrease drastically for data structure 2 due to the decrease in
number of data accesses, even though the memory footprint has
increased.

A. Power Consumption

The memory-related power consumption (P) of a data
structure implementation can be estimated as follows.

. A is the overall
data access count; i.e., the sum of the accesses needed to insert,
remove, and traverse records. For one data access, energy of 20
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nJ is consumed based on an 8-MB off-chip SDRAM model of
m-technology [22] and incorporation of bus interconnect.

In order to achieve a smooth visual effect for the human eye,
60 frames are output (on the video screen) per second.

Throughout this paper, we informally use the concept of data
access to denote an access of (directly related) data whose size
is between 1–8 B. For instance, in Fig. 1, an access to a link or
to a record (R) in data structure 2, both consume one data ac-
cess even though the physical accesses may differ. This simplifi-
cation allows us to compare different data structure implemen-
tations, relatively to each other, without having to use a more
detailed and, hence, complicated model. It is also realistic for
modern SDRAM accesses [34] where never an individual word
of a few bytes will be read but always a larger group (e.g. over
a wide bus of 64–128 b). It is safe to assume that directly re-
lated data will belong to such a single bus access, i.e., when
enough spatial locality is present. This assumption is justified if
the compiler is SDRAM-aware in the sense that it tries to map
an array of records into the least possible amount of pages.

In this paper, we present the memory-related power consump-
tion of different data-structure implementations. We use, for all
implementations, the aforementioned 8-MB off-chip SDRAM.
Indeed, all our data structures fit into an 8-MB memory. A more
customized software/hardware design approach would benefit
from the small memory footprint of some of our data structure
implementations by using small (on-chip) SRAM memories [1],
[24] instead. This will make the savings larger compared to
the initial reference. In other words, our obtained reductions in
power consumption are only made due to the reduction in data
access count.

B. Application Specific Access Behavior

In our case studies, we distinguish between three access pat-
terns: insertion, removal, and traversal. In addition to this, we
realistically assume that when a record is inserted, it is not al-
ready present in the data structure. Similarly, when a record is
removed, it is indeed the case that the record is a priori stored
in the data structure. These characteristics are specific for our
case studies, and we exploit these characteristics during opti-
mization in order to obtain large gains. For brevity, we do not
introduce and analyze other similar characteristics. The pro-
posed data-structure transformations themselves are, however,
invariant to these characteristics. Therefore, we claim that our
transformations are applicable on other case studies with sim-
ilar behavior as well.

C. Overview

We give a detailed exposition on related work in Section II,
and present our transformations in Section III. In Section IV, we
provide examples of data-structure transformations applied on a
simplified case study. In Section V, we present experimental re-
sults based on three real-life case studies. In addition to this, we
analyze the optimal implementations of Case Study 1 in detail
and gain insight into the achieved power reductions. We present
a discussion on profiling in Section VI, and explain the differ-
ences between reusable and efficient software in Section VII.
We conclude and present future work in Section VIII.

II. RELATED WORK

The work presented in this paper is inspired by [39] and
[43]–[45]. There are, however, two main differences.

First of all, we concentrate on data-structure optimizations in
the context of multimedia applications as opposed to focusing
on heavy data-oriented network routers. This implies that sev-
eral of the data-structure transformations that we present are
new with respect to the earlier work.

Second, we analyze the software implementation of power-
efficient data structures as opposed to explicitly designing and
using specific configured, physical memories. Redesigning the
available memory organization is not feasible in our context.
We assume that the embedded platform is already designed and
fully functional on the Internet. Our final research goal is to
transform the critical data structures, of software that migrates
onto an embedded system, in conformance with the physical
predefined memory architecture of the target platform.

Since the related work on data-structure management is im-
mense and interdisciplinary, we compare our work to different
research communities. By no means do we wish to categorize a
research contribution into one specific community. For instance,
Palem’s work [32] is mentioned in the embedded system engi-
neering domain, but it can just as well be cited in the dynamic
memory management domain.

In the embedded system engineering community, low power
is a main objective in the dynamic-power management domain
(see [3] for more references) and in the dynamic voltage sched-
uling domain [23]. However, data management related issues
are not or hardly covered.

Data management for traditional (i.e., nondynamic) em-
bedded applications is covered in detail in the data transfer
and storage exploration (DTSE) methodology [5]. However,
dynamic applications, i.e., interactive, multimedia applications,
are not dealt with directly in that context. Ideally, the work we
present in this paper should be followed by transformations
which are useful for actual platform mapping, for example,
those advocated by the DTSE methodology.

Work related to dynamic applications in the context of
low-cost design is presented in [25], [29], [32], and [45]. This
work is situated at a much lower abstraction level (e.g. platform
dependent optimizations) than the one we present in this
paper. McKee [29] designs a stream–memory controller and
demonstrates its applicability for fast-page mode and Rambus
DRAM memory systems. Zhang [45] presents compression
techniques in order to reduce heap allocated storage, execution
time, and power consumption. Palem [32] remaps data based
on metrics such as locality, prefetching, and regularity of
memory accesses and others. He lowers the memory needed
without compromising execution time. Kistler [25] captures,
by using dynamic profiling, which paths through the program
are taken with what frequency. This allows spatial locality to
be increased and load latency to be minimized. This is done by
striving to cluster and order data members that are accessed
closely after one another onto the same cache line.

Our own previous work [11], [12] deals with energy-friendly
data-structure transformations. Both platform-dependent and
platform-independent transformations are briefly covered. The



DAYLIGHT et al.: MEMORY-ACCESS-AWARE DATA STRUCTURE TRANSFORMATIONS 271

main emphasis of the referenced work is to show the practical
feasibility of the optimizations for a specific computer game
scenario. In this paper, however, we extensively cover several
additional platform independent optimizations and we present
three different case studies to prove the practical feasibility of
our methodology. We do not discuss any platform dependent
optimizations.

In the general-purpose domain, dynamic memory manage-
ment (DMM) has a long history. In [41], an extensive survey
on how efficient memory allocator design has evolved over the
past decades is presented. Often, in DMM for embedded sys-
tems [31], the dynamic memory is partitioned into blocks which
store the data structures of the application. Current approaches
include managing all the free blocks in a single linked list [31]
and simulating the application with different general-purpose
memory managers [4]. In addition, Haggander [20] defines and
exploits the object-oriented characteristics of an application in
order to obtain less physical memory accesses by using appli-
cation specific structure pools. Furthermore, part of Chilimbi’s
work in [7] is devoted to analyzing garbage collection based pro-
gramming languages in terms of memory performance. More-
over, he presents three data placement design principles: clus-
tering, coloring, and compression. These can be used to improve
the spatial and temporal locality of pointer-centric applications.

More attention is paid to power consumption and other em-
bedded systems criteria in [6], [10], and [28]. A fast, stepwise,
cost-driven, and automated exploration and refinement is pro-
posed by Leeman [28] at the system level for multimedia ap-
plications, which operate on large and irregular data structures.
Also, in the telecom network domain, da Silva [10] presents a
methodology which allows a system specification to be system-
atically mapped onto an optimized embedded single-chip hard-
ware/software implementation. Chang [6] designs a high-per-
formance memory allocator in hardware for object-oriented sys-
tems for full-customized architectures.

Dynamic memory allocation addresses the problem of when
and how to allocate extra (or deallocate “garbage”) memory.
DMM schemes deal with multiple data structures of various
shapes and access patterns in order to obtain an overall good
mapping of the data onto physical memory. Extra, but neces-
sary management, is added in order to cope with malloc requests
from different parts of the application. Clearly, this problem is
complementary to the problem we focus on, namely choosing
a good representation of a specific data structure. Some of our
driver implementations contain malloc requests but we have re-
spected this as is and focused on the problem of data-struc-
ture representation instead. Potentially, more gains can be made,
once the complementary problem of DMM has been addressed
and the corresponding optimizations are applied to our drivers
as well.

In the software performance engineering community, mostly
unified modelling language (UML) based designs [16] are ana-
lyzed in terms of performance. Application specific scenarios
are investigated and transformed into more economical solu-
tions. Patterns [14] and antipatterns [36] are developed. For in-
stance, one of the antipatterns presented in [36] is directly re-
lated to data-structure management. However, power consump-
tion in particular and embedded software in general are not con-

sidered. The reason why this community is relevant to con-
sider for our own work, is because the applications we want
to embed are of the nature presented in this community, e.g.
distributed gaming, web browsers, etc. (see [9]). Dealing with
such large scale and dynamic software implies that higher ab-
straction levels than pure C code are considered (e.g. UML
or equivalent software design languages) during optimization.
These high-level abstractions are situated on top of the trans-
formations that we propose in this paper. Our proposed method
chooses an efficient application-specific implementation of an
1-to-n relationship described in UML.

In the theoretical computer science community a lot of ef-
fort has been spent on formalizing abstract data types [2], [13],
corresponding optimizations [40], and verification [21]. Also,
data structure and algorithmic design for specific problems have
been a main research topic in the past [8], [26]. Attempts to for-
malizing data-structure transformations have been around for
quite some time [15], but obtaining success outside academic
institutes remains a challenge.

In the database community [17]–[19], [35], people have sys-
tematically explored various data structures expressed in formal
(e.g. query) languages. Using a well-designed language for a
specific problem domain (e.g., querying a spatial database) re-
sults in explicit information being expressed by the user. This
information can then easily be exploited by optimization tools.
In our multimedia application context, such explicit information
is not present and hence our problem is quite different and re-
quires other approaches to solve.

III. TRANSFORMATIONS

We present various data-structure transformations and infor-
mally motivate the usefulness of each transformation in terms
of memory footprint and/or data accesses for specific examples.
Analytical formulas are omitted for brevity.

A. Adding a Linked Structure

In Fig. 1, a data structure consisting of one array (i.e. data
structure 1) is transformed into a data structure consisting of
two arrays and a head pointer (i.e., data structure 2). The head
pointer is a logical pointer or link to the first entry of the data
structure. It merely contains the index (and not the physical ad-
dress) of the array element to which it is “pointing” to.

Data structure 1 is a sparse array of records: it contains frag-
mentation. Each record is denoted by “R.” The index of the cor-
responding array element is denoted by “K.” This index value
is equivalent to an implicit key, i.e., the index or key value is
not stored explicitly. Every record R corresponds to one unique
position in the array. This for instance means that record R2 can
only be stored in the array element that is characterized by K2
and nowhere else. Data structure 2 is the transformed data struc-
ture: a linked layer (i.e., the top array with the head pointer) is
introduced.

The top array of data structure 2 contains links which are
merely index values (or logical pointers). Every array element
of both the first and the second array (of data structure 2) cor-
responds to a unique record R. In other words, fragmentation is
present in both arrays. Since an array is added and fragmentation
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Fig. 2. Adding an array of explicit keys on top of an array of records. The assumption is made that maximum four records are stored in the data structure (at any
moment in time).

Fig. 3. Adding an array of links on top of an array of records. Each link points to a record (R). The assumption is made that maximum four records are stored in
the data structure (at any moment in time).

is not removed, data structure 2 has a larger memory footprint
in comparison to data structure 1.

An implicit correlation is present between the array elements
of the top array and the array elements of the bottom array of
data structure 2. For instance, if the second array element of
the top array is consulted, then the associated record (i.e., R2)
in the bottom array can be consulted directly as well with a
second data access (i.e., no overhead accesses are present).
Implicit correlations are not depicted explicitly in Fig. 1 and
other figures.

Intuitively, finding a specific record is as cheap for data
structure 2 as it is for data structure 1: just one data access is
needed. The link layer is not used for this operation. Traversing
all records is cheaper for data structure 2 than data structure 1
due to the links that can be used to quickly traverse the whole
data structure.

To summarize, transforming data structure 1 without a linked
layer into data structure 2 with a linked layer has the disad-
vantage that memory footprint increases. However, the data ac-
cesses needed to traverse all records decrease, thus, a tradeoff is
involved. The number of data accesses needed to find a specific
record remains unchanged.

B. The Use of Implicit Versus Explicit Keys

In Fig. 2, a data structure consisting of one array (i.e., data
structure 1) is transformed into a data structure consisting of
two arrays and a tail pointer (i.e., data structure 3). The tail
pointer is a logical pointer or link to the last entry of the data
structure.

Data structure 1 is the initial sparse array of records. The top
array of data structure 3 contains the key values of the array of
data structure 1. In other words, the keys are stored explicitly.
The bottom array of data structure 3 is similar to the array of
data structure 1. However, a record R can potentially be placed
anywhere in this bottom array.

An implicit correlation is present between the array elements
of the top array and the array elements of the bottom array of
data structure 3. For instance, if the second array element of the

top array (i.e., K6) is consulted, then the associated record (i.e.,
R6) in the bottom array can be consulted in a second data access
without additional accesses.

The transformation presented in Fig. 2 results in a nonfrag-
mented representation (cfr. data structure 3). In this specific ex-
ample, it is a priori known that maximum four (out of eight)
records are to be stored in the data structure at any moment in
time. Based on Fig. 2, data structure 3 consumes slightly more
memory than data structure 1.

Based intuitively on Fig. 2, finding a specific record is more
costly, in terms of data accesses, for data structure 3 than it is for
data structure 1. This is because in data structure 3 the record to
be found can be stored anywhere in the data structure. On the
other hand, traversing all records is cheaper, in terms of data
accesses, for data structure 3 than it is for data structure 1. Five
data accesses are needed for data structure 3 while eight are
needed for data structure 1 (since it is not known a priori which
two records are stored in the array).

To summarize, transforming data structure 1 with implicit
keys into data structure 3 with explicit keys has the advantage
that traversal becomes less expensive in terms of data accesses.
On the other hand, the memory footprint and the data accesses
needed to find a specific record increase.

C. Introducing Indirection

In Fig. 3, a data structure consisting of one array (i.e., data
structure 1) is transformed into a data structure consisting of
two arrays (i.e., data structure 4).

Data structure 1 is once again the initial sparse array of
records. Data structure 4 is the transformed data structure: an
indirection layer (i.e., the top array) is introduced.

The top array, of data structure 4, contains the index values
(or logical pointers) into the bottom array of data structure 4.
Every array element of the top array corresponds to a unique
record R. On the other hand, in the bottom array, every array
element can potentially contain any record R.

Data structure 4 has a larger memory footprint than data struc-
ture 1. Analyzing Fig. 3 in terms of data accesses, we conclude
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Fig. 4. Adding an array of markings on top of an array of records.

that looking up a specific record R is more expensive for data
structure 4 than it is for data structure 1 due to the indirection.
The same holds for traversal: eight accesses are needed for data
structure 1 while ten are needed for data structure 4 (i.e., eight
accesses for the top array and two accesses for the bottom array).

To summarize, transforming data structure 1 without indirec-
tion into data structure 4 with indirection has the disadvantage
that memory footprint and the data accesses to find and traverse
increase. We will, however, frequently apply this transforma-
tion together with other transformations, and obtain an overall
decrease in access count.

D. Marking

In Fig. 4, a data structure consisting of one array (i.e., data
structure 1) is transformed into a data structure consisting of
two arrays (i.e., data structure 5).

Data structure 1 is the initial sparse array of records. Data
structure 5 is the transformed data structure: an array of ele-
ments containing 0 or 1 is introduced. This top array is called
a bit vector. An implicit correlation is present between the top
array and the bottom array. For instance, since the value stored
in the second array element of the top array contains a 1, the
second array element of the bottom array contains a record (i.e.,
R2).

In this specific example, the bit vector is only eight bits or
one byte long. This implies that traversing the bit vector only
consumes one data access as opposed to eight data accesses.

The total memory footprint of data structure 5 is only slightly
larger than that of data structure 1.

Analyzing data structure 5 in terms of data accesses, we ob-
serve that, to insert a record, a total of three data accesses is
needed: a) one data access to store the record in the bottom
array; b) one data access to retrieve all the bits in the bit vector;
and c) one data access to store the updated bit vector. Note that
for step b) the entire byte of the bit vector needs to be retrieved.

Looking up a specific record in data structure 5 is achieved in
one data access. Only the bottom array needs to be consulted.

Traversing data structure 5 is cheap. One data access is
needed to retrieve the bit vector and consequently, two data
accesses are needed to retrieve the two records R2 and R6 from
the bottom array.

To summarize, transforming data structure 1 without marking
into data structure 5 with marking, has the disadvantage that
memory footprint increases. However, the data accesses needed
to traverse all records decreases. The number of data accesses
needed to find a specific record remains unchanged.

E. Key Splitting

Our fifth data-structure transformation is key splitting [12],
[45]. Since this is a more involved transformation, we defer the
explanation to Section IV-E, in which we directly apply key
splitting on a realistic example.

Fig. 5. Partitioning a data structure (e.g., an array) into two data structures
(e.g., two arrays).

F. Partitioning

In Fig. 5, an array (i.e., data structure 1) is partitioned into
two arrays (i.e., data structures 6a and 6b). This transformation
allows a set of different sized records to be decomposed into
two (or more) sets of similar sized records. As a result, after ap-
plying the transformations presented previously, on each set of
similar sized records individually, we increase the search space
of low-cost data-structure implementations considerably.

IV. SIMPLIFIED CASE STUDY: TETRIS GAME

In this section, we present a simplified version of Case Study
1 in Section V-A. We apply most of the previously presented
transformations to the pixels buffer of a Tetris game and give
insights into the effects of each transformation.

Tetris is a popular computer game in which the user controls
falling objects of varying shapes and sizes. During game play,
multiple objects are piled at the bottom of the screen and typi-
cally this pile grows until it reaches the top of the screen. When
the latter occurs, the game ends. Multiple variants of the game
exist, but we concentrate in particular on a version of the game in
which multiple objects can fall down simultaneously while the
user is interactively controlling the movement of these objects.

Each object has a specific shape which is decomposed into
rectangles. A rectangle has one color and can be associated with
a specific position on the screen by storing its and coordi-
nates of the lower left and upper right corners. In this version of
Tetris, the maximum number of rectangles is 100 (i.e., at the end
of the game). We exploit this knowledge when transforming the
pixels buffer.

A. The Pixels Buffer

The pixels buffer is a data structure which manages the rect-
angles of the Tetris game. This includes the movement of the
rectangles and the rendering of the rectangles from red, green,
blue (RGB) format to video output Y (lminance) and U (chromi-
nance blue) and V (chrominance red) format [30].

We present a typical implementation in Section IV-B and
apply the transformations of Section III to obtain more econom-
ical implementations in terms of data accesses and/or memory
footprint in Sections IV-C and IV-D. In Section IV-E we in-
troduce and directly apply key splitting to the pixels buffer. We
compare the different implementations in Section IV-F.
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Fig. 6. Implem1: a sparse array of records. A record represents the position
(Pos) of the upper right corner and the RGB color of a rectangle in the Tetris
game. Each array element is indexed by a position value which represents the
lower left corner of a rectangle. The total number of array elements is equal to
the resolution of the screen, i.e., 640 � 480 = 307200. Only 100 of these
contain a Pos-RGB value since there are only 100 rectangles in our version of
the Tetris game. Note that for simplicity only three of the 100 rectangles are
shown.

B. The Initial Pixels Buffer: A Sparse Array

A typical implementation, Implem1, of the pixels buffer is
a sparse array of records. This data structure is presented in
Fig. 6, in which only three out of the maximum 100 rectangles
are shown (to simplify the figure).

The position of the lower left corner of a rectangle corre-
sponds to the index value of an array element. The record stored
in the array element contains the position of the upper right
corner and the RGB color of the rectangle.

The most important access operations are the insertion of a
rectangle, removal of a rectangle, and traversal through all rect-
angles (in order to render them onto the screen). Note that this
knowledge can easily be obtained by profiling the Tetris game
or by asking the programmer of the game.

In Table I, we present the memory footprint of the array and
the number of data accesses that are needed for the access oper-
ations for 100 rectangles. Since a Pos value and an RGB value
both consume 3 B, we obtain a total memory footprint of

B or 1800 KB.
One data access is needed to insert a rectangle into the array.

Since 100 rectangles need to be inserted, a total of 100 data
accesses are needed. To remove a rectangle from the array, one
data access is needed. This too amounts to 100 data accesses for
the removal of 100 rectangles. To traverse through the array (i.e.,
to consult all 100 rectangles) a total of
accesses are needed.

TABLE I
PIXELS BUFFER IMPLEMENTATIONS MEMORY FOOTPRINT [KB],

DATA ACCESSES TO INSERT 100 TETRIS RECTANGLES,
REMOVE 100 RECTANGLES AND TRAVERSE ONCE

THROUGH ALL 100 RECTANGLES, AND

ESTIMATED POWER CONSUMPTION [mW]

Fig. 7. Implem2: a more compact storage representation: the keys are explicit.
Only four of the 100 rectangles are shown for simplicity.

C. Implem2: Explicit Keys

A second implementation of the pixels buffer, Implem2, is
obtained by making the keys (or the indices) of the array of
Fig. 6 explicit. This is in correspondence to Section III-B and
results in the data structure of Fig. 7. The two arrays in this
data structure are implicitly correlated. This means that when for
instance Pos(2,4) is retrieved from the first array, the associated
Pos(3,3)-RGB(red) pair can be retrieved in the second array in
a second data access.

The memory footprint of this data structure is only
B or 0.88 KB. In this calculation, we realistically assume

that the tail pointer consumes one byte.
Inserting a rectangle only takes four data accesses: a) one data

access to retrieve the tail pointer’s value; b) two data accesses to
store the Pos and Pos-RGB values, respectively; and c) one data
access to store the incremented tail pointer. Thus, for the inser-
tion of 100 rectangles, a total of 400 data accesses are needed.

Removing a record is a more involved operation. It includes:
a) finding the to-be-deleted Pos and Pos-RGB entries (which
takes a nonconstant amount of accesses). Assuming that in the
average case 50 rectangles are stored in the data structure, a total
of data accesses are needed. One access is
needed for the tail pointer and 25 accesses are needed in the av-
erage case to find a random rectangle in the data structure. In
addition to this, the following needs to be done. b) Copying the
last Pos and Pos-RGB values into the previously found entries in
four data accesses; and c) storing the decremented tail pointer
in one data access. In total, this amounts to 31 data accesses.
For 100 rectangles, a total of 3100 accesses are needed (to im-
plement the removal of those 100 rectangles). This is about a
factor of three more accesses than in Implem1.
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Fig. 8. Implem3: a storage representation where the key values are stored both implicitly (array 1) and explicitly (array 2). The drawing corresponds to the
scenario where only three of the 100 rectangles have been inserted into the data structure. This is done for simplicity. Other 97 rectangles still need to be inserted.

However, traversing the data structure (when all 100 rectan-
gles are stored) is achieved by a) retrieving the tail pointer’s
value in one data access and b) accessing each Pos and Pos-RGB
entry in 200 data accesses. This results in a total of 201 data ac-
cesses for traversal. This is about 1500 times less accesses than
in Implem1.

D. Implem3: Explicit Keys and Indirection

A third implementation of the pixels buffer is obtained by
adding a layer of indirection to Implem2. This is in correspon-
dence to Section III-C. The data structure is shown in Fig. 8.
In this implementation, the key values (i.e., the positions of the
lower left corner of the rectangles) are stored both implicitly (in
array 1) and explicitly (in array 2). This form of redundancy re-
sults in a) a large memory footprint but b) a small number of data
accesses for the removal of a rectangle as is shown in Table I.

To insert a record, an additional data access (for array 1) is
needed in comparison to Implem2. This results in a total of five
data accesses for one rectangle and thus 500 data accesses for
100 rectangles.

Removing a record consists of the following steps: a) the
to-be-deleted Pos and Pos-RGB entries are found via array 1 in
one data access; b) the indirection (i.e., the pointer from array 1
to array 2) is deleted in one data access; c) the tail pointer is con-
sulted in one data access; d) the last Pos and Pos-RGB values
are copied into the previously found entries (of arrays 2 and 3)
in four data accesses; e) the indirection from array 1 to these
moved Pos and Pos-RGB values is updated in one data access;
and f) the decremented tail pointer’s value is stored. This takes
nine data accesses in total. For 100 rectangles, a total of 900
data accesses are needed. This is a factor of three less accesses
in comparison to Implem2.

Traversing through the data structure is similar to Implem2:
only arrays 2 and 3 are used. Array 1 in Fig. 8 is not used during
traversal. Thus, a total of 201 data accesses are needed.

E. Implem4: Key Splitting

In this section, we apply key splitting to array 1 of Implem3
(see Fig. 9). Key splitting implies that the key bits, that make up
a key value, are split into two (or more) groups. For instance,
the Pos(5,2) value is a key value present in array 1 of Fig. 9. In
binary form this corresponds to 000 0000 0101 0000 0101. A
possible key splitting, is to split these 19 key bits into one group
of 13 b and another group of 6 b, i.e., 000 0000 0101 00 and
00 0101, respectively. The newly obtained 13 key bits represent
the key value of an entry in array 1a in Fig. 9. Similarly, the
newly obtained 6 b represent the key value of an entry in array
1b. The reason why we have chosen to split the 19 key bits into,
respectively, 13 and 6 key bits is given below.

Let represent the number of key bits of an array element
of array 1b; e.g. in the above example. Let represent
the total number of array elements of array 1a. The resolution of
the video screen is 307 200 pixels. Based on these definitions,
we know that . Choosing a specific value for

(e.g. ), results in a value for (e.g. ). The
total number of key bits for an array element of array 1 is 19.
Therefore, represents the number of key bits for an array
element of array 1a. In our particular example, key
bits.

The objective of key splitting is to reduce the total memory
footprint. In other words, the total memory footprint of arrays 1a
and 1b in Fig. 9 is much less than the memory footprint of array 1.
We calculate the memory footprint of arrays 1a and 1b as follows:

B B B . The factor
100 is present in the equation because we know that a maximum
of 100 Tetris rectangles are present in the Tetris game. Each large
array element of array 1b has a counter C whose size is 1 B. It de-
notes the number of stored entries. Since we want to minimize the
memory footprint, we apply the previous two equations for dif-
ferent values of and select the value which corresponds to the
minimum memory footprint. In this example, the best value of
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Fig. 9. Key splitting of array 1 of Implem3 into three arrays that belong to Implem4. The arrows leaving the small array elements in array 1 b point to specific
entries of array 2 (cfr. Fig. 8).

is and consequently . The memory footprint of
arrays 1a and 1b together is 11.1 KB. Compared to the memory
footprint of array 1, which is 300 KB, this is a significant reduc-
tion. In Fig. 9, these optimal values are used.

In addition to arrays 1a and 1b, we add an additional array
1c as well. Each array element of this array marks (cfr. Sec-
tion III-D) a large array element of array 1b. Recall that
small array elements are present in each large array element
of array 1b; i.e., array 1b is a two-dimensional (2–D) array in
programming jargon. If no small array elements are used in a
specific large array element of array 1b, then the corresponding
array element of array 1c contains a 0, else it contains a 1. Since
there are 100 large array elements of array 1b, the same amount
of array elements of array 1c are present as well. This implies
that the memory footprint of array 1c equals B.

Even though the total memory footprint of arrays 1a, 1b, and
1c is significantly smaller than the memory footprint of array
1, the data accesses needed, to find, insert, or retrieve have in-
creased. For instance, finding a specific record implies that array
1a is consulted first by specifying the thirteen most significant

key bits, then array 2a is consulted by specifying the six least
significant key bits, and finally the record is retrieved in arrays
2 and 3. Even more access overhead is present for insertion but
we omit further explanation for brevity. The numerical results
are shown in Table I.

F. Comparing the Different Implementations

Comparing Implem1, 2, 3, and 4 in Table I we observe that
the least power consuming implementation is Implem3. On the
other hand, Implem2 consumes the least amount of memory
footprint. Note that in Implem2, Implem3, and Implem4 a total
of 201 data accesses are needed for traversal. This is because all
three data-structure implementations use the same arrays (i.e.,
arrays 2 and 3 and the tail pointer in Fig. 8) for traversal.

We also observe that Implem4 lies in between two extremes,
namely Implem2 and Implem3. Implem4 has a relatively small
access count and a relatively small memory footprint in compar-
ison to the other implementations. This makes Implem4 a very
interesting implementation point for certain situations. It also
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Fig. 10. Pareto curve based on experiments on the TriMedia of the Pixels
Buffer’s data structure for 100 Tetris rectangles. Memory footprint [KB] is
measured and execution time [msec] as well for 100 consecutive output frames.
Power consumption [mW] is estimated based on profiled data accesses.

forms another Pareto point in the overall tradeoff space. Further-
more, recall that many key splitted variants of Implem4 exist (in-
cluding implementations in which key splitting is applied more
than once) which are potentially additional Pareto points in the
Pareto space. We have only presented one possibility.

V. EXPERIMENTAL RESULTS

We present experimental results of three real-life case studies
in which we apply data-structure transformations of the kind
described in Section III. The power consumption of our optimal
data structures are only analyzed in detail for Case Study 1.
Similar reasonings have led to the results for the other cases.

A. Case Study1: Pixels Buffer

In this case study, we examine the Pixels Buffer of a more
involved Tetris game (in comparison to Section IV). For
instance, we use double buffering [30] and a more complicated
conversion algorithm from RGB to YUV (chrominance and
luminance) format [38]. Our first set of experiments result
in Fig. 10 in which we present three Pareto optimal and one
suboptimal data-structure implementation of the pixels buffer.

Execution time and memory footprint in Fig. 10 are measured
on the TriMedia [38] platform. Power consumption is estimated
analytically as discussed in Section I-A. The 16 KB cache of the
TriMedia has been configured as fully hardware controlled with
a standard Least Recently Used (LRU) policy and is enabled.

PixBufOne represents the initial implementation of the pixels
buffer. PixBufTwo represents an implementation in which the
keys are stored explicitly. In PixBufThree, the keys are stored
implicitly resulting in a much larger memory footprint. PixBuf-
Four is obtained by key splitting PixBufThree. This results in a
small increase in execution time and a relatively large decrease
in memory footprint (see Fig. 10). For simplicity PixBufOne
can be compared to Implem1 (cfr. Table I), PixBufTwo can be
compared to Implem2, etc.

B. Detailed Discussion on Power Consumption

To derive the power formula in Section I-A, we have taken
into account the data accesses and memory size of the SDRAM.
However, the accesses that are done in the cache of the TriMedia
are not incorporated in the formula. In this section, we justify
why this is so. We do this by exploiting the fact that the TriMedia
processor allows a maximum of 8 KB of the 16-KB cache to be
software controlled.

In a second set of experiments, we reexecute all data struc-
tures presented in Fig. 10 with 8 KB of the cache containing
useless data throughout the whole execution run. This amounts
to having a useful cache of only 8 KB as opposed to 16 KB. We
have compared the execution times to those presented in Fig. 10
and observe no or negligibly small changes in execution time.

In a third set of experiments, we lock as much of the optimal
data structure under investigation in the cache (and keep the rest
in the SDRAM). This results in having the equivalent of an 8 KB
foreground memory and an 8 KB cache. In these experiments,
the difference in execution times are once again negligibly small
(i.e., 1.67%) from those presented in Fig. 10.

Based on these experiments, we conclude that, in our ini-
tial set of experiments, the cache is continuously reading and
writing data from the SDRAM. In other words, temporal locality
is not present in the application under investigation. Indeed, the
same conclusion is made when analyzing our game from a func-
tional point of view. All moving or changing rectangles in the
game are sent to the pixels buffer for video output (while all
static rectangles are only sent once). This explains the lack of
temporal locality in our application and, hence, the uselessness
of having a (relatively) big cache in this context. In this case
study, the useful size of the cache is relatively small since only
spatial locality can still motivate its use. We, therefore, conclude
that an 8-KB cache (and also a 16-KB cache) is too big for our
application. For a future embedded system, we assume to be
able to specify the exact amount of cache space we need for our
application. Therefore, we have not incorporated the redundant
accesses that are made to the TriMedia cache in Fig. 10.

Unfortunately, due to the limitations of the TriMedia pro-
cessor, we are not able to apply more detailed experiments on
this topic. The above discussion is not quantitative in nature. It
merely motivates why we consider a useful cache for this appli-
cation not to be of major concern when estimating power con-
sumption.

C. Case Study 2: Real-Time Strategy Game Engine

In our second case study, we have simulated and profiled
part of a real-time strategy game engine. A typical scenario in
this game is that an army of soldiers travels across different
regions toward an enemy army. We implement different data
structures for a specific region and compare the implementa-
tions in Table II for a varying number of soldiers that enter the
region under investigation.

The management of a region containing soldiers can be sum-
marized as follows. First, soldiers are inserted into the region
data structure (when the soldiers enter the region in the game).
Second, all soldiers are traversed in order to a) coordinate their
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TABLE II
GAME ENGINE IMPLEMENTATIONS. MEMORY FOOTPRINT [KB]/DATA

ACCESSES FOR ONE OUTPUT FRAME AND VARYING NUMBER OF SOLDIERS

movements and interactions amongst each other and b) to in-
form the video output functionality of the game what the new
position is of each soldier. This second step is applied repeat-
edly until the soldiers reach the border of the region. Finally,
in a third step, all soldiers are removed from the region data
structure (when the soldiers enter an adjacent region in the
game).

In Table II, memory footprint and data accesses are traded
off. The data structures correspond exactly to those presented in
Section III and the Pareto points are printed in italics.

D. Case Study 3: Meshing

Our third case study is related to three-dimensional (3-D)
rendering in general [41] and meshing of a 3-D object [27] in
particular. The 3-D object under investigation is represented by
6713 vertices and 13 406 faces (or triangles). These vertices
and faces need to be managed in a meshing algorithm and
corresponding data structure. It is this data structure that we
analyze and transform into more optimal data structures (cfr.
Table III).

The data structure under investigation contains faces and ver-
tices that need to be traversed repeatedly in order to render them
onto the screen. Insertion and removal are less profound access
operations and we omit them in our discussion for clarity.

Our first solution, Solution 1, stores the faces and the ver-
tices in separate arrays. Indirection is present between these two
arrays (cfr. Fig. 3). Since many faces of the 3-D object share
common vertices, this solution results in a small memory foot-
print since each vertex is only stored once. However, relatively
many data accesses are needed to traverse all faces and vertices
due to the indirection overhead (cfr. Section III-C).

On the other hand, Solution 2 uses one large array to store
all vertices of each face. This results in an increased memory
footprint since each vertex that is shared by two or more faces
is stored multiple times in the data structure. Due to the lack of
indirection however, traversal is much cheaper in terms of data
accesses.

Table III shows the tradeoff between Solution 1 and Solution
2. The original solution is suboptimal both in memory footprint
and in data accesses, and is not a Pareto point.

VI. IS PROFILING APPROPRIATE?

In our work, the use of profiling (e.g. for a game applica-
tion) seems inappropriate as the profiled information should
vary significantly based on actual inputs. Indeed, we have, for

TABLE III
MESH IMPLEMENTATIONS. MEMORY FOOTPRINT [KB], DATA ACCESSES FOR

ONE OUTPUT FRAME, AND POWER CONSUMPTION [mW] FOR A 3-D
IMAGE OF 6713 VERTICES AND 13 406 FACES

instance, exploited the fact that the 3-D object in Case Study
3 has exactly 6713 vertices and 13 406 faces. Exploiting this
results in huge gains, but how can we cope with an applica-
tion in which multiple 3-D objects of various sizes have to be
rendered after each other? A possible approach to solving this
problem is to design a data structure which is, on average, op-
timal for a range of 3-D objects. For instance, we could have
analyzed and designed an optimal data structure for 3-D ob-
jects whose vertices range between 5000 and 7000 and whose
faces ranges between 13 000 and 15 000. This is exactly the ap-
proach we followed in the Tetris game in which we designed
optimal data structures that could cope with maximally 100
Tetris rectangles.

Playing games or profiling in general is thus needed to some
extent in order to characterize the relevant contexts of the game,
but the instances that occur are clustered in ranges (or “sce-
narios”) so the profiling does not need to distinguish between
every possible individual case. Viewed from a practical stance,
we are inclined to say that it is the application designer who
will—while developing and testing his software—do the pro-
filing and characterize his application in such a way that the
system engineer can exploit this powerful information during
optimization.

VII. REUSABLE VERSUS. EFFICIENT SOFTWARE

The transformations presented in Section III seem to be ones
that would normally be done in a good software implementation.
We explain why this is a misconception.

First, all initial implementations (of all our drivers) are ob-
tained from other sources. We did not write these ourselves.
Second, a “good” software implementation can be interpreted
in contradictory ways as we demonstrate below.

An initial software implementation, written by a software en-
gineer, will consider his implementation to be good if it is 1)
reusable; 2) extendible; 3) easy to test; and 4) if it has sufficient
clarity. In this setting and at this stage of the overall design tra-
jectory, the software engineer is not interested in efficient exe-
cution (and certainly not in low power solutions); he is dealing
with a problem and wants to express his solution (in code) in a
readable manner; or he is specifying his solution in executable
code.

In the system engineering community, it is more likely that
good software is interpreted as being efficient software. It is
indeed realistic to assume that the initial implementation con-
tains a well-tuned data structure as opposed to reusing one off
the shelf. However, as we demonstrate in Section IV, applying
a sequence of transformations—including the time consuming
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and error prone key splitting transformation—results in a very
low-power solution and it is doubtful whether every system en-
gineer has a) the time to derive and especially implement such
a solution and b) the skill to derive such a solution in the first
place.

The reason why large gains are made in our case studies is
because the structure in the access pattern of the data structure
is exploited to its full extent. For instance, for the Tetris game,
the access pattern is exactly as follows in chronological order:

• Tetris rectangles are inserted into the data structure;
• all rectangles are traversed, and finally;
• all rectangles are removed.

This structure has been exploited fully in Case Study 1 (and
partly, but sufficiently, in our simplified case study) by choosing
appropriate data structures. In common current-day practice,
software engineers just (re)use an easy-to-implement data struc-
ture. A system engineer will optimize the chosen data structure
but he will typically do this at a lower abstraction level, i.e., at a
level where the semantics of the data accesses to the data struc-
ture are lost.

VIII. CONCLUSION AND FUTURE WORK

We have presented various high-level and systematically
applicable data-structure transformations for dynamic multi-
media applications. They have been applied on one conceptually
simplified and three real-life case studies. Applying various
transformations in sequence results in nontrivial data-structure
implementations. In this way, we can obtain optimal implemen-
tation points in a Pareto space in which data accesses are traded
off with memory footprint. Execution time and memory-related
power consumption are reduced significantly in comparison to
the initial implementations.

In future work, we will examine different types of user be-
havior, that characterize one specific application, in more detail.
Also, experiments will be done on a simulator, in order to eval-
uate the different data-structure implementations in more detail.
In addition to this, leakage energy, processor power, and also
the small cache or foreground memories used, need to be incor-
porated in our analysis in order to obtain more precise power
figures. In this paper, we make no absolute claims in terms of
total power reduction, but express the potential usefulness of
our data-structure transformations in the context of embedded
multimedia applications, based on relative comparisons of data
memory-related power.
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