184,436 research outputs found

    Vortex generation in protoplanetary disks with an embedded giant planet

    Full text link
    Vortices in protoplanetary disks can capture solid particles and form planetary cores within shorter timescales than those involved in the standard core-accretion model. We investigate vortex generation in thin unmagnetized protoplanetary disks with an embedded giant planet with planet to star mass ratio 10−410^{-4} and 10−310^{-3}. Two-dimensional hydrodynamical simulations of a protoplanetary disk with a planet are performed using two different numerical methods. The results of the non-linear simulations are compared with a time-resolved modal analysis of the azimuthally averaged surface density profiles using linear perturbation theory. Finite-difference methods implemented in polar coordinates generate vortices moving along the gap created by Neptune-mass to Jupiter-mass planets. The modal analysis shows that unstable modes are generated with growth rate of order 0.3ΩK0.3 \Omega_K for azimuthal numbers m=4,5,6, where ΩK\Omega_K is the local Keplerian frequency. Shock-capturing Cartesian-grid codes do not generate very much vorticity around a giant planet in a standard protoplanetary disk. Modal calculations confirm that the obtained radial profiles of density are less susceptible to the growth of linear modes on timescales of several hundreds of orbital periods. Navier-Stokes viscosity of the order ν=10−5\nu=10^{-5} (in units of a2Ωpa^2 \Omega_p) is found to have a stabilizing effect and prevents the formation of vortices. This result holds at high resolution runs and using different types of boundary conditions. Giant protoplanets of Neptune-mass to Jupiter-mass can excite the Rossby wave instability and generate vortices in thin disks. The presence of vortices in protoplanetary disks has implications for planet formation, orbital migration, and angular momentum transport in disks.Comment: 14 pages, 15 figures, accepted for publication in A&

    Static Axisymmetric Vacuum Solutions and Non-Uniform Black Strings

    Get PDF
    We describe new numerical methods to solve the static axisymmetric vacuum Einstein equations in more than four dimensions. As an illustration, we study the compactified non-uniform black string phase connected to the uniform strings at the Gregory-Laflamme critical point. We compute solutions with a ratio of maximum to minimum horizon radius up to nine. For a fixed compactification radius, the mass of these solutions is larger than the mass of the classically unstable uniform strings. Thus they cannot be the end state of the instability.Comment: 48 pages, 13 colour figures; v2: references correcte

    Multi-scale initial conditions for cosmological simulations

    Full text link
    We discuss a new algorithm to generate multi-scale initial conditions with multiple levels of refinements for cosmological "zoom-in" simulations. The method uses an adaptive convolution of Gaussian white noise with a real space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first (1LPT) or second order Lagrangian perturbation theory (2LPT). The new algorithm achieves RMS relative errors of order 10^(-4) for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier-space induced interference ringing. An optional hybrid multi-grid and Fast Fourier Transform (FFT) based scheme is introduced which has identical Fourier space behaviour as traditional approaches. Using a suite of re-simulations of a galaxy cluster halo our real space based approach is found to reproduce correlation functions, density profiles, key halo properties and subhalo abundances with per cent level accuracy. Finally, we generalize our approach for two-component baryon and dark-matter simulations and demonstrate that the power spectrum evolution is in excellent agreement with linear perturbation theory. For initial baryon density fields, it is suggested to use the local Lagrangian approximation in order to generate a density field for mesh based codes that is consistent with Lagrangian perturbation theory instead of the current practice of using the Eulerian linearly scaled densities.Comment: 22 pages, 24 figures. MNRAS in press. Updated affiliation

    The effects of displacement induced by thermal perturbations on the structure and stability of boundary-layer flows

    Get PDF
    The free-interaction influence of a thermal expansión process in boundary-layer gas flow is analyzed using the formalism of triple-deck theory. The physical model considered is the forced convection of a gas flowing over a flat plate subject to a heated slab. Both linearized and full nonlinear solutions are obtained using Fourier transform methods and spectral numericaí techniques. The influence of monochromatic thermal perturbation on boundary-layer stability (lower branch) is studied and first-ordcr correction of the lower branch neutral stability curve for the boundary-layer flow has been obtained. The shift of neutral stability is then computed for different values of the therma! perturbation wave number, making unstable some otherwise stable modes

    QEBA: Query-Efficient Boundary-Based Blackbox Attack

    Full text link
    Machine learning (ML), especially deep neural networks (DNNs) have been widely used in various applications, including several safety-critical ones (e.g. autonomous driving). As a result, recent research about adversarial examples has raised great concerns. Such adversarial attacks can be achieved by adding a small magnitude of perturbation to the input to mislead model prediction. While several whitebox attacks have demonstrated their effectiveness, which assume that the attackers have full access to the machine learning models; blackbox attacks are more realistic in practice. In this paper, we propose a Query-Efficient Boundary-based blackbox Attack (QEBA) based only on model's final prediction labels. We theoretically show why previous boundary-based attack with gradient estimation on the whole gradient space is not efficient in terms of query numbers, and provide optimality analysis for our dimension reduction-based gradient estimation. On the other hand, we conducted extensive experiments on ImageNet and CelebA datasets to evaluate QEBA. We show that compared with the state-of-the-art blackbox attacks, QEBA is able to use a smaller number of queries to achieve a lower magnitude of perturbation with 100% attack success rate. We also show case studies of attacks on real-world APIs including MEGVII Face++ and Microsoft Azure.Comment: Accepted by CVPR 202
    • …
    corecore