896 research outputs found

    Design and analysis of a high-gain and robust multi-DOF electro-thermally actuated MEMS gyroscope

    Full text link
    © 2018 by the authors. This paper presents the design and analysis of a multi degree of freedom (DOF) electro-thermally actuated non-resonant MEMS gyroscope with a 3-DOF drive mode and 1-DOF sense mode system. The 3-DOF drive mode system consists of three masses coupled together using suspension beams. The 1-DOF system consists of a single mass whose motion is decoupled from the drive mode using a decoupling frame. The gyroscope is designed to be operated in the flat region between the first two resonant peaks in drive mode, thus minimizing the effect of environmental and fabrication process variations on device performance. The high gain in the flat operational region is achieved by tuning the suspension beams stiffness. A detailed analytical model, considering the dynamics of both the electro-thermal actuator and multi-mass system, is developed. A parametric optimization is carried out, considering the microfabrication process constraints of the Metal Multi-User MEMS Processes (MetalMUMPs), to achieve high gain. The stiffness of suspension beams is optimized such that the sense mode resonant frequency lies in the flat region between the first two resonant peaks in the drive mode. The results acquired through the developed analytical model are verified with the help of 3D finite element method (FEM)-based simulations. The first three resonant frequencies in the drive mode are designed to be 2.51 kHz, 3.68 kHz, and 5.77 kHz, respectively. The sense mode resonant frequency is designed to be 3.13 kHz. At an actuation voltage of 0.2 V, the dynamically amplified drive mode gain in the sense mass is obtained to be 18.6 μm. With this gain, a capacitive change of 28.11 f F and 862.13 f F is achieved corresponding to the sense mode amplitude of 0.15 μm and 4.5 μm at atmospheric air pressure and in a vacuum, respectively

    Prototyping a new car semi-active suspension by variational feedback controller

    Get PDF
    New suspension systems electronically controlled are presented and mounted on board of a real car. The system consists of variable semi-active magneto-rheological dampers that are controlled through an electronic unit that is designed on the basis of a new optimal theoretical control, named VFC-Variational Feedback Controller. The system has been mounted on board of a BMW Series 1 car, and a set of experimental tests have been conducted in real driving conditions. The VFC reveals, because of its design strategy, to be able to enhance simultaneously both the comfort performance as well as the handling capability of the car. Preliminary comparisons with several industrially control methods adopted in the automotive field, among them skyhook and groundhook, show excellent results

    A dual-mass resonant mems gyroscope design with electrostatic tuning for frequency mismatch compensation

    Get PDF
    The micro-electro-mechanical systems (MEMS)-based sensor technologies are considered to be the enabling factor for the future development of smart sensing applications, mainly due to their small size, low power consumption and relatively low cost. This paper presents a new structurally and thermally stable design of a resonant mode-matched electrostatic z-axis MEMS gyroscope considering the foundry constraints of relatively low cost and commercially available silicon-on-insulator multi-user MEMS processes (SOIMUMPs) microfabrication process. The novelty of the proposed MEMS gyroscope design lies in the implementation of two separate masses for the drive and sense axis using a unique mechanical spring configuration that allows minimizing the cross-axis coupling between the drive and sense modes. For frequency mismatch compensation between the drive and sense modes due to foundry process uncertainties and gyroscope operating temperature variations, a comb-drive-based electrostatic tuning is implemented in the proposed design. The performance of the MEMS gyroscope design is verified through a detailed coupled-field electric-structural-thermal finite element method (FEM)-based analysis

    Modeling and simulation of the ferroelectric based micro gyroscope: FEM analysis

    Get PDF
    Cataloged from PDF version of article.This paper presents the design and modeling of micro-electromechanical systems (MEMS) on the ternary ferroelectric compounds (PZT) based by using finite element model (FEM) simulation. The conceptual framework establishes five steps to perform the critical analysis: design a novel structure, define the failure mechanisms under the given conditions, analyze different vibrations, analyze the operation principle, and detect resonance modes. In addition, MEMS failure modes were analyzed under different scenarios and the obtained results discussed

    Development of Novel Compound Controllers to Reduce Chattering of Sliding Mode Control

    Get PDF
    The robotics and dynamic systems constantly encountered with disturbances such as micro electro mechanical systems (MEMS) gyroscope under disturbances result in mechanical coupling terms between two axes, friction forces in exoskeleton robot joints, and unmodelled dynamics of robot manipulator. Sliding mode control (SMC) is a robust controller. The main drawback of the sliding mode controller is that it produces high-frequency control signals, which leads to chattering. The research objective is to reduce chattering, improve robustness, and increase trajectory tracking of SMC. In this research, we developed controllers for three different dynamic systems: (i) MEMS, (ii) an Exoskeleton type robot, and (iii) a 2 DOF robot manipulator. We proposed three sliding mode control methods such as robust sliding mode control (RSMC), new sliding mode control (NSMC), and fractional sliding mode control (FSMC). These controllers were applied on MEMS gyroscope, Exoskeleton robot, and robot manipulator. The performance of the three proposed sliding mode controllers was compared with conventional sliding mode control (CSMC). The simulation results verified that FSMC exhibits better performance in chattering reduction, faster convergence, finite-time convergence, robustness, and trajectory tracking compared to RSMC, CSMC, and NSFC. Also, the tracking performance of NSMC was compared with CSMC experimentally, which demonstrated better performance of the NSMC controller

    Design and Implementation of a Z-Axis MEMS Gyroscope with a Symmetric Multiple-Mass Mechanical Structure

    Get PDF
    This thesis presents a z-axis MEMS gyroscope with a symmetric mechanical structure. The multiple-mass design prioritizes the sense-mode Quality Factor (Q) and thus improves its scale factor. The proposed mechanically coupled, dynamically balanced anti-phase sense-mode design minimizes energy dissipation through the substrate in order to maximize the Q. Numerical simulation is implemented in a finite element analysis software, COMSOL, to identify the two operation modes of the gyroscope: drive-mode and sense-mode. The multiple-mass gyroscope design is further fabricated using a one-mask process. Experimental characterization of frequency response in both drive-mode and sense-mode of the device are conducted, proving the design concept for improving the Q in the sense-mode

    Sensor Fusion Algorithm by Complementary Filter for Attitude Estimation of Quadrotor with Low-Cost IMU

    Get PDF
    This paper proposes a sensor fusion algorithm by complementary filter technique for attitude estimation of quadrotor UAV using low-cost MEMS IMU. Angular rate from gyroscope tend to drift over a time while accelerometer data is commonly effected with environmental noise. Therefore, high frequency gyroscope signal and low frequency accelerometer signal is fused using complementary filter algorithm. The complementary filter scaling factor K1=0.98 and K2=0.02 are used to merge both gyro and accelerometer. The results show that the smooth roll, pitch and yaw attitude angle can be obtained from the low cost IMU by using proposed sensor fusion algorithm

    High-accuracy Motion Estimation for MEMS Devices with Capacitive Sensors

    Full text link
    With the development of micro-electro-mechanical system (MEMS) technologies, emerging MEMS applications such as in-situ MEMS IMU calibration, medical imaging via endomicroscopy, and feedback control for nano-positioning and laser scanning impose needs for especially accurate measurements of motion using on-chip sensors. Due to their advantages of simple fabrication and integration within system level architectures, capacitive sensors are a primary choice for motion tracking in those applications. However, challenges arise as often the capacitive sensing scheme in those applications is unconventional due to the nature of the application and/or the design and fabrication restrictions imposed, and MEMS sensors are traditionally susceptible to accuracy errors, as from nonlinear sensor behavior, gain and bias drift, feedthrough disturbances, etc. Those challenges prevent traditional sensing and estimation techniques from fulfilling the accuracy requirements of the candidate applications. The goal of this dissertation is to provide a framework for such MEMS devices to achieve high-accuracy motion estimation, and specifically to focus on innovative sensing and estimation techniques that leverage unconventional capacitive sensing schemes to improve estimation accuracy. Several research studies with this specific aim have been conducted, and the methodologies, results and findings are presented in the context of three applications. The general procedure of the study includes proposing and devising the capacitive sensing scheme, deriving a sensor model based on first principles of capacitor configuration and sensing circuit, analyzing the sensor’s characteristics in simulation with tuning of key parameters, conducting experimental investigations by constructing testbeds and identifying actuation and sensing models, formulating estimation schemes is to include identified actuation dynamics and sensor models, and validating the estimation schemes and evaluating their performance against ground truth measurements. The studies show that the proposed techniques are valid and effective, as the estimation schemes adopted either fulfill the requirements imposed or improve the overall estimation performance. Highlighted results presented in this dissertation include a scale factor calibration accuracy of 286 ppm for a MEMS gyroscope (Chapter 3), an improvement of 15.1% of angular displacement estimation accuracy by adopting a threshold sensing technique for a scanning micro-mirror (Chapter 4), and a phase shift prediction error of 0.39 degree for a electrostatic micro-scanner using shared electrodes for actuation and sensing (Chapter 5).PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147568/1/davidsky_1.pd

    Improvement of Tuning Fork Gyroscope Drive-mode Oscillation Matched using a Differential Driving Suspension Frame

    Get PDF
    This paper presents a novel design of a vibration tuning fork gyroscope (TFG) based on a differential driving suspension coupling spring between two gyroscopes. The proposed TFG is equivalent to a transistor differential amplifier circuit. The mechanical vibrations of driving frames are, therefore, well matched. The matching level depends on stiffness of spring. When three various TFG structures respond to differential stiffness of spring, their the driving frame mechanical vibration is well matched in case the input excitation driving differential phase is less than 3.5°, 2.5°, and 4°, respectively. The fabricated tuning fork gyroscope linearly operates in the range from -200 to +200 degree/s with the resolution of about 0.45 mV/degree/s
    • …
    corecore