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ABSTRACT 

DESIGN AND IMPLEMENTATION OF A ZrAXIS MEMS GYROSCOPE WITH 

A SYMMETRIC MULTIPLE-MASS MECHANICAL STRUCTURE 

Yujie Zhang 
Old Dominion University, 2012 

Advisor: Dr. Zhili Hao 

This thesis presents a z-axis MEMS gyroscope with a symmetric mechanical structure. 

The multiple-mass design prioritizes the sense-mode Quality Factor (Q) and thus 

improves its scale factor. The proposed mechanically coupled, dynamically balanced 

anti-phase sense-mode design minimizes energy dissipation through the substrate in order 

to maximize the Q. Numerical simulation is implemented in a finite element analysis 

software, COMSOL, to identify the two operation modes of the gyroscope: drive-mode 

and sense-mode. The multiple-mass gyroscope design is further fabricated using a one-

mask process. Experimental characterization of frequency response in both drive-mode 

and sense-mode of the device are conducted, proving the design concept for improving 

the Q in the sense-mode. 



iv 

This thesis is dedicated to my parents and my wife. 



V 

ACKNOWLEDGMENTS 

First I would like to present my gratitude to Dr. Zhili Hao, who has been my 

academic advisor during the past two years. I am grateful to her for providing me the 

great opportunity to study MEMS technology, for offering all the academic resources and 

for sharing the idea of creating. Her extensive knowledge and graceful academic attitude 

have guided me throughout the course of my research work. 

I would like to thank Dr. Gene Hou for his continuous support in my graduate 

research. Also, many thanks go to Diane Mitchell and June Blount for all their 

administrative help. 

I would like to express my appreciation to Dr. Han Bao for showing his interest in my 

thesis research. I would like to thank Dr. Colin Britcher for his great help on the thesis 

editing. 

I would like to give my special thanks to my fellow group members: Ren Wang, Peng 

Cheng, Fei Xie and Wenting Gu. Their help benefit me both academically and socially. 

The home-like atmosphere makes the research work easier. 

Last but not least, I would like to present my deepest gratitude to my parents and my 

wife, it is their love and support that make me who I am today and who I will be in the 

future. 



vi 

NOMENCLATURE 

C0: Static sense capacitance, F 

D: Damping factors, (Dimensionless) 

dj: Gap between two opposite comb-fingers, |am 

Fd: Electrostatic force applied on the drive electrodes, N 

Fc: Coriolis force, N 

fs: Sense-mode frequency, kHz 

fd: Drive-mode frequency, kHz 

h: Structure thickness, (am 

K: Spring constant, N/m 

Ks: Mechanical stiffness along the sense-mode direction, N/m 

Ke: Electrostatic stiffness, N/m 

m: Weight of the mass, g 

mc: Mass that sensitive to the Coriolis force, g 

M: Effective mass of the TFG, g 

n: Number of the fingers of the comb-drive electrodes, (Dimensionless) 

Q: Quality factor, (Dimensionless) 

Qs: Sense-mode Quality factor, (Dimensionless) 
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Vd: Driving AC voltage, V 

Vx: X-axis velocity, m/s 

Vp: Polarization voltage, V 

x: Drive-mode vibration amplitude, |nm 

X: Axial displacement of the proof mass, fim 

y0: Mechanical gain, (Dimensionless) 

ftz: Rotation rate along z-axis, deg/s 

con: Angular frequency, rad/s 

o>d: Drive-mode angular frequency, rad/s 

(t)d: Drive-mode position phase, deg 

4)d: Sense-mode position phase, deg 

£0: Permittivity of the free space, F/m 
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CHAPTER 1 

INTRODUCTION TO MEMS GYROSCOPES 

A traditional gyroscope is a device for measuring and maintaining rotation and 

orientation. Recent developed gyroscopes also have the function of measuring the rate of 

rotation [1]. The working principle of the traditional gyroscope depends on conservation 

of angular momentum and is designed to spin with any orientation. The spinning wheel 

and disk structure widely used for such prototypes would inevitably induce bearing 

friction and wear [2]. In order to avoid friction and wear problem of the traditional 

gyroscope, vibrating gyroscope was presented as an effective solution by eliminating 

most of the rotating structures. Other high-performance gyroscopes, such as Fiber-Optic 

Gyroscope and Ring Laser Gyroscope, which can completely eliminate friction are also 

developed [3]. These optical gyroscopes are not widely used in low-end applications due 

to their extremely high cost and thus will not be discussed in detail in this article. Micro 

Electro Mechanical System (MEMS) gyroscopes on the other hand, were found to have 

many advantages over both vibration gyroscopes and optical gyroscopes such as low 

cost, small size and low energy consumption [2]. 

1.1 Applications of MEMS Gyroscopes 

With the development of semiconductor fabrication technology, almost any two 

dimensional mechanical structure can be batch-produced on silicon wafers and packaged 

with integrated circuits. Consequently, inexpensive MEMS vibration gyroscopes have 

been greatly developed in the past 30 years [4]. Because of their high stability, high 
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performance-cost ratio, low power consumption and small size, they are widely used in 

space navigation, consumer electronics, medical applications and the automotive industry. 

For military applications, gyroscopes are an integral part of the Inertial Measurement 

Units (IMU) and Inertial Navigation Systems (INS) [5, 6]. In the inertial reference frame, 

gyroscopes provide the angular velocity information of the system by comparing its 

current and original orientation. This process is just like when a blindfolded passenger in 

the car knows the direction of the car by comparing the situation a moment before the 

movement [6]. 

For consumer electronics, MEMS gyroscopes and accelerometers are installed on 

devices like smartphones, tablets and play-stations to collect the heading information, 

which is, position and orientation. Take Nintendo Wii as an example, the movement of 

the player can be decomposed as rotation and acceleration, which are respectively 

detected by the MEMS gyroscopes and accelerometers inside the controller. Instantly, 

this information is being processed by microprocessors so that the motion of the player 

can be mapped on the TV. In the automotive industry, MEMS gyroscopes are used for 

anti-skid control, rollover detection, air-bag sensing system, Anti-Lock Brake System 

(ABS) and Global Positioning System (GPS). Those gyroscopes are assigned to three 

different axis (pitch, roll and yaw) to monitor the real-time dynamical motion of the car. 

Fig. 1.1 shows a MEMS gyroscope installed in a car. 



Figure 1.1: A MEMS gyroscope from STMicroelectronics 

1.2 Coriolis Effect 

To illustrate the working principle of a typical tuning-fork gyroscope (TFG), one should 

introduce the Coriolis Effect first. In the example of a simple tuning fork, as shown in Fig. 

1.2 [7], the tines of the tuning fork are stimulated to resonate along the x-axis with 

velocity Vx at certain amplitude and we call this vibration mode the drive-mode. When 

the tuning fork rotates along the z-axis with a rotation rate of Dz, the Coriolis Effect 

induces a force perpendicular to the tines of the tuning fork with the acceleration equals 

to — 212z x Vx. This force causes the deflection of the tines along the y-axis and we call 

this vibration mode the sense-mode [7], The Coriolis force is proportional to the applied 

angular rate from which the displacement can be measured in a capacitive fashion [8]. 

Electrostatic, electromagnetic, or piezoelectric mechanisms can also be used to detect this 

force. 
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Figure 1.2: Tuning fork physics 

Based on the Coriolis Effect, the first MEMS tuning-fork gyroscope (as shown in Fig. 

1.3) was designed and fabricated by Draper Laboratory in 1993 [9]. A considerable 

amount of work was done by researchers to improve the performance of this prototype of 

gyroscope. Fig. 1.4 shows a more recent generation tuning-fork gyroscope and it was 

fabricated by the Micro-Device & Micromechanics Lab at Old Dominion University in 

2009. The detailed working principle of this tuning-fork gyroscope is covered in the 

following chapters. 



Figure 1.3: The scanning electron micrograph of the first tuning-fork gyroscope from 
the Draper Laboratory 

Figure 1.4: A gyroscope fabricated by the Micro-Device & Micromechanics Lab at 
Old Dominion University in 2009 
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1.3 Current Technical Issues Associated with Tuning-Fork Gyroscope 

Three major challenges that face gyroscope designers are mechanical sensitivity, 

operation bandwidth and robustness against environment variation [10]. There are several 

key parameters to describe the performance of a MEMS gyroscope. From the IEEE 

Standard for Inertial Sensor Terminology [11], those key parameters include: rate 

sensitivity, bias (zero rate output), operation range (input rate limits), resolution, 

bandwidth, turn-on time, linear and angular vibration sensitivity, shock resistance and 

quality factor. 

(1) Rate sensitivity: the ratio of the change in output to the change of the input 

intended to be measured, typically specified in mV/deg /sec. 

(2) Bias: the average over a specified time of gyro output measured at specified 

operating conditions that have no correlation with input rotation. 

(3) Operating range: range of positive and negative angular rates that can be detected 

without saturation. 

(4) Resolution: the largest value of the minimum change in input, for inputs greater 

than the noise level, which produces a change in output equal to some specified 

percentage (more than 50%) of the change in output, expected using the nominal scale 

factor. 

(5) Bandwidth: the range of frequency of the angular rate input that the gyroscope can 

detect. Typically specified as the cutoff frequency coinciding to the -3dB point. 



(6) Quality factor (Q): it is defined as the maximum ratio of the amplitude to the static 

deflection, which is F/K. If the system is a lightly damped system, the Q can be written 

as: 

mo>n 
Q = (1.1) 

c 

Among these parameters, one may proportional to the reciprocal of another and such 

a relationship forces researchers to consider the tradeoffs when designing a new 

gyroscope. For instance, quality factor and bandwidth is one pair of tradeoffs. From 

Equation 1.2, the quality factor is found to be inversely proportional to the bandwidth of 

the system. Larger quality factor can be achieved either by decreasing the system 

damping, or by further merging the two natural frequencies, both of which would lower 

the operational bandwidth [11]. Taking a specific research work as an example, in the 

year 2007, Georgia Institute of Technology demonstrated a tuning-fork gyroscope which 

has a quality factor of 40,000 with a bandwidth of 0.4Hz. On the contrast, the quality 

factor of the same device will drop to only 10,000 when the bandwidth reaches 2Hz [12]. 

This work shows that if there was a small mode mismatch between the sense-mode and 

drive-mode, in another word, larger bandwidth, the quality factor will drop very fast. 

BW * ̂  (1.2) 

However, researchers can make their decisions among these tradeoffs by considering 

the specific application of the gyroscope. In gyrocompass navigation, where high rate 

resolution is important, hence, high quality factor has the priority, so a small bandwidth is 

tolerable. Conversely, in other cases such as the car roll-over situation where high yaw 
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rates need to be detected, minimum response time of the gyroscope system is crucial and 

therefore a larger bandwidth is required [12]. 

1.3.1 Mode Mismatch 

Previous research work demonstrates that a higher bandwidth will induce a reduction of 

quality factor in both sense-mode and drive-mode. In order to maximize the quality 

factor, researchers attempted to design the gyroscope with perfect or near perfect mode-

match, in other words, minimum separation between the two natural frequencies. The 

resonance frequencies of both modes are mainly determined by the stiffness of the beams, 

which relate to the material property as well as the beam length and width. In the design 

process, the dimensions of the beams are designed to be some specific values which 

satisfy mode-match requirement. Due to fabrication imperfection and environmental 

variation (such as temperature variation and humility variation), separation of frequencies 

between the sense-mode and drive-mode are hard to avoid. Researchers then come up 

with a method to manually tune the resonant frequency in the sense-mode close to the 

resonant frequency in the drive-mode. The following shows the detailed explanation of 

the electrostatic tuning method. The resonant frequency in the sense-mode is given as: 

In this equation, Ks denotes the mechanical stiffness of the sense direction while Ke 

represents the electrostatic stiffness along the sense axis. Increasing the polarization 

voltage Vp can lower the sense-mode frequency, while the drive-mode frequency is 

(1.3) 
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relatively independent of the polarization voltage change since the drive-mode oscillation 

is excited by comb-drive electrodes, hence, no electrostatic stiffness [19]. Depend on the 

statement above, the sense-mode resonant frequency is usually designed to be slightly 

larger than the drive-mode resonant frequency, which leaves a space for the frequency 

tuning process to compensate the mode-mismatch problem caused by fabrication 

imperfections. 

Even though the sense-mode frequency can be tuned close to the drive-mode 

frequency by increasing Vp , some research work proved that a higher Vp will cause an 

increase of the Thermo-Elastic Damping (TED), which would lead to a drop of the 

quality factor. Meanwhile, if the two vibration modes were tuned to be very close, it 

would also affect the sensor's robustness, temperature drift and linear operation range [7]. 

1.3.2 Demand for Larger Operation Bandwidth 

Most of the real world applications, such as the automotive industr y and consumer 

electronics, desired the bandwidth of the gyroscope to be above 100Hz, but no more than 

400Hz. A mode-matched gyroscope which has a 1Hz bandwidth would typically have a 

quality factor of 10,000 at a 10kHz resonant frequency. It is obvious that the mode 

matching gyroscope can only satisfy the high sensitivity requirement, but not for the large 

operational range. Research work has been done to improve the operational bandwidth by 

introducing multiple Degree of Freedom (DOF) dynamic sense-mode architecture. In 

2008, the research group in the University of California at Irvine and the Middle East 

Technical University at Ankara presented two multiple DOF sense-mode gyroscopes with 

operational bandwidth of 250 Hz [13] and 1000 Hz [14], respectively. 
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1.3.3 Mechanical Sensitivity and Coriolis Response 

The sensitivity, as known as scale factor, of a gyroscope is the ratio of the change in the 

output to a unit change in the input that is to be measured. It measures how sensitive the 

device is in response to an input rotation rate signal [15]. The following equations are 

discussed to illustrate the mechanical sensitivity and Coriolis response in a mathematical 

way. In Equation 1.4, the vibration amplitude of the drive-mode can be described as: 

x = x0 sin(a)dt + c|)d) (1.4) 

In this form, a>d denotes the drive-mode resonant frequency, x0 is a constant and is 

the drive-mode position phase relative to the drive AC signal. In most cases, the drive-

mode oscillation is driven into resonance so that 0d becomes -90°. On the other hand, 

the sense-mode oscillation is excited by Coriolis force Fc, which is given by 

Fc = -2mcnzx = -2mcnzO)dx0sin (a)dt + cj)d) (1.5) 

Where mc denotes the mass that sensitive to the Coriolis force. In a single mass or 

symmetrical gyroscope structure, all of the mass/masses is/are being used to sense the 

Coriolis force so as to improve the sensitivity. Conceptually, a gyroscope can be simply 

regarded as a one degree of freedom oscillator so that the governing equation can be 

written as: 

msy + csy + ksy = -2mcnzx0o>dsin (o)dt + <j)d) (1.6) 

where ms is the mass that sensitive to the Coriolis force. By defining the sense-mode 

resonant frequency cos and the sense-mode quality factor Qs: 
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K, 

ra. (1.7) 

msws 
Qs = HH1 (1-8) 

CS 

the mechanical gain of the sense-mode can be shown as: 

mco)d 2x0 
y0 = nz "'J = (1.9) 

msa)| 

M^)] 
Intuitively, for a given input rotation rate, larger deflection in the sense-mode causes 

larger change in the sense capacitances, generating larger electrical output which leads to 

higher sensitivity. As stated above, the drive-mode and sense-mode frequencies are 

generally designed to be very close to each other to achieve the maximum sensitivity. 

Such a situation reduces the sense-mode vibration amplitude to: 

_ „ 2Qsx0mc 
yores ~~ z (1.10) 

mscos 

Equation 1.10 shows several ways of improving the sense-mode vibration amplitude 

so as to increase the sensitivity of the gyroscope. For example, by increasing the drive-

mode oscillation amplitude x0 and maximizing the quality factor in the sense-mode 

through reducing energy dissipation. Some of these optimization methods will be covered 

in the following chapters. 
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1.4 Motivation 

By analyzing the technical issues of the current developed tuning-fork gyroscope, we 

observed that the quality factor in the sense-mode is critical for the overall performance 

of the gyroscope. High quality factor in the sense-mode directly amplifies the vibration 

amplitude and thus improves the scale factor. Previously designed gyroscopes usually 

show a large quality factor in the drive-mode and a relatively small quality factor in the 

sense-mode [7]. This is because the drive-mode oscillation operates in the linearly 

coupled, anti-phase resonant mode, which balances both linear momentum as well as 

moment of reaction forces, so that the energy dissipation through the substrate is 

effectively eliminated. By contrast, despite the fact that linear momentum is balanced in 

sense-mode, the moment of reaction force is not well balanced. As a result, to seek an 

effective method which could increase the quality factor in the sense-mode severs as the 

motivation of the research work done by this thesis. 

1.5 Thesis Organization 

The remainder of this thesis is organized as follows. Chapter 2 presents the design of the 

tuning-fork gyroscope with a symmetric 2-DOF mechanical structure. It also provides the 

detailed explanation of the gyroscope's operation principle, performance specifications 

and theoretical analysis. Design challenges such as mode order and mode shape are also 

elaborated. 

Chapter 3 focuses on the fabrication process of the tuning-fork gyroscope. One mask 

is used to characterize the Silicon on Isolator (SOI) wafer. Deep Reactive Ion Etching 

(DR1E) and Hydrofluoric (HF) acid etching are discussed. 
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Chapter 4 discusses the experimental work for characterizing the frequency response 

of the fabricated gyroscope. Experimental setup and procedures are discussed in detail. 

The experimental data is examined as well. 

Chapter 5 concludes this work with an overview of the contributions of this research 

and proposes possible future direction in performance optimization of this tuning-fork 

gyroscope. 
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CHAPTER 2 

DESIGN OF A Z-AXIS MEMS GYROSCOPE 

This chapter starts with analyzing the advantages and disadvantages of the previous 

generation tuning-fork gyroscope, and then presents the design configuration of the 

optimized new tuning-fork gyroscope. Theoretical analysis and FEM simulation of the 

design are followed. 

2.1 Overview of a Developed Multiple-Beam Tuning-Fork Gyroscope 

Based on the Coriolis Effect, a MEMS multiple-beam tuning-fork gyroscope (MB-TFG) 

was designed and fabricated by the MEMS group at Old Dominion University in 2009 

[16]. Fig. 2.1 shows a SEM picture of the MB-TFG. 

This multiple-beam mechanical structure consists of an anchor, two proof masses and 

a flexural structure of four beams in parallel. The whole structure is fixed on the substrate 

through the anchor located at its center. Dual proof masses are symmetrically located on 

both sides of the anchor to form the vibrating portion of the gyroscope. Four parallel-

plate sensing electrodes and four tuning electrodes are distributed around the proof 

masses with the purpose of capacitive sensing and frequency tuning, respectively. Comb-

drive electrodes are placed on both sides of the proof masses for electrostatic actuation. 
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Figure 2.1: SEM picture of the multiple-beam tuning-fork gyroscope (MB-TFG) [16] 

The working principle of this multiple-beam tuning-fork gyroscope is based on the 

energy transfer from one vibration mode to another: one along x-axis (drive-mode) and 

the other along the y-axis (sense-mode). When operating, the two proof masses are first 

driven into harmonic motion at their resonant frequency along x-axis by the comb-drive 

electrodes, while a rotation rate signal, Qz, induces a Coriolis Acceleration along the y-

axis and excites the in-plane vibrations in the sense-mode. The vibration of the sense-

mode is then detected by the parallel-plate sensing electrodes. 

In reviewing of this tuning-fork gyroscope, it is designed with an operational 

frequency between 10kHz to 20kHz to avoid any environmental noise and keep the 

operational voltage at a relatively low level. One of the limitations of this tuning-fork 

gyroscope is its relatively low quality factor in the sense-mode (100k), which is only half 

of the quality factor in the drive-mode (200k). As mentioned before, quality factor is one 

of the most important parameters since it is closely related to several key performance 
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specifications of a gyroscope. In short, quality factor represents the damping level of the 

system. High quality factor means the system has a less energy dissipation, in other 

words, not energy efficient [17]. 

Regarding this gyroscope, the energy loss mechanisms mainly include anchor loss, 

surface loss, Thermal-Elastic Damping (TED), air damping and intrinsic damping. The 

overall quality factor of a gyroscope is based on the sum of these losses [18,19]. 

1 - 1 + 1 + 1 + 1 + 1  ( 2  1 )  
Qmeasured QTED Qanchor loss Qsurface Qair damping Qintrinsic 

where QTED> Qanchor loss * Qsurface? Qair damping Qintrinsic denote the quality factor 

related to TED, anchor loss, surface loss, air damping and intrinsic loss. Among those 

five damping sources, air damping can be ignored since the gyroscope is operated in a 

vacuum environment. Surface loss can be made negligible through optimized processing. 

Intrinsic loss of silicon is very high so that the reciprocal of it become negligible. From 

the above analysis, TED and anchor loss are the two dominant energy loss sources of this 

gyroscope [19]. 

Anchor loss is caused by the reaction force at the clamped region of a mechanical 

structure during vibration. The relatively small anchor loss in the drive-mode comes from 

the anti-phase, dynamically balanced motion of the proof masses, while the relatively 

large anchor loss in the sense-mode is due to the net torque applied on the anchor by the 

unsymmetrical motion of the proof masses. 
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Figure 2.2: Drive-mode oscillation and its normal stress 

As shown in Fig. 2.2, since there is no net force applied on the anchor, the quality 

factor related to anchor loss in the drive-mode is expected to be well above 9><1015 [18]. 

In comparison, as shown in Fig. 2.3, the quality factor related to anchor loss in the sense-

mode is expected to be much smaller than its counterpart in the drive-mode. By modeling 

the surface traction of the anchor in the sense-mode, the stress concentration region is 

being exposed. Fig. 2.4 shows the FEM simulation result of the anchor in the sense-

mode, where mechanical energy of the gyroscope irreversibly transfers into other types of 

energy which are easier to be dissipated. 

In conclusion, the relatively low quality factor in the sense-mode is due to the large 

net torque applied on the anchor. In order to resolve this problem, a new design concept 

which would reduce the anchor loss is being introduced in the following paragraphs. 
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Figure 2.3: Sense-mode oscillation 
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Figure 2.4: Simulation of the surface traction of the anchor shows the evidence of 
unbalanced torque from the sense-mode 

2.2 New Design Concept 

Based on the above analysis, one way to increase the sense-mode quality factor is by 

alleviating the anchor loss. Thus, a new design optimization was recently done, which 

focuses on minimizing the unbalanced torque in the sense-mode of the conventional 
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design. Unlike previous tuning-fork implementations, the proposed architecture adds 

another proof mass on each side of the original proof masses, which balances both linear 

momentum and torque in the sense-mode, hence, lower the anchor loss. The energy 

dissipation through the substrate is effectively eliminated. 

2.3 Design Configuration Type I 

The proposed mechanical architecture, as shown in Fig. 2.5, comprises four proof 

masses, a flexural structure of multiple beams and a centrally located anchor. A pair of 

comb-finger electrodes, eight parallel-plate sense electrodes, and eight tuning electrodes 

are employed to operate the gyroscope. This 2 -DOF mechanical structure keeps the 

vibration along x-axis as the drive-mode and y-axis as the sense-mode. In the drive-

mode, which is illustrated in Fig. 2.5 (a), the four proof masses are driven into harmonic 

motion along x-axis at the same time, but in different directions. In the examination of 

the sense-mode, as shown in Fig. 2.5 (b), the rotation rate signal induced Coriolis 

Acceleration applies on the four proof masses so as to switch their vibration directions. 

The very left proof mass and the third proof mass vibrate at the same direction while the 

second proof mass and the very right proof mass move toward the same direction, but 

opposite to the first pair. By assigning this particular type of motion, the net torque 

generated by the two proof masses on the left of the anchor is completely balanced by its 

counterpart on the right. 
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Figure 2.5: Structural schematic view of the proposed gyroscope architecture for 
maximization of the sense-mode quality factor. Picture (a) Shows drive-mode 
configuration and (b) shows the sense-mode configuration. 

2.3.1 Drive-Mode Design 

The drive-mode motion of the proposed architecture is driven by comb-finger electrodes. 

For the comb-drive electrodes, one comb structure is fixed while the other one is mobile. 

When operating, as shown in Fig. 2.6, a polarization voltage Vp is applied on the anchor, 

hence, the mobile comb-drive electrodes. At the same time, a AC signal is applied one 
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side of the fixed comb-drive electrode to establish the drive-mode vibration, and output 

current is generated and detected by the fixed comb-drive electrode on the other side 

[20]. 

Figure 2.6: Signal configuration of the drive-mode and sense-mode vibration behavior 

As discussed above, the movement of the proof masses relay on the electrostatic force 

generated by the change of the overlapping capacitive area of the two opposite comb 

fingers, as shown in Equation 2.2 [21] 

h 
Fa = ne0(Vp - Vd)2 — (2.2) 

ad 

where £0 is the permittivity of free space, n is the number of fingers on the electrodes, h 

is the thickness and dd is the gap between two opposite comb-fingers. 
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In the drive-mode, there are two proof masses on each side of the anchor so that we 

can consider its lumped element model as a 2-DOF mass-spring-damper system. The 

schematic view of the equivalent lumped element model is illustrated in Fig. 2.7, where 

Xx and X2 are the axial displacement of the two proof masses, Mx and M2 are the 

effective masses of the TFG, Ddl and Dd2, Dd3 are the damping factors in the drive-

mode, Kdl and Kd2, Kd3 are the effective mechanical stiffness of the flexural beams. 

The second-order ordinary differential equation (ODE) that governs the dynamic 

behavior of the system is given by: 

Figure 2.7: Lumped model of the TFG in the drive-mode 

[M]X + [C]X + [K]X = F (2.3) 

where 

(2.4) 

r  = P d l  +  ̂ d 2  ~Ddz 1 
L ~DcL2 Dd2 + Dd3\ 

(2.5) 
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Kdl  + KdZ —Kd2 
—K d  2 K d  2 + K d  3 

(2.6) 

(2.7) 

As mentioned before, comb-drive electrodes are employed in the drive-mode to provide 

the electrostatic forces which drive the proof masses into vibration. The driving forces 

applied on the proof masses are given by: 

where nx and, n2 are the numbers of fingers in each comb-drive electrode, Vp is the 

polarization voltage and vd is the drive AC voltage. 

2.3.2 Sense-Mode Design 

Different from the comb-finger electrodes used in the drive-mode, the sense-mode uses 

parallel-plate electrodes to actuate and detect the proof masses' motion. Since the sense-

mode is still a 2-DOF system, we can also simply regard its lumped element model as a 

2-DOF mass-spring-damper system. Different from the drive-mode, an electrostatic 

stiffness ke is being introduced into the system since the sense-mode oscillation is driven 

by parallel-plate electrodes. A noteworthy point is that an electrostatic spring-softening 

(2.8) 

and 

(2.9) 
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effect is referred to k e  since it always reduces the mechanical stiffness, thus can be used 

for frequency tuning of the sense-mode. The definition of ke is given by: 

Electrodes 

Figure 2.8: DRIE fabricated parallel-plate sense electrodes 
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Figure 2.8 shows a SEM picture of the parallel-plate electrodes in this TFG. For this 

particular design, two parallel-plate electrodes are employed for operating one proof mass. 

In reviewing of a single parallel-plate electrode, as shown in Fig. 2.8 and 2.9, the lower 

plate is just the proof mass while the upper plate is fixed on the substrate. When 

operating, a voltage difference is established between the two plates and the proof mass is 

vibrating thus changing the gap between the two plates, electrostatic force is generated 

and is given by: 

1 V 2  V 2  

F e  =  2 C s 0 ~d~ s
+ C s 0 dl y  ( 2 ' 1 2 )  

where ds is the sense gap, y is the displacement of the proof mass towards the upper plate 

and Cs0 is the static sense capacitance. 

/ / / , / / /  

v 
d 

v 

L 

Figure 2.9: A schematic view of the parallel-plate electrostatic actuator 

In reality, the parallel-plate electrodes are not used for actuation of the proof masses, 

but for sensing the capacitance change, in another word, current output, which is shown 

in Equation 2.13. 



26 

CsQ 
is= ysVs<*>s= --j-Vpyso>s (2-13) 

where ys is the displacement of the proof mass, Cs0 is the capacitance between the two 

parallel-plate, Qs is the sense-mode quality factor and cos is the angular resonant 

frequency of the sense-mode. 

2.4 Design Configuration Type II 

When considering the drive-mode quality factor and the sense-mode quality factor, it is 

obvious that the second one has more practical meaning than the first one since Qs is 

directly related to the sense-mode vibration amplitude, hence, the mechanical sensitivity. 

In reviewing the design configuration type II, as shown in Fig. 2.10, the drive-mode 

motion is executed by parallel-plate electrodes while the sense-mode detector changes to 

comb-finger electrodes. Unlike previous tuning-fork implementations, the proposed 

architecture operates the linearly coupled, anti-phase resonant mode as the sense-mode, 

which prioritizes the sense-mode quality factor by minimizing the anchor loss in the 

sense direction [22]. The increasingly high quality factor in the sense-mode could provide 

a high mechanical sensitivity to the input angular rate through mode-matching when 

operated in vacuum. 
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Figure 2.10: (a) Drive-mode motion and (b) Sense-mode motion 

Comparing design configuration type I and type II, the mechanical structure is kept 

unchanged, which means the lumped element model and the governing equation are the 

same as discussed in Sections 2.3.1 and 2.3.2. 
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2.5 Finite Element Method Simulation 

The purpose of carrying out the Finite Element Method (FEM) simulation of the 

prescribed structure is to look for the best design parameters which can satisfy the 

designated requirements. As mentioned before, the frequency of both the drive-mode and 

sense-mode should be larger than 10kHz but smaller than 20KHz to insure the robustness 

of the TFG against environmental noise. In addition, we recognize that the key 

parameters to control the frequency of the two vibration modes ar e the mechanical 

stiffness of the beams. Therefore, by conducting the FEM simulation, we can find the 

best value of the beam stiffness by optimizing the beam dimensions. 

Theoretically, any mechanical structure could have an infinite number of modes from 

low frequency to high frequency. For this tuning-fork gyroscope, however, only the first 

eight in-plane modes are useful to be considered. Among these eight modes, as shown in 

Fig. 2.11, only the third drive-mode and the third sense-mode are the desired operational 

modes of the TFG. 

319133» 

(a) First drive-mode, Frequency= 15.841kHz 



29 

1—bA>(10)=~l 023262«6i Sqfcda«*i* «at [»] Dtfgr»»U»n Duplacoot 

(b) Second drive-mode, Frequency= 16.286kHz 
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(e) First sense-mode, frequency =13.943kHz 
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(g) Third sense-mode, Frequency= 16.296kHz 



32 

lmb^t(14)s-l.030659«5i Subdoaain: y-Ai«pl*c—iat [•] D*fora»ti«it: DiipltetMiti •«*: 3.49 

(h) Fourth sense-mode, Frequency= 16.403kHz 

Figure 2.11: FEM simulation results of the TFG 

There are two basic requirements for the modes that need to be satisfied during the 

design process. The two modes should be contiguous and the sense-mode frequency 

should be slightly larger than the drive-mode frequency. Table 2.1 shows optimized mode 

order and their corresponding frequencies. 

As shown in Table 2.1, the designated drive-mode frequency is 16.294kHz and the 

sense-mode frequency is 16.297kHz. They are the two neighboring modes with a small 

separation of 3 Hz, which satisfy the mode matching requirement. 



Table 2.1: Simulation result of the TFG shows the frequency and mode order 

Mode number Frequency (K H Z )  Mode type 

1 13.943 Sense 

2 15.590 Sense 

3 15.841 Drive 

4 16.286 Drive 

5 16.294 Drive (desired) 

6 16.297 Sense (desired) 

7 16.302 Drive 

8 16.403 Sense 
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CHAPTER 3 

FABRICATION PROCESS 

The tuning-fork gyroscope in this work is fabricated on the Silicon-On-Insulator (SOI) 

wafer using bulk micromachining technology. Only one mask is used in the entire 

fabrication process. The following paragraphs describe the fabrication procedure in detail. 

3.1 Fabrication Procedure 

Based on the design configuration presented in Chapter 2, the mask used for 

photolithography is designed using Computer Aided Design (CAD) software, where the 

dimensions of the structure are carefully mapped and the release holes are added. Fig. 3.1 

shows the file used for making the TFG mask and Table 3.1 lists the dimension of the 

devices. 

Figure 3.1: Mask drawing for the TFG 

The TFG is fabricated on a SOI wafer, which has a 30nm thick heavily-doped device 

layer, a 2fim thick buried dioxide layer and a 300jim thick handle layer. The first step is 
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patterning the mechanical structures and transducers onto the device layer of the SOI 

wafer using Deep Reactive Ion Etching (DRIE) process. Different from wet chemical 

etching, DRIE is a dry etching technology developed for MEMS since it is a highly 

anisotropic etching process which could create high-aspect ratio trenches with vertical 

side walls [23, 24]. 

Table 3.1: Device dimensions in the mask file 

Parameter Value Symbol Units 

Dimension of the device 2661x1936 - Hm2 

Beam width inner (drive) 22.5 B1 |am 

Beam width outer (drive) 20.5 B2 (im 

Beam width inner (sense) 21.5 B3 fim 

Beam width outer (sense) 46.5 B4 jim 

Beam length inner (drive) 1120 LI |xm 

Beam length outer (drive) 1360 L2 (am 

Beam length inner (sense) 1400 L3 Hm 

Beam length outer (sense) 2642 L4 |im 

Small proof mass 300x300 SI Hm2 

Large proof mass 400x400 S2 [im2 

Release hole 15x15 R Jim2 
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The time-controlled Hydrofluoric (HF) acid etching is followed to etch away silicon 

dioxide underneath the TFG, which allows the mechanical structure free to move. At the 

same time, the silicon dioxide under the anchor and the electrodes should be retained as 

much as possible with the purpose of holding them tightly on the substrate [25]. The 

DRIE process was conducted at Cornell Nanofabrication Facility (CNF) and the HF 

etching step is performed at the Micro Devices and Micromechanics Laboratory, Old 

Dominion University. Fig. 3.2 shows a schematic view of the fabrication process. 

Substrate 
Silicon 

Si02 

SOI wafer with highly doped device layer 

n 

Defining the tuning-fork structure and transducers using DRIE 

ssssssssa KSSSW Q T5KM 

HF acid etching of buried dioxide to release the movable structure 

Figure 3.2: Fabrication process 

Fig. 3.3 shows the Scanning Electron Microscope (SEM) pictures of the fabricated 

device, which were taken by Dr. Wei Cao at the Applied Research Center, Old Dominion 

University. 
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Figure 3.3: SEM picture of the fabricated TFG 

A noteworthy point is that the smallest design feature of this TFG is the sensing gap 

between the sense electrode and proof mass, which is only 3|im. The small gap is hard to 

be etched through by HF acid, since surface tension slows HF liquid to get into the gap. 

As a result, it usually takes a longer time for HF acid to etch through the gap so that extra 



38 

time used for etching the gap could cause over-etching of other parts of the TFG. Fig. 3.4 

shows a close-up view of the sensing gap. 

Figure 3.4: Sensing gap configuration 

3.2 Fabrication Imperfections 

Based on the discussions in Chapter 1, the mode-matching requirement renders the 

system response very sensitive to variations in parameters due to fabrication 

imperfections and fluctuations in operating conditions. Inevitable fabrication 

imperfections affect both the geometry and the material properties of MEMS devices. 

Among different kinds of issues, over-etching is identified as the most critical factor that 

affects the yield percentage of the fabrication process. In this one mask fabrication 

process, over-etching comes from both etching steps: one is DRIE over-etching and the 

other is HF acid over-etching. In some sense, some DRIE over-etching is tolerable since 
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it would allow all the mechanical structures to be completely patterned on the device 

layer, however, too much DRIE over-etching is harmful since it will induce fuzzy edges 

and undercutting of the structures. Fig. 3.5 shows the evidence of DRIE over-etching. 

Figure 3.5: DRIE over-etching 

Different from dry etching, HF etching is one kind of wet etching so that it etches 

away silicon dioxide isotropically. The HF over-etching under the anchor would induce 

an area change of the anchor foundation and thus make the anchor unstable. Likewise, the 

HF over-etching under the electrodes could cause them unsteady. When wire bonding 

process is being applied on the electrodes, they might not be able to hold tightly on the 

substrate and thus fall off and lose their function. Fig. 3.6 shows the consequences of HF 

over-etching. 
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Figure 3.6: HF over-etching under the anchor 

In summary, fabrication imperfections such as DRIE over-etching and HF over-

etching make the system characteristics deviate drastically from the designed values. In 

some cases, this problem would cause the gyroscope system partially, or even completely 

fail. Thus, process control becomes extremely critical to minimize device-to-device, die-

to-die, and wafer-to-wafer variations, and to realize a device with the desirable 

performance. 
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CHAPTER 4 

EXPERIMENTAL CHARACTERIZATION 

This chapter starts with analyzing the electromechanical system level model of the TFG. 

The experimental characterization technique for frequency response extraction is 

followed. Results from various experiments of the TFG are discussed. 

4.1 Electromechanical System Level Model 

In order to analyze and measure the performance of the tuning-fork gyroscope, the 

equivalent circuit model of the TFS should be characterized in the beginning. The tuning-

fork gyroscope can be regarded as a coupled resonator system with the rotation induced 

Coriolis force being the coupling element between the two resonant modes [26]. The 

tuning-fork gyroscope mechanism can be translated to an equivalent circuit model with 

the purpose of electro-mechanical coupling. Table 4.1 lists the basic electrical analogy 

and the equivalent mechanical quantities. 

'feedthnrugh 

'pud so pad 

Figure 4.1: Equivalent electrical circuit model for a two port MEMS resonator 
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As shown in Fig. 4.1, the mechanical structure of the two port MEMS resonator is 

translated into a series RCL circuit, which can be incorporated into drive-loop electronic 

for operation. 

Table 4.1: Basic electrical analogy and equivalent mechanical quantities 

Electrical 
field 

Electrical 
Symbol 

Mechanical 
Field 

(Translation) 

Mechanical 
symbol 

Resistance 
(Ohm) 

R 
Damping 

Coefficient 
(kg/s) 

D 

Inductance 
(Henry) 

L 
Equivalent 
mass (kg) 

m 

Capacitanc 
e(F) 

C 
Reciprocal of 

stiffness 
l/(|iN/iim) 

1 

k 

Voltage 
(V) 

V 
Electrostatic 
force (nN) 

F 

Current 
(A) 

i 
Displacement 

Velocity 
(|im/sec) 

dy 

dt 

Charge 
(Q) Q 

Displacement 
(nm) 

y 
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For the presented tuning-fork gyroscope, both comb-drive electrodes and parallel-

plate electrodes (as shown in Fig. 4.2) are employed for operating the proof masses. The 

overall transfer functions of the comb-drive electrodes and parallel-plate electrodes are 

given by: 

Y ,, , wo*) 
21-CombO vinput(ja>) M-s + D + k/s (-) 

and 

Cd.0 . CsO . 172 
^output C/^0 dd ds P 

Y » ~ ™ = & i =
H . s \ D + ^  (4'2) 

s 

where cLd is the gap between two parallel-plate of the input port and ds is the gap between 

two parallel-plate of the output port, Vp is the polarization voltage applies on the device, n 

is the number of fingers of the comb-drive electrodes, e is the electrical permittivity and h 

is the height of the fingers. 

--©—|l' 

I y <*d 
• u 

V<1 

I y <*d 
• 

L_ 

V<1 

• 

L_ 
k J2 

d1 

1 k72 

1'* 

k J2 
d1 • 

k72 

1'* 

Figure 4.2: Schematic view of the two port resonator with parallel-plate (left) electrodes 
and comb-drive electrodes (right). 
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4.2 Experimental Setup for Q Measurement 

Based on the previous work done by ODU MEMS group, a Trans Impedance Amplifier 

(TIA) with a feedback resistor is used for sensing of the motion current. TIA provides a 

low noise front end interface in both the drive and sense capacitance detection [27]. In 

comparison of the electrical system and mechanical system, the definitions of quality 

factor of two different forms are given by Equations 4.3 and 4.4: 

Equation 4.3 shows the definition of quality factor in a RCL circuit, which is the 

equivalent circuit model of the TFS. As electrical components, the inductor stores energy 

as a magnetic field and the capacitor stores energy in the form of charge, while resistor 

dissipates energy in the form of heat. Similar as the RCL circuit, Equation 4.4 shows the 

similar energy transfer analogy for the lamped mechanical system. The moving mass and 

deformed spring serve as the energy storage mechanism while damper is the energy 

dissipation mechanism. 

The frequency response measurement is performed to find out the resonant 

frequencies and the quality factors of the drive-mode and sense-mode. Figs. 4.3 and 4.4 

show a schematic view and pictures of the experimental setup for measuring the 

frequency response of a TFG. 

(4.3) 

(4.4) 
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In the beginning, a die of gyroscopes is fixed on a PCB and a gyroscope is wire-

bonded to the copper pads that are connected to a TIA front-end with a feedback resistor 

of RF = 5.1 MO. The PCB is then placed in a vacuum chamber and electrically connected 

to other instruments. A network analyzer, a DC supply and an AC supply are employed 

to operate the gyroscope system. With a polarization voltage Vp applied on the anchor, an 

AC drive voltage Vin is applied on one electrode, and then a sense current signal Iout can 

be detected from the other electrode, which is further converted into a voltage through the 

TIA front-end. 

Network Analyzer 

Output 

DC Supply 

PCB in Vacuum 

Figure 4.3: Schematic view of experimental setup 
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Figure 4.4: Testing equipment and setup 

4.3 Testing Results and Discussions 

Five devices are measured and the results are shown in Table 4.2. The resonant 

frequencies of the actual fabricated devices are slightly different from one to another 

since the wafers have gone through different DRIE loops, which reflect in various 

structural dimensions. 
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Table 4.2: Testing results of the fabricated devices 

Device# Drive-mode Sense-mode 

Frequency (K H Z )  Q(K) Frequency (K H Z ) Q(K) 

#1 18.73975 3.7916 19.62775 2.1835 

#2 19.19125 24.43 19.69395 25.822 

#3 19.22175 2.1387 19.6589 29.75 

#4 19.262 8.3413 19.6597 21.202 

#5 19.33745 16.356 19.5482 39.768 

In reviewing the testing results, the drive-mode resonant frequencies are in the range 

of 18.74kHz to 19.34kHz and the sense-mode resonant frequencies are in between 

19.54kHz and 19.69kHz. Base on the data, we can conclude that the sense-mode quality 

factor is no less than the drive-mode quality factor, which proves the design optimization 

idea. The original measured graphs of Device #2 and #4 are shown in Fig. 4.5, 

Several problems could be seen from the testing results. In the first place, the drive-

mode and sense-mode resonant frequencies have a large separation (300Hz-900Hz), 

which is caused by the variation of beam dimensions. During the design process, the 

beam length and width are optimized well enough to make the two modes close to each 

other. When carrying out the mask drawing and the fabrication process, due to structural 

variation and fabrication imperfections, the resonant frequencies are inevitably changed 
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to some extent. This problem can be further eliminated by iterating the design and 

fabrication process of the device. Secondly, even though the sense-mode quality factor is 

larger than the drive-mode quality factor, the absolute values of the quality factors of 

both modes are not as good as the first generation TFG. One reason is that the beams of 

this gyroscope are not the same as the multiple-parallel structure used in the previous 

TFG, which is proved to be more effective in reducing TED. Another reason is that the 

dimension of this TFG is doubled compare to the first generation TFG, so that the energy 

dissipation would be much larger. 
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Figure 4.5: Measured frequency response for Device #2 and #4 
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 Summary of the Research Work 

This thesis focuses on the design, modeling, and experimental characterization of a 

MEMS tuning-fork gyroscope. First of all, the technical limitations of a current 

developed tuning-fork gyroscope are analyzed in order to address new optimization 

methods. Then, a new tuning-fork gyroscope structural improvement is presented with 

the purpose of balancing the net torque in the sense-mode. Theoretical calculations and 

FEM simulations are conducted to further proof the design idea. The dimension of the 

structure is being optimized based on the designated vibration mode order and mode 

shape using Comsol Multiphysics. In addition, the mask is created using CAD software 

for the four inch silicon wafer. The silicon wafer is then fabricated at the Cornell 

Nanofabrication Facility using DRIE. HF acid etching and wafer post processing is done 

in the Micro Device Laboratory at Old Dominion University. Meanwhile, frequency 

response testing is conducted to measure the devices' natural frequencies and 

corresponding quality factors in both drive-mode and sense-mode. Five different devices 

are measured with the results of improved quality factor in the sense-mode, which proved 

the design concept. 

5.2 Future Direction 

Several future directions can be followed to further improve the performance of this TFG. 

These paths are briefly discussed below. 



(1) In this work, the frequency separation between drive-mode and sense-mode is 

relatively large due to fabrication imperfections, which does not fit the designed value 

and the mode-matching requirement. This problem can be resolved by optimizing the 

mask layout of the TFG, in other words, by assigning the devices' dimensions within a 

small range instead of a specific value. This will ensure a certain yield percentage of the 

silicon wafer, hence, some working devices. 

(2) In this work, the performance of the device varies greatly from one to another 

since the fabrication imperfections are hard to control. This problem could be fixed either 

by applying different fabrication procedures or by using more advanced etching 

equipment. 

(3) In addition to quality factor, parameters such as rate sensitivity, bandwidth and 

angle random walk are hard to be characterized in this work since the lack of fully 

functional devices. This could be solved by iterating the design, fabrication and testing 

process until all the problems are resolved. 
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