18 research outputs found

    3D QuantiïŹcation and Description of the Developing ZebraïŹsh Cranial Vasculature

    Get PDF
    Background: ZebraïŹsh are an excellent model to study cardiovascular development and disease. Transgenic reporter lines and state-of-the-art microscopy allow 3D visualization of the vasculature in vivo. Previous studies relied on subjective visual interpretation of vascular topology without objective quantiïŹcation. Thus, there is the need to develop analysis approaches that model and quantify the zebraïŹsh vasculature to understand the effect of development, genetic manipulation or drug treatment. Aim: To establish an image analysis pipeline to extract quantitative 3D parameters describing the shape and topology of the zebraïŹsh vasculature, and examine how these are impacted during development, disease, and by chemicals. Methods: Experiments were performed in zebraïŹsh embryos, conforming with UK Home OfïŹce regulations. Image acquisition of transgenic zebraïŹsh was performed using a Z.1 Zeiss light-sheet ïŹ‚uorescence microscope. Pre-processing, enhancement, registration, segmentation, and quantiïŹcation methods were developed and optimised using open-source software, Fiji (Fiji 1.51p; National Institutes of Health, Bethesda, USA). Results: Motion correction was successfully applied using Scale Invariant Feature Transform (SIFT), and vascular enhancement based on vessel tubularity (Sato ïŹlter) exceeded general ïŹlter outcomes. Following evaluation and optimisation of a variety of segmentation methods, intensity-based segmentation (Otsu thresholding) was found to deliver the most reliable segmentation, allowing 3D vascular volume measurement. Following successful segmentation of the cerebral vasculature, a workïŹ‚ow to quantify left-right intra-sample symmetry was developed, ïŹnding no difference from 2-to-5dpf. Next, the ïŹrst vascular inter-sample registration using a manual landmark-based approach was developed and it was found that conjugate direction search allowed automatic inter-sample registration. This enabled extraction of age-speciïŹc regions of similarity and variability between different individual embryos from 2-to-5dpf. A workïŹ‚ow was developed to quantify vascular network length, branching points, diameter, and complexity, showing reductions in zebraïŹsh without blood ïŹ‚ow. Also, I discovered and characterised a previously undescribed endothelial cell membrane behaviour termed kugeln. Conclusion: A workïŹ‚ow that successfully extracts the zebraïŹsh vasculature and enables detailed quantiïŹcation of a wide variety of vascular parameters was developed

    Segmentation and skeletonization techniques for cardiovascular image analysis

    Get PDF

    Anatomical Modeling of Cerebral Microvascular Structures: Application to Identify Biomarkers of Microstrokes

    Get PDF
    Les rĂ©seaux microvasculaires corticaux sont responsables du transport de l’oxygĂšne et des substrats Ă©nergĂ©tiques vers les neurones. Ces rĂ©seaux rĂ©agissent dynamiquement aux demandes Ă©nergĂ©tiques lors d’une activation neuronale par le biais du couplage neurovasculaire. Afin d’élucider le rĂŽle de la composante microvasculaire dans ce processus de couplage, l’utilisation de la modĂ©lisation in-formatique pourrait se rĂ©vĂ©ler un Ă©lĂ©ment clĂ©. Cependant, la manque de mĂ©thodologies de calcul appropriĂ©es et entiĂšrement automatisĂ©es pour modĂ©liser et caractĂ©riser les rĂ©seaux microvasculaires reste l’un des principaux obstacles. Le dĂ©veloppement d’une solution entiĂšrement automatisĂ©e est donc important pour des explorations plus avancĂ©es, notamment pour quantifier l’impact des mal-formations vasculaires associĂ©es Ă  de nombreuses maladies cĂ©rĂ©brovasculaires. Une observation courante dans l’ensemble des troubles neurovasculaires est la formation de micro-blocages vascu-laires cĂ©rĂ©braux (mAVC) dans les artĂ©rioles pĂ©nĂ©trantes de la surface piale. De rĂ©cents travaux ont dĂ©montrĂ© l’impact de ces Ă©vĂ©nements microscopiques sur la fonction cĂ©rĂ©brale. Par consĂ©quent, il est d’une importance vitale de dĂ©velopper une approche non invasive et comparative pour identifier leur prĂ©sence dans un cadre clinique. Dans cette thĂšse,un pipeline de traitement entiĂšrement automatisĂ© est proposĂ© pour aborder le prob-lĂšme de la modĂ©lisation anatomique microvasculaire. La mĂ©thode de modĂ©lisation consiste en un rĂ©seau de neurones entiĂšrement convolutif pour segmenter les capillaires sanguins, un gĂ©nĂ©rateur de modĂšle de surface 3D et un algorithme de contraction de la gĂ©omĂ©trie pour produire des mod-Ăšles graphiques vasculaires ne comportant pas de connections multiples. Une amĂ©lioration de ce pipeline est dĂ©veloppĂ©e plus tard pour allĂ©ger l’exigence de maillage lors de la phase de reprĂ©sen-tation graphique. Un nouveau schĂ©ma permettant de gĂ©nĂ©rer un modĂšle de graphe est dĂ©veloppĂ© avec des exigences d’entrĂ©e assouplies et permettant de retenir les informations sur les rayons des vaisseaux. Il est inspirĂ© de graphes gĂ©omĂ©triques dĂ©formants construits en respectant les morpholo-gies vasculaires au lieu de maillages de surface. Un mĂ©canisme pour supprimer la structure initiale du graphe Ă  chaque exĂ©cution est implĂ©mentĂ© avec un critĂšre de convergence pour arrĂȘter le pro-cessus. Une phase de raffinement est introduite pour obtenir des modĂšles vasculaires finaux. La modĂ©lisation informatique dĂ©veloppĂ©e est ensuite appliquĂ©e pour simuler les signatures IRM po-tentielles de mAVC, combinant le marquage de spin artĂ©riel (ASL) et l’imagerie multidirectionnelle pondĂ©rĂ©e en diffusion (DWI). L’hypothĂšse est basĂ©e sur des observations rĂ©centes dĂ©montrant une rĂ©orientation radiale de la microvascularisation dans la pĂ©riphĂ©rie du mAVC lors de la rĂ©cupĂ©ra-tion chez la souris. Des lits capillaires synthĂ©tiques, orientĂ©s alĂ©atoirement et radialement, et des angiogrammes de tomographie par cohĂ©rence optique (OCT), acquis dans le cortex de souris (n = 5) avant et aprĂšs l’induction d’une photothrombose ciblĂ©e, sont analysĂ©s. Les graphes vasculaires informatiques sont exploitĂ©s dans un simulateur 3D Monte-Carlo pour caractĂ©riser la rĂ©ponse par rĂ©sonance magnĂ©tique (MR), tout en considĂ©rant les effets des perturbations du champ magnĂ©tique causĂ©es par la dĂ©soxyhĂ©moglobine, et l’advection et la diffusion des spins nuclĂ©aires. Le pipeline graphique proposĂ© est validĂ© sur des angiographies synthĂ©tiques et rĂ©elles acquises avec diffĂ©rentes modalitĂ©s d’imagerie. ComparĂ© Ă  d’autres mĂ©thodes effectuĂ©es dans le milieu de la recherche, les expĂ©riences indiquent que le schĂ©ma proposĂ© produit des taux d’erreur gĂ©omĂ©triques et topologiques amoindris sur divers angiogrammes. L’évaluation confirme Ă©galement l’efficacitĂ© de la mĂ©thode proposĂ©e en fournissant des modĂšles reprĂ©sentatifs qui capturent tous les aspects anatomiques des structures vasculaires. Ensuite, afin de trouver des signatures de mAVC basĂ©es sur le signal IRM, la modĂ©lisation vasculaire proposĂ©e est exploitĂ©e pour quantifier le rapport de perte de signal intravoxel minimal lors de l’application de plusieurs directions de gradient, Ă  des paramĂštres de sĂ©quence variables avec et sans ASL. Avec l’ASL, les rĂ©sultats dĂ©montrent une dif-fĂ©rence significative (p <0,05) entre le signal calculĂ© avant et 3 semaines aprĂšs la photothrombose. La puissance statistique a encore augmentĂ© (p <0,005) en utilisant des angiogrammes capturĂ©s Ă  la semaine suivante. Sans ASL, aucun changement de signal significatif n’est trouvĂ©. Des rapports plus Ă©levĂ©s sont obtenus Ă  des intensitĂ©s de champ magnĂ©tique plus faibles (par exemple, B0 = 3) et une lecture TE plus courte (<16 ms). Cette Ă©tude suggĂšre que les mAVC pourraient ĂȘtre carac-tĂ©risĂ©s par des sĂ©quences ASL-DWI, et fournirait les informations nĂ©cessaires pour les validations expĂ©rimentales postĂ©rieures et les futurs essais comparatifs.----------ABSTRACT Cortical microvascular networks are responsible for carrying the necessary oxygen and energy substrates to our neurons. These networks react to the dynamic energy demands during neuronal activation through the process of neurovascular coupling. A key element in elucidating the role of the microvascular component in the brain is through computational modeling. However, the lack of fully-automated computational frameworks to model and characterize these microvascular net-works remains one of the main obstacles. Developing a fully-automated solution is thus substantial for further explorations, especially to quantify the impact of cerebrovascular malformations associ-ated with many cerebrovascular diseases. A common pathogenic outcome in a set of neurovascular disorders is the formation of microstrokes, i.e., micro occlusions in penetrating arterioles descend-ing from the pial surface. Recent experiments have demonstrated the impact of these microscopic events on brain function. Hence, it is of vital importance to develop a non-invasive and translatable approach to identify their presence in a clinical setting. In this thesis, a fully automatic processing pipeline to address the problem of microvascular anatom-ical modeling is proposed. The modeling scheme consists of a fully-convolutional neural network to segment microvessels, a 3D surface model generator and a geometry contraction algorithm to produce vascular graphical models with a single connected component. An improvement on this pipeline is developed later to alleviate the requirement of water-tight surface meshes as inputs to the graphing phase. The novel graphing scheme works with relaxed input requirements and intrin-sically captures vessel radii information, based on deforming geometric graphs constructed within vascular boundaries instead of surface meshes. A mechanism to decimate the initial graph struc-ture at each run is formulated with a convergence criterion to stop the process. A refinement phase is introduced to obtain final vascular models. The developed computational modeling is then ap-plied to simulate potential MRI signatures of microstrokes, combining arterial spin labeling (ASL) and multi-directional diffusion-weighted imaging (DWI). The hypothesis is driven based on recent observations demonstrating a radial reorientation of microvasculature around the micro-infarction locus during recovery in mice. Synthetic capillary beds, randomly- and radially oriented, and op-tical coherence tomography (OCT) angiograms, acquired in the barrel cortex of mice (n=5) before and after inducing targeted photothrombosis, are analyzed. The computational vascular graphs are exploited within a 3D Monte-Carlo simulator to characterize the magnetic resonance (MR) re-sponse, encompassing the effects of magnetic field perturbations caused by deoxyhemoglobin, and the advection and diffusion of the nuclear spins. The proposed graphing pipeline is validated on both synthetic and real angiograms acquired with different imaging modalities. Compared to other efficient and state-of-the-art graphing schemes, the experiments indicate that the proposed scheme produces the lowest geometric and topological error rates on various angiograms. The evaluation also confirms the efficiency of the proposed scheme in providing representative models that capture all anatomical aspects of vascular struc-tures. Next, searching for MRI-based signatures of microstokes, the proposed vascular modeling is exploited to quantify the minimal intravoxel signal loss ratio when applying multiple gradient di-rections, at varying sequence parameters with and without ASL. With ASL, the results demonstrate a significant difference (p<0.05) between the signal-ratios computed at baseline and 3 weeks after photothrombosis. The statistical power further increased (p<0.005) using angiograms captured at week 4. Without ASL, no reliable signal change is found. Higher ratios with improved significance are achieved at low magnetic field strengths (e.g., at 3 Tesla) and shorter readout TE (<16 ms). This study suggests that microstrokes might be characterized through ASL-DWI sequences, and provides necessary insights for posterior experimental validations, and ultimately, future transla-tional trials

    Model and Appearance Based Analysis of Neuronal Morphology from Different Microscopy Imaging Modalities

    Get PDF
    The neuronal morphology analysis is key for understanding how a brain works. This process requires the neuron imaging system with single-cell resolution; however, there is no feasible system for the human brain. Fortunately, the knowledge can be inferred from the model organism, Drosophila melanogaster, to the human system. This dissertation explores the morphology analysis of Drosophila larvae at single-cell resolution in static images and image sequences, as well as multiple microscopy imaging modalities. Our contributions are on both computational methods for morphology quantification and analysis of the influence of the anatomical aspect. We develop novel model-and-appearance-based methods for morphology quantification and illustrate their significance in three neuroscience studies. Modeling of the structure and dynamics of neuronal circuits creates understanding about how connectivity patterns are formed within a motor circuit and determining whether the connectivity map of neurons can be deduced by estimations of neuronal morphology. To address this problem, we study both boundary-based and centerline-based approaches for neuron reconstruction in static volumes. Neuronal mechanisms are related to the morphology dynamics; so the patterns of neuronal morphology changes are analyzed along with other aspects. In this case, the relationship between neuronal activity and morphology dynamics is explored to analyze locomotion procedures. Our tracking method models the morphology dynamics in the calcium image sequence designed for detecting neuronal activity. It follows the local-to-global design to handle calcium imaging issues and neuronal movement characteristics. Lastly, modeling the link between structural and functional development depicts the correlation between neuron growth and protein interactions. This requires the morphology analysis of different imaging modalities. It can be solved using the part-wise volume segmentation with artificial templates, the standardized representation of neurons. Our method follows the global-to-local approach to solve both part-wise segmentation and registration across modalities. Our methods address common issues in automated morphology analysis from extracting morphological features to tracking neurons, as well as mapping neurons across imaging modalities. The quantitative analysis delivered by our techniques enables a number of new applications and visualizations for advancing the investigation of phenomena in the nervous system

    Generalizable automated pixel-level structural segmentation of medical and biological data

    Get PDF
    Over the years, the rapid expansion in imaging techniques and equipments has driven the demand for more automation in handling large medical and biological data sets. A wealth of approaches have been suggested as optimal solutions for their respective imaging types. These solutions span various image resolutions, modalities and contrast (staining) mechanisms. Few approaches generalise well across multiple image types, contrasts or resolution. This thesis proposes an automated pixel-level framework that addresses 2D, 2D+t and 3D structural segmentation in a more generalizable manner, yet has enough adaptability to address a number of specific image modalities, spanning retinal funduscopy, sequential fluorescein angiography and two-photon microscopy. The pixel-level segmentation scheme involves: i ) constructing a phase-invariant orientation field of the local spatial neighbourhood; ii ) combining local feature maps with intensity-based measures in a structural patch context; iii ) using a complex supervised learning process to interpret the combination of all the elements in the patch in order to reach a classification decision. This has the advantage of transferability from retinal blood vessels in 2D to neural structures in 3D. To process the temporal components in non-standard 2D+t retinal angiography sequences, we first introduce a co-registration procedure: at the pairwise level, we combine projective RANSAC with a quadratic homography transformation to map the coordinate systems between any two frames. At the joint level, we construct a hierarchical approach in order for each individual frame to be registered to the global reference intra- and inter- sequence(s). We then take a non-training approach that searches in both the spatial neighbourhood of each pixel and the filter output across varying scales to locate and link microvascular centrelines to (sub-) pixel accuracy. In essence, this \link while extract" piece-wise segmentation approach combines the local phase-invariant orientation field information with additional local phase estimates to obtain a soft classification of the centreline (sub-) pixel locations. Unlike retinal segmentation problems where vasculature is the main focus, 3D neural segmentation requires additional exibility, allowing a variety of structures of anatomical importance yet with different geometric properties to be differentiated both from the background and against other structures. Notably, cellular structures, such as Purkinje cells, neural dendrites and interneurons, all display certain elongation along their medial axes, yet each class has a characteristic shape captured by an orientation field that distinguishes it from other structures. To take this into consideration, we introduce a 5D orientation mapping to capture these orientation properties. This mapping is incorporated into the local feature map description prior to a learning machine. Extensive performance evaluations and validation of each of the techniques presented in this thesis is carried out. For retinal fundus images, we compute Receiver Operating Characteristic (ROC) curves on existing public databases (DRIVE & STARE) to assess and compare our algorithms with other benchmark methods. For 2D+t retinal angiography sequences, we compute the error metrics ("Centreline Error") of our scheme with other benchmark methods. For microscopic cortical data stacks, we present segmentation results on both surrogate data with known ground-truth and experimental rat cerebellar cortex two-photon microscopic tissue stacks.Open Acces

    Methods for Automated Neuron Image Analysis

    Get PDF
    Knowledge of neuronal cell morphology is essential for performing specialized analyses in the endeavor to understand neuron behavior and unravel the underlying principles of brain function. Neurons can be captured with a high level of detail using modern microscopes, but many neuroscientific studies require a more explicit and accessible representation than offered by the resulting images, underscoring the need for digital reconstruction of neuronal morphology from the images into a tree-like graph structure. This thesis proposes new computational methods for automated detection and reconstruction of neurons from fluorescence microscopy images. Specifically, the successive chapters describe and evaluate original solutions to problems such as the detection of landmarks (critical points) of the neuronal tree, complete tracing and reconstruction of the tree, and the detection of regions containing neurons in high-content screens

    Imaging and Computational Methods for Exploring Sub-cellular Anatomy

    Get PDF
    The ability to create large-scale high-resolution models of biological tissue provides an excellent opportunity for expanding our understanding of tissue structure and function. This is particularly important for brain tissue, where the majority of function occurs at the cellular and sub-cellular level. However, reconstructing tissue at sub-cellular resolution is a complex problem that requires new methods for imaging and data analysis. In this dissertation, I describe a prototype microscopy technique that can image large volumes of tissue at sub-cellular resolution. This method, known as Knife-Edge Scanning Microscopy (KESM), has an extremely high data rate and can capture large tissue samples in a reasonable time frame. We can therefore image complete systems of cells, such as whole small animal organs, in a matter of days. I then describe algorithms that I have developed to cope with large and complex data sets. These include methods for improving image quality, tracing filament networks, and constructing high-resolution anatomical models. These methods are highly parallel and designed to allow users to segment and visualize structures that are unique to high-throughput microscopy data. The resulting models of large-scale tissue structure provide much more detail than those created using standard imaging and segmentation techniques

    X-ray and neutron ÎŒCT of biomedical samples: from image acquisition to quantification

    Get PDF
    Even though the validity of x-ray computed tomography in the analysis of biomedical samples is nowadays undisputed, the more recent imaging techniques and more advanced instruments (such as synchrotrons) are still relatively unknown to many medical doctors that could benefit from them.The doctoral work presented in this thesis joins a collective effort from the imaging community to demonstrate potential applications of advanced x-ray and neutron imaging methods to preclinical medical research, with the hope of contributing to reach a “critical mass” in the medical community and in the public opinion as well.Two main lines of work are detailed, one focused on the ex vivo evaluation of corrosion processes of magnesium-based biodegradable implants for osteosynthesis, the other dedicated to the assessment of neuropathy in human gastroenteric dysmotility. The aimed endpoint was to develop pipelines, from image acquisition all the way to data quantification, that could be used by other research groups with similar questions and may inspire future interdisciplinary collaborations between medicine, natural science and engineering.In the first line of work, we have attempted to employ synchrotron-radiation micro-computed tomography (”CT) coupled with in situ loading tests to assess the mechanical properties of the bone-implant interface (Paper I). We have revealed the crucial importance of the radiation dose deposited on the sample, and that the mechanical loading geometry should be accurately determined in the planning steps of the experiment. Moving away from the mechanical testing, we have also explored a novel three-dimensional analysis of the corrosion by-products of biodegradable implants by combining x-ray ”CT, neutron ”CT and x-ray fluorescence mapping (Papers IV and V). The second line of work has assessed the potential of x-ray phase-contrast ”CT and nano-resolution holotomography as ways to perform virtual histology of unstained peripheral and autonomic neural tissue. In full-thickness biopsies of the myenteric nervous system, qualitative and potentially quantitative differences have been shown between controls and patients affected by gastrointestinal dysmotility (Paper II). In unstained skin biopsies, the methods have failed to visualise peripheral nerves, but we could identify structural changes in the connective tissue of some patients when compared to controls and other patients (Paper III)

    The C5a/C5a receptor 1 axis controls tissue neovascularization through CXCL4 release from platelets

    Get PDF
    Platelets contribute to the regulation of tissue neovascularization, although the specific factors underlying this function are unknown. Here, we identified the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) on platelets as a negative regulatory mechanism of vessel formation. We showed that platelets expressing C5aR1 exert an inhibitory effect on endothelial cell functions such as migration and 2D and 3D tube formation. Growth factor- and hypoxia-driven vascularization was markedly increased in C5ar1(−/−) mice. Platelet-specific deletion of C5aR1 resulted in a proangiogenic phenotype with increased collateralization, capillarization and improved pericyte coverage. Mechanistically, we found that C5a induced preferential release of CXC chemokine ligand 4 (CXCL4, PF4) from platelets as an important antiangiogenic paracrine effector molecule. Interfering with the C5aR1-CXCL4 axis reversed the antiangiogenic effect of platelets both in vitro and in vivo. In conclusion, we identified a mechanism for the control of tissue neovascularization through C5a/C5aR1 axis activation in platelets and subsequent induction of the antiangiogenic factor CXCL4

    Content-aware approach for improving biomedical image analysis: an interdisciplinary study series

    Get PDF
    Biomedicine is a highly interdisciplinary research area at the interface of sciences, anatomy, physiology, and medicine. In the last decade, biomedical studies have been greatly enhanced by the introduction of new technologies and techniques for automated quantitative imaging, thus considerably advancing the possibility to investigate biological phenomena through image analysis. However, the effectiveness of this interdisciplinary approach is bounded by the limited knowledge that a biologist and a computer scientist, by professional training, have of each other’s fields. The possible solution to make up for both these lacks lies in training biologists to make them interdisciplinary researchers able to develop dedicated image processing and analysis tools by exploiting a content-aware approach. The aim of this Thesis is to show the effectiveness of a content-aware approach to automated quantitative imaging, by its application to different biomedical studies, with the secondary desirable purpose of motivating researchers to invest in interdisciplinarity. Such content-aware approach has been applied firstly to the phenomization of tumour cell response to stress by confocal fluorescent imaging, and secondly, to the texture analysis of trabecular bone microarchitecture in micro-CT scans. Third, this approach served the characterization of new 3-D multicellular spheroids of human stem cells, and the investigation of the role of the Nogo-A protein in tooth innervation. Finally, the content-aware approach also prompted to the development of two novel methods for local image analysis and colocalization quantification. In conclusion, the content-aware approach has proved its benefit through building new approaches that have improved the quality of image analysis, strengthening the statistical significance to allow unveiling biological phenomena. Hopefully, this Thesis will contribute to inspire researchers to striving hard for pursuing interdisciplinarity
    corecore