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RÉSUMÉ

Les réseaux microvasculaires corticaux sont responsables du transport de l’oxygène et des substrats
énergétiques vers les neurones. Ces réseaux réagissent dynamiquement aux demandes énergétiques
lors d’une activation neuronale par le biais du couplage neurovasculaire. Afin d’élucider le rôle de
la composante microvasculaire dans ce processus de couplage, l’utilisation de la modélisation in-
formatique pourrait se révéler un élément clé. Cependant, la manque de méthodologies de calcul
appropriées et entièrement automatisées pour modéliser et caractériser les réseaux microvasculaires
reste l’un des principaux obstacles. Le développement d’une solution entièrement automatisée est
donc important pour des explorations plus avancées, notamment pour quantifier l’impact des mal-
formations vasculaires associées à de nombreuses maladies cérébrovasculaires. Une observation
courante dans l’ensemble des troubles neurovasculaires est la formation de micro-blocages vascu-
laires cérébraux (mAVC) dans les artérioles pénétrantes de la surface piale. De récents travaux ont
démontré l’impact de ces événements microscopiques sur la fonction cérébrale. Par conséquent, il
est d’une importance vitale de développer une approche non invasive et comparative pour identifier
leur présence dans un cadre clinique.

Dans cette thèse,un pipeline de traitement entièrement automatisé est proposé pour aborder le prob-
lème de la modélisation anatomique microvasculaire. La méthode de modélisation consiste en un
réseau de neurones entièrement convolutif pour segmenter les capillaires sanguins, un générateur
de modèle de surface 3D et un algorithme de contraction de la géométrie pour produire des mod-
èles graphiques vasculaires ne comportant pas de connections multiples. Une amélioration de ce
pipeline est développée plus tard pour alléger l’exigence de maillage lors de la phase de représen-
tation graphique. Un nouveau schéma permettant de générer un modèle de graphe est développé
avec des exigences d’entrée assouplies et permettant de retenir les informations sur les rayons des
vaisseaux. Il est inspiré de graphes géométriques déformants construits en respectant les morpholo-
gies vasculaires au lieu de maillages de surface. Un mécanisme pour supprimer la structure initiale
du graphe à chaque exécution est implémenté avec un critère de convergence pour arrêter le pro-
cessus. Une phase de raffinement est introduite pour obtenir des modèles vasculaires finaux. La
modélisation informatique développée est ensuite appliquée pour simuler les signatures IRM po-
tentielles de mAVC, combinant le marquage de spin artériel (ASL) et l’imagerie multidirectionnelle
pondérée en diffusion (DWI). L’hypothèse est basée sur des observations récentes démontrant une
réorientation radiale de la microvascularisation dans la périphérie du mAVC lors de la récupéra-
tion chez la souris. Des lits capillaires synthétiques, orientés aléatoirement et radialement, et des
angiogrammes de tomographie par cohérence optique (OCT), acquis dans le cortex de souris (n =
5) avant et après l’induction d’une photothrombose ciblée, sont analysés. Les graphes vasculaires
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informatiques sont exploités dans un simulateur 3D Monte-Carlo pour caractériser la réponse par
résonance magnétique (MR), tout en considérant les effets des perturbations du champ magnétique
causées par la désoxyhémoglobine, et l’advection et la diffusion des spins nucléaires.

Le pipeline graphique proposé est validé sur des angiographies synthétiques et réelles acquises avec
différentes modalités d’imagerie. Comparé à d’autres méthodes effectuées dans le milieu de la
recherche, les expériences indiquent que le schéma proposé produit des taux d’erreur géométriques
et topologiques amoindris sur divers angiogrammes. L’évaluation confirme également l’efficacité
de la méthode proposée en fournissant des modèles représentatifs qui capturent tous les aspects
anatomiques des structures vasculaires. Ensuite, afin de trouver des signatures de mAVC basées
sur le signal IRM, la modélisation vasculaire proposée est exploitée pour quantifier le rapport de
perte de signal intravoxel minimal lors de l’application de plusieurs directions de gradient, à des
paramètres de séquence variables avec et sans ASL. Avec l’ASL, les résultats démontrent une dif-
férence significative (p <0,05) entre le signal calculé avant et 3 semaines après la photothrombose.
La puissance statistique a encore augmenté (p <0,005) en utilisant des angiogrammes capturés à la
semaine suivante. Sans ASL, aucun changement de signal significatif n’est trouvé. Des rapports
plus élevés sont obtenus à des intensités de champ magnétique plus faibles (par exemple, B0 = 3)
et une lecture TE plus courte (<16 ms). Cette étude suggère que les mAVC pourraient être carac-
térisés par des séquences ASL-DWI, et fournirait les informations nécessaires pour les validations
expérimentales postérieures et les futurs essais comparatifs.
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ABSTRACT

Cortical microvascular networks are responsible for carrying the necessary oxygen and energy
substrates to our neurons. These networks react to the dynamic energy demands during neuronal
activation through the process of neurovascular coupling. A key element in elucidating the role of
the microvascular component in the brain is through computational modeling. However, the lack
of fully-automated computational frameworks to model and characterize these microvascular net-
works remains one of the main obstacles. Developing a fully-automated solution is thus substantial
for further explorations, especially to quantify the impact of cerebrovascular malformations associ-
ated with many cerebrovascular diseases. A common pathogenic outcome in a set of neurovascular
disorders is the formation of microstrokes, i.e., micro occlusions in penetrating arterioles descend-
ing from the pial surface. Recent experiments have demonstrated the impact of these microscopic
events on brain function. Hence, it is of vital importance to develop a non-invasive and translatable
approach to identify their presence in a clinical setting.

In this thesis, a fully automatic processing pipeline to address the problem of microvascular anatom-
ical modeling is proposed. The modeling scheme consists of a fully-convolutional neural network
to segment microvessels, a 3D surface model generator and a geometry contraction algorithm to
produce vascular graphical models with a single connected component. An improvement on this
pipeline is developed later to alleviate the requirement of water-tight surface meshes as inputs to
the graphing phase. The novel graphing scheme works with relaxed input requirements and intrin-
sically captures vessel radii information, based on deforming geometric graphs constructed within
vascular boundaries instead of surface meshes. A mechanism to decimate the initial graph struc-
ture at each run is formulated with a convergence criterion to stop the process. A refinement phase
is introduced to obtain final vascular models. The developed computational modeling is then ap-
plied to simulate potential MRI signatures of microstrokes, combining arterial spin labeling (ASL)
and multi-directional diffusion-weighted imaging (DWI). The hypothesis is driven based on recent
observations demonstrating a radial reorientation of microvasculature around the micro-infarction
locus during recovery in mice. Synthetic capillary beds, randomly- and radially oriented, and op-
tical coherence tomography (OCT) angiograms, acquired in the barrel cortex of mice (n=5) before
and after inducing targeted photothrombosis, are analyzed. The computational vascular graphs
are exploited within a 3D Monte-Carlo simulator to characterize the magnetic resonance (MR) re-
sponse, encompassing the effects of magnetic field perturbations caused by deoxyhemoglobin, and
the advection and diffusion of the nuclear spins.

The proposed graphing pipeline is validated on both synthetic and real angiograms acquired with
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different imaging modalities. Compared to other efficient and state-of-the-art graphing schemes,
the experiments indicate that the proposed scheme produces the lowest geometric and topological
error rates on various angiograms. The evaluation also confirms the efficiency of the proposed
scheme in providing representative models that capture all anatomical aspects of vascular struc-
tures. Next, searching for MRI-based signatures of microstokes, the proposed vascular modeling is
exploited to quantify the minimal intravoxel signal loss ratio when applying multiple gradient di-
rections, at varying sequence parameters with and without ASL. With ASL, the results demonstrate
a significant difference (p<0.05) between the signal-ratios computed at baseline and 3 weeks after
photothrombosis. The statistical power further increased (p<0.005) using angiograms captured at
week 4. Without ASL, no reliable signal change is found. Higher ratios with improved significance
are achieved at low magnetic field strengths (e.g., at 3 Tesla) and shorter readout TE (<16 ms).
This study suggests that microstrokes might be characterized through ASL-DWI sequences, and
provides necessary insights for posterior experimental validations, and ultimately, future transla-
tional trials.
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CHAPTER 1 INTRODUCTION

1.1 Problem Context

Cortical microvascular networks are the carrier of continuous supply of oxygen and energy sub-
strates to neurons, and thus they are responsible for maintaining their healthy state. These networks
react dynamically to meet the rapid and substantial increase in energy demands during neuronal ac-
tivation through the process of neurovascular coupling [1]. Structural deterioration of the cortex
microvasculature directly disrupts the regulation of cerebral blood flow and alters the distribution of
oxygen and nutrients [2]. Characterization of cerebral microvasculature is thus of vital importance
to understand brain physiology, and to evaluate the impact of potential cerebrovascular deteriora-
tions on brain function. A key element in elucidating the role of the cerebrovascular component
is through computational modeling. Such analysis opens the door for a detailed understanding
of the spatiotemporal nature of the hemodynamic response [3–6], bridging scales and linking the
microvascular phenomena with the macroscopic (voxel size) observations found in the blood oxy-
genation level-dependent (BOLD) response [7, 8], and simulating non-invasive magnetic resonance
(MR) signatures, i.e., fingerprinting, to map between the microvascular structural and physiologi-
cal features and the expected MR response [9, 10]. However, a main challenge that hinders large
cohorts and scaled experiments is the lack of fully-automated computational frameworks to model
and characterize these microvascular networks. Developing such processing pipelines is substan-
tial for further explorations, including those focusing on studying the impact of cerebrovascular
malformations associated with many neurovascular disorders.

1.1.1 Computational Modeling of Cerebrovascular Networks

Computational modeling of cerebrovascular structure and topology is essential in areas ranging
from clinical decision support to fundamental research. Non-invasive cerebrovascular imaging
techniques including magnetic resonance angiography (MRA) and computed-tomography angiog-
raphy (CTA) are common practices for both preoperative planning and postoperative surveillance
scanning. In experimental studies, optical imaging systems, e.g., two-photon microscopy (TPM)
and optical coherence tomography (OCT), have been proposed to provide spatially-resolved mea-
surements of cerebral microvasculature in-vivo. [11–15]. Transforming cerebrovascular structures
into interpretable computational models remains problematic. Cerebrovascular images exhibit a
high level of intersubject heterogeneity, and contain complex vascular structures. Furthermore,
vascular space is submitted to dynamically evolving conditions like acute ischemic strokes. These
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obstacles hinder the construction of accurate computational models that encode connectivity and
spatial information to be used for further analysis of shape features and hemodynamics properties.
In case of TPM, high absorption and scattering of the emitted photons occur with more depth, lead-
ing to image degradation and intensity changes. Also, scattering of excited photons by red blood
cells degrades their focus and leads to shadows underneath large pial vessels. These deteriorations
in the excited and emitted photons yield volumetric image intensity variations, and hence escalate
the complexity of processing of TPM angiographies [16]. On the other hand, OCT angiography
is a label-free in vivo imaging technique that became popular in many neuroscience fields. Beside
its attractiveness, OCT angiograms suffer from an inherent issue related to dynamic scattering of
moving erythrocytes within pial vasculature [12, 17]. This induces tail-like artifacts that impose
shadows on the capillary vessels, and can result in a misleading interpretation of the angiographic
results.

1.1.2 Non-invasive Identification of Cerebrovascular Micro-occlusions

Among pathogenic outcomes in cerebrovascular diseases [2] is the emergence of micro occlusions
in penetrating arterioles descending from the pial surface. Recent experiments have provided evi-
dence about the impact of these microscopic events on brain function [18]. Occlusion of a single
penetrating vessel was shown to lead into ischemic infarction in the cortex [19] and to have effects
on targeted cognitive tasks. Cerebral microinfarcts have emerged as a potential determinant of cog-
nitive decline, as they are one of the most wide-spread forms of tissue infarction in the aging brain
[20]. These cortical lesions have been associated with severe deficits in motor output at muscles
[21]. It was also shown that microembolism of single cortical arteriole induces cortical spreading
depression, a potential trigger and putative cause of migraine with aura [22]. In a separate study,
the induction of microvascular lesions in an Alzheimer’s mouse model was shown to alter both
the deposition and clearance of amyloid-beta plaques [23]. Optical microscopy and photoacoustic
imaging are potential techniques for imaging the local architecture of cerebrovascular morphology
at micro-scale, however, they remain invasive and not adapted to clinical applications. Given the
strong association between these microvascular events and many neurological disorders, it is of
vital importance to develop a non-invasive and translatable approach to identify their presence in a
clinical setting.

1.2 Objectives and Structure

The initial objective behind this work is to develop a fully-automated processing pipeline to extract
useful graphical models of microvascular structures in the brain to facilitate further analysis con-
cerned with simulating hemodynamic response and obtaining better estimation of its underlying
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physiological factors. The ultimate goal is to integrate such a scheme in a comprehensive mod-
eling framework that investigates potential biomarkers of cerebrovascular micro-occlusions , i.e.,
microstokes. The work presented in this thesis has been driven by three specific research objectives
that align with the enclosed articles in Chapter 3, 4 and 5.

1.2.1 Objective 1

Graph models of cerebral vasculature derived from TPM angiograms have shown to be relevant to
study brain microphysiology. Graphing of their inherited microvascular details remains problem-
atic due to the limitations previously discussed. Therefore, wider and more promising applications
of such datasets, especially at scale, requires a fully automatic processing scheme to save time and
effort. Developing such an automated pipeline has been the first objective in this thesis. The work
conducted to meet this objective forms the body of Chapter 3.

Overview

A fully-automated solution that provides a unique graph-based output for the same TPM input data,
in practical computational time has been proposed. The graph extraction scheme consisted of three
main stages. A modified version of a recent deep learning model for semantic segmentation [24,
25], employing fully convolutional dense blocks, was utilized to segment potential microvessels
[25]. A new in-house labeled TPM dataset has been manually prepared to train the segmentation
model. The volumetric output of the segmentation model is processed via 3D morphological filters
to omit small isolated segments and to improve the connectivity pattern of microvessels. Second,
a surface model generator has been developed to generate polygonal closed-manifold geometries
for the microvasculature from its volumetric mask obtained in the first stage. Finally, 3D geomet-
ric skeletonization to generate a graph-based representation of microvessel networks, relying on
surface mesh contraction [26], was integrated as a final stage to produce final graphs holding the
structural and topological features of microvascular networks captured with TPM.

Article: Damseh, R., Pouliot, P., Gagnon, L., Sakadzic, S., Boas, D., Cheriet, F., and Lesage,
F. (2018). Automatic graph-based modeling of brain microvessels captured with two-photon mi-
croscopy. IEEE journal of biomedical and health informatics, 23(6), 2551-2562.
[DOI:10.1109/JBHI.2018.2884678]
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1.2.2 Objective 2

The methodological development carried in accordance with Objective 1 was oriented toward the
modeling of high-quality TPM angiograms. Their segmented microvessel maps enjoyed smooth
boundaries that simplified the creation of water-tight surface meshes, and hence, enabled the final
graphing stage. However, limited applicability has been experienced when processing angiograms
of lower quality, particularly those captured with other label-free optical modalities. Indeed, the
label-free OCT technique, having images not confounded by dye leakage that can impair those of
TPM, formed a cornerstone in the experimental design to study microstrokes in this thesis. There-
fore, there has been a need for a graphing scheme that works with relaxed input requirements. Such
a scheme should be less restrictive to hardly-encoded inputs (i.e., requiring triangulated watertight
surface meshes) or to high quality vascular segmentation, while providing precise topological and
structural representations to be used in further vascular analysis. This constitutes the second objec-
tive which is addressed in Chapter 4.

Overview

Diverging from the work in [27] and improving on the work presented in [28], a Laplacian frame-
work has been exploited to deform 3D geometric graphs, instead of triangulated meshes, converting
them into curve-skeletons as models of vascular structures. Starting with a binary-delineated vascu-
lar structure, truncated 3D grid graphs are first constructed within vessel boundaries. A technique
to assign affinity weightings to these graphs based on both the binary distance transform and the
local geometry of graph compartments has been developed. The weighted graphs are fed into a
constrained iterative optimizer to create a Laplacian dynamic flow of graph vertices/nodes toward
the centerlines of vascular structures combined with a convergence criterion to stop the iteration
process. Finally, a refinement algorithm has been proposed to convert the deformed graph into a
final vascular graphed-skeleton model. Interestingly, the new graphing scheme is capable of in-
trinsically capturing vessel radii information, and thus providing a more comprehensive anatomical
features compared to the pipeline introduced in view of Objective 1.

Article: Damseh, R., Delafontaine-Martel, P., Pouliot, P., Cheriet, F., and Lesage, F. (2019). Lapla-
cian Flow Dynamics on Geometric Graphs for Anatomical Modeling of Cerebrovascular Networks.
arXiv preprint [arXiv:1912.10003]. (In second-round review with IEEE Transactions in Medical
Imaging)
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1.2.3 Objective 3

A recent study based on TPM has illustrated that the capillary bed in microvascular networks re-
generates into a radially organized structure following a localized photothrombotic infarction [29].
To overcome limitations due to fluorescent dye leakage through the damaged blood-brain barrier,
recent work exploiting OCT provided a more thorough exploration of the microvascular angio-
architecture rearrangement at different cortical depths [30] following photo-thrombosis. The latter
study confirmed the presence of highly radially organized patterns, at all cortical depths, with a
higher degree of structural reorganization in deeper regions. These morphological features could
be exploited as clinical signatures of the associated ischemic events. As a third objective in this
thesis, the aim has been to provide a proof-of-concept, through simulations, to support the hypothe-
sis that these vascular re-orientations can be detected via magnetic resonance imaging (MRI). This
objective is addressed in Chapter 5.

Overview

Diffusion-weighted imaging (DWI), which is an established MRI technique that provide contrast
sensitive to the motion of water molecules [31], has been shown to be suitable for identifying cere-
bral micro occlusions. Computational vascular graphs combined with a 3D Monte-Carlo simulator
were used to characterize the MR response, encompassing the effects of magnetic field perturba-
tions caused by deoxyhemoglobin, and the advection and diffusion of the nuclear spins. The mini-
mal intravoxel signal loss ratio, when applying multiple gradient directions, has been quantified at
varying sequence parameters with and without arterial spin labeling (ASL). Intravoxel incoherent
motion (IVIM) spin echo realistic simulations have been conducted to investigate potential signa-
tures of cerebrovascular micro-occlusions induced in mice brains after targeted photothrombosis.
Taking advantage of the radial angiogenesis around the micro-infarction locus after occlusion, a
measurable biomarker based on quantifying the ratio of directional signal loss induced when using
multiple gradient directions has been introduced. By integrating and excluding ASL in the sim-
ulations, parametric simulations have been also performed to evaluate the effect size when using
different field strengths, readout times, b-values and gradient duration.

Article: Damseh, R., Lu, Y., Lu, X., Zhang, C., J. Marchand, P., Corbin, D., Pouliot, P., Cheriet, F.
and Lesage, F. (2020). A Simulation Study Investigating Potential Diffusion-based MRI Signatures
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of Microstrokes. (Submitted to Scientific Reports)

1.3 Contributions / Deliverables

The research work presented in this thesis has been performed under the umbrella of a more in-
clusive -and multidisciplinary- project to develop a microscopic photo-thrombotic model of micro-
infarcts, to characterize and monitor the associated micro-vascular remodeling and to longitudinally
investigate MRI biomarkers and microscopic predictions of these lesions. All research activities
have been carried out at the Laboratory of Optical and Molecular and Imaging (LIOM), directed by
my supervisor, Dr Frederic Lesage. Several original contributions have been established through-
out the accomplishment of the current thesis, leading to publication of articles, conferences and
computational tools that were essential for the pursuit of the parent research project. The following
lists the contributions resulted from the work in this thesis.

1.3.1 JOURNALS

• Damseh R, Y Lu, J-Marchand P, X Lu, Pouliot P, Cheriet F and Lesage F, “Diffusion-based MRI
Response as a Potential Biomarker of Cerebral Microstrokes.” (Submitted to Scientific Reports),
2020.

•Milecki L, Jonathan Porée J, Belgharbi H, Bourquin C, Damseh R, Delafontaine-Martel P, Lesage
F, Gasse M and Provost J “A Deep Learning Framework for Spatiotemporal Ultrasound Localiza-
tion Microscopy.” (Submitted to IEEE Transactions in Medical Imaging), 2020.

• Tahir W, Zhu J, Kura S, Damseh R, Cheng X, Lesage F, Boas D, and Tian L “Anatomical mod-
eling of brain vasculature in two-photon microscopy by generalizable2deep learning.” (Submitted

to Science Advances), 2020.

• Sirpal P, Damseh R, Kassab A, Pouliot P, Nguyen D, Lesage F “Multimodal Autoencoder for
Patient-speceific Prediction of Resting State fNIRS from EEG Recordings.” (First-round review

with Neuroinformatics), 2020

•Damseh R, Pouliot P, Delafontaine-Martel P, Cheriet F and Lesage F, “ Laplacian Flow Dynamics
on Geometric Graphs for Anatomical Modeling of Cerebrovascular Networks.” (arXiv, Second-

round review with IEEE Transactions in Medical Imaging), 2019.

• X LU, M Moeini, B Li, Y Lu, Damseh R, Pouliot P Thorin E and Lesage F “Changes in capillary
hemodynamics and its modulation by exercise in the APP-PS1 Alzheimer mouse model.” Frontiers

in Neuroscience, 2019.

• Damseh R, Pouliot P. , Gagnon L, Sakadzic S, Boas D, Cheriet F and Lesage F, “Automatic
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Graph-based Modeling of Brain Microvessels Captured with Two-Photon Microscopy.” IEEE Jour-

nal of Biomedical and Health Informatics (JBHI), 2018.

• Moeini M, Lu X, Avti P K, Damseh, R, Bélanger S, Picard F. and Lesage F.“Compromised
microvascular oxygen delivery increases brain tissue vulnerability with age.” Scientific Reports,
2018.

1.3.2 CONFERENCES

• Damseh R, Delafontaine-Martel P, J-Marchand P, Sirpal P, Cheriet F, Lesage F, “Automated
Analysis of Brain Microvasculature: From Segmentation to Anatomical Modeling.” Annual In-

ternational Conference of the IEEE Engineering in Medicine and Biology Society (IEEE EMBC),
2020.

• Damseh R, Pouliot P, Cheriet F and Lesage F,“Modeling the Topology of Cerebral Microvessels
via Geometric Graph Contraction.” IEEE Symposium on Medical Imaging (ISBI), 2020.

• Tahir W, ..., Damseh R, Lesage F, ..., and Tian L, “A Generalizable Deep-learning Approach to
Anatomical Modeling of Brain Vasculature.” Neural Imaging and Sensing, International Society

for Optics and Photonics, 2020.

• Belgharbi H, Porée J, Damseh R, Delafontaine-Martel P, Lesage F and Provost J,“Anatomically-
Realistic Simulation Framework for Ultrasound Localization Microscopy.” The Journal of the

Acoustical Society of America, 2019

• Damseh R, Cheriet F, and Lesage F “Fully Convolutional DenseNets for Segmentation of Mi-
crovessels in Two-photon Microscopy.” Proceedings of the Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (IEEE EMBC), 2018.

•Delafontaine-Martel P, Lefebvre J, Damseh R, Castonguay A, Tardif P and Lesage F “Large scale
serial two-photon microscopy to investigate local vascular changes in whole rodent brain models of
Alzheimer’s disease.” Proceedings of Multiphoton Microscopy in the Biomedical Sciences XVIII,

International Society for Optics and Photonics, 2018.

1.3.3 TOOLS and DATASETS

Below are the datasets and tools delivered throughout the research work in this thesis:

•Manually segmented TPM dataset has been prepared based on raw inputs obtained by colleagues
working on other projects conducted at LIOM [32, 33]. The dataset comprised about 100 256x256
slices, and was prepared with the help of three intern students in Summer 2017 and Summer 2018.

• A neural network to segment microvessels has been trained, using the dataset mentioned above,
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Figure 1.1 A snapshot of the GraphLab GUI built to help visualize and analyze graphed vascular
networks. This tool is integrated with the VascGraph Python package that has been developed in
the course of this thesis.

and made available on a local server at LIOM; the network is explained in Chapter 3. This network
was utilized by other colleagues at LIOM to measure vascular densities in their studies [33–35].

• VascGraph: A python package that includes mainly the implementation of the methodological
scheme in Chapter 4. It provides extra routines for graph processing, e.g., writing & reading of
graph objects, vessel segments clustering, flow propagation. It includes the GraphLab submodule,
which is introduced below.

• GraphLab: A GUI visualization platform in Python developed based on VTK and MayaVi li-
braries. It allows for interactive visualization, annotation and modification of graph structures
with anatomical and physiological parameters assigned to their nodes. Also, it integrates the
routines for skeletonization and flow propagation. The package is made available on https:

//github.com/Damseh/VascularGraph.

• VirtualMRI: A Python package developed on top of VascGraph to characterize the intravoxel
MRI response through 3D Monte-Carlo simulations of the nuclear spins encompassing the effects
of their advection and diffusion. The package will be made available soon!

• AngioPulse: A Python package developed on top of VascGraph to simulate the pulsatile haemo-
dynamics at the micro scale. It is still under development!

https://github.com/Damseh/VascularGraph
https://github.com/Damseh/VascularGraph


9

CHAPTER 2 LITERATURE REVIEW & MATERIALS

The research project conducted in this thesis has a multidisciplinary essence, comprising various
aspects, i.e., computational biology and quantitative neuroscience, deep learning and image seg-
mentation, geometry processing and visualization, simulations and medical/optical image acquisi-
tion. To help understand the underlying work, this chapter introduces the necessary materials and
provide an up-to-date report of the recent literature on each of these aspects.

2.1 Biological Problem

This section is designated to provide the necessary background to better understand the biological
side of the project conducted in this thesis.

2.1.1 Brain Microvasculature

The Brain

Our brain is considered as the most complex organ that is still poorly understood. It is responsible
for our movement, homeostasis, and sensation. Beside, it provides us with consciousness, memory,
and the ability to be self-aware. The brain is protected by several layers: the skull, the pia mater,
arachnoid mater, and dura mater (See Figure 2.1). The three mater layers are referred to as the
meninges. They are mainly responsible for protecting the brain and central nervous system. The
space between the arachnoid and pia mater hosts the circulation of the cerebrospinal fluid (CSF).
The brain is divided into three main regions: the brain stem, the cerebellum, and the cerebrum (See
Figure 2.1). These regions work in tandem to ensure a healthy brain function. However, studies
have suggested that the cerebrum, which is the largest region of the brain, is responsible for most
brain functions including all voluntary actions, emotions, hearing, vision, language, and memory
[37]. The cerebrum is composed of the cerebral cortex (the outer grey matter) and the underlying
white matter (See Figure 2.1). The grey matter contains the cell bodies of our neurons, and has
a dense microvascular networks to accommodate the increased energy demands of these neurons
[38]. On the other hand, the white matter contains the axonal part of some connecting neurons, and
it is given its colour due to the myelinated sheaths of axons which transmit signals across the brain
[37].



10

Figure 2.1 Overview of the brain anatomy and its protective layers. (Reproduced from [36])

Cerebral Microvascular Networks

On average, the brain forms only 2% of the body total mass in an adult human; however, it con-
sumes 20% of the oxygen supply [39]. Therefore, our brain requires a continuous supply of blood
and oxygen to keep functioning, while a reduction in flow could quickly lead into tissue death.
A massive microvascular network provides the necessary distribution of blood and oxygen in our
brain; also, it ensures the supply of nutrients and the removal of metabolic waste. The cerebral
microcirculation acts as a short-term regulation system, which responds quickly and locally to the
metabolic needs of neurons [40], in a process called neurovascular coupling. The cerebral mi-
crovascular system includes several architectural components: the pial and penetrating arterioles,
the capillaries and the ascending venules (see Figure 2.2). The pial arterioles form a quasi-fractal
hierarchy of vessels [41, 42] whose diameter decreases at each successive bifurcation, thus min-
imizing the time for supplying resources [42]. These vessels feed into the capillary bed, which
consists of the smallest vessels in the vasculature with a diameter ∼5µm, and forms a dense and
3D interconnected structure. The nature of cerebral capillary structures allows for extremely large
surface area facilitating their vital role in nutrient exchange. The volume fraction of the microvas-
culature volume ranges between 1% and 3% of total brain tissue depending on species type [43].
A good review of the microvasculature of various species is provided in [43].
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Figure 2.2 The components of a cerebral microvascular unit. (Below) A microvascular unit recon-
structed from the mouse cerebral cortex.

Cerebral Microvascular Models

Multi-scale structural characterization of cerebral microvasculature is fundamental for understand-
ing brain physiology and function at various pathological states. These complex networks comprise
a high level of heterogeneity in the associated blood flow, transit time and solute transport [44, 45].
Still, capturing the associated anatomical details remains tedious due the inherited structural com-
plexity, limitations in acquisition protocols and the lack of automated reconstruction pipelines. Sev-
eral attempts have been done to extract computational model of microvascular networks following
three main procedures: 1) Approximating their anatomical compartments, while neglecting some
geometrical features, to build simplified representations [46]; 2) Synthetic reconstruction of fully
resolved representations through biologically-inspired angiogenesis [5]; 3) Casting/reconstruction
of 3D computational models from raw structural images captured through microscopic acquisition
techniques [47].

Initial models treated the cerebral vascular network as a two-compartment serial pipe with a di-
lating arteriole and a passively responding venule [48, 49]. However, discrepancies have been
reported between the calculations computed with these simplified schemes and the experimental
measurements obtained with high temporal resolution optical imaging [50]. More representative
three-compartment models [46, 51], composed of an actively dilating arteriole and a passively re-
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sponding capillary and venule, was then proposed. A parallel three-compartment vascular anatom-
ical network (VAN) was proposed [46]. Models parameters were driven from physical properties
of the vascular network: vessel segment diameters, lengths and viscosity.

Many research works have paved the way for more biologically plausible synthetic circuitries [3–
6, 52–55]. A generic model was created using 2D/3D voronoi tessellation in which each edge
represents a capillary segment [52, 53]. The method was capable of creating appropriate generic
cerebrovascular models with association to each part of the brain cortex based on morphometric
parameters extracted from physiological data of the human cortex. Following a similar approach,
constrained Voronoi diagrams were applied to generate 3D synthetic cerebral capillary networks
that are locally randomized, yet homogeneous at the network-scale. After a careful scale setting,
these networks were proved to capture similar properties to the anatomical counterpart. In another
work, the authors were able to generate a microvascular geometry through controlling asymmetric
conditions of microvascular networks [3]. However, their models were dissimilar to capillary cere-
brovascular units. Linninger et al. introduced a detailed three-dimensional anatomically consistent
microvascular modeling, where vessel segments are assembled with optimization algorithms em-
ulating angiogenic growth; and aconsequrntly synthetic capillary bed was built with space filling
procedures [55]. In a more courageous attempt, as a precursor to the human brain vascular model-
ing, Linninger et al. presented a computational framework for synthesizing anatomically accurate
large-scale microvascular models of the mouse brain [5]. They introduced a new scheme denoted as
image-based circulatory network synthesis (iCNS) that combines the critical advantages of image-
based models with synthetic vascular growth. Recently, Peyrounette et al. proposed a simplified
three-dimensional representation of the capillary networks [6]. Their network segments were com-
posed of elementary patterns of 6- or 3-regular neighborhood constructed from the tessellation of
the solution domain into 3D cubic regular grid. Their model proved to have a substantial computa-
tional gain over that generated using complex-geometry cerebrovascular modeling.

Other studies relied on image processing techniques to extract computational microvascular mod-
els from angiography images. In [57], marmoset brain vasculature were reconstructed from im-
ages acquired through 3D synchrotron microtomography. In [47, 58], through TPM angiography,
structural images based on FITC-labeled blood plasma were used to construct graphs of the mi-
crovascular network of rats. In [59], Computailn micovascular models from homologous sections
of the somatosensory cortex in four mice were extracted after imaging with TPM. In [60], three
microvascular networks were studied from the mouse parietal cerebral cortex, also after acquiring
the networks using TPM. More promising studies tried to reconstruct full scale networks from ro-
dent brains. In [61], a detailed reconstruction of the brainwide vasculature at the capillary level
were performed using a novel approach that improves vascular demarcation by combining CLAR-
ITY with a vascular staining approach that can fill the entire blood vessel lumen, and imaging with
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Figure 2.3 Reconstruction of a fine-scaled labeled microvasculature from the hippocampus region
in the mouse brain. (Reproduced from [56])

light-sheet fluorescence microscopy (LFSM). In [62], The authors made a precise atlas for cerebral
arteries and veins using micro-optical sectioning tomography (MOST) with a modified Nissl stain-
ing method. They acquired five mouse brain data sets containing arteries, veins, and microvessels.
In [56], a comprehensive work has been done to reconstruct the whole microvascular network in
20 adult mouse brains, using immunolabeling, tissue clearing and LFSM imaging. Their labeled
reconstruction enabled the analysis and visualization of vascular graphs composed of over 100
million vessel segments (see Figure 2.3).

Applications of Cerebral Microvascular Modeling

As previously discussed, shape and morphological features of cerebral microvascular networks
determine its role in delivering necessary nutrients and meeting metabolic demands of brain tis-
sues[44]. Computational models of microvascular networks have been applied to interpret the
macroscopic BOLD response and to understand haemodynamics and cerebral microcirculation.
Here, recent potential applications are reviewed.

A study by Gagnon et al. proposed an MR Monte-Carlo simulation framework to understand how
oxygen distribution in microvascular compartments contribute to the BOLD signal for specific MR
sequence parameters and arbitrary magnetic field strengths [47]. The study takes advantage of
TPM combined with an advanced numerical scheme [58] to build a fully resolved geometric repre-
sentation of microvascular networks with oxygen quantities mapped across vascular compartments
at the capillary level. These physiological measurements were then utilized to simulate the BOLD
signal from first principles. Interestingly, simulation outputs were also validated against experimen-
tal functional magnetic resonance imaging (fMRI) acquisitions with gradient echo (GRE) sequence
after a same forepaw stimulus. Gilberto et al. [9] performed a similar study to analyze oxygenation-
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related signal alternations in passband balanced steady state free precession (bSSFP), GRE and spin
echo (SE) sequences. MR responses were calculated based on both synthetic capillary cylinders
and realistic microvascular networks acquired from the mouse parietal cortex through two-photon
microscopy scanning. The authors reported an association map between MR signal changes and
vessel size, blood volume, and vessel orientation to the main magnetic field. Furthermore, they ana-
lyzed the relations between intra- and extravascular, and of micro- and macrovascular contributions
to the output MR signal. In contrast to Gagnon et al. trial [47], simplified susceptibility differences
between vessel types were used, being one of the main limitations. Hinging on the previous two
works, Uhlirova et al. [63] provided a road map for potential clinical identification of cell-type-
specific neuronal activity from non-invasive physiological measurements, i.e., fMRI and magne-
toencephalography (MEG)/electroencephalography (EEG) observables. They argued that such an
approach is feasible upon the identification of the vasoactive role, energetic costs and extracellular
electrical potentials associated with activity of specific neuronal cell types through simulations [9,
47] in model organisms studies. Cheng et al. extended the Monte-carlo physiologically-informed
MR simulation to analyze the susceptibility effect on the transverse relaxation rate based on real-
istic microvascular anatomical models. In particular, they aimed at estimating the exponent in the
power law that relates the relaxation rate of transverse magnetization to intra-extravascular mag-
netic susceptibility differences. The value of that exponent was also estimated when introducing
contrast agents leading to higher susceptibility concentration than that used for BOLD fMRI cal-
culations. The work has shed the light on the effect of proton diffusion on MR signals associated
with cerebral blood volume (CBV) and cerebral metabolic rate of oxygen (CMRO2) measurements.
All studies that worked on correlating microscopic measurements with macroscopic fMRI in mice
models were relying on acquisitions from anesthetized animals. Since anesthesia can differentially
affect blood flow and neurovascular and metabolic coupling, Desjardins et al. [64] provided a
protocol feasible for obtaining BOLD fMRI measurements in awake mice that are implanted with
long-term glass cranial windows, without any noticeable deterioration of fMRI signal quality. One
encouraging application of MR Monte-Carlo simulations based on microscopic vascular anatomi-
cal and physiological measurements is fingerprinting the time evolution of the MR signal to retrieve
quantitative information about the microvascular network [10, 65, 66]. Christen et al. [66] used a
fingerprint defined as the ratio of signals acquired pre- and post-injection of an iron-based contrast
agent. Based on gradient echo sampling of the free induction decay and spin echo sequence, they
simulated MR responses of virtual voxels, containing blood vessels varying in CBV, mean vessel
radius, and blood oxygen saturation (SO2) to obtain a dictionary of all possible signal evolutions.
They proved that such fingerprinting enables a high-resolution dictionary mapping between mi-
crovascular networks structural and physiological features and the expected MR response. Pouliot
et al. [10] elaborated on Christen et al. work through studying the vascular MR fingerprints gen-
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erated using realistic models of mouse microvascular networks accompanied with fully-resolved
physiological values. They have shown that simulation parameters are fully identifiable with high
signal-to-noise ratios (SNR) when a single network model is used for dictionary generation. Large
biases in the estimates are observed when the angiograms are different. Nevertheless, their simula-
tions showed that differences in parameters remain estimable. Five dimensional dictionaries were
produced, from 6 real angiograms captured from mouse somatosensory cortex, to represent the MR
signal profile through GESFIDE sequence.

Several theoretical schemes have been developed in the literature to approximate functional changes
in CMRO2 from alterations in cerebrovascular parameters [46, 48–51]. Initial models treated the
cerebral vascular network as a two-compartment serial pipe with a dilating arteriole and a passively
responding venule [48, 49]. More representative three-compartment model [46, 51], composed of
an actively dilating arteriole and a passively responding capillary and venule, was then proposed to
accurately predict the oxygenation response as observed in optical imaging data. A more detailed
understanding of the spatiotemporal nature of the hemodynamic response and better estimation of
its underlying physiological factors was achieved in [46]. Other works aimed at studying cerebral
circulation based on biologically plausible synthetic circuitries [4–6, 52–54, 59]. In [52, 53], the
hemodynamics and oxygen transport were numerically simulated in the synthetic model, which
involves rheological laws in the capillaries, oxygen diffusion, and non-linear binding of oxygen
to hemoglobin. Schmid et al. found clear laminar pathways of the RBCs in the flow, shunting
between penetrating arterioles and venules, thus indicating a depth dependence on flow and pres-
sure characteristics [60]. Gould et al. found that the wide variation in haemodynamic states in
the quasi-random capillary bed was responsible for relatively uniform cortical tissue perfusion and
oxygenation [59]. In [6], a new modeling scheme was devised to accurately describe blood flow at
large scales.

2.1.2 Ischemic Microinfarctions and Microstrokes

By 2050, dementia will affect 5% of the global population [67], while unfortunately, there is still no
cure available with poor knowledge about its evolution. Vascular factors have been recognized in
vascular dementia and their relative importance has been furthered with the recognition that all risk
factors for Alzheimer’s disease (AD) are cardiovascular. Neurovascular coupling describes how
local neuronal activity through the coordinated action of smooth muscle cells, endothelial cells, and
pericytes, adjusts local cerebral blood flow (CBF) to meet these changing needs. In hypertension
[68], Alzheimer’s disease [69], age and stroke, documented disruptions in neurovascular coupling
suggest that CBF may become uncoupled with the underlying tissue metabolic needs, with potential
deleterious consequences on cognition. Aging and vascular diseases are associated with changes
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in brain vascular characteristics including thickening of endothelial basement membranes, variable
capillary diameters, the presence of lacunas, reduced capillary density, and pericyte loss. These
changes are exacerbated in hypertension and Alzheimer’s disease with the addition of pericyte
degeneration and swelling of the endothelium surrounding astrocytic end-feet. These observations
suggest a close association between cerebral vascular dysfunction and the onset and progression of
different neurodegenerative diseases. One major issue when clinically analyzing cerebral vascular
changes is being invisible at small scales.

The link between major vascular events, such as acute stroke, and their subsequent impact on brain
function has long been established. However, the sub-clinical impact of vascular disease on the
brain remains poorly understood. In the literature, a correlation has also been established between
some cardiovascular risk factors, such as hypertension, elevated cholesterol levels, atherosclerosis,
and white matter lesions/cognitive deficits [70, 71]. A major category of these deficits are small
infarcts documented to occur both in white matter and in the cortex [72]. Micro-infarcts are defined
by small regions of cellular death, invisible to the naked eye, typically of size less than 1mm [19].
In the aging brain, their occurrence ranges from 16% to 46% independent of the cause of death.
However, the characterization of their impact remains elusive, even the number of infarcts required
to impair cognition is variable. One hypothesis is that this variability can be explained by the
more widespread presence of micro-infarcts. Micro-infarcts are invisible except in post-mortem
pathological studies using optical microscopy, which do not allow for investigations to be cross-
sectional and associative.

Investigating the time course of microinfarcts and identifying measurable biomarkers thus remains
a major challenge. Using two-photon phosphorescence lifetime imaging, an age-dependent shift in
oxygen delivery between small arterioles and capillaries was observed [33]. For the first time, the
presence of sparse pockets of hypoxia in older mice but not in younger and middle-aged ones has
been uncovered [33]. It worth mentioning that the investigation of their sparsity and longitudinal
formation, along with their effect on brain function, remains a difficult task. It has been shown that
inducing micro-occlusions in a penetrating arteriole in the mouse brain leads to tissue infarction
[19]. Many other works have relied on inducing photothrombotic clots in single penetrating arte-
rioles as a model of microinfarcts in the mouse cortex [20, 73–76]. In [73], the functional role of
arterio-arteriolar anastomosis (AAA) in regulating blood perfusion through penetrating arterioles
has been studied. Label-free optical microangiography (OMAG) technique was used to evaluate
the changes in vessel lumen diameter and red blood cell velocity among a large number of pial and
penetrating arterioles within AAA abundant region overlaying the penumbra in the parietal cortex
after a middle cerebral artery occlusion (MCAO). The OMAG technique made it possible to image
a large number of vessels in a short period of time without administering exogenous contrast agents
during a time-constrained MCAO experiment. In [20], after experimentally creating microinfarcts
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in the mouse cortex through induction of photothrombotic clots in penetrating arterioles, hemody-
namic changes in tissues surrounding the occluded vessel have been studied using in vivo TPM. A
spectrum of infarct volumes resulting from occluding high-flux penetrating arterioles exhibited a
radial outgrowth that encompassed unusually large tissue volumes. The gradual expansion of these
infarcts was propagated by an evolving insufficiency in capillary flow that encroached on territories
of neighboring penetrating arterioles, leading to the stagnation and recruitment of their perfusion
domains into the final infarct volume. In [74], the authors showed that small regions of the capil-
lary bed can similarly be occluded to study the ischemic response within the capillary system of
the mouse cerebral cortex. The advantage of this approach is that the ischemic zone is restricted
to a diameter of approximately 150–250 µ m. This permits better TPM imaging of degenerative
processes that are difficult to visualize with models of large-scale stroke, due to excessive photon
scattering. In their study, capillary leakage has been quantified by determining the spatial extent
and localization of intravenous dye extravasation. In [75], microsphere cerebrovascular occlusions
were quantified and changes in cerebral blood flow were measured with laser speckle imaging.
Through mesoscopic longitudinal functional connectivity mapping in awake mice, the neurodeficit
score in microinfarct mice indicated impairment in motor function. In [76], a photothrombosis
stroke model that is capable of targeting a single distal pial branch of the middle cerebral artery
with minimal damage to the surrounding parenchyma in awake head-fixed mice was described.
Through quantifiable behavior deficits and chronic imaging, the authors showed that their model
can be used to study recovery mechanisms or the effects of therapeutics longitudinally.

2.2 Image and Geometry Processing

Here, the topics of deep learning, image segmentation and geometry processing are reviewed.

2.2.1 Deep Learning

Over the past decade, the topic of deep learning (DL) has exponentially overwhelmed the machine
learning community, and nowadays it occupies almost all the discussions running along the related
academic gatherings, conference proceedings and scientific articles. It induced a quantum leap in
the artificial intelligence domain, and it has been commonly regarded as the basis for a third tech-
nological/industrial revolution affecting all aspects of life, from cooking, art work and gaming to
security, energy, autonomous driving and space discovery. The result is an enormous number of
technological startups, massive number of papers, and tons and tons of implementations. Several
cutting-edge development frameworks have been introduced by main industrial giants like Face-
book (launching PyTorch), and Google (launching TensorFlow). It is nearly impossible to cover all
the literature recently introduced in this field. Nevertheless, some of the main cornerstone works
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and game-changing articles will be covered below.

Brief Overview

Deep learning is an approach for constructing computational models as artificial neural networks
that mimic their biological counterparts; these models consist of multiple processing units/layers
to discover representations of data. The term deep indicates the aim at producing multiple levels of
abstraction for understanding our environment [77]. Deep neural networks are extremely helpful in
discovering intricate structures hidden in large data sets, thanks to the algorithm of backpropagation
[78] to fit network parameters. Other attempts have been carried out to search for alternatives of
backpropagation to enhance the learning process of these networks [79, 80]. Many forms of deep
neural networks along with different applications have been introduced [81]. Next, major findings
and recent literature found in principle research avenues diverged from the theory of deep neural
networks are discussed.

Types of Learning

Learning algorithms of a deep learning model are determined depending on whether to incorporate
human manual annotations, the task that the system is designed to tackle and the procedure followed
to refine connection weights.

• Supervised learning: The concern here is to build a function that maps inputs to desired
outputs, which have been manually prepared. One standard form of supervised learning is the
classification problem where a model is trained to categorize an input based on a finite set of
classes, by assigning it a probability for each class. One example is the work by Krizhevsky
et al. ImageNet classification [82]; the work was a breakthrough that used convolutional nets
to almost halve the error rate for image classification, and precipitated the rapid adoption of
deep learning by the computer vision community (see Figure 2.4).

• Unsupervised/self-supervised learning: these algorithms deal with unlabeled inputs to per-
form a variety of tasks including:

– Clustering: the deep learning model is trained to distinguish between data points and
group similar ones together. A survey on clustering via deep learning is provided in
[83].

– Anomaly detection: the detection of fraudulent examples by looking for unusual pat-
terns in them. Similarly, unsupervised learning can be used to flag outliers in a dataset.
An example of such an application is found in [84].
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Figure 2.4 AlexNet: a convolutional neural network that made a large impact on the field of deep
learning, specifically in the application to machine vision [82]. It famously won the 2012 ImageNet
LSVRC-2012 competition by a large margin, 15.3% error rate compared to 26.2% as the second
place. (Adapted from https://neurohive.io/)

– Association: this type of learning is performed to associate certain features of a data
sample with other features. By characterizing some key attributes of a data point, an
unsupervised learning model can predict other related attributes [85].

– Autoencoding: an autoencoder takes an input data, compresses it into a code/vector that
resides in a latent space, and then tries to recreate the input data from that latent vec-
tor. Developing these types of learning models is among the most interesting research
directions in deep learning with applications expanded for data compression into data
understanding. This topic will be covered, separately, later in this section.

• Semi-supervised learning: these algorithms combine both labeled and unlabeled examples
to train a learning model [86, 87]. Since supervised deep learning usually requires large
amounts of labeled data, applicability to new problems, e.g., those in the biomedical field
[88], is hindered due to scarce labeled samples. Generating manual annotations is always
costly and tedious.

• Weakly-supervised Learning: weakly-supervised learning refers to learning methods accept-
ing coarse-grained, incomplete or inaccurate labels. The cost of training through weak su-
pervision is substantially cheaper than preparing fine-grained labels inputs. An example for
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a weakly-supervised deep learning architecture for object detection is given in [89].

• Reinforcement learning: this type of learning occupies an expansive space in machine learn-
ing research. Briefly, the learning algorithm here actively learns a policy of how an agent acts
based on a given observation in real-time scenarios. Every action impacts the environment,
and conversely the environment provides feedback that progressively guides the learning pro-
cess of the agent. Surprising advances in this field have been achieved through the integration
of deep learning. The DeepMind team proposed a deep model, denoted as Q-network, that
has been successfully trained to learn policies directly from high-dimensional sensory inputs
on classic Atari 2600 games, using end-to-end reinforcement learning [90]. It achieved a
level comparable to that of a professional human on 49 games. Another two striking works
reported by the same team in 2016 and 2017, providing a computer program, called AlphaGo,
that for the first time defeated a human professional player in the full-sized game of Go, a
feat previously thought to be at least a decade away [91, 92].

• Learning to learn: also referred to as meta-learning, where the model learns its own inductive
bias based on previous experience. In other words, the goal is to design learning algorithms
that can fit new data more efficiently through faster convergence with less input examples.
A famous and recent proposal for model-agnostic meta-learning approach to easily fine-tune
deep learning models is presented in [93].

Convolutional Networks

The first introduction of convolutional neural networks (CNN) goes back to the work of LeCun
et. al. in 1989 for processing of gridlike topological data, i.e., MNIST data, [94, 95]. CNNs are
a type of neural networks that have shown a tremendous success in visual context learning with
applications encompassing but not restricted to classification [82, 95–101], segmentation [102–
106], object detection [107–111], and image captioning and understanding [112–117]. The topic
of deep semantic image segmentation will be covered later in this section. CNNs have also shown
impressive performance in exploiting correlation in other types of data, e.g., textual data in natural
language processing [118] and graph structured data [119]. A separate part of this section will
be designated to discuss graph structured data processing with deep learning using graph neural
networks (GNN). The architecture of a typical CNN is composed of a series of processing blocks
[120]. A standard block includes convolutional and pooling layers. Units in a convolutional layer
are organized in feature maps. A unit is connected to local patches in the feature maps of the pre-
vious layer through a set of weights called a filter bank. The output of the local weighted sum is
processed through a non-linear operation, e.g. ReLU [121]. The non-linearity generates different
patterns of activations for different responses and thus facilitates the learning of semantic features
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in images. The output of the non-linear activation function is ideally followed by a pooling layer,
i.e., subsampling operation, to help abstracting the convolutional output and making it invariant
to geometrical distortions [122]. All units in a feature map share the same filter bank. Different
feature maps in a layer use different filter banks. The design of CNNS were inspired by Hubel
and Wiesel’s work and thus follows the basic structure of the primate’s visual cortex [123]. The
learning process in CNN has shown resemblance to that in the primate’s ventral pathway of the
visual cortex [124, 125]. The multilayered and hierarchical structure of deep CNN, emulating the
deep and layered structure of the human brain neocortex, is the crucial characteristic that allows
for extracting low, mid, and high-level features. The availability of data resources and advance-
ments in hardware capacity are main reasons for the explosive growth in using CNNs. Various
improvements on CNN architectures have been proposed to scale for heterogeneous, complex, and
multiclass problems. These enhancements became more prevalent after the exemplary performance
of AlexNet [82], mentioned previously and shown in Figure 2.4. The layer-wise visualization of
CNNc introduced in [126] improved the understanding of feature extraction stages. A new popular
architecture denoted as VGG has been introduced in [96]. It contained more convolutional layers
than that in [82], and shifted the interest towards the extraction of features at higher abstraction
layers. Many new architectures have been built following the principle of simple and homogenous
architectural topology, as introduced in VGG. Google AI team introduced an innovative idea of a
split, transform and merge of features, codenamed as inception. The concept of inception allowed
for the abstraction of features at different spatial scales [97]. More deep convolutional networks
became achievable through the concept of residual skip connections introduced in [98]; the corre-
sponding architectures referred to as ResNets. Residual connections was then employed by most
of the succeeding enhanced networks, such as Inception-ResNet and ResNeXt [127, 128]. Densely
connected architecture, or DenseNets, has been proposed in [99] relying on concatenation blocks
rather than residual connections for information flow. More efficient architectural designs and im-
plementations have been recently proposed to both decrease the number of parameters and improve
the performance [100, 101], helping to scale the use of these networks even on low-capacity hard-
ware setups.

Recurrent Networks

Recurrent neural networks (RNNs) are a family of artificial neural networks that have a long history
of modelling sequential data for various applications ranging from natural language processing to
stock prediction [130–132]. The structure of RNNs serve to include memory modeling where a hid-
den layer within the network at a time is conditioned on its previous states [132]. This structure of
RNNs enables the processing of complex signals monitored for long time periods. RNNs can map
an arbitrary input sequence to an arbitrary output sequence (see Figure 2.5). Compared to other



22

Figure 2.5 Various forms of RNNs used in different applications. (Adapted from [129])

forms of feed forward neural networks, RNNS are more difficult to train due to the problem of van-
ishing gradients [130]. One of the most notable variants, and most widely used, are the long short
term memory (LSTM) networks [133], which can in principle store and retrieve information over
long sequences with explicit gating mechanisms and a built-in constant error carousel. Recently,
there has been renewed interest in further improvement on the RNNS basic architectures. Exam-
ples of resulting works are the gated recurrent units (GRUs) [134] and incorporating content-based
soft attention mechanisms [135]. One recent and major work in recurrent data processing, specially
applied to language processing tasks, is the bidirectional encoder representations from transform-
ers (BERT) proposed by Google AI team [136]. BERT is designed to pretrain deep bidirectional
representations, single-direction models, from unlabeled text by jointly conditioning on both left
and right context in all layers. The proposal is based on the concepts attention and transformers
[137], which is currently gaining a tremendous interest in the machine learning community. As a
result, the BERT model can be finetuned with just one additional output layer showing state-of-the-
art results tasks like question answering and language inference, without substantial task specific
modifications. Successful application of BERT has been done on biomedical textual datasets [138].

Graph Networks

While most successful deep learning models have been proposed to particularly deal with datasets
embodied within an Euclidean structure i.e., structured grids, there has been an escalating inter-
est toward learning from non-Euclidean geometric data, e.g., graphs, [139]. These types of data
arise in numerous applications, such as social networks [140], functional structures of the brain
[141], and molecular biology and pharmacology [142]. Non-Euclidean representations do not have
the familiar properties such as global parameterization, common system of coordinates or shift-
invariance. Consequently, conventional operations in the Euclidean case like convolutions, do not
have a straightforward translation on non-Euclidean domains. Many works have been proposed to
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extend deep learning approaches for graph-based datasets [139]. One of the main and first works is
presented in [140]. A scalable approach for semi-supervised learning approach operating directly
on graphs, based on an efficient variant of convolutional neural networks, is proposed. First-order
approximation of spectral graph convolutions have been used. Other works based on deep learning
and applied to extract graph embeddings are recently proposed [143, 144]. An interesting work
leveraged the concept of attention to address the shortcomings of prior methods based on graph
convolutions and their approximations [145]. In that work, several key challenges of spectral-
based graph neural networks have been tackled, and the presented model made readily applicable
to inductive as well as transductive problems. In another work, convolution operations in neural
networks have been reformulated to deal with point clouds, a flexible geometric representation suit-
able for countless applications in computer graphics [146]. A promising application of deep graph
learning in medicine is the modeling polypharmacy side effects [142]. The authors processed a
multimodal graph, with a large number of edge types, of protein–protein interactions, drug–protein
target interactions and polypharmacy side effects, which were represented as drug–drug interac-
tions. At the time of writing this thesis, humanity is struggling to face the overwhelming COVID-19
pandemic. This demands a rapid identification of drug-repurposing candidates. In [147], a predic-
tive model has been proposed, based on deep graph learning, to study host-pathogen interactions,
unveil the molecular mechanisms of the infection, identify comorbidities as well as rapidly detect
drug repurposing candidates.

Generative Models

Deep generative models have resulted as one of the most astonishing outcomes of the deep learning
research [81]. Rather than learning for discriminative tasks, the primary interest here is to learn
the distribution that summarizes all the information about a certain dataset. These models could
be then applied to generate new fake but realistic samples from the learned distribution. These
Generative models can be categorized into those learning implicit [148] and explicit distributions
[149]. Large number of papers have been produced in this domain in the past five years. Some
recent developments with state-of-the-art performance for generative modeling in computer vision
are presented in [150, 151].

Regularization

One of the most important characteristics of a successful deep learning model is its ability to gen-
eralize for new inputs not seen during the training process. Many strategies have been designed
to reduce the test error, i.e., regularization of the trained model. The most common techniques for
regularisation are Dropout [152], L2 and L1 regularization, data augmentation and early stopping
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Figure 2.6 The architecture of V-Net [154], which was proposed for 3D segmentation of biomedical
images. (Adapted from [153])

[81].

2.2.2 Deep Segmentation

In this section, recent advances in image segmentation based on DL architectures will be covered.
More focus and orientation will be toward methods applied into medical images. A recent survey
on this topic is given in [153]. Separately, a discussion on deep vascular segmentation will be also
provided.

Deep Image Segmentation

CNNs were the main cornerstone in developing DL segmentation models for natural and medical
images. Early proposals relied on pixel-wise predictions [153, 155]. However, since the introduc-
tion of the famous fully convolutional neural networks (FCNN), all efforts have been redirected
toward end-to-end architectures [102, 103]. The concept of deconvolution layers, i.e., upsampling
layers, was introduced in [102]. To avoid loss of contextual spatial information, outputs from shal-
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Concatenation

Dense block (type A)

(a) (b)

Figure 2.7 The architecture of densely connected FCNN used for segmentation of TPM angio-
graphic stacks in Chapter 3. (a) Full architecture. (b) Components of a single dense block. The
block is referred to as dense block (type A) if the input-output concatenation is maintained, and as
dense block (type B) if this concatenation is omitted.

lower layers were fused to reconstruct the final output. On the other hand, in [103], a contracting
path (composed of convolutions and pooling operations) and a symmetric expanding path (com-
posed of deconvolution operations) were proposed with skip connections between them to attain
the contextual integrity. The architecture is currently very-well known as U-Net. A new similar
proposal for an architecture referred to as V-Net has been also proposed in [154]. The difference
is the ability to process 3D inputs, integration of residual connections inspired by the work in [98],
and the selection of Dice metric as the loss function (see Figure 2.6). After, in [106], U-Net-like
segmentation architecture, containing up to one hundred convolutional layers, has been proposed
through incorporation of dense blocks [99] instead of residual ones. An example of this densly-
connected FCNN model is captured in figure 2.7 [27, 156], where the task was to segment 2D TPM
angiographic stacks. This architecture is used in the work presented in Chapter 3. Currently, the
state-of-the-art performance for semantic segmentation on the popular PASCAL and Cityscapes
datasets is achieved by the model proposed in [157], which referred to as DeepLabV3+. The archi-
tecture leveraged both dilated convolutions and feature pyramid pooling [158].

Many works adapted general FCNN architectures proposed for processing of natural images after
inducing necessary modifications to fit medical images [159–161]. In [159], input images were
normalized using a simple CNN prior and a residual-based U-Net was utilized for liver and prostate
segmentations from CT, and MRI images, respectively. In [160] a dilated convolution block close
to the network’s bottleneck was used to save contextual information. Interestingly in [161], a new
rewiring of skip connections has been proposed in a framework of U-Net to segment chest in low-
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dose CT scans, nuclei in microscopy images, liver structure in CT scans, and polyp in colonoscopy
videos. On the other hand, several improvements have been proposed to refine the performance
of FCNN when applied to medical image segmentation. To scale these models to larger and high-
resolution images and accelerate the processing to fit in real-time settings, model compression
approaches were used [162, 163]. In [162], a reduced architecture is obtained through searching
for a most efficient U-Net model to segment tumors and organs from CT and MRI images. In [163],
group normalization and leaky ReLU activations were used to make the network more memory 3D
medical image segmentation. The concept of attention has been incorporated in many works to
enhance the segmentation output from medical images [164, 165]. Some methods used adversarial
training to improve the generalization and enhance the segmentation performance [166]. Lastly,
RNNs also found their place in other works of medical image segmentation; examples are in [167].

Deep Vascular Segmentation

Vascular segmentation has been thoroughly studied in the literature [168], [169], and applied on
angiograms captured in MRI, CT and fundus fluorescein imaging modalities. Vascular segmenta-
tion schemes have exploited various image properties including the Hessian matrix [170], moments
of inertia [171], gradient vector flow [172] or geometrical flux flow [173]. Schemes have explored
a wealth of segmentation strategies, e.g., vessel-like prior modeling [170], classical machine learn-
ing [174], morphological processing [175], tracing [176], evolution of deformable models [173].
A recent review of general techniques and methodologies followed to segment vessels in medical
images is given in [177].

Recent developments of vascular segmentations were inspired by the success of DL, and have tack-
led both macroscopic and new microscopic datasets, which contain more complex 2D/3D vessel
structures, [27, 155, 156, 178–190]. Some methods were applied to segment vascular structures
from MRA and CTA. In [178], the authors improved the HED method [191] to extract 3D vascular
boundaries from MRA angiograms. In [179], A specialized deep learning U-Net method is used to
replace manual annotations. The labeled training dataset was gathered from 66 patients with cere-
brovascular disease. In [180], a novel encoder–decoder deep network was developed to segment
2D vessels from CTA angiograms. The method exploits 2D+t sequential images in a sliding win-
dow centered at the frame to be segmented. In [192], a large dataset from 1018 subjects was used
to train a densely connected U-Net to generate 3D aortic segmentations from 4D-flow MRI data.
Tremendous amounts of papers have been proposed to deal with retinal vessel segmentation, due
to the less-challenging 2D nature and the open-source availability of many datasets. In [181], the
task of segmentation is formulated as a problem of cross-modality data transformation. A patch-
wise neural network was proposed to model the transformation and produce the segmentation. In
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[193], a pixel-wise feed forward network was utilized to segment vessels from fundus imaging.
Later, various improvements were introduced to include geometric priors and consider the connec-
tivity and topological features of vascular maps. In [183], GNN module was employed within a
CNN architecture to exploit the strong relationship that exists between vessel neighborhoods. In
[184], the connectivity of the segmented maps have been improved through the incorporation of a
dense dilated network within the U-Net framework. In [185], a deformable U-Net (DUNet), which
exploits the retinal vessels’ local features, was proposed. Interesting works have been presented re-
cently leveraging DL techniques in microscopic cerebrovascular segmentation. In [155], pixel-wise
networks were used through integrating some 3D convolutional blocks to automatically annotated
vessels in TPM stacks. Other schemes used varying U-Net structures to address the same task [27,
156, 186–188]. In citedamseh2018automatic, a densely-connected U-Net module has been used.
In [188], the U-Net performance has been enhanced through the integration of an untrainable block
that induces the total variation measures within the total loss while training. In [189], a novel deep
learning method was presented for unsupervised segmentation of blood vessels. The method is
inspired by the field of active contours. Interestingly in [190], a deep-learning based pipeline was
developed to segment and analyze the global vascular structure at various scales from full 3D brain
images after registering them to the Allen mouse brain atlas.

2.2.3 Laplacian Geometry Processing

In this section, a necessary material related the domain of discrete differential geometry is pre-
sented. This discussion forms the basis for a part of the methodological procedures proposed in
Chapter 3 and 4.

Fourier analysis stood out for a very long time as a pivotal tool for processing and decomposi-
tion of signals situated within structured and uniform grids. Such signals can be decomposed
into orthogonal subspaces associated with different frequencies; low frequencies are regarded as
subjacent information, whether the high frequency component as noise. For the case of discrete
structures, e.g., graphs, and representations on unstructured grids, e.g., surface meshes, spectral
analysis is translated through studying the properties of eigenvalues and eigenvectors associated
with the Laplacian operator defined on these domains. Let G = (V,E) be a graph with vertices
vi ∈ {v1, v2 . . . , vn} and edges {(vi, vj),∀vi ∈ V and vj ∈ N(vi)}, where N(vi) : E → R gives
the set of neighboring vertices connected to vi. Let φ : V → R be a function of graph vertices.
Then, the corresponding discrete Laplacian acting on φ is defined as

∆φ(vi) =
∑

vj∈N(vi)
wi,j[φ(i)− φ(j)] (2.1)
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where wi,j ∈ R, and
∑

(i,j)∈E wi,j = 0, is the weight between the two vertices vi and vj . Laplacian-
based analysis on graphs and geometric representations has been applied to address many problems
related to smoothing, compression or watermarking of surface geometries [194–196]. Also it forms
the basis of spectral-based clustering algorithms [197, 198]. It has been applied to image denoising
[199]. An important application that is relevant to the work conducted in this thesis is skeletoniza-
tion [200–202]. A separate discussion on various skeletonization techniques and their applications
for vascular modeling is given in the next section. When the Laplacian is applied to all vertices in
G, the formula in 2.1 can be rewritten in the matrix form:

∆φ(vi) =



δφ(v1)
δφ(v2)

...
δφ(vn−1)
δφ(vn)


= L×



φ(v1)
φ(v2)

...
φ(vn−1)
φ(vn)


(2.2)

where L is the Laplacian matrix. There are many forms of this matrix; the general normalized form
can be defined as

Li,j =


1, if i = j

−wi,j, if i 6= j and (i, j) ∈ E
0, otherwise

(2.3)

where wi,j is obtained as follows
wi,j = ωi,j∑

(i,k)∈E ωi,k
(2.4)

Let us consider the simple path graph depicted in Figure 2.8. It is to be noted that this is a geometric
graph, where each vertex has a determined position in the 3D space. If one aims at smoothing the
original structure of the graph, a simple procedure would be to repeatedly connect the midpoints of
successive contour segments, which is called midpoint smoothing, see Figure 2.8 (a). Specifically,
if φ assigns the position to graph vertices: φi = φ(vi) = (xi, yi), then, the new vertex position
(x̂i, ŷi) calculated after two steps of midpoint smoothing is given by the local averaging:

φ̂i = 1
2

[1
2(φi−1 + φi)

]
+ 1

2

[1
2(φi + φi+1)

]
= 1

4φi−1 + 1
2φi + 1

4φi+1 (2.5)

If graph edges have uniform unit weights, ωi,j = 1, the spatial shift from the position of vi to that
of v̂i is defined as the 1D Laplacian operator at vi, as plotted in Figure 2.8, given by

δφ(vi) = 1
2(φi−1 + φi+1)− φi (2.6)
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Figure 2.8 A simple example on the use of 1D Laplacians for smoothing of a geometric graph struc-
ture. One step of Laplacian smoothing is equivalent to two steps of midpoint smoothing.(Adapted
from [196])

To show how one can perform smoothing using the Laplacian operator, let us consider the circular
path in Figure 2.9. With φ returning the x coordinate of a vertix v, i.e., φi = xi, the Laplacian
operator can be represented in the matrix form as

∆φ(v) = L



x1

x2
...

xn−1

xn


=



1 −1
2 0 · · · · · · 0 −1

2

−1
2 1 −1

2 0 · · · · · · 0
...

...
...

...
...

...
...

0 · · · · · · 0 −1
2 1 −1

2

−1
2 0 · · · · · · 0 −1

2 1


X (2.7)

Hence, the new coordinates after applying the smoothing operator, S, can be calculated as

X̂ =



x̂1

x̂2
...

x̂n−1

x̂n


=



1
2

1
4 0 · · · · · · 0 1

4
1
4

1
2

1
4 0 · · · · · · 0

...
...

...
...

...
...

...
0 · · · · · · 0 1

4
1
2

1
4

1
4 0 · · · · · · 0 1

4
1
2





x1

x2
...

xn−1

xn


= SX (2.8)

The smoothing operator S is defined in terms of the Laplacian matrix L as

S = I − 1
2L (2.9)

Above, an example on how the Laplacian operator can be employed to solve a simple smooth-
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Figure 2.9 Laplacian smoothing operator on circular geometric graph based on x coordinates of its
vertices.(Reproduced from [196])

ing problem, i.e, eliminating of higher frequency components in geometric structures, was pro-
vided. This is a subcategory of various spectral-based methodologies than can be applied to an-
alyze unstructured geometric representations, such as compression, decomposition and cluster-
ing/partitioning. Previous works extended the notion of Fourier analysis to manifold or surface
setting, in particular to 2-D triangulated meshes [194, 203–205]. In [203, 204], an appropriate
definition and approximation of the discrete Laplacian operator, namely, the Laplacian-Beltrami
operator, for triangulated meshes has been given. Such an operator is related to the calculation of
the discrete mean curvature on mesh surfaces. The mean curvature on 2D triangulated meshes can
be calculated as [204]

K(vi) = 1
2A(vi)

∑
(i,j)∈E

(cot(αij) + cot(βij))(φi − φj) (2.10)

where φ returns the position at vi and A is the Voronoi region area computed from the 1-ring
neighborhood of vi, see the blue-bounded region in Figure 2.10 (b). Considering the scaling by
the Voronoi area, the mean curvature is related to the cotangent Laplacian operator, which can be
obtained after resetting the weights in 2.4:

ωi,j = cot(αij) + cot(βij) (2.11)

In [194], the cotangent Laplacian is applied within an iterative optimization scheme to obtain a tri-
angulated mesh smoothing that preserves contextual details (see Figure 2.11). A similar optimiza-
tion framework is utilized in Chapter 3 and 4 to decimate triangulated mesh and graph geometries,
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Figure 2.10 The 1-ring neighborhood of a vertex on a 2D triangulated mesh.

Figure 2.11 Triangulated mesh smoothing through the cotangent Laplacian operator. (Reproduced
from [194])

respectively, to form graph-based representations of vascular structures.

2.2.4 Skeletonization

There has been numerous literature on techniques addressing the problem of skeletonization, which
is a process of abstracting object shapes in compact forms that can yet describe the original fea-
tures. With variations in the corresponding theoretical definitions and formulations, these compact
outputs are referred to as medial axes, skeletons, curve skeletons, centerlines or graphs. State-of-art
reports on the various skeletonization schemes have been provided in [202, 206–208]. Skeletoniza-
tion methods were employed for a variety of applications extending from shape recognition and
retrieval [209], shape decomposition, animation and motion tracking [210], to various medical
imaging applications [28, 211–216]. Skeletonization schemes have been applied to process 2D and
3D objects; also, they vary in the type of skeletonization output, e.g., centerlines, curve skeletons
and medial surfaces, [202]. The various procedures followed in the literature to acquire object
skeletons can be classified into three main categories. 1) Geometrically formulated skeletons, e.g.,
based on Voronoi diagrams [217], geometric deformation [200, 201, 218] and shrinking balls[219].
This category ecomapsses methods that have demonstrated state-of-the-art performances in terms
of acceptable computational effort, and topologically-correct and smooth outputs (see Figure 2.12).
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Figure 2.12 Skeletons obtained through geometric deformation of (a) triangulated meshes [200]
and (b) point clouds [218].(Reproduced from [200, 218])

2) Methods based on continuous curve evolution where skeletons are formed at the locations of sin-
gularities (mathematically referred to as shocks) in specifically designed fields, e.g., Hamiltonian
field [220] and gradient vector field [221]. 3) Image-based algorithms based on the principle of dig-
ital morphological erosion/thinning [222] or location of singularities on a digital distance transform
(DT) field [223].

As recent application examples in the biomedical field, in [215], an automated method for anatom-
ical labeling of the Circle of Willis (CoW), by detecting its main bifurcations, was proposed.
Graphed skeletons of the CoW were extracted, with bifurcations as its vertices. By training on a set
of pre-labeled examples, their global method learnt to distinguish the variability of local bifurca-
tion features as well as the variability in the topology across different samples. In [213], separation
and classification of pulmonary arteries and veins were performed from CT images. After, given
the segmented vessels, geometric graphs were constructed to model the topology and the spatial
distribution. In [214], An automatic approach for saccular intracranial aneurysm isolation was pro-
posed based on extracting vascular curve skeletons using the method in [221]. In [212], a modified
version of the technique in [201] was proposed for extracting and decomposition of vascular skele-
tons applied to computer-assisted diagnosis and analysis. In [216], retinal arteriovenous nicking,
a marker that has been strongly suggested to be associated with eye disease, was assessed after
extracting the vascular network through a multiscale line detection method. In [211], A method for
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providing graphed skeletons of macroscopic cerebrovascular networks that embodies quantitative
topological features has been provided. Geodesic vascular minimum spanning trees were extracted
from angiographic data by solving a connectivity-optimized anisotropic level-set over a voxel-wise
tensor field representing the orientation of the underlying vasculature. More specific review of var-
ious methods used for vascular modeling is given in Chapter 3 and 4. In Chapter 3, the method
in [201] is integrated within a fully-automated pipeline to model microvascular structures from
scalable TPM angiograms. Motivated by the shortcomings experienced from the work conducted
in Chapter 3, a novel and yet robust technique that deals with low-quality angiograms acquired at
varying scales is presented in Chapter 4.

2.2.5 Gabor Filters

This section provides a review on Gabor filters, which have been employed in Chapter 5 to recon-
struct final OCT angiograms from images acquired at different depth setups. Gabor filters were
introduced for the first time by Dennis Gabor in 1946. These filters have been utilized in many
image processing tasks, especially those concerned with extracting texture-related features. Simple
visual receptive fields in some mammals’ cortex were shown to have a strong correspondence with
a class of linear spatial filters analogous to 2D Gabor filters [224]. Gabor filters can be seen as
band pass filters, i.e., they allow a certain band of frequencies while rejecting the others. Their
mathematical formulation is based on defining a sinusoidal signal, of a particular frequency and
orientation, modulated by a Gaussian wave. For the 2D case, a Gabor filter, with both real gr and
imaginary gi parts, can be defined as

gr = 1
2πσ2 e

− 1
2 (x

2+y2

σ2 ) cos(2πω(x cos θ + y sin θ)) (2.12)

gr = 1
2πσ2 e

− 1
2 (x

2+y2

σ2 ) sin(2πω(x cos θ + y sin θ)) (2.13)

where ω defines the frequency being looked when analysing a 2D image. By varying θ, one can
look for texture oriented in a particular direction. The parameter σ is responsible for the Gaussian
envelop width, i.e., the size of local image region to be analyzed. Examples of 2D Gabor kernels
obtained with different values of ω, θ and σ are depicted in Figure 2.13.

2.2.6 Image Entropy

This section discusses the calculation of local image entropies, which forms a portion of the tech-
nical content in Chapter 5. In information theory, one can quantify the amount of information, i.e.,
uncertainty or entropy, of a discrete random variable X following the probability distribution p(x)
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Figure 2.13 A set of Gabor filters. (Reproduced from [225])

Figure 2.14 Calculation of the local entropy of 2D images.

using Shannon entropy formulation as

H(X) = −
∑

p(x) log p(x) (2.14)

where− log(p(x)) quantifies the information associated with a single event x. The unit of informa-
tion is referred to as a bit. It is realized from the above formula that the entropy measure is always
positive. Zero probabilities do not add to the entropy, i.e., 0 log 0 = 0. The value of the entropy
indicates the number of bits on average required to describe X . The higher the entropy, the more
information our random variable contains. One can notice thatH is a concave function, reaching its
maximum if and only if p(x) is equal for all x, i.e., when having uniform probability distribution.
Shannon entropy has been applied in the field of image processing to indicate how much informa-
tion is contained in an image. This is done after approximating the probability distribution of pixel
values based on their histogram. A straightforward procedure is performed by normalizing the
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frequency of each histogram bin, i.e., range of pixel values, as the probability p(x). Interestingly,
the application of this idea could be done kernel-wise through translating over the image domain.
Local regions containing a larger collection pixel values, i.e., ridgy structures and rich textures,
would result in high entropy measure, whereas for smooth and flat pixel values the entropy will be
smaller. An example of this local entropy over a test image is captured in Figure 2.14. It is clear
that, at edges and rich texture details, the entropy is higher. We exploited this idea in Chapter 5 to
reconstruct an OCT angiogram from different depth-dependent acquisitions.

2.2.7 Random Forests

Here, a popular machine learning model for regression [226], called random forests, is reviewed.
This model is used in Chapter 5 to approximate Partial pressure of O2 (PO2) and blood flow values
in realistic OCT angiograms.

Individual Decision Trees

Decision trees have become one of the most powerful and popular approaches in data science. A
decision tree is a predictive model that works through recursively partitioning the features space
into subspaces that constitute a basis for producing the output. Feature subspaces are obtained
by axis parallel splitting that straightforwardly generalises to dimensions greater than two. For a
covariate/feature space x = (x1, x2, · · · , xp),x ∈ Rp, one can express a decision tree model in the
following form

f(x) = E(y|x) =
M∑
m=1

wmu(x∈Rpm) =
M∑
m=1

wmφ(x; vm) (2.15)

where wm is the mean response, obtained from observed data, in the region Rp
m and u(x) is the

boxcar function, with a value of one for x and 0 otherwise. The parametric set vm encodes the
choice of variables to split on, and the threshold value, on the path from the root to the mth leaf. It
is clear that the above model is not but an adaptive basis-function model, where the basis functions
define the regions, and the weights specify the response value in each region. In order to build a
regression tree, a recursive binary splitting can be used to grow a large tree on the training data,
stopping only when each terminal node has fewer than some minimum number of observations.
Recursive binary splitting is a greedy and top-down algorithm that works through minimizing the
residual sum of squares at each split in the partitioned feature space as

error =
M∑
m=1

∑
x∈Rpm

(ŷ − f(x))2 (2.16)



36

Figure 2.15 Building a regression decision tree from a 2D feature space, with randomly generated
samples, through binary greedy splitting. Blue samples have values > 0.5, whereas that of red
samples are < 0.5.

where ŷ is the observation at x. An example that illustrates the partitioning of a feature space of 2
dimensions, i.e., x = (x1, x2) with randomly generated samples is shown in Figure 2.15.

Regression Random Forests

Random forests are a type of ensemble models built using a collection of decision trees [227].
Their most common version follows a technique known as bagging (also referred to as bootstrap
aggregation) to enhance the prediction power [228]. In particular, a random forest takes advantage
of multiple decision trees, each modeled based on a subset of the original dataset, and combines
their outputs to produce the result. Incorporating different decision trees could lead into a higher
variance in the final prediction, i.e., after splitting the dataset into several parts, fitting a different
decision tree on each part produces variations in trees’ outputs. Bagging or bootstrap aggregation
is a simple procedure to reduce the variance by combining the result of multiple trees fitted on
random sub-samples, with replacement, from the original dataset. The final output after bagging is
represented as

fbag(x) = 1
B

B∑
b=1

fb(x) (2.17)

In which B is the number of trees fitted on the different bootstrapped training datasets and fb(·) is
the model of the bth tree. To construct better versions of random forests, especially when numeric
features are involved, other techniques differing from the bagging method have been proposed.
For example, instead of using all the samples to determine the best splitting threshold for each
numeric feature, a sub-sampling from these samples/instances has been used [229]. This technique
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can result in reduced variance across predictions from different trees. Another method is called
adaptive boosting [230]. The method iteratively invokes a decision tree by training on a part of the
dataset that is taken from various distributions. In contrast to the bootstrapping method, instead of
randomly sampling the instances in each iteration, boosting ensures the most useful sample to be
picked for fitting a single tree. A more recent method for enhancing random forests is based on
extremely randomized trees [231]. It is to be noted that a classical random forest deterministically
picks the best splitting attribute and its corresponding cut-point, certainly based on a random subset
of features. To have a better performance, the method in [231] induces more randomness in building
a tree through randomizing both the attribute used to decide the split and its corresponding cut-
point. The method of rotation forests has been also proposed to provide better predictions [232].
The idea is to achieve diversity among the individual decision trees by consistently training on the
whole dataset, but in a rotated feature space at each iteration.

2.3 Image Acquisition

A number of noninvasive/minimally-invasive in vivo imaging modalities have been applied to in-
vestigate brain functions in neuroscience. Many noninvasive MR imaging modalities, e.g., fMRI,
DWI and IVIM, have been employed in experimental and translational studies to map neural ac-
tivity and structure at macroscopic scale. However, these techniques cannot resolve the changes at
microscopic scale, making it difficult to understand complex neural models. Alternatively, other
minimally-invasive in vivo techniques, e.g. OCT and TPM allow for detailed examination of neu-
ral activities in rodent models. In this section, some angiographic/microscopic and MR imaging
techniques, which are associated with the methodological schemes proposed in this thesis, are re-
viewed.

2.3.1 OCT Angiography

Optical coherence tomography (OCT) is a noninvasive method for 3D imaging of biological tis-
sues at high resolution (<10 µm), yet without a need for contrast agents as compared to the TPM
technique [12]. OCT imaging can reach a depth of several millimeters with a speed (line scan rate)
up to 1.6 MHz. The core principle behind OCT imaging systems is light interference. In a typical
OCT configuration (See Figure [233]), the light from a low-coherence source is split into two paths
by a coupler/splitter directing it along two different arms of an interferometer. One arm is referred
to as the reference arm, while the other is the sample arm. When the light is transmitted along the
fiber to the end of either arm, it is shaped by various optical components to adjust the beam shape
shape, depth of focus and the intensity distribution of the light. In the reference arm, the light is
back-reflected by a reference mirror and it returns into the interference system. The same process
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occurs with the light in the sample arm. In a tissue sample, different structures will have different
indices of refraction, and thus the light will be backscattered each time it encounters structures of
different refractive index. The returning light from both arms recombine at the splitter producing
an interference pattern that is recorded by the detector. The light transmitted in the reference arm
forms an interference pattern only with light that traveled the same optical distance along the sam-
ple arm. Therefore, when the position of the reference mirror is altered, the interference pattern
will change reflecting the corresponding depth within the sample. In this way, A dependence of the
reflection potential based on depth is acquired. The OCT signal recorded during a complete travel
of the reference mirror is called a depth scan or an A-scan. The sample beam is translated across the
sample surface capturing consecutive A-scans to form an OCT image or otherwise called a B-scan.
Next, various configurations are discussed including that which do not require the translation of the
reference mirror.

For in vivo rodent brain imaging, many OCT-based schemes have been proposed to provide high-
resolution volumetric images at high speed covering a large field of view. There are two main types
of OCT implementations, namely, time-domain OCT [234] and Fourier-domain OCT (FDOCT)
[235]. Introducing FDOCT triggered many promising applications in several fields, e.g., oph-
thalmology, dermatology and neuroscience. It has been shown that FDOCT systems have larger
sensitivity advantage and higher imaging speed as compared to its time domain counterpart, even
in situations with low light levels and high speed detection [236]. One of the main applications
of FDOCT systems, due to its speed, is the investigation physiological parameters related to in
vivo blood flow information [237]. The inherent contrast for FDOCT blood flow imaging comes
from the endogenous light scattering of moving blood cells, indicating its merit of not requiring
exogenous agents for imaging. The FDOCT technique exploits the relationship between the signal
autocorrelation and its spectral power density, i.e., the Fourier transform of the backscattered wave
is computed to resolve the axial distribution of the object scattering potential. The advantage of
FDOCT over time-domain OCT is that the reflection potionel is represented as a function of depth,
i.e, A-line scan, and is obtained in without a need to move the reference mirror, which results in
enhanced sensitivity substantially faster imaging. Furthermore, due to its speed, this technique for
a reduced light power to be used when imaging living tissue. The FDOCT method has two main
variants, spectral-domain OCT (SDOCT) and swept-source OCT (SSOCT). In the SDOCT pro-
tocol, frequency components are simultaneously captured using a dispersive element and a linear
array detector e.g., line scan camera. A typical implementation of an SDOCT system is captured in
Figure 2.16. On the other hand, the SSOCT technique captures the optical frequency components
using a single detector, e.g., photodiode, in a time-encoded sequence by sweeping the frequency
of the laser source. It is to be noted that this technique suffers from high phase noise, which is
introduced due to the cycle-to-cycle tuning and timing variability.
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Figure 2.16 A typical implementation of an FDOCT system. (Adapted from [12])

The temporal and spatial profile of the OCT signal encompasses information about the motion
of the imaged particles. Signals belonging to regions with moving particles experience a larger
variance compared to that of a static tissue. Thus, to extract vascular related parameters due to
moving blood cells, one can analyze the phase and/or intensity of OCT signals. Many angiogra-
phy techniques have been developed based on FDOCT: phase-based methods that are sensitive to
the axial flow component only [238]; intensity-based methods that are sensitive to the dynamic
speckle induced by the moving blood cells [239]; complex signal–based methods [240], which are
sensitive to both the axial flow and the dynamic speckle generated from blood cells moving in all
directions; and other methods directed to measure capillary-level parameters [241]. Phase-based
methods evaluate the axial velocity of flowing particles within by utilizing the Doppler effect. This
is performed through analyzing the phase difference between adjacent A-lines. The techniques
based on the intensity of OCT signals take advantage of the strong speckle effect in the vicinity
of vascular regions compared to non-flow regions. The complex signal-based methods analyze the
A-lines that are acquired at the same location over some time period.

2.3.2 TPM Angiography

Two-photon fluorescence microscopy or TPM is one of the most important technologies that en-
ables minimally invasive 3D imaging of biological tissues with submicrometer resolution. First
two-photon fluorescence microscopy system that initialized a revolutionary progress in the 3D
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Figure 2.17 A simplified Jablonski diagram showing that two-photon excitation depends on the
simultaneous absorption of two photons. (Adapted from [242])

imaging of cells and tissue in vivo was introduced by Denk et al. in 1990 [243]. Compared to
precedent optical techniques, a TPM system can image living specimens because of the reduced
photodamage caused by a laser source. It incorporates a larger wavelength of the light, usually be-
tween 700 and 1000 nm allowing for deeper penetration, and thus deeper imaging. Also, compared
with confocal and single-photon microscopy, TPM technique provides higher sensitivity imaging.
The principle of TPM excitation is elegantly simple: a fluorophore molecule is excited by a nearly
simultaneous absorption (within 10–18 s) of two photons, each about twice the wavelength (half
the energy) required for single-photon excitation (see Figure 2.17). The imaging technique enabled
imaging of the function and structure of specific cell types (e.g. neurons, microglia, and astrocytes)
in the brain, through the use of specific fluorescent probes [244]. The properties of brightness and
photostability of different probes continue to improve [245]. TPM has been applied in many biolog-
ical problems, e.g., to study calcium passage, neuronal and cellular changes [246–248]. Another
important application is the imaging of structural and functional vascular changes in the rodent
brain [47, 249, 250]. For angiography applications, the fluorescein isothiocyanate (FITC) -labeled
Dextran, emitting a green fluorescence, has been commonly used as the fluorophore injected in the
bloodstream.
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(a) (b)

Figure 2.18 The excitation, (a), and relaxation, (b), processes with their effect on the net magneti-
zation M .

2.3.3 MRI Imaging

MRI is one of the most prominent imaging techniques used for medical diagnosis in clinics. It is
based on the principle of nuclear magnetic resonance (NMR), for medical diagnosis. Originally,
NMR was introduced to perform NMR spectroscopy, ie. to study the atomic composition of a given
sample, and was simultaneously described by Felix Bloch [251] Edward Mills Purcell [252] in
1946. In 1952, they both received the Nobel Prize in Physics for their discovery. The basic concept
behind NMR is that, after aligning a magnetic nucleus, e.g., hydrogen-1 using a high-strength
magnetic field, its response to a perturbation of the alignment, by an external electromagnetic field,
is characteristic. MRI is based on the response of the hydrogen-1 atoms, which represents 99.89%
of the naturally found hydrogen atoms and are a main component in biological systems. When
dealing with biological samples, the response of these nuclei (spins), vary across different types
of tissue, exhibiting different T1 and T2 relaxation times after the excitation induced through the
external electromagnetic field. In [253], Paul Lauterbur proposed a method based on gradients of
magnetic fields to build 2D MR images. Later, a famous technique for a faster acquisition, known
as the echo-planar technique, has been proposed [254]. Currently, MRI allows for obtaining non-
invasively 3D images at high spatial resolution. Current MRI scanners include various acquisition
protocols that address a wide range of problems in medicine, e.g., structural MRI, fMRI, DWI,
perfusion MRI and MR angiography.
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Principles

The nucleus of an atom consists of neutrons, with no charge, and protons, with positive charge
and rotates around itself. If the sum of protons and neutrons is odd, like in the case of hydrogen-1
isotope, the nucleus possesses an intrinsic magnetic angular moment or a spin, inducing a tiny mag-
netic field. Within an ensemble of spins, the resulting moment is zero because they are randomly
oriented. However, applying a powerful magnetic field B0 imposes a mechanical moment on each
spin that depends on the gyromagnetic ratio γ of the type of nucleus. For the hydrogen-1 isotope,
γ = 267.513× 106rad/sT . The mechanical moment induces precession, i.e. a motion of the spins
within a circular path about the field’s direction, at angular speed w0 determined by the Larmor’s
law

w0 = γ ‖B0‖ (2.18)

Under the effect of B0, the energy state of a spin is determined by two eigen-states based on their
alignment with B0, If the alignment of an individual spin is towards the direction of the field, it has
a parallel direction associated to a low energy level. Otherwise, it has a high energy state associated
with the anti-parallel direction. For an ensemble of spins, the difference between the parallel and
the anti-parallel precessions defines the amount of net magnetization M resulting as the sum of all
the elementary moments. Indeed, at ‖B0‖ = 1Tesla and temperature of 300Kelvin, about 3 spins
per million contribute to have a positive net magnetization. At equilibrium, the magnetization
M is aligned with B0, having the component Mz 6= 0 that is parallel to B0, and the component
Mxy = 0 that is perpendicular to it. Mz is referred to as the longitudinal magnetization, whereas
Mxy is called the transverse magnetization. The Equilibrium can be perturbed, or excited, by the
mean of another magnetic field B1, which can be of a lower strength than B0 but pulsates at a
radio frequency (RF) of w0 to cause the nuclear magnetic resonance. The duration of the RF pulse
determines the nautation angle, α, at which the net magnetization M is flipped (see Figure 2.18).
To apply a 90◦ RF, i.e., α = π/2, the duration of the pulse is computed as

τ90◦ = π

2γ ‖B1‖
(2.19)

After the 90◦ RF excitation, we will have Mz = 0 and Mxy 6= 0. The NMR analysis is based on
characterizing the restoration of the equilibrium, i.e., relaxation, after it has been perturbed. Two
types of relaxation occur in a counterintuitive fashion, and are described by exponential laws with
different time rates, T1 and T2 [251]. In the case of the 90◦ RF, the formulas of these relaxations
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can be described as

Mz = M0
[
1− e−t/T1

]
(2.20)

Mxy = M0 e
−t/T2 (2.21)

whereM0 is the magnitude of longitudinal magnetization before excitation. The longitudinal relax-
ation associated with T1, called spin-lattice relaxation, occurs due to the energy exchange between
spins with the surrounding molecules. On the other hand, the transverse relaxation, called spin-
spin relaxation, happens due local interactions between spins without necessarily involving energy
exchange. The RF signal received during the relaxation process from the fluctuating transverse
magnetization is called the free induction decay (FID). Indeed, this signal is the basis of all MRI
acquisitions. It is to be noted that quantifying the parameter T2 is not trivial. In a real case scenario,
an ensemble of spins could experience minor differences in the B0 strength, i.e., field inhomogene-
ity, due to the environment setup. This implies a variation in their precession rates which leads
into a loss of phase coherence, and hence more signal loss. Therefore, signal decay is normally
expressed by the time rate 1/T2* that is always larger than 1/T2 according to

1
T2*

= 1
T2

+ γ∆ ‖B0‖ (2.22)

where the second term in the right side indicates the contribution from the local variations/perturbations
in the static magnetic field. Characterizing these perturbations is the focus for many MRI modali-
ties, e.g., fMRI and DWI.

The envelope of the FID represents the loss of transversal magnetization based on the T2* constant.
In fact, the FID signal has not been fully destroyed; it has merely become disorganized because
the individual spins lost their phase coherence due to static field inhomogeneity. A technique
proposed by Hahn in [255] showed that applying another RF pulse of 180◦ after the FID refocuses
the dephased spins, and thus regenerates the symmetrically reversible portion of the FID signal (see
Figure 2.19). This rebirth of the FID signal is referred to as spin echo (SE). Since M is the sum
of spin moments, if spins rotate coherently (no phase offsets) at the same speed w0 about the z
axis, then the magnitude of the net magnetization is preserved. However, if the spins have variable
speeds around the ideal w0, a loss of phase coherence occurs leading to a destructive effect on the
net magnetization over time. By flipping the spins at 180◦ in the xy plane, the moments of the
spins that were faster than w0 will change location to be behind the moments of the spins that were
slower. Eventually, faster spins will catch up with the slower ones, causing a refocusing of the
spins, or reestablishing of the phase coherence.
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Figure 2.19 The spin echo technique proposed by Hahn [255]. (Reproduced from [256])

Figure 2.20 The pulsed gradient spin echo sequence proposed by Stejskal and Tanner in [257] to
quantify molecular diffusion using NMR. (Reproduced from [256])

Diffusion MRI

Water molecules in our tissues freely move and collide with each other according to Brownian
motion; this yields into a diffusion process observed at the macroscopic scale. In an isotropic
medium, the diffusion can be characterized by the coefficient D introduced by Einstein [258].
The diffusion coefficient D quantifies molecular mobility in an isotropic environment depending
on the molecular type and medium properties. However, in anisotropic tissue environment, water
molecules diffuse but with constraints imposed by surrounding structures, i.e., different amounts
of diffusion is experienced in various directions. Interestingly, NMR can be used to measure water
molecules diffusion in a given direction through the well-known Stejskal-Tanner imaging sequence
[257] depicted in Figure 2.20. The idea is to apply a magnetic gradient in a certain direction,
referred to as the diffusion gradient, before the 180◦ to force spins that are moving along that
direction to precess at different speeds about w0. After a short period of time, these spins will
accumulate phase incoherence based on the amount of displacement, thus reducing the total amount
of transverse magnetization that can be measured. A magnetic gradient, similar to the first one, is
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then applied but in the opposite direction to compensate for the signal loss imposed by stationary
spins with respect to the gradient direction. To this end, the signal loss will be accumulated by only
the moving spins that had a displacement component along the gradient direction. Signal decay in
presence of diffusion gradients can be expressed as

S(b) = S0 e
−bD (2.23)

Where S0 is the signal acquired without the diffusion gradient, and

b = γ2δ2g2(∆− δ

3) (2.24)

is the b-value determining the diffusion weighting. In the above formula, g is the strength of
diffusion gradients, δ and ∆ define the duration of and the separation between the two diffusion
gradients (see Figure 2.20).

One of the first clinical applications to leverage DWI was done in 1984 by Le Bihan et al. trying
to differentiate liver tumors from angiomas [259]. Initial experience with a 0.5T scanner was dis-
appointing due to slow acquisition and sensitivity to motion artifacts due to respiration. When the
echo-planar imaging (EPI) became available in the early 1990s, DWI started to show promising
applicability in the clinical domain [260]. Now, DWI is used in a wide variety of clinical applica-
tions, e.g., to study white matter disease [261] and brain development [262]. Moseley et al. [263]
observed that contrast on diffusion images changes according to the spatial direction of the dif-
fusion encoding gradients. In [264], this concept was used to color-map water diffusion in white
matter fibers. With the use of a tensor formalism, Basser et al. [265] developed an algorithm to
generate 3D representations of fibre bundles in the white matter paving the way for the modern
diffusion tensor imaging (DTI) and the field of tractography. DWI is also the modality of choice
to study brain ischemia and stroke [266]. The DWI technique was integrated in perfusion MRI
techniques, which is covered in the next section, to estimate several perfusion parameters, such as
cerebral blood volume (CBV), cerebral blood flow (CBF).

Perfusion MRI

The term perfusion refers to the biophysical phenomenon of blood circulation in the parenchyma.
The level of perfusion is associated with the metabolic demand of the parenchyma based on its
activity. The blood coming from an artery goes through the capillary bed, where the exchange of
oxygen for carbon dioxide happens. Red blood cells are transported through a venous blood vessel
until they reach the lungs, where the respiration process takes place. One of the main indicators
of perfusion in tissues is the blood flow. The level of blood flow in different types of tissues
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might change in the presence of pathology, and hence perfusion MRI could play a key role in
diagnosis and treatment. Many techniques for quantification of perfusion are built by means of
tracers, which are substances that are not metabolized by the tissue but can circulate with the blood
stream, and can be detected separately from the blood with NMR. Two main categories are the
dynamic susceptibility contrast MRI (DSC-MRI) and the dynamic contrast enhanced MRI (DCE-
MRI) [267]. The DSC-MRI technique exploits the decrease of T2/T2* signal intensity, i.e. related
to the transverse magnetization, in the presence of a paramagnetic contrast agent. The passage of
contrast agent through the tissue is monitored by a series of T2- or T2*-weighted MR images. The
susceptibility effect induced by the paramagnetic contrast agent results in a loss of intensity in the
time profile of the received signal. The principles of the indicator dilution theory is then used to
perform voxel-wise approximation of many perfusion parameters, such as CBV and CBF. On the
other hand, DCE-MRI is based on the acquisition of T1-weighted images under the administration
of extracellular contrast agents. The resulting intensity–time curve reflects a composite of tissue
perfusion, vessel permeability, and extravascular-extracellular space, and thus provides more tissue-
related physiological characteristics at the microvascular level [268].

Another technique used for mapping of perfusion parameters is the arterial spin labeling (ASL)
technique, which does not rely on an injected contrast agent. Instead, this technique infers perfusion
from the signal attenuation observed in an imaging slice caused by inflowing spins arriving from
outside the imaging slice. Many ASL schemes have been proposed [269]. The simplest ASL
scheme requires two image types, referred to as the label, or tag, and control images. The tag is
applied with an 180◦ pulse to alter the longitudinal magnetization of protons in the arterial blood
before it enters the imaging slice; after a delay time, an image from that slice is constructed. The
control image is acquired at the same delay time without tagging. It is clear that the only difference
between the control and label images is the inverted magnetization of the inflowing spins. Thus, a
simple subtraction of the label from the control image yields a perfusion-weighted image.

One diffusion-based technique that has demonstrated its applicability in the domain perfusion imag-
ine is the intravoxel incoherent motion (IVIM). This method was introduced by Le Bihan et al. in
[270] to quantitatively assess all the microscopic translational motions, e.g, microcirculation of
blood, that could contribute to the DWI signal. In his model, biological tissue contains two distinct
types of diffusion: tissue-related, i.e., true diffusion and capillary flow, i.e., perfusion. The water
molecules flowing in capillaries at the voxel level resembles a random walk motion with no net
coherent flow, and thus, is called pseudo-diffusion. The IVIM signal decay model can be seen as
an extension of the mono-exponential diffusion model into a bi-exponential model described as

S(b) = S0
[
f e−bD

∗ + (1− f) e−bD
]

(2.25)
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Figure 2.21 Quantifying the perfusion parameters related the IVIM scheme. (Reproduced from
[271])

whereD∗ stands for the pseudo-diffusion coefficient and f for the perfusion fraction, e.g., could be
the fraction of the microvascular component in a voxel if other sources of perfusion are neglected.
An example on the estimation of the perfusion parameters associated with the IVIM model is
depicted in Figure 2.21. A recent review about the in vivo measurement of perfusion using IVIM
is presented in [271].
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Abstract: Graph models of cerebral vasculature derived from 2-photon microscopy have been shown to

be relevant to study brain microphysiology. Automatic graphing of these microvessels remain problematic

due to the vascular network complexity and 2-photon sensitivity limitations with depth. In this work, we

propose a fully automatic processing pipeline to address this issue. The modeling scheme consists of a

fully-convolutional neural network to segment microvessels, a 3D surface model generator and a geometry

contraction algorithm to produce graphical models with a single connected component. Quantitative assess-

ment using NetMets metrics, at a tolerance of 60 µm, false negative and false positive geometric error rates

are 3.8% and 4.2%, respectively, whereas false negative and false positive topological error rates are 6.1%

and 4.5%, respectively. Our qualitative evaluation confirms the efficiency of our scheme in generating useful

and accurate graphical models.

Key words: Cerebral microvasculature, deep learning, convolutional neural networks, segmentation, graph,

two-photon microscopy.
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3.1 Introduction

With the emergence of two-photon microscopy (2PM), it has become feasible to obtain microscopic
measurements of the cerebral vascular geometry and, more recently, of associated oxygen distri-
butions [1, 2]. Such investigations of cerebral microvasculature is essential to understand brain
neurovascular coupling and neuro-metabolic activity [3]. It can also help in underpinning neuro-
logical pathologies associated with microvascular ischemic changes [4]. Furthermore, microscopic
studies can be scaled: quantitative analysis of cerebral microvasculature has recently been used to
establish a link between the microscopic vascular phenomena and the macroscopic (voxel size) ob-
servations found in the blood oxygenation level-dependent (BOLD) response [5, 6]. A key problem
encountered in the efforts of [5] and [6] to model cerebral microvasculature is the construction of
a sufficiently complete and detailed vascular network from noisy 2PM data. Physiological simula-
tions were based on vascular connectivity which in turn required extensive manual annotations to
reconstruct the microvascular topology of each dataset. This human interaction limits the applica-
bility of such simulation frameworks in further neurological studies that would require scaling to
large datasets.

Imaging brain tissue using 2PM is associated with high absorption and scattering of the emitted
photons with depth leading to image degradation and intensity changes as laser power and detector
gains are dynamically adjusted with depth. Also, scattering of excited photons by red blood cells
degrades their focus and leads to shadows underneath large pial vessels. These deteriorations in
the excited and emitted photons yields volumetric image intensity variations such that automatic
processing of two-photon microscopic data is tedious and even problematic [1]. Modeling of angio-
graphic information from 2PM includes segmentation of captured microvessels [7, 8], computation
of the microvasculature network shape and topology [9, 10] and anatomical labeling of the ex-
tracted components (e.g. arterioles, venules and capillaries). Until recently, some work has been
done to automate the processing of these microscopic datasets. However, the developed techniques
were not sufficient to avoid significant manual corrections. With the emergence of sophisticated
microvascular modeling, the design of a fully-automated scheme that is capable of generating topo-
logical models for vasculature in microscopy data is required to scale previous studies. This is the
goal of this research work.

Numerous schemes for vascular segmentation have been proposed in the literature exploiting vari-
ous image properties, such as the Hessian matrix [11, 12], moments of inertia [13], geometrical flux
flow [14] and image gradient flux [15]. These schemes also vary in their segmentation strategies,
e.g., vessel-like prior modeling [11, 12, 15], tracing [16], evolution of deformable models [14] and
deep learning [7, 17–19]. Applications to automatically segment microvessels captured with 2PM
are further limited due to the very large number of segments, uneven intensities associated with
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optical imaging and shadowing effects. Previous studies have heavily relied on manual interac-
tions to obtain satisfactory segmentations [5]. In recent works, models inspired by the success of
ConvNets have been proposed to provide very good vascular segmentation [7, 17–19] with some
applied to segmentation of microvessels in 2PM [7, 18]. In [7], the authors implemented a recur-
sive architecture composed of 3D convolution blocks. However, their shallow model provides poor
pixel-wise segmentation and is computationally demanding. In [18], the proposed scheme was not
targeted to label the vascular space, but rather to provide a skeleton-like version of it. Other recent
work, based on FC-ConvNets [20], performed end-to-end vessel segmentation using images from
volumetric magnetic resonance angiography [19]. However, the proposed scheme is patch-based,
which makes it hard to apply when there is significant variation in local features as observed in
2PM.

Automated representations of data topology has been of importance in many research disciplines:
aerial remote sensing [21, 22], neuroinformatics [23–26], and vascular imaging [9, 27, 28]. Some
techniques [24–26] target the reconstruction of tree-like structures, by first generating seed points
based on probabilistic measurements to then apply algorithms, such as Shortest Path Tree [24],
Minimum Spanning Tree (MST) [25] or kMST [24], to extract an optimal graph. On the other
hand, modeling loopy curvilinear structures has been investigated in [9, 21–23, 28]. The problem
we aim to solve in this paper resembles that investigated in the latter work since 2PM angiograms
capture capillaries connecting the arteries to the veins which together also form a topology that
is not tree-like. In [21], intensities in road images are clustered into superpixels. The shortest
path algorithm is then used to assign connections between superpixels based on road likelihood.
Optimal subsets of the connections are finally processed in a framework of conditional random
fields. In [22], a thinned version of segmented road maps is simplified and then passed through
a shortest path algorithm [22] to generate an undirected graph for road networks. The works in
[21, 22], are designed only for two dimensional natural images that have low scale variability
and semi-constant luminosity, and which have few disconnected components. In [27], automatic
topological annotation of macroscopic cerebral arteries forming the circle of Willis was achieved.
However, the task was performed with a predefined knowledge about the topological structure of
the annotated object. In [9, 23, 28] different schemes have been developed to extract graphs from
more complex three dimensional images (microscopy data) by optimizing a designed objective
function. These schemes first attempt at building an overcomplete weighted connections between
seed points, which are detected based on tabularity [9] or bifurcation [23, 28] measures. They then
search for optimal subgraph representations by solving a linear integer programming (LIP) problem
with specific constraints.

In [9, 23, 28], pre-processing steps to provide preliminary weighted graphs, forming the basis of a
LIP solution, are designed for less-noisy datasets containing tubular structures of high size unifor-
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Figure 3.1 A schematic diagram describing the proposed multi-stage graph extraction scheme.

mity. High noise level and variation in tubular sizes are exhibited across microscopic angiograms
acquired with two-photon fluorescence scanning. Moreover, despite the cautious problem formu-
lation in the mentioned works designed to approach a near-optimal solution, LIP is theoretically a
non-deterministic polynomial-time hard (NP-hard) problem. The hardness of the problem increases
for applications on scalable datasets, which results in more decision variables. Lastly, practical so-
lutions of LIP do not necessarily provide consistent output at different runs.

Our work below addresses the issue of extracting topological models from scalable and complex
datasets, i.e. 2PM angiograms. We propose a fully-automated solution that provides a unique
output for the same input data, in practical computational time. The proposed graph extraction
scheme consists of 3 main stages, described in Figure 3.1. First, we take advantage of a recent
development in deep learning semantic segmentation [20, 29] employing a fully convolution (FC)
network based on the DenseNet architecture to segment potential microvessels [29]. A new well-
labeled 2PM dataset is manually prepared to train our segmentation model. The volumetric output
of the segmentation model is processed by 3D morphological filters to omit small isolated segments
and improve the connectivity pattern of microvessels. Second, we propose a data processing flow to
generate a polygonal closed-manifold geometry for the microvasculature from its volumetric mask
obtained in the first stage. Finally, we exploite the 3D geometric skeletonization [30] to generate a
direct representation of the microvessel network.

The paper is organized as follows. In the Methods Sections 3.2-3.4, we describe each phase of the
graph extraction scheme: Section 3.2 details the proposed deep learning architecture for microves-
sels segmentation and explains the subsequent morphological refinements, Section 3.3 describes
the techniques used to generate and post-process the polygonal mesh to represent the shape of the
microvasculature, and Section 3.4 provides the formalism of the 3D skeletonization to produce a
final graph-based model of the microvascular network. The Results Section 3.5 demonstrates the
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validity of the proposed modeling scheme. A discussion and concluding remarks are provided in
Section 3.6.

3.2 Deep Segmentation of Microvessels

In this section, various versions of the recently developed FC-DenseNets [29] are employed to
address the problem of microvessel segmentation in large-scale 2PM images. Our use of the FC-
DenseNets architectures is inspired by their success in achieving the state-of-the-art performance
in semantic segmentation in natural images. We prove that applying this data-driven solution to
segment microvessels in 2PM volumes can induce a substantially improved performance compared
to that of other hand-crafted schemes. Below we discuss the architectures of the neural networks
that were devised, data preparation and training procedure. Let I : P → R | P ⊂ R3 be the 3D
image representing the observed microscopic measurements. The aim is to create a binary mask
Imask : P → {1, 0} | Imask(p) = 1 ∀p ∈ O and Imask(p) = 0 otherwise, where O ⊂ R3 is the
object that represents the vasculature.

3.2.1 Networks Architecture

Generally, in a neural network with layers ln, n = 0, 1, 2, ...,N, each layer ln performs a non-linear
transformation Hn(·) that might include several operations, e.g. batch normalization, rectified lin-
ear units (ReLUs), convolutions or pooling. Let xn denote the output of the layer ln. In DenseNets
[31], consisting of building units called dense blocks, the output xn of the layer ln is connected
to its previous layers contained in the same dense block [31] by cascading operations. The layer
transition is therefore described by the following formula:

xn = Hn([xn−m−1, ..., xn−2, xn−1]) (3.1)

where [·] operation denotes the concatenation process and m denotes the number subsequent layers
contained in a dense block.

DenseNets are extended to a fully convolution scheme [29], analogous to that proposed in [20],
comprising down- and up-sampling paths. The down-sampling pattern is composed of dense blocks
and transition-down (T-down) layers, where T-down layers consist of three operations: batch nor-
malization, convolution and max-pooling. Alongside the down-sampling path, the up-sampling
path is inserted to recover the input spatial resolution. It is composed of dense blocks, transition-up
(T-up) layers and skip connections where T-up layers are built of transposed convolution opera-
tions. To avoid the increase in the number of feature-maps in the up-sampling path, the input of
dense blocks in this path is not concatenated with its output. Henceforth, we refer to dense blocks
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in the down-sampling path as type A, and that of the up-sampling path as type B. As in typical fully
convolution networks [20], skip connections – from the down-sampling path to the up-sampling
one – have been introduced to allow the network to compensate for the loss of information due to
the pooling operations in the T-down layers.

In this work, to perform the segmentation task, we investigate three different architectures of FC-
DenseNets varying in their deepness, namely, Net71, Net97 and Net127 . Our architectures consist
of 71, 97 and 127 convolution layers, respectively, with an input size of 256x256x1 for each.
The detailed specifications for implemented convolution and pooling layers, with their number of
feature-maps, in each architecture are listed in Table 3.1. The down-sampling and up-sampling
paths have 36 convolution layers each, whereas the networks bottlenecks have 11, 13 and 15,
respectively. The down-sampling path is composed of dense blocks type A, that have input-output
concatenation. This concatenation is omitted in the dense blocks type B forming the up-sampling
path. Each T-down block is composed of one convolution layer followed by dropout [32] with
p =0.2 and non-overlapping max-pooling. Each T-up block is a transposed-convolution layer with
stride =2. The growth rate of feature maps in each dense block is set to k =18 and a dropout of
p =0.2 is applied in all contained layers. In each architecture, one convolution layer is applied on
the input and another is placed before the last (softmax) layer that provides the bi-class predictions.

3.2.2 Data Collection

To train our segmentation networks, manual annotations were performed to create a ground truth
labeling of mice cerebral microvessels captured using our custom-built two-photon laser scanning
microscope. To image microvessels, 200 µL 2MDa dextran-FITC (50 mg/ml in saline, Sigma)
was injected through the tail vein of mice. Due to the injected fluorescent dye, the plasma ap-
peared bright in the images while red blood cells (RBCs) appeared as dark shadows. Acquisition
was performed using 820 nm, 80 MHz, 150 fs pulses from MaiTai-BB laser oscillator (Newport
corporation, USA) through an electro-optic modulator (ConOptics, USA) to adjust the gain. The
optical beam was scanned in the x-y plane by galvanometric mirrors (Thorlabs, USA). Reflected
light was collected by a 20X objective (Olympus XLUMPLFLN-W, NA=1). Fluorescent photons
were separated by dichroic mirrors, passed through a filter centered at 520 nm and relayed to a
photomultiplier tube (PMT, R3896, Hamamatsu Photonics, Japan) for detection of the dextran-
FITC. Manual annotations from the 3D microscopic measurements were done slice-by-slice. The
annotation process was carried out with the assistance of MayaVi visualization tool to consider the
final 3D structure of the microvessel network. Eight angiograms were labeled to produce a training
dataset of images T =

{
(I(q), I(q)

mask) | q ∈ Q = [1, 2, 3, ..., 396]
}

, each of size 256× 256. Next we
omit the superscript q for notational simplicity.
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3.2.3 Networks Objective & Training

Let px, py, pz ∈ R define the dimensions of one of our networks output F (I; θF ), where θF is vector
containing the model parameters. The model was trained to minimize the following cross-entropy
loss function [33]:

Ψ(F ) = −[Σpx,pyImask log(F (I; θF ) | pz = 0)

+Σpx,py(1− Imask) log(F (I; θF ) | pz = 1)].
(3.2)

The stochastic RMSprop gradient descend algorithm was employed to solve our model parameters
based on backpropagation [33]. Given an initial learning rate ρ and a decay parameter γ, model
parameters were updated as follows:

θF(t+1) = θF(t) −
ρ√
ζ(t)
∇θFΨ(F (I; θF )), where (3.3)

ζ(t) = (1− γ)[∇θFΨ(F (I; θF ))]2 + γζ(t−1).

Algorithm 1 Training of the Segmentation Model with Stochastic Gradient Descent
Require: I, Weights Initialization

for maximum number of epochs do
if patience period<λ then

for number of mini-batches do
Recall mini-batch [33]: b = {(I, Imask)} ⊂ T
Compute F(I; θF )
Update θF as described in (3.3)

end for
else

Exit training
end if

end for

The training procedure is described in Algorithm 1. In each training iteration, a set of samples from
our dataset ("mini-batch") was processed by the network models with their current parameters.
Then, the gradient of the loss function Ψ was computed with respect to θF and parameters were
updated by stepping in the descending direction of the gradient as stated in (3.3). In the algorithm,
the training process was early-stopped if no minimization of the loss function Ψ was achieved after
a certain number of consecutive training epochs, denoted as the patience period λ.
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3.2.4 Morphological Post-Processing

The trained segmentation models can accept a 2D input I of an arbitrary size and produce an output
F (I) of the same size. To segment microvessels in a 3D two-photon angiogram and obtain Imask,
we first stacked the outputs of the trained neural networks applied to each slice in the z-direction.
Morphological 3D closing and opening filtering was then applied on the resultant image stack with
a spherical shape filter of radius=8 to refine the stacked segmentation outputs. It has been found
that by applying this 3D morphological processing to obtain Imask, a reduction in false positive
structures emerging after the 2D segmentation is achieved.

3.3 Surface Modeling

This section describes the process used to construct a triangulated meshM = (V,C) representing
the shape of microvasculature, where V =

[
vT

1 ,vT
2 , ...,vT

d

]T
are the vertices positions, v ∈ R3,

and C = {ci}i=1,...,l, c ∈ v × v, are the edges connecting the vertices of the mesh. The extracted
mesh should form a 2D manifold to allow successful geometrical contraction and convergence
towards a curve skeleton formulation. Many computational paradigms have been proposed to pro-
vide isosurface representations of the binary output Imask obtained in the previous section. Exam-
ples are those based on the concepts of Marching Cubes (MC) [34–36], dual contouring [37] and
advancing-front construction [38]. The MC algorithm [34] is arguably the most widely used due to
its robustness and speed, however it has an ambiguity problem in its classical formulation due to
lookup table redundancy. MC with asymptotic decider [35] was proposed to give better, topologi-
cally consistent, surface models. In [36], an interior ambiguity test was added to the scheme of [35]
to achieve even higher topological correctness. A modified version of [36], introduced by Liener
et. al.[39], was utilized to generate an initial triangulated mesh model for the microvessels surface.

The output from the MC algorithm is a polygonal mesh with a high level of triangulation redun-
dancy. The algorithm produces a large number of small coplanar triangles resulting in a big size
model. Direct processing of this raw 3D model to generate a curve skeleton abstraction would be
computationally expensive. Also, the MC process introduces excessive roughness with stair-step
effects that need to be removed. We applied a polygonal simplification procedure to circumvent
these concerns. Many mesh simplification approaches have been developed in the literature [40–
44] with varied characteristics: topological invariance, view-dependency – based on objects loca-
tion, illumination and motion in the scene – and the polygonal removal mechanism. The vertex
clustering technique in [40] works by superimposing a grid with a pre-determined resolution to the
cells resulting after clustering the original meshes vertices. The resampling technique [41] is based
on performing low-pass filtering of the original volumetric data. These approaches are topology in-
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sensitive and provide a drastic reduction in the number of elements of the original geometry. Other
simplification approaches [42, 43] have been developed to ensure appearance/rendering quality in
complex scenes that hinder the rendering process by assuming different levels of detail for the dis-
covered objects. The vertex merging technique proposed by Garland et al. [44] gives an accurate
geometry for the simplified model and works on non-manifold inputs that could result from the MC
process [39]. We used these features of the vertex merging technique [45] to simplify our surface
model.

The process undertaken to create a surface model is not guaranteed to be a manifold and even
less a closed manifold [46]. Further processing was used to eliminate possible non-manifold local
defects such as self-intersections based on the work done in [47]. Lastly, the hole filling algorithm
illustrated in [48] was used to ensure a watertight surface model that can be further used in the next
stage of our modeling pipeline.

3.4 Graph Extraction

Various definitions have been suggested as a basis to compute formal skeletons (also called medial
axes) [49]. These definitions emerged from conceptualizing the skeleton based on maximally-
inscribed balls, Grassfire Analogy, Maxwell Set or Symmetry Set [50]. Let S = dO be the 2D-
manifold surface of the 3D-manifold volume O of interest. The idea of maximally-inscribed balls
defines the skeleton ofO to be the locus of the centers of maximally inscribed balls inO. Extension
to the Medial Axis transform is done by associating the radii of these balls to their center locations.
The Grassfire analogy defines the skeleton as the locations inside O where quenching happens if
we let the surface S propagate isotropically toward the interior of O. The Maxwell Set definition
captures the curve skeleton as an extension of the Voronoi diagram by encoding the loci that are
equidistant from at least two points on the surface S. In the Symmetry Set definition, a curve
skeleton is regarded as the infinitesimal symmetry axes generated by first linking each pair-point on
the surface to calculate their symmetry centers and then combine these centers to form a curvilinear
infinitesimal axis. In all definitions, skeletonization depends only on the shape of O rather than its
position or size in its embedding space.

In this study, the target is to generate a graphed form of 1D curve skeletons that capture the topol-
ogy of the microvasculature. In general, the medial axes for 3D objects are 2D [49]. Therefore, two
main solutions have been proposed, following the procedures to either simplify the 2D medial axes
[51, 52] or to calculate the curve skeletons directly from 3D objects [30, 53, 54]. The techniques in
[51, 52] are computationally expensive and very dependent on the quality of the associated surface
skeletonization. From a geometric perspective, the techniques that are based on shape contraction
[30, 54] are proven to be the most successful in extracting accurate and yet smooth curve skeletons
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from a variety of different shapes. Moreover, such techniques provide skeletonization embedded
in the geometrical space, and thus it coincides with our goal in generating a graph-based represen-
tation of microvessel networks. Therefore, we adapt the work proposed in [30] to perform graph
extraction in our last stage of the designed pipeline.

3.4.1 Geometric Contraction

Based on the triangulated mesh M = (V,C) generated in the previous section, our goal is to
extract a geometric graph G with node positions N =

[
nT

1 ,nT
2 , ...,nT

m

]T
, n ∈ R3, and edges

(connections) E = {ei}i=1,...,h, e ∈ n × n. We follow the geometrical contraction technique in
[30] to achieve our goal by iteratively moving the vertices ofM along the corresponding curvature
normal directions. At iteration t, we minimize the constrained energy function:

E = ‖WSLVt+1 ‖2 +
d∑
i=1

W2
V ,i ‖ vt+1

i − vti ‖2 +

d∑
i=1

W2
M ,i ‖ vt+1

i − ξ(vi) ‖2 (3.4)

where WS , WV and WM are diagonal matrices of size d × d that impose constraints on the
geometrical contraction process, such that for the ith diagonal element: WS ,i = wS , WV ,i = wV

and WM ,i = wM . wS , wV and wM serve as tuning parameters to control the smoothness, velocity
and mediality of the contraction process at each iteration. In (3.4), the function ξ(·) maps the vertex
vi to the corresponding Voronoi pole calculated before the iteration process [30], and L is the d×d
curvature-flow Laplace operator with its elements obtained as:

Lij =


wij = cot(αij) + cot(βij) i, j ∈ C

−∑k
(i,k)∈C wi,k i = j

0 otherwise,

(3.5)

where αij and βij are the angles opposite to the edge (i, j) in the two triangles which have this edge
in common [55].
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3.4.2 Geometric Decimation

At each iteration step in the geometric contraction process, higher levels of local anisotropy is
introduced in the processed mesh. We follow the procedure described in [54] to reduce the mesh at
each contraction step maintaining a water-tight manifold structure. After completing the iteration
process, the degenerated surface mesh is reduced to form a graph model by applying a series of
shortest edge-collapses [54] until all mesh faces have been removed. Lastly, to ensure that the
output of our modeling framework is valid for running physiological simulations, we extract the
largest single connected component (LSCC) of the resulting graph to be our final graphical model.

3.5 Validation Experiments

In this section, we carry out various experimentations to evaluate the designed pipeline in producing
graph-based representation for microvessels captured with 2PM. First, we describe the parametric
settings used to train the segmentation model, extract 3D surface models and generate final geo-
metric graphs. We illustrate the manual procedure followed to prepare a graph-based ground truth
baseline. Next, we discuss the validation mechanism and the metrics used to study the performance
of the designed pipeline. Lastly, based on these metrics, we present a comprehensive evaluation of
our proposed modeling scheme.

3.5.1 Baseline, Parameters and Implementation

Here we discuss the issue of finding a baseline performance for the purpose of validation and the
parametric setup of the model used to generate results. Also we describe implementation details.

Baseline

To study the segmentation performance of the our deep segmentation models before and after ap-
plying the 3D morphological processing (3DM). Segmentation results were compared with that of
manual segmentation (gold-standard), optimally oriented flux method [15] (OOF) and the hessian-
based method in [12], which are state-of-the techniques used in 3D vascular segmentation.

To our knowledge, this work is the first fully automatic scheme designed to extract graph-based
representation from sizable 3D 2PM datasets. Other baseline methods in the literature applica-
ble to similar datasets rely on human interaction. Hence, in order to validate the correctness of
our graphing scheme, we compare our results with manually prepared graphs recently utilized in
[5, 56]. To create the manually-graphed datasets in [5, 56], manual annotations were performed
on contrast-enhanced structural images of the cortical vasculature which were then skeletonized
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using erosion. Ensuing graphs were hand-corrected and verified by visual inspection to generate
a single connected component. Datasets of six graphs (from six different mice) were prepared
from angiograms with 1.2 × 1.2 × 2.0 µm voxel sizes acquired with a 20X Olympus objective
(NA= 0.95). To illustrate our choice of the surface modeling and mesh contraction processes in
the proposed pipeline, we compare our graph outputs with that resulting from applying the widely
used 3D Thinning method [57] on the same binary masks.

Training the Segmentation Model

Implementation of the deep-learning portion of the pipeline was done in Python under the Theano
framework. We ran the experiments on two 12GB NVIDIA TITAN X GPUs. The model was ini-
tialized using the HeUniform method as in [29]. The training was performed by setting ρ = 10−3

and γ = 0.995 in (3.3) for all epochs of training. To monitor the training process, we randomly
selected 25% of the training data as a validation set. The selection of the validation set was per-
formed by randomly picking several 2D slices after grouping all the slices forming the 2PM stacks
in one pile. The validation set was used to early-stop the training based on the acquired accuracy,
with a patience of 25 epochs. The model was regularized with a weight decay of 10−5.

3D Modeling and Contraction Process

We have followed a brute-force selection of parameters used in the processes of creating 3D surface
and carrying out geometric contraction, based on the quality of the generated graphs. To reduce
the 3D model using the vertex merging technique in [44], we set the target number of faces in the
reduced model to be half of that of the original one. Our code for generating and processing the 3D
surface model was based on the VTK Python library. The parameters wS , wV and wM were set to
1, 20 and 35, with εvol = 10−6. We built Python bindings using SWIG to call the C++ API, CGAL,
containing the implementation of the geometric contraction algorithm.

3.5.2 Metrics

To quantify the performance of the various segmentation methods, the metrics of sensitivity =
TN/(TN + FP ), specificity= TP/(TP + FN), accuracy = (TP + TN)/(FP + FN) and
Intersection Over Union (IoU) = TP/(TP+FP+FN), were used. The terms TP and FP denote
respectively the positive predictions (vessel) with true and false ground truth, whereas TN and FN
denote respectively the negative predictions (not vessel) with true and false ground truth. It is to be
noted that to generate binary masks using the methods in [15] and [12], empirical thresholding is
performed to achieve the highest IOU value.
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For the quantification and visualization of errors incurred by our graphing scheme, we used the
NetMets metrics proposed in [58]: four measures were computed to compare both the geometry and
connectivity between two interconnected graphs. Namely, the Graph False Negative/Positive Rate
metrics GFNR and GFPR reflected the false negative rate and the false positive rate, respectively, in
the geometry of the extracted graph while the metrics CFNR and CFPR provided measures about
the false negative rate and the false positive rate in the topology of the graph.

Let us define Gr and Ge as the ground truth and experimentally generated graphs. In the validation
process using NetMets, we first performed a two-way matching between the junction nodes in both
graphs. These nodes, denoted as Jr and Je for Gr and Ge, respectively, were those representing
bifurcations in the vascular network or terminals of vessel pathways. Graph paths between junction
nodes were referred to as graph branches B. Junction node mappings Jr to Je were denoted as
Jr → Je, whereas Je → Jr denoted the opposite matching processes. In the matching process, we
assigned each junction node in the first graph with one in the second graph based on the shortest
Euclidean distance measured. GFNR was computed as 1/nJr

∑
i∈Jr 1 − eD(i,Ge)2/2δ2 and that of

GFPR as 1/nJe
∑
i∈Jr 1 − eD(i,Gr)2/2δ2 , where nJr and nJe are the number of junction nodes in Gr

and Ge, respectively, D(i,G) is the Euclidean distance between a node i and its matched node in G,
and δ is a sensitivity parameter.

Now, to compute CFNR and CFPR as described in [58], core graphs Ǧr and Ǧe were extracted from
Gr and Ge. Core graphs were obtained by first reducing both graphs, Gr and Ge, by eliminating
each junction node and its immediate branches if the distance D from the corresponding nodes was
greater than δ. Then, in the reduced graphs of Gr and Ge, we further eliminated junction nodes, and
their corresponding branches, that did not form the same matching pair in the two-way matching
process. Lastly, we compared the reduced Ǧr and Ǧe to calculate the following: BTP = number of
graph branches in Ǧr or Ǧe; BFN = number of graph branches in Gr but not in Ǧr; BFP = number
of graph branches in Ge but not in Ǧe. CFNR and CFPR were calculated as BFN/(BFN + BTP ),
and BFP/(BFP + BTP ), respectively.

3.5.3 Results

Microvessels Segmentation

In this section, we study the performances of the various segmentation schemes used to generate
microvessels binary masks. Table 3.2 provides the averaged quantitative results obtained after
applying the various segmentation schemes on the 2PM slices in our validation set. From the
table, despite the slight degradation in sensitivity scores, one can notice that carrying out the 3DM
post-processing on the FC-DenseNets outputs substantially improves the measures of accuracy,
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specificity and IOU. The table obviously shows that the method in [15] is not a suitable choice
for extracting microvessel maps. The highest sensitivity value of 98.9% ± 0.01 was achieved by
the Net71 architecture but at the expense of very poor specificity. The method in [12] achieved
the highest specificity value of 57.33% ± 2.20. However, it produces vessel masks with poor IOU
scores. The table proves that the Net97+3DM architecture achieves the best accuracy and IOU
values, 92.3% ± 0.1 and 41.1% ± 0.4, respectively, with comparable values of sensitivity and
specificity corresponding to the schemes of Net97 and that in [12], respectively.

To qualitatively assess the segmentation performances, Fig. 3.2 depicts two raw 2PM slices, ob-
tained from our validation set, with their binary masks counterparts generated by applying the
various segmentation schemes. It is clearly seen that the scheme in [15] and those of Net71,
Net71+3DM, Net127 and Net127+3DM, produce microvessel mappings that suffer from over-
segmentation. On the other hand, the scheme in [12] is highly specific in a way that generates
outputs with large portion of false negatives, thus missing important vesselness structures. This
observation coincides the low IOU measure of this scheme reported in Table 3.2. From the fig-
ure, one can see that the schemes of Net97, Net97+3DM exhibit better segmentation results with
superiority of the Net97+3DM scheme in providing less over-segmentation. Hence, based on the
previous experimental demonstration, in our study, we choose the scheme Net97+3DM to generate
binary maps needed for extracting graph-based models of microvessels.
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(a,1) (b,1) (c,1) (d,1)

(e,1) (f,1) (g,1) (h,1)

(i,1) (j,1) (a,2) (b,2)

(c,2) (d,2) (e,2) (f,2)

(g,2) (h,2) (i,2) (j,2)

Figure 3.2 Examples of microvessel masks obtained after applying the various segmentation
schemes: (a,1-2) Raw 2PM, (b,1-2) true label, (c,1-2) OOF method [15], (d,1-2) Hessian-based
method [12], (e,1-2) Net71, (f,1-2) net71+3DM , (g,1-2) Net97, (h,1-2) Net97+3DM, (i,1-2)
Net127 and (j,1-2) Net127+3DM.
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Table 3.1 The various FC-DenseNet architectures tested to perform the segmentation task. At each
component, we report the number of convolution layers followed by the number of feature maps.

Architecture
Component Net71 Net97 Net127

Input -; 1 -; 1 -; 1
3X3 Convolution 1; 48 1; 48 1; 48

Dense block type A 4; 120 4; 120 4; 120
T-down layer 1; 120 1; 120 1; 120

Dense block type A 5; 210 5; 210 5; 210
T-down layer 1; 210 1; 210 1; 210

Dense block type A 7; 336 7; 336 7; 336
T-down layer 1; 336 1; 336 1; 336

Dense block type A 9; 498 9; 498 9; 498
T-down layer 1; 498 1; 498 1; 498

Dense block type A - 11; 696 11; 696
T-down layer - 1; 696 1; 696

Dense block type A - - 13; 930
T-down layer - - 1; 930
Bottleneck 11; 198 13; 234 15; 270

T-up layer + concatenation - - 1; 1200
Dense block type B - - 13; 234

T-up layer + concatenation - 1; 930 1; 930
Dense block type B - 11; 198 11; 198

T-up layer + concatenation 1; 696 1; 696 1; 696
Dense block type B 9; 162 9; 162 9; 162

T-up layer + concatenation 1; 498 1; 498 1; 498
Dense block type B 7; 126 7; 126 7; 126

T-up layer + concatenation 1; 336 1; 336 1; 336
Dense block type B 5; 90 5; 90 5; 90

T-up layer + concatenation 1; 210 1; 210 1; 210
Dense block type B 4; 72 4; 72 4; 72
1X1 Convolution 1; 2 1; 2 1; 2

Softmax -; 2 -; 2 -; 2

Convolution layer Transition-down layer
(T-down)

Transition-up layer (T-up)

Batch Normalization Batch Normalization
3X3 Transposed

convolution,
stride = 2

ReLu ReLu
3X3 Convolution 1X1 Convolution
Dropout p = 0.2 Dropout p = 0.2

2X2 Max-pooling
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Table 3.2 Quantitative performance evaluation of the various segmentation schemes.

Method in [15] Method in [12] Net71 Net71+3DM Net97 Net97+3DM Net127 Net127+3DM

Accuracy(%) 85.3 ± 0.6 92.1 ± 0.1 82.7 ± 0.3 88.3 ± 0.2 90.3 ± 0.1 92.3 ± 0.1 88.8 ± 0.3 91.1 ± 0.1
Sensitivity(%) 95.1 ± 0.1 94.64 ± 0.1 98.9 ± 0.01 97.1 ± 0.06 97.7 ± 0.1 96.74 ± 0.1 98.7 ± 0.1 97.17 ± 0.2
Specificity(%) 31.0 ± 2.3 57.33 ± 2.20 31.2 ± 0.9 36.2 ± 1.3 51.3 ± 1.9 56.5 ± 2.1 46.8 ± 1.6 50.8 ± 1.8

IOU(%) 28.9 ± 0.4 34.4 ± 0.4 30.9 ± 0.4 34.2 ± 0.3 40.2 ± 0.4 41.1 ± 0.4 38.9 ± 0.4 40.2 ± 0.4
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

(d) Dataset 4 (e) Dataset 5 (f) Dataset 6

Figure 3.3 Maximum intensity projections of raw angiograms used to validate the proposed graph
extraction scheme.
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Figure 3.6 Experimental probability distributions of mapping distances D for the two-way match-
ings between the ground-truth and experimental graphs.
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Figure 3.4 (Continued in the next page).
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Figure 3.5 Visual assessment of our graph modeling scheme applied on the six raw 2PM datasets.
For all datasets (1-6), manually processed graphs (ground-truth) are depicted in the left column
(a-f,1); the graphs generated based on 3D Thinning are depicted in the middle column (a-f,2); the
graphs generated using our scheme are depicted in the right column.
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Table 3.3 Number of nodes in the ground-truth graphs and in those generated by the 3D Thinning method and the proposed scheme. The
generated graphs are obtained after extracting the LSCC from their original version.

Ratio of LSCC to origional models Number of all nodes Number of junction nodes

Ge (3D thining) Ge (Proposed) Gr Ge (3D thining) Ge (Proposed) Gr Ge (3D thining) Ge (Proposed)

Dataset 1 95.5% 99.5% 18624 1670 15902 1496 1371 1289
Dataset 2 86.6% 99.0% 16122 3292 17524 827 1890 906
Dataset 3 91.6% 99.0% 12301 4989 16843 782 2638 876
Dataset 4 87.4% 98.5% 9678 3239 10127 640 1668 718
Dataset 5 89.3% 99.0% 27745 6619 23307 1843 3615 1783
Dataset 6 87.2% 97.5% 13723 4527 11871 841 2377 894
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Table 3.4 Computational times (in seconds) required by each processing stage in our modeling
pipeline.

Dataset
1 2 3 4 5 6

Segmentation/
morphology

1053/
37

1183/
43

1059/
42

1111/
44

1262/
43

1113/
40

Surface
Modeling

177 206 204 250 291 195

Graph Ex-
traction

1981 2463 2210 1524 2930 1860

(a)

(b)

(b)

Figure 3.7 Magnified perspective view of Fig. 3.5 (a,1): (a), Fig. 3.5 (a,2): (b) and Fig. 3.5 (a,3):
(c) with enlarged and recolored graph nodes.
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Figure 3.8 (Continued in the next page).

Graph Modeling

The six ground-truth graph datasets were carefully annotated, ensuring a fully interconnected topol-
ogy for the captured microvessel networks. Each graph provides a model for descending arterioles,
capillary bed, and then ascending venules. These graphical models have been employed in [5] to
simulate oxygen-dependent quantities across the network, and then generate synthetic MRI signals
based on these measurements. Fig. 3.3 shows the six maximum intensity projections of the raw
cerebral microvascular spaces captured with 2PM, with their corresponding ground truth and exper-
imental graphical modelings depicted in Fig. 3.5. The reader is also referred to Supplemental Fig.
1 in the supplementary material for assessing the proposed graph models based on visualizing only
thin slices (10-30 µm thick) of the stack in Fig. 1 (a,1) at various depth levels. Empirical visual
inspection shows that the outputs of our graph modeling scheme are significantly superior to that
of the 3D Thinning method and are globally comparable to the ground-truth annotations. However,



71

10 20 30 40 50 60
δ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CF
NR

Dataset1
Dataset2
Dataset3
Dataset4
Dataset5
Dataset6

(c,1)

10 20 30 40 50 60
δ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CF
NR

Dataset1
Dataset2
Dataset3
Dataset4
Dataset5
Dataset6

(c,2)

10 20 30 40 50 60
δ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CF
PR

Dataset1
Dataset2
Dataset3
Dataset4
Dataset5
Dataset6

(d,1)

10 20 30 40 50 60
δ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CF
PR

Dataset1
Dataset2
Dataset3
Dataset4
Dataset5
Dataset6

(d,2)

Figure 3.9 Quantitative assessment of the 3D Thinning method (a-d, 1) and the proposed graphing
scheme (a-d,2), as a function of the δ parameter based on (a,1-2) GFNR, (b,1-2) GFPR, (c,1-2)
CFNR and (d,1-2) CFPR metrics. Dashed lines quantify the performance excluding the graphs
boundary parts from the assessment process.

some defects are present for some boundary parts of the vascular networks, especially the capillary
bed where one can observe that microvessel terminals are present for the experimentally generated
models but not in the manually prepared ones. It is to be noted that the experimental models in Fig.
3.5 are fully interconnected graphs obtained after attaining the LSCC from the raw graph outputs.
The ratio of these LSCCs to the original models generated from the first-sixth 2PM datasets, re-
spectively, are listed in Table 3.3. The table demonstrate that the proposed scheme generates less
disconnected components compared to that produced by the 3D Thinning method.

As previously mentioned, in order to quantify the performance of the modeling schemes, we per-
formed a two-way matching, based on the shortest Euclidean distance, between junction nodes in
the ground truth graphs and those in the generated ones. Fig. 3.6 plots the estimated probability
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Figure 3.10 Visual illustration of mismodeled edges (blue-colored) for all datasets: false negative
edges in (a-f,1); false positive edges in (a-f,2).
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Figure 3.11 Propagating through the various microvessel networks for five consecutive branching
levels beginning at the start of a penetrating arteriole (represented by white spheres), ground-truth
(a-f,1) and automatically modeled (a-f,2). Each branching level is assigned a different colour.

distribution, using a Gaussian kernel, of the mapping distances D obtained after performing the
matching process. It is seen that, in the case of the proposed graph modeling, the Je → Jr match-
ing process produced D mappings similar to that resulting from the Je → Jr process. This implies
that the localization of junction nodes coincides in both manual and experimental modelings, thus
resulting a negligible difference between the statistics obtained from the two matching processes.
On the other hand, the figure shows a big statistical difference between Je → Jr and Je → Jr
calculated based on the graphs extracted by the 3D Thinning method.

Table 3.3 shows the number of nodes in the graphs generated manually, by the 3D Thinning method
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and by our automatic processing. It is seen from the table that, in all cases, the 3D Thinning method
produces sparser models having dramatically fewer nodes than that in the ground truth ones. Our
modeling scheme produces fewer nodes in some cases (datasets 1, 5 and 6), whereas the oppo-
site was observed in the other cases. To interpret this, Fig. 3.7 depicts magnified versions of the
dataset 1 graph. It is clearly seen that manually processed graphs are composed of nodes with
almost uniform Euclidean distances between all nodes and their neighboring ones. This is due to
regraphing procedures [56]. In contrast, our automatic graphing results in non-regularized place-
ment of nodes due to the dependency of the geometric contraction process on the complexity and
tortuosity of the surface modeling for microvessels. However, the figure explains the superiority of
the proposed modeling scheme compared to the 3D Thinning method in extracting more accurate
graphs. Also from Table 3.3, one can note a variation in the number of junction nodes observed
in the ground-truth and the experimental models generated by the proposed scheme. Hence, our
modeling produces either denser or sparser interconnections than that of the manually processed
graphs when applied to different raw 2PM angiographies.

Fig. 3.9 plots the measurements of the GFNR, GFPR, CFNR, CFPR metrics obtained for the
various datasets at different tolerance values δ. It is noted that these measurements are bounded
between zero and one; the lower the value the better the performance. The figure illustrates that in
all cases, the proposed modeling achieves lower geometrical and topological error rates than that
of the 3D Thinning method. At the highest tolerance, δ = 60, our scheme achieves an average of
3.8±2.1% and 4.2±2.6% of false negative and false positive error rates, respectively, in modeling
the geometry of the vascular networks. These error rates decrease to 3.5 ± 2.6% and 3.0 ± 1.9%
respectively, when excluding boundary microvessels (≈ 25 % of the angiograms) from our assess-
ment. At the same value of δ, our scheme is able to capture the topology of the vascular networks
with an average false negative and false positive error rates of 6.1± 2.6% and 4.5± 2.9%, respec-
tively. When excluding the boundary microvessels, the average error rates decrease to 4.4 ± 2.8%
and 1.5 ± 0.9%, respectively. It is to be noted the 3D Thinning method achieves even higher false
negative rates when excluding the boundary microvessles, thus proving that this method is poor in
capturing the geometrical and topological details from the segmented angiograms. We provide a
visual illustration in Fig. 3.10 to interpret the improved performance when excluding the boundary
vascular structures in the experimental graphs generated by the proposed scheme. The figure shows
the false positive and false negative edges obtained at δ = 60 to compute the corresponding CFNR,
CFPR values. One can inspect that a large portion of the mismodeled edges are those located at the
boundary of the angiograms. As a result, a better performance of our modeling is achieved at the
center of the angiograms, due to 2-photon sensitivity limitations. One goal of our proposed scheme
is to generate topological models of microvessel networks that can be used for calculating phys-
iological quantities. Towards that goal, we study the propagation of microvessels in the modeled
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networks. Fig. 3.11 depicts examples of ground-truth and experimental sub-graphs generated by
propagating through the microvessel networks, beginning with nodes at the start pf a penetrating
arteriole and ending with bifurcation nodes after 5 levels of consecutive branching. Despite some
few mismodeled network branches, propagation through our experimental networks is very similar
to that achieved in ground-truth ones.

Computational Complexity

To provide a comprehensive performance evaluation of the proposed graphing scheme, analysis of
its complexity in terms of computational time is necessary. We have run the experiments on a 3.0
GHz Rayzen AMD processor (8 cores, 16 threads in each) with 64 GB of RAM. Segmentation
of microvessels has been carried out on a 12GB NVIDIA TITAN X GPU. The times required to
perform the computations in each stage of our modeling pipeline are reported in Table 3.4. It
is noted that most of the computation times (≈ 91.8%) is used for segmenting microvessels and
contracting the generated mesh-based models. From the table, the averaged calculation time for
processing one 2PM angiogram, begining with the segmentation of microvessels and ending with
the extraction of their graphed networks, reaches 53 minutes. Hence, our fully automatic scheme is
proved to provide a very reliable solution when applied to study cerebral microvasculature in large
cohorts and can save weeks of manual labor.

3.6 Conclusion and Future Work

In this work, we have proposed a novel fully-automatic processing pipeline to produce graphical
models for cerebral microvasculature captured with 2-photon microscopy. Our scheme is composed
of three main processing blocks. First, a 3D binary mapping of microvasculature is obtained using
a fully-convolution deep learning model. Then, a surface mesh is computed using a variant of the
marching cube algorithm. Lastly, a reduced version of the generated surface model is contracted
toward the 1D medial axis of the enclosed vasculature. The contracted mesh is post-processed
to generate a final graphical model with a single connected component. We used a set of manu-
ally processed graphing of 6 angiograms to validate our graphs. From the quantitative validation
based on NetMet measures, our model was able to produce accurate graphs with low geometrical
and topological error rates, especially at a tolerance > 30µm. Further qualitative assessment has
shown that automatic processing generates realistic models of the underlying microvascular net-
works having accurate propagation through the modeled vessels. One important issue that could
be addressed in a future work is related to the difficulty in generating watertight surface models.
The employed contraction algorithm is not applicable to surfaces lacking such characteristics. In-
troducing a geometric contraction not restricted to such conditions on the obtained surface model
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could be an area of further investigation.
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Abstract: Generating computational anatomical models of cerebrovascular networks is vital for improv-

ing clinical practice and understanding brain oxygen transport. This is achieved by extracting graph-based

representations based on pre-mapping of vascular structures. Recent graphing methods can provide smooth

vessels trajectories and well-connected vascular topology. However, they require water-tight surface meshes

as inputs. Furthermore, adding vessels radii information on their graph compartments restricts their align-

ment along vascular centerlines. Here, we propose a novel graphing scheme that works with relaxed input

requirements and intrinsically captures vessel radii information. The proposed approach is based on deform-

ing geometric graphs constructed within vascular boundaries. Under a laplacian optimization framework, we

assign affinity weights on the initial geometry that drives its iterative contraction toward vessels centerlines.

We present a mechanism to decimate graph structure at each run and a convergence criterion to stop the

process. A refinement technique is then introduced to obtain final vascular models. Our implementation is

available on https://github.com/Damseh/VascularGraph. We benchmarked our results with

that obtained using other efficient and state-of-the-art graphing schemes, validating on both synthetic and

real angiograms acquired with different imaging modalities. The experiments indicate that the proposed

scheme produces the lowest geometric and topological error rates on various angiograms. Furthermore, it

surpasses other techniques in providing representative models that capture all anatomical aspects of vascular

structures.

https://github.com/Damseh/VascularGraph
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croscopy.

4.1 Introduction

Modeling of cerebrovascular structures is essential in areas ranging from clinical decision support
to fundamental research. Topological and structural representations of cerebrovascular networks
substantially facilitate guided surgical procedures involving intracranial electrode placement [1],
catheter motion planning [2] and endovascular aneurysm repair [3]. Computational modeling of
cerebrovascular networks can also allow for better intersubject assessment of vascular features [4].
Beyond macro-scaled clinical images, studying cerebral microvasculature is vital for understanding
brain neurovascular coupling and neuro-metabolic activity [5]. It is also important to investigate
neuropathologies associated with a deterioration in cerebral oxygen transport [6, 7].

Clinically, non-invasive cerebrovascular imaging techniques including magnetic resonance angiog-
raphy (MRA) and computed-tomography angiography (CTA) are common practices for both pre-
operative planning and postoperative surveillance scanning. In experimental studies, optical imag-
ing systems have been recently proposed to provide spatially-resolved measurements of cerebral
microvasculature in-vivo. [8]. Transforming the cerebrovascular structure represented within a
quantized spatial grid into an interpretable computational model is problematic. Cerebrovascular
images exhibit a high level of intersubject heterogeneity, and contain complex vascular structures.
Furthermore, vascular space is submitted to dynamically evolving conditions like acute ischemic
strokes. These obstacles hinder the construction of accurate computational models that encode
connectivity and spatial information to be used for further analysis of shape features and hemody-
namics properties.

4.2 Related Work

Automatic graph extraction schemes have generated interest in many fields spanning from urban
planning to neuroinformatics [9–25]. For the use of topological and geometrical features in medical
imaging applications, the reader is referred to [25]. Some graphing techniques [14–16] aim to
reconstruct tree-like structures, whereas others target the modeling of loopy curvilinear structures
[19–24].
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4.2.1 Models Accepting Raw Inputs

In terms of the format of input data to be processed, some modeling techniques rely directly on
raw inputs [16, 19–23]. The work in [20] assumes a predefined topological knowledge about the
object to be modeled while other solutions have been proposed in the framework of linear inte-
ger programming [19, 21, 22]. After building overcomplete connections between automatically
identified nodes, optimal subgraphs are extracted. These techniques are based on solving a theo-
retically non-deterministic polynomial-time hard (NP-hard) problem with increased complexity in
case of scalable inputs. In [23], a graph representation was generated by first initializing multiple
short parametric curves along intensity ridges of the image. These open contours are iteratively
deformed by internal stretching forces and external image forces until saturation. Geometrical
post-processing is then performed to connect the deformed contours and build a final graphical
model. In [16], after calculating a Riemann vesselness potential, based on convolving the im-
age with a steerable Laplacian of Gaussian filter banks, exhaustive search for geodesic connecting
paths is performed to construct an over-connected graph. Then, a final minimum spanning tree is
calculated. Methods accepting raw inputs are susceptible to other elongated structures in angio-
graphic datasets and cannot ensure an alignment of the extracted graphs with vessels centerlines.
Also, they can introduce over- or reduced-connectivity patterns, thus resulting in false topological
interpretations.

4.2.2 Models Accepting Voxel-based Mappings

Graphing solutions have also been proposed requiring pre-mapping of the object structure to be
modeled [9–13, 24, 26, 27]. Various techniques are surveyed in [28]. Here, we discuss those
relying on voxel-based binary pre-mapping. Methods in [9, 10, 26] produce image-based curve-
skeletons following homotopic thinning. In [9], topological models for blood vessels are generated
from 3D power doppler ultrasound images to differentiate changes in benign and malignant tumors.
In [26], improved thinning performance is achieved by first shrinking the input volumetric binary
mask through an iterative least squares optimization. Other image-based skeletonization techniques
are based on calculating the singularities of distance-related fields [11]. Hybrid distance-based
skeletonization is employed to provide a 3D path planning for virtual bronchoscopy in multidetector
computed tomography. Thinning and distance-based skeletonization techniques are fast and easy
to implement, however, they produce less-smooth skeletons with disconnected-compartments, that
need extensive pruning and re-graphing.
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4.2.3 Models Accepting Geometry-based Mappings

The pre-mapping of vascular structures can also be a triangulated surface model or a point cloud.
Geometric mapping of objects structure can yield graphical models with improved quality [12, 13,
24, 27]. Methods to extract curve-skeletons from incomplete point clouds are proposed in [13,
29]. In [29], the authors proposed an improved cloud-based graphing scheme exploiting piecewise
cylindrical segmentations of the vascular structure. As reported in the corresponding papers, cloud-
based schemes suffer from incorrect centeredness of the obtained models, especially in the case of
irregular/non-sufficient sampling of the object structure. In [12], a mesh contraction scheme is
introduced using differential geometry to decimate a surface model into a curve-skeleton. In [24],
mesh contraction is combined with a segmentation network and a surface mesh generator to model
cerebral microvessels from raw two-photon microscopy (TPM). Geometry-based skeletonization
techniques require exhaustive efforts in preparing suitable surface model inputs, which is a major
obstacle when working with complex and scalable cerebrovascular structures.

4.2.4 Our Contribution

There is a need for vascular graphing schemes that are less restrictive to either hardly-encoded
inputs or to high-quality vascular labeling while providing precise topological and structural repre-
sentations to be used in further vascular analysis. Here, to address this issue, we propose a novel
vascular graphing scheme inspired by the Laplacian flow formulation. Diverging from the work
in [24] and improving on the work presented in [27], we exploit the Laplacian framework to de-
form 3D geometric graphs, instead of triangulated meshes, converting them into curve-skeletons
as models of vascular structures. Starting with a binary-delineated vascular structure, truncated 3D
grid graphs are first constructed within vessels boundary. We develop a technique to assign affinity
weightings to these graphs based on both the binary distance transform and the local geometry of
graph compartments. The weighted graphs are fed into a constrained iterative optimizer to cre-
ate a Laplacian dynamic flow of graph vertices/nodes toward the centerlines of vascular structures
combined with a convergence criterion to stop the iteration process. Finally, a refinement algo-
rithm is proposed to convert the deformed graph into a final vascular graphed-skeleton model. The
proposed scheme can provide smooth and well-connected graph models regardless of the quality
of image vascular pre-mapping, and yet does not require complex input representations, such as
water-tight surface meshes. Our modeling is shown to provide improved vessel radii estimates,
which are performed intrinsically during the geometric deformation process. This property is vi-
tal for biophysical studies that heavily rely on structural information encoded in vascular models.
Furthermore, with simple hyper parameterization, the proposed scheme provides control over the
calculation speed and the smoothness and centeredness properties of the generated graphs. The
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proposed scheme can be extended to process scalable vascular images at reasonable computational
effort.

In the following, we present the formulation of the modeling scheme. We describe its parameter
sensitivity and study performance on synthetic and real datasets acquired using different imaging
modalities. Results are compared with that produced by other efficient and recent state-of-the-art
graphing techniques. A brief conclusion follows.

4.3 Method

In this section, we describe a novel computational geometry scheme to generate graph-based
anatomical models of cerebrovascular networks based on their binary maps.

4.3.1 Initial Geometry

We first construct an initial geometric graph enclosed within the boundary of the masked microvas-
cular structure. We then aim at building a reduced grid graph with its nodes emerging from the
true-valued voxels of the vascular mask. For O ⊂ P ⊂ R3 being the object that represents the
microvasculature in the image domain P , the corresponding 3D binary mapping is defined as I :
P → {1, 0} | I(p) = 1 ∀p ∈ O and I(p) = 0 otherwise. Furthermore, we define D : P → R
to be the Euclidean distance transform obtained for I. Now, one could define a reduced grid graph
G = (V,E), with V : {1, 2, 3, . . . , k}, where k is equal to the number of voxels inO. The labeling
function φp assigns voxel coordinates P = [p1,p2,p3, . . . ,pk]T ,pi = [pxi, pyi, pzi] ∈ R3, to V.
Likewise, the function φr : V → R maps graph nodes to R = [r1, r2, r3, . . . , rk]T , ri = D(pi).
We construct the edges E : {{i, j}, ∀i ∈ V and j ∈ N (i)}, whereN (i) is the set of nodes emerg-
ing from the voxels forming the 6-connectivity neighbors of the voxel associated with the node i.
For an arbitrary voxel in 3D space, its 6-connectivity neighbors are the voxels sharing one of their
surfaces with it. Employing other connectivity patterns for the construction of G is achievable,
however, the 6-neighborhood pattern utilized in our scheme ensures a consistent performance at a
lower computational burden.

4.3.2 Geometric Flow and Graph Contraction

We follow the paradigm of Laplacian optimization to derive a geometric flow for the nodes of
G. One crucial characteristic sought for the dynamics of this flow is the inward contraction of
V. Precisely, the flow should ensure a convergence of node positions toward the centerline of the
object O. Now, let us consider G as a weighted graph with affinity matrix W. We define δi,W as
the Laplacian operator applied on the ith node of G and acting on the labeling function φp:
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Figure 4.1 Visualization of the ∆n and ∆m vector fields, depicted in (b) and (c), and calculated
using (4.5) and (4.6), respectively. The two fields result from applying the proposed Laplacian
operators on a geometric graph enclosed within vascular space, shown in (a). Vectors colors and
scales reflect their magnitudes, which are bounded between 0 and 1.

δi,W =
 ∑
j∀{i,j}∈E

Wijφp(j)
− φp(i) , (4.1)

where
∑
j∀{i,j}∈E Wij = 1. To establish a geometric flow dynamics bearing the features discussed

above, we propose a combined use of two different normalized affinity weightings on G defined as

Wij
n = ‖pi − pj‖2∑

k∀{i,k}∈E ‖pi − pk‖2
(4.2)

Wij
m = |ri − rj|∑

k∀{i,k}∈E |ri − rk|
. (4.3)

Henceforth, we will refer to Wij
n and Wij

m as l2-norm and medial affinity matrices, respectively,
and the associated δWn and δWm as l2-norm and medial Laplacians. Based on a normalized affinity
matrix W for G, one can compute the Laplacians for the entire graph using the Laplacian matrix,
i.e.,

Lij =


−1 i = j

Wij {i, j} ∈ E
0 otherwise .

(4.4)

We denote the Laplacian matrices associated with the l-norm and medial weights as Ln and Lm,
respectively. Consequently, the l2-norm and medial Laplacians of the entire graph are given by

∆n = [δ1,Wn , δ2,Wn , . . . δk,Wn ]T = LnP , (4.5)

∆m = [δ1,Wm , δ2,Wm , . . . δk,Wm ]T = LmP . (4.6)
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Interestingly, in the formulas above, each of the elements δk,Wn and δk,Wm , corresponding to a
node k in the graph, represents a local vector pointing toward a non-uniformly weighted centroid
of its 6-connectivity neighbors. The vector fields, ∆n and ∆m, calculated based on a geometric
grid graph generated from a labeled angiogram, are depicted in Fig. 4.1. Both fields comprise
vectors that have different magnitudes and directed toward the centerline of the vessel tree. The
field ∆n is zero within vessel boundaries due to the equal spacing of grid graph nodes. Based
on (4.1) and (4.2), this results into a zero net-vector. It is worth mentioning that if the grid graph
loses its isotropic property due to any deformation of its node positions, ∆n will develop non-zero
components within vessel boundaries. On the other hand, ∆m has non-zero magnitude even inside
vessels body, since its calculated based on the Euclidean distance transform mapping.

Now, if graph nodes are further moved inward, both ∆n and ∆m will have smaller magnitudes
(≥ 0) in directions perpendicular to the centerline. Hence, contracting graph geometry toward
vessels centerlines can be obtained by implicitly solving

Ln

Lm

 P̂ = 0 , (4.7)

where P̂ are the new positions of graph nodes. Since both matrices Ln and Lm are singular, this
sparse system admits the trivial solution P̂ = 0. To address this issue, a regularized version of the
system can be solved as


WαLn

WβLm

Wγ

 P̂ =
 0
WγP

 . (4.8)

Above, Wα, Wβ and Wγ are diagonal matrices such that Wi
α = α, Wi

β = β and Wi
γ = γ,

respectively. The elements in Wi
γ = γ constrain all graph nodes to their current positions. Those in

Wα, Wβ determine the dependence of the solution on either the l2-norm or the medial Laplacians,
respectively.

4.3.3 Contraction Flow Dynamics

Solving (4.8) iteratively generates a geometric flow for graph nodes by moving them along the di-
rection of their l2-norm or the medial Laplacians. This flow dynamics will serve as the core of the
proposed skeletonization scheme. The nature of the flow is controlled by varying the weights α, β
and γ. Several iterations, and proper weights, are required for the process to converge towards the
centerline of vascular structures. The proposed model creates a dual-mechanism to guide the dy-
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namics of graph nodes by exploiting both, their connectivity-encoded geometry and distance trans-
form mapping. This duality is vital to ensure a better convergence of graph geometry. Using only
the weights from Ln could lead to unwanted straightening of the graph geometry, and integrating
Lm weights in the dynamics will restrict flow dynamics toward singularities/ridges emerging in the
distance transform field. On the other hand, relying only on distance field weightings does not guar-
antee a convergence into a curve-skeleton with centeredness property [30]. Despite a less-complex
computation, the distance transform has the shortcoming of forming medial surfaces rather than
medial curves in the case of 3D objects. Thus, combining Ln weights in (4.8) provides additional
constraints on the flow dynamics to impose further shrinking of graph geometry. At each iteration,
the solution of the over-determined system in (4.8) is obtained by least-squares minimization. The
parameters α ∈ [0, 1] and β ∈ [0, 1] were chosen to have a partition of unity property, and thus
only one of the two needs to be specified. The speed of flow is thus tuned by altering the value of
γ ∈ [0, 1]. Lower values of γ accelerate the contraction process at the expense of over-deformed
graph geometry. Conversely, higher values of γ decelerate the geometric evolution of graph nodes
but can result in slow convergence. The final concern is to define a criterion to stop the contraction
process when converged. In principle, the volumetric space that the graph geometry can occupy is
of zero volume if the graph is perfectly situated at vessel centerlines. Zero-volume graph geometry
indicates that polygons formed by its nodes/vertices have areas equal to zero. At an iteration t, we
calculate the areas of polygons derived from the cycle basis of the graph [31]. Then, we retain the
cumulative sum of areas, denoted as At, for polygons containing a number of nodes less than εn.
The iteration stops when the ratio ofAt andA0 is smaller than a threshold, referred to as εA. Choos-
ing a relative quantity (At/A0) makes the convergence more independent of the size and scale of
the initial geometry. In the following, the values of εn and εA were set empirically to 10 and 10−3,
respectively.

4.3.4 Adaptive Flow Dynamics

Throughout the contraction process, an initial graph geometry will keep evolving toward vessel
centerlines. Some regions of graph geometry, falling within smaller vessel zones, will achieve
a faster convergence than that belonging to larger vessels. The nodes forming graph regions that
have well converged into their local vessel centerlines are referred to as skeletal-like nodes (see Fig.
4.2(a)). Further contraction of these nodes in next iteration steps, will introduce over-deformation
that negatively affects the quality of our final output. Here, we propose a technique to alleviate
the dynamics of these nodes in following time steps. The technique calculates the angles that are
formed between any pair of edges arising from a node i. If the absolute cosine of these angles is
close to one, that node is more-likely to be a skeletal-like node. For a node i to undergo a reduced
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(a)

(b)

Figure 4.2 Illustration of the adaptive technique integrated in the proposed graphing scheme. (a)
The condition used to identify a skeletal-like node is based on the absolute cosines of the angles
formed between its edges; computed absolute cosines must satisfy the inequality in (4.9). (b) The
effect of omitting the condition in (4.9) or choosing very large values of εγ . The arrows indicate
inappropriate localization of graph nodes after the 5th and 10th iterations of contraction.

contraction force in the next time step, it has to satisfy the condition:

| cos(π − ∠
[−−→pi a,

−−→
pi b

]
)|, a,b ∈ N (pi), ≥ 0.9 . (4.9)

When a node i passes the above condition, its corresponding element in Wγ is altered to Wi
γ =

εγ ∗ γ. The value of the factor εγ (>1) should be chosen carefully. Larger values of εγ (>1k)
can disrupt the row/column scaling in the system, thus hindering its convergence. On the other
hand, smaller values are not helpful in restraining skeletal-like nodes. Based on experimentations,
setting εγ to 10 was a good choice for the modeling done below. Our choice was based on visually
assessing the quality of the converged graphs extracted from a set of synthetic angiograms used in
our work (see Section 4.4), by setting εγ to 5, 10, 50 or 100. We aimed at picking the lowest value
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Figure 4.3 Visual example of the contraction and refinement processes integrated in the proposed
scheme to produce a final graphed-skeleton from a binary-labeled vascular structure. In the con-
traction phase from left to right, the initial geometric graph evolves toward vessels centerline
with further structural reduction at each iteration. The refinement phase accounts for fixing over-
connectivity patterns on the contacted graph, converting it into a graphed curve-skeleton.

that can achieve a desirable performance. Fig. 4.2 demonstrates the benefit of using the proposed
adaptive procedure and interpret our value selection of the factor εγ .

4.3.5 Geometric Graph Decimation

Following contraction, graph nodes are squeezed after each iteration forming a denser geometry
while shifting closer to the object centerline in each step. Yet, the topology of the graph, remains the
same. To address this, we take advantage of the collapsed geometry to adjust graph structure. The
structural surgery includes a reduction of the graph and a modification of its topology after each it-
eration. This decimation process helps in deforming the graph to approach that of a curve-skeleton.
Also, it delivers a reduced model that will require less computational effort when processed in the
next iteration. Consequently, the overall contraction time will be minimized. First, the Euclidean
space is tessellated into a 3D regular grid with equally-spaced cubic cells of size c3. Practically, we
used a cell size equal to the size of a voxel in the 3D input image. Graph nodes situated within a
cell are then grouped as one cluster. After generating the clusters, C : {C1,C2,C3, . . . ,Ck}, their
centroids, S : {s1, s2, s3, . . . , sk}, are calculated and integrated as new nodes in the graph. Then,
new edges are assigned for the newly created nodes and an edge between a pair of centroid nodes is
created if there is any connection between their corresponding samples. Finally, we remove graph
nodes used in clustering, and only the new ones, with their constructed edges, are maintained. The
structural surgery described above is depicted in figure 4.4.
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Figure 4.4 An illustration of the proposed clustering technique used for decimation of the evolving
geometric graph at each iteration.

4.3.6 Transferable Radius Attributes

Values at the ridges formed by the distance transform provides a good estimation of the radii of
tubular objects along the trace of their centerlines. As previously discussed, a graph node i has
the attribute ri representing the closest Euclidean distance of the node from the object boundary.
If the node is located at the medial curve of the object, the value of ri can serve as a measure of
the object radius at that point. Based on the proposed contraction scheme, existing graph nodes
are replaced at each time step with those newly created through our structural operation. When
applying the structural surgery, a new node i, emerging as the centroid of the cluster Ci, will be
assigned an attribute ri computed as the maximum of those associated with the nodes in Ci. Using
this technique, the graphed skeleton will not only model objects topology, but also their shapes, an
essential input to cerebrovascular models in wider biophysical applications.

An example that illustrates the proposed contraction process is depicted in Figure 4.3 (contraction
phase). It shows how a decimated version of the graph G is moved towards the object medial line
at each iteration. The algorithmic pipeline for the contraction scheme is summarized in Algorithm
2.

Algorithm 2 Structural processing of G in the contraction phase.
Require: G, α or β, γ

1: Compute A0; At← A0.
2: while At

A0
< 10−3 do

3: Compute Ln, Lm based on (2), (3) and (4). (Section 4.3.2)
4: Obtain Wγ after imposing each pi ∈ P to (4.9). (Section 4.3.4)
5: Solve (4.8). (Section 4.3.2)
6: Create C and apply graph decimation. (Section 4.3.5)
7: Calculate radii attributes. (Section 4.3.6)
8: Update At. (Section 4.3.3)
9: end while
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4.3.7 Geometric Graph Refinement

The output graph resulting from the contraction scheme is converged to the centerline of the object
O but does not have the skeleton structure properties required for modeling. In this section, we
propose a refinement operation to convert the geometric graph G resulting from Algorithm 2 into a
curve-skeleton. The procedure is based on eliminating small polygons formed in G. One need to
set a threshold for the smallest cycles to be cleaned. In fact, some polygons could represent a real
cycles in the original angiogram, and thus need to be kept. In our study, we picked a threshold of
10c2 after investigating the areas of the smallest cycles∼ 75c2 found in our two-photon microscopy
datasets, since they are the only ones that contain cyclic structures. Our choice was found to provide
a correct refinement without missing any cyclic compartments. The cycle basis of G is computed
and the set of cycles X with edges EXi

in the ith cycle, is retained as follows:

X =

Xi, if
1
2

∥∥∥∥∥∥
∑

(a,b)∈EXi

[−→Oa ×
−→
Ob]

∥∥∥∥∥∥ < 10

 , (4.10)

where O is the origin. Nodes in the cycle Xi are contracted towards their centroid si:

p← (p + si)/2, ∀p ∈ Xi . (4.11)

If a node belongs to multiple cycles, it is randomly processed within one of these cycle. After
adjusting nodes geometry, we carry out the same structural surgery presented in the contraction
stage. We repeat the steps discussed above until we reach a state where the number of elements
in X is equal to zero. Figure 4.3 visualizes how the proposed refinement technique transforms a
decimated graph resulting from the contraction process into a graph-based skeleton.

4.4 Validation and Discussion

In this section, we evaluate the performance of the proposed modeling scheme through various
experiments conducted on synthetic and real cerebrovascular datasets. The data includes both tree-
like and loopy vascular structures. Fist, we present the evaluation metrics, the different datasets
and baselines utilized for performance evaluation. We study the sensitivity of our modeling to
its tunable parameters. Finally, We compare our results with that obtained by other standard and
state-of-the-art skeletonization approaches [12, 16, 23, 32, 33] when applied to the same datasets.
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4.4.1 Experimental Setup and Datasets

We compared the performance of our modeling scheme with other efficient methods used to gen-
erate graphed skeletons for tubular or vessel-like structures. These methods are: the classical 3D-
thinning (Voxel-based) [9]1, mesh-based mean-curvature skeletonization (Mesh-based) [12]2, 3D
points-cloud contraction (PC-based) [13]3, multiple stretching of open active contours (SOAX-
based) [23]4 and geodesic minimum spanning trees extraction (VTrails-based) [16]5. For quantita-
tive assessments of the structural errors produced by the various skeletonization methods, we use
the DIADEM metric [34]6. This metric provides a value ∈ [0, 1], with 1 indicating a perfect model
match. It is to be noted the DIADEM metric is used for evaluating only tree vascular structures and
is not applicable for acyclic vascular networks. The NetMets measures [35] are also exploited to
assess the quality of both tree-like and loopy vascular structures. These measures are employed to
provide detailed quantification of the geometrical and topological errors incurred by the different
schemes. A code for generating these measures is available online 7. The associated measures con-
tain four metrics. Two metrics, namely GFNR and GFPR, are used to evaluate the geometric false
negative and false positive errors, respectively. The other two metrics, namely, CFNR and CFPR,
quantify the false negative and false positive topological errors, respectively. The sensitivity of
NetMets measures is controlled by one parameter denoted by τ . For more details on these metrics,
the reader is referred to [35].

We based our evaluation on both synthetic and real cerebrovascular structures captured in in-vivo
studies using different acquisition modalities. We used the VascuSynth toolbox [36] to prepare 3
sets of synthetic vascular trees, with 30 samples in each,Dnl, considering different levels of surface
noise nl = low,medium and high. Each set contains samples with three different branching levels
(10 samples for each level), namely, 16, 32 and 64. Surface noise was created by adding bubbles on
vessel boundaries. The higher the noise level, the higher is the number and size of these bubbles.
The clinical validation set is composed of x-ray cerebral aneurysm angiograms (RAA) [37] and
magnetic resonance angiograms (MRA) [38]. We also assessed the algorithm on in-vivo TPM
stacks obtained from [39]. Ground truth annotations from the various datasets were provided as
spatial centerlines. In-detail explanation on the preparation and pre-processing of our realistic
datasets, to fit as inputs to the benchmarked methods, is provided in the supplementary material
(Section I). After generating an output graph using any of the methods used in our comparison, radii

1Implementation: https://github.com/InsightSoftwareConsortium/ ITKThickness3D
2Implementation: https://github.com/CGAL/cgal
3Implementation: http://www.shihaowu.net
4Code: https://github.com/tix209/SOAX
5https://github.com/VTrails/VTrailsToolkit
6http://diademchallenge.org/metric.html
7https://git.stim.ee.uh.edu/segmentation/netmets



94

(a)

(b)

(c)

Figure 4.5 The response of the proposed scheme when modeling various structures using different
parametric settings. In (a) and (b), the skeletonization output is robust to variations in the input
structure when using a combined setting of α and β. Varying the value of γ impacts the quality of
the output graph as seen in (c).

values are assigned to its nodes. Vascular radius at each graph node is quantified as the intensity
of the Euclidean distance transform at the coordinate of that node. We assess the correctness of
radius mappings on the generated graph by measuring the mean absolute percentage error (MAP)
between the estimated and true radii values. To compute MAP scores, we first match the nodes of
the experimental model with that of the ground truth as explained in [24].

4.4.2 Parametric setting

The parameters that need to be tuned in our methodology are α, β and γ. This section provides in-
sights on the behavior of the algorithm when varying these parameters. Synthetic objects, depicted
in Figure 4.5, were skeletonized at different values of α, β and γ. The upper row displays a tubular
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Figure 4.6 Identifying the best parametric setting of α, β and γ in our modeling. (left-four columns)
Heatmaps generated based on the averaged NetMets errors (GFNR, GFPR, CFNR and CFPR), each
row shows that obtained for one of the datasets. (right column) Best regions in the parameters space
projected from NetMets heatmaps. The white dot represents the point at α = 0.5, β = 0.5 and
γ = 0.05 used in our experiments.

object with large boundary perturbations, i.e., less-informative distance transform mapping about
the tubular structure. In the upper row, after solving (4.8) for 10 iterations, it is clearly seen that
enforcing the contraction process to rely only on medial Laplacians, Lm hinders the convergence
toward object centerline. The deformed model remains on object medial surfaces. On the other
hand, when increasing the effect of the l2-norm Laplacians by increasing the value of α, better
convergence and centerline modeling is achieved. In the middle row of the figure, a bent tubular
structure inflated at its center is used in the modeling process. When cancelling medial Laplacians
Lm by setting β to zero, the output graph is abstract and fails in capturing the full information about
the object. Nevertheless, adding Lm in the optimization problem creates better modeling. Here, we
conclude by stating that solving (4.8) with a combined setting of both α and β can provide smooth,
and yet, well-detailed graph models. As previously mentioned, the speed of the contraction pro-
cess can be controlled by γ. In the bottom row of the figure, from left to right, an 8-shape object
is modeled with decreasing values of γ, namely, 0.1, 0.05, 0.005, 0.001. The number of iterations
required to converge were 34, 17, 9 and 5, respectively. It is observed that the lower the value of
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γ, fewer iterations are needed, but at the expense of more abstract graphical representation. It is
also seen that abstracted graphs suffer from poor alignment of their compartments along the object
centerline. To have a more comprehensive understanding about the behaviour of the proposed algo-
rithm, we studied the effect of varying our parametric setting on its performance when modeling the
various realistic datasets used in our experimentations. Fig. 4.6 plots the averaged NetMets errors,
calculated after applying our scheme on each of RAA, MRA and TPM datasets, using different
points in a subspace of the α, β and γ parameters. In particular, the figure depicts NetMets error
heatmaps accompanied annotations of the best regions to be used in selecting a suitable parametric
setting. Delineating best regions in the parametric space was done though thresholding at the mean
error value plus one standard deviation. We picked the parametric setting α = 0.5, β = 0.5 and
γ = 0.05, which is shown to be appropriate in all dataset cases, to produce our results in the fol-
lowing sections. More discussion and visual illustrations on the sensitivity of the proposed scheme,
based on the topological NetMets errors, are provided in Section III in the supplementary material.

4.4.3 Synthetic Vascular Trees

Table 4.1 lists the error measures based on the metrics used for each graphing scheme on synthetic
angiograms. For each metric, the top-three scores are color-labeled, while the top-score is green-
labeled. The arrow next to each metric name indicates if a high (up-arrow) or low (down-arrow)
score is better. When assessing the extracted geometry based on GFNR and GFPR metrics, one can
note that at low level of boundary noise, the voxel-based method provides the lowest false nega-
tive and positive rates. However, with increased noise level, it fails by introducing large geometric
errors. The voxel-based method exhibits variable robustness against different levels of boundary
noise. The SOAX-based method provides low false positive errors but at the expense of very high
false negative rates. This observation indicates that it misses substantial geometric details of the
vascular structures. Overall, our algorithm performs better against other schemes in providing more
robust graph models at high noise levels, with, overall, the lowest false negative and false positive
rates. Analysing the topological CFNR and CFPR errors, the voxel-based method gives low false
negative scores but at the expense of a degradation in false positive rates. This reflects a deteriora-
tion of the original topology with a large amount of over-connectivity. The Vtrails-based method
provides balanced, yet weak false negative and positive rates. The mesh-based technique shows
a similar trend with some improvements. When considering both CFNR and CFPR scores, the
proposed work stands again as the best scheme to provide the best error-less topological represen-
tations. We then analysed the tree-like correctness of the graphs generated by the various schemes
based on the DIADEM metric. The mesh based scheme provides comparable results to ours in
some cases. Yet, the proposed method shows superior performance over all other methods in most
of the cases. Finally the MAP metric is of vital importance for validating the various techniques at
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Figure 4.7 Robustness of the proposed modeling to perturbations/ridges in vascular boundaries.

providing comprehensive anatomical models of the vascular structure. It is very clear from the table
that, in all cases, the method described here was the best at capturing of anatomical information. A
visual example supporting our quantitative conclusion above is provided in Fig. 4.7. We depicted
two output models generated from one of our synthetic samples based on zero and high-level (D2)
surface perturbations. Our method was robust at capturing the vascular anatomy even in presence
of highly-deteriorated vascular surfaces.
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Table 4.1 Error scores calculated after applying the different graphing schemes on the synthetic vascular dataset. Colored cells indicate
the best 3 scores while a green cell indicates the best score.

GFNR ↓
Voxel-
based

Mesh-
based

PC-
based

SOAX-
based

Vtrails-
based Proposed

D0 0.15±0.01 0.27±0.03 0.23±0.04 0.35±0.05 0.32±0.03 0.22±0.03
D1 0.27±0.03 0.28±0.04 0.32±0.07 0.40±0.05 0.37±0.05 0.20±0.02
D2 0.41±0.09 0.34±0.04 0.35±0.09 0.44±0.06 0.42±0.06 0.26±0.03

GFPR ↓
Voxel-
based

Mesh-
based

PC-
based

SOAX-
based

Vtrails-
based Proposed

D0 0.11±0.02 0.14±0.02 0.33±0.04 0.15±0.03 0.20±0.03 0.12±0.02
D1 0.28±0.05 0.19±0.04 0.31±0.07 0.16±0.02 0.23±0.05 0.16±0.03
D2 0.33±0.06 0.24±0.04 0.25±0.04 0.19±0.03 0.23±0.05 0.17±0.03

CFNR ↓
Voxel-
based

Mesh-
based

PC-
based

SOAX-
based

Vtrails-
based Proposed

D0 0.27±0.05 0.37±0.04 0.49±0.11 0.56±0.09 0.52±0.06 0.23±0.06
D1 0.24±0.05 0.41±0.11 0.54±0.08 0.62±0.16 0.57±0.09 0.28±0.07
D2 0.17±0.03 0.34±0.07 0.51±0.11 0.67±0.14 0.53±0.13 0.26±0.05

CFPR ↓
Voxel-
based

Mesh-
based

PC-
based

SOAX-
based

Vtrails-
based Proposed

D0 0.07±0.03 0.12±0.04 0.25±0.05 0.13±0.05 0.11±0.03 0.08±0.02
D1 0.27±0.06 0.17±0.07 0.31±0.05 0.13±0.04 0.19±0.08 0.11±0.04
D2 0.57±0.11 0.32±0.06 0.37±0.08 0.16±0.04 0.21±0.05 0.10±0.03

DIADEM(%) ↑
Voxel-
based

Mesh-
based

PC-
based

SOAX-
based

Vtrails-
based Proposed

D0 65.1±8.22 72.54±9.8 63.2±12.1 66.9±6.44 58.4±8.82 74.8±7.29
D1 54.1±13.5 69.3±8.2 51.1±14.0 56.5±10.4 55.9±7.35 71.7±6.42
D2 42.4±7.06 64.4±9.45 44.5±13.8 49.3±9.91 56.2±9.3 67.1±8.15

MAP(%) ↓
Voxel-
based

Mesh-
based

PC-
based

SOAX-
based

Vtrails-
based Proposed

D0 13.4±0.84 14.5±1.44 21.7±2.13 18.2±1.59 18.4±1.46 11.3±1.67
D1 14.1±1.34 16.8±2.13 19.2±1.97 18.4±2.07 20.8±3.07 12.1±1.87
D2 14.8±1.84 16.4±2.39 22.6±1.70 19.2±1.37 19.6±2.19 12.7±1.43
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4.4.4 Clinical Vascular Trees

Figure 4.8 (a) and (b) depicts the NetMets measures when testing the graphing schemes on RAA
and MRA datasets, respectively, at different tolerance levels τ . Again, the proposed scheme was ca-
pable of providing superior models in all cases. SOAX-based and VTrails-based methods provide
graph models with disparate topological false negative and false positive rates, hence indicating
under- or over-connected graph models. This is confirmed qualitatively later in the discussion. The
remaining schemes, including ours, are proven to deliver better geometrical/topological models.
In most cases of RAA and MRA datasets, the proposed modeling scheme outperformed all other
methods. We also studied the correctness of the tree-like structures obtained by running the mini-
mum spanning tree algorithm on the graphs extracted. Arterial trees were constructed from MRA
models based on the root branching from the Circle of Willis. The root arteries in RAA graphs were
identified based on the vessel size and shape. Table 4.2 lists the DIADEM errors calculated from
mapping the MRA and RAA trees to their corresponding ground truths. It is clear from the table
that the proposed scheme performed substantially better in providing accurate minimum spanning
trees of vascular structures with about 90% of ground truth similarity. The anatomical structure
of the extracted trees were also assessed based on the MAP metric. Again, the proposed scheme
outperformed other schemes in correctly mapping radius information, reflecting a more acurate
anatomy. For visual assessment, examples of tree-like graphs, generated using the various schemes
to model RAA and MRA angiograms, are depicted in Figure 4.9. The branching level along the
tree is coded in color while radius information is mapped as the scale of cylinders (their diameters)
capturing vessel segments. As shown in the figure, PC-based , SOAX-based and VTrails meth-
ods produce poorly connected graphs with degraded radius mapping and errors in their tree-like
representations. The voxel-based method produce less-smooth graphs with many discontinuities.
The mesh-based method is providing improved smoothness and inter-connectivity but with poor
anatomical mapping. Nevertheless, in all cases, the proposed method is clearly shown to provide
accurate, and yet smooth tree-like graphs with substantial improvement on the anatomical modeling
aspect based on radius information.

4.4.5 In-vivo Microvascular Networks

We then studied more complex microscopic angiographies acquired with TPM. It is to be noted
that tree-like models cannot be extracted from these angiograms since they include loopy struc-
tures. Thus assessments are based on NetMets and MAP metrics. NetMets measures are depicted
in Figure 4.8 (c). It is seen from the figure that the proposed method produces models having the
lowest geometric and topological errors compared to all other methods. It is also seen that the PC-
based and SOAX-based methods are not suitable for modeling such complex angiograms. It should
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(a) RAA dataset

(b) MRA dataset

(c) TPM dataset

Figure 4.8 NetMets measures obtained at different tolerance levels τ after applying the various
schemes on real datasets.
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Figure 4.9 3D rendering of the vascular tree models obtained using the various schemes when
applied to samples from synthetic (left column), RAA (second-left column) and MRA (middle
column) datasets. The last two right columns depict magnified regions from the MRA models.
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(a)

(b)

Figure 4.10 (a) Graph models generated for one of the TPM angiograms using the various skele-
tonization schemes. (b) For each method, we visualize the topological errors, namely, CFNR (left)
and CFPR (right). Errors are blue-coded.
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Table 4.2 DIADEM and MAP measurements obtained after applying the various graphing schemes
on the RAA and MRA datasets. MAP metric is also used to assess the performance on the TPM
dataset.

DIADEM(%) ↑
Voxel-
based

Mesh-
based

PC-
based

SOAX-
based

Vtrails-
based Proposed

RAA 81.6±9.05 83.6±8.64 54.5±12.9 75.8±12.0 78.4±6.93 89.5±7.38
MRA 85.5±6.19 90.4±3.61 69.6±5.07 78.5±9.40 77.1±8.85 92.8±4.29

MAP(%) ↓
Voxel-
based

Mesh-
based

PC-
based

SOAX-
based

Vtrails-
based Proposed

RAA 8.08±1.88 8.22±1.81 18.9±5.28 10.6±1.75 11.7±2.60 6.03±1.73
MRA 11.5±3.88 10.8±2.39 14.9±0.24 15.1±0.97 15.8±1.36 4.77±0.23
TPM 7.73±2.36 8.93±3.44 14.1±4.65 10.5±3.58 –n/a– 6.37±2.35

be noted that the Vtrails-based method is not applicable in this case since it is specific to tree-like
structures. The voxel-based method tends to create graphs missing many topological details, as
seen in the CFNR plot. Mesh-based technique can provide acceptable graph models, however, its
requirement of hardly-encoded surface models as inputs can hinder its applicability, especially in
case of unclean TMP data. Figure 4.10 (a) shows the 3D rendering of one TMP graph produced
using the different methods. The figure depicts the propagation across the branches in the mi-
crovascular network by manually selecting a descending arterial as a source branch. These directed
graphs are produced following a search from the source branch. Again, the figure illustrates the
good performance of the Mesh-based and the proposed schemes in providing proper models com-
pared to that of other schemes. Yet, our methodology is superior when considering the anatomical
structures represented in vessels radii. Figure 4.10 (b) visualizes the topological errors, namely,
CFNR and CFPR, incurred in the graphs presented in Figure 4.10 (a). Compared to all other meth-
ods, the proposed scheme is capable of generating TPM vascular models having less false negative
and false positive topological errors. This coincides the results obtained in Figure 4.8 (c).

4.5 Computational time

All of our experiments were executed on a 3.0 GHz Ryzen AMD processor (8 cores, 16 threads in
each) with 64 GB of RAM. For a comprehensive assessment of the various graphing schemes, we
plot in Figure 4.12 their average computation time needed to process the angiograms in the RAA,
MRA and TPM datasets. The computational time of the proposed scheme was calculated as the
sum of times required through our model generation and contraction and refinement phases. It is to
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Figure 4.11 (a)-(b) Systematic analysis of the computational time required when applying the pro-
posed scheme on a set of synthetic vascular trees with varying vessel radii and number of vessel
segments. (c) A comparison between the times required for the contraction and refinement phases.
We considered different values of our deformation speed parameter γ.
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Figure 4.12 Computation times (plotted as average and standard deviation) required by the various
graphing schemes when applied to different datasets.

be also noted that the calculated times was independent of the the stopping criterion presented in
Section 4.3.3, since it was identical, with the same setting mentioned in that section, in all of our
executions. Hence, measured computational times of the proposed methods were subjected only
to the variations in the vascular structure in the binary input images. Only one execution on each
input was performed to produce the results in Figure 4.12. As seen from the figure, the Voxel-based
technique scores the lowest computational effort. However, this speed improvement comes at the
expense of unreliable topological results, that suffer from false negative connectivity patterns as
previously shown from the CFNR measures in Figure 4.8 and disconnected components as shown
in Figures 4.9. Comparing with other schemes, apart for the voxel-based method, the proposed
scheme reduces the computational time by a large margin. Based on its improved modeling re-
sults at a lower demand of computational power, our scheme stands as a suitable alternative to the
currently available graphing techniques for processing binary-labeled angiographic datasets.

Next, we provide a systematic analysis focused on understanding the complexity of the proposed
scheme when applied to inputs with differences in the inherited vascular structures. To perform
such analysis, we created a set of synthetic angiograms using the VascuSynth toolbox [36] varying
in the number of vascular branches and vessel radii. Our procedure for assembling this synthetic
dataset is described in the supplementary material, Section IV. Fig. 4.11 (a) shows a scatter plot
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of the computational times (in seconds) calculated after modeling of all vascular inputs in our syn-
thetic inputs. The times are the sum of that required for running the contraction and refinements
phases. We also plotted the calculation times resulting when using different values of the γ param-
eter, which is responsible for controlling the speed of graph deformation. We fitted a curve of the
second order, on each set of data points that refer to angiograms comprising a similar number of
vascular segments and processed using an identical setting of γ. This fitting was employed to un-
derstand the complexity of our modeling when applied to vascular inputs varying in their vascular
volumes, due to only the differences in vessel radii, but not other factors. One can conclude from
this plot that the complexity of the proposed scheme is greatly affected by the choice of γ param-
eter and the values of vessel radii. However, varying the number of vascular segments, for inputs
having similar radii values, has little effect on the computational time, especially at lower values γ
(meaning a faster convergence). Fig. 4.11 (b) plots the time complexity in terms of the number of
nodes processed per second for each set of inputs consisting of the same number of vessel segments
at different values of γ. It is again depicted that alterations in time complexity are more associated
with model sizes due to enlarged vessel radii rather than to the number of vessel segments. Also,
it is interestingly noticed that excessively decreasing the γ value, to obtain a faster graph deforma-
tion, will not necessarily ensure faster solutions. Over-deformations hinders the convergence of our
contraction process, and thus leads to higher computational times. The values of 0.01, 0.025 and
0.05 for γ provided the best computational times. Finally in Fig. 4.11 (c), we separately plot the
computational times required by the contraction and refinements phases when modeling one of the
angiograms (having 224 vessels with the largest radii values) using the different settings of γ. This
plot shows that the modeling time is majorly occupied by the contraction process. This is obvious
since our refinement is applied on a converged geometry, which is in principle extremely smaller
than that initially digested by our contraction scheme.

4.6 Discussion, Limitations and Future Directions

The ultimate goal behind this study is to provide vascular modeling outcomes suitable for explor-
ing further research avenues concerned with hemodynamic simulations and understanding of bio-
physical phenomena occurring at various scales [6, 40–43]. Our validations show that techniques
accepting pre-mapped vascular structures, when compared to that dealing with raw inputs, can pro-
vide enhanced anatomical models. Raw-input-based techniques are still advantageous in avoiding
extra pre-processing steps associated with vascular delineation, and can be applied to some types
of studies, e.g., that focus on investigating topology-based biomarkers [16, 44, 45]. Among all val-
idated methods, the proposed work superiorly approaches the anticipated vascular models that hold
comprehensive anatomical details. A challenging future direction could be related to improving the
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proposed algorithm to process raw inputs. Indeed, such direction becomes more intractable when
dealing with inputs that are scalable, of low-quality, or containing highly-variable vessel scales,
e.g., TPM angiograms. One limitation to be mentioned about the proposed method is its sensitivity
to gaps that could be found in the binary vascular inputs. Hence, such artifacts should be fixed in
advance. Another aspect that could be a topic of further investigations is the formulation of our
initial geometries. As previously discussed, larger vessels lead the production of sizable initial grid
graphs, which in turn impose higher computational burdens. Uniformly increasing the size of grid
cells, to produce less number of nodes, precipitate losses in smaller vessel structures. Thus, intro-
ducing an adaptive construction of grid/3D-mesh graphs, with variable cell sizes according to local
changes in radius scales, can substantially improve the performance. It is clear that the proposed
method is not designed to extract useful information related vascular pathologies. The integration
of the proposed scheme in an extended problem formulation to explore structural phenotyping as-
sociated with diseased and degenerated vasculature, e.ganeurysmal dilatation or thrombosis, could
of regarded as an interesting research direction.

4.7 Conclusion

Overcoming current challenges in vascular graph-based modeling using available and state-of-the-
art methods, which produce less-accurate connectivity patterns and under-complete anatomical
features, a novel graphing approach has been proposed. The proposed scheme works on binary
maps of vascular structures regardless of its quality, and is not restricted to hard-coded inputs
like water-tight surface models. The proposed work is inspired by the Laplacian flow formulation
used for mesh processing in the field of differential geometry. First, an initial geometric graph,
in the form of a truncated 3D grid graph, is created filling the vascular space. A procedure for
assigning affinity weights on the initial graph has been described. Based on these weights, we
derived the Laplacian optimization problem to be solved iteratively, thus generating a dynamic
evolution of the initial geometry toward vascular centerlines. We have designed a full algorithmic
scheme to stop the iterative process when converged and apply a refinement surgery to convert
the evolved geometry into a graphed skeleton. Our scheme integrates a local and intrinsic vessels
radii calculations during the evolution and refinement stages. We validated the proposed scheme on
synthetic and real angiographies and compared our results with those extracted by other efficient
and state-of-the-art graphing schemes. The results support that the proposed algorithm provides
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more accurate vascular models holding better anatomical features.
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Abstract: Recent studies suggested that cerebrovascular micro-occlusions , i.e. microstokes, could lead to

ischemic tissue infarctions and cognitive deficits. Due to their small size, identifying measurable biomarkers

of these microvascular lesions remains a major challenge. This work aims to simulate potential MRI signa-

tures combining arterial spin labeling (ASL) and multi-directional diffusion-weighted imaging (DWI). Driv-

ing our hypothesis are recent observations demonstrating a radial reorientation of microvasculature around

the micro-infarction locus during recovery in mice. Synthetic capillary beds, randomly- and radially- ori-

ented, and optical coherence tomography (OCT) angiograms, acquired in the barrel cortex of mice (n=5)

before and after inducing targeted photothrombosis, were analyzed. Computational vascular graphs com-

bined with a 3D Monte-Carlo simulator were used to characterize the magnetic resonance (MR) response,

encompassing the effects of magnetic field perturbations caused by deoxyhemoglobin, and the advection and

diffusion of the nuclear spins. We quantified the minimal intravoxel signal loss ratio when applying multiple

gradient directions, at varying sequence parameters with and without ASL. With ASL, our results demon-

strate a significant difference (p<0.05) between the signal-ratios computed at baseline and 3 weeks after

photothrombosis. The statistical power further increased (p<0.005) using angiograms measured at week 4.

Without ASL, no reliable signal change was found. We found that higher ratios, and accordingly improved

significance, were achieved at lower magnetic field strengths (e.g., B0=3) and shorter readout TE (<16 ms).
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Our simulations suggest that microstrokes might be characterized through ASL-DWI sequence, providing

necessary insights for posterior experimental validations, and ultimately, future translational trials.

5.1 Introduction

Cortical microvascular networks are the carrier of continuous supply of oxygen and energy sub-
strates to neurons, and thus they are responsible for maintaining their healthy state. These networks
react dynamically to meet the rapid and substantial increases in energy demands during neuronal
activation through the process of neurovascular coupling [1]. Structural deterioration of the cortex
microvasculature directly disrupts the regulation of cerebral blood flow and alters the distribution
of oxygen and nutrients. Among pathogenic outcomes in cerebrovascular diseases [2] is the emer-
gence of micro occlusions in penetrating arterioles descending from the pial surface. Recent exper-
iments have provided evidence about the impact of these microscopic events on brain function [3].
Occlusion of a single penetrating vessel was shown to lead to ischemic infarction in the cortex [4]
and to have effects on targeted cognitive tasks. Cerebral microinfarcts have emerged as a potential
determinant of cognitive decline, as they are one of the most wide-spread forms of tissue infarction
in the aging brain [5]. These cortical lesions have been associated to severe deficits in motor out-
put at muscles [6]. It was also shown that a microembolism of a single cortical arteriole induces
cortical spreading depression, a potential trigger and putative cause of migraine with aura [7]. In a
separate study, the induction of microvascular lesions in an Alzheimer’s mouse model was shown
to alter both the deposition and clearance of amyloid-beta plaques. Optical microscopy and pho-
toacoustic imaging are potential techniques for imaging the local architecture of cerebrovascular
morphology at micro-scale, however, they remain invasive and are currently limited to preclinical
studies. Given the strong association between these microvascular events and many neurological
disorders, developing non-invasive and translatable approaches is of vital importance to identify
their presence in clinical settings.

A recent study based on 2-photon microscopy has illustrated that the capillary bed in microvascu-
lar networks regenerates into a radially organized structure following a localized photothrombotic
infarction [8]. To overcome limitations due to fluorescent dye leakage through the damaged blood-
brain barrier, recent work exploiting optical coherence tomography (OCT) provided a detailed ex-
ploration of the microvascular angio-architecture rearrangement at different cortical depths [9] fol-
lowing photo-thrombosis. This latter study confirmed the presence of highly radially organized
patterns, at all cortical depths, with a higher degree of structural reorganization in deeper regions.
These morphological features could be exploited as clinical signatures of the associated ischemic
events.

In this study, we hypothesize that these vascular re-orientations can be detected through magnetic
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resonance imaging (MRI), and we provide a proof-of-concept through simulations. Our assump-
tion is based on diffusion-weighted imaging (DWI), which is an established MRI technique that
provide contrast sensitive to the motion of water molecules [10]. DWI is widely applied to capture
white matter tracts [11], through the use of arbitrarily selected directions of the diffusion gradient
to measure the directional bias of molecular movements. A sub-type of DWI is the intra-voxel
incoherent motion (IVIM) technique, used to detect the high pseudo-diffusion coefficient that is
attributed to the vascular component of the tissue [12]. Pseudo-diffusion measurements were used
to quantify changes in cerebral perfusion [13]. Previous studies have shown that a hybrid scheme,
combining IVIM and multi-direction DWI, could allow for a measurable effect size caused by mi-
crocirculation architecture [14–16]. Phantom-based simulations and realistic measurements of calf
muscle were performed to characterize capillary anisotropy of skeletal muscle microvasculature
[14]. A further in-vivo study used the same approach to characterize microvascular renal flow
anisotropy [15]. Arterial spin labeling (ASL) was combined with an IVIM model to show that
such technique is able to capture the dominant directionality of cerebral microvasculature in the rat
brain [16]. Here, we conduct IVIM spin echo realistic simulations, to investigate potential signa-
tures of cerebrovascular micro-occlusions induced in mice brains after targeted photothrombosis.
Taking advantage of the radial angiogenesis around the micro-infarction locus after occlusion, we
propose a measurable biomarker based on quantifying the ratio of directional signal loss induced
when using multiple gradient directions. By integrating and excluding ASL, we performed para-
metric simulations using different field strengths, readout times, b-values and gradient duration.
This study provides meaningful insights about the effect size as a function of parameters, which
could be of great benefit for guiding further experimental investigations.

5.2 Results

5.2.1 Differences between diffusion MRI responses due to altered vascular orientations

Exploiting Monte-Carlo MRI simulations, on synthetically approximated capillary beds, we show
that orientations of vascular geometry lead to different profiles of the diffusion MRI signal. We con-
structed two sets (30 samples each), see Figure 5.3 (B), of synthetic microvessel tubes, with distinct
orientional structures. We aimed at mimicking the dissimilarity between healthy and post-stroke
angiogenesis occurring before and after the induction of thrombotic occlusions on a penetrating
artery within a microvascular unit. The first synthetic set contained randomly oriented vascular
segments, which one would expect in healthy microvascular networks. On the other hand, samples
in the second set were designed to follow radial orientations observed from realistic post-occlusion
OCT acquisitions (see Figure 5.1 (D)). Random vessel radii ranging from 2-4 µm and arbitrary flow
directions were assigned to capillary segments in our synthetic data. We approximated flow and
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Figure 5.1 (A) Our experimental procedure for inducing and monitoring of micro-occlusions.
Depth-dependant Pre- and post-lesion OCT angiographic acquisitions were preformed to capture
vascular degeneration. The OCT stacks acquired at different time points are fed to our compu-
tational pipeline to study differences in their diffusion MRI response. (B) Our technique for re-
constructing a final 3D OCT angiogram from the three depth-dependent images. We computed
their mean local entropy after processing with a set of Gabor filters; a patch with richer vascular
structures contributes more to the weighted sum. (C) Our image processing pipeline used to extract
useful structural/topological models of vascular networks. These models are essential to perform
Monte-Carlo MRI simulations. The Segmentation is based on a customly trained LadderNet ar-
chitecture. We used The VascGraph toolbox [17] to obtain graph-based vascular skeletons that
can approximate the needed anatomical information. (D) 3D rending of the vascular structure be-
fore and after creating a photothrombotic lesion. A noticeable radial-wise orientation is observed
after-lesion especially following Week 2.
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Figure 5.2 The simulation framework used to compute the MRI response through the diffusion and
advection of nuclear spins within the cerebral microvasculature. (A) The computation of alterations
in the main magnetic field due to the distribution of deoxyhemoglobin in the blood. These pertur-
bations are calculated based on the PO2 values approximated using our random forest model (see
Figure 5.3). Following the same machine learning approach, we estimated the velocity field that
drives the advection of the spins. (B) The quantification of signal variations after simulating the
diffusion MRI responses of a vascular unit using different gradient directions; above is the DWI
sequence used for each gradient direction.

intravascular PO2 as described in the Methods section (see Figure 5.3 (C)). We extracted an MRI
response simulating several gradient directions uniformly distributed in space by varying θ1 and
θ2 as depicted in Figure 5.3 (A). Our simulations show variations in signal behavior as a result of
changing gradients associated with different vascular orientations. An example of simulated output
from both randomly- and radially-oriented samples is shown in Figure 5.3 (A). It is clear that after
the second diffusion gradient following the 180◦ pulse, signals recover at different rates depending
on gradient directions. When the direction is perpendicular to the vascular flow, advection of spins
had no contribution on signal loss. On the other hand, diffusion gradients that had components
aligned with flow direction introduced a noticeable loss in signal intensity. This observation sug-
gests that a quantification of the differences between signal readouts at TE time point can uncover
useful information about vascular orientation, and thus be used as a signature of angioarchitecture
changes associated with microthrombosis.
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Figure 5.3 (A) A plot describing the difference between two diffusion-based MRI responses sim-
ulated -using a Monte-Carlo framework- from synthetic randomly- and radially-oriented capillary
structures. For each sample, we simulate signals resulting from using different gradient directions
controlled by the angles θ1 and θ2. (B) Examples from the two groups in our synthetic dataset.
(C) A description of the random forest regression model used to approximate Flow and PO2 across
the all branches/segments in our vascular models. The model predicts these values for a vascular
element based on its annotated radius, depth and vessel type information. (D) Using a subspace
of parameters that determine our diffusion MRI sequence, we plot the corresponding statistical
p-values computed between our two synthetic groups based on their simulated φ values.
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5.2.2 Effect size using different MRI parameters

To investigate the statistical significance between the randomly- and radially-oriented synthetic
samples based on their diffusion-based MRI responses, we quantified the sample-wise maximum
difference of signal loss at readout, max(Si/S0) − min(Si/s0), (see the Methods section and
Figure 5.2 (B)). Larger differences imply more anisotropic orientations (i.e., radially structured in
our case). We used a non-parametric Mann-Whitney test to examine the statistical significance
between φ values associated with the two synthetic sets. We retained the set of p-values calculated
after using a subspace of B0, TE, δ and b (see Figure 5.3 (D)). We repeated the experiment with
and without eliminating signal contributions of spins in the extravascular space, i.e., using ASL.
As anticipated, we observed larger effect sizes, in general, when using ASL. The selection of the
TE value had a key role in increasing the difference between the two set of measurements. The
lower the TE value, the greater the statistical significance. A comparable effect was observed of the
field strength B0: a higher B0 reduced the difference between the two configurations. Furthermore,
an increased effect size was observed when using longer gradient time δ. Conversely, the effect
associated with the various b-values on effect size was unnoticeable.

5.2.3 Diffusion-based MRI signatures of microstrokes using realistic simulations

Exploiting acquisitions of the angioarchitecture acquired longitudinally following photo-thrombosis,
we then investigated the capability of the above sequences at detecting a longitudinal change in mi-
crovasculature that reflects in vivo conditions. Here, we report the statistical differences, in terms
of the measured φ values (see Figure 5.2 (B)), between healthy (baseline) and after-lesion (at week
1, 2, 3 and 4) acquisitions. We performed our experiments with and without involving ASL, using
different sequence parameters, by varying the field strength B0 and the b-value while setting TE,
δ and ∆ to 16 ms, 3 ms and 6 ms, respectively. To quantify the values of φ from each sample,
we simulated uniformly distributed gradient directions with δθ = 30◦ (see Figure 5.3 (A)). From
Figure 5.4, it is observed that no reliable difference was achieved when excluding ASL from our
simulations. On the other hand, the use of ASL suggests that the proposed marker, φ, is effec-
tive in differentiating between samples at baseline and after the 3rd and 4th weeks of occlusion.
For example, at B0=3 and b=500, φ = 0.1533 ± 0.0083, whereas it is 0.06978 ± 0.01890 and
0.06148± 0.01187 at week 3 and 4, respectively. Noticeably, the scaling of φ increases with lower
B0 field strengths and higher b-values.
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Figure 5.4 The ratio of minimal signal loss φ (×100%) simulated from our OCT angiograms per (or
before) and after occlusion through a the multi-directional IVIM scheme (see Figure 5.2 (B)). We
used a set of uniformly distributed gradient directions (∆θ = 30◦, see Figure 5.3 (A)). We propose
this measurement as signature distinguishing healthy from lesioned samples. We carried out the
Friedman’s test followed by post-hoc comparisons to study the statistical significance between the
ratio obtained at the baseline and that calculated at the following 4 weeks after occlusion. Our
analysis was performed with and without involving ASL (A) and (B), respectively.
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5.3 Discussion

We leveraged OCT microscopic imaging and Monte-Carlo simulations to study potential diffusion
MRI signatures of microvascular architecture after experimentally inducing photothrombosis. Our
results support the hypothesis that such biomarkers are achievable, under certain assumptions, by
exploiting the radial arrangement of microvascular capillary compartments post-lesion. Thus this
work suggests that quantifying the differences in signal readouts arising from utilizing multiple
gradient directions can characterize such vascular orientations. Simulation outputs provided useful
insights about the prospective experimental implications. The use of ASL is of critical importance
when characterizing microvascular occlusions based on the associated disruption in vascular ge-
ometry. In the mouse cerebral cortex, microvascular density sums to less than 0.05 mm3 of a tissue
volume of 1mm; this ratio decreases with depth [18]. Eliminating the MRI signal contributed from
the extravascular space is thus necessary. ASL approaches have already shown promising appli-
cations in measuring regional cerebral blood flow (rCBF) or perfusion [19–21], and in assessing
vascular disorders [20, 22, 23]. Our simulation outcomes justify the selection of ASL-coupled
multi-directional diffusion MRI used by Well et al. [16] to annotate flow patterns in the mouse
cerebral cortex. We observed a noticeable drop in statistical significance between the responses of
healthy and lesioned vasculature at longer echo time TE. This is due to the dominant T2/T2* short-
ening caused by deoxyhemoglobin distribution, opposed to that rising from diffusion gradients. A
similar conclusion of reduced statistical differences was obtained when examining the responses at
higher B0 values. Ultra-high field strengths, despite improving signal-to-noise (SNR) ratio, trans-
late into shorter T2* and T2 [24, 25]. In other words, The increased B0 inhomogeneity at higher
B0 leads to more signal loss, especially with longer echo times, which offset the advantage of its
higher SNR. A straightforward approach would employ shorter echo time to mitigate the adverse
effect of stronger fields [26, 27].

No clear association has been found between the b-value and the statistical difference used to dis-
tinguish normal from lesioned samples. More comprehensive investigations are conditioned on
further improvements of our simulation framework. We employed a machine learning approach to
predict SO2 and blood flow distributions across our vascular networks to enable this study. These
measurements can be improved through oxygen transport modeling based on more adequate vas-
cular computational graphs. It is to be mentioned that such modeling remains challenging since
it requires tedious manual efforts and can be infeasible at scale [28]. It is known that larger mi-
crostrokes impose T2 changes in tissue. The proposed modeling could be improved through the
incorporation of measured T2 tissue changes to understand their impact with a more realistic sim-
ulation. Another aspect of improvement is related to integrating a model of the restricted diffusion
in tissue, instead of assuming a constant extravascular T2 field. An improved framework could en-



121

compass the magnetic perturbations induced by susceptibility interfaces between vessels and cells,
and the permeability of the vessel wall [29].

5.4 Methods

5.4.1 Animals

All procedures were approved by the Animal Research Ethics Committee of the Montreal Heart
Institute. Animal experiments were performed complying with the Canadian Council on Animal
Care recommendations. Five C57BL/6J male mice of age 3-6 months were used. Cranial window
implantation was carried out for each mouse over its left barrel cortex (0.5mm posterior to bregma,
3.5mm lateral to the midline) to perform OCT imaging. Following scalp retraction, a craniotomy
with a diameter of 3 mm was done using a micro-drill and the dura was kept intact. We covered
the exposed brain surface with a stacked four-layer glass cover slip (3x3mm, 1x5mm diameter)
and sealed it with dental acrylic cement to prevent potential infection. A fixation bar was glued to
the skull using the dental acrylic. During surgery, physiological parameters, including electrocar-
diogram, respiration, heart rate and oxygen saturation of the isoflurane-anesthetized mouse were
continuously monitored by a small animal physiological monitoring system (Labeo Technologies
Inc. Canada), whose heated platform module also maintained the mouse body temperature at 37
◦C. OCT acquisitions were performed on awake resting mice to avoid the modulation of vascular
and neural physiology [30, 31] by anesthetics. During image acquisition, the mice were placed
on a free treadmill wheel with their head fixed on a metal frame by the surgically attached bar. It
is to be mentioned that OCT-angiography is phase-sensitive and that even sub-pixel motions can
dramatically diminish signal to noise ratio (SNR), and hence it is important that the mice stay still
during imaging sessions. Accordingly, we trained the mice for head restraint prior to OCT mea-
surements to habituate them to head fixation and reduce their stress. After a week of training on
the treadmill wheel, the mice were able to reach a resting state within five minutes after being fixed
onto the setup. They were able to stay calm and still for periods of minutes separated by short
bouts of locomotion. After the initial baseline measurement, the mice were still trained every day
between imaging sessions to maintain their habituation to head restraint throughout the study. The
mice were closely monitored for locomotion during image acquisitions.

5.4.2 Ischemic stroke model

The stroke model exploited a localized photo-thrombosis procedure which is based on a photo-
chemical reaction introduced by Watson et al. [32]. Mice were first intraperitoneally administered
Rose Bengal (15 mg/mL, 0.2 ml), a photosensitive dye. A selected cortical region, free of large
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vessels, was irradiated by a focused green laser beam, since large-vessel thrombosis could lead to
a less predictable and less controlled outcome. In addition, avoiding regions with large pial vessels
could also minimize the effect of tail artifacts in OCT angiography images [33]. Green light illu-
mination enforces Rose Bengal to produce free radicals that lead to a damage in the endothelium
of the microvasculature, thereby triggering discoid platelet aggregation that eventually leads into
thrombotic occlusions. The whole process of photo-thrombosis was managed and monitored using
a home-built laser speckle imaging system.

5.4.3 OCT Acquisition system

Imaging of cortical structure and vasculature was performed with a home-build spectral-domain
OCT. A broadband light source centered at 1310 nm from a superluminescent diode (SLD) (LS2000C,
Thorlabs, USA) was split between the sample arm and the reference arm by a 90:10 fiber optic cou-
pler (TW1300R2A2, Thorlabs, USA). A long working distance objective (M Plan Apo NIR 10X,
Mitutoyo, Japan) was installed at the end of the sample arm to focus the collimated light beam into
the tissue sample. The spectral interferogram was registered by a spectrometer (Cobra 1300-[1235-
1385 nm], Wasatch Photonics, USA) and then digitized by a frame grabber (PCIe-1433, National
Instruments, USA). Dispersion mismatch between the two arms was first carefully compensated
with N-SF11 compensation glass (Edmund Optics, USA), and the small residual mismatch was
then finely corrected with a numerical compensation technique [34]. The axial resolution was mea-
sured to be about 4.15 µm in biological tissues. The lateral resolution in tissue was about 2.3 µm.
In the sample arm, a dichroic filter was placed to transmit the infrared light used by the OCT system
and deflect the visible light for wide-field imaging. The wide-field imaging helped locate the region
of interest (ROI) to be scanned by OCT. The sample arm consisted of a galvanometer scanner, a
beam expander and an objective lens. The arm was mounted on a motorized vertical translation
stage (MLJ150/M, Thorlabs, USA). Adjusting the depth of the imaging focal point can be per-
formed by elevating or lowering the vertical stage. The treadmill wheel onto which the mouse
was attached was fixed on a motorized XY linear translation stage (T-LSR, Zaber Technologies,
Canada) for fine adjustment of the relative lateral position of the cranial window with respect to the
light beam. The 3-axis motion control was integrated into our acquisition software.

5.4.4 OCT angiographies

We scanned a 1 mm x 1 mm region with the photo-thrombosis-induced lesion located in the center.
Our Volumetric scans of the cortex contained 450 B-frames, each of which was composed of 500
A-lines. First, raw spectra were resampled in k-space and then multiplied by a Hanning window.
Then, inverse Fourier transform (IFT) was applied to obtain 3D complex-valued OCT structural im-
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ages. B-scans were repeated twice at each position along the slow axis. Global phase fluctuations
(GPF) caused by sub-pixel motion within repeated B-frames were corrected based on the assump-
tion that dynamic tissue only accounts for a very small percentage of brain tissue and that phase and
intensity of light reflected from static tissue remain constant [35]. In principle, light reflected by
moving red blood cells (RBC) experiences a large phase shift and/or a big intensity change. Thus,
we obtain a vascular image by taking the phase and intensity difference between GPF-corrected
repeated B-frame [36]. The resulting 3D angiograms were filtered with a 3D Gaussian smoothing
kernel with a standard deviation equal to 1 pixel in all three dimensions. A fast axis scan rate of 90
Hz was used, which resulted in an acquisition time of 10 seconds per volumetric scan. In order to
extract more comprehensive information of the capillary network in the cortex, three time-resolved
OCT-angiographies were performed in the same ROI with light beam being focused at three differ-
ent cortical depths, namely 250 µm, 400 µm and 550 µm beneath the cortical surface. To achieve
a shift of the axial focus in the tissue, we preformed a vertical translation of the objective lens in
the sample arm mounted on the vertical translation stage. After, OCT stacks for each animal that
were taken considering three different depth-dependent setups, are recombined to form one stack.
To obtain the final desired stack, we followed a procedure based on measuring the mean of local
entropies computed from each stack after normalizing and convolving it with a set of Gabor filters.
Mean entropy measures for all the stacks are then normalized with a softmax function imposed on
the axis representing the index of each stack. Voxel intensities in each stack are then weighted by
the corresponding normalized local entropies. Finally, we take the sum of the weighted intensities
from all the stacks to reconstruct the output stack. In our procedure, we used 18 two-dimensional
Gabor filters built with orientations ∈ 0, π/6, π/3, π/2, 2π/3, π, phase offset ∈ 2.5, 5, 7.5 and a
wavelength = 0.01. The kernel used for calculating the local entropy is of size (15, 15). We ran
slice-wise calculations to quantify the entropy of each stack. In our chronic microstroke study, we
performed 6 OCT imaging sessions over 28 days. The baseline measurement was taken one day
before photo-thrombosis. The second imaging session took place 3 days after the thrombotic lesion
was induced in the mouse brain, and the following 4 measurements were made 8 days, 14 days, 21
days and 28 days respectively after the ischemic stroke event.

5.4.5 Vascular Segmentation and Graphing

Many works on vessel segmentation have been presented in the literature. The best recent schemes
were based on U-Net neural networks [37] with their convolutional architecture that accepts images
of arbitrary sizes. In this work, we used the LadderNet architecture employed in [38], which is
inspired from the U-Net one but with more interconnected information paths. This architecture
can be seen as multiple stacked U-Nets with more pathways. Compared to the conventional U-Net
scheme, the shared-weights structure in the LadderNet allows horizontal propagation through the
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stacked U-Nets which forces the learning process to be made in earlier layers, and thus provides
better results [39]. We trained and evaluated our network on an in-house prepared and annotated
dataset from Two-photon microscopy angiograms. Our dataset consisted of 59 8-bits 2D grayscale
images of 256x256 pixels which were then split into 70%, 15% and 15% portions for training,
validation and testing, respectively. Images were standardized by subtracting the mean and dividing
by the standard deviation. Contrast limited adaptive histogram equalization was then applied to
correct light imbalance. Images were adjusted with a gamma value of 1.2. Training, testing and
validation processes were done patch-wise (patch size of 32x32) after augmentation with random
rotations. Each of the down and up streams paths in the network had 4 convolutional layers. A
leaning rate of 0.001 was used. We applied the trained network on each slice in our 3D OCT
angiograms to obtain the corresponding delineated vascular structures. After segmentation, we
employed a graphing method, proposed recently by Damseh et al. [17], to transform our binarized
inputs into a fully-connected graph-based skeletons. The method initiates geometric grid graphs
encapsulated within vascular boundaries and iteratively deforms them toward vessel centerlines.
Converged geometries are then refined and converted into graph-based skeletons. The output graph
models consisted of nodes distributed along vessel centerlines to capture the geometry and edges
connecting these nodes to represent the inherited topology. The method assigns vessel radii to graph
nodes with unique identifiers to each set of them located at a certain vascular branch/segment. We
used the VascGraph toolbox associated with that work, available on https://github.com/

Damseh/VascularGraph, to generate and visualize the anatomical graphs.

5.4.6 Flow and PO2 Regression

To prepare the generated anatomical model to undergo MRI simulation experiments, we had to as-
sign biophysical quantities across vascular compartments, namely flow and PO2 values, necessary
for reconstructing the T2* field. Resolving these values through biophysical simulations is tedious
due to the low-quality nature of OCT inputs, which hinders the formulation of a correct geometric
domain suitable for such computations. In other words, such computations are extremely sensi-
tive to topological errors that can easily disrupt the final solution. Here, instead, we followed a
machine-learning based approach that utilizes an ensemble of random decision trees, i.e, random
forests, fitted on experimental data collected from mice models in a previous work performed by
Moeini et al. [40]. The data consisted of > 300 measurements of PO2 and Flow values of cere-
bral microvascular segments having different sizes, types and located at different cortical depths.
We built two separate random forest models that accept radius, type and depth information for a
vascular segment and output the corresponding flow and PO2 values. Types of vessel segments
were determined after thresholding on the radius value of 3 µm [40]. Vascular segments with radii
above the threshold were randomly set to be either arteries or veins, whereas the rest were set as

https://github.com/Damseh/VascularGraph
https://github.com/Damseh/VascularGraph
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capillaries. Following this procedure, we only needed an approximation of the vascular geometry
to capture the anatomical features required by the random forest model, and avoided the depen-
dency on the biophysical modeling that requires accurate annotations and is highly prone to any
topological error induced in the vascular model. Each of the two random forests consisted of 100
decision trees with 10 maximum depth. The architecture of our regression forests was selected
after assessing the mean square error (MSE) resulting from using different architectural setups.
The same measure of MSE was used to determine the quality of a split in the single decision trees
that compose the forest model. The minimum number of samples required to split in each decision
tree has been set to 2. Bootstrapping was used to reduce the variance resulting from the outputs of
multiple trees fitted on random sub-samples, with replacement, from the original training set [41].

5.4.7 MRI simulations

We implemented a Monte-Carlo MRI simulation code in Python following the same routines of
previous protocols [28, 42], which was built using Matlab. Simulation principles in these works
were originally based on descriptions detailed in [43]. The previous implementations were per-
formed to tackle the Blood-oxygen-level-dependent (BOLD) MRI response. Here, to align with
our study goals, we developed new functionalities to create multi-directional spin echo DW se-
quence simulations. In our numerical MRI trails (coinciding with the aforementioned studies), it
was assumed that the MRI response in the mouse brain could be approximated by probing the
behavior of a large number of hydrogen water protons moving in background due to free diffu-
sion and constrained advection processes. Practically, our assumption incorporated the following
in-detail descriptions: the domain enjoys a spatially constant T1 relaxation; T2 value in tissue re-
gions is fixed but varies within the vascular space; T2* effect has spatial variations subjected to
the level of deoxyhemoglobin within the vasculature (see Figure 5.2 (A)). As suggested in previ-
ous works designed for studying vascular-based MRI responses [28, 42, 44, 45], we neglected a
set of factors that have insignificant effect on the extracted signal: hydrogen atoms not bound to
water, additional iron presence in basal ganglia and some other brain parts, external B0 and B1
fields inhomogeneities, gradient nonlinearity, hematocrit variability. Also, to enable our analysis,
we excluded the macroscopic magnetic field destruction occurring due to imperfect shimming or
the microscopic field differences emerging from the applied gradients. In our Monte-Carlo simu-
lations, we measured the voxel-wise response based on summing the accumulated complex phase
from 1× 10−6 spins, after initiating their positions at t = 0 using a uniform probability distribution
that covers the spatial domain, and then updating their location every 0.05 ms. The protons were let
to diffuse isotropically with a diffusivity constant of 0.8 µm2/ms [46]. With the assumptions men-
tioned above, among the relaxation constants necessary for our computations is that attributed to
the local magnetic field inhomogeneities, affecting T2*, due to the presence of deoxyhemoglobin in
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the vasculature. We followed the numerical method described in [47] to compute the perturbations
in the magnetic field by convolving the susceptibility shift volume, which is calculated depending
on the level of PO2, with an ellipsoidal kernel oriented with the field B0. Another important relax-
ation factor affecting T2 is that related to the spin-spin coupling, where it is computed based on the
fitted models illustrated in [48]. In the extravascular space, T2 is fixed and obtained in seconds as

T2tissue = [1.74 ∗ B0 + 7.77]−1 (5.1)

On the other hand, this parameter spatially varies in the vasculature depending on the oxygen
saturation level (SO2):

T2vessel =
[
12.67 ∗ B02 ∗ (1− SO2)2 + 2.74 ∗ B0− 0.6

]−1
(5.2)

The SO2 values were calculated from their PO2 counterparts based on the Hill conversion equation
with coefficients specific for C57BL/6 mice (h=2.59 and P50=40.2) [49]. The relaxation effect due
to T1 was included as an exponential decay with T1 =1590 ms [50]. Hematocrit values necessary
to compute the field susceptibility as described in [47] were assumed to be 0.44 in arterioles and
venules, and 0.33 in capillaries [51]. Based on the mappings of anatomical features and biophysical
quantities computed from OCT angiographies, we computed their MRI response following a com-
bined design of IVIM and multi-direction DWI sequence. The simulated MRI signal is constructed
from the contributions of intravascular (IV) and extravascular (EV) spins. Assuming a negligible
exchange between the IV and EV components during the echo time [16], the total DW voxel signal
captured at a gradient i, with its direction ui ∈ U = {u1,u2, ...un}, could be expressed as:

Si = S0[fe−biD∗
i + (1− f)e−biDi ] (5.3)

where S0 is the response at zero diffusion gradient, f is the fraction of vasculature in the voxel,
and bi(mm2/s) is a parameter that characterizes the diffusion gradient i. The term Di is the appar-
ent diffusion coefficient (ADC) influenced by the Gaussian diffusion in tissue, whereas D∗i is the
pseudo-diffusion coefficient (PDC) representing the perfusion of spins in the microvascular net-
work. A diffusion gradient consists of two short pulses of duration δ, with amplitude G, separated
by a short amount of time ∆. The corresponding b-value can be obtained as:

b = γ2G2δ2(∆− δ

3) (5.4)

where γ is the proton gyromagnetic ratio of Hydrogen. Reflecting this on our task of finding a
signature about the deterioration in the microvascular architecture occurring due ischemic throm-
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botic events, our interest is the set of ratios R = {ri = Si
S0
, i ∈ {1, 2, ..., n}}, calculated through

applying n gradients with directions equally sampled from all possible choices in the 3D space. As
discussed in the Introduction section, previous works [8, 9] reported that voxels with thrombotic
ischemia exhibit a highly radial orientation of microvessels in the lateral plane around the lesion
core. This implies that a higher perfusion rate, i.e., an increased loss in MRI signal, would be
observed when a gradient field is parallel to the lateral plane compared to that occurring when it
is perpendicular to it. In general, healthy voxels beneath the pial surface are assumed to be com-
posed of randomly oriented capillary segments, and thus would result in comparable MRI signal
loss regardless to the direction of the selected gradient. Hence, the ratio φ = 1 −max(R) could
be regarded as a biological marker distinguishing healthy voxels from those having a thrombotic
lesion (see Figure 5.2 (B)). Beside computing φ through probing spins behavior in an entire voxel
or ROI, we also studied the response when neglecting the extravascular spins, thus omitting the
diffusion term in (5.3). Such procedure could be practically translated with ASL. Based on the
mappings of anatomical features and biophysical quantities computed from OCT angiographies,
we computed their MRI response following a combined design of IVIM and multi-direction DWI
sequence. Simulated MRI signal is constructed from the contributions of intravascular (IV) and
extravascular (EV) spins. Assuming a negligible exchange between the IV and EV components
during the echo time.
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CHAPTER 6 GENERAL DISCUSSION

6.1 Summary of Works

This thesis presented three distinct contributions aligned with the objectives that have been set in
the Introduction section. A summary of each contribution is given below.

In Chapter 3, a novel fully-automatic processing pipeline to produce graphical models for cerebral
microvasculature captured with TPM has been presented. The proposed modular scheme encom-
passes three main stages. First, 3D segmentations of the microvasculature were obtained using a
Densely connected U-net architecture. In-house labeled angiograms have been prepared to train the
model, after employing data augmentation. Second, a surface model generator has been designed,
relying on a marching cube algorithm, to extract water-tight 2-manifold triangulated meshes of
the vascular structures. In the last stage, a Laplacian-based mesh contraction scheme has been
exploited to transform the generated surface models into 1D medial axes, or graphed-curve skele-
tons, that serve computational/anatomical representations of the microvasculature. The proposed
pipeline has been validated using a set of manually annotated graphs of 6 TPM angiograms of size
∼ 512×512×512. The proposed modeling was able to produce accurate graphs with low geomet-
rical and topological error rates, especially at a tolerance > 30µm. Qualitative assessments have
shown that proposed automatic processing generates realistic models having accurate propagation
through the modeled vessels.

In Chapter 4, a novel geometry contraction scheme has been proposed to replace the second stage
of the pipeline developed in Chapter 3. The new algorithmic solution is less restrictive to either
water-tight surface inputs or to high-quality vascular labeling, and yet provides precise topological
and structural representations of the vasculature. The method works on binary inputs regardless
of their quality, by initially creating geometric graphs, in the form of truncated 3D grids filling
the vascular space. A procedure for assigning affinity weights on the initial graph has been de-
scribed. Based on these weights, a Laplacian optimization problem has been derived to be solved
iteratively, thus generating a dynamic evolution of the initial geometry toward vascular centerlines.
A convergence criterion has been developed to stop the iterative process; and a refinement surgery
has been proposed to convert the evolved geometry into a graphed skeleton. The new graph-based
contraction scheme integrates local and intrinsic vessel radii information during the evolution and
refinement stages. Validity of the model outputs has been demonstrated on synthetic and real an-
giographies acquired using different modalities. Compared to the initial development in Chapter
3, the results have shown that the new algorithm provides more accurate vascular models holding
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better anatomical features.

In Chapter 5, a simulation study has been presented to evaluate a potential MRI identification of
microstrokes, incorporating the vascular modeling pipeline developed in Chapter 3 and 4. MRI
signatures have been assessed through combining the ASL and multi-directional DWI techniques.
The main hypothesis was driven based on recent observations demonstrating a radial reorientation
of microvasculature around the micro-infarction locus during recovery in mice [29]. The effect
size has been systematically evaluated based on synthetic capillary beds following random and ra-
dial orientations. Realistic simulations were then performed based on OCT angiograms acquired
in the barrel cortex of mice (n= 5) before and after inducing targeted photothrombosis. A 3D
Monte-Carlo simulator was developed to quantify the MR response from the vascular models ex-
tracted from these angiograms. The MR response was characterized encompassing the effects of
magnetic field perturbations caused by deoxyhemoglobin, and the advection and diffusion of the
nuclear spins. The minimal intravoxel signal loss ratio was studied when applying multiple gradient
directions, using different sequence parameters with and without ASL. It has been demonstrated
that a significant difference (p< 0.05) is obtained between the signal-ratios computed at baseline
and 3 weeks after photothrombosis. The statistical power further increased (p< 0.005) using an-
giograms measured at week 4. No reliable signal change was found without integrating ASL in
the analysis. Furthermore, it has been shown that higher significance was achieved at lower mag-
netic field strengths (e.g., B0= 3) and shorter readout TE (< 16 ms). The study suggested that
microstrokes might be characterized through ASL-DWI sequence, providing necessary insights for
posterior experimental validations, and ultimately, future translational trials.

6.2 Limitations & Future Work

One main concern that has been addressed in one part of the thesis, namely in Chapter 3 and 4, is re-
lated to developing a fully automated framework capable of extracting useful anatomical models of
microvascular structures from raw angiographic inputs. Building these computational/geometrical
models is crucial for multi-scale characterization of cerebral haemodynamics and for understand-
ing brain physiology and function at various pathological states [44, 47]. In the literature, some
attempts have focused on extracting computational models of cerebral microvasculature through
either approximation of their anatomical compartments to build simplified representations [46],
or reconstructing them based on through biologically-inspired angiogenesis [5]. In general, these
models have less applicability when studying pathological vascular states, and are not guaranteed to
reflect all anatomical details necessary to understand the physiological and structural components
of the neurovascular phenomena. Therefore, in Chapter 3 and 4, a fully automated solution has been
developed to generate such microvascular models through casting/reconstruction from raw angio-
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graphic images, which can be captured through microscopic acquisition techniques such as TPM
or OCT. Through comparing with other available casting/graphing algorithms, the presented vali-
dations showed that techniques accepting pre-mapped vascular structures, when compared to those
dealing with raw inputs, can provide enhanced anatomical models. Raw-input-based techniques are
still advantageous in avoiding extra pre-processing steps associated with vascular delineation, and
can be applied to some types of studies, e.g., that focus on investigating topology-based biomarkers
[211, 272, 273]. Among all validated methods, the proposed work superiorly approaches the antic-
ipated vascular models that hold comprehensive anatomical details. An interesting future direction
could be related to the following.

• The pipeline proposed in Chapter 3 is composed of three phases; the first one focused on
generating binary vascular masks from raw inputs. Other types of representations could be
generated to enhance the outputs of the following stages concerned with geometry processing
as described in Chapter 3 and 4. For instance, as proposed in [274], a well-trained deep
learning model can provide precise distance transforms of tubular structures to be used for
further vascular modeling. It is to be mentioned that additional effort is needed to mitigate the
difficulty of processing scalable inputs of low-quality and containing highly-variable vessel
scales, e.g., as in TPM angiograms.

• Improved segmentation schemes could be integrated in phase one of the graphing pipeline
in Chapter 3 to provide enhanced generalizability and multiscale segmentation performance.
A total variation term in the training process [275] or extending the deep network to include
better skip connections and information pathways [276] could be potential options.

• One limitation to be mentioned about the proposed graphing schemes in Chapter 3 and 4 is
the sensitivity to gaps and touching vessels that could be found in the binary vascular inputs.
Hence, additional processing blocks could be added to the scheme to deal with these cases.

• The methodological schemes in Chapter 3 and 4 are not designed to extract representative
features related to some non-regular vascular details, e.g. cerebral aneurysm. The integration
of the proposed scheme in an extended problem formulation to explore structural phenotyp-
ing associated with some types of diseased vasculature, e.g., aneurysmal dilatation [277],
could be regarded as an interesting research direction.

• Another aspect that could be a topic of further investigations is the formulation of initial gird
graph geometries in Chapter 4. In the proposed method, larger vessels lead sizable initial
grid graphs, and thus to higher computational burdens. Uniformly increasing the size of
grid cells, to produce less number of nodes, precipitate losses in smaller vessel structures.
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Thus, introducing an adaptive construction of grid/3D-mesh graphs, with variable cell sizes
according to local changes in radius scales, can substantially improve the performance.

In the second part of the thesis, namely, in Chapter 5, OCT microscopic imaging and Monte-
Carlo simulations have been employed to study potential diffusion MRI signatures of microvascular
architecture after experimentally inducing photothrombosis. The work suggests that quantifying the
differences in signal readouts arising from utilizing multiple gradient directions can characterize
such microvascular orientations. Simulation outputs provided useful insights about the prospective
experimental implications. Future directions on the experimental and clinical sides could be related
to the following.

• The use of ASL has been shown to be of critical importance when characterizing microvascu-
lar occlusions based on the associated disruption in vascular geometry. In the mouse cerebral
cortex, microvascular density sums to less than 5% of a tissue volume of 1 mm3; this ratio
decreases with depth [278]. Eliminating the MRI signal contributed from the extravascular
space is thus necessary. ASL approaches have already shown promising applications in mea-
suring regional cerebral blood flow (rCBF) or perfusion [279–281], and in assessing vascular
disorders [280, 282, 283].

• The simulation outcomes in Chapter 5 justify the selection of ASL-coupled multi-directional
diffusion MRI used by Well et al. [284] as the modality of choice to annotate flow patterns
in the mouse cerebral cortex.

• It has been observed that a noticeable drop in statistical significance between the responses
of healthy and lesioned vasculature at longer echo time TE. This observation is associated
with the dominant T2/T2* shortening caused by deoxyhemoglobin distribution, opposed to
that rising from diffusion gradients.

• Reduced statistical differences have been also observed when examining the responses at
higher B0 values. Ultra-high field strengths, despite improving Signal-to-noise (SNR) ratio,
translate into shorter T2* and T2 [285, 286]. In other words, The increased B0 inhomogene-
ity at higher B0 leads to more signal loss, especially with longer echo times, which offset the
advantage of its higher SNR. A straightforward approach would employ shorter echo time to
mitigate the adverse effect of stronger fields [287, 288].

Some useful directions to furtherly improve the proposed simulation framework could be summa-
rized as follows.
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• A machine learning approach has been employed to predict SO2 and blood flow distributions
across our vascular networks to enable the study in this thesis. Oxygen transport modeling,
based on more representative vascular graphs, can be used to improve these measurements.
However, such modeling remains challenging since it requires tedious manual efforts and can
be infeasible at scale [47].

• One aspect of improvement relates to integrating a model of the restricted diffusion in tis-
sue, instead of assuming a constant extravascular T2 field. An improved framework could
encompass the magnetic perturbations induced by susceptibility interfaces between vessels
and cells, and the permeability of the vessel wall [289].

• It is known that larger microstrokes impose T2 changes in tissue. The proposed modeling
could be improved through the incorporation of measured T2 tissue changes to understand
their impact with a more realistic simulation.

When considering the global experimental design and research scheme, stronger longitudinal in-
vestigations of the time course characteristics and the evolution of microstokes can be achieved
through improving upon the following aspects:

• Larger cohort studies could be involved to increase the statistical power and to provide
stronger proof of concept with respect to the MRI simulations. Such direction is important
to provide more definitive information about further experimental implications.

• One improvement could be related to the animal model designed for creating ischemic le-
sions. Instead of focusing on occluding pial vessels located nearly in the same cortical region
across different animals, creating microstrokes that vary in their size and location could be
considered. However, such direction is inapplicable given the current craniotomy procedure
and the corresponding occlusion principles. It is impractical to perform multiple craniotomy
at different regions of the skull in the same animal, whereas photothrombotically occluding
larger vessels leads into tail artifacts in OCT angiography images and into less predictable
outcomes. Thus, imposing improvements in such direction requires the development of a
novel microstoke model.

• OCT imaging was used to assess the outcomes of cerebrovascular micro-occlusions, to avoid
image degeneration and artifacts that could result from dye leakage in case of other label-
based imaging techniques, e.g., TPM angiography. However, it is known that OCT angiog-
raphy suffers from low-resolution outputs that complicate the process of vascular modeling.
Therefore, improvements in the image acquisition part could enhance the modeling of the
microvasculature and consequently help to obtain better MRI simulations.
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CHAPTER 7 CONCLUSION

In this thesis, the initial objective has focused on developing a fully-automated processing pipeline
to extract useful graphical models of cerebral microvascular structures to facilitate further analysis
of its underlying physiological factors. A fully-automated solution that provides a unique graph-
based output based on raw TPM inputs has been proposed in Chapter 3. The solution comprises a
fully-convolutional neural network to segment microvessels, a water-tight triangulated mesh gener-
ator to model vessel boundaries, and a mesh contraction algorithm to produce graph-based vascular
models. An improvement of this pipeline is proposed in Chapter 4. In particular, a novel frame-
work has been presented to deform 3D geometric graphs, instead of triangulated meshes, convert-
ing them into graphed curve-skeletons. Truncated 3D grid graphs are first constructed within vessel
boundaries. A method is proposed to assign weights on these graphs, and a constrained iterative
optimizer is developed to decimate them toward vessel centerlines. A refinement algorithm has
been illustrated to convert a deformed graph into a final vascular graphed-skeleton model. The
new graphing scheme showed more generalizability with less restriction on the quality of binary
inputs. The ultimate goal of the work in this thesis has been to integrate such modeling scheme
to investigate potential non-invasive biomarkers of cerebrovascular micro-occlusions , i.e., micros-
tokes. In Chapter 5, based on the developed computational modeling, potential MRI signatures
of microstrokes have been simulated combining ASL and DWI techniques. The hypothesis has
been driven based on recent observations demonstrating a radial reorientation of microvasculature
around the micro-infarction locus during recovery in mice. Synthetic and realistic computational
vascular models have been exploited within a 3D Monte-Carlo simulator to characterize the MR
response, encompassing the effects of magnetic field perturbations caused by deoxyhemoglobin,
and the advection and diffusion of the nuclear spins.
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[215] Hrvoje Bogunović et al. “Anatomical labeling of the circle of willis using maximum a
posteriori probability estimation”. In: IEEE transactions on medical imaging 32.9 (2013),
pp. 1587–1599.

[216] Uyen TV Nguyen et al. “An automated method for retinal arteriovenous nicking quantifica-
tion from color fundus images”. In: IEEE Transactions on Biomedical Engineering 60.11
(2013), pp. 3194–3203.

[217] Tamal K Dey and Jian Sun. “Defining and computing curve-skeletons with medial geodesic
function”. In: Symposium on geometry processing. Vol. 6. 2006, pp. 143–152.

[218] Hui Huang et al. “L1-medial skeleton of point cloud.” In: ACM Trans. Graph. 32.4 (2013),
pp. 65–1.

[219] Andrei C Jalba, Jacek Kustra, and Alexandru C Telea. “Surface and curve skeletonization
of large 3D models on the GPU”. In: IEEE transactions on pattern analysis and machine

intelligence 35.6 (2012), pp. 1495–1508.

[220] Kaleem Siddiqi et al. “Hamilton-jacobi skeletons”. In: International Journal of Computer

Vision 48.3 (2002), pp. 215–231.

[221] Mohamed Sabry Hassouna and Aly A Farag. “Variational curve skeletons using gradient
vector flow”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 31.12
(2008), pp. 2257–2274.

[222] Tao Ju, Matthew L Baker, and Wah Chiu. “Computing a family of skeletons of volumetric
models for shape description”. In: Computer-Aided Design 39.5 (2007), pp. 352–360.

[223] Carlo Arcelli, Gabriella Sanniti di Baja, and Luca Serino. “Distance-driven skeletonization
in voxel images”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 33.4
(2010), pp. 709–720.

[224] Judson P Jones and Larry A Palmer. “An evaluation of the two-dimensional Gabor filter
model of simple receptive fields in cat striate cortex”. In: Journal of neurophysiology 58.6
(1987), pp. 1233–1258.



156

[225] Haiqing Li, Qi Zhang, and Zhenan Sun. “Iris recognition on mobile devices using near-
infrared images”. In: Human Recognition in Unconstrained Environments. Elsevier, 2017,
pp. 103–117.

[226] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[227] Claude Sammut and Geoffrey I Webb. Encyclopedia of machine learning. Springer Science
& Business Media, 2011.

[228] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[229] Tin Kam Ho. “The random subspace method for constructing decision forests”. In: IEEE

transactions on pattern analysis and machine intelligence 20.8 (1998), pp. 832–844.

[230] Yoav Freund, Robert E Schapire, et al. “Experiments with a new boosting algorithm”. In:
icml. Vol. 96. Citeseer. 1996, pp. 148–156.

[231] Pierre Geurts, Damien Ernst, and Louis Wehenkel. “Extremely randomized trees”. In: Ma-

chine learning 63.1 (2006), pp. 3–42.

[232] Juan José Rodriguez, Ludmila I Kuncheva, and Carlos J Alonso. “Rotation forest: A new
classifier ensemble method”. In: IEEE transactions on pattern analysis and machine intel-

ligence 28.10 (2006), pp. 1619–1630.

[233] Vivek J Srinivasan et al. “Quantitative cerebral blood flow with optical coherence tomogra-
phy”. In: Optics express 18.3 (2010), pp. 2477–2494.

[234] Wolfgang Drexler et al. “In vivo ultrahigh-resolution optical coherence tomography”. In:
Optics letters 24.17 (1999), pp. 1221–1223.

[235] Maciej Wojtkowski et al. “Ultrahigh-resolution, high-speed, Fourier domain optical co-
herence tomography and methods for dispersion compensation”. In: Optics express 12.11
(2004), pp. 2404–2422.

[236] R Leitgeb, CK Hitzenberger, and Adolf F Fercher. “Performance of fourier domain vs. time
domain optical coherence tomography”. In: Optics express 11.8 (2003), pp. 889–894.

[237] Benjamin J Vakoc et al. “Three-dimensional microscopy of the tumor microenvironment in
vivo using optical frequency domain imaging”. In: Nature medicine 15.10 (2009), pp. 1219–
1223.

[238] Zhongping Chen et al. “Noninvasive imaging of in vivo blood flow velocity using optical
Doppler tomography”. In: Optics letters 22.14 (1997), pp. 1119–1121.

[239] Enock Jonathan, Joey Enfield, and Martin J Leahy. “Correlation mapping method for gen-
erating microcirculation morphology from optical coherence tomography (OCT) intensity
images”. In: Journal of biophotonics 4.9 (2011), pp. 583–587.



157

[240] Ahhyun S Nam, Isabel Chico-Calero, and Benjamin J Vakoc. “Complex differential vari-
ance algorithm for optical coherence tomography angiography”. In: Biomedical optics ex-

press 5.11 (2014), pp. 3822–3832.

[241] Jonghwan Lee et al. “Multiple-capillary measurement of RBC speed, flux, and density with
optical coherence tomography”. In: Journal of Cerebral Blood Flow & Metabolism 33.11
(2013), pp. 1707–1710.

[242] LaVision Biotech. 2-Photon Microscopy Systems. https://www.lavisionbiotec.
com/products/trim-scope.html. 2020.

[243] Winfried Denk, James H Strickler, and Watt W Webb. “Two-photon laser scanning fluores-
cence microscopy”. In: Science 248.4951 (1990), pp. 73–76.

[244] Fritjof Helmchen and Winfried Denk. “Deep tissue two-photon microscopy”. In: Nature

methods 2.12 (2005), pp. 932–940.

[245] Andreas Ibraheem and Robert E Campbell. “Designs and applications of fluorescent protein-
based biosensors”. In: Current opinion in chemical biology 14.1 (2010), pp. 30–36.

[246] James T Russell. “Imaging calcium signals in vivo: a powerful tool in physiology and
pharmacology”. In: British journal of pharmacology 163.8 (2011), pp. 1605–1625.

[247] Sarah Kretschmer et al. “Autofluorescence multiphoton microscopy for visualization of
tissue morphology and cellular dynamics in murine and human airways”. In: Laboratory

investigation 96.8 (2016), pp. 918–931.

[248] Nathalie L Rochefort and Arthur Konnerth. “Dendritic spines: from structure to in vivo
function”. In: EMBO reports 13.8 (2012), pp. 699–708.
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