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ABSTRACT

Imaging and Computational Methods for Exploring Sub-Cellular Anatomy. (May 2009)

David Matthew Mayerich, B.S., Southwestern Oklahoma State University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. John Keyser

The ability to create large-scale high-resolution models of biological tissue provides an

excellent opportunity for expanding our understanding of tissue structure and function.

This is particularly important for brain tissue, where the majority of function occurs at the

cellular and sub-cellular level. However, reconstructing tissue at sub-cellular resolution is

a complex problem that requires new methods for imaging and data analysis.

In this dissertation, I describe a prototype microscopy technique that can image large

volumes of tissue at sub-cellular resolution. This method, known as Knife-Edge Scanning

Microscopy (KESM), has an extremely high data rate and can capture large tissue samples

in a reasonable time frame. We can therefore image complete systems of cells, such as

whole small animal organs, in a matter of days.

I then describe algorithms that I have developed to cope with large and complex data

sets. These include methods for improving image quality, tracing filament networks, and

constructing high-resolution anatomical models. These methods are highly parallel and de-

signed to allow users to segment and visualize structures that are unique to high-throughput

microscopy data. The resulting models of large-scale tissue structure provide much more

detail than those created using standard imaging and segmentation techniques.
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CHAPTER I

INTRODUCTION

The ability to create large-scale high-resolution models of biological tissue provides an

excellent opportunity for expanding our understanding of tissue structure and function.

This is particularly important for brain tissue, where the majority of function occurs at the

cellular and sub-cellular level. However, reconstructing tissue at sub-cellular resolution is

a complex problem that requires new methods for imaging and data analysis.

Current imaging methods have strong limitations, either in the size of the volume

of tissue that can be imaged, or the resulting resolution of the captured data sets. Imag-

ing methods designed for large-scale volumes, such as MRI and CT, provide very coarse

resolution detail which is sufficient for large anatomical features but insufficient for under-

standing cellular anatomy. Microscopy methods are frequently used to study cells in two-

dimensions while confocal [70] and multi-photon [15] imaging can be used to construct

three-dimensional data sets. Unfortunately microscopes are limited to imaging only tissue

at or near the specimen surface, preventing the analysis of large-scale three-dimensional

anatomy.

This dissertation follows the style of IEEE Transactions on Visualization and Computer
Graphics.
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In this dissertation, I describe a prototype microscopy technique that can image large

volumes of tissue at sub-cellular resolution. This method, known as Knife-Edge Scanning

Microscopy (KESM), has an extremely high data rate and can capture large tissue samples

in a reasonable time frame. We can therefore image complete systems of cells, such as

whole small animal organs, in a matter of days. Because KESM has such a large data

rate, I refer to this technology, and others currently in development by colleagues, as high-

throughput microscopy.

The resulting data sets produced using KESM are often several terabytes in size, mak-

ing them difficult to analyze using standard image processing, segmentation, and visual-

ization algorithms. This is because lengthy imaging times generally dominate the study

of tissue samples using standard techniques. Therefore, high-cost algorithms can be used

to study standard data sets without a significant impact on the time required for the result.

High-throughput microscopy fundamentally changes this framework because the sheer vol-

ume of data produced would take an unreasonable time to analyze using standard methods.

This problem is exacerbated by the fact that microscopy data sets are often more complex

and feature-rich than other large-scale methods such as MRI and CT.

In the second part of this dissertation, I describe algorithms that I have developed to

cope with large and complex data sets. These methods are highly parallel and designed

to allow users to segment and visualize structures that are unique to high-throughput mi-

croscopy data.

1.1. Motivation

The ability to image and reconstruct large volumes of tissue at the microscopic level has

many applications, including:

• Creating databases of tissue features
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• Constructing high-resolution three-dimensional models

• Understanding connectivity in the brain

The methods discussed in this dissertation provide the imaging and algorithmic ground-

work to begin exploring each of these problems.

Creating morphometric databases would allow researchers to compare disease models

with control animals. The usefulness of such a database has been shown by the success of

the Brain Atlas constructed by the Allen Brain Institute (www.brainmaps.org). While this

database allows researchers to explore gene expression patterns in the brain, the resolution

is far too low to allow anatomical reconstruction at the sub-cellular level. High-throughput

microscopy techniques such as KESM provide significantly higher-resolution data sets,

allowing individual cells and their components to be seen.

Constructing high-resolution models of sub-cellular structure and activity can provide

insight into nutrient transport through tissue. The structure and function of microvessels

is of great interest, particularly in neurodegenerative disease and cancer research. While

current microscopy methods can image the small local structure of microvessels, KESM

allows the entire network to be reconstructed.

Reverse-engineering the brain has been revealed as one of the National Academy of

Engineering’s Grand Challenge problems [79]. Confronting this and other such challenges

requires the ability to obtain information about the three-dimensional structure and con-

nectivity of neurons across large volumes. Imaging techniques such as KESM can play an

important role in understanding complex connections that span the entire brain.

1.2. Overview

The techniques presented in this dissertation describe methods for imaging and analysis

of tissue features at the sub-micron scale (0.3µm - 1.0µm) across large volumes of tissue
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(on the order of several cm3). In this dissertation, I describe new methods for imaging,

modeling, and visualizing complex microscopic structures in large tissue samples. The

goal of my research is three fold:

• Advance microscope technology in order to support the imaging of large volumes

of tissue. These new imaging methods provide data sets with a sampling resolution

comparable to or exceeding current standard microscopy methods, such as confocal

or multi-photon microscopy, while allowing large three-dimensional volumes to be

imaged in a reasonable amount of time.

• Develop modeling methods that support large data sets. These include methods for

segmenting structures commonly found in microscopy data sets. These segmenta-

tions are then used to construct models that can be used to perform morphometry and

statistical analysis of biological structures embedded in the tissue.

• Develop visualization techniques that can cope with large data sets. More impor-

tantly, these visualization methods should help researchers understand the structure

of complex microscopic features. In particular, I focus on methods for visualizing

filament structures, such as microvessels, and their relationships to the surrounding

tissue.

In this chapter, I describe the motivation for this work as well as provided an overview

of my methods. In Chapter II I discuss advances that I have made in imaging large data

sets in high-resolution. In particular, I will talk about the development of Knife-Edge

Scanning Microscopy (KESM) and its usefulness in imaging large-scale tissue specimens

at sub-cellular resolution. I will place a particular focus on brain tissue because of the

abundance of highly complex features visible in these data sets as well as the relatively

limited knowledge we have of the sub-cellular structure of the brain in three-dimensions.
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Chapter III describes high-speed image processing algorithms that are used to elimi-

nate noise and other artifacts from KESM images. In particular, I focus on algorithms that

are fast, perform minimal processing, and are highly parallel. These features are important

when working with large data sets in order to maintain high-throughput capture and storage

of the images.

In Chapter IV I focus on fast segmentation algorithms for filament networks, which are

fundamental features in microscopy data sets. These structures consists of vast intercon-

nected networks of thin fibers that span large volumes of tissue. Some examples of filament

networks include microvascular networks as well as the neuronal networks formed by inter-

connected axons and dendrites in the brain. These structures are fundamentally important

to tissue function and become prominent features in high-throughput microscopy data sets.

In fact, high-throughput microscopy methods such as KESM are the only techniques that

allow us to reconstruct the three-dimensional structure of these networks. This is because

they are composed of very thin components that span large volumes, requiring large-scale

high-resolution imaging.

In Chapter V, I discuss segmentation methods for creating biologically accurate mod-

els of microvascular networks. These models become particularly important because of our

limited understanding of the three-dimensional structure of the microvascular system and

provide a means of measuring and comparing these structures.

Finally, in Chapter VI I discuss new methods for visualizing microscopy data. Again,

I focus primarily on filament networks which are particularly difficult to visualize because

of their complexity and the fact that connected components span large portions of a data

set. I describe methods for storing the volumetric data captured using high-throughput

microscopy and using the stored data to selectively visualize microvascular components

based on selected features from a graph query. I then show how these network components

can be related to the surrounding tissue by allowing a user to visualize the relationships
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between microvessels and the surrounding cells.

The main goal of my work in this dissertation is to provide the basic tools required

to analyze and model tissue at the sub-cellular level. Understanding the three-dimensional

structure of tissue at this scale is important in understanding tissue function. This is par-

ticularly true in biological tissues, such as the brain, where function is closely tied to sub-

cellular structure. This work provides advances in both imaging and computational meth-

ods that can be used to extend our knowledge of three-dimensional tissue structure at the

microscopic scale.



7

CHAPTER II

KNIFE-EDGE SCANNING MICROSCOPY

The study of spatial distribution, morphology, and interconnection of cells in the nervous

system has been a primary focus since the beginning of neuroscience. The study of neural

connections started with the development of staining techniques by Camillo Golgi, who

used them initially to study interrelationships of neurons and glia in the olfactory bulb [24]

and cerebellar cortex [22,23]. The staining methods developed by Golgi were also used by

Santiago Ramon y Cajal, who surmised that the visible ”mesh-like” arrangement of fibers

were actually complex networks of independent but interconnected neurons [91].

Reconstructing and modeling the three-dimensional anatomical structure of individual

cells in situ is vital to understanding their function in larger units. To create detailed, three-

dimensional cellular maps of organisms, we require methods for creating volumetric data

sets from blocks of tissue or whole organs. These datasets should also be of sufficient

resolution to allow cells and their processes to be identified and traced. Reconstructing thin

cellular processes also requires that individual sections be accurately aligned and in proper

registration.

There are several well-understood methods for achieving volumetric data sets at the

cellular level. Ultramicrotomy and immunohistochemical labeling have given rise to the

reconstruction of gene expression in the mouse brain [77]. Although methods have been

developed to account for issues that arise in section alignment and warping [33], relatively

thick sections (10 to 20 micrometers) are required to sample the dataset in order to com-

plete the process within reasonable time constraints. Confocal light microscopy is a well-

known method for extracting high-resolution details from tissues stained with fluorescent

dyes [31,39,70,84]. These methods can be used to construct a volumetric dataset [2], how-

ever the presence of backscattered light limits these datasets to sampling that takes place
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on or very near the specimen surface. In addition, the point spread function along the op-

tical axis limits the resolution of optical sectioning. Multi-photon microscopy [15] allows

deeper sectioning but still requires sampling relatively near the tissue surface. Extension

of multi-photon microscopy to depths exceeding 1mm requires photo-ablation such as All-

Optical Histology (AOH) [87]. This technique still uses standard multi-photon microscopy

in consecutive tissue regions, therefore the resolution along the imaging axis is still limited

by the three-dimensional structure of the point-spread function. In addition to resolution

limits, three-dimensional optical methods require the tissue surface to be rasterized using a

laser, making these methods far too time consuming for large tissue volumes.

The use of serial block face scanning electron microscopy (SBF-SEM) [14] for gath-

ering three-dimensional volumetric data at sub-cellular resolution provides a method for

reconstructing small blocks of tissue. Using an in-chamber ultramicrotome, serial sections

(less than 50nm thick) are removed, allowing the block face to be scanned repeatedly by

the SEM. Although this sequential sectioning and scanning produces an aligned dataset

at sufficient resolution to follow even the smallest diameter cellular processes and resolve

cellular organelles, the time required to resolve a single image prohibit it from being used

for large volumes of tissue, such as a whole mouse brain.

In this chapter we describe Knife-Edge Scanning Microscopy (KESM), a novel tech-

nique using light microscopy for dataset acquisition that allows us to section and image

blocks of tissue at the cellular level of detail quickly and automatically. Our imaging tech-

niques allow us to cut and image embedded specimens at a rate of approximately one

section every two seconds. These sections are sampled at sub-micron intervals in all three

spatial dimensions, maximizing the spatial resolution to allow three-dimensional recon-

struction of the entire tissue sampled. The use of serial sectioning allows us to overcome

limits in optical resolution along the imaging axis as well as removes the need for complex

image processing, such as deconvolution [70].
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This technology provides a means of extracting full-scale cellular microstructure from

large tissue samples. We have tested KESM using several en bloc staining techniques that

can be used to answer many open questions in neuroscience. These include creating full-

scale soma maps of the brain, exploring the connectivity of brain microvasculature, and

gathering large statistical samples of neuron morphology.

2.1. Methods

Our primary goal is to develop methods for acquiring high-resolution volumetric datasets

from biological tissue and organs. To this end, we developed and are using the prototype

Knife-Edge Scanning Microscope (KESM). The KESM is designed to act simultaneously

as both a microtome and a microscope, to allow sections as thin as 0.5µm to be cut from

tissue embedded in plastic. We constructed the instrument from a stacked series of me-

chanical stages, a knife/collimator assembly, a microscope, and a high-sensitivity line-scan

camera (Figure 1). Embedded tissue is sectioned using a diamond knife. Concurrent with

cutting the tissue, each section is scanned through the microscope and the subsequent im-

ages are compressed and stored for additional processing to yield three-dimensional recon-

structions.

2.1.1. KESM Design

The most distinctive feature of our design is the knife and collimator assembly. This assem-

bly provides illumination as well as the means to cut individual sections of tissue (Figure

2). The knife/collimator assembly consists of a removable diamond knife module rigidly

mounted to a granite bridge such that the top knife facet is 45◦ to the vertical and per-

pendicular to the optical axis of the microscope. When perfectly aligned, the top facet of

the knife and the specimen plane of the microscope coincide. The collimator assembly is



10

Fig. 1. Knife-Edge Scanning Microscope. The KESM is constructed with three Aerotech
high-precision stages (A), a diamond knife and illuminator (B), modified microscope
(C), and high-sensitivity line-scan camera (D).

slightly adjustable, allowing rotation around two axes for precision orientation of the knife.

The motion of the tissue block under the stationary diamond knife is controlled by a

series of mechanical and air-bearing stages, allowing movement in all three dimensions.

The objective is positioned such that the edge of the knife bisects the objective field-of-

view. In order to improve the resolution of our images, all cutting is performed under water

and uses water-immersion objectives.

In order to maintain the highest possible bandwidth for imaging, specific hardware is

devoted to image capture. The high-sensitivity camera sends data directly to a personal

computer that acts as a camera server. The digital camera works in conjunction with two

frame-capture boards. The twin boards work concurrently to send data from the camera

into a 3-gigabyte frame buffer stored in the server’s main memory.
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Fig. 2. Objective, knife, and specimen photograph (top) and cartoon (bottom) illustrating
light transport through the diamond knife and into the objective for imaging.

2.1.2. KESM Construction

The specimen stage is constructed by stacking three different stages to provide movement

along all three axes. The stages are constructed and assembled by Aerotech Inc. accord-

ing to our specifications. Movement along the cutting axis (x-axis) is performed by an

ABL20030 air-bearing stage. This stage provides smooth motion but will oscillate slightly

around a fixed position. Because of this, all imaging is performed when the stage is moving

at a constant velocity. Movement along the edge of the knife (y-axis) is performed by an

ALS130 linear drive stage and movement up and down (z-axis or depth) is provided by

an AVL112 vertical lift stage. Both of these latter stages are mechanical, not air-bearing,

stages and remain very rigid at a fixed position. All imaging is performed while these axes

are stationary so the rigidity is required. Both the x- and y-axes have a feedback resolution

of 20nm and the z-axis has a feedback resolution of 25nm. All feedback error is well below
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the maximum resolution of the objective and therefore any misalignment will be too small

to be visible in the images.

Image capture is performed using a DALSA CT-F3 high-sensitivity line-scan camera.

The maximum speed of the camera (and thus, the limit of our data acquisition rate) is

44KHz. Since the camera provides a line of 4096 8-bit pixels, our maximum data rate

is 180MB/s. Camera triggering is controlled by either an internal clock or an external

Transistor-Transistor-Logic (TTL) trigger signal. In our case, the TTL signal is sent from

the X-axis stage controller. This allows us to key camera imaging to the stage position

and provides two advantages over using an internal trigger. First, the sampling rate could

easily be set based on stage position. Secondly, basing camera firing on stage position

makes image capture independent of stage velocity. Therefore, any small variance in stage

velocity does not adversely affect image quality.

Image capture from the camera is supported by two PIXCI D3X frame capture cards

(EPIX Inc.). Both cards are required in order to support the maximum data rate for the

camera. To capture and store images, we use the Application Programming Interface (API)

provided with the PIXCI cards. This software also allows some preliminary image pro-

cessing (e.g., formatting) and storage. All stage motion and camera control applications

are programmed in C++, allowing automatic control and image capture. The PIXCI API

is used to format the images as TIFF files and store them on disk after every section is cut

and imaged.

Magnification of the tissue is done with a modified Nikon E600FN brightfield micro-

scope. Two objectives were used to acquire the datasets described in this dissertation: a

Nikon Fluor 10X objective with a 0.3 numerical aperture (NA) and a Nikon Fluor 40X ob-

jective with a 0.8 NA. Both objectives are designed for water immersion and have a working

distance of 2.0mm. The numerical aperture (NA) of each of these objectives allows us to

sample at 600nm and 300nm intervals, respectively [10]. A 2.5X coupler is used to match
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the intermediate field of view of the microscope to the CCD sensor of the line-scan camera.

2.1.3. En Bloc Staining

For Nissl staining, mice were deeply anesthetized using ketamine and xylazine, and then

perfused transcardially using 50 mls of room temperature phosphate-buffered saline (pH

7.4), followed by 250 mls of cold 4% phosphate-buffered paraformaldehyde (pH 7.4). The

mice were then perfused with 100 mls of a solution of 0.1% thionin dye in deionized water,

and the bodies were placed in the refrigerator (4◦C) for 24 hours. This is a novel way

to introduce stain into the whole mouse brain, since most staining occurs on sectioned

tissue. Perfusion of the thionin stain speeds up the staining process, which was previously

accomplished in our laboratory entirely through diffusion, taking 2 or more months to

complete. In this case, after 24 hours the brains were then removed from the calvaria

and placed in a fresh solution of 0.1% thionin and left at 4◦C for 7 days. The brains were

destained and dehydrated through a graded series of ethanols starting with 50% ethanol and

water and increasing to 100% ethanol over a time period of 6 weeks. After three changes

of acetone (2-4 days in each solution), the brains were then embedded in araldite plastic

following a standard protocol [1], with the exception that each step needed to infiltrate the

brains with araldite took 24 hours. KESM sectioning requires that the whole brains be

completely dehydrated and infiltrated with araldite plastic. Normal plastic embedding is

typically carried out on much smaller pieces of tissue, so we have modified the processing

steps to allow us to embed whole mouse brains that we can cut using the KESM.

For Golgi-Cox staining of individual neurons, mice were deeply anesthetized using

isoflurane inhalant anesthesia and then decapitated. The brains were quickly removed and

placed into a Golgi-Cox fixation solution containing, 1% potassium chromate, 1% potas-

sium dichromate and 1% mercuric chloride in deionized water. The brains were left in this

solution, in the dark, at room temperature for 10-16 weeks. The brains were then rinsed in
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deionized water overnight in the dark, and placed in a 5% ammonium hydroxide solution

in deionized water for 7 to 10 days, in the dark and at room temperature. The brains were

then rinsed again in deionized water at room temperature for 4 hours and then dehydrated

through a graded series of alcohols and embedded in araldite using the same protocol and

times described previously for Nissl-stained mouse brains.

2.2. Results

In this chapter we demonstrate the use of KESM to section and image three datasets. Since

each dataset can consist of thousands of sections, we provide examples of individual sec-

tions as well as images showing cross sections of each 3D dataset. The first dataset is mouse

brainstem and spinal cord that was stained en bloc with the Nissl stain, thionin. This dataset

was cut into 1µm thick sections and the tissue sections were imaged at a 0.6µm resolution

(Figure 3 and Figure 4). The sampling resolution used by the KESM is large enough in

all three dimensions to allow full reconstruction of cell soma in the brain. In addition, the

structure of the cell soma can provide some information about the type and orientation of

the cell. With the development of segmentation algorithms designed to parse these complex

data sets, this opens the door to constructing complete maps of cells containing cell type,

position, and orientation. This would provide a high-resolution atlas to which other data

sets can be mapped and related. The speed at which KESM data sets can be imaged also

allows biologists to counterstain structures of interest with Nissl. These counter-stained

structures can then be put in context by mapping the volume (using the Nissl-stained cells

as fiducials) to the whole-brain map.

We provide an example of this in the second dataset, where we followed a similar Nissl

staining process and introduced India ink in order to enhance the contrast of the vasculature.

We then sectioned the entire mouse olfactory bulb (Figure 5 and Figure 6). Again, the
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Fig. 3. Coronal section of mouse brain stem. The complete section is shown (left) with two
close-up inserts (right). The overall resolution of the image is 0.6µm/pixel and the
section thickness is 1µm.

sampling resolution is high enough to image even the smallest capillaries that make up

the brain microvasculature. Analysis of these images allows us to study the relationship

between brain microvasculature and the cells in the olfactory bulb.
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Finally, we stained a mouse brain en bloc using a slight modification of the Golgi-

Cox method (see Section 2.1) and scanned several thousand sections of olfactory bulb and

cortex to demonstrate fine alignment of sections and the ability to segment fine fibers (Fig-

ure 7 and Figure 8). For the Golgi stained brain we used 0.5m thick sections and imaged

with a 40X objective, which provided a sample resolution of 0.3µm. Even when using

a high-resolution objective, Golgi-stained tissue can be difficult to resolve using standard

techniques because of the low resolution along the imaging axis. When thin sections are

taken, each section provides less information on its own, however we are able to extract

more detailed spatial information for the fiber in three-dimensions. The use of Golgi-Cox

allows a more comprehensive study of the morphology of cells in the nervous system. Al-

though the percentage of cells stained is relatively small, the sample size is quite high when

compared to the small regions that can be imaged using optical sectioning. This provides

a much larger statistical sample from which to characterize cell morphology. In addition,

the cells are imaged ”in context”, making their relationships to other cells apparent. This

is important in neural simulations and provides a broader base for the stochastic generation

of cells and connectivity in computational models.

2.2.1. Reconstruction

Given a three-dimensional dataset, standard techniques exist for surface extraction and

visualization. The alignment of consecutive sections is such that contours can be created

using software packages such as Amira for visualization of vasculature and neurons (Figure

9). Generally, some processing is required in order to remove or reduce lighting artifacts,

however these result in little to no data loss and can be applied as the images are stored.
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2.3. Discussion

Imaging of biological tissues and organs at a cellular level is an emergent technology,

which promises to elucidate mammalian brain anatomy in unprecedented detail and also

has the potential to elucidate cellular organization in other organs both normal and those

with pathology related to a wide range of disorders. We have shown how our techniques

can help to reveal the density, morphology, and interconnectedness of neurons in the ro-

dent brain. Our KESM instrument makes possible the three-dimensional microscopy of

large biological specimens the size of an entire adult mouse brain. The instrument has

been designed to volume digitize a specimen (e.g., a plastic-embedded tissue block) at a

maximum sampling resolution of 160nm in the image plane at rates up to 200Mpixels/s.

Depth resolution in this case is typically 500nm using a 40X objective, and 1000nm us-

ing a 10X objective. Our initial results on brain tissue show the feasibility of the KESM

method to gather large, high-quality light-microscope datasets of whole tissue / organ sam-

ples. The speed of the KESM is such that an entire embedded mouse brain (1 cubic cm) can

be scanned in one month of one-shift operation, yielding an uncompressed volume dataset

of 15 terabytes (15,000 gigabytes). Although our primary research interests are focused

on the central nervous system, colleagues have expressed interest in other organ samples

including liver, kidney, heart, and lung.

One current limitation of KESM is the lack of significant research on en bloc staining

techniques. We have developed novel methods for staining brain tissue with both Golgi

and Nissl stains; however these stains can supply only limited information. Clearly other

absorption light microscopy stains are of interest. Transgenic animals should provide a

good solution to the problem of en bloc staining, but would require some technological

modifications to our current techniques. In particular, since many transgenic animals are

engineered to express fluorescent proteins, we need to modify our current system to allow
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for fluorescence imaging, and this modification is currently underway.

The KESM can be classified as a small-scale planing machine, which uses a single-

point cutting tool. An important obstacle to obtaining high-quality data is self-excited os-

cillations (chatter) generated during the cutting process, when sequential sections are being

removed from the sample (McCormick, 2005). As is visible in some of our sample images,

chatter continues to be a problem both in the time it takes to filter it out and the overall

quality of the final dataset. Altering the cutting velocity for each pass has significantly

suppressed the chatter, as described above. Modifications to the instrument to produce a

chatter-free operation by increasing the rigidity of the cutting tool also have helped sig-

nificantly to reduce chatter. In addition, development of en bloc staining and embedding

methods yielding specimens that are embedded in harder plastic resins also have helped to

reduce the problem of chatter. The exact explanation of the chatter phenomenon encoun-

tered with the KESM and its suppression has yet to be completely elucidated. Extensive

modeling of the cutting process, including the study of chatter and chatter suppression has

been conducted in support of the (metal) machining industry, but the precision sectioning

of plastic at sub-micro thickness has hitherto attracted virtually no attention from the me-

chanical engineering community. Traditionally this group has focused on the work piece

geometry and surface quality, and has ignored the tissue ribbon (”chip”) of interest in phys-

ical sectioning/imaging of tissue.

The image acquisition speed (approximately 7mm2/sec using a 10X objective) pro-

vided by the KESM as well as the image resolution (600nm/pixel using a 10X objective)

can allow us to create full-scale maps of entire organs in a reasonable time frame. Although

we are currently limited to tissue volumes the width of the field of view of the objective

(2.5mm at 10X), we are developing cutting and alignment techniques that can be used to

combine adjacent volumes and thereby eliminate constraints on specimen size.

Alzheimer’s disease (AD), the most common cause of dementia in the elderly, is a
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complex central nervous system (CNS) disorder characterized by progressive loss of cogni-

tive abilities. Pathological hallmarks of AD are: extracellular amyloid plaques, intracellular

neurofibrillary tangles and neuronal cell death [?]. Current research in the pathogenesis of

AD has implicated various components of the neurovascular unit, which contribute to the

dynamic regulation of microvascular permeability. Specifically, atherosclerosis, degenera-

tion of endothelial cells and decreased microvascular density are vascular factors that play

a role in the pathogenesis of AD [28,51]. Cerebral hypoperfusion is a major clinical finding

in AD and likely plays a critical role in the pathogenesis of AD11. Vascular endothelial

growth factor (VEGF) is protein that promotes the proliferation and survival of vascular en-

dothelial cells and enhanced VEGF immuno-reactivity has been observed in the neocortex

of subjects with AD as compared to elderly controls. Ultimately, the critical pathological

feature in AD is significant loss of cortical cholinergic neurons, which leads to memory loss

and dementia in affected individuals. Numerous reports link AD pathology to the presence

of extracellular amyloid deposition, and to the presence of pathologic or altogether missing

microvessels, and to the presence of increased VEGF activity [92]. It has been suggested

that all of these changes may result in perivascular cholinergic neuron loss that is causal

in the cognitive decline of AD [34]. However, to date, no one has documented specific

co-localization of pathologic or missing microvasculature, VEGF, amyloid, and missing

cholinergic neurons in the AD neocortex at the cellular level. We propose that the KESM

is the ideal instrument to carry out the necessary three dimensional studies needed to elu-

cidate the complex localization of multiple components involved in AD pathology.



20

Fig. 4. Re-sectioning of the data set constructed using sections like those in Figure 3. A
large cross-section of the data set (mouse brain stem and spinal cord) is shown (top)
as well as a close-up (bottom). The section thickness (resolution along the vertical
axis) is 1µm. The labels indicate the pial surface (PS), central canal (*) and a blood
vessel (V).
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Fig. 5. Coronal section of the mouse olfactory bulb. The complete section is shown (left)
along with two close-up inserts (right). The tissue is stained with Nissl along with
perfusion of India ink through the vascular system. The optical resolution of the
image is 0.6µm/pixel and the section is 1µm thick.
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Fig. 6. Sagittal re-sectioning of the India-ink and Nissl stained olfactory bulb shown in Fig-
ure 5. The sections are 1µm thick (giving 1µm resolution along the vertical axis).
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Fig. 7. Coronal sections of Golgi-stained mouse cortex. The optical resolution along the x
and y axes is 0.3µm/pixel and the section thickness is 0.5µm. The complete section
is shown (left) along with two close-up inserts (A and B). Because Golgi-stained
tissue is sparse, small cross-sections of the fibers are generally only visible in a
single section. We have shown a close-up (C) created by combining 20 consecutive
sections from the associated region into a single image to show the fiber structure of
the cell processes.
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Fig. 8. Sagittal re-sectioning of the data set shown in Figure 7. A single slice is shown
(top). Because Golgi-stained tissue contains sparse data, fibers can be more easily
seen by combining several slices (middle). A single neuron is shown by combining
300 slices (bottom). The section thickness is 0.5µm (vertical axis).
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Fig. 9. Surface reconstructions of blood vessels (left) from the mouse olfactory bulb (Figure
5 and 6) and cells stained with Golgi-Cox (right) from mouse cortex (Figure 7 and
8). The neuron labeled in purple (with neighboring axon labeled in yellow) are also
shown in Figure 8 (bottom). Nearby astrocytes (green) are shown supporting a blood
vessel (red).
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CHAPTER III

IMAGE PROCESSING

Captured KESM data sets are subject to various forms of noise and other imaging artifacts.

While some of these are common to other forms of microscopy, most the artifacts that

we consider are unique to KESM. In this chapter we will present methods for processing

KESM images in order to remove imaging artifacts, thus creating more useful volumetric

datasets for subsequent analysis.

3.1. KESM Volume Noise

KESM exhibits several types of noise, generally involving small lighting irregularities due

to knife shape, illumination frequency, and knife vibration during the cutting process.

3.1.1. Lighting Defects

The most visible lighting defect is a variation in illumination across the x-axis. There are

two main sources:

• Inconsistent illumination across the surface of the knife. This results in a steady

change in the overall illumination along the x-axis of the image.

• Defects (e.g. chips and rough areas) on the surface of the knife edge itself. These

defects cause refraction and reflection variations at the knife surface, also resulting

in uneven lighting across the knife edge. This is visible in images as brighter or

darker strips along the x-axis and extending along the y-axis (Figure 10).

Regular lighting defects are also visible along the y-axis. The major source is fluctua-

tions in the illumination over time. This produces an oscillating fluctuation in illumination

creating visible stripes in the image. Depending on the sampling rate of the image, the
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Fig. 10. The overall intensity shift along the x-axis is due to knife misalignment while two
knife defects leave visible streaks in the image (arrows).

frequency of the fluctuations changes in the image space, however they are constant over

the time domain.

3.1.2. Knife Chatter

Lighting defects such as those listed above form regular patterns in the output data that are

easily removed from any given image. Unfortunately, irregular illumination tends to occur

in KESM images due to knife vibration. Knife chatter is well known in machining [88], but

usually is not an issue in imaging, since other imaging techniques do not image data as it

is being cut. We use several mechanical techniques to reduce knife vibration, including in-

creasing the mechanical stiffness of the specimen and cutting tool and randomizing cutting

velocities in order to prevent reinforcement at any frequency. Even with these precautions,

knife vibration is visible in the resulting image as changes in illumination along the y-axis

(Figure 11).

When using KESM it is important to sample as close to the edge of the knife as possi-

ble in order to get the best alignment between sections as well as to ensure that the section is

coherent and not warped or torn due to water current or knife friction. Sampling at the very
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Fig. 11. High frequency chatter is visible throughout the image and particularly bad cases
(arrows) may cause loss of information.

tip of the knife, however, makes knife vibration more visible since light intensity quickly

drops past the edge of the knife. Knife vibration is therefore visible as dark horizontal

stripes across the image which, due to misalignments described above, may or may not

be continuous along the x-axis. In addition, particularly severe occurrences of chatter can

cause loss of data.

3.2. KESM Image Processing Techniques

We have assembled several known imaging algorithms to help remove lighting irregular-

ities. New methods are also demonstrated that take advantage of the unique noise found

in KESM images in order to better prepare the volumetric datasets for segmentation. In

addition, we specifically focus on image processing algorithms that require only local in-

formation in an image so that processing can be distributed across several systems for faster

results. Such parallelism is important for maintaining the high data rate that gives KESM
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an advantage over other forms of microscopy.

3.2.1. Light Normalization

Equalizing the illumination across the x-axis of the image is the first step in removing noise.

Since these irregularities are due to misalignment of the camera or artifacts in the lighting

pipeline, they are repeated over every sample in every image. For example, if an artifact

present in the image is due to a defect in the knife (such as a chip in the knife surface), this

artifact will be present in every sample at a given x value in the image. This type of artifact

is also visible even when tissue is not being sectioned. The constant presence of this type

of artifact allows a base sample without tissue to be imaged at any time during the cutting

process. Since these variations of lighting are constant during the sectioning process, each

sample taken along the y-axis can be normalized using this base light vector. Note that such

base information might need to be taken at regular intervals, since a knife might gradually

develop surface defects, or gradually move out of alignment.

Cyclical illumination artifacts produced by high-frequency noise from the light source

are less consistent between images. Since the initial sample can take place at any point

during the illuminator’s frequency fluctuation, a phase shift is observed along the y-axis.

We compensate for this by sectioning slightly less tissue than the knife and objective allows.

This leaves a small portion of the knife edge visible without any interfering tissue. A

sample line of pixels along the edge of the image can then be used to normalize light

frequency fluctuations along the y-axis.

3.2.2. Removing Chatter Artifacts

Knife chatter artifacts are more difficult to remove from KESM images. Although they are

lines that extend along the x-axis, they tend to be discontinuous and not perfectly (though

nearly) horizontal. This precludes scaling the line by any given scalar value, such as the



30

mean of the current sample. Local smoothing is a method often used to eliminate high-

frequency noise [25]. However, it is difficult to apply these techniques to KESM data since

most of the information is high frequency and low contrast. Instead, we scale the value

of a pixel in the sample by the mean of a small window of pixels surrounding the current

pixel in the sample. As this window moves across the image, it removes streaks caused by

tissue folding and knife vibration by scaling the intensity values up to match other pixels in

the sample. This preserves the high-frequency details, providing that there was very little

data lost due to the intensity shift, and removes the streaks making segmentation a simpler

matter.

3.3. Results

We have applied these techniques to many different KESM data sets and have come to

rely on them as a pre-processing step before segmentation. Here we present these methods

for processing Nissl-stained mouse brain stem and cerebellum. This dataset was selected

because of the high frequency chatter in the cerebellum and low contrast in the spinal cord

(Figure 12 - 14).
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Fig. 12. Original mouse brain stem section with close-up.
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Fig. 13. Removal of lighting and knife irregularities.



33

Fig. 14. Final pass for the reduction of knife chatter. High resolution views are taken from
the same image as Figure 13. Images are shown after removal of light artifacts (left)
and after removal of chatter (right).
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3.4. Block Alignment

Since the tissue in KESM imaging is destroyed during the imaging process, any tissue

outside the field of view (FOV) is permanently lost, thereby limiting the section width that

can be imaged using KESM.

In this chapter, we describe a technique for overcoming this constraint. We make two

major contributions:

• We describe an automated sectioning algorithm that allows neighboring tissue, out-

side the FOV of the objective, to be imaged in later passes.

• We justify the use of simple affine transformations that compensate for deformations

in the captured data set due to our sectioning technique.

3.4.1. Lateral Sectioning
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Fig. 15. KESM lateral sectioning problems. (a) KESM performs imaging while cutting. (b)
Small errors in the roll of the knife can (c) cause damage to un-imaged tissue. (d)
Taking several consecutive sections stop tissue damage but may cause the objective
to come into contact with the tissue.

In order to image larger specimens, we perform lateral sectioning across the specimen

surface. In traditional KESM, two motor stages are used during the cutting process. One

vertical lift stage is used to adjust the level of the specimen relative to the knife. The second
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stage moves the specimen under the knife to perform cutting. Our lateral sectioning tech-

nique requires the use of an additional stage that moves orthogonal to both of these axes.

In our current KESM setup, this stage is already present and used for accurate positioning

of the specimen under the knife.

There are two ways to perform lateral sectioning, however care must be taken so that

un-imaged tissue is not damaged.

• Lateral sections can be taken across the surface of the knife. Due to small misalign-

ments in knife roll, this can cause damage to un-imaged tissue outside the FOV of

the objective (Figure 15b and c).

• This damage can be prevented by sectioning an entire column at a time. The distance

between the knife edge and the objective limits the cutting depth because the side of

the objective will come into contact with the un-cut specimen block (Figure 15d). In

addition, as the cutting depth increases, there is more contact between the edge of

the knife and the neighboring tissue. This can cause tearing of the tissue and induce

knife vibrations [88].

3.4.1.1. Stair-Step Sectioning

We use a simple cutting algorithm that avoids both of these problems by cutting small

stacks of images in a stair-step fashion (Figure 16). In order to avoid damage to the tissue

or microscope, we must ensure that the cutting depth d is:

• large enough so that the overhanging part of the knife does not cause damage to

un-imaged tissue

• small enough so that the microscope objective does not make contact with un-cut

tissue
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• small enough to keep knife vibrations and tissue tearing to a minimum

The first two constraints are easy to achieve because the focal distances of many opti-

cal objectives are 1mm to 2mm. We do, however, choose to minimize the column depth in

order to minimize knife vibrations due to contact between the tissue and the knife.

The degree of knife misalignment is difficult to accurately measure. We can determine

an upper bound for the knife misalignment based on the imaging constraints of the KESM.

In order for the entire tissue section to be in focus, both points of the knife edge within the

FOV of the objective must be within the focal depth. This means that the angle of the knife

θ is constrained by:

θ ≤ arctan
(

FD
FOV

)
(3.1)

where FD is the focal depth of the objective and FOV is the field-of-view. If the roll

angle of the knife is greater than θ , this can be detected by the user because part of the

image will be out of focus. If θ complies with the above constraint, the angle of the knife

cannot be detected using the imaging hardware available in KESM. Therefore, we compute

a worst-case depth d based on the maximum possible un-detectible value of θ :

d = Lk sinθmax−FD (3.2)

where Lk is the length of the knife (Figure 17) and θmax = arctan
( FD

FOV

)
.

3.4.1.2. Implementation

We implement stair-step sectioning by maintaining a height field of the tissue surface. We

can then constrain cutting so that the height difference between two columns never exceeds

the calculated value d from Equation 3.2. Changes to the cutting parameters (e.g. column

thickness) can be handled robustly by simply resampling the height field in order to insure

that there is no loss in data. The algorithm used to constrain the sectioning process is shown
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Fig. 17. Misalignment of the knife relative to the focal plane. θ represents the maximum
undetectable misalignment. In practice, θ is quite small resulting in d < 3µm.

in Algorithm 1.

3.4.1.3. Tissue Damage

During the sectioning process, some tearing occurs at the interface of two neighboring

columns (Figure 18). Our sectioning experience tells us that the damage is less than 5µm

in width in most cases. For our 10X (0.3 NA) objective, the horizontal pixel resolution is

0.6µm and the FOV is 2.5mm. This results in an average data loss of 0.2%.
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Algorithm 1 Stair-step sectioning
nNumO fCols⇐ (int)(dTotalBlockWidth/dColWidth)

nCurCol⇐ 0

Initialize z positions in all columns

while nCurColZ < nMaxBlockDepth do

for nIndexRibbon to nPlankDepth do

Section a tissue ribbon

end for

nPlankT hickness⇐ nRibbonT hickness×PlankDepth

if nCurColZ > (nNextColZ +nPlankT hickness×2) then

nCurCol⇐ nCurCol +1

else

nCurCol⇐ nCurCol−1

end if

Update nCurColZ

end while

Knife 

Cutting

direction

Damaged tissue 

y

z

x

Fig. 18. Tissue damage due to lateral sectioning. (left) Damage occurs due to tearing at the
interface of two columns. (right) This results in some data loss at the edge of the
image (arrow).
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3.4.1.4. Distortion

As mentioned in the previous sections, small misalignments in the knife orientation are

difficult to detect and result in the knife contacting the specimen surface at a slight angle

θ . Although the roll angle of the knife is the only misalignment that can cause unwanted

tissue damage, note that it is also possible for there to be a slight yaw misalignment (Figure

19a). Both of these knife angles cause each column to be imaged at a slight skew (Figure

19b).

When the image stacks are placed next to each other, this results in misalignment

at the interface between columns (Figure 19c). We fix this misalignment by applying a

translation to each column to compensate (Figure 19d). The direction of translation parallel

to the plane created by the column interface. Each component of the translation (x and z)

is proportional to the angle of misalignment. We note two important properties of these

offsets:

• The offsets are based on knife misalignment along two axes. These angles are too

small to be measured with the KESM optics but can produce noticeable distortion in

the data set.

• Since the offsets are based on the knife angle, they are constant throughout the entire

data set.

• Practical constraints on the knife angle (discussed above) limit these offsets to very

small values (1-4 pixels).

In our initial experiments, we attempted to determine these offsets automatically by

aligning images representing the interface between the columns. The major difficulty with

this approach is that tissue tearing, and therefore data loss, occur at this interface. Although

it is possible to acquire image data slightly ”inward” of the interface, this sampling was too
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coarse to allow effective alignment based on image data alone.
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Fig. 19. Knife misalignments cause distortions. (a) Errors in knife yaw can also effect the
data. (b) Both yaw and roll cause each column to be slightly skewed. (c) Aligning
image data shows the misalignment between columns. (d) We can align neighbor-
ing columns by applying a translation along the interface plane.

Since the knife misalignments are constant throughput a data set, we found that the

offsets need to be determined manually only once. This was done by selecting a small vol-

ume of tissue at the interface of two neighboring columns. These volumes were aligned by

using filament structures, such as vasculature and neuronal processes, as fiducials. Many

of the larger filaments have trajectories that can be interpolated through missing data at the

interface. After an initial estimated alignment, we can then explore several other samples

along the interface to evaluate and refine the offsets. Since imaging can occur uninter-

rupted for several hours at a high data rate (approximately 30GB/hour), one-time manual

alignment (requiring only a few minutes) was an efficient method for determining offsets

between neighboring columns.

3.4.2. Results and Conclusion

We have used these sectioning and alignment techniques to increase the volume of tissue

imaged using KESM. We have tested these techniques using two data sets:

• Mouse brain microvasculature stained using India-ink perfusion. This creates a high-

contrast data set containing a dense network of blood vessels (Figure 20).
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• Rat somatosensory cortex stained with thionin (Nissl). This data set is lower contrast

than the India-ink perfusion and contains significantly more data. In particular, cell

nuclei of all neuronal and glial cells are visible. In addition, vasculature is visible as

unstained filaments which were used as fiducials for alignment.

These techniques have allowed us to image large volumes of mouse spinal cord and rat

cortex (Figure 21), well beyond the capabilities of optical sectioning techniques and single-

column KESM.

Fig. 20. Volume visualization of mouse spinal cord stained with India-ink. The tissue sam-
ple is approximately 2mm x 1mm in x and y. Several thousand sections were used
to create the composite image (approximately 1mm deep).
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Fig. 21. Several columns of aligned rat brain. These sections include somatosensory cortex
(left and right) and hippocampus (center). The inset shows a close-up of somatosen-
sory cortex.
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CHAPTER IV

FILAMENT SEGMENTATION

Filaments are common structures in biomedical imaging. Vascular trees are visible using

many common imaging techniques such as MRI and CT, while cellular and sub-cellular

structures are visible using microscopy [70]. The advent of new methods in high-throughput

microscopy allows sub-cellular imaging on a much larger scale. These techniques create

data sets that embed complex volumetric structures, such as neuronal and microvascular

networks, consisting of vast numbers of interconnected filaments. These networks pose a

unique problem in segmentation. The filaments are very thin and therefore must be im-

aged at a high resolution. In addition, they span large volumes of tissue. Volumetric data

sets embedding comprehensive filament networks are therefore very large, even though the

volume of the embedded network is often < 6% of the volume of the entire data set.

We present a framework for segmenting complex filament networks stored in volu-

metric data sets. We use a heuristic tracking method to create a model of the network. This

model consists of filament centerlines, which provide an estimate of the internal medial

axis of the network, including filament position and connectivity. We then use encoding

based on Dynamic Tubular Grids [65] to store the volumetric data representing the network.

In addition to providing significant compression, this technique can be used to eliminate

data outside of the network, resulting in reduced noise and cleaner visualization. We show

that our segmentation algorithm is highly parallelizable and can be run entirely on high-

performance graphics hardware for fast results.

In this chapter we focus on segmenting data sets produced using high-throughput mi-

croscopy, since the structures embedded in these data sets are particularly difficult to seg-

ment using standard techniques due to their size and complexity. In particular, we will

demonstrate our methods on data sets produced using Knife-Edge Scanning Microscopy
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[52] and Array Tomography [61]. Both of these imaging techniques produce volumetric

data sets embedding complex interconnected networks (Figure 22). We also test our algo-

rithm on standard biomedical data sets by performing vessel segmentation in CT images

and fibrin protein segmentation in confocal microscopy images.

(a) (b)

(c) (d)

Fig. 22. Cropped sections of KESM (a) and Array Tomography (b) images. Imaging and
staining artifacts, noise, and under-sampling cause gaps in microvessels (c) while
neuronal filaments in AT images are have small surface details that interfere with
tracking (d).
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4.1. Previous Work

Many filament tracking algorithms are available for standard medical imaging applications

such as CT and MRI image segmentation. An extensive review on the subject is given

by Kirbas, et al. [35]. These focus on the segmentating large blood vessels, often using

extensive image processing as an initial step [?, 93]. Multi-scale techniques [?, 16] can be

used for feature detection, however most of the filaments in high-throughput microscopy

data are thin, requiring the highest level of detail to resolve. This makes multi-scale seg-

mentation impractical since the resulting down-sampling destroys filament information.

Centerline detection [?, 86] and thinning [29] are generally based on selecting threshold

values. These techniques work for high-contrast data, however finding useful thresholds

in high-throughput microscopy data is difficult since noise often causes misclassifications.

These misclassifications result in topological errors in the resulting network centerline, as

well as false-positives due to over-segmentation. In addition, thin filaments often drop be-

low the sampling resolution, creating gaps in threshold-based segmentations (Figure 22c).

Region growing approaches [66, 81] require some initial surface, which is difficult to find

given the complex topology of the embedded network. The methods that we describe in

this chapter could potentially be used as an initial condition for region growing approaches.

Template matching methods [80] are robust in the presence of noise but require a large tem-

plate library containing oriented templates at multiple scales. In addition, filter matching

is performed on every voxel even though only a small percentage of the volume contains

structural data.

Vector tracking algorithms [3] are effective for continuous structures with a well-

defined surface, but have trouble with low-contrast filaments or filaments with ill-defined

or “fuzzy” surfaces (Figure 22d). Vector tracking methods also have some aspects in com-

mon with Lagrangian tracking methods used for flow visualization [73] and tractography
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in Diffusion Tensor MRI (DT-MRI) [6]. Although these methods perform particle-based

vector tracking, they require an underlying vector field for particle advection. Our data sets

contain embedded networks without an underlying flow field. We must therefore compute

the path of these embedded filaments based only on scalar intensity information.

Many vessel tracking algorithms in the literature also take advantage of the tree-like

structure of vessels. This assumption is applicable for MRI and CT, where only large

vessels are imaged, but is not true at the microscopic level where the capillaries form an

interconnected network. The algorithm that we propose works for both cyclic and acyclic

structures and has aspects in common with both tracking and template matching methods.

Also, we do not require pre-processing of the image data.

4.2. Filament Tracking

We are given a three-dimensional volume data set Λ of uniformly-spaced samples of a bi-

ological specimen containing a filament network. The biological tissue is stained such that

samples on the network exhibit one intensity value In while samples outside the network

exhibit some background intensity Ib. The algorithms described here assume that In > Ib.

Images with dark filaments can be handled with minor adjustments to the given cost func-

tions, or by inverting the input images.

If the data set Λ represents an ideal image of the network, we could set a thresh-

old value It that specifies the boundary between the network and the surrounding tissue.

However, the data set is generally corrupted by imaging artifacts and noise. These include

artifacts caused by tissue preparation and staining. In addition, the sampling resolution is

not always high enough to resolve all filaments in the network. We first create a model of

the structure and connectivity of the filament network embedded within Λ.

We track individual filaments through the data set using a predictor corrector algorithm
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(Figure 23). We estimate the centerline of a filament by determining the path of a single

particle, which we refer to as a tracer, over time as it moves down each filament. At any

given time t, the tracer has three properties:

• The tracer position pt on the filament centerline.

• A vector vt representing the estimated trajectory.

• A radius rt defining the size of a template used to match the filament cross-section.

Given a tracer state at time t, we use an update algorithm that computes the next

tracer state at time (t + 1) (Algorithm 2). The functions PredictPath, CorrectPosition,

and EstimateSize are used to update the properties of the tracer over time. These functions

are described in the following sections.

Algorithm 2 The predictor-corrector algorithm used to determine the next point along the

axis of the filament.
Function TracerStep

Input: pt, vt, rt

Output: pt+1, vt+1, rt+1

v′ = PredictPath(pt, vt, rt)

p′ = pt +∆tv′

pt+1 = CorrectPosition(p′, v′, rt)

rt+1 = EstimateRadius(pt+1, v′, rt)

vt+1 =normalize(p′−pt)

4.2.1. Predicting Trajectories

Given the current tracer properties, we specify a heuristic method used to estimate the new

trajectory v′ such that an estimate of the tracer position p′, where
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Fig. 23. A predictor-corrector algorithm. An initial prediction of the particle path (P) is
made and the particle is advanced. A correction step (C) then refines the particle
position to lie on the filament axis.

p′ = pt +∆tv′ (4.1)

lies close to the filament centerline. In order to find the optimal direction vector, we choose

a series of vectors V = [v0,v1...vn] that lie within a solid angle α of the tracer trajectory vt.

We then select the vector vi that it is most closely aligned with the trajectory of the filament

centerline.

For each vector, we take a volume sample SP(x,y,z) starting at pt and oriented such

that the z-axis for SP is aligned with the vector vi ∈ V (Figure 24). We specify the cost

function Cpred , which is minimized when these conditions are met.

Cpred = ∑
x,y,z

w(x,y)
∣∣SP(x,y,z)− ftemplate(x,y)

∣∣ (4.2)

Here, ftemplate(x,y) is a template function, described below, and w(x,y) is a weight function

used to limit sampling outside of the filament surface. Note that SP is the only function with

a dependence on z. Thus, we consider SP to be a series of images of the cross section of

the filament. These images are compared to a template and then summed in order to create

an integrated image representing the difference between the filament cross-section and the

template. This integration process reduces the effects of artifacts and noise in the data set.
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The function ftemplate(x,y) is a user specified template that matches the filament cross-

section. Most biological filaments have a cross-section that is mostly circular. In cases

where filaments have fine surface details, integration along vi tends to blur these details.

Therefore, the filament cross section is generally well-represented using a Gaussian tem-

plate:

ftemplate(x,y) = G(rt) (4.3)

where G is a Gaussian function scaled to the range [0.0,1.0] with a standard deviation

equal to the filament radius. The weight function w(x,y) is used to eliminate bias from

other nearby filaments. This weight function also makes Cpred rotationally invariant along

vi since the actual sample image SP is more easily collected as a cube. For w(x,y) we use

a circular Gaussian slightly wider than the template function. These functions are shown

in Figure 25. An optimal direction estimate v′ is selected by finding the vector vi with the

lowest cost.

pt
vt

v0
v1

vN-1
vN

vi
pt

Fig. 24. Sample vectors used to find the optimal tracer orientation (left). For each vector, a
volume sample SP(x,y,z) is taken and compared to a template in order to minimize
the cost function Cpred . The volume sample is taken such that the z-axis of SP lies
along the vector vi (right).
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(a) (b) (c) (d)

(a) (b) (c) (d)

Fig. 25. Predictor evaluation of a low-contrast filament (unaligned [top] and aligned [bot-
tom]). (a) SP integrated over a small volume along vi, (b) ftemplate, (c) w, (d) Cpred .
The average image intensity Cpred

n2 is 31.2 (aligned) versus 37.8 (unaligned).

4.2.2. Position Correction

When moving the tracer along the estimated trajectory v′ of the filament centerline, there

is generally some error in the final position due to the finite number of vectors in V used

for prediction. We correct the new tracer position by taking a second series of samples. We

test a set of points P = [p0,p1...pm] that lie in the plane defined by p′ with normal v′ within

ε distance of p′. For each point, we take another volume sample starting at pi ∈ P in the

direction of −v′ (Figure 26). The cost function used to evaluate each sample point is given

by
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Ccorr = ∑
x,y,z

[SC(x,y,z)G(rt)] (4.4)

where SC is the volume sample for pi and G(rt) is a Gaussian scaled to the range [0.0,1.0]

with standard deviation rt . The new tracer position is selected based on the position that

maximizes the value of Ccorr.

After the final position pt+1 is computed, we set the tracer trajectory to the actual

value

vt+1 =
pt+1−pt
||pt+1−pt||

(4.5)

which takes into account the final position pt+1 computed using both prediction and cor-

rection steps.

pt
p’

pN-1
pN

p1

p0

pt pi

SC(x,y,z)

Fig. 26. Sample points used to correct the position of p′ (left). The volume sample SC is
oriented along the direction of −v′ (right).

4.2.3. Template Radius

The final step in our tracking algorithm updates the radius rt of the template. Adjusting the

size of the template is necessary to allow our algorithm to better match both the template

and weight functions to the filament cross-section. This limits sampling to a region local

to the filament and is a key advantage of our algorithm over standard template matching.

Instead of processing the entire data set, we consider only regions local to the network.
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Finally, this provides a rudimentary estimate of the filament radius, which we later use to

extract filament information from the volume. Note that this estimate reflects a discrete

estimate of how well the template size matches the filament, rather than an accurate mea-

surement of the filament radius. Once the centerline for a filament is found, methods are

available for more accurately computing the filament radius [53].

We estimate the new template radius by creating another series of volume samples of

the region between pt and pt+1. We specify a series of radius values r = [r0,r1,r2...rn]. For

each sample radius ri ∈ r, we compute the response of a template of radius ri using Cpred

(Equation 4.2). The template size that provides the best response (lowest value of Cpred)

is the new template radius rt+1. As described in the next section, this value is used to

dynamically adjust the size of the volume samples, template function, and weight function.

4.3. Computation on Graphics Hardware

Our tracking algorithm is significantly more efficient than template matching since sam-

pling is limited to voxels near the network. Our heuristic also ensures that orientations

and sizes close to those actually describing the filament structure and centerline are tested.

However, creating the volume samples necessary for prediction, correction, and resizing

requires that a small region of the data set be reconstructed and re-sampled. Together with

the large number of volume samples required for accurate evaluation, this becomes the

most computationally expensive part of our algorithm. Other vector tracking methods deal

with this by imposing strict limitations on sampling. For example, Al Kofahi et al. [3] sam-

ple a limited number of points along the filament surface, which reduces stability when the

surface is not well defined or contains sharp features (Figure 22d).

In this section, we show that testing the entire filament cross-section can be performed

efficiently using graphics hardware. Cost function evaluation and branch detection can
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also take advantage of the shader pipelines and rasterization functions available on modern

graphics hardware. By performing the computation completely on the graphics card, we

also avoid introducing bottlenecks caused by data transfer across the system bus.

4.3.1. Sampling

We take advantage of hardware accelerated texture look-up and interpolation by loading

the volume data to the GPU as a 3D texture. Samples are taken by creating a stack of

quadrilaterals specified in texture-space (Figure 27a). Each quadrilateral represents a single

slice along the z-axis of the sample function S (Section 4.2.1). We then specify a texture

matrix that transforms the points representing each quad to match the properties of the

tracer (pt,vt,rt) at each vertex (Figure 27b).

For efficiency, we pre-compute all of the vectors, points, and scales used for predic-

tion, correction, and sizing respectively. We then position stacks of quadrilaterals in texture

space at the appropriate positions and orientations (Figure 27c). These pre-positioned sam-

ple planes are then stored in three separate display lists which can be rendered during the

prediction, correction, and sizing stages. Sampling is performed by specifying a texture

matrix describing the transformation to the current tracer state. We then render the appro-

priate display list for the prediction, correction, and sizing stages.

In order to facilitate the evaluation of cost functions, we store the results of the sam-

pling stage in a two-dimensional texture map. We do this by specifying geometric coor-

dinates for each of the vertices in the prediction, correction, and sizing display lists. We

specify these coordinates so that the quadrilaterals are rendered in a two-dimensional array

(Figure 27d). We store each z-slice of the volume sample as a row in the texture while each

vector (vi), point (pi), or template radius (ri) is stored as a column.
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Fig. 27. Image stack for a single volume sample shown in texture space (a) and relative
to a filament (b). We create a display list of several samples (c) so that they can
be generated in parallel on the GPU. The resulting samples are rendered to a 2D
texture for later evaluation (d).

4.3.2. Cost Function Evaluation

After rendering the samples to a texture, we use the render target to evaluate the cost func-

tion for each step of the tracking algorithm. The final result of each cost function is calcu-

lated in four passes:
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• Render the sample geometry to a texture (Section 4.3.1).

• Evaluate the cost functions using a fragment program.

• Integrate the result for each sample using a reduction operation.

• Copy the final cost values from the GPU.

As an initialization step, we pre-compute both the template and weight functions and

store them as textures (Figure 25b and 25c). After rendering the samples, we evaluate the

cost function inside the summation (Equations 4.2 and 4.4). We use a fragment program

to perform this computation on every pixel in the sample texture and store the result in

a new texture. We then use a multi-step reduction operation [27] to integrate the pixel

values representing each sample. The output of the reduction is a vector of values, each

representing a result of the cost function for each sample.

4.3.3. Branch Detection

We determine network connectivity based on the proximity of two filament centerlines and

their associated diameter. As each filament is tracked, we build a line strip from the history

of all tracer positions. This line strip represents the centerline of the filament. After each

filament is completely tracked, the centerline is added to a display list representing the

entire network. As we track each subsequent filament, we check for an intersection with

the existing network.

At each time step, we create an orthographic view volume between positions pt and

pt+1 along z, with x and y extents equal to the tracer radius rt . We then render the net-

work display list. Any rendered geometry that is not culled by the viewport transformation

indicates an intersection between the current filament and the rest of the network. We

then search through all filaments to find the exact branch point. Although we test for in-
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tersections at each time step, this operation can be performed quickly using the OpenGL

selection buffer [89]. We perform the more complex search through all filaments only if an

intersection with the network is detected.

4.3.4. Simulation

We now consider parameters that influence the effectiveness of our algorithm on a data set.

As is the case with Lagrangian tracking techniques using particle advection, the time step

4t affects the stability and accuracy of our algorithm (Equation 4.2 and Algorithm 2). Note

that we are using an implicit predictor-corrector method for advancing the tracer position,

so our choice of 4t is less constrained than for explicit (prediction only) integration. We

set 0 <4t ≤ 1. Values of 4t > 1 should be avoided since this would advance the tracer

across regions of a filament that have not been sampled.

Another important set of parameters specify the resolution of the volume samples.

Provided that the resolution in the xy-plane is large enough to represent the filament cross

section (≈ 10 pixels), this has little affect on the tracking results. The z-axis resolution,

however, is an important consideration. This value is dependent on the noise in the data set

and the smoothness of the filament surface. Increasing the value provides more integration

along the filament length, and therefore more accuracy in noisy data, at the expense of

greater sampling and evaluation time. High-contrast blood vessels with smooth surfaces

required only two sample planes while we used up to z = 5 for fluorescence data in AT

(Figure (22b and 22d).

The depth of the volume sample, representing the length of the filament along which

the sample is integrated, depends on the average filament curvature. We used a smaller

depth for high-curvature KESM microvascular filaments and Lung CT while longer sam-

ples were used to track networks containing low-curvature filaments found in AT, fibrin

protein, and neuron data sets (Section 5.4). An overview describing how our parameters
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affect the tracking results is given in Section 4.5.1.

4.3.5. Stopping Conditions

The large size of high-throughput data sets and the memory constraints on graphics hard-

ware limits our data size to 5123 voxel blocks. We therefore stop tracking when filaments

reach the edge of the data set. If larger data sets are desired we break them into multiple

blocks that are tracked separately and joined at the interface.

Some types of networks, such as neural networks, have filaments that can terminate. In

other cases, a filament may no longer be trackable due to noise over an extended region or

because it has dropped below the sampling resolution. We end tracking by constraining the

template radius rt to some minimum value. When a filament in the data set terminates, the

template shrinks below the specified threshold. Tracking also stops at filament intersections

as mentioned in Section 4.3.3.

4.3.6. Seed Point Selection

We begin tracking from initial values of p0, v0, and r0. We set these seed points using a

method similar to the one proposed by Al-Kofahi et al. [3]. The data set is projected onto a

plane and seed point positions are placed based on a conservative threshold and projected

back into the data set. Based on the seed point position, the initial tracer state is set using a

two-step process:

• The position is refined and an initial orientation and size are determined using a

single prediction, correction, and sizing step. Although p0 can be altered during the

correction step, it is not moved along the predicted direction.

• Two tracers are created with identical position and size but with opposite trajectory

(v0 and −v0).
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This produces a list of tracers, where there are two tracers for each seed point. We

iterate through this list,tracking each associated filament. In order for the data set to be

fully tracked, every segment must contain a seed point. If a segment contains more than one

seed point, successive tracers will immediately detect the resulting centerline geometry and

terminate (Section 4.3.3). This termination requires less than 6ms on average to compute.

4.4. Data Storage

Our tracking algorithm produces a graph representing the structure and topology of the

embedded network. We now show how this graph is used to classify volumetric data as-

sociated with the network. We then compress the network data, taking advantage of the

small volume of the network relative to the embedding data set Λ. This also allows us to

eliminate excess noise, improving the quality of volumetric visualizations. In addition to

classifying each voxel as inside or outside of the network, we also associate each voxel

with a single filament.

4.4.1. Network Bounding Volumes

We first determine if any given voxel is part of the network. We use an implicit repre-

sentation of the network based on the information acquired during tracking (Section 4.2).

Given the traced network, we create a bounding volume that allows us to classify each

voxel. This bounding volume is based on the tracked filament centerlines and the template

radius. In most cases, the template radius provides an upper-bound on the filament radius.

In extremely noisy data sets where the filaments contain sharp surface features, the user

may have to add an additional scale factor to increase the radius of the bounding volume

around the filament.

One possible representation for the bounding volume is an L-Block Structure [58].
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This structure uses a series of Axis-Aligned Bounding Boxes (AABBs) placed along each

filament. The voxel data stored inside the AABB can be inserted or extracted from the

original image without re-sampling. The overhead for an AABB requires a single position

and size along each axis.

Consider a single filament segment specified by two points pn and pn+1 with radii

rn and rn+1. A filament segment is guaranteed to be bounded by an AABB around two

spheres, each positioned at points pn and pn+1 with radii rn and rn+1 respectively (Figure

28a). As each segment is bounded, however, the L-Blocks overlap significantly (Figure

28b). Redundant information in L-Blocks is eliminated using a time-consuming iterative

refinement algorithm [17]. In addition, L-Blocks are designed for archival storage and do

not allow random access.

A tighter bound can be constructed using a series of truncated generalized cones

(TGCs) [26]. Each TGC is defined by two adjacent points along a filament. The TGCs

are connected end-to-end with the caps oriented by the direction of neighboring line seg-

ments:

nb =
1
2

(
b−a
||b−a||

+
c−b
||c−b||

)
(4.6)

where a, b, and c are three consecutive points on the medial axis of a filament. The radius

of each end cap at point pn is equal to rn (Figure 30).

Once we have constructed a linked series of TGCs for each filament, we determine

if a point is inside the bounding volume by implicitly defining the region within a TGC.

Assuming that there is a point px under consideration, we determine if the point lies within

the TGC specified by the end caps (pn,nn,rn) and (pn+1,nn+1,rn+1) where pn is the point

at the center of the end cap, nn is the end cap normal calculated from Equation 6.3, and rn

is the end cap radius. We first find the plane that passes through points px, pn, and pn+1



60

with normal (Figure 29a)

nplane =
pn+1−pn
||pn+1−pn||

× px−pn
||px−pn||

(4.7)

For each end cap, we find the end point of the line segment that represents the intersection

of the end cap with the plane (Figure 29b):

pr,n = pn + rn(nplane×nn) (4.8)

If px lies within the polygon formed by (pn,pr,n,pr,n+1,pn+1), it is also within the TGC.

We now determine if a point is part of a filament by testing the point against every

TGC for every filament in the network. We accelerate this by computing an AABB around

each TGC using the position pn, normal nn, and radius rn of each end cap. Since the end

cap is circular, we compute the minimum and maximum extent of the end cap n along any

axis. This equation for the x-axis is

AABBX ,n = pn± rn(
√

1− | nn ·X |2) (4.9)

where X =
[

1 0 0

]
. The position and size of the AABB along the X-axis are computed

using:

AABBX ,pos = min(AABBX ,n,AABBX ,n+1) (4.10)

AABBX ,size = max(AABBX ,n,AABBX ,n+1)−AABBX ,pos (4.11)

By snapping each AABB to the embedding function Λ, we compare only voxels within

an AABB with the associated TGC. We then label each voxel as either inside or outside of

the network. We can also classify each voxel with its associated filament.
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Fig. 28. Bounding two spheres of radii rn and rn+1 (a) guarantees that all voxels belonging to
the filament are included in the bounding volume. However, there will be significant
overlap (b).
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pr,n

pr,n+1
px px

Fig. 29. (a) End caps of a TGC and (b) the intersection of the TGC with the plane defined
by px, pn, and pn+1.

4.4.2. Encoding

The volume of an embedded network is usually much less than that of the entire data set.

We can therefore reduce the amount of space used to store the classified network by en-

coding each voxel into a space-saving data structure. In addition to acting as a bounding

volume, L-Blocks (Linked AABBs) are efficient for storage. However, they must be un-

compressed to a regular grid in order to allow random access. The most common structure

for storing sparse three-dimensional data is the octree. However, octrees are inefficient for
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Fig. 30. Truncated generalized cones (a) fit end-to-end to construct the bounding volume
for a filament (b).

space-filling volumetric structures. We instead use a dynamic tubular grid (DT-Grid) [65].

This is a run-length encoding method for storing sparse volumetric data and has been shown

to provide more compression and faster random access than octrees. DT-Grids provide sig-

nificant compression by eliminating empty space between volumetric structures. Further

details can be found in the paper by Nielson and Museth [65].

4.5. Results

We have tested our algorithm for tracking filaments in both high-throughput and standard

biomedical data sets:

• Array Tomography (AT): High-throughput microscopy data set containing neural

networks. These filaments are difficult to segment using standard techniques be-

cause they have an ill-defined surface, non-uniform intensity among filaments, un-

even distribution of stain through the filaments, and standard imaging noise (CCD,

photon-shot, and camera noise) (Figure 37a and 22a).

• KESM Vasculature: High-throughput microscopy data set containing cellular and
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Fig. 31. Untraced (left) and traced (right) 512x512x512 voxel KESM vascular data sets.

vascular data. Filaments are low contrast and have high curvature. Thinning and

isosurface segmentation results in over-segmentation due to cellular structures out-

side of the network while the high curvature and low-contrast of the vessels makes

standard vector-tracking impractical (Figure 38 and 31).

• KESM Neurons: High-throughput microscopy data set containing neural networks.

These filaments frequently drop below the sampling resolution of the microscope,

resulting in frequent gaps in the network. The very low contrast and gradual changes

in intensity also makes it impossible to select an isovalue or transfer function that

completely classifies the network (Figure 39).

• Lung CT: Standard biomedical data set with complex structure. This data set is high

contrast and contains very little noise, however the filaments are short and have high

curvature (Figure 37b).

• Fibrin: Data set imaged using confocal microscopy. These filaments are low curva-
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 32. Cropped volume of array tomography data containing neuronal dendrites. A max-
imum intensity projection of the data set is shown (a) and inverted for clarity (f).
We then show several tracking results (b) - (e) and corresponding overlays (g) - (j).
Skeletons produced using thinning algorithms (b) & (g) have noise and topological
errors. These can be reduced by filtering the original data (c) & (h) (5x5 median fil-
ter) which is time consuming and damages low-contrast regions. Previous tracking
algorithms (d) & (i) sample only the surface, which is often ill-defined in AT data
sets while our tracking method (e) & (j) samples the entire filament cross-section.

ture but frequently drop below the sampling resolution (Figure 41). The images also

contain artifacts, such as CCD noise, commonly found in confocal imaging.

4.5.1. Tracking

We first track each data set using the methods described in Sections 4.2 and 4.3. Using the

AT data set, we provide a qualitative comparison of our tracking method with thinning [29],

filtering, and vector-tracking using only surface sampling (Figure 32). Thinning algorithms

have difficulty with noisy data and produce topologically incorrect skeletons with several

extraneous segments due to over-segmentation of the original isosurface. These artifacts
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step size 0.1∗ rt prediction = 52 samples z-depth = 2.0∗ rt z samples = 5

step size 0.5∗ rt prediction = 20 samples z-depth = 1.0∗ rt z samples = 2

step size 1.0∗ rt prediction = 4 samples z-depth = 0.5∗ rt z samples = 1

Fig. 33. Effects of parameters on tracking results for the Array-Tomography neuronal data
set. Original tracking results are shown with standard parameter settings (top) and
are identical. The remaining images are created by varying a single parameter and
use the same seed points. From left to right: (1) Reducing the integration step size
4t, (2) reducing the number of prediction vectors tested, (3) reducing the length
of the filament sampled (volume sample depth), and (4) reducing the number of
samples along the z-axis of the volume sample.
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can be reduced using filtering techniques, such as the median filter, however this is time

consuming and causes additional breaks in filaments that are near the sampling resolution.

Finally, previous methods sample only the filament surface, which is ill-defined due to high-

frequency surface features, noise, and non-uniform staining. We also provide an overview

of how our tracking parameters affect the resulting centerlines (Figure 33).

4.5.2. GPU Speedup

We have implemented both CPU and GPU based algorithms for comparison. We con-

sider only the prediction step, which requires the most samples. We also compare our full

GPU-based algorithm to an implementation using multiple CPU cores. The linear speedup

reflects the high level of parallelism. We feel that this is an important result, showing future

means of speedup for large data sets since we do not expect processor speed to increase at

an appreciable rate. We compare four implementations in Figure 34.

• CPU-based implementation (single-core)

• CPU-based implementation (quad-core)

• CPU-based evaluation (GPU performs sampling)

• GPU-based implementation

The majority of time on all hardware tested is spent interpolating samples. As ex-

pected, using the GPU for sampling provides the largest factor of speedup. When using

graphics hardware for sampling and the CPU for evaluation of the cost function, the transfer

of data across the bus is the major bottleneck. When the GPU is fully utilized, performing

all computation on the graphics card provides around a 4X to 5X speedup over only using

the GPU for sampling (and a 20X speedup over the single-CPU implementation). As the

number of fragment processors increases, we expect this factor to become larger.
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Fig. 34. Average time plotted, on a logarithmic scale, to make a single prediction based on
the number of cross-sections.

We provide a breakdown of the time required to sample a 5123 KESM Vascular data

set (Table I). The data set and resulting centerlines are shown in Figure 31.

4.5.3. Compression

After tracking and classifying the network, we compare the memory required to store the

classified data using L-Blocks and DT-Grids against that for the original uniform grid (Fig-

ure 36). In addition to providing better compression in all cases, DT-Grids allow random

access into the data set and avoid storing redundant data. In all cases, a large percentage

of the data representing the space between filaments was culled using the TGC bounding

volume (Table II).

We compare results using volume rendering to display KESM data both before and
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Fig. 35. The speedup provided by the full GPU implementation over (blue) a complete eval-
uation on the CPU and (green) a CPU evaluation that uses the GPU for sampling
(bottom).

after filament tracking and encoding. Segmentation of the underlying network allows us to

cull noise and excess data from the visualization, providing higher-quality images describ-

ing network structure (Figure 38). The underlying structure of the network also allows us

to extract volume data associated with specified filaments. After tracing a large block of

cellular data, we select an individual cell for visualization (Figure 39a and 39b). We also

show an example of segmented and traced AT and Lung CT images (Figure 37).

Since each threaded series of blocks contains all of the volumetric data necessary to

reconstruct the filament, individual filaments or filament networks can be rendered inde-

pendently of the rest of the data set. This is done by selecting a single node and traversing

the network in a breadth-first fashion (Figure 40). This technique can also be used to locate
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Table I. Timing breakdown for tracking the KESM Vasculature data set (Figure 31). The to-
tal time required to track the data set is given (left) along with an average breakdown
of the operations required for a single tracking step (center). Further breakdown of
an average prediction step is also shown (right).

Total Timings

Seed Positioning 0.011s

Seed Orientation 1.707s

Tracking Time 28.744s

Total 30.462s

Breakdown for a Tracking Step

Predictor 1.248ms

Corrector 1.177ms

Sizer 0.994ms

Intersections 6.236ms

Breakdown for Predictor

Sampling 0.265ms

Evaluation 0.230ms

Convolution 0.437ms

Compute Direction 0.021ms

Table II. Percentage of the volume culled from each data set based on the tracking and
bounding segmentation scheme.

Data Set Culled

Array Tomography 95.55%

KESM Vasculature 92.72%

KESM Neurons 97.53%

Lung CT 96.15%

independent networks by expanding a network until all valid nodes are reached. We use

this to extract individual cells in neuronal populations (Figure 39c) as well as individual

connected components in spinal cord microvasculature scanned using KESM (Figure 42).
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Fig. 36. Comparison of the compression achieved by storing the volume data on a uniform
grid, as a series of AABBs, and using DT-Grids.

Fig. 37. (left) Visualization of segmented neurons in AT data. (right) Traced vasculature
imaged using CT Lung overlayed over a volume visualization of the original data
set.
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Fig. 38. The original volume visualization of the microvasculature in a mouse brain (left)
contains background noise and parts of unwanted cellular structures. Tracing and
segmentation extract the desired filament and surface information which can be
visualized more clearly (right).

(a) (b) (c)

Fig. 39. Microscopic data set containing several neurons. The original volume visualiza-
tion is completely inadequate and it is impossible to extract a contour surface using
standard techniques (a). After tracing, blocking, and contrast enhancement of in-
dividual filaments, the structure becomes visible (b). Visualization of a filament
network representing a single cell (c).
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(a) (b)

(c) (d)

Fig. 40. Contouring of filaments selected using a breadth-first search of the network starting
from a single user-defined filament(a) - (d).

4.6. Conclusions and Future Work

In this chapter we propose a framework for segmenting filament networks from volumetric

data sets produced using high-throughput microscopy, enabling more effective visualiza-

tion and analysis. This allows us to visualize structures, such as fine surface details, that

would not be visible by rendering the filaments as imposters [60] or streamlines [85]. Our

main goal is to provide a fast and automated segmentation algorithm, making it possible

to classify volumetric data associated with a complex network in large data sets. Finally,

we have shown that our framework is general enough to work with data sets from more
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Fig. 41. Fibrin is a protein associated with blood clotting. (left) Volume visualization of a
fibrin network and (right) associated tracing.

standard forms of medical imaging.

Our tracking algorithm gains significant benefits from the parallelism in modern graph-

ics hardware, particularly through the use of GPU texture units for sampling. We can gain

further efficiency by limiting the number of samples taken based on a priori knowledge of

our data set. For example, the medial axis of a blood vessel tends to curve less as the radius

of the vessel increases. We could therefore reduce the number of samples taken as the ves-

sel radius increases. Since our samples are stored in a display list, it would be inefficient to

do this for every filament. We could, however, sort seed points and trace them in order of

ascending radius. This would allow us to increase the number of samples at a finite number

of intervals while tracing an entire data set.

Although these algorithms provide a basis for segmenting and analyzing filament net-

works, we have not addressed methods for dealing with errors in the network structure. For
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Fig. 42. Traced and segmented microvasculature of the mouse spinal cord. The entire net-
work has been traced and displayed (orange) as well as several sub-networks (green
and purple) represented as cliques within the network.

example, our algorithm determines network connectivity based on proximity, which is not

always an accurate method. An intersection in a network made up of several neurons could

represent a branch in a single neuron, a synaptic connection between two neurons, or two

filaments passing close to one another.

Finally, there are several avenues of future work remaining for applying these tech-

niques to interesting problems. For example, the structure of brain microvasculature has

been shown to have an effect on neurodegenerative diseases. Our techniques can be used

to create models of blood flow through microvessels and provide more accurate biological

models of neural networks.
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CHAPTER V

MICROVASCULAR MODELING

Complete models of vascular structure are important for understanding several medical

conditions. Brain microvasculature has been shown to play an important role in disor-

ders and neurodegenerative diseases including Alzheimer’s Disease, Multiple Sclerosis,

and Parkinson’s Disease [95]. Capillaries, the basic components of the microvascular sys-

tem, perform important nutritional functions and may also affect the neural response [62].

However, very little is known about the structure of microvascular networks. This is due

both to their small size and extraordinary complexity.

Microvascular networks have several properties that make them difficult to both im-

age and model. The capillaries are ≈ 5µm in diameter, requiring high-resolution imaging

for reconstruction. Despite their small diameter, connected components in a capillary net-

work span several cubic millimeters of tissue. Creating complete data sets representing

microvascular networks requires imaging entire organs at a microscopic resolution. Ad-

vanced imaging methods and segmentation techniques are required in order to cope with

these large and complex data sets.

In this chapter, we describe how KESM imaging and tracking algorithms can be used

to create high-resolution microvascular models. First, we create a complete image of the

mouse brain vascular system in high-resolution using KESM. We then use tracking meth-

ods (Chapter IV) to find the medial axis of capillaries that make up each network. In Sec-

tion 5.3, we describe a method for combining topological information with an incomplete

or damaged isosurface in order to create a model useful for statistical analysis and simula-

tion. In Section 5.4, we use this model to perform a high-resolution statistical analysis of

several important features of the mouse microvascular system. This chapter describes two

major contributions. First of all, we create a whole-brain image of the mouse vascular sys-
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tem at the microscopic scale, as well as an image of the somatosensory cortex containing

both vascular and cellular information (Sec. 5.1). We also develop a technique for using

mutual information from both the network skeleton and isosurface to create compute radii

for high-resolution structural models of the microvascular network.

5.1. Imaging

In addition to KESM, several three-dimensional techniques currently exist for imaging

the vascular system at the macroscopic level. Magnetic Resonance Imaging (MRI) and

Computed Tomography (CT) are commonly used for imaging vascular structure. Although

these methods are non-invasive, the sampling resolution is insufficient for reconstructing a

capillary network.

Micro-CT is often used for imaging capillary networks [42], however the resolution

is generally limited to 8µm− 20µm, while the average microvessel diameter in many

mammals drops below 4µm [41, 63]. Methods such as synchrotron radiation Micro-CT

(SRµCT) [30] have been used to reach resolutions of 1.4µm, however the imaging time is

prohibitive for entire organs such as the brain. Finally, CT vascular imaging cannot be used

to image additional structures, such as cells, in the surrounding tissue.

Other microscopy techniques, such as confocal microscopy [70], are sufficient for

resolving the three-dimensional structure of capillary networks but are dependent on light

penetration into the tissue and are therefore limited to the specimen surface.

5.1.1. Imaging Methods

We created two large volumetric data sets based on different staining procedures for brain

microvasculature. We first created a high-contrast whole-brain data set by perfusing India

ink through the mouse circulatory system. This is a well-known stain that dyes the mi-
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crovessels black (Figure 43). Although this method is high-contrast, it does not provide

any information about the tissue surrounding the microvascular system.

As stated previously (Section ??), physical sectioning destroys the tissue as it is im-

aged. Therefore, in order to gather as much information as possible during a single imaging

pass, we create an additional data set by imaging tissue stained with Nissl [1]. This stain

labels all cells and extracellular tissue in the brain while the vasculature remains unstained

(Figure 43). This provides a means of associating cellular information with the vascular

structure, although the contrast between the unstained capillaries and the surrounding tissue

is greatly reduced.

The whole-brain data set took approximately two weeks to image and requires 2TB of

uncompressed storage. We limited the Nissl-stained data set to a large region of somatosen-

sory cortex. This region is important because it allows us to see the change in vasculature

and cellular density between white and grey matter. For the whole-brain data set, we focus

on regions of high vasculature, including the spinal cord and cerebellum (Figure 45a and

b). For the Nissl stained brain, we examine the somatosensory cortex and underlying white

matter (Figure 45c).

5.1.2. Image Processing

Both random noise and lighting artifacts are present in KESM images. This is due to

both lighting conditions and mechanical vibrations. Lighting artifacts are removed using

a median-based destriping algorithm [54]. This technique is fast and preserves features in

the data set, but does not eliminate noise. Since the diameters of microvessels are near the

resolving power of the microscope, noise and changes in contrast result in frequent gaps

and artifacts in the network isosurface (Figure 44). In addition, standard image process-

ing techniques such as median filtering and blurring [25] can further damage the network

isosurface. Therefore,we elect not to use blurring for noise removal, which may cause
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Fig. 43. Cropped samples of tissue stained with India ink (left) and Nissl (right). Vascular
filaments are unstained when the tissue is prepared with Nissl, and stained black
with an India ink perfusion.

data loss and introduce further breaks in the network. Instead we rely on segmentation

algorithms that are robust in the presence of noise.

5.2. Extracting Network Structure

Given a three-dimensional data set representing a tissue sample, we create a graph describ-

ing the structure of the embedded filament network. We do this by finding the internal

medial axis of each filament, including points where the filaments are connected.

5.2.1. Previous Work

There are several segmentation tools available for tracking macroscopic vascular structures,

such as those found in MRI and CT data sets. An overview of these methods is presented

by Kirbas et al. [35]. These techniques often rely on centerline extraction from an isosur-

face [86], region growing [64], or template-matching [25]. In addition, filtering techniques

can be used to enhance the quality of segmentation for linear and curvilinear objects [80].
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Fig. 44. Cropped isosurfaces from India ink (left) and Nissl (right). Because of noise and
low contrast, the network isosurfaces contain frequent gaps, making it difficult to
accurately reconstruct network connectivity and topology.

As mentioned previously (Section 5.1.2), the isosurface can be damaged due to noise while

features in the surrounding tissue can produce over-segmentation when using threshold-

ing. Although region growing methods are effective for finding the filament surface, they

generally require some initial segmentation in order to converge to a meaningful result.

Although we have found template matching methods to be robust in the presence of noise,

these techniques involve testing various template sizes and orientations with each voxel in

a data set. This is computationally expensive since the template must be tested in several

positions, orientations, and sizes.
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(a) (b)

(c)

Fig. 45. Maximum intensity projection of the mouse spinal cord (left, 1500 sections) and
close-up views of a capillary network in the cerebellum (center, 512x512x512) and
the neocortex (right, 512x512x512).

5.2.2. Segmentation

Vector tracking methods [3,12,38,90] rely on template matching local to the region around

a filament. The degree to which the filament cross section matches the provided template
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is used to estimate the filament trajectory. This estimated trajectory is then used to reduce

the number of template sizes and orientations tested.

Given a point that lies on a filament, vector tracking algorithms predict the trajectory

of the filament by sampling a region around this initial point. We then step along the

filament in the direction of the estimated trajectory, thereby traversing the filament axis.

Vector tracking generally uses three-dimensional template matching and is therefore robust

in the presence of noise and broken filaments. Unlike standard template matching, we use

a heuristic to limit sampling to a region near the filament. Since microvasculature occupies

a very small volume of the data set (Section 5.4), the number of samples required is greatly

reduced. In this section, we describe our vector tracking methods, while further details can

be found in our previous work [55].

5.2.2.1. Heuristics

Given a point pi on the filament, we predict the next point pi+1 along the filament axis by

sampling the region around pi using a template. We look for the optimal transformation

matrix T that minimizes the heuristic function

h(T ) =
∫

x

∫
y

∫
z
|Φ(T x)− γ(x)|dx (5.1)

where Φ is the volumetric data set, γ is a template function, and the point x = [x,y,z] is a

point on the template. The matrix T is composed of affine components that describe the

position, orientation, and size of the template:

T = Tr×R×S (5.2)

In this equation, Tr, R, and S are affine transformations respectively representing a sampled

position, orientation, and scale of the template γ .
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5.2.2.2. Tracking

We find the minimum value of the heuristic function h(T ) by sampling a discrete set of

transformations. We construct Tr based on the initial position pi:

Tr =



1 0 0 px

0 1 0 py

0 0 1 pz

0 0 0 1


(5.3)

We then construct a set of rotation matrices R = [R0,R1...RN ] that orient the template

along an associated set of sample directions r = [r0,r1...rN ]. We use a template that is

rotationally invariant along the direction vector ri. Therefore, the associated orientation

matrix Ri can be composed using any two other vectors orthogonal to ri. Likewise, we

construct a series of scale matrices Si = siI where si = [s0,s1...sM] and I is the identity

matrix. By sampling combinations of R and S, we select the samples that minimize the

cost function h(T ). The position of the template is updated by taking a step along the

estimated filament trajectory based on the selected orientation vector ri, which produced

the minimum value of h.

We use a volumetric cylinder as a template since it is both rotationally invariant along

ri and accurately represents the structure of most capillaries. The orientation and size of

the template is adjusted as it is moved down each filament, in order to provide an ac-

curate match (Figure 46). Although the template size can be used as an estimate of the

filament radius, it is highly dependent on how well defined the surface is relative to the

background. As each step along a filament is taken, the current position pi is tested against

previously traced filaments in order to detect intersections. Further details on efficient fil-

ament tracking methods can be found in Al-Kofahi et al. [3] as well as our previous work

on hardware-accelerated techniques [56].
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Fig. 46. (left) We track the filament axis by matching a template function γ to the filament.
(right) After computing the optimal template orientation (Eq. 5.1), we take succes-
sive steps along the filament axis.

5.2.2.3. Seed Points

Filament tracking requires us to create initial seed points on each filament from which to

initiate tracking. We place seed points using the method proposed by Al-Kofahi et al. [3].

We project a region onto a two-dimensional plane using a maximum intensity projection

for Nissl or a minimum intensity projection for India ink. Seed points are then placed on

the plane using a conservative threshold and projected back into the three-dimensional re-

gion. Note that we are not concerned with over-seeding since branch detection will remove

excess seed points.

5.3. Refinement

Based on the filament skeleton found using vector tracking, we construct a graph G repre-

senting the structure of the filament network. Nodes connecting two edges in G represent

samples along a single capillary. Branch points within the capillary network are represented

by nodes in G with more than two edges (Figure 47a).

Filament radius can then be estimated based on the optimal size of the template esti-

mated during each tracking step, or by segmenting the filament cross-section using methods

such as active contours [42]. When basing the radius estimate on the template size, we are
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limited to the discrete number of sample sizes used during tracking. In addition, these radii

are dependent on the estimated trajectory of the filament in both cases. Therefore, small

errors in filament trajectory can result in a cross-section that is not orthogonal to the true

filament trajectory. Another option is to evolve a level set surface outward from the skele-

ton [49], however both active contours and level sets require several parameters to optimize

fitting the resulting curves or surfaces.

Our approach instead relies on the network isosurface. Since our sampling resolu-

tion is sufficient to resolve the smallest vessels, there is little fear of misclassifying large

vascular segments due to undersampling. As mentioned previously, however, the network

isosurface contains structural flaws that make it difficult to determine network topology

and connectivity. However, the isosurface does contain useful information about the sur-

face structure and diameter of each filament in the network. In this section we discuss how

we refine the network with morphological information from the microvascular isosurface,

providing radius information for anatomical studies.

Given our original data set represented as the scalar volume function Φ, we manually

select an isovalue that most accurately represents the microvascular surface Γ embedded in

Φ. When computing an isosurface from image data, noise and artifacts cause misclassifi-

cations of the volume in one of two ways:

• (A) External regions are incorrectly classified as interior regions (false positives).

This results in over-segmentation, causing erroneous surfaces to be created in the

tissue surrounding the filament network.

• (B) Interior regions are incorrectly classified as exterior regions (false negatives).

These errors result in unusually thin filaments or gaps in the network.

We compute the capillary radii for our vascular model by using mutual information

between the extracted skeleton (Sec. 5.2) and the network isosurface. By mapping iso-
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surface information onto the network skeleton, we can find many of the erroneous cases

produced by misclassifications and edit them out of our final model.

5.3.1. Mapping

We first create a mapping between the network skeleton and the data set. By overlaying

the graph G, representing the network skeleton, with the scalar volume function Φ, we

create a direct mapping G⇒Φ where any point on a node or edge of G represents a three-

dimensional position within the data set Φ (Figure 47b). We then construct an implicit

signed distance function Fsd f based on the data set such that Φ⇒ Fsd f and therefore G⇒

Fsd f . We use the standard definition of a signed distance function:

Fsd f =


dΦ(x,Γ) if x is outside Γ and

−dΦ(x,Γ) if x is inside Γ.
(5.4)

where x is a point on G and dΦ(x,Γ) is the shortest distance between x and the isosurface

Γ.

Standard 
Node

Branch 
Node

G




(a) (b)

Fig. 47. (left) The traced graph G contains standard and branch points indicating positions
on the filament axis. (right) We create a mapping from G to Φ by overlaying the
traced graph onto the volumetric function.
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Note that, if the function Φ is noise-free and all points in the graph G lie exactly on

the filament axis, the radius r at any point x on G can be found by looking up the associated

point in Fsd f :

r =−Fsd f (x) (5.5)

We will first discuss efficient methods for creating the signed distance function Fsd f and

then describe how G is refined in order to find the radius of each point in the network.

5.3.2. Computing a Distance Field

We compute an implicit signed distance function by solving the Eikonal equation |∇F |= 1

on a discrete grid. There are several efficient methods available, including Fast Sweeping

[94] and Fast Marching [83]. Fast Sweeping provides an O(n) solution, but requires that

every voxel be evaluated. Fast Marching can be done in O(n logn) time but allows us

to march outward from a surface and stop computation when necessary. We note that it is

only necessary to solve the negative, or internal, portion of Fsd f since the radius information

exists inside the surface Γ specified by the zero level-set of Fsd f . Since the volume inside

Γ is usually much smaller than the volume of the data set (see Sect. 5.4), we use a single

pass of Fast Marching to evaluate the distance field only inside the network isosurface.

We first initialize Fsd f . Grid points next to the surface Γ are initialized with the dis-

tance from the surface while all other grid points are set to some large positive value. We

then march inward computing the distance function for all values inside Γ (Fig 48). A

detailed description is given by Osher and Fedkiw [69].

5.3.3. Radius Computation

We create an initial estimate of the filament radius by resampling Fsd f at points that lie on

G. By limiting sampling to points on or near nodes and edges in G, we greatly reduce noise
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Fig. 48. Orthogonal section from the cortical data set (left) and equivalent section from
the function Fsd f (right). For clarity, Fsd f has been fully evaluated and scaled to
[0...255].

due to misclassifications of type A (false positives). This is because false positives, by

definition, occur outside of the network while the distance values in Fsd f are always based

on the closest point on Γ (Figure 49a).

Misclassifications of type B (false negatives) give erroneous results by causing interior

regions to be labeled as exterior. This causes breaks in the filament or makes the isosur-

face unnaturally narrow along a portion of a capillary (Figure 49b). When these regions

are sampled, r is either very small or negative. These misclassifications are resolved by

propagating known values from neighboring nodes in G.

Since the graph G is based on a heuristic estimate of the network embedded in Φ, it is

unlikely that all points on G lie exactly on the filament axis. Therefore, sampling exactly on

G leads to under-estimating the capillary radius since the corresponding point in Fsd f may

lie closer to the filament surface. Note that the actual filament axis lies on the point inside

the filament that is furthest from the filament isosurface. In Fsd f , this surface is represented

by the zero level-set. Therefore, when sampling Fsd f using a point x on G, we instead
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sample a region in Fsd f that lies within ε of x.

We set the radius in G equal to the maximum value of r found within ε of x. We

set ε to 5µm, which is close to the known radius of microvessels. Since microvessels are

sparsely arranged relative to their diameter, it is unlikely for sampling to cross into other

capillaries using this value for ε .

A

A

A

d(x,)

Damaged 
Isosurface

A

B

(a) (b)

Fig. 49. We use the graph G to interpolate through errors in the isosurface. (left) False posi-
tives cause erroneous regions to be formed outside the isosurface. These regions are
avoided by only sampling Fsd f near the graph. (right) Points in G with very small
(A) or negative (B) values of Fsd f indicate isosurface damage. The radius for these
points are computed by propagating valid information about Fsd f from neighboring
points.

5.4. Results and Discussion

We first imaged an entire mouse brain stained with India ink at a resolution of 0.6µm×

0.7µm×1.0µm. Images were processed to remove lighting artifacts (Sect. 5.1) and stored

as 512x512x512 raw image files. We then specified several brain regions of interest for

analysis. We particularly focused on the cerebellar cortex and spinal cord (Figure 45a and

b). We also imaged a large region of mouse cortex stained with Nissl, processing and

storing it in the same manner (Figure 45c).
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5.4.1. Computational Anatomy

We used vector tracking (Sect. 5.2) to perform automated segmentation of the network.

We then collected several anatomical statistics on the structure of the network, such as the

number of segments and branch points per unit volume of tissue (Table III). We also focus

on obtaining local anatomical information such as the direction of travel of capillaries (Fig-

ure 50). Statistics and anatomical information are of interest to anatomists since very little

information is available on the three-dimensional structure of microvasculature. Although

we are unaware of any studies performed at this scale and resolution, our results are similar

to morphometric studies that have been performed using samples of SRµCT-collected data

for the mouse cortex [30] and confocal microscopy images of human brain [41].

Table III. Computed statistics for the capillary network model based on a refined vascular
network. We define a segment as a length of capillary between two branch points.
All statistics are specified per cubic millimeter of tissue.

Region Segments Length Branches Surface Volume Volume

(mm) (mm2) (mm3) (% of total)

Neocortex 11459.7 758.5 9100.0 10.40 0.0140 1.4%

Cerebellum 34911.3 1676.4 19034.4 20.0 0.0252 2.5%

Spinal Cord 36791.7 1927.6 26449.1 22.2 0.0236 2.4%

5.4.2. Modeling

Using the structural information available from tracked filaments, we refine the network

based on the filament isosurface. This involves manually selecting an isovalue that ac-

curately describes the vascular surface (Figure 51a). Although the surface is noisy and

contains misclassifications, we map the isosurface information onto the network skeleton.

Using our refinement techniques (Sec. 5.3), we create a structural model of the vascular
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(a) (b)

(c) (d)

Fig. 50. Vascular trajectory in the neocortex. The tracked vascular network from a single
block (Figure 51) is shown with filaments colored based on their direction of travel
(red = sagitally, green = horizontally, blue = coronally). The highly oriented blue
filaments are running coronally through white matter.

network that describes filament radius as well as position and connectivity. We then use the

refined model to compute the microvascular volume and surface per unit volume of tissue

(Table III).

5.4.3. Evaluation

We have limited means for comparison and evaluation due to a lack of similar high-

resolution data sets. We instead focus on the evaluation of vector tracking as a means

of segmentation. Although our algorithm performs well under a visual evaluation, the
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Fig. 51. Cerebellar cortex. Vascular isosurface (left) used for refining radius measurements.
Traced vascular network (right) colored based on radius (red < 2µm, blue > 5µm).

complexity of large microscopy data sets makes errors difficult to find visually.

Because of the nature of microvascular networks, all segments must be connected in

order to allow blood flow. We consider any traced capillaries that terminate without branch-

ing to be errors. These terminations, accounting for ≈ 3.2% of the network, could be due

either to errors in tracking or inadequate staining. However, changes in brain microvascu-

lature are known to occur and some portion of these may be developing or degenerating
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microvessels.

5.4.4. Discussion

In this chapter we describe a framework that provides high-resolution information about

the structure of microvasculature spanning large three-dimensional regions of tissue. Our

analysis focuses on mouse brain microvasculature, however similar staining methods have

been used on other tissue samples from other species.

Further work can be done by extending these models to pathological tissue. This

would allow high-resolution analysis of blood-flow patterns in different disease models.

Although frameworks for fluid simulation in microvessels have been developed [74], these

methods have not been extended to larger scales due to a lack of high-resolution structural

information. Finally, very little research has been done in the area of simulating cellular

and vascular relationships, which can be observed in Nissl-stained tissue. Modulation is

known to occur between neurons and microvasculature. Simulation of these relationships

would require detailed cellular morphology as well as microvascular anatomy.
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CHAPTER VI

FILAMENT VISUALIZATION

6.1. Selective Volume Visualization

6.1.1. Introduction

The vertebrate vascular system allows transport of oxygen and other small molecules to

cells throughout an organism. Several techniques exist for constructing volumetric images

of the vascular system at the macroscopic scale. Magnetic Resonance Imaging (MRI) and

Computed Tomography (CT) are often used to image vasculature in living tissue. However,

these imaging modalities are incapable of resolving microvasculature. Microvasculature is

the network of capillaries that complete the loop between arteries and veins. In contrast

to the tree-like topology of larger-scale vascular structures seen in traditional biomedical

data, microvasculature tends to have a network structure. Also, while large-scale structures

serve primarily a transport function, microvasculature more directly exchanges molecules

with surrounding tissues.

New developments in microscope technology allow imaging of these complex mi-

crovascular networks. A major difficulty with visualizing complex volumetric network

information is that the density of the network is prohibitive in understanding its structure.

For example, visualizing a small region of a microvascular network reveals little about its

structure. In addition, features outside of the microvascular network, such as cell bodies,

add to the complexity (Figure 52). Our goal is to selectively visualize the network and

associated tissue data. We do this by constructing a graph describing the structure and con-

nectivity of the network. We then encode the volumetric data describing the network into

the graph, which can then be queried for interesting anatomical structures. These structures

are then selectively displayed to the user.
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In this chapter, we make two major contributions. First, we develop a framework for

visualizing dense microvascular networks. This framework allows biologists to selectively

visualize filaments based on anatomical queries, such as connectivity and distance. We

then extend our framework to incorporate the visualization of features in the surrounding

tissue, such as cell positions and diameters. These tools provide a novel way of exploring

densely packed data sets with large numbers of anatomical features and relationships.

6.1.1.1. Motivation

The vertebrate vascular system is formed by a cyclical network of arteries and veins, carry-

ing oxygen rich and oxygen poor blood respectively. Starting from the heart, they branch

into smaller and smaller vessels. At the microscopic scale, the smallest blood vessels,

known as capillaries (or microvasculature), form a meshwork that connects veins and ar-

teries and delivers nutrients to nearby cells.

The structure and function of microvasculature is important, particularly for neurolog-

ical tissue. Changes in brain microvasculature have been linked to several chronic condi-

tions such as Alzheimer’s Disease, Parkinson’s Disease, and Multiple Sclerosis [95]. The

relationship between cellular and vascular tissue is also of interest in tumors and other

chronic tissue.

The primary interest in all of these cases is the degree of access tissue has to blood-

borne molecules. In the brain, the diffusion of these molecules is limited by the Blood-

Brain Barrier (BBB), a layer of cells that tightly control molecular diffusion in the brain.

Although there are means of active transport through these cells, the primary means through

which tissue receives chemical input from the vascular system is through diffusion of

molecules from capillaries (Figure 53). Therefore the distance between the capillary sur-

face and surrounding tissue is an important factor describing the effect a capillary has on

tissue.
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Finally, high-resolution surface details are important for understanding microvascular

structure and its relationship to cells. In particular, rendering the capillary surface allows us

to explore regions of angiogenesis, where microvasculature is undergoing changes through

the formation of new capillaries or the destruction of existing ones. There is also a close re-

lationship between the capillary surface and certain types of cells. For example, endothelial

cells play an important part in defining the capillary surface. Visualization of this mutual

relationship is difficult using simplified representations of vasculature commonly used for

macroscopic data [8, 21, 57].

Fig. 52. Despite the density and complexity of the vascular isosurface, the volume occupied
by the network is less than 3% of the total volume. Much of the remaining volume
is occupied by cell bodies (right) and extracellular tissue.

6.1.1.2. Imaging

In this section, we briefly discuss the imaging methods used to create microvascular and

cellular data sets. The advent of high-throughput microscopy allows researchers to quickly

produce large volumetric data sets representing high-resolution biological tissue. Knife-

Edge Scanning Microscopy (KESM) [52] is capable of imaging large specimens at mi-

croscopic resolution producing data at a rate in excess of 100MB/second. Imaging entire
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organs such as the mouse brain produces several terabytes of data. At this resolution bio-

logical tissue is highly complex, containing densely packed high-frequency structures.

In this chapter, we use data acquired from KESM scans of rat brain. In order to image

tissue using light microscopy, the tissue samples are stained and then imaged. In particular,

cell bodies (soma) are stained (dark). During the staining process, all blood is flushed from

the capillaries in the tissue. The microvasculature is therefore visible as unstained filaments

(light) (Figure 54).

6.1.2. Segmentation

Although our primary focus in this chapter is the visualization of filament networks, we

briefly discuss the segmentation methods used to extract the capillary network and cells.

Filament structures such as microvasculature are inherently difficult to segment. This is due

to low overall contrast, significant interfering (cellular) data, and image noise. In addition,

thin filaments often drop below the resolving power of the microscope, causing gaps in the

network. Naive methods such as isosurface reconstruction yield misclassifications, causing

gaps in the network and erroneous surface details (Figure 55).

Many filament tracking algorithms have been developed for medical imaging methods

such as X-Ray and MRI. An extensive review on the subject is done by Kirbas, et al. [35].

Methods that rely on the isosurface of the network [?,86] work well for thick structures but

frequent gaps and misclassifications make locating the medial axis difficult since there is

no easy way to locally differentiate between noise and structure. Template matching [80]

is effective in the presence of noise and gaps in the network, however this requires match-

ing scaled and oriented cylinders in a three-dimensional space, which is computationally

expensive for large data sets.

The methods that worked best for tracking these types of thin filaments are medial-axis

(or vector) tracking algorithms such as those designed for tracking neurons in confocal [3]
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and serial [55] microscopy. These methods rely only on information local to the filament

and can offer significant speedups over template matching. Fast algorithms are important

since processing time often exceeds the amount of time required for imaging.

We first extract a skeleton of the microvascular network using a vector tracking algo-

rithm. Full details can be found in Al-Kofahi et al. [3], while techniques for accelerating

these algorithms can be found in our previous work [55]. This allows us to establish the

positions of capillary centerlines and connectivity. We initialize vector tracking by placing

seed points throughout the data set based on a conservative threshold. A template is then

placed at each seed point and rotated and scaled to minimize a heuristic

h(T ) =
∫ ∫ ∫

|Φ(T x̄)− γ(x̄)|dx̄ (6.1)

where Φ is the data set, γ is a template function, the vector x̄ is a point on the template.

The transformation matrix T is constructed from the position, orientation, and size of the

template:

T = Tr×R×S (6.2)

where Tr transforms the template to the initial position and R and S define the orientation

and scaling of the template respectively.

The minimum value of h is found by sampling discrete sets of transformations. We

construct Tr based on our initial position. We then sample a series of orientations, searching

for a minimum value of h. Finally, we update the size of the template by sampling a series

of sizes, continuing the minimization of h. The position of the template is then updated by

taking a step along the estimated filament trajectory based on the estimated orientation. In

order to segment capillary networks, we use a cylindrical template. The orientation and size

of the template is adjusted as it is moved down each filament. Intersections are detected

based on the proximity of two segments.
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Diffusion of Molecules

Fig. 53. Small molecules (such as oxygen) used to sustain cells are diffused through the
capillary wall and into the surrounding tissue.

Unlike network data, cells vary much less in size and cell bodies are mostly rotation-

ally invariant. Therefore, we can locate cell positions using standard template matching

with a small Gaussian correlation kernel [19]. Although this technique can be error-prone,

we note that cells exist in vast numbers in biological tissue and highly accurate information

is not necessary to demonstrate our visualization methods. We therefore manually select

cells in our sample data set in order to provide input to our visualization framework. The

segmentation of cellular structures is a well understood problem and several other auto-

mated methods are available [46, 59].

6.1.3. Volumetric Encoding

Using the vector tracking techniques described previously (Section 6.1.2), we construct a

graph G describing the position (through estimates of the central axis of capillaries) and

connectivity of the microvascular network. In addition, the tracking algorithm provides an

estimate of the filament radius at each node. Using standard graph analysis algorithms [9],
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Fig. 54. Orthogonal cross-sections from a 512x512x512 voxel data set. Cross-hairs indicate
the same position (within a capillary) in each section. Cell bodies and cell nuclei
are dark while surrounding tissue is light gray. Capillaries are unstained.

we now query G for structural and statistical information.

Although some basic visualization of the network can be provided using the infor-

mation in the graph [7], G does not contain any volumetric information and the surface

structure can only be estimated from the radius of each node. This surface information

can be particularly important in physically-based simulations of fluid dynamics through

Fig. 55. Orthogonal sections from Figure 54 shown in context (left) and an isosurface rep-
resenting the microvasculature.
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the network. The ability to store volumetric information also extends to other types of net-

works, such as those created by neurons, which have important surface features. Finally,

the volumetric information associated with the vascular network provides more accurate

and interesting visualization.

6.1.3.1. Prior Work

Encoding volumetric network data is a unique and challenging problem. Although there

are many techniques for creating a bounding volume around the network using structures

such as cylinders [50], spline models [?], and various other primitives [75], these methods

are primarily used for simplified visualization and do not provide any means of encoding

the volumetric data. We are aware of only one method [58] for storing data associated with

filament structures as a series of attached axis-aligned bounding boxes, although this is

primarily used as a means of compression and there are no efficient algorithms for accessing

the volumetric data.

6.1.3.2. Dynamic Tubular Grids

The method that we use is based on Dynamic Tubular (DT) Grids [65], which were de-

signed to encode a narrow band of volumetric data around an implicit surface computing

advancing fronts [69]. In our case, we use DT-Grids to encode the region surrounding the

network skeleton defined by G.

DT-Grids store an array of points representing the volume data in lexicographic order

in each dimension x1,x2, ...xn. When constructing a DT-Grid, the points must be inserted

in this order. Insertions and deletions are not allowed elsewhere in the structure. The data

is represented recursively as a series of projections onto a lower dimension. The data itself

is stored in a single array in lexicographical order while an underlying data structure keeps

track of the coordinates of each value.
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DT-Grids have several algorithmic features. Some of the most important for our visu-

alization techniques are:

• Constant time (O(1)) access when values are accessed in lexicographical order.

• Constant time access to neighboring voxels when using a template.

• Logarithmic time (O(logn)) random access.

Additionally, DT-Grids provide significant compression when used to store large sparse

data sets. Despite the complexity of our volumetric networks, the scalar data describing

the network occupies a small percentage of the entire volume. Provided that we limit

ourselves to operations on DT-Grids that can be done in constant time, this provides signif-

icant speedup over processing the entire volumetric data set. An extensive implementation

of DT-Grids and a discussion of their algorithmic properties is given in the chapter by

Nielson, et al. [65].

6.1.3.3. Mapping Volume Data to a Graph

Our segmentation and tracing has given us a graph, G, describing the topology of the cap-

illary network. This graph G consists of a set of nodes and connecting edges. Each node in

the graph represents a sample point on the network skeleton while each edge describes the

connectivity between neighboring points. We first define some terms that are used to refer

to anatomical structures in G:

• a branch point is a node with three or more incident edges. These points represent

branches in the network.

• a termination point is a node with only one incident edge. These represent a capillary

termination, which can be due to an error in the tracking algorithm, a developing

capillary, or a capillary leaving the bounds of the data set.
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• a segment is a series of edges between branch or termination points. These edge

sequences represent a single capillary.

For any point in G, we can look up a corresponding point in the volumetric data, Φ.

However, what we actually need is a way of associating larger volumetric regions with the

individual components (vertices and edges) of G. This can be a complicated computation,

and so we precompute the associations, and use DT-Grids to store this correspondence. We

will describe this preprocessing (i.e. storing the correspondence) here.

We apply a method proposed by Mayerich and Keyser [55] to construct a bounding

volume around each segment using a series of truncated generalized cones (TGC) (Figure

56). Each TGC is defined by two adjacent nodes along a segment and has a medial axis

defined by the edge connecting the points. The TGCs are connected end-to-end with the

end caps oriented using normals defined as

nb =
1
2

(
b−a
||b−a||

+
c−b
||c−b||

)
(6.3)

where a, b, and c are three consecutive points on the estimated medial axis of a filament.

The radius of each end cap is equal to the radius stored at each node in G.

pn

pn+1

nn

nn+1rn

rn+1

pn

pn+1

pn+2 pn+3

pn+4

pn+5

Fig. 56. Truncated generalized cones (left) fit end-to-end to construct the bounding volume
for a filament (right).
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In order to determine if a given point exists within the bounding volume, we first

define the region within a TGC. Assuming that there is a point px under consideration,

we want to determine if it lies within the TGC specified by the end caps (pn,nn,rn) and

(pn+1,nn+1,rn+1) where pn is the point at the center of the end cap, nn is the end cap

normal calculated from Equation 6.3 and rn is the end cap radius (Figure 57). We first find

the plane that passes through points px, pn, and pn+1 with normal

nplane =
pn+1−pn
||pn+1−pn||

× px−pn
||px−pn||

(6.4)

For each end cap, we then find the end point of the line segment that represents the inter-

section of the end cap with the plane:

pr,n = pn + rn(nplane×nn) (6.5)

we know that the point px is within the TGC if it lies within the polygon formed by

(pn,pr,n,pr,n+1,pn+1).

pn

pn+1
nn

nn+1

pn+1

pn nn nn+1

pr,n

pr,n+1
px px

Fig. 57. (a) End caps of a TGC and (b) the intersection of the TGC with the plane defined
by px, pn, and pn+1.

Having constructed the TGCs, we now associate all values in the volume image Φ as

either inside or outside the bounding volume of G. We wish to avoid comparing all N voxel

positions with the TGCs of all M edges, since both N and M are large numbers. Instead,
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we “rasterize” each TGC onto a new grid, Λ of the same resolution as the original volume

Φ. Each point of the grid Λ contains a unique number identifying the segment that the

corresponding point in Φ is associated with. For each point inside the bounding volume of

a filament, we write an identifier indicating the associated segment in G. Due to possible

overlaps between neighboring filament bounding volumes, particularly at intersections, the

values of Λ may be overwritten multiple times. Since the vascular volume is relatively

small, this generally only happens at intersections and poses no problem for visualization

and storage. In fact, this eliminates redundancy in the encoding scheme since each voxel

in Φ is associated with at most a single network segment. We therefore ensure that the

minimum amount of data is stored in the resulting DT-Grids based on the bounding volume

of the network.

After rasterizing all TGCs, we iterate through all elements of Λ in lexicographical

order. If a value was written to Λ(x,y,z), we push the associated volumetric value Φ(x,y,z)

into the DT-Grid representing the segment identified by Λ(x,y,z). Each value in Φ is either

ignored or added into at most one DT-Grid representing a single segment in G.

At this point, we now have a graph G containing the original medial axis, connectiv-

ity, and radius information. Additionally, each segment in G has an associated DT-Grid

containing the original scalar volume values in Φ that make up that segment. Even with

the large overhead of the DT-Grid data structure, our experiments still show significant

compression over storing the original scalar data Φ as a three-dimensional grid (Figure

69).

6.1.4. Visualization

The key to being able to visually convey complex data is to selectively render related struc-

tures, thereby limiting the amount of visual information a user sees at one time. We now

describe methods for selectively visualizing the volumetric data associated with our net-
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Fig. 58. Compression achieved after processing the volume function Φ into a series of DT–
Grids associated with each segment. All volumetric data describing the network is
stored while ≈ 90% of the volume data representing surrounding tissue is culled.
We compare the size of a full volume to sample volumes in two regions of the rat
brain.

work structure. We also note that the overhead size is constant and independent of voxel

size. As the voxel size increases (e.g. by storing colors or gradients), the compression

provided by a DT-Grid relative to a uniform grid increases.

6.1.4.1. Previous Work

Several techniques exist for the visualization of filament and fiber data that can also be

applied to vascular networks. Several surface construction methods discussed previously

(Section 6.1.3.1) are designed for visualization. A large body of work is also available for

estimating vascular surfaces [8,21,57] for visualization. However, these techniques do not

capture surface features.

Oriented imposter methods such as stream lines are very good at representing highly

organized fibers, such as those found in Diffusion Tensor Imaging [71,82,85]. These tech-

niques have little applicability, however, in complex networks that have highly uncorrelated
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orientations as are found in microvasculature. Although these techniques can be adapted

to selectively highlight filaments [60], unselected data still interferes with visualization.

Additionally, these visualization techniques do not capture surface features, which can be

important when exploring relationships between microvasculature and surrounding tissue.

6.1.4.2. Volume Visualization and Isosurfacing

Both ray-casting and isosurface rendering are important for volume visualization but do not

offer many opportunities for selective visualization. Isosurfaces provide a mesh that can

be rendered efficiently using hardware acceleration while direct volume rendering provides

a way to visualize fine surface details that would be lost when selecting a single isovalue.

The easiest way to selectively visualize structures in volume visualization is to cull away

regions, focusing on local areas of interest. This is of little help in microscopy data sets

since vascular structures can span the entire data set. Isosurfaces, in contrast, are often

represented as triangles and therefore independent surfaces can be selectively visualized.

This still causes problems with microvascular networks, however, since the structures are

highly connected, requiring some means of separating the surface into useful components.

In addition, selecting an isosurface value that fully captures the structure while limiting

misclassifications can be impossible. We will now discuss how to adapt our algorithms to

selectively visualize complex networks using standard volume visualization and isosurfac-

ing techniques while eliminating most problems with noise.

The total volume of brain microvasculature is known to make up only a small percent-

age (< 3%−6%) of the total volume in biological tissue. Since Φ is on a discrete grid, we

must store all voxels that intersect the vascular surface. The estimated radius of our vector

tracking algorithm (Section 6.1.2) and subsequent encoding based on a bounding volume

(Section 6.1.3) therefore retains a slightly larger portion of the data set (≈ 10%). This pre-

vents important capillary features from being culled from the final image. Although noise



107

in microscopy is highly correlated from section to section [54], it tends to occur randomly

throughout a volume. Therefore, by culling over 90% of the volume, we have eliminated

large quantities of volume noise that would interfere with isosurfacing and volume render-

ing methods. In the case of isosurfacing, we can now use more liberal isovalues without

generating surface artifacts elsewhere in the data set.

Isosurfacing algorithms are straightforward to implement directly on a DT-Grid. For

example, implementation of the Marching Cubes algorithm [48] requires that each element

in the grid be visited, along with its neighbors. Although random access to any given

neighbor requires logarithmic time (Section 6.1.3.2), the use of a 3x3 template across all

elements allows the isosurface to be reconstructed in time linear to the number of values in

the DT-Grid. This provides a net gain in efficiency since the DT-Grid only contains values

near the network. Since geometry can be sent arbitrarily to the graphics card, the isosurface

can be updated interactively based on the user’s selection criteria.

The major problem encountered when rendering DT-Grids using volume rendering

methods such as ray-casting is that random access into a DT-Grid requires logarithmic

time. This is further complicated by our structure since G contains a separate DT-Grid for

each segment. One way to combat this problem is to create a union of all selected segments

and render them as a single DT-Grid. Creating the union of all segments requires time linear

to the number of voxels in the union, which can be very efficient. However, the resulting

structure is still a DT-Grid and requires logarithmic time for random access. We note that

Nielson et al. [65]. have shown that, for large data sets, the logarithmic time random access

is often faster than the constant time random access provided by a uniform grid. This is

due to cache coherence. Unfortunately, there are no predefined algorithms to use DT-Grids

with graphics hardware, so such methods would be limited to CPU-based rendering.

In order to implement hardware-accelerated volume rendering of our networks, we use

a more direct approach. We store a uniform grid as a three-dimensional texture in graphics
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memory. When the user makes any updates to the selected filaments, the DT-Grids for each

selected segment are copied to a 3D “canvas” in main memory. This canvas is then copied

to the graphics card, updating the rendered texture. Copying the DT-Grids to the canvas

is a highly efficient operation and can be performed interactively. In this case, updating

the texture map in graphics memory is the bottleneck and causes some frame stuttering,

depending on bus speed, when the user changes the selection criteria.

6.1.4.3. Results

These techniques allow us to perform structured visualization of complex network data.

We are able to visualize the actual volumetric or isosurface data interactively based on

user-selection. Examples of user selection operations include:

• Picking filaments from the network,

• Expanding a list of components using a breadth first search,

• Selecting filaments based on statistical queries of G (such as radius, branch angle,

etc.),

• Visualization of the shortest path between two points in the network,

• and visualization of the diffusion of a substance based on simulated flow through the

network.

Operations such as breadth first search allow us to understand the high level of connec-

tivity that has been theorized to exist throughout the microvascular system. By selecting

an initial sample of filaments based on these techniques, we use a breadth first search to

explore network connectivity (Figure 59). By dynamically expanding and contracting the

network, a user can view capillaries in the context of the entire network and then refine the

visualization to include only regions of interest.
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(a) (b) (c)

(d) (e)

Fig. 59. Network searching and selection. A small bundle of filaments was picked by the
user (a). Successive expansion of the network using a breadth-first search (b-d).
The complete network (e) contains filaments at the edge of the data set that are
unconnected to the main network.

6.1.5. Cellular-Vascular Relationships

One of the most interesting relationships between microvasculature and the surrounding

tissue is between capillaries and nearby cells. The ability to explore these relationships

would provide a valuable tool for scientists interested in the effects of microvasculature on

cell nutrition and modulation.

6.1.5.1. Distance Metrics

Nutrients and other chemicals travel from capillaries to nearby cells using both diffusion

and active transport (where mediating proteins carry molecules). Both of these transport
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methods are highly dependent on the distance of the cell to the capillary surface. The

distance of the cell surface from the surface of nearby capillaries is therefore an effective

metric for measuring the relationship between a cell and capillary.

It is straightforward to compute the distance from any point in the tissue to the central

axis of any capillary, since this axis is extracted during segmentation. However, since

capillaries vary in size, we should also take the radius of the capillary into account. We do

this by using the distance to the computed bounding volume of the network (Section 6.1.3).

In order to compute the distance from any specified point px interactively, we compute the

distance between px and the TGC surrounding each edge in G. In order to determine the

distance between a point px and a TGC, we use Equation 6.4 and Equation 6.5. We then

compute the distance between pn and the line formed by pr,n and pr,n+1 (Figure 57).

6.1.5.2. Visualizing Distance Queries

We use this metric to visualize a network of capillaries closely associated with a selected

point in the surrounding tissue as follows. By specifying a point in the volume Φ, we can

select nearby components of G based on their distance from the specified point. Since often

the effects of individual capillaries (not just portions thereof) are of interest to biologists, we

can further adjust the selection to identify segments based on the distance of their nearest

components in G (Figure 60). For measuring the distance from points to capillaries, we

define the segment distance as the distance from the closest component edge (the minimum

edge distance).

We show how this can be effectively used to cull excess microvascular information

from a volume visualization (Figure 61). In this figure, the same region of tissue is vi-

sualized. The first image shows the entire region while the following images show only

segments near the selected point. As the “radius of interest” is reduced, the structure of the

surrounding capillaries becomes more clear.
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Fig. 60. Vertex and filament distance from a point. A region of cerebellar cortex is rendered
using oriented billboards. Segments are colored based on the distance of the closest
point to a cell (left). We then clip edges to a region ≈ 100µm from a cell. We can
either select only edges within that distance (center) or any segment that contains
an edge/vertex within that distance (right).

When selecting specific cells in order to determine their distance to neighboring cap-

illaries, we must also take the radius of the cell into account. Since our cell segmentation is

limited to a center point and radius, we simply subtract the cell radius r from the computed

distance between the vascular surface and the center point p.

6.1.5.3. Voronoi Diagrams

Although the selection described above allows us to interactively explore the structure of

vessels that support and modulate a single cell, many theories concerning the function of

microvasculature concern the number and positions of cells surrounding microvessels. Of

primary concern are cells that are most directly associated with a capillary. Using the

techniques described in the previous section (Section 6.1.5.1) would involve computing

the distance between every cell and blood vessel and sorting all values to find the closest

relationships. Since both the number of cells and the number of edges in G are large, this

process can be time consuming. Additionally, other aspects of the surrounding tissue may



112

(a) (b)

Fig. 61. Volume rendering of the region in Figure 60. The entire volumetric network is
shown (top) as well as a cradle of vessels ≈ 100µm (a) and ≈ 50µm (b) from a
specified point.

be of interest besides cell positions. For example, understanding the size and shape of a

region closely related to a capillary may be interesting in studying tumor growth. This

would require comparing each voxel in Φ to the bounding volume of G. The following

method allows us to efficiently associate regions of tissue in Φ with the closest segments in

G.

We label these regions by constructing an implicit Voronoi diagram based on G. Sev-

eral methods are available for constructing Voronoi diagrams [5,67] but most are designed

to work with point sets rather than implicit or geometric surfaces. Fast methods have been

proposed for computing implicit Voronoi diagrams from geometric primitives [32], how-
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ever these are algorithmically complex, requiring O(PN) where P is the number of primi-

tives and N is the number of voxels in Φ.

We compute the Voronoi diagram by propogating an identifier for the Voronoi region

while constructing a signed distance function (SDF). We use the standard definition of a

SDF

Ψ =


dΨ(x̄,Γ) if x̄ is outside Γ and

−dΨ(x̄,Γ) if x̄ is inside Γ.
(6.6)

where Γ is the vascular surface and dΨ(x̄,Γ) is the distance between x̄ and Γ.

There are several well understood methods for constructing signed distance functions

on a discrete grid. The most commonly used algorithm is the Fast Marching Method [83]

which requires O(n logn) time to evaluate. The Fast Sweeping algorithm [94] converges

in O(n) time, although it requires that every point in the implicit function Ψ be visited

multiple times. Since we wish to evaluate every point in Ψ, we use Fast Sweeping for

efficiency.

Fast sweeping requires that we specify initial boundary conditions from which the

final SDF is iteratively computed. We first initialize Ψ to some large value +∞. We then

rasterize each edge of G into Ψ using a three-dimensional line drawing algorithm [11]. At

each sample point in Ψ intersected by an edge, we write

Ψ(x̄) =−rG(x̄) (6.7)

where rG is the radius measured at the edge and x̄ is the position in G along the edge.

Both values are computed by interpolating between the graph nodes defining the edge. We

then use Fast Sweeping to propagate the distance values through the rest of the function

(Figure 62). Implementation details as well as the Ψ update function for uniform grids

with cubic voxels are provided in the paper by Zhao [94]. Additional details describing the
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construction of SDFs can be found in Osher and Fedkiw [69].

It should be noted that the voxels of many actual biological scans (including ours) are

not cubic. This means that a more complicated update function is required to correctly

perform fast sweeping, or the data must be resampled to a uniformly spaced grid (dx =

dy = dz). If a more complex update function is used, this involves solving the quadratic

equation: (
x̄x,y,z− x̄x−1,y,z

dx

)2

+
(

x̄x,y,z− x̄x,y−1,z

dy

)2

+
(

x̄x,y,z− x̄x,y,z−1

dz

)2

= F (6.8)

for x̄x,y,z, which is the value in Ψ at point (x,y,z).

We construct the implicit Voronoi diagram by propagating a unique identifier for each

filament along with the distance function. This is done during the Fast Sweeping procedure.

In addition to the function Ψ, we maintain a separate implicit function ΨVOR that stores an

identifier at each voxel indicating from which segment the distance value at that point

originated. After completing all iterations of Fast Sweeping (eight for Ψ(x̄) if x̄ ∈ R3),

ΨVOR contains the complete Voronoi diagram where each point contains an identifier to the

segment closest to that point.

(a) (b) (c) (d)

Fig. 62. Vascular network (a) and associated three-dimensional implicit signed distance
function (b and c). The associated Voronoi diagram is constructed by propogat-
ing an identifier for each segment along with the distance value during computation
of the Eikonal equation.
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Finally, we use the computed Voronoi diagram to assign each cell to the appropriate

capillaries (segments in G). Frequently, the cell will overlap multiple Voronoi regions.

Depending on the desired visualization, the cell can be associated with one or many capil-

laries. In our visualizations, we elected to simply associate the cell with the region in which

the cell’s center was positioned. We can then render cell positions along with capillaries

as either simplified spheres (representing the cell position and radius) or using volumetric

data from the original data set (Figure 63). In the latter case, we stored the volumetric data

in a DT-Grid associated with each cell as described in Section 6.1.3, using a sphere as a

bounding volume.

Fig. 63. A series of connected capillaries in the mouse somatosensory cortex along with
their associated cell bodies.

6.1.6. Discussion

Although there are several methods available for visualizing vasculature on a macroscopic

scale, microvasculature is a significantly more complex and interconnected structure. In

order to interpret complex networks, biologists have been limited to statistical models de-

scribing features such as branch angles and vessel direction. Although these features are

important for comparing biological models, they do little to elucidate local characteristics,

such as the positions of cells around individual capillaries. We provide a tool that allows
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biologists to explore the connectivity and complexity of tissue microvasculature without

sacrificing important high-resolution details, such as surface structure. This provides a tool

for biologists to explore several potential areas, including:

• visualization of angiogenesis, or the formation of capillaries in the microvascular

system

• visualization of the surface structure of capillaries, particularly around bifurcations

• analysis and visualization of microscopic aneurisms and other abnormalities visible

in the microvascular surface

• detailed visualization of differences in microvascular structures between two types

of tissue (control and chronic)

These features would be impossible to visualize using simplified primitives, such as cylin-

ders or billboards. In addition, our selective visualization techniques allow a user to exclude

excessive amounts of data and focus on local regions of interest.

We also associate the tissue surrounding the microvascular network with individual

capillaries. This is of particular interest to biologists studying the relationships between

capillaries and individual cells. This allows researchers to visualize several features that

are not yet well understood, including:

• the number and types of cells directly associated with a single microvessel

• the regions of tissue that may be affected by aneurisms in either the macrovascular

or microvascular system

• differences in the volume associated with a microvessel based on tissue type and

region
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We are unaware of any methods in the literature that allow biologists to explore the rela-

tionships between a network and its surrounding tissue. We have therefore provided a new

valuable tool that allows researchers to visualize information that is not well understood.

6.1.7. Conclusion

In this chapter, we discuss a framework for visualizing the complex structure of a mi-

crovascular network. We then extend this framework to visualize the network’s anatomical

relationship to the surrounding tissue.

Due to the large size and high data rate of KESM, we were careful to limit our visual-

ization algorithms to those with time complexity no greater than O(N) where N identifies

some large number of features. In our framework, this includes the number of cells, the

number of nodes and edges in G, and the number of voxels in the data set Φ.

We provide the time required for several pre-processing and interactive stages in our

framework (Table IV). We did not implement any automated methods for cell segmenta-

tion, since this is a well-understood problem and many methods are available in the liter-

ature [?, 19, 59]. In order to test our visualization methods we manually labeled cells in

the data set. Segmentation of the microvascular network is performed automatically and

approximately 97% of the network is labeled correctly while 3% of the capillaries were

missed by the tracking algorithm.

All data sets were 512x512x512 voxels and rendered using a Geforce 7900 graphics

board. We were able to maintain interactive frame rates while looking at any specified

network. When the user changed the network, the appropriate DT Grids are copied onto

a pre-allocated 3D canvas and sent to the GPU. This time required to perform this copy is

highly dependent on the size of the network but was less than 0.2 seconds in most cases.

This results in a small amount of stuttering when the network is changed, but the interactive

frame rate returns to after the copy.



118

6.1.8. Future Work

Filament networks occur frequently in other high-throughput microscopy data sets. In

particular, networks of neuronal fibers found in brain tissue can be visualized using tech-

niques similar to those discussed in this chapter. Storing the volumetric data associated

with neuronal fibers is particularly important since surface features play an important role

in identifying their function (Figure 64).

Fig. 64. Neurons imaged using Array Tomography [61] (left). Storing the network using
DT-Grids preserves important surface details (right).

Finally, as data sets created using high-throughput microscopy become more fre-

quently available, we expect to see many anatomical structures that are significantly more

complex than those found at the macroscopic scale using traditional imaging methods. The

density and high-frequency nature of these structures will require the use of underlying

data structures similar to ours that can be used to query and selectively visualize anatomy.



119

Table IV. Time required for various stages of our framework using a 512x512x512 cerebel-
lar data set (Figure 59) on an NVIDIA Geforce 7900. An updated filament volume
is sent to the GPU only when the user changes the selection criteria.

Stage Time

Preprocessing

Vascular Segmentation 229.248 s

Cell Segmentation Manual

Create DT-Grids 42.192 s

Interactive

Update Filaments on the GPU 0.188 s

Render Time 0.047 s
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6.2. Interactive Rendering

6.2.1. Introduction

The ability to directly render volumetric data provides unique insight about the structures

embedded in these data sets. Although the extraction and rendering of isosurfaces [48]

provides a way to look at specific values in a data set, fine details are often lost due to

smoothing. Direct volume rendering [18] provides the best means of visualizing structures

with fine-scale detail. The disadvantages of direct volume rendering are that the data sets

are often stored as uniform three-dimensional grids which often require large amounts of

memory, while rendering time is often wasted on empty space. Sparse data sets, such as

vascular networks at the microscopic scale (Figure 65), require a very large embedding data

set, even though the structures of interest may occupy < 6% of the actual volume.

In this chapter, we present a method for efficiently storing and rendering sparse volu-

metric structures. Using a data structure known as a Dynamic Tubular Grid (DT-Grid) [65],

we achieve both storage and rendering time linearly proportional to the number of voxels

that make up the embedded structures. DT-Grids provide two algorithmic properties im-

portant for volume rendering:

• Constant time (O(1)) access to each element when the elements are accessed in lex-

icographical order.

• Storage requirements linear (O(n)) to the number of values stored in the grid.

The primary result of this chapter is to demonstrate that DT-Grids provide a more ef-

ficient representation than both octrees and uniform grids for rendering sparse volumetric

network structures. We first develop an iteration scheme that allows us to use DT-Grids

effectively for volume visualization. We show that DT-Grids are particularly efficient for

rendering sparse data structures, such as biological networks commonly found in biomedi-
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Fig. 65. Despite the density and complexity of the vascular isosurface, the volume occupied
by the network is less than 6% of the total volume.

cal imaging. We then use splatting to render these structures in time linear to the volume of

the embedded structure. Finally, we show that random access into a DT-Grid storing sparse

volumetric data is significantly more efficient than octree methods, making DT-Grids an

excellent candidate for both software and GPU-accelerated ray-casting.

6.2.2. Previous Work

A significant body of work has been published on volume rendering. Using three-dimensional

grids for ray-casting [40, 97] has become popular since they provide constant-time access

to any data element. When rendering sparse structures, however, grids are extremely inef-

ficient and often require many times more storage space than the volume of the embedded

structure.

Grids are also the most common method used for software and hardware-based ray-

casting [20,36,78]. In addition to space inefficiencies introduced by grid-based data struc-

tures, ray-casting algorithms can waste large amounts of time looking into empty space
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surrounding volumetric structures. Some research has been published on improving render

times for software-based techniques [?, ?, 13, 44, 68] while more recent work has looked

into using BSP trees [47] for GPU-based methods.

In order to overcome some of these space inefficiencies, structures such as octrees [37,

43] are used to aid in storage. While octrees provide efficient storage when high resolution

is needed in a few local regions, they become highly inefficient when complex data is

spread throughout a volume. Additionally, speed is often sacrificed for memory efficiency

since octrees do not provide constant-time random access.

Another method of storing these data sets is as a series of points, which eliminates the

need for storing intervening space. Each element of the data set has a position and a value

(often a scalar). A large body of work has been published on rendering point-based data

sets [4, 45, 72, 76]. Splatting algorithms [96] are often used to render point-based data sets

and provide a way to render interesting volumetric structures while omitting empty space

in the data set.

Although point-based data sets provide storage that is linear (O(n)) to the size of the

structures in the volume, they have two major disadvantages. Template-based functions,

such as gradient computations or convolution, are difficult to compute since no continuous

function is defined. In addition, rendering high-quality point-based representations requires

sorting so that the voxels are rendered in a back-to-front order to prevent popping and

depth-related artifacts.

Our method using DT-Grids focuses primarily on efficient linear-time splatting, how-

ever we show that this data structure takes advantage of sparse data sets in a way that makes

random access much more efficient than a standard space partitioning scheme. This is due

to the coherence that exists within the structure embedded in the volume data set.
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6.2.3. Dynamic Tubular Grids

In this section, we will provide implementation details for Dynamic Tubular Grids (DT-

Grids). This structure was initially proposed by Nielson et al. [65] for solving level-set

based surface evolution. While several other features and implementation details are de-

scribed in the cited paper, we will limit our discussion to those that we have adapted and

applied to volume visualization.

The DT-Grid data structure is defined recursively in that an N-dimensional DT-Grid is

composed of an (N− 1)-dimensional DT-Grid sub-component. We will therefore outline

the one-dimensional structure and demonstrate some of its important properties. We will

then describe how this technique is extended into higher dimensions.

6.2.3.1. One-Dimensional DT Grids

Assume that we are given a one-dimensional array of elements Λ. We call Λ sparse if

elements of interest in Λ are interspersed with large regions of low-intensity values or zero-

values that are of little interest. In regular grids, these regions serve an important function,

providing a spatial context within which the data is embedded. A DT grid stores only values

of interest embedded in the grid. We refer to a series of neighboring elements of interest

in Λ as a connected component. These values are stored in sequential order (from least to

greatest values of x) in an array we refer to as the value array. Instead of using empty

space to position connected components inside the array, a second array is used, storing an

integer triple defining each connected component’s starting and ending coordinate as well

as its position in the value array (Figure 66).

Although the coord array adds additional overhead to the structure, volumetric net-

works in biomedical data frequently take up a small percentage of the overall volume.

The additional overhead of the DT-Grid is often eclipsed by the amount of space saved by
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eliminating excess empty space. This is particularly true when each voxel contains sev-

eral components such as color values, density, and normals. Compression statistics are

discussed in detail in Section 6.2.4.1.
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Fig. 66. Encoding a one-dimensional uniform grid Λ as a DT-Grid. Grid elements of inter-
est (blue) are stored in a new value array, eliminating empty space (white). An
additional three-element array coord is used as overhead in the DT-Grid to track
the coordinates of the grid points. xMin and xMax record the original coordinates
of the minimum and maximum values of each connected component. The variable
conn provides a pointer to the first voxel of each connected component in value.

6.2.3.2. Algorithmic Properties

We will now discuss several algorithmic properties of this data structure that can be adapted

to aid in volume visualization.
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6.2.3.3. Construction

Adding an element into a DT-Grid is a constant-time operation, provided that the elements

are inserted in the proper lexicographical order. The construction time of a DT-Grid is

therefore linear in the number of elements inserted.

As stated previously, a DT grid is composed of two arrays. The value array is

composed of scalar and/or vector data. In higher-dimensional DT-Grids, these values will

be associated with each voxel (color, normals, opacity, etc.). The coord array is an array

of integer triples that index into the value array (Figure 66).

When an element xn is inserted into the DT-Grid, the value is placed next to the pre-

vious value (xn−1) in the value array. If xn was next to (xn−1) in Λ, we simply increment

the value of xMax associated with the current connected component. If the current value xn

was separated from (n−1) in Λ by some empty space, we instead create a new connected

component by adding an additional element to the coord array and initialize it with the

starting coordinate of the new connected component.

A fundamental feature of note when creating this data structure is that all elements

must be inserted in lexicographical order. That is, all elements must be inserted with in-

creasing values of x, since values can only be inserted at the end of the value array.

6.2.3.4. Iteration

Iteration through a DT-Grid can also be done in constant time by keeping track of:

• the current x coordinate

• the current connected component (using an index into coord)

• the current position in the value array
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Together, these components can form an iterator structure (Figure 67). As each value in the

data structure is visited, the current x-coordinate is incremented until the end of a connected

component is detected. The index to the current connected component is incremented and

the x-coordinate is then set to the new xMin. The index into the value array is always

incremented by one.

We note that iteration can be done in either lexicographical order (from the beginning

of the data set) or reverse-lexicographical order (from the end of the data set). We build

on this concept in order to perform correct object-order splatting (Section 6.2.4.2).
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Fig. 67. Iteration through the one-dimensional DT-Grid defined in Figure 66. The iterator
keeps track of the current x-coordinate as well as pointers to the coord array rep-
resenting the current connected component and the value array representing the
voxel at the current position.
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6.2.3.5. Random Access

Given a specific x-coordinate, we would like to retrieve the associated value from the DT-

Grid D. We do this by first performing a binary search through the coord array for the

connected component n for which xMin[n] ≤ x < xMin[n + 1]. Once the appropriate col-

umn is identified, we then determine if the value is stored in the grid (x ≤ xMax[n]). The

complexity of the binary search is O(logN) where N is the number of connected compo-

nents. After the correct connected component is identified, the appropriate value can be

determined in constant time:

D(x) = value[coord[n]+ x− xMin[n]] (6.9)

6.2.3.6. Higher-Dimensional DT-Grids

As stated above, an N-dimensional DT-Grid contains an (N−1)-dimensional sub-grid. We

now describe how to create a two-dimensional DT-Grid. Implementing the structure in

higher dimensions follows the same pattern.

A two-dimensional DT-Grid contains the same components as the one-dimensional

version with the addition of a projection component. The projection component

is a one-dimensional sub-grid describing how the image is projected onto the x-axis (Figure

68a).

The two-dimensional DT-Grid keeps track of connected components along the y-axis

while the one-dimensional component projection keeps track of connected compo-

nents in the projection of the image onto the x-axis. The projection grid is used to

keep track of the x-coordinate for the image. Instead of storing pixel/voxel values, each

element in the value array of projection stores a two-component value:

• to coord is an index into the two-dimensional coord array pointing to the first

connected component in each x-axis column
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• to value is an index into the two-dimensional value array pointing to the first voxel

in each x-axis column.

Every time an entire x-axis column has been inserted, a new component in projection

is created for the next column. Insertion must still be performed in lexicographical order

and all values are stored in the 2D DT-Grid’s value array.

Iteration for N-dimensional DT-Grids is performed by maintaining iterators to the

appropriate positions in each sub-grid. For example, a two-dimensional iterator maintains

a pointer to the appropriate column in projection while each consecutive value along

the y-axis is visited. When all y-axis values are visited in the current x-axis column, the

index into projection is moved to the next column (thereby changing the current x

coordinate).

6.2.4. Efficient Volume Visualization

In this section we will demonstrate the efficiency of DT-Grids for storing sparse volumetric

structures. In addition, we will discuss modifications to the DT-Grid structure that allow us

to perform efficient volume splatting.

6.2.4.1. Compression Characteristics

One of the most useful features of DT-Grids is the significant amount of compression pro-

vided by culling excess empty-space from a grid-based data set. This is particularly im-

portant for splatting algorithms since rendering time is directly proportional to the number

of values in the data set. The overall compression also aids in allowing us to store larger

data sets in memory. For comparison, we constrained our sample data sets to one byte per

voxel. DT-Grids provided ≈ 10X compression for our data sets, although this is highly

dependent on the structure of the data set (Figure 69). This becomes more pronounced as
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Fig. 68. Higher dimensional DT-Grids contain a lower dimensional component. (a) A
two-dimensional structure is projected onto a one-dimensional array. (b) Instead
of storing voxel data, the values for the 1D grid contain two indices into the 2D
structure: to coord and to value. (c) The two-dimensional DT-Grid contains
all volumetric data inside its value array. (d) The relationship between the 2D
grid and the 1D projection. For any given point on the x-axis, the 1D grid contains
a pointer to the first connected component along that axis and the first voxel value.

additional voxel data is added (colors, normals) since the overhead required for keeping

track of the data structure remains constant. Nielson and Museth [65] have shown that

DT-Grids provide greater compression than octrees by taking advantage of connected data.

Our experiments show even greater improvement for space-spanning data sets such as bio-

logical networks (Figure 70). Although the data sets are sparse, the volumetric data tends
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to be spread throughout the entire data set. The average depth of octrees and BSP trees

tends to increase for space-filling data in order to resolve each voxel.
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Fig. 69. Compression ratio computed from several different sparse data sets. The voxel data
is stored as a single unsigned character value (one byte) for each data set to provide
comparison. In general, thicker structures tend to provide a better data/overhead
ratio while thin structures take less advantage of coherence between voxels.

6.2.4.2. Volume Splatting

In this section, we discuss how DT-Grids can be used to perform linear-time volume splat-

ting in the optimal back-to-front order for orthographic and perspective projections. This

is done by selectively choosing the iteration direction for each axis. We can then guarantee

that individual voxels are visited in a back-to-front order.

In addition, it is important to note that a major constraint on iteration through a DT-

Grid is that the nodes must be visited in x-y-z order. For example, all zn points associated

with a given value of y must be visited before moving on to the next value of y. In fact, the

standard definition of a DT-Grid requires that all points be visited in lexicographic order.
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Fig. 70. The size of an octree, uniform 3D grid, and DT-Grid at increasing resolutions (nor-
malized to the size of the uniform grid). Since the complexity of the volumetric
structures is spread evenly throughout the volume, using an octree to store the data
actually adds additional overhead to a uniform grid.

By allowing iteration in reverse, we can loosen this constraint enough to allow back-to-front

splatting from any viewpoing.

6.2.4.3. Independent-Axis Iteration

In order to loosen the current constraints on iteration, we note that we can control the

direction of iteration along each axis. For example, we can iterate through the 1D sub-grid

from xmin to xmax while incrementing the pointer in the two-dimensional grid from ymax to

ymin. This allows us to break the constraint on iteration in lexicographical order for the

entire data set, provided that we iterate continuously along each axis. Being able to select

the iteration direction for each axis is key to performing splatting in the proper order for

both orthographic and perspective projections.

We wish to choose an ordering for each axis that will guarantee that any visited voxel

will lie on top of all previously visited voxels. Consider the two-dimensional case of an
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orthographic projection of a square onto a plane P (Figure 71). We prove that this can be

done recursively by showing that, no matter the position or orientation of P, we can pick

an ordering of x such that any line drawn from (xtx, ymin) to (xtx, ymax) will lie on top of the

previous line (xtx−1, ymin) to (xtx−1, ymax), where tx is the time at which the line is rendered.

Now consider any line from (xtx, ymin) to (xtx, ymax) with point pty =(xtx, yty), where

yty is the y-position of the point when it is visited at time ty (where ty ≥ tx). We can also

choose an iteration order for the y-axis in which pty will always be projected on top of pty−1

(Figure 71b).

P P

Fig. 71. By selecting the iteration direction for each axis, each voxel in the data set can be
visited in the proper order to ensure a back-to-front orthographic projection onto a
2D plane P. (a) Selecting the iteration direction for x and (b) for y depends on the
Cartesian quadrant in which the normal for p resides.

6.2.4.4. Perspective Projection

Note that this proof assumes that we are projecting the data set onto P using an orthographic

projection. This method works for a vast majority of viewpoints in a perspective projection

as well, however there will be some visible popping when looking down the y and z axes

(Figure 72). This popping occurs when a front face of the data set occludes all other faces.
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The extent of this popping is therefore dependent on the viewing angle and the distance

between the view point and the closest point in the data set.

Removing these rendering artifacts requires a slightly more complex iteration scheme.

One way of thinking of our current iteration constraints (using axis-independent iteration)

is that we must always start at one corner of the data set and iterate inwards. At each point

in the iteration process, we can retrieve the current (x, y, z) position in constant time, since

it is updated every iteration. We can therefore stop iteration at any time and continue on to

the next column by incrementing the projection-iterator (Figure 73-left).

We can therefore split the data set into parts and iterate across each part separately,

provided that it is bounded by edges (and at least one corner) of the original data set. This

requires very little additional overhead since each voxel is still only visited once. We can

therefore eliminate artifacts in the perspective projection by breaking the volume into four

regions. We then iterate through each region independently and in the appropriate order. A

side view of two of these regions are shown in Figure 73.

6.2.4.5. Fast Random Access

The degree of compression realized by using DT-Grids for sparse volume data is partic-

ularly interesting for hardware accelerated rendering techniques because limited memory

and texture constraints on graphics cards set a practical limit to the size of data sets that

can be rendered. Sparse grid representations, such as DT-Grids and octrees, pose a partic-

ular problem for hardware accelerated rendering because ray-casting and texture mapping

algorithms require random access. This has been addressed through the use of GPU-based

octree implementations [43], although these methods are primarily used for storing textures

for mapping onto a 2D surface. For space-filling structures such as volumetric networks,

octree branches tend to approach their maximum length in order to address all of the impor-

tant voxels in the data set. In this section, we will compare the average number of iterations
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Fig. 72. At certain viewing angles in a perspective projection, it is impossible to select an
axis direction that will satisfy the constraints of front-to-back ordering. In this
image, the iteration methods described in Section 6.2.4.3 would render a plane
sweeping along the x-axis. In order to satisfy back-to-front rendering constraints,
region 1 must be visited before region 2 and region 3 must be visited before region
4. There is no single combination of iteration directions that would meet these
constraints.

required to evaluate a random access query into a DT-Grid and an octree for our sample

data sets.

As discussed in Section 6.2.3.5, random access is implemented by performing a binary

search through a list of connected components stored in the coord array. Random access

into higher-dimensional grids involves a single binary search for each dimension. Random

access into a two-dimensional DT-Grid, for example, is performed by first locating the

relative x column in the one-dimensional projection grid using a search through its

coord array. If the x-coordinate is found, another binary search is performed in the coord

array of the two-dimensional grid. This second search is bounded by the result of the 1D

search, so only a subset of the 2D coord array is used.

Although the computational overhead is higher, the unique structure of sparse volu-

metric data allows random access operations to be evaluated in significantly fewer iterations
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Fig. 73. (left) A two-dimensional example of iterating until a specified coordinate. By mov-
ing along the y axis until y≥ 3 and then incrementing the 1D iterator, we can visit
all nodes in region A while excluding region B. (right) Using this technique, we
can eliminate artifacts in the perspective projection by iterating until point p (see
Figure 72) to visit all of region A, and in the opposite direction, visiting all voxels
in region B.

than an octree representing the same volume. This is due to the fact that large volumes of

evenly packed sparse structures tend to fill the corresponding 1D and 2D projections. As

the size of the data set increases, the number of separate connected components in the 1D

and 2D sub-grids decreases. Therefore, as the size of the data set increases, the average

time to access the appropriate x and y components of the three-dimensional DT-Grid ap-

proaches constant time. The majority of the search operation is spent locating the correct

connected component along the z-axis. Since the data set is sparse in three dimensions,

the number of connected components is often very small, even for large data sets. This is

illustrated in Figure 75 for the 2D case.
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Fig. 74. Average number of search iterations required for random access into a DT-Grid
and an octree. Random access was tested using the KESM Vascular data set. The
average was computed from the number of search iterations required to find every
voxel in the data set. This is similar to what would be required for ray-casting or
texture mapping.

6.2.5. Results

In this chapter, we have demonstrated that DT-Grids are a highly efficient structure for

storing and visualizing sparse volumetric data. These types of biological structures are be-

coming more prevalent in volumetric data sets as medical imaging technology improves.

The compression provided by this structure is very useful since biological networks tend

to span large regions that can be difficult to manage using uniform grids. The ability to

perform volume splatting in linear time dependent on the volume of the structure, rather

than the embedding volume is also an important advantage. Although this can be done

using either octrees or point sets, they are limited to rendering techniques, such as a max-

imum intensity projection, that are independent of rendering order. As seen in our sample
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Fig. 75. The DT-Grid structure can provide highly-efficient random access for sparse data
sets when the data is spread evenly throughout the volume. This two-dimensional
example shows how the x-component is resolved in constant time, limiting the
search to only two connected components along the y-axis.

data sets (Figure 76), shading provides important visual queues that allow a user to better

understand the structure of these complex data sets.

6.2.6. Discussion

Fast random access is an important feature, particularly for software-based ray-casting

where octrees are the standard data structure for representing sparse data sets. Although

octrees are effective at representing data sets with regions of high local detail (such as small

local regions and surfaces), they are significantly less efficient when the overall complexity

of the volume is high. DT-Grids are able to take advantage of this overall complexity in

both speed and efficient memory usage.

There are several important properties of DT-Grids that we did not explore in this

chapter. In particular, iterators can be used to provide constant-time access to neighboring

values in a template. This is important for computing gradients for shading, and can be

used for blurring and resampling of the data set in linear (O(n)) time.
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Fig. 76. Volume visualizations of several sample data sets used in this chapter. (a) Neural
networks imaged using Array-Tomography [61]. microvascular networks imaged
using KESM [52] in both an (a) orthographic and (b) perspective view. (c) Lung
vasculature imaged using Computed Tomography.

Finally, there are several important limitations to DT-Grids as a rendering structure.

Although accessing neighboring values using iterators is straightforward, accessing a neigh-

bor of a random voxel requires an additional random access. Therefore, linear interpolation

for ray-casting and texture-mapping is more expensive than with uniform grids. DT-Grids

are also difficult to manipulate once constructed, making them cumbersome for represent-

ing time-varying data sets.
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CHAPTER VII

SUMMARY AND FUTURE WORK

In this dissertation I have described the development of the prototype Knife-Edge Scanning

Microscope (KESM). KESM allows tissue samples in excess of 1cm3 to be imaged at a

resolution comparable to standard optical microscopes. In addition, KESM provides a

data rate that is far faster than current imaging techniques and is capable of creating high-

resolution large-scale data sets consisting of over three terabytes of data in a matter of

days. This introduces the concept of high-throughput microscopy, where high-resolution

data sets can be created from large tissue volumes far faster than any standard methods

currently available. One of the major problems when dealing with this data is that the

amount of data from high-throughput imaging greatly exceeds our ability to analyze it.

I then introduce methods to aid in the analysis of KESM data. These include fast

and highly parallel image processing algorithms that allow artifacts to be removed in par-

allel with KESM imaging. I discuss algorithms that I have developed for performing fast

segmentation of filament networks, which are a common feature in microscopy data sets.

These tracking algorithms take advantage of modern graphics hardware in order to quickly

track fibers in volumetric data sets, creating connected three-dimensional graphs represent-

ing filament networks.

Based on these graphs, I develop a framework for constructing high-resolution mi-

crovascular models. I show how these models can be used to perform measurement and

analysis of the three-dimensional structure of microvascular networks. Although microvas-

cular morphometry has been performed using standard techniques such as confocal mi-

croscopy, KESM is the first imaging method that can extract the three-dimensional struc-

ture of large-scale microvascular networks.

Finally, I discuss methods for visualizing complex filament data. Standard volume
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visualization methods using a uniform grid do not easily convey the underlying structure

of filament data. The methods I describe use selective visualization, allowing the user to

specify the data that is shown using graph queries. The user can then exclude the surround-

ing structures, visualizing only data of interest. This method of selective visualization is

then extended to provide ways for the user to understand the relationships between these

complex filament networks and the surrounding tissue.

The techniques described in this dissertation form a broad base of tools with which we

can begin to explore tissue microstructure in three dimensions. The imaging techniques that

I describe allow us to scan three-dimensional tissue volumes far larger than those possible

using the state of the art in optical microscopy. The analysis and visualization algorithms

that I provide are also faster than standard methods and allow us to more easily explore

complex structures unique to microscopy data sets.

7.1. Future Work

In this section I will discuss future directions for KESM and high-throughput microscopy

in general. In addition, I will discuss how the imaging and analysis tools presented in this

dissertation could be used to solve several problems posed in my introduction (Chapter I).

7.1.1. Knife-Edge Scanning Microscopy

The most obvious extension to KESM is to modify the technology to allow fluorescence

microscopy. Fluorescent stains have become the de facto standard in biomedical imaging

of cellular and sub-cellular data, mostly due to their enhanced selectivity. In addition,

fluorescence staining can be performed using transgenic animals, which allows complete

staining of a tissue sample without resorting to the en bloc staining techniques that we are

currently using (Chapter II).
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7.1.2. High-Throughput Microscopy

Several recent methods are capable of performing high-throughput microscopy using dif-

ferent imaging modalities. While KESM is the only method capable of imaging large tissue

volumes, techniques such as Array Tomography [61], Serial Block Face Scanning Electron

Microscopy (SBF-SEM) [14], and the Automated Tape-Collecting Lathe Ultramicrotome

(ATLUM) [?] are capable of higher resolution and selectivity for much smaller volumes.

Ideally, these methods could be combined with KESM to provide a comprehensive under-

standing of tissue samples at many scales. The most difficult problem to overcome seems

to be the destructive nature of all of these imaging modalities. This limits us to a statis-

tical comparison across multiple specimens rather than a multi-scale analysis of a single

specimen.

7.1.3. Analysis

Finally, the computational methods described have several future applications in biological

research. In particular, I mention three computational problems in Chapter I:

• Creating databases of tissue features

• Constructing high-resolution three-dimensional models

• Understanding connectivity in the brain

Large-scale databases of tissue features have immediate research applications for com-

paring animal models to accepted controls. These controls can be imaged using KESM and

reconstructed with the computational methods described in this dissertation. This would

allow researchers to compare smaller samples from their models, obtained using standard

imaging techniques, with a freely available database of tissue imaged with KESM.
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Anatomical information obtained using KESM can also serve as input for complex

physically-based models for understanding tissue function. One particular application is the

simulation of blood flow through microvascular networks. We have used KESM to capture

complete and fully-resolved microvascular information in high contrast using India-ink

staining. By using the computational methods discussed in Chapter V, physically-based

simulation of blood flow may be possible.

Finally, understanding the structure and function of the brain is a long-term goal, and

has been acknowledged as a Grand Challenge Problem [79]. Since neuron connectivity

is an important part of brain function, KESM can perform an important function in this

research by imaging far-reaching connectivity within the brain. However, completely un-

derstanding brain function would also require significantly more information about local

connections and physiology. This would require additional high-resolution imaging meth-

ods, like those mentioned above, as well as a complete understanding of brain physiology

over time.

7.2. Conclusion

The KESM is the first device to allow high-resolution microscope imaging of tissue at this

large scale. As such, KESM opens the door to a far more comprehensive three-dimensional

study of anatomy. The particular focus of my work has been on brain tissue. This is due

both to its complexity, as compared to other organs, and our relative lack of information

about its three-dimensional structure. Although the cellular structure of the brain is ex-

tremely complex and detailed at the microscopic level, connections can span large regions.

This requires large volumes of tissue to be studied at the microscopic level in order to gain

a complete context of the structure and function of these networks.

In addition to advances in imaging methods, segmentation and visualization algo-
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rithms must also be improved in order to deal with the large size of high-throughput data

sets. In particular, this requires making use of simple processing algorithms on highly par-

allel systems, such as GPU architectures and cluster computers. Finally, new algorithms

are necessary for exploring structures, such as filament networks, that are far more com-

mon in microscopy data than in standard biomedical data sets. The algorithms that I have

presented in this dissertation provide an important basis for the exploration and modeling

of these unique and important structures.
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