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Abstract  

Biomedicine represents the most important and significant multidisciplinary 

field of the medical science, as it defines the fundamental theoretical framework 

for most of the present health science and technology research. In the last decade, 

the introduction of new imaging technologies in microscopy, as well as the 

improvement of the existing ones, has allowed obtaining images of increasing 

resolution and sharpness, thus considerably advancing the possibility to 

investigate biological phenomena. Accordingly, quantitative image analysis is 

now a routine activity for most of biomedical researchers, that rely on many 

available commercial and freeware software to autonomously analyse their own 

images, even customizing – to a certain extent – processing pipelines and methods. 

However, the effectiveness of this approach is bounded by the limited knowledge 

that a biologist, by professional training, has of the computer tools at the disposal. 

On the other hand, if computer vision scientists could be the most effective ones 

for efficiently handling biomedical images, they do not own, by professional 

training, the necessary knowledge of the biological world that should drive a 

meaningful image processing. The possible solution to make up for both these 

lacks lies in training biologists to make them interdisciplinary researchers able to 

develop dedicated image processing and analysis tools by exploiting a content-

aware approach.  

The aim of this Thesis is to show the effectiveness of a content-aware approach 

to automated quantitative imaging, by its application to different biomedical 

studies, with the secondary desirable purpose of motivating researchers to invest 

in interdisciplinarity. In the first study, I apply a content-aware approach to the 

phenomization of tumour cell response to stress by confocal fluorescent imaging, 

by developing on-purpose methods for the subcellular segmentation and 

quantification of RNA:DNA hybrids in different tumour cell lines. In the second 

study, I face a muscle-to-bone crosstalk problem, aiming at elucidating the effect 

of the muscular protein sclerostin on bone structures. Here, starting from micro-
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CT scans, I innovatively apply the Gabor filtering method to the texture analysis 

of trabecular bone microarchitecture. Third study addresses the characterization 

of new 3-D multicellular spheroids of human dental pulp stem cells where, 

merging molecular and imaging analysis, I also contribute to the improvement of 

the experimental planning of the study. In the fourth study, I investigate the role 

of the Nogo-A protein in tooth innervation by developing a dedicated pipeline for 

the 3-D segmentation and morphological description of the tooth neuronal 

network. Finally, I also apply the content-aware approach to developing two novel 

methods for local image analysis and colocalization quantification. 

In conclusion, the content-aware approach has proved its benefit through 

building new approaches that has improved the quality of image analysis, 

strengthening the statistical significance to allow unveiling biological phenomena. 

Hopefully, this Thesis will contribute to inspire researchers to striving hard for 

pursuing interdisciplinarity.  
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Chapter 1 

Introduction and Thesis overview 

The rise and affirmation of biomedicine represents one of the most important 

and significant developments of the last century, as it defines the fundamental 

theoretical framework for most of present health science and health technology 

research. Among the set of biomedical sciences promoting the advancement of 

biomedicine, some stands out for their capability to dissect modern problems 

complexity. First, biology permits to reduce biomedical problems to their basic 

components, exploring the fundamental principles of mechanisms and diseases 

down to the molecular level. Accordingly, biology is one of the key disciplines that 

guide the understanding of pathophysiological processes in preclinical 

investigation and drug discovery. Secondly, since the advent of the digitalization 

era, a capital driver of health science advancement has been computational 

biomedicine, that brings together mathematics, statistics, and importantly, 

computer science and computer technology, to allow the production, handling and 

analysis of increasingly amount of digital biomedical data. Last but not least, a 

relevant and sometimes underestimated player in the modern health science 

research is biomedical digital imaging, that is pillar to a vast range of studies, from 

subcellular molecular investigations to diagnostic whole-body imaging.  

Regardless of its application, digital imaging can provide unique advantages 

to the experimental design. Foremost, the possibility to visualize the samples in a 

non-invasive and non-disruptive way, eventually also over time, enables the 

observation of phenomena that cannot be detected by molecular assays. One 

representative example is the increasingly recognized capability of imaging to 

better capture sample spatio-temporal heterogeneity, an issue that is considered a 

major barrier to drug development and disease treatment. If we recognize images 

not only as pictorial figures, but also – and firstly – as representation of physical 
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quantities, we can extract from them numerical information about tissue 

composition, morphology and function, as well as a quantitative description of 

many fundamental biological processes. Furthermore, the automation of image 

collection and processing can make the analysis less labour-intensive and higher 

in throughput, increasing the quantity of collectable data, their reproducibility and 

reliability, besides their statistical validity and robustness. As a result, quantitative 

image analysis has become a routine activity for most of biomedical researchers 

that, thanks to many available commercial as well as open-source software, can 

autonomously analyse their own images, even customizing – to a certain extent – 

processing pipelines and methods. 

However, as health science advances and biomedical problems increase in 

complexity, researchers are often confronted with the challenge of handling, 

processing and interpreting images of increasing complexity and richness, which 

not only demands advanced computational infrastructure, but also users with 

theoretical and practical expertise of computer vision, to fruitfully navigate the 

potential of such data. Although employing computer vision scientists could be 

the optimal choice for efficient handling of biomedical digital images, they do not 

possess, by formation, the necessary knowledge and therefore sensibility towards 

the biological significance of the data. In this scenario, to overcome this deadlock, 

and more generally ensure continuing progress in biomedicine, there is no doubt 

that multidisciplinary is the cornerstone of modern research. However, to benefit 

multidisciplinary work at most, the knowledge transfer between researchers of the 

single disciplines is mandatory. This is yet more true in the biological field, since 

a proper image processing and analysis requires that the experiments are designed 

since beginning also considering the needs of automated image analysis to extract 

reliable quantitative information.   

The Doctorate path has represented a technical knowledge transfer that has 

enabled me, a molecular biologist, to develop and apply a content-aware approach 

to biomedical image processing and analysis. With this approach, the experiments 

are carried out by weighing both the biological aims and the data analysis needs, 

from the first experimental design stage throughout the whole image analysis 

pipeline, thus providing methodological solutions that increase the statistical 

significance of the data, meanwhile enforcing the biological outcomes and, even 
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more, paving the way for new findings. Being at first “just” a molecular biologist, 

the application of such interdisciplinary approach first required me a big mindset 

change, to start thinking also “as an engineer”. This has meant moving from 

thinking of images as corollary confirmative pictures for my molecular 

experiments, to consider them as a precious source of numerical information with 

their own dignity. Working with images, I needed to stop being satisfied by just 

what I could check by eye, and to develop a new sensibility towards numerical 

data, their fluctuation especially, and consequently reproducibility. In doing so, I 

have realized how, though effective in my experiments, I was enormously 

undervaluing, and underexploiting, my images, neglecting a great part of their 

informative content, accepting what I have realized being levels of inaccuracy, 

misled by the intrinsic uncertainty of the biological processes, and basically 

wasting energy, resources and data by simply not analysing them in the best 

possible way. Step by step, I started realizing that, as much as more time 

consuming, and harder, an interdisciplinary approach was really repaying in 

terms of quantity and quality of data that could be extracted through a more 

accurate image analysis. Of course, to achieve interdisciplinarity, I also had to 

learn, train and experience in image processing methods and techniques. This 

allowed me first to better understand what the available software tools I was using 

were actually doing to my images, to setup, consciously, a proper software pipeline 

using commercial tools and, above all, to customize the program execution 

selecting the correct parameter values, aware of their meaning, because aware of 

the underlying algorithm employed. I could also detect some limitations and 

applicability issues to my biological problem, that pushed me to devise and design 

some possible solutions. In fact, a training in the MATLAB® programming 

language completed my formation, allowing me to develop, when necessary, my 

own methods for image analysis, to replace some parts of an existing processing 

pipeline or to be used stand-alone, to reach the biological effectiveness that 

sometimes a general-purpose tool prevents. All considered, the benefits of such 

new content-aware approach are manyfold, and mutual between the fields of 

biology and engineering (Figure 1.1).  



 

4 
 

 
Figure 1.1. Pyramid of the benefits from a content-aware approach. First of all, by a 

content-aware approach we make a more conscious use of commercial software, because 

we know why and how tuning the software parameters, and how to build more effective 

pipelines. Secondly, we can better evaluate if our (free or commercial) software is too 

general for the purpose, or if an image processing task should be more effectively carried 

out with a different method. In these cases, we can intervene by developing our own, more 

specific and effective method, both as a solution to be integrated with the commercial 

software, if possible, or as a stand-alone product. Third, having knowledge of both the 

biomedical problem and the technical instruments available for its solution, we can more 

effectively interact with software developers. For example, when we know what to do but 

not how to do it, and the problem requires high-level computing skills, we can more 

proficiently communicates our needs to the programmer, and collaborate to implement the 

more effective solution. Finally, and most importantly, the content-aware approach helps 

optimizing the planning of those experiments that involve imaging, because knowing all 

the steps from sample collection to image acquisition and analysis, we can improve each 

step, aware of the entire process. 

 

The aim of this Thesis is then to demonstrate the effectiveness of a content-

aware approach to automated quantitative imaging, by its application to different 

studies of biomedical character, to desirably motivate researchers to invest in 

interdisciplinarity.  

Collecting all what has been done in these three years in a single coherent work 

was not easy. First, because the reported studies differ from each other in terms of 

research aims, employed biomedical technologies, and therefore applied image 

processing techniques. Secondly, because this diversity brings the necessity for a 

broad biological and methodological background, that need to be recalled at least 

in its basic part for the comprehension of the motivations that has driven our 
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analyses. The first Chapters therefore serve the theoretical introduction of two 

main topics that will recur throughout the work, namely preclinical models 

(Chapter 2) and imaging modalities (Chapter 3). Then, the activities that have 

characterized this PhD are presented in chronological order by dedicated 

Chapters. Since my learning and experiencing in image processing have always 

progressed parallelly, such order follows the increasing complexity of the 

methodological solutions I could provide to the studies, which then often recalls 

methods and approaches presented in previous Chapters. For this same reason, 

the next two Chapters present two image analysis methods we developed out of 

the main goals of presented studies, from which however they arise, namely the 

Density Distribution Map (DDM) method (Chapter 4) and the co-Density 

Distribution Map (cDDM) method (Chapter 5). Right after, Chapter 6 presents a 

study for the phenomization of cell response to stress by confocal fluorescent 

imaging, while Chapter 7 presents a morphometric analysis of distal bone 

microarchitecture from micro-Computed Tomography (µCT) scans, for which a 

new dedicated method for trabecular analysis has been developed. Chapter 8 

presents the two main activities carried out during my PhD research period 

abroad, respectively involving the characterization of new 3-D organotypic stem 

cell spheroids by optical imaging, and the investigation of tooth innervation 

architecture in different in vitro and in vivo models, by Differential Interference 

Contrast (DIC) microscopy and confocal fluorescence microscopy, respectively. 

The only common thread from Chapters 4 to 8 is then the application of the 

content-aware approach to problems of preclinical health science. Therefore, 

besides discussing the specific research, each of these Chapters includes: 1) an 

overview of the theoretical background necessary to understand the reasons of the 

analysis, if not discussed in previous Chapters, and 2) a discussion over the specific 

content-aware advantages to the study. The more general advantages will be 

recalled in the concluding Chapter 9, helping the shaping of take-home messages 

and hints for future works.  

Besides the present introductory Chapter, the Thesis content is organised as 

follows (also described by the flowchart in Figure 1.2): 
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Figure 1.2. Thesis content flowchart. The Thesis is divided into three Chapter blocks. The 

Introduction and background block introduces the basic topics of preclinical models and 

imaging modalities, also discussing the principles of image formations useful for the 

successive Chapters comprehension. The Developed methods block discusses the two 

innovative methods for automated image analysis that have been developed during this 

PhD. The Content-aware approach applications block addresses the content-aware image 

analysis performed in different collaboration studies, applying both state-of-art and self-

developed methods (also from the previous block) for image analysis. 

 

• Chapter 2 offers an overview of the most used models in biomedical research, 

that are in vitro two-dimensional (2-D) and three-dimensional (3-D), in vivo and 

ex vivo models, focusing on the specific models applied in the studies of this 

Thesis 

• Chapter 3 describes the imaging modalities employed in the PhD activities, 

discussing instruments design and functioning, respective principles of image 
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formation and related image artifacts and issues relevant for the analysis 

performed in the subsequent Chapters 

• Chapter 4 presents the Density Distribution Map (DDM) method for the 

analysis of spatial distribution of signals in 2-D images, conceived as 

resolution- and instrumentation-independent, for any-level laboratory 

equipment. Besides discussing the method principles and properties and 

demonstrating its effectiveness, the Chapter survey the principle of image local 

analysis, segmentation and thresholding, that constitute the theoretical 

background for methods comprehension. After exemplifying the benefit of the 

DDM method to different cases of spatial distribution investigation, my 

content-aware contribution to the method is provided, together with its 

possible future developments 

• Chapter 5 presents the co-Density Distribution Map (cDDM) method for the 

analysis of spatial co-distribution of signals pairs in 2-D images, and for the 

quantification of their colocalization. The method extends the previous 

Chapter 4’s methodology, appending to the theoretical background the 

concepts of image arithmetic and morphology, and an outline of most used 

coefficients for colocalization quantification. Again, the method principle, 

effectiveness and applicability are presented, followed by a scrutiny of the 

benefit of a content-aware approach to its conceiving and development, 

together with the methods future perspectives 

• Chapter 6 discusses the results obtained for a project study on the 

phenomization of tumour cells response to extrinsic stress at the subcellular 

level. The study aimed at mapping the subcellular distributions of signalling 

molecules in confocal fluorescent micrographs, in order to obtain insights on 

their functioning and interactions after cellular stressing. Specifically, beside 

describing the development and application of image analysis methods for the 

characterization of RNA:DNA hybrids molecules, the Chapter also surveys the 

project’s molecular results that have been compared to the image analysis 

results we obtained. My content-aware contribution to the project and its 

future perspective conclude the Chapter 
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• Chapter 7 presents an investigation of the radiomorphometric properties of 

metaphyseal bone in response to bone morphogen administration. The 

analysis was part of a study aimed at elucidating the role of the sclerostin 

protein in the muscle-to-bone crosstalk in an in vivo murine model. Together 

with the relevant molecular and image processing results, the Chapter presents 

the Gabor-based Trabecular Map (TbM) method, that we developed for the 

classification of bone metaphyseal trabeculae after texture analysis. My 

content-aware contribution to the project and its future perspective conclude 

the Chapter 

• Chapter 8 presents two studies from the dental biology field. The first study 

concerned the characterization of a novel 3-D spheroid model of Dental Pulp 

Stem Cells (DPSCs), performed through Bright Field imaging at the 

morphological level and by metabolic and viability assays. The second study 

involved the characterization of the neuronal network morphology of two 

related models, that are an in vivo murine molar and ex vivo Trigeminal Ganglia 

(TG) and Dorsal Root Ganglia (DRG) explants, cultured in vitro. The study was 

aimed at gaining insights on the role of the neurite inhibitor protein Nogo-A 

during tooth development. After presenting methods and results for the 

performed assays and image analyses, my content-aware contribution to the 

project and its future perspective conclude the Chapter 

• Chapter 9 provides concluding remarks and hints for future works. 

 

Research presented in this Thesis have been carried out within the: 

• Computer Vision Group (CVG), Dept. of Computer Science and Engineering 

(DISI) and Advanced Research Center on Electronic System (ARCES), 

University of Bologna, Italy. 

Head: Prof. Alessandro Bevilacqua and in collaboration with the following 

institutions: 

• Drug Discovery and Radiobiology Unit, IRCCS Istituto Romagnolo per lo 

Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy. 

Head: Dr. Anna Tesei 
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• Department of Biomedical, Metabolic and Neural Sciences, Section of Human 

Morphology, University of Modena and Reggio Emilia, Modena, Italy. 

Chair: Prof. Carla Palumbo 

• Regenerative Therapies in Oncology, IRCCS Istituto Ortopedico Rizzoli, 

Bologna, Italy. 

Head: Dr. Enrico Lucarelli 

• Iret Foundation, Ozzano dell’Emilia, Bologna, Italy. 

Founder and Scientific Director: Prof. Laura Calzà 

• Orofacial Development and Regeneration Unit, Centre of Dental Medicine, 

Institute of Oral Biology, University of Zürich, Switzerland. 

Head: Prof. Thimios A. Mitsiadis.  
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Chapter 2 

Biomedical models  

Studying human health involves two general experimental approaches: 

examining human or primate cells, tissues, and organs that constitute relatively 

direct models of human disease, and using a variety of non-human biomedical 

models that offer special features and advantages that can be translated on the 

human model by virtue of their degree of homology [1]. In simpler terms, a 

biomedical model is a surrogate for a human biologic system that can be used to 

understand normal and abnormal function, from gene to phenotype, and to 

provide a basis for preventive or therapeutic intervention in human diseases. The 

use of biomedical models is enabled by the biochemical and genetic unity of life 

and the principles and mechanisms of evolution, all of which provide an 

irrefutable rationale for wide-ranging comparative studies to understand the 

human condition. In accordance, as a result of evolution from a common origin, 

organisms share many genetic sequences and common functions, consistently 

with the time of their phylogenetic divergence. In general, species that have 

diverged most recently have the closest resemblances in DNA, RNA and proteins 

sequences and functions. So, dependently on the phenomenon under 

investigation, more or less phylogenetically distant organisms can be used to 

model human processes [1,2]. 

The choice of the model is intuitively critical to the representation accuracy of 

the desired biological phenomenon, and consequently to its descriptive and 

predictive capability. It is usually a trade-off between conceptual advantages and 

practical limitations, driven by what is generally referred to as convenience. At a 

minimum, a good model must be tractable and offer access to the phenomenon to 

be investigated; however, many more are the factors that are suggested to be 

considered, together with the details of any specific case [3]. When properly 

chosen, a good biomedical model of study is what provides an effective foundation 
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to support basic science research that has strong potential for translation into 

human medicine. Numerous in vivo, ex vivo, in vitro and in silico models have been 

developed in the last two centuries to infer conclusions about how a molecule, cell, 

organ, and/or organism works, and how all this can be altered by pathological 

conditions or treatments.  

In vivo models, whether animal or human, provide direct analysis of living 

organism responses to stimuli. Similarly, ex vivo models allow the investigation of 

living cells and tissues, but after their explant from the animal and transfer to an 

external stable environment, with minimal alteration of natural conditions. 

Logically, it is relatively straightforward to translate results obtained from in vivo 

and ex vivo models into humans. However, these models’ complexity, high cost of 

maintenance and related ethical concerns strongly hamper their application in 

routine research, where is rather encouraged their reduction and replacement [4]. 

The development of in vitro techniques was a response to such drawbacks, but also 

to the necessity for a more stringent control on experimental conditions. In vitro 

models consist of microorganisms, isolated cells, biological molecules, cell culture 

systems, tissue slice preparations, or isolated organs, grown in optimum 

conditions outside their normal biological context. So, while biological events are 

investigated in their wholeness in the in vivo system, in vitro models allow for 

phenomena dissection and examination of the cellular structures involved. Finally, 

in more recent in silico models pharmacological or physiological processes are 

mathematically modelled combining the advantages of both in vivo and in vitro 

experimentation, without subjecting itself to the ethical considerations and lack of 

control associated with in vivo experiments. A main advantage of in silico models 

is that they can be used as a first in virtue screening tool to predict the effect of a 

drug or stimulus on cells and tissues. If on one side this enormously helps the 

experimental planning of preclinical and clinical trials, on the other side in silico 

results remain theoretical until validation by in vivo studies [5, 6]. 

This Chapter surveys the main characteristics of 2-D in vitro models (Section 

2.1), 3-D in vitro models (Section 2.2), and animal models (Section 2.3) applied in 

biomedical research, discussing their applicability in terms of strengths and 

weaknesses, before providing some concluding remarks (Section 2.4). Throughout 
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the Chapter, we will outline the biomedical models applied in the studies 

presented in this Thesis. These are: 

• In vitro two-dimensional (2-D) cell cultures of different tumour cell lines, 

applied in the PHENOMICS Project (Chapter 6) 

• In vitro three-dimensional (3-D) spheroids of human dental pulp stem cells 

(hDPSCs), characterized at the University of Zürich (UZH, Chapter 8) 

• In vivo mice tibial bone, involved for the investigation of the effect of muscle 

sclerostin on bone morphometry in collaboration with the University of 

Modena and Reggio Emilia (Chapter 7) 

• In vivo mice molars, involved also for the investigation of Nogo-A contribution 

in tooth innovation at the University of Zürich (Chapter 8) 

• Ex-vivo mice trigeminal (TG) dorsal root ganglia (DRG) in vitro cultures, 

applied for the investigation of Nogo-A contribution in tooth innovation at the 

University of Zürich (UZH, Chapter 8). 

2.1 In vitro 2-D models 

2.1.1   2-D cell cultures 

In vitro 2-D models are all those cellular models characterized by a monolayer 

growing adherent to a surface. The surface is usually the inert plastic or glass 

surface of a Petri dish, but cells can be grown on transwell or other materials as 

well. In most in vitro cultures, cells are not directly exposed to air, but covered by 

culture medium, that provides nutrients and mediates catabolites elimination. 2-D 

in vitro cultures have relatively basic environmental requirements for optimal 

grow: controlled temperature, a substrate for cell attachment, and appropriate 

growth medium and incubator that maintains correct pH and osmolality [7]. In 

many cases, establishment of appropriate culture condition is sufficient to 

maintain cells viability and natural behaviour, constituting an easy-to-handle yet 

effective platform for investigating phenomena at the pure molecular and cellular 

level [8], and extending to the basic investigation of cell-cell interaction in case of 
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2-D in vitro co-cultures (Figure 2.1) [9]. In their simplicity, 2-D in vitro cell culture 

models make it possible to understand cell biology, tissue morphology, 

mechanisms of diseases, drug action and protein production, besides providing 

the setting for the development of tissue engineering solutions [10].  

 
Figure 2.1. 2-D in vitro cell models. In 2-D models, cells grow adherent to a flat surface 

while submerged by culture medium or in suspension. 2-D in vitro models can be generally 

divided in mono- (a) and co-cultures (b). (a) Monocultures (i.e., one cell type) include 

primary cell cultures, with short lifespan but high resemblance to the original tissue, and 

cell lines, with longer lifespan and stability. Human/animal tissues are collected and 

disaggregated by mechanical, chemical, or enzymatic methods to yield viable cells, to be 

cultures with tailored media. Primary cultures are sub-cultured as secondary before 

confluence. Secondary cultures may be immortalized (continuous cell lines) by spontaneous 

(e.g., cancer cell lines) or induced (e.g., chemicals, viruses). Non-transformed cells can be 

passaged for a limited number of population doublings (finite cell lines). (b) Co-cultures 

(i.e., more than one cell type) can be divided in indirect co-cultures (i.e., monocultures are 

conditioned by another cell culture medium), transwell and membrane cultures (allow cell-

cell communication but not interaction), and direct co-cultures (allow cell-to-cell 

interactions. Image adapted from [11] and [12] under the CC-BY Creative Commons 

Attribution 4.0 International licence. 

 

The first 2-D in vitro cell culture was carried out by Harrison in 1907, during 

research into the origin of nerve fibres [13]. Since then, the method has been 

improved and integrated with new technologies, making 2-D in vitro cultures an 

important and necessary process in drug discovery and cancer research, as well as 

stem cell study.  Nowadays, experiments can be conducted using primary cells 

isolated directly from the donors’ material or using established cultures deposited 

in cell banks [14]. In primary cultures, the cells are directly isolated from living 

organisms or patients, and thus usually contain populations of different cell types 

present in the source tissue. Primary culture cells are quite significant in terms of 

being the closest forms of the state of the cells that they represent in normal tissues. 

Therefore, their most significant use is in cancer and disease research, where 
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functional experiments are performed after tissue biopsy to gain insights about the 

nature and physiology of collected cells. However, because of their limited life 

span, these cells need to be reproduced with serial passages, that postpone - but 

ultimately not prevent – primary cell senescence. Furthermore, when the cells are 

taken out of the living tissue and transferred into the culture environment, this 

inevitably leads to a certain amount cellular stress, and loss of characteristics and 

morphologies in most cases [15]. On the contrary, established cell lines from 

primary human or animal cells can be propagated repeatedly outside their natural 

environment, thus providing an indefinite source of biological material for 

experimental purposes, besides enabling more prolonged investigation than 

primary cultures. Under the right conditions and with appropriate controls, 

authenticated cell lines retain most of the genetic properties of the tissue of origin. 

Accordingly, established cell lines are widely applied to cancer studies, where 

stabilized and immortalized tumour cell lines are routinely used to unravel new 

feature of cancer disease and to test the efficacy of anticancer drugs [16]. 

In this PhD’s activities, we used 2-D in vitro culture models of both primary 

cells and established cell lines. Primary (patient-derived) 2-D cell cultures of 

hDPSCs were used to create 3-D spheroids, to be cultured in vitro and 

characterized in terms of stemness, morphology and viability, as to start the 

evaluation of their reliability as preclinical models [17]. DPSCs characteristics are 

discussed in Chapter 8, where the spheroid characterization study is presented.  

Instead, several cell line cultures were used in the PHENOMICS Project, to model 

RNA:DNA hybrids subcellular re-distribution after cell irradiations or oxidative 

stress (Chapter 6) [18, 19]. In particular, we focused on three established tumour 

cell lines, bearing (A549) or not (H1299, HeLa) a functional isoform of the 

oncosuppressor p53, to investigate its relation to RNA:DNA hybrids response. As 

a further control, two cell lines have been genetically engineered to repress 

(A549/shp53) or ectopically express (H1299 p53+) the p53 protein. The main 

characteristics of the employed cell lines are presented as follows.  

A549 

A549 is a continuous human lung adenocarcinoma cell line initiated in 1972 by 

D. J. Giard through explant culture of lung carcinomatous tissue from a 58-year-
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old Caucasian male and isolation of alveolar basal epithelial cells [20]. These cells 

are squamous in nature and are responsible for the diffusion of substances such as 

water and electrolytes across the alveoli of lungs. This cell line is categorized as a 

non-small-cell lung carcinoma (NSCLC), which tends to be less aggressive and 

spread less quickly than small cell lung carcinoma (SCLC) but proves to be more 

common, accounting for 85-88% of all cases of lung cancer [21]. The A549 cell line 

is widely used as a model of lung adenocarcinoma, as well as an in vitro model for 

type II pulmonary epithelial cells. The A549 cell line is hypotriploid with a modal 

chromosome number of 66, which occurs in 24% of cells. Modal numbers of 64 and 

67 is relatively common with higher ploidies occurring at an infrequent rate (0.4%). 

The cells are able to synthesize lecithin and contain a high percentage of 

unsaturated fatty acids, which are utilized by the cytidine-diphosphocholine 

pathway and important for the maintenance of membrane phospholipids in cells. 

A549 cells are positive for keratin by immunoperoxidase staining [22]. The cells 

can be grown in vitro, in suspension or adherently as a monolayer on plastic 

surface with a doubling time of 24-40 h, and serve as suitable transfection hosts. 

A549 adenocarcinoma cells are grown in Dulbecco’s Modified Eagle Medium 

(DMEM) modified with 10% FBS, pH 7.0 to 7.6, at 37°C and 5% CO2 air 

atmosphere. A549 cells can be cryopreserved in complete growth medium 

supplemented with 5% dimethyl sulfoxide (DMSO) and stored in liquid nitrogen 

vapor phase. Their biosafety level is 1 and therefore pose a minimal potential 

threat to laboratory workers and the environment [20, 23, 24]. 

H1299 

H1299, also known as NCI-H1299 or CRL-5803 [25], is a human non-small cell 

lung carcinoma cell line derived from the lymph node metastatic site isolated from 

the lung of a 43-year-old Caucasian male patient with carcinoma. This 

immortalized epithelial-like cell line was deposited by A. F. Gazdar, H. K. Oie and 

J. D. Minna, and can be used in cancer and immuno-oncology research [25, 26]. 

These cells have a homozygous partial deletion of the TP53 gene and as a result, 

do not express the tumour suppressor p53 protein which in part accounts for their 

proliferative propensity [27]. These cells have also been reported to secrete the 

peptide hormone neuromedin B, but not gastrin releasing peptide [28]. H1299 cells 
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can be grown in vitro in suspension or adherently as a monolayer on plastic surface 

with a doubling time of 20-25 h [29], and serve as suitable transfection hosts. H1299 

cells are grown in RPMI 1640 medium supplemented with 10% FBS and glutamine 

2 Mm, pH 7.0 to 7.6, at 37°C and 5% CO2 air atmosphere. H1299 cells can be 

cryopreserved in complete growth medium supplemented with 5% DMSO and 

stored in liquid nitrogen vapor phase. Their biosafety level is 1 and therefore pose 

a minimal potential threat to laboratory workers and the environment [25]. 

HeLa 

HeLa is a continuous human cervix epithelioid adenocarcinoma cell line 

initiated in 1951 by G. O. Gey through explant culture of cervical cancer cells taken 

from the patient Henrietta Lacks, a 31-year-old African-American woman after 

which the cell line has been named [30]. HeLa is the oldest and one of the most 

commonly used human cell line. The cells are characterized to contain human 

papillomavirus 18 (HPV-18)—one of the two HPV types responsible for most 

HPV-caused cancers. The virus cancer-causing ability is linked to two proteins it 

produces, HPV E6 and HPV E7, that can target and destroy two major human 

proteins that protect against cancer, p53 and retinoblastoma (Rb) respectively. As 

p53 and Rb are crucially involved in cell division regulation, their inactivation by 

HPV proteins lead to the almost indefinite division of HeLa cells. Since their 

creation, HeLa cells have continually been used for research into cancer, AIDS, the 

effects of radiation and toxic substances, gene mapping, and countless other 

scientific pursuits [31]. HeLa cells are rapidly dividing cancer cells, and the 

number of chromosomes varied during cancer formation and cell culture. The 

current estimate is a hypertriploid chromosome number (3n+), which means 76 to 

80 total chromosomes (rather than the normal diploid number of 46) with 22–25 

clonally abnormal chromosomes, known as "HeLa signature chromosomes" [32]. 

HeLa cells can be grown in vitro in suspension or adherently as a monolayer on 

plastic surface with a doubling time of about 15-30 h, depending on the culture 

medium and the growth mode [33-35]. HeLa can also serve as suitable transfection 

hosts. HeLa cells are grown in Eagle's Minimum Essential Medium (EMEM) 

supplemented with 10% FBS, pH 7.0 to 7.6, at 37°C and 5% CO2 air atmosphere. 

HeLa cells can be cryopreserved in complete growth medium supplemented with 
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5% DMSO and stored in liquid nitrogen vapor phase. Because HeLa cells contain 

HPV integrated in the genome, HeLa biosafety level is 2, and is therefore highly 

recommend wearing appropriate personal protective equipment when handling 

these cells [25]. 

2.1.2  In vitro 2-D model limitations 

Cell monolayer cultures are commonly used by researchers for large-scale drug 

testing, as they are easy to handle and cost effective [36]. Unfortunately, adherent 

cultures fail to address various physiological conditions and the complex 

interactions among different cell types of tissues and organs. First, after isolation 

from the tissue and transfer to the 2-D conditions, the morphology of the cells is 

altered. This inevitably leads to the loss of diverse phenotypes [37, 38] and 

alteration of cell internal organization, function [8, 39, 40] and response to various 

phenomena [41, 42]. As a result, 2-D cultured cells do not mimic cellular 

organization and tumour proliferation kinetics observed in the natural 3-D 

structures of tissues or tumours [43]. Moreover, 2-D in vitro models lack the ability 

to correctly mimic stromal heterogeneity and extra cellular matrix (ECM) 

composition of original tissues and tumour. Cell-cell and cell-extracellular 

environment interactions are not represented as they would be in the original 

tissue, therefore altering cell differentiation, proliferation, vitality, expression and 

splicing of genes, proteins synthesis, responsiveness to stimuli, drug metabolism 

and other cellular functions that depends on cellular interactions [43–47]. 

Furthermore, while cells in the monolayer have unlimited access to the ingredients 

of the medium, such as oxygen, nutrients, metabolites and signal molecules, the 

architecture of 3-D in vivo tissues creates a barrier to the free circulation of these 

molecules, leading to the establishment of biochemical centripetal gradients in 

tissues and tumour non-vascularized microregions. Therefore, 2-D models also fail 

in recapitulating the biochemical gradients that characterize physiological tissues, 

and especially tumour masses [48]. 

 Because of their multifaceted inability to accurately model in vivo conditions, 

2-D in vitro cultures have been addressed as a major cause of trial drops in the 

clinical phase, where the mechanisms of action of new compounds results not 
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adequately predicted, drug doses are often ineffective when scaled to patients, and 

diffusion kinetics found in in vitro and in vivo experiments varies dramatically. [36, 

49, 50]. Owing to the many disadvantages of 2-D systems, 3-D culture systems 

have arisen as alternative models, capable to better mimic natural tissues 

complexity. 

2.2 In vitro 3-D models 

A 3-D cell culture is an artificially created environment in which cells are 

permitted to grow or interact with their surroundings in all three dimensions, 

imitating the architecture of the parental tissue more accurately than is possible in 

2-D models. Accordingly, 3-D cultured cells have been shown to grow more 

similarly to in vivo ones, in terms of cellular morphology and heterogeneity [8], 

gene expression [51], signalling and metabolism [52, 53] and differentiation [54]. 

Moreover, 3-D culturing enables realistic cell-cell and cell-environment 

interactions [55], therefore improving the physiological responsiveness of cells 

[56]. Finally, their amenability to high-throughput analysis makes 3-D cell cultures 

the most used in vitro biomedical model in preclinical investigation [57]. 

The idea of 3-D cell/tissue culture was conceived in 1912 by A. Carrel and his 

pioneering explant and in vitro maintenance of a chick embryo cells [58]. J. A. 

Leighton further developed the system proposed by Carrel, by culturing the 

tissues on a substrate sponge matrix [59]. Other approaches were gradually 

developed involving cell embedding in collagenous gels and culturing on mesh 

supports [60, 61]. Today, many methods, technologies and materials are available 

for in vitro cell culturing in three dimensions. Progress in 3‐D cell culture 

technology created the possibility of tissue engineering development and 

enhanced progress in the regenerative medicine [62].   

3-D models can be divided between scaffold-based, scaffold-free and hybrid 

models. (Figure 2.2).  
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Figure 2.2. Scheme of diverse 3-D cell culture strategies. In 3-D cell culture, cells self-

assemble or grow in structures that resemble the extracellular matrix. The 3-D cell culture 

can be divided into three groups: scaffold-based (a), scaffold-free (b), and hybrids models 

(c). (a) Scaffold-based systems use structures that mimic the extracellular matrix. 3-D 

printing techniques can be used to create scaffold with precise morphology, even directly 

encapsulating the cells (bioprinting). (b) In scaffold-free systems, cells aggregate as occurs 

in natural processes of organogenesis, without the physical support of a scaffold. (c) 

Hybrids systems use a matrix or a scaffold to support scaffold-free systems. Image adapted 

from [63] and from [64] under the CC-BY Creative Commons Attribution 4.0 International 

licence. 

 

In scaffold-based cultures, a physical scaffold is provided to mechanically 

support the cells while mimicking their ECM composition, to simulate their native 

microenvironment. Several biomaterials and methods can be used to generate 

structures that support cell growth and provide physical and biochemical stimuli 

for optimal cell organization and differentiation. They can be adapted to the 

mechanical and physical characteristics required to study tissue physiology and 

pathophysiology [63]. The scaffold nature ranges from simple concentrated 

medium or gel-like substances to solid and often porous structures that mimic the 

inorganic microenvironment peculiar to the used cells. 3-D matrices of polymers 

such as collagen, alginate, Matrigel™ and polyesters are used as a base for growing 

multiple layers of cells over long periods, allowing for their differentiation [57]. 

The 3‐D bioprinting technology is one of most intriguing innovation concerning 

scaffold-based models [57]. While at the beginning the technology was only 

serving the creation of inorganic 3‐D scaffolds for biological materials, it is now 

already employed to simultaneously print living cells layer‐by‐layer into special 
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3‐D scaffolds [65-67]. Scaffold-based 3-D models have been used to study 

intercellular interactions, cellular migration and invasion, and tumour cell biology. 

Although these systems are advantageous in maintaining the 3-D architecture of a 

tissue, they are not able to mimic the conditions of the mass transport gradient of 

a tumour environment [68]. Moreover, the non-toxic constituents of the scaffold 

can have sometimes an effect on cell growth [69-71], including the limiting of cells 

movement and interaction. This does not happen in scaffold-free models, where 

cells are cultured in suspension or on non-adherent plates and left free to aggregate 

(more or less) spontaneously. The most important scaffold-free in vitro 3-D models 

includes spheroids and organoids. 3-D multicellular spheroids are self-assembled, 

sphere-shaped 3-D cell aggregates which produce their own ECM. When 

incorporating more than one cell type and acquiring tissue-like organization and 

functioning, these spherical aggregated take the name of organoids. An organoid 

is a miniaturized and simplified 3-D version of an organ produced in vitro that 

shows realistic micro-anatomy, such that it can be used to study aspects of that 

organ in the tissue culture dish. They are derived from one or a few cells from a 

tissue, embryonic stem cells or induced pluripotent stem cells, which can self-

organize in 3-D culture, owing to their self-renewal and differentiation capacities. 

With respect to “simple” 3-D co-cultures, the processes that form these tissues in 

vitro are thought to better resemble the natural development and tissue 

maintenance [72, 73]. Accordingly, organoid technology applies in multiple 

infectious diseases, monogenic hereditary diseases, and personal and regenerative 

medicine [63].  

A third new type of 3-D models can be considered as a hybrid and advanced 

version of the previous ones (Figure 2.3). These hybrid systems include scaffold-

based characteristics like synthetic matrix and external physical supports, that are 

used to define a culturing environment for scaffold-free models. A clear example 

of these models is the Organ-On-a-Chip (OOC) system, that integrates 

bioengineering and microfluidics to better mimic the in vivo microenvironment 

[63]. In OOC systems, also known as Lab-On-Chips, cells are seeded and perfused 

in a chip-like array to model the minimal functional units of an organ or a tissue. 

By specifically designing the chip topology to reproduce an in vivo situation, OOCs 

can model miniaturized organs, recapitulating the multicellular architectures, 
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tissue-tissue interfaces, physicochemical microenvironments and vascular 

perfusion of the body, and producing such levels of tissue and organ functionality 

as it is not possible with conventional 2-D or 3-D culture systems [74]. 

In this PhD’s activities, we modelled in vitro the 3-D growth of human dental 

pulp stem cells by spheroids derived from primary cultures [17]. hDPSCs are 

staminal cells, whose proliferation, differentiation and functioning are importantly 

affected and directed by their microenvironment. With respect to traditional 2-D 

cultures, 3-D multicellular spheroids have been demonstrated to more accurately 

model the mesenchymal stem cells (MSCs) cellular microenvironment, and to 

consequently better preserve stemness through culture [75-76]. Therefore, hDPSCs 

culturing in 3-D, rather than in 2-D, is expected to strongly influence their 

stemness, morphology and viability, that we characterised and compared to 

monolayer culture in the study presented in Chapter 8. The main features of 3-D 

multicellular spheroids are presented in the next Subsect. 2.2.1. 

2.2.1 Spheroids 

3-D multicellular spheroids are self-assembled, sphere-shaped 3-D cell 

aggregates which produce their own ECM. In their simplicity, spheroids 

recapitulate the complex in vivo multicellular architecture, the barriers to mass 

transport, the proliferative heterogeneity of cells found in vivo, and the ECM 

deposition. Accordingly, in 3-D tumour spheroids it is possible to replicate the 

conditions of hypoxia, necrosis, angiogenesis, invasion, metastasis, cell adhesion 

and tumour–immune cell interactions [57]. Spheroids have therefore become an 

election model for better prediction of drug effects and delivery, and the most used 

3-D in vitro culture for modelling tumours, especially in their initial non-

vascularized phase [77-78]. 

 The first cell aggregation studies date back to 1944, when J. Holtfreter 

described a method for the production of stable and spherical aggregates of 

amphibian embryonic cells [79]. Then, in 1970 R. Sutherland applied the 

methodology developed by Moscona [80] and Holfreter to form the first tumour 

spheroids by rotating the cells in spinner flasks and used them as a model system 

for radiobiological studies [81]. Initially, spheroid cultures were mainly applied in 
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experimental radiotherapy and chemotherapy settings; it was only in the 2010s, 

that advanced 3-D spheroid models received greater interest in the research field 

as high-throughput manipulation and analysis methods has become available [82]. 

Spheroids can be conventionally produced starting from different cell types by a 

variety of methods that share the common feature of promoting cell–cell coupling 

by resisting cell–surface interactions. Methods for spheroids creation can be 

broadly divided between scaffold-based and scaffold-free methods (Figure 2.3).  

 
Figure 2.3. Methods for spheroids creation. (a) Scaffold-based methods provide a physical 

support for cell aggregation, either by solid matrices, hydrogels or microcarrier beads. 

Among the most used scaffold-free methods for spheroids creation there are: (b) spinning 

flasks, bioreactors and other rotating culture systems, (c) low and ultra-low attachment 

plates, (d) culture plates with micropatterned wells, (e) microfluidic culture chips, (f) 

hanging drop method. 

 

Scaffold-based methods promote cell aggregation into spheres by mean of 

specifically designed porous solid or semisolid matrices. Alternatively, 

microcarrier beads can be used as a non-flat surface on which promote cellular 

aggregation [83]. Scaffold-free methods employ physical or chemical properties to 

promote cell aggregation in a scaffold-free environment. Among the most 

employed scaffold-free methods there are low-adherence plates, micropatterned 

surfaces, rotating culture systems, hanging drop applications and microfluidics 

chips [83-86] (Figure 2.3). In particular, the hanging drop method has been used to 
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produce the hDPSCs spheroids whose characterization is presented in Chapter 8. 

Briefly, in the hanging drop method the cells are seeded into drops of culture 

medium and left hanging from plate lids [87] or other structures [88]. While drops 

do not fall thanks to water surface tension, gravity promotes the self-assembly of 

3-D spheres at the bottom of the drop. This method has been demonstrated to lead 

to the production of spheroids with well-controlled size in a rapid manner [57]. 

Depending also on the method employed for their creation, spheroids size can 

range from 20 μm to over 1 mm in diameter [68]. As a main feature, spheroids 

develop centripetal gradients of nutrients, oxygen and wastes based on the 

diffusion potential of molecules (Figure 2.4).  

 
Figure 2.4. Spheroid pathophysiological gradients and viability differentiation. ATP, 

Adenosine triphosphate. Image reproduced from [89] under the CC-BY Creative Commons 

Attribution 4.0 International licence. 

 

As a consequence of these gradients, spheroids with a diameter of at least 500 

μm [89] have been reported to internally differentiate in three different functional 

layers: an external proliferating zone, an intermediate quiescent zone, and an inner 

necrotic core. This layered structure importantly resembles the cellular 

heterogeneity of solid in vivo non-vascularized tumours [90]; however, it may also 

contribute to reduce the reproducibility of data collected with this model. Indeed, 

it has been shown that a number of morphological parameters affect the response 

of large spheroids to treatment, and that spheroids heterogeneous in volume and 

shape constitute a potentially dangerous source of variability [89]. Therefore, it is 

of primary importance to standardize spheroids culturing and selection for 

treatment, also by mean of quantitative imaging, as we have done in this Thesis.  
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2.2.2 In vitro 3-D models limitations 

Despite their numerous and undoubtable advantages over monolayer cultures, 

current 3-D in vitro models are not a truly reliable and accurate representation of 

human physiopathology yet. If on one side this may be ascribed to their simplified 

biological properties, on the other side technological burdens prevent the full 

exploitation of their potential. 

From a technological point of view, even after decades of research, the lack of 

standardized culturing, testing and analysis procedures have been more than once 

reported to negatively affect 3-D models reproducibility [89, 91, 92]. To this 

respect, the applications of emerging technologies like microfluidics, 

computational modelling and high-throughput analysis systems can reduce the 

variability of cultures and, consequently, the consistency and reproducibility of 

their results. Finally, the integration of cutting-edge technologies for culture 

imaging can introduce unprecedented advantages in both research and industry 

settings. Real‐time imaging of cultures can provide profiling of drug response 

directly on target, besides the monitoring of cellular phenotypes within complex 

samples, with consequent quantification of sample heterogeneity. Finally, live-

imaging opens to the investigation of peculiar cell processes, such as cell 

attachment, migration, vesicle formation, angiogenesis and stem cell 

differentiation [62]. Clearly, interdisciplinarity is a key player for the functional 

integration of these technologies, with the potential to provide significative 

advancement to biomedical research. 

2.3 In vivo and ex vivo models 

In vivo and ex vivo models are biomedical models that involve direct (in vivo) or 

indirect (ex vivo) experimentation in animals or human subjects. Animal models 

are essential in human studies because, differently from 2-D and 3-D in vitro 

cultures, they provide systemic information regarding the interaction between 

several organs. Accordingly, animal models represent a unique source of in vivo 

data for various fields of biomedical research. In preclinical trials, animal models 

are used to assess drug pharmacokinetics, efficiency and safety, representing the 



 

26 
 

last decisive pre-clinical validation before translation into clinical trials [93]. 

Animal models are also widely applied to the development of vaccines and 

antibiotics, and in general to the investigation of all those physiological and 

pathological phenomena whose complexity cannot be fully captured by in vitro 

models. As complete organisms, animal models are essential for investigating 

systemic living functions, as immune response and reproduction, and to provide 

proof-of-principle validation to results obtained by in vitro models [94]. 

With respect to 2-D and 3-D in vitro cultures, in vivo animal models possess 

unquestionable biological advantages, first of all the higher level of accuracy in the 

representation of human physiopathology. However, ethical concerns, high costs 

and model complexity limit their use in routine biomedical research. An 

interesting intermediate option is represented by ex vivo models, which merge 

advantages of in vitro and in vivo models. As the name suggests, ex vivo systems 

involve the explant of tissues or organ parts from an in vivo model and their 

culturing in vitro, under controlled and reproducible conditions. Therefore, the 

convenience of ex vivo models lies in the fact that they retain a very high level of 

resemblance with the original tissue environment, while raising less ethical 

concerns and being as practical as in vitro models, gaining in robustness and 

compatibility with high-throughput processes [95-97]. Another primary 

advantage of using ex vivo tissues is the ability to perform tests or measurements 

that would not be possible, or ethical, in living subjects [98]. However, ex vivo 

models have repeatedly reported to suffer from limited viability [99, 100], 

availability and reproducibility [57]. 

Through the years, different vertebrate and invertebrate animal models have 

shown to be suitable for diverse purposes. C. elegans is used to study a large variety 

of biological processes including apoptosis, cell signalling, cell cycle, cell polarity, 

gene regulation, metabolism, ageing and sex determination [101]. Drosophila is an 

historical model for genetic investigation and engineering [102]. Thanks to its 

transparency, Zebrafish (Danio rerio) is an established model of vertebral 

development and physiology [103], while rodents and primates are preferred for 

neurodegenerative diseases modelling and investigation of brain physiology [104]. 

Finally, genetic manipulation and engineering of small animals can be used to 

induce gene ectopic expression, deletion and silencing of endogenous genes, and 
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to produce chimeric and transgenic animals, to increase the model relevance to the 

topic of study [105, 106]. In the next Subsection, we will survey the general feature 

of the mouse model, as it is the one applied to the in vivo and ex vivo studies of this 

Thesis. 

2.3.1 Mouse model 

Today, almost 60 million animal subjects are used in biomedical research [107], 

dominated by mouse and rat models [108]. The house mouse of North America 

and Europe, Mus musculus, is a small mammal belonging to the order Rodentia, 

whose physiology has been extensively characterized [109]. Reducing reliance on 

higher-order species, M. musculus has become the animal model of choice for 

biomedical researchers, firstly because of its high similarity to humans in terms of 

organ shape, structure, and physiology. Further reasons include small size 

(facilitating housing and maintenance), short reproductive cycle and lifespan, 

wealth of information regarding mouse anatomy, genetics, biology, and 

physiology, and the availability of a plethora of methods for their breeding, 

mutation, genetic manipulation and testing [110]. Mice primary application in 

biomedical research concerns the investigation of a multitude of human diseases, 

such as hypertension, diabetes, heart disease, Parkinson’s, Alzheimer’s and other 

neurodegenerative diseases, spinal cord injuries (SCIs), muscular dystrophy, 

cystic fibrosis, AIDS and various cancers. Mice are also used in behavioural, 

sensory, aging, nutrition, and genetic studies. This list is in no way complete as 

geneticists, biologists, and other scientists are rapidly finding new research 

application for the domestic mouse [109]. 

However, the mouse model does not come without challenges, first of all the 

high intrinsic variability that characterize all high-order species. To this regard, an 

important element to consider is the link between the study outcome 

reproducibility and the animal welfare. Researchers working with animal models 

have an obligation to safeguard their welfare and minimise the discomfort [111]. 

While this is largely driven by ethical concerns, this approach has been proved 

more than once to be also beneficial for the experimental outcome, as it 

significantly reduces animal stress and ultimately the variability of response to 
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treatments [112-116]. Speaking of mice, it is therefore of primary importance to 

provide appropriate resources of food, shelter, and environment enrichment, to 

optimize and standardize mice handling procedures, and, in general, to 

continuously weight the effect of animal distress on data reproducibility [116]. 

In this PhD’s activities, both in vivo and ex vivo mice models were used. In the 

first year, the PHENOMICS Project used an immunodeficient (athymic) nu/nu CD-

1 mice (Crl:NU-Foxn1nu, Charles River Laboratories) for demonstrating the 

dependence of abscopal effect on the oncosuppressor p53, excluding the sole effect 

mediation by T cells [18]. This model, on which I have not performed any image 

analysis, is described elsewhere [117]. In the first year, collaborating with the 

University of Modena and Reggio Emilia, I investigated the microarchitecture of 

mouse tibial bone in µCT scans, and how it is affected by a muscle production of 

the sclerostin protein [118]. Finally, in the third year, we investigated the role of 

the Nogo-A protein in tooth innervation using both in vivo and ex vivo mice models, 

imaging and analysing the neuronal network of the first mice molars and of in vitro 

cultures of explanted trigeminal and dorsal root ganglia [119]. The main 

characteristics of the in vivo and ex vivo mice models investigated by image analysis 

in this PhD are presented as follows.  

In vivo mouse model of muscle-to-bone crosstalk 

The morphological effect of the muscle protein sclerostin on adjacent bone 

microarchitecture was investigated in C57BL/6NCrl mice (Charles Rivers 

Laboratories). The C57BL/6 inbred strain was developed starting in 1921 by 

Clarence Little at the Jackson Labs. At that time, a “black subline” (C57BL) and a 

“brown subline” (C57BR) were established and bred independently. The C57BL 

subline was further separated into two sublines designated “subline 6” and 

“subline 10.” These sublines would eventually give rise to the C57BL/6 and 

C57BL/10 inbred stains we know today. Substrains are distinguished by the series 

of letters following the C57BL/6 designation, identifying the laboratory of origin 

(lab codes).  

C57BL/6 Inbred strains are defined as colonies produced by a minimum of 20 

generations of brother-sister mating, traceable to a single founding pair. Due to 

relatively robust breeding performance and confidence in the strain origin, the 
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C57BL/6 is the most used inbred strain in research. C57BL/6 mouse colonies are 

genetically identical and exhibit a high degree of uniformity in their inherited 

characteristics, or phenotypes, which include appearance, behaviour, and 

response to experimental treatments. In 2002, the mouse genome was firstly 

sequenced from the C57BL/6 strain (substrain J) [120]. The C57BL/6 strain is a 

general multipurpose model, applicable to studies of diet-induced obesity, 

transgenic/knockout model development, safety and efficacy testing and 

immunology studies. As it shows an increased preference for narcotics and 

alcohol, the C57BL/6 strain is also very suitable for genetic studies of substance 

abuse. 

In vivo molar model of tooth innervation 

The effect of the neurite growth inhibitor protein Nogo-A on the innervation 

morphology in developing tooth was investigated in the first molar of transgenic 

C57BL/6 mice, engineered for the homozygous deletion of the exons 2 and 3 of the 

RTN4 gene, encoding for the Nogo-A protein (Figure 2.5). The procedures for the 

generation and genotyping of the of knockout (KO) mice are described in [121].  

The first molar of C57BL/6 Nogo-A KO mice was extracted at different 

postnatal (PN) stages (i.e., 4, 7, 9, 20, 25 or 27 days after birth) for the 

immunostaining and imaging of the developing tooth neuronal network.  
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Figure 2.5. Deletion scheme for the RTN4 gene exons 2 and 3, from Simonen et al. [121]. 

(a) Schematic representation of the RTN4 gene and its major protein products Nogo-A, -B, 

and -C. (b) Genomic region covering exons 2 and 3 of the RTN4 gene and the Nogo-A 

knockout (KO) construct. The PCR screening strategies for the transfected embryonic stem 

cells and for the mice are shown, as well as the expected PCR products from Nogo-A wild-

type (WT), heterozygous (HT), and KO mice. Primers A, B, I, and J were used to screen the 

transfected embryonic stem cells. For genotyping the mice, all five PCR reactions were 

performed. Figure and caption reproduced from Simonen et al. [121] under the CC-BY 

Creative Commons Attribution 4.0 International licence. 

 

Ex vivo TG and DRG cultures 

The Nogo-A effect on the morphology of developing neuronal network was 

further investigated in two ex vivo mice models, namely in vitro cultures of 

trigeminal ganglia (TG) and dorsal root ganglia (DRG) explanted from C57BL/6 

Nogo-A KO mice at the embryonic stage E14 (i.e., 14 day after birth). The C57BL/6 

Nogo-A KO strain was generated as before [121]. In these cultures, the ganglia are 

plated on glass coverslip coated for their attachment, and the neuronal network 

grows bi-dimensionally, spreading radially from the ganglia. In these cultures, TG 

and DRG grow comparably in terms of network morphology. While TG network 

investigation is relevant for understanding Nogo-A effects in the early phases of 

tooth development, DRG have been here firstly considered for more technical 

reasons, i.e., setup of culturing and imaging protocols. 
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2.3.2 In vivo models limitations 

Animal models limitations can be traced to three main areas of concern, 

including study design and data analysis, translation of preclinical animal trials to 

human clinical trials, and ethical concerns [122]. Most of the data coming from 

trials that use animal models have been criticized for their inconsistency, lack of 

randomization, blinding, and inadequate or absent use of formal statistical 

analysis [123]. Data derived from animal models easily suffer of poor 

reproducibility [124]. If one side this is related to the intrinsic complexity of a living 

model, on the other side much more can be done to contain the variability 

introduced by genetic and phenotypic heterogeneity of the selected samples. All 

these factors inevitably contribute to lower the translatability of results from 

preclinical animal models to clinics. Nonetheless, preclinical investigation still 

cannot help from using animal models for testing safety and efficacy of new 

devices, procedures, and drugs. 

In 1959, Russel and Burch introduced the Three R's of animal research: 

Replacement, Reduction, and Refinement [4]. First, using experimental animals 

should be avoided when possible; secondly, the number of animals used per 

experiment should be reduced, and finally, methods to minimize animal suffering 

should be implemented. These three principles were designed to serve as a 

foundation for the development of future alternatives to the use of animals in 

research. It was not until the 1980s, however, that legislative bodies across Europe 

and the United States began to develop committees and laws to govern the use of 

animals in research, many of which are largely based upon the three Rs [122]. As 

the use of animals in research moves forward, it is important to prioritize the 

commitment to the three R's, to reduce animal suffering to a minimum.  

Finally, animal models present practical challenges relatively to their high cost 

for maintenance, the requirement of dedicated space and specialists to carry out 

complicated and laborious techniques, and the impossibility to model some 

specific phenomena, as for example human virus pathophysiology, that is linked 

to human cell tropism [63]. 
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2.4 Concluding remarks 

This Chapter has surveyed the main features of available models for 

biomedical research, presenting and comparing their strengths and weaknesses, 

and outlining the specific models applied throughout this Thesis. While no perfect 

model exists, that can flawlessly apply to any study, it is up to the researchers’ 

responsibility to carefully weigh benefits and drawbacks of each, in the context of 

the purposes and methods of his own study, in order to make the most of the 

crucial step of model selection.  

Nevertheless, some general considerations can still be drawn. In vitro 2-D 

models are still remarkably present in biomedical and preclinical research, despite 

the increasing evidence for their limited capability to represent the in vivo systems. 

However, the use of in vivo models is limited by ethical, economic ,and statistical 

concerns. The replacement of 2-D cultures with 3-D in vitro models, underway now 

for more than a decade, is returning highly promising results. Cutting-edge 

technologies and techniques, such as co-culturing, microfluidic devices, high-

throughput screening and high-content imaging, are showing their potential to 

increase 3-D models representativeness and reproducibility, making promises for 

a substantial reduction and replacement of animal models in biomedical research. 

In the near future, the challenge will be to integrate 3-D culture systems with 

advanced informatics and technology tools, to maximize their potential and 

establish them to the routine biomedical research. 
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Chapter 3 

Imaging modalities and analysis:  

principles and techniques  

Vision is the most advanced of our senses and the human perception relies 

more on for the investigation of the world that surround us. It is no surprise that, 

from ancient times, man has devoted resources and energy to the creation of 

instruments and machines to explore what is beyond his eye, on unreachable 

macroscopic and microscopic scales. Thanks to its outstanding applicability, the 

use of imaging technologies in research, and in particular in the biomedical field, 

has grown steadily over time, boosted by the progressive digitization of 

equipments. However, unlike humans, who are limited to the visual band of the 

electromagnetic (EM) spectrum, imaging machines cover almost the entire EM 

spectrum, ranging from gamma to radio waves, also operating on images 

generated by sources that humans are not accustomed to associate with images. 

From nanotechnologies, astronomy, medicine, vision psychology, remote sensing, 

security screening, to the digital communication technologies, images have helped 

mankind to see objects in various environments and scales, to sense and 

communicate distinct spatial or temporal patterns of the physical world, as well as 

to make optimal decisions and take right actions. 

Imaging sciences consist of three distinct as well as interconnected 

components: image acquisition, image processing, and image interpretation. This 

Chapter focuses on the first subject, though the three are intimately related and 

interdependent. If from one side it is relatively straightforward to snap pictures on 

modern imaging instruments, generating quantitative image data, however, 

requires thoughtful planning and careful execution at all stages of the experiment. 

Quantitative imaging involves rigorous specimen preparation, careful selection of 
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an appropriate instrument for a given application, stringent instrument set up and 

operation in a way that enables equal and fair assessment of control and 

experimental conditions. Care must be taken to avoid bias and ensure that the 

measured differences are statistically meaningful. And though all image 

processing and analysis steps must be performed consciously, cautiously and with 

integrity too, image acquisition remain the main stumbling block for a meaningful 

quantitative imaging analysis, requiring to be planned and performed also in the 

perspective of the subsequent steps.    

This Chapter surveys the main principles and techniques of the imaging 

modalities applied during this PhD, namely optical microscopy and computed 

tomography. After introducing digital images (Section 3.1), the basic principles of 

microscopy are given (Section 3.2), together with a more specific survey of the 

modalities we encountered, that are Bright Field microscopy (Subsection 3.2.1), 

differential interference microscopy (Subsection 3.2.2) and fluorescence 

microscopy (Subsection 3.2.3), the latter focusing on the applied widefield and 

confocal microscopy modalities. The main artifacts related to these imaging 

modalities and techniques, namely the vignetting effect and photobleaching, are 

also discussed (Subsection 3.2.4). Then, the basic principles of computed 

tomography (CT) are introduced in Section 3.3, with a deepening on the applied 

micro-CT (µCT) technique (Subsection 3.3.1) and on the most common image 

artifacts associated to CT (Subsection 3.3.2). Concluding remarks are provided in 

Section 3.4, opening a small window on image post-processing and its relationship 

with image acquisition. The imaging modalities and techniques applied in the 

studies presented in this Thesis, and outlined throughout the Chapter, are: 

• Bright Field microscopy, applied to the morphological characterization of human 

dental pulp stem cells (hDPSCs) spheroids, at the University of Zürich (UZH, 

Chapter 8) 

• Differential Interference Contrast microscopy, applied to the investigation of the 

neuronal network in dorsal root ganglia (DRG) in vitro cultures, at the 

University of Zürich (Chapter 8) 

• Widefield Fluorescence microscopy, applied to the quantification of hDPSC 

spheroids viability, at the University of Zürich (UZH, Chapter 8) 
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• Confocal Fluorescence microscopy, applied to the investigation of subcellular 

molecules distribution in the PHENOMICS Project (Chapter 6) and to the 

characterization of the neuronal network morphology in developing mice 

molars, at the University of Zürich (UZH, Chapter 8) 

• Micro Computer Tomography, applied to the investigation of the effects of muscle 

sclerostin on bone morphometry, in collaboration with the University of 

Modena and Reggio Emilia (Chapter 7). 

3.1 Digital images 

An optical image is a continuous distribution of light intensity across a two-

dimensional surface. In other words, an image is a (usually) two-dimensional (2-

D) function f(x, y), where x and y are spatial coordinates, and the amplitude of f at 

any pair of coordinates (x, y) represents the intensity or grey level of the image at 

that point. When x, y, and f are all finite, discrete quantities, produced by the 

process of digitalization, we call the image a digital image [125]. A digital image is 

therefore a grid of discrete elementary units, the pixels, each defined by a unique 

triple of x, y and f(x, y). The range of variation for x and y displacements defines 

the image width (X) and height (Y) respectively, while the range of variation for 

the values of f is defined by the response function of the image sensor, and its tonal 

range. In practice, during image acquisition they are delimited by the image bit-

depth (i.e., the number of bits used to discretize the dynamic range of the scene, 

commonly, 8, 12 or 16). Properly done, image digitization yields a numerical 

representation of the specimen that is true to the original spatial distribution of 

light that emanates from the specimen (Figure 3.1 (a)). 
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Figure 3.1. Digital images quantization and point spread function. (a) The process of 

image digitalization consists of sequential sampling and quantization. The sampling process 

discretizes the space and measures the intensity at successive locations in the image and 

forms a 2-D array of small rectangular blocks (i.e., pixels), each containing information 

about brightness at given location. of intensity information. The quantization process 

discretize the dynamic range of the scene and each pixel location is assigned a specific 

quantized brightness value (i.e., grey level), ranging from black to white (in case of one 

colour-channel only). (b) Airy disk and diffraction pattern intensity profile. The point 

spread function (PSF) describes the response of a focused optical imaging system to a point 

source or point object. The intensity distribution of the PSF in the focal plane is described 

by the Airy pattern, whose shape is determined by the cylindrical symmetry of the lenses. 

Images reproduced from [126]. 

 

Image resolution  

The resolution of a digital image can be defined in many ways. To the scope of 

this Thesis, pixel resolution refers to the image dimension (i.e., the number of Y pixel 

rows and X pixel columns [127], while spatial resolution, or simply resolution, refers 

to the pixel density of an image (i.e., the number of pixels necessary to cover a field 

of view), that in microscopy is commonly expressed as pixel/µm (or pixel/nm). The 

spatial resolution is a primary characteristic of every imaging system, as it 

corresponds to the minimum distance at which two points can be detected as 

separated at a given focal length, thus indicating the sharpness and the level of 
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detail of an image. All optical microscopes are limited in the resolution they can 

achieve by a series of physical factors related to light diffraction and described for 

a perfect optical system by Abbe’s equation [128]:  

𝑑 =
𝜆

2𝑛 sin𝜃
=

λ

2 NA
 (3.1) 

where, d is the minimum resolvable distance, λ is the light wavelength, n is the 

refractive index of the medium and θ is the half angular aperture of the lens, whose 

sin is also known as the lens numerical aperture (NA). Because of the light 

diffraction limit, in optical microscopy the distribution of pixel intensity is 

described by a point spread function (PSF), that in 2-D images appear as a disk with 

concentric rings of decreasing intensity (Airy disk, Figure 3.1 (b)), whose width is 

determined by Abbe’s equation [129]. Actual specimens are not point sources, but 

can be regarded as a superposition of an infinite number of objects having 

dimensions below the resolution of the system. Therefore, in real systems the PSF 

always negatively affects the certainty of signal mapping and object location, as it 

is reasonable to assume that the values of adjacent pixels are correlated to each 

other. Different technologies and methodologies have been (and are being) 

developed to increase the resolution, and the certainty of signal location, 

accordingly. Among these, our DDM method (Chapter 4) is an example of post-

processing method, that explores pixel connectivity to increase the certainty of 

signal position [130]. 

3.2 Microscopy 

The first microscope building is attributed to Hans and Zaccharias Janssen, two 

Dutch spectacle makers that in 1590 laid the foundation of compound microscopes 

by placing multiple glass lenses at the opposite end of a tube. However, it was not 

until 1666 that the microscope becomes a scientific instrument, thanks to Antonj 

van Leeuwenhoek that, inspired by Robert Hooke’s studies, perfectioned the 

lenses geometry until he was able to observe the microscopic world of cells and 

bacteria and described them for the first time [131]. Since the time of these 

pioneers, the basic technology of the microscope has developed in many ways. 
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Over the past three centuries, microscopy has evolved from being largely 

descriptive and qualitative to become a powerful tool capable of uncovering new 

phenomena and exploring molecular mechanisms in a way that is also accurately 

quantitative [132]. Today, thanks to many different imaging modalities, not 

necessarily limited to the use of optical lenses, the microscope has become an 

invaluable tool in diverse research fields, including biomedical and biological 

research. 

Microscopes are classified based on their working principle and application. A 

first separation is between simple and compound microscopes. Simple 

microscopes, as the one invented by Van Leeuwenhoek, places a single lens 

between the viewer and the specimen. Compound microscopes, mostly used 

nowadays, combine two magnifying lens to reach higher magnification powers: 

the objective lens (typically 4x, 10x, 40x or 100x), close to the specimen, and the 

eyepiece lens (typically 10x), close to the viewer. By varying in their optical 

configurations, cost, and intended purposes, compound microscopes serve a 

variety of imaging modalities (Figure 3.2). Compound microscopes are further 

classified in light (optical) and electronic microscopes. Light microscopes use 

visible light and magnifying lenses to generate magnified images of small objects. 

Electron microscopes uses a beam of accelerated electrons as a source of 

illumination, thus increasing their resolving power of more than 1000 times with 

respect to optical microscopes [133]. Both light and electron microscopy undergo 

further classification, as schematized in Figure 3.2.  

Among the numerous microscopy modalities and techniques available today, 

we hereafter focus on those that we have encountered in the studies discussed in 

this Thesis, that are Bright Field microscopy, Differential Interference Contrast 

microscopy, widefield fluorescence microscopy and confocal fluorescence 

microscopy. 
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Figure 3.2. Microscopy classification. Compound microscopes are multi-lenses systems 

that serves a variety of imaging modalities. Optical microscopes deliver photons or light 

energy to the sample using simple lenses; electron microscopes direct an electron beam on 

the specimen using electrostatic or electromagnetic lenses. In Bright Field microscopy a 

dark sample on a bright background is illuminated with visible light; in Dark Field 

Microscopy a special aperture focuses incident light on the specimen, that appears bright 

on a dark background. Polarized microscopes investigate specimen’s optical properties by 

mean of polarized light. In Differential Interference Contrast Microscopy (DIC), image 

contrast in transparent samples is produced by interference of polarized light. Similarly, in 

Phase Contrast Microscopy phase-shifted incident light is used to generate image contrast. 

In Fluorescence Microscopy, the sample illumination is extended out of the range of visible 

light to collect the light emitted by specific fluorescent molecules. Light Sheet and Confocal 

Microscopy increase the penetrating and resolution power of optical microscopy, by 

respectively illuminating one thin optical plane at the time (light sheet) or using a pinhole 

to focus a smaller beam of light at one narrow depth level at a time (confocal). The 

Multiphoton microscope also restricts the excitation of fluorophores at the focal plane. 

Super-Resolution Microscopy refers to a collection of hardware and software methods 

used to increase the resolution of light microscopy. In Electron Microscopy, the focused 

beam of electrons scans the specimen surface or is transmitted through the specimen to 

collect transmitted (Transmission Electron Microscopy), secondary (Scanning Electron 

Microscopy) or scattered (Reflection Electron Microscopy). A scanning tunnelling 

microscope can image surfaces at the atomic level. 

 

3.2.1 Bright Field microscopy 

Bright Field microscopy (BFM) is the simplest among the optical microscopy 

illumination techniques. In BFM, illumination light is transmitted through the 

sample and the contrast is generated by the absorption of light in dense areas of 

the specimen, resulting in an image with a bright field or background (Figure 3.3). 
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After being transmitted through the sample, the incident visible light (390-700 nm), 

usually emitted from a halogen lamp or LED source, is focused by an objective lens 

to produce a real image. At its simplest, the objective is a cylinder containing one 

or more lenses, consisting of very high-powered magnifying glass, with very short 

focal length. The objective is characterized by its magnification and numerical 

aperture (NA), that is a measure of its ability to gather light and resolve fine 

specimen detail at a fixed object distance [134]. 

 
Figure 3.3. Modern bright-field compound microscope configuration. The emitted light 

(lamp) passes through a collector lens and a series of filters before it is reflected by a mirror 

and passed through the field diaphragm and into the substage condenser. The condenser 

forms a cone of illumination that bathes the specimen, located on the microscope stage, and 

subsequently enters the objective. Light leaving the objective is diverted by a beam 

splitter/prism combination either into the eyepieces to form a virtual image, or straight 

through to the projection lens mounted in the trinocular extension tube, where it can then 

form a latent image on film housed in the camera system. Research-level microscopes also 

contain one of several light-conditioning devices that are often positioned between the 

illuminator and condenser (filters), and a complementary detector or filtering device that 

is inserted between the objective and the eyepiece or camera. The conditioning device(s) 

and detector work together to modify image contrast as a function of spatial frequency, 

phase, polarization, absorption, fluorescence, off-axis illumination, and/or other properties 

of the specimen and illumination technique. Image reproduced from [126]. 

 

Bright Field microscopes are cost-effective, easy to setup and compatible with 

live cell imaging [135]. Their limitations include low resolution, due to the blurry 

appearance of out-of-focus material, and low contrast for weakly absorbing 

samples [136]. Staining is often required to face this latter problem, which comes 
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with the disadvantage that live imaging is difficult due to staining killing the cells. 

Other imaging modalities, based for example on light polarizing filters [137] or 

darkfield condensers [138], can be used in place of staining to increase the contrast. 

On the other side, BF illumination is useful for samples that have an intrinsic 

colour, as chloroplasts in plant cells [139] or cell aggregates, as the spheroids 

imaged in this Thesis (Chapter 8). As other optical microscopes, BF microscopes 

are limited in resolution by Abbe’s diffraction limit, which is about 0.25 μm [128]. 

By definition, this limit can be improved (and the resolution, accordingly, 

increased) by decreasing the incident light wavelength (e.g., UV and X-ray 

microscopes, whose high energy however damage biological samples) or 

increasing the refractive index of the lens working medium. (e.g., oil immersion 

objectives). Contrarily, longer wavelengths improve tissue penetration at the 

expense of point separation [140]. 

3.2.2 Differential Interference Contrast microscopy 

Differential interference contrast (DIC) was introduced to microscopy by 

George Nomarski in 1952 [141], and since the late 1960s it has become increasingly 

popular for its capability to enhance the image contrast of transparent specimens 

or with low surface reflectivity [142]. Like polarized light microscopy (PLM), DIC 

makes use of prisms to precisely modify the polarization of the light waves, to see 

otherwise invisible features. In PLM a first polarizer, placed beneath the stage 

inside or below the condenser, sets the incident light wave oscillation to a unique 

plane (i.e., polarization). Image contrast then arises from the interaction of the 

polarized light with a birefringent (or doubly-refracting) specimen, to produce two 

individual wave components polarized in mutually perpendicular planes. The 

velocities of these components are different and vary with the propagation 

direction through the specimen. After exiting the specimen, the light components 

become out of phase with each other, but are recombined with constructive and 

destructive interference when they pass through a second polarizer, called the 

analyser, placed downstream the objective (Figure 3.4 (a, c)). In DIC, two 

birefringent compound prisms known as Wollaston or Nomarski prisms, are 

added to the standard configuration of a polarized microscope (Figure 3.4 (b)). The 
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first prism (beam splitter) separates the incident light into two perpendicular 

beams, which take slightly different paths through a sample depending on its 

optical density. When the beams pass through the second prims (beam combiner), 

their interference reveals interfaces between regions of different thickness and/or 

refractive index, giving the illusion of a three-dimensional image (Figure 3.4 (d)).  

 
Figure 3.4. Polarized light and DIC microscope configuration. (a) At a minimum, a 

polarized light microscope is equipped with two linear polarizing elements (polarizer and 

analyzer). Many PLMs are equipped with a graduated circular rotating stage for quickly 

changing the specimen orientation with respect to the polariser transmission axes, to vary 

the degree of image brightness. Advanced microscopes include a Bertrand lens for 

conoscopic observation of interference patterns. Finally, polarized light microscopes 

should have an accessory slot in the nosepiece or intermediate tube into which a 

retardation plate or compensator can be inserted for quantitative analysis of birefringent 

specimens. Image reproduced from [126]. (b) In its standard configuration, a DIC 

microscope contains the basic polarizing elements of a PLM and, in addition, two 

Nomarski prisms. The first is located between the first PLM’s polarizer and the condenser 

and serves to align and shear incident polarized wavefronts into two orthogonal 

components. These perpendicular sheared wavefronts are focused by the condenser into 

parallel bundles that traverse the specimen plane and respond to refractive index and 

thickness gradients by deformation according to optical path length parameters of the 

specimen. Light waves gathered by the objective converge at the rear focal plane where a 

second Nomarski prism is located, to recombine sheared and deformed wavefronts into 

linear and elliptically polarized light, before passing through the PLM’s analyser, oriented 

perpendicularly to the substage polarizer. The linear polarized light components that 

emerge from the analyser recombine through constructive and destructive interference at 

the image plane. Image reproduced from [126]. (c, d) Exemplificative C. elegans 

micrographs imaged by PL (c) and DIC (d) microscopy, adapted from [143] according to 

journal policy. Scale bars: 100 µm. 

 

DIC allows for high resolution imaging of unstained and living cells and 

organisms, and for ‘optical sectioning’ of thick samples [144]. DIC retains several 
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advantages with respect to phase contrast microscopy, its “antagonist” modality 

for image contrast enhancement. First, an ‘halo’ artefact is present in phase contrast 

but not DIC images [145]. Second, without phase plates or condenser annuli to 

severely restrict the size of condenser and objective apertures, DIC microscopy can 

produce excellent high-resolution images at large aperture sizes. Finally, the 

correlation between image contrast and specimen orientation in DIC microscopy, 

absent in phase contrast microscopy, can often be used to advantage in the 

investigation of extended linear specimens, as highly order mineral structures 

[126]. In biomedicine studies, DIC is mostly used in multimodal imaging systems, 

as together with fluorescence microscopy, to define objects boundaries and find 

the areas of interest, because using transmitted light and without requiring sample 

staining, DIC will reduce photodamage and toxicity to the sample [146]. Also, 

unlike phase contrast in which dark phase ring unfortunately blocks precious 

fluorescence photons, DIC objectives have no effect on fluorescence intensity [146]. 

As what concern limitations, DIC imaging is quite expensive (because of the 

prisms) and not suitable to some birefringent specimens (e.g., many kinds of 

crystals) and specimen carriers (e.g., Petri dishes), because of their effect upon 

polarized light. For such specimens, Hoffman modulation contrast may be a better 

choice. Apochromatic objectives may not be suitable because such objectives 

themselves may significantly affect polarized light. DIC microscopy is not decisive 

in imaging regions having very shallow optical path slopes, such as those observed 

in extended flat specimens, as they produce insignificant contrast and often appear 

in the image at the same intensity level as the background. For such specimens, 

polarized light microscopy may be a better choice. 

3.2.3 Fluorescence microscopy 

In contrast to other modes of optical microscopy that are based on macroscopic 

specimen features, such as phase gradients, light absorption, and birefringence, 

fluorescence microscopy is capable of imaging the distribution of a single 

molecular species based solely on the properties of fluorescence emission. In a 

biological system, fluorescence is the emission of light by an endogenous or 

exogenous substance that has absorbed light or other electromagnetic radiation. 
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Endogenous molecules, as the green fluorescent protein (GFP) and its variants, are 

intrinsically fluorescent (i.e., autofluorescent) proteins that are mostly used as 

genetic tags for protein components of living systems. Exogenous molecules, 

better known as fluorophores or fluorochromes, are synthesized fluorescent 

chemical compounds that can highlight specific molecules in fixed samples [147]. 

Fluorescence is a three steps mechanism: 1) a fluorophore in its ground (relaxed) 

state (i.e., singlet state, S0) is hit by an external source of energy, such as a photons 

or electrons; 2) the fluorophore absorbs the energy by moving an electron into a 

more energetic orbital, thus transitioning to an excited state (usually a singlet Sn, 

with n>0); 3) the fluorophores rapidly relaxes back to the ground state by emitting 

light radiation (i.e., photons of lower energy and longer wavelength than the 

absorbed photon) and by non-radiative processes, including internal conversion 

followed by vibrational relaxation [148]. The difference between the exciting and 

emitted wavelengths, known as the Stokes shift, is the critical property that define 

the signal-to-noise ratio of the fluorophore signal and its usability in combination 

with other fluorophores [148, 149]. By completely filtering out the exciting light 

without blocking the emitted fluorescence, it is possible to see only the objects that 

are fluorescent, setting to a black background any other component of the 

specimen. Because of its intrinsic selectivity, fluorescence imaging has become one 

of the most used imaging modalities in molecular biology and living specimens 

for the selective visualization of molecules of interest. When carried out 

methodically, fluorescence microscopy becomes a valuable tool for quantitative 

imaging, opening for spatial precise location and monitoring of intracellular 

components, as well as their associated diffusion coefficients, transport 

characteristics, and interactions with other biomolecules. As a main example, 

colocalization studies are usually carried out by mean of fluorophores (see also 

Chapter 5) that, however, only confirm the closeness of the two fluorescent tags to 

each other, located within the resolution limit of the microscope. True interaction 

between marked species cannot be verified by fluorescence emission but by 

fluorescent transfer, trough dedicated techniques for quantitative measurements 

of dynamics and interactions [150-152]. Furthermore, fluorescence microscopy has 

found application outside the field of signal mapping, either visual or quantitative, 

as in photo-uncaging [153], photoactivation [154] and optical-sensing [155] 
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applications, where the dramatic response in fluorescence to localized 

environmental variables enables the investigation of pH, viscosity, refractive 

index, ionic concentrations, membrane potential, and solvent polarity in living 

cells and tissues [126]. 

Nonetheless, fluorescence microscopy presents several technical challenges, 

after the chemical nature of the used fluorophores. Many commercially available 

dyes suffer from small Stokes shifts, resulting in poor signal-to-noise ratio and self-

quenching on current microscope configurations. The magnitude of the Stokes 

shift itself varies considerably from one fluorophore to another. In general, the 

more conjugated bonds in the molecule, the broader the Stoke shift, the lower the 

excitement energy requirement, and the lower the possibility for specimen 

photodamaging and fluorophore photobleaching [148]. Finally, the simultaneous 

use of more than one fluorophore in the same acquisition setting is a common 

practice in biomedicine, to observe molecules co-distribution. However, not all 

fluorophores can be combined with each other, as their overlapping Stokes shift 

may lead to severe crosstalk between the channels and signal bleed-trough [148]. 

Consequently, next generation applications, like single-molecule analysis, demand 

fluorescent dyes with large and tuneable Stokes shifts to achieve precise imaging 

and accurate sensing [149]. 

Another major concern in fluorescence microscopy is resolution, that is limited 

by the Abbe diffraction limit to approximately one-half of the excitation 

wavelength [128]. To overcome this limitation, in the last four decades a growing 

number of microscopy techniques has been developed, capable to increase contrast 

and spatial resolution in fluorescence images. Light sheet fluorescence microscopy 

(LSFM) [156], confocal microscopy [129], multi-photon microscopy [157] and 

super-resolution techniques [158] are currently among the most powerful 

approach to seeing microscopic structures in three dimensions, even deep within 

tissues, with increased resolution and contrast. Hereafter, the main characteristics 

of widefield and confocal fluorescence microscopy are summarised. 

Widefield fluorescence microscopy  

Reflected light fluorescence microscopy is overwhelmingly the current method 

of choice for widefield investigations with non-coherent light sources, as well as 
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those conducted with laser scanning confocal and multiphoton instruments. This 

popular mode of fluorescence microscopy is also known as incident light 

fluorescence, episcopic fluorescence, or simply epifluorescence. In widefield 

microscopy (WFM), the incident and emitted light travel through the same 

objective lens in a non-linear light path by mean of dichromatic mirrors. Beside 

curving the light path, these mirrors crucially serve as pass-band filters, that keep 

the excitation and emission wavelengths separated, thus reducing the signal-to-

noise ratio (Figure 3.5). 

 

Figure 3.5. Widefield epifluorescence microscope. (a) Microscope configuration. (b, c, d) 

Details of the designed light path. (b, c) A mercury-vapor (or xenon arc-discharge) lamp 

outputs a wide spectrum of excitation wavelengths at high flux density (usually covering 

most of the ultraviolet and the entire visible spectrum). The light first passes through an 

emission filter (EF), that selects the proper wavelength band for excitation, and then 

reaches a dichromatic mirror (DM), designed to selectively reflect the EF-filtered light (b, 

Light below cut-off) onto the specimen (90° angle) through the objective rear aperture, while 

transmitting (i.e., discarding) both shorter and longer wavelengths (b, Light above cut-off). 

(c, d) The fluorescence emitted by the specimen, whose intensity is three to six orders of 

magnitude lower than the source light [126], is gathered by the same objective and 

transmitted through the DM and a barrier filter (BF), designed to allow only light of 

emission wavelengths (d, Light above cut-off) to reach the microscope eyepieces and/or 

detector, while reflecting out the unwanted excitation wavelengths (d, Light below cut-off). 

Images reproduced from [159]. 

 

The main advantage of an epifluorescence imaging system is that, while it is 

relatively simple and inexpensive to use, it is highly light efficient [146].  

Accordingly, WFM is widely used in cell biology, as the illumination beam easily 

penetrates the full depth of a cell monolayer, allowing easy imaging of intense 

signals [146]. However, sample illumination with relatively high intensity light 

brings different disadvantages. First, it means that all the fluorophore molecules 
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in the specimen are excited, including those out of the current field of view or the 

current focal plane, therefore possibly leading to photobleaching (Subsection 3.2.4) 

and serious phototoxicity phenomena, such as free radicals formation [160]. 

Second, fluorophores excitation out of the field of view means collection of 

undesired out-of-focus fluorescence, that lowers the signal-to-noise ratio and 

reduces contrast [161].  Finally, the lack of optical sectioning also prohibits the in-

depth investigation of the specimen and the discrimination of signal (accidentally 

or not) aligned on the axial (depth) direction, thus limiting the precise localization 

of fluorescence molecules and the interpretation of 3-D spatial data [162, 163]. 

Collectively, these problems can be resolved by the introduction of optical 

sectioning that, working one optical plane at the time, allows exciting only the 

fluorophores of interest (containing photobleaching, phototoxicity and out-of-

focus contributions) to investigate the three-dimensionality of the specimen and to 

perform accurate measurements of signal localization and colocalization, all this 

while reducing noise and increasing contrast.   

Confocal fluorescence microscopy  

Confocal laser scanning microscopy (CLSM), or simply confocal microscopy, 

is an optical imaging technique that increases optical resolution and contrast of a 

micrograph by using a spatial pinhole that axially and longitudinally restricts the 

field of view, such that sharp images from the focal plane alone (“slices”) can be 

acquired and z-stacked to form a composite 3-D image. When applied to 

fluorescence microscopy, a confocal technique additionally provides a mean to 

reduce photobleaching and photodamaging.  

In CLSM, a laser beam is focused into a specimen, where it excites fluorescent 

molecules throughout the entire cone of illumination. The emitted fluorescence is 

then collected by the objective lens and focused by a second lens through a 

carefully aligned pinhole (Figure 3.6 (a)), that blocks fluorescence emission from 

above or below the focal plane, making sure that only fluorescence that originates 

at the focal point is captured by the detector. Scanning mirrors are used to sweep 

the laser beam across the specimen, generating an image pixel by pixel [126]. 
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Figure 3.6. Laser scanning and spinning-disk confocal microscopy. (a) Confocal principle 

in epi-fluorescence laser scanning microscopy. Coherent light emitted by the laser system 

(excitation source) passes through a first pinhole aperture, situated in a conjugate plane 

(confocal) with a scanning point on the specimen. As the laser is reflected by a dichromatic 

mirror and scanned across the specimen in a defined focal plane, secondary fluorescence 

emitted from points on the specimen (in the same focal plane) passes back through the 

dichromatic mirror and is focused as a confocal point at a second pinhole aperture, placed in 

front of the detector. The significant amount of fluorescence emission occurring above and 

below the objective focal plane (Out-of-Focus Light Rays) is not confocal with the pinhole: it 

forms an extended Airy disk in the aperture plane, mostly blocked out by the pinhole and 

thus not detected by the photomultiplier. However, a small fraction of the out-of-focus 

fluorescence is delivered through the pinhole, contributing to image blurring. Figure 

reproduced from [126]. (b) Optical system of a spinning-disk confocal microscope. A 

confocal disk is set on the intermediate imaging plane and rotates on its centre axis while 

excitation light is irradiated on its peripherical portion, where pinholes are spaced so as 

not interfere with each other. 

 

A CLSM provides superior resolution, depth penetration and contrast 

compared to a widefield microscope, but is generally less sensitive and slower. 

This makes confocal microscopy less well-suited to live-cell imaging, but a state-

of-art choice for 3-D quantitative investigation of molecules spatial distributions 

[146]. Unfortunately, even the latest confocal microscopes may suffer from 

instrumentation problems that can dramatically affect their ability to generate 

quantifiable data. As for all optical microscopes, illumination intensity may vary 

substantially from the centre of the image to the periphery, favouring an artifact 

known as image vignetting (discussed in Subsection 3.2.4). Particularly troubling 

are laser power fluctuations that can substantially alter the intensity over a single 

imaging session. Other unexpected pitfalls could include variability in fluorophore 

emission depending on the sample mounting media and changes in image analysis 
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processes with software updates [146]. However, a major concern in confocal 

fluorescence microscopy remains the spatial resolution, limited by Abbe’s 

diffraction limit and by other biological factors such as cell viability and sensitivity 

to thermal damage and photobleaching, that place limits on the light intensity and 

duration of exposure. Over the years, several techniques have been introduced to 

increase the resolution of optical sectioning systems. One such alternative is a 

spinning-disk confocal microscopy (SDCM, Figure 3.6 (b)), which illuminates the 

sample using an array of pinholes arranged in a special pattern on a disk, creating 

hundreds of focused beams. Parallelizing multiple confocal light paths, SDCM 

brings advantages of imaging speed and decreased excitation energy, 

phototoxicity and photobleaching, often making SDCM the preferred system for 

imaging live cells or organisms [164] For thick specimens, such as whole zebrafish 

embryos or cleared tissues and organs, light sheet microscopes offer advantages in 

both speed and low phototoxicity, though typically at the cost of resolution [146]. 

A multiphoton microscope uses a pulsed infrared laser to achieve greater depth 

penetration and control over the excitation volume definition, enabling localized 

photoactivation [165]. Among such technological improvements, super-resolution 

techniques, such as TIRF, SIM, STORM and PALM just to cite a few of them, allow 

optical systems to bypass the diffraction limit and greatly improve spatial 

resolution. Altough such enhancement typically comes at the expense of speed, 

sample viability and depth penetration, super-resolution techniques are expected 

to dominate the quantitative microscopy scenario for the next decades [166].  

3.2.4 Optical microscopy artifacts 

Visual artifacts in digital images are anomalies that occur during acquisition, 

handling or processing of the image, that disrupt its integrity and informativeness. 

Besides noise, signal distortion and compression artifacts, two types of artifacts are 

crucial to hinder quantitative imaging in optical microscopy: the vignetting effect, 

associated to all optical microscopy modalities, and the photobleaching effect, 

specific to fluorescence microscopy. 
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Vignetting 

Images acquired with optical microscopes are typically characterized by an 

attenuation of brightness intensity that radially expand from the projection of the 

principal point (i.e., image centre) towards the image edges, called the vignetting 

effect [167]. It is intrinsic to a lens system, and when it shows a perfect radial 

symmetry it can be treated quite effectively. However, in practice often this is not 

the case. This may be attributed to multiple factors, such as imperfect illumination 

of the specimen, optical aberrations in the objectives, and different sources of 

camera noise [168]. While uneven distribution of the intensity over the field of 

view is often tolerable, high illumination variations can prevent the effective 

application of many image processing techniques, such as threshold-based 

segmentation [169], object tracking [170], or mosaicing [167, 171]. The vignetting 

problem in emphasized in quantitative imaging applications, where it also 

prevents reliable intensity measurements [172]. In these cases, a rigorous 

experimental approaches require the estimation of the vignetting function and its 

correction in post-processing, both with [173, 174] or without [167] a priori 

assumption on its values distribution over the image domain. Flat-field correction 

(FFC) is one of the most used techniques to cancel the effects of vignetting and 

other shading effects [175]. The goal is to estimate the shading field from a 

reference image, so that the original image can be recovered by subtraction [167]. 

However, alternative methods of FCC where the correction functions are directly 

estimated from the images of interest have been developed [176]. Collectively, 

several linear and nonlinear vignetting correction approaches have been proposed 

in literature for grey-level images, and the problem has been extensively discussed 

[171, 177].  

Photobleaching  

Although in principle a fluorophore can cycle between ground and excited 

states for an unlimited number of times, its efficiency has been shown to gradually 

decrease through the cycles [148, 178]. Among all those processes that cause the 

fluorescent signal to fade permanently, photobleaching is perhaps the most serious 

one in fluorescence microscopy. In consequence of fluorophore overexposure to 
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light, either in terms of time or laser intensity, different processes can be triggered 

at the molecular level that alter the fluorophore structure and hence behaviour. 

Mostly, bleaching is thought as to be associated with triplet state and its reaction 

with molecular oxygen, that can covalently alter the fluorophore to inactivate its 

ability to fluoresce. In addition, the singlet oxygen can interact with other organic 

molecules causing phototoxicity for living cells [179]. 

Not only photobleaching degrades the visual quality of the results, but it also 

represents a major concern for quantitative imaging and image processing in 

fluorescence microscopy. While its contribution can never be avoided, 

photobleaching can be minimized by proper experimental procedures (staining, 

samples storage and of course image acquisition setting), and even corrected in 

post-processing, after the characterization of the signal degradation function [180]. 

First, photobleaching can be reduced by some practical preventive measures, such 

as storage of fluorescence samples in the dark, sample fixation with antifade agents 

and specifically designed mounting medium, and by use of fluorophores with 

increased photostability [148]. In all imaging applications, the use of high-quality 

optical filters and cameras with high quantum efficiency allow to reduce the 

exposure time without losing in illumination [148]. However, to perform reliable 

measurements of absolute fluorescence intensity and quantitatively compare 

fluorescent samples with precision, photobleaching further needs to be corrected, 

either in real time or in post-processing. The most straightforward method consists 

in estimating the photobleaching function (i.e., the time rate of fluorescence decay) 

in a reference image, possibly at each pixel intensity level, and to use it to 

compensate for the loss of intensity in the real dataset for a post-acquisition 

correction on the image radiance. Several different algorithms for such radiance 

normalization have been developed and are used by various researchers [180-182]. 

Finally, not all photobleaching comes to harm, as its occurrence is exploited in 

different microscopic investigation techniques. For instance, diffusion and motion 

of biological macromolecules can be investigated by observing the rates and 

pattern of fluorescence recovery in photobleached area (Fluorescence Recovery 

After Photobleaching, FRAP) or in their proximity (Fluorescence Loss In 

Photobleaching, FLIP). Different is the case of Fluorescence Resonance Energy 
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Transfer (FRET), that is based on reversible fluorescence fading (i.e., quenching) 

[183].  

3.3 Computed Tomography 

Computed tomography (CT) is a non-disruptive imaging technique that uses 

the penetrating power of X-rays to investigate the internal structure of materials 

[184]. Since its introduction in the early seventies [185], CT has revolutionized the 

fields of archaeology [186], material science and manufacturing industry [187], but 

it is the field of radiology that it has found its most application [188]. A CT scan 

can be used to non-invasively create accurate cross-sectional and three-

dimensional images of internal organs, bones, soft tissues and blood vessels. 

Accordingly, CT is routinely used to detect, monitor and diagnose cancer, diseases 

and internal injuries, as well as to plan and guide medical, surgical or radiation 

treatment [189]. In clinical CT scanning, a wide beam of X-rays crosses the patient 

and hit an opposite integral array of detectors. Emitter and detectors are integral 

and mounted in a ring that quickly rotates around the body axis, producing signals 

that are reconstructed to generate high resolution and high frequency tomographic 

slice sequences of the body (tomographic images). These slices can be digitally 

“stacked” together and processed to achieve a 3-D image of the body that allows 

for easier identification of the anatomic structures as well as possible tumours or 

abnormalities.  

Tomography devices can be first divided based on the achievable spatial 

resolution. Conventional (medical or heavy industrial) CT generally refers to 

submillimetre resolutions (voxel sizes≥100 μm), microtomography (μCT) to 

micrometre resolutions (voxel sizes≥0.1μm) and nanotomography (nCT) to 

nanometre resolutions (down to voxel sizes ~10 nm) [184]. Given the reduced size 

of most animal models with respect to human, µCT and nCT are preferred in 

biomedical research. As the underlying physics and the working principle are the 

same, they will be surveyed in the next Subsection dedicated to µCT, that we 

applied to the investigation of the effect of muscle sclerostin on bone morphometry 

(Chapter 7). 
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3.3.1 Micro Computed Tomography 

µCT scanning was introduced in the 1980s by J. Elliott [190] for imaging 

materials and small animals with a micrometre resolution unachievable by 

medical CT, with which it shares the operating principle, that applies on a much 

smaller scale. The basic components of a µCT scanner are the X- ray source, the 

rotating sample stage, the X- ray detector system and the images reconstruction 

system (Figure 3.7).  

 
Figure 3.7. CT and µCT. CT and µCT devices differ in size and resolving power, though 

that the physical working principle is the same. In CT imaging of living beings the X-ray 

source revolve around the steady patient/animal to reduce motion artefacts (a), whereas in 

object CT imaging the resolution is improved by pointing a steady X-ray source on a 

rotating object (b). (a) Design and acquisition schemes of four generations of X-ray CT 

scanners. The first and second generation scan in parallel, the third (most used) and fourth 

generation use rotary fan-shaped scanning, with rotating (third) or stationary (fourth) 

detector. (b) Schematic of the main components of a µCT system: X-ray source, rotating 

specimen stage, objective lenses, scintillation screens and a charge-coupled device (CCD) 

camera detector, replaced by more efficient complementary metal oxide semiconductor 

(CMOS) in the latest years. Images reproduced from [191] under the CC-BY Creative 

Commons Attribution 4.0 International licence. 

 

X-rays with a broad energy spectrum are generated by accelerating electrons 

across a high voltage to collide with an anode composed of a high atomic number 

and high melting point material (commonly tungsten). The X-ray energy depends 

on the applied voltage and can be modified by metal filters. Since X-ray energy 

dictates their absorption by a given material, X-ray filtration can be used to both 
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reduce radiation dose and improve image quality, depending on the imaging task 

[192]. With respect to medical CT’s, μCT X-ray tubes usually have a much smaller 

focal spot (i.e., area where the electron beam interacts with the anode), so as to 

greatly improve the maximum image resolution, however at remarkable speed 

costs [193, 194]. The generated X-ray cone beam travels from the tube focal spot to 

the detector across the specimen, which locally attenuates the ray transmission 

depending on its composition, by Compton scattering and photoelectric effect 

[194]. The total value of X-ray attenuation tracks linearly with the specimen 

density, that can be measured by calculation of the attenuation coefficient (µ) 

according to Lambert Beer’s Law: 

µ =
𝑙𝑛 (

𝐼𝑡
𝐼0

)

𝑥
=  

𝑙𝑛 (
𝐼𝑡

N(𝑆,𝑡) · hν
)

𝑥
 

(3.2) 

where x is the specimen thickness, It is the detected intensity of transmitted 

(attenuated) X-rays, and I0 is the intensity of the incident X-rays (i.e., the energy 

sum of N photons of wavelength ν passing through a unit area S in unit time t, 

h=Planck’s constant). The attenuation is related to the photoelectric effect and the 

incoherent Compton scattering, negatively relating to the presence of hydrogen 

atoms in the tissue [195]. In general, the denser the specimen, the higher the 

attenuation, the lower the detected intensity It, and therefore the brighter the 

structure in the final image. The image formation process begins with the detector, 

composed of photosensor units that transform an optical signal into an electric one. 

Most of µCT systems to date employ digital 2-D detectors, firstly composed of 

image intensifiers read by charge-coupled devices (CCDs), then coupled with 

scintillator screens via fiber-optic bundles, and more recently outperformed by 

complementary metal oxide semiconductor (CMOS) in terms of frame rate [193]. 

A collimator is commonly used to delimit the transmitted beam field and focus it 

on the detector, that record a 2-D projection image of the specimen. The sample 

stage is then rotated by a fraction of a degree, and another X-ray projection image 

is taken. This step is repeated through a 180- or 360- degree angle, and the 

projections are used to reconstruct the data, by different algorithms [193], into 2-D 

cross-sectional slices, that can be further processed into 3-D models and even 
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printed as 3-D physical objects for analysis. After reconstruction, each CT voxel 

values is normalized to an integer value (CT number, measured in Hounsfield 

Units, HUs) for easier interpretation, handling and displaying. The HU scale is a 

semiquantitative linear transformation of the original attenuation coefficient 

measurement into one in which the radiodensity of distilled water at standard 

pressure and temperature (STP) is defined as 0 HU, while the radiodensity of air 

at STP is defined as −1000 HU. In a voxel with average linear attenuation coefficient 

µ, the corresponding HU value is therefore given by:  

HU = 1000 ·
µ −  μH2O

μH20
 (3.3) 

  This normalization results in CT numbers ranging from −1000 (e.g., air) to 

+3000 (e.g., dense bone, or areas filled with contrast agents). The resulting 

tomography image is therefore a 3-D map of local x-ray density of the object. 

Modern µCT offers a mean for non-invasive high resolution 3-D imaging, with 

short scan time and cost-effectiveness, and high sensitivity to many organs and 

tissues such as bone, lung and the cardiovascular system [196, 197]. These unique 

µCT features allow scientists to investigate specimen properties such as porosity, 

architecture, thickness, volume fraction, density, and fibres orientation. According 

to its great morphological investigation power, researchers use µCT to study bone, 

teeth, but also soft tissue and organs, detect both high density (e.g., clotted blood, 

hyperemia) and low density (e.g., edema, necrosis) lesions, and investigate 

composite materials, biomedical scaffolds and other devices [198]. On the dark 

side, µCT is still time consuming for high-resolution datasets, sometimes employs 

staining and contrast agents that might alter the specimen characteristics, and 

produces large size datasets that require non-standard computing power [197]. 
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3.3.2   Micro Computed Tomography artifacts 

µCT artifacts are image reconstruction errors that appear in the volume but do 

not belong to the scanned object, therefore posing a major issue to the reliability of 

µCT qualitative and quantitative data. µCT artifacts can arise from the X-ray 

source, from the detector or from the reconstruction step. Beam hardening and 

noise are the main source-related artifacts. Beam hardening is the phenomenon 

that occurs when a polychromatic X-ray beam passes through an object, resulting 

in selective attenuation of lower energy photons. Consequently, the beam becomes 

“harder” or more penetrating, after passing through the object. CT beam 

hardening artifact has two distinct manifestations, streaking (dark bands) and 

cupping artifacts, that results in underestimation of sample density. To reduce 

beam-hardening during acquisition, filtration with attenuating materials (often 

metals) is typically used to pre-harden the X-ray spectrum, in order to reduce 

artifacts, however decreasing image contrast and increasing noise. Noise firstly 

arises from scattered radiation, occurring both as a sparse/diffuse grain or random 

bright and dark streaks, degrading image quality and contrast. Noise can be 

reduced by higher tube voltage, that also reduces the beam hardening. However, 

noise is typically corrected in post-processing by many denoising and smoothing 

methods, starting from Gaussian and median filtering. Ring artifacts are the most 

common µCT artifacts associated to the detector. Ring artifacts occurs due to the 

miscalibration or failure of one or more detector elements in the scanner. Less 

often, it can be caused by insufficient radiation dose or contrast material 

contamination of the detector cover. Recalibration of the scanner will usually 

rectify the artifact, while its correction can be performed during image 

reconstruction (pre-processing) or directly in the final image (post-processing). 

Aliasing artifacts are associated to the reconstruction step. Aliasing refers to a 

signal undersampling that reduces the accuracy of analog to digital converter 

(ADC) during image digitization. In the reconstructed volume, aliasing artifacts 

appear as fine wavy lines (Moiré patterns) toward the periphery of the image. 

Regardless of the nature of the artifact, good practice includes identification of 

flawed detector elements by flat-field correction prior to image acquisition, proper 

setting of scan degree, frame average, and rotation step, and use of specific 
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algorithms and methods for correcting beam-hardening, ring, and misaligning 

artifacts [199-201]. 

3.4 Concluding remarks 

This Chapter surveyed the different imaging modalities and technologies 

applied throughout the PhD, focusing on their principles of image formation, 

strengths, and limits. As for most imaging modalities today, the digitalization of 

the acquisition systems permits to obtain digital images that can be stored and 

modified to describe the observed phenomenon qualitatively, and above all, 

quantitatively. We have seen how acquisition and digitization in real systems are 

inevitably associated with the creation of artifacts, that a proper and mindful 

acquisition cannot always avoid. In these cases, artifacts correction and 

compensation, mandatory for a truly quantitative use of the data collected, require 

modification of the acquired images. The post-processing phase, often 

underestimated, is in fact fundamental, not only for correcting noise and other 

errors, but also for the extraction of numerical data, which does not necessarily 

stop at image intensity reading, or at the perfunctory use of commercial software.  

Therefore, imaging should not be thought as concerning only image acquisition, 

but to encompass all the steps that go from sample preparation to the extraction 

and the analysis of the final data, giving equal dignity to all the steps of the way 

(Figure 3.8). 

 
Figure 3.8. Biomedical quantitative imaging steps. SPECT, Single-Photon Emission 

Computed Tomography; PET, Positron Emission Tomography; CT, Computed 

Tomography, MRI, Magnetic Resonance Imaging; MRS, Magnetic Resonance 

Spectroscopy. 
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According to the variety of developed imaging modalities, in the past few 

decades numerous novel competing methods and tools for image processing have 

emerged, able to improve our capability to interpret biomedical image content. 

Image processing can range from simple and common tasks, such as creation of 

time series, image superposition or image dimensionality reduction (for example, 

by intensity projection), to more complex approaches and methods for image 

analysis, like pattern recognition, exploiting machine learning methods. In this 

PhD, the developed and applied image processing methods and techniques have 

ranged from image segmentation, to feature extraction and texture analysis. The 

following Chapters therefore deal with them in detail, within their application 

context.  
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Chapter 4 

Density Distribution Maps: a novel 

tool for subcellular distribution 

analysis and quantitative biomedical 

imaging 

There are many commercial and open-source software tools that assist 

biomedical researchers in performing independent image analysis. ImageJ [202], 

Imaris [203], CellProfiler [204], among the most famous ones, offer a wide range of 

functionalities that allow even the most inexperienced (in terms of software skills) 

user to inspect the content of his data. However, as soon as we move away from 

basic inquiry goals, or come to work on non-trivial data, such tools lack the 

necessary flexibility to adapt to the specificity of the problem, losing effectiveness 

on our data analysis.  

The next two Chapters present two methods for image analysis that we 

developed to overcome this shortage and to specifically address our studies aim. 

For the sake of simplicity, hereafter we refer to the two methods as the DDM method 

and the cDDM method, respectively. The DDM method, discussed in this Chapter, 

was developed for the analysis of the spatial distribution of single signals in 

bidimensional images. The cDDM method, discussed in the following Chapter 5, 

expands the DDM method to the analysis of spatial co-distribution of signal 

couples, and therefore to the (semi-)quantification of their colocalization. Both 

methods have been already made public in the form of scientific research articles 

[130, 205]. To favour their accessibility to the scientific community, both methods 
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have also been made available as open-source software tools. The DDM method 

has also been already applied in actual preclinical studies, discussed in Chapters 6 

and 7. 

After introducing context and motivations for the DDM method conceiving 

and design (Sect. 4.1), its theoretical bases are discussed from both a biological and 

image processing point of view (Sect. 4.2). Then, after surveying the state of the art 

for signal mapping at subcellular level (Sect. 4.3), the method properties, 

innovation, and benefit to real biomedical problems are discussed and exemplified 

(Sects. 4.4 – 4.6). Finally, the contribution of the content-aware approach to the 

study is discussed, together with future perspectives (Sect. 4.7).  

4.1 Study context 

The DDM method arises from a necessity that we personally met working in 

the PHENOMICS Project, in the framework of a well-established collaboration 

with the Radiobiomics and Drug Discovery Unit of the IRCCS-IRST of Meldola 

(FC). The main goal of the PHENOMICS Project is the functional in vitro 

phenotypization of variously stressed tumour cells, through automatic microscopy 

image analysis. This phenotypization includes the characterization of the 

subcellular distribution of RNA:DNA hybrids (Chapter 6) through confocal 

fluorescent microscopy (Subsection 3.2.3) in A549 cells (Subsect. 2.1.1). A first issue 

arose when, comparing treated cells with untreated control cells, we realized that 

the treatment affected more the spatial distribution of imaged hybrids, rather than 

their intensity. Unfortunately, we also realised that hybrids could occur as smaller 

than the best resolution achievable by the microscope, this brining the 

impossibility to estimate their subcellular position with a biologically relevant 

precision, and to detect and separate single from aggregated hybrids. Under these 

conditions, a local measurement necessarily becomes more informative than a 

single-point one. We therefore moved to estimating the local signal density (i.e., 

number of signals per unit area), intending to also provide a visual support for its 

spatial distribution inside the sample. To this purpose we conceived the Density 

Distribution Maps (DDMs) and the method for their creation that, using local 
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image analysis, not only provides the unprecedented measure of local density, but 

parallelly increases the signal localization accuracy.  

4.2 Theoretical background 

4.2.1 Principles of local analysis  

Given the principles of image formation by optical microscopy (Sect. 3.2), it is 

unreasonable to assume that the intensity value of pixels is independent of their 

position inside the image, and that the values of neighbouring pixels are 

uncorrelated to each other. In reality, and especially in the biomedical field, images 

contain a lot of structural information, that can be retrieved by an image analysis 

performed at the local level (i.e., working on image patches), instead that at the 

global one (i.e., the entire image). Local analysis is a core component of image 

processing and has indeed a great deal of applications, ranging from basic 

operations, as denoising and edge detection, to more complex tasks, as pattern 

recognition and video-based tracking. 

An image patch can be defined as a small group of nearby pixels, generally of 

even dimensions, identified on a two-dimensional image by a rectangular 

(2Δx+1)×(2Δy+1) window (Figure 4.1 (a)).  

The central pixel is defined as the reference pixels, while the other pixels in the 

patch that surround it are defined as neighbouring pixels, that together compose its 

neighbourhood. The pixel connectivity is the way in which the reference pixel relates 

to its closest neighbours, i.e., those sharing at least a vertex with him. It is an 

important concept in digital image processing, as it is used for establishing 

boundaries of objects and components of regions in an image. In order to specify a 

set of connectivities, the dimensionality of the image N must be specified. In two-

dimensional images (N=2), for a pixel p of coordinates (x, y) we can distinguish: 

• four 4-connected (or first) neighbours at (x+1, y), (x-1, y), (x, y+1) and (x, y-

1), sharing edges and vertices with the reference pixel 
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• four diagonal-connected (or second) neighbours at (x+1, y+1), (x+1, y-1), (x-

1, y+1) and (x-1, y-1), sharing only the vertices which the reference pixel 

• eight 8- (full-) connected neighbours, with which it shares its edges or 

vertices, that are the union of the 4-connected and the diagonal-connected 

neighbours. 

 
Figure 4.1. Local analysis and pixel connectivity. (a) Local analysis is performed on an 

image patch, defined by superposition of an (2Δx+1)×(2Δy+1) window on the input image. 

(b) The image dimensionality N define presence and position of the reference pixel’s 

neighbours. In two-dimensional images (N=2), first neighbours can be related to the 

reference pixel by a 4-, diagonal- or 8- (full-) connectivity.  

 

The definition of a neighbourhood and its connectivity permits to work locally, 

on selected patches of the image rather than on the whole. When applied locally, 

image operations (neighbourhood operations) recompute the value of the reference 

pixel basing on the values of its neighbours and a set connectivity, specified by a 

set of coordinate-dependent weights, called the kernel (see also Subsect. 7.2.2). 

When the neighbourhood-defining window is also a moving window, as in the case 

of the method we here developed, we can use it to investigate the spatial variability 

of image patterns, at a scale defined by the window size (WS). 
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4.2.2 Image segmentation and thresholding 

Image segmentation is the process of partitioning a digital image into multiple 

image regions (or objects). An object is definable as a set of pixels typically 

contiguous (i.e., connected) and semantically coherent. For examples, it may be the 

group of pixels with a similar intensity, or that together define a specific shape or 

texture. Segmentation is an important stage of image analysis because it serves to 

split the image into its meaningful components, usually called the Regions of 

interest (ROIs), some of which to be further processed and analysed, as for 

detection, recognition, or characterization purposes. In biomedicine, image 

segmentation is primarily needed to define the boundaries of target bodies, 

whether they are cellular or anatomical ones. A fundamental prerequisite to object 

segmentation is image binarization, that converts the image (grey) levels into 

binary ones. It consists of setting a usually single intensity-based threshold by 

which dividing the image pixels into two groups, either assigning them to the 

image foreground (i.e., the sets of informative pixels, belonging to the object(s) of 

interest) or background (i.e., the set of uninformative pixels, to exclude from further 

analysis).  

While in principle the threshold can be selected manually by the user, this 

method is not advisable since it relies only on visual assessment that, besides being 

highly subjective and operator-dependent, it is not reproducible at all. In all cases 

where the output of segmentation has to be quantitatively assessed, it is mandatory 

to have an algorithm to set it automatically, so as to maximise objectivity, 

repeatability and reproducibility. Computer vision offers a huge number of 

methods for the calculation of the “best” threshold, based on the characteristics of 

the image being processed. A good trade-off between effectiveness and simplicity 

of use is represented by the direct or indirect histogram-based methods, that are 

the most common ones, and have been applied throughout this Thesis. These 

methods are based on the explicit creation of the image histogram, and the 

threshold setting is usually computed based on the position of its peaks and 

valleys. Instead, indirect methods rely on the calculation of properties of the 

histogram, that is seen as a probability density function. For instance, the entropy-
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based methods extract the entropy, so that the threshold is set to yield, in this case, 

the maximum entropy, locally or over the entire image.  

Usually, image binarization identifies a set of objects, rather than a single one, 

with different level of informativeness. Identification of single objects boundaries 

can be then performed by connected components labelling, i.e., grouping pixels 

into objects (components) basing on pixel connectivity. Then, the assignment of a 

different numerical label to each identified connected component permits to 

address them separately.   

Finally, a consideration on image segmentation assumptions. From an ideal 

point of view, the objects of interest are well-detected and fully connected, so as to 

be well separated from noise and clearly identifiable. However, in real-world 

applications this is far from being true, yet more in case of biomedicine. First, the 

dimension of the imaged object of interest depends on image resolution, so it may 

happen to deal with small objects, even of just few pixels. Second, objects can be 

detected as fragmented, because of suboptimal parameter settings in image 

acquisition, or processing that brings deteriorated signals, or even because the 

object actually is fragmented (e.g., when investigating vesicular organelles, 

composed of many separate units). This discrepancy came to our attention 

working with RNA:DNA hybrids (Chapter 6), and led us to conceive the Density 

Distribution Maps (DDMs) hereafter described.  

4.3 State of the art  

Living cells are functionally defined by their anisotropy, as they rely on 

molecules distribution and compartmentalization to efficiently perform and 

control the biochemical reactions necessary to their life. Accordingly, abundance 

and especially location of molecules within the cell and the tissue are essential 

descriptors of their own behaviour and function [206]. In fact, subcellular 

mislocation of many proteins [207, 208] and RNAs classes [209, 210] is associated 

to a variety of diseases, including cancer. From a biological perspective, the 

investigation of molecules distribution requires not only the definition of their 

absolute position, but also of their absolute and relative abundance, as biochemical 
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reactions are threshold-dependent events, and the local concentration of 

compounds are major drivers of their triggering.   

Although most of studies focus on proteins, any other kind of targetable 

molecule can be virtually addressed, such as specific drugs [211], organelles 

markers [212] or other bioactive species [213]. These studies commonly rely on 

optical fluorescence imaging techniques for selective molecules visualization [207, 

208, 210-214, but too often their analysis is limited to visual annotation of targets 

location [215–218], which is mainly qualitative, subjective and prone to bias [219], 

and disregards the abundance information. Also, a key restriction of optical 

microscopy is its moderate resolution (Sec. 3.1) [128], which is limited to about half 

the wavelength of light (∼200 nm) due to fundamental physical laws governing 

wave optics. Consequently, molecular processes taking place at the nanoscale 

scales (i.e., 1 to 100 nm), cannot be studied by regular optical microscopy [220].  

In recent years, a variety of super-resolution fluorescence microscopy 

techniques have been developed that circumvent the resolution limitation. Precise 

quantification of subcellular distribution of fluorescently marked molecules can 

now be achieved by single-molecule localization microscopy (SMLM) techniques 

[221, 224], which super-resolve via software the image beyond the physical 

limitation of optical resolution [223-227]. Despite its relevance, SMLM for routine 

and large-scale experiments is still restricted to large laboratories, due to technical 

and technological burdens. In fact, besides the high costs, the complexity of system 

calibration, image acquisition and computational reconstruction tasks [228, 229] 

preclude SMLM technologies to most users [230] and thwart their adoption [231]. 

On the other hand, image-based techniques with proper algorithms can often 

compensate for insufficient instrumentations. In fact, image processing has 

become an integral tool in the daily activity of most laboratories, where it mainly 

serves the automation of procedures that have been manual for many years, thus 

providing fast, quantitative and repeatable measurements of imaged structures 

descriptors, such as object’s dimension and shape [232]. As a main example, 

preclinical in vitro studies, which typically assay drug efficacy and effectiveness by 

mean of commercial kits or user-validated protocols, have been profitably 

integrated with microscopy imaging as a further tool to complete the preclinical 

evaluation of antitumoral effects of the treatment investigated [233, 234]. 



 

66 
 

Even when working at non-super instrument resolution, information 

conveyed by subcellular distribution can be preserved through image processing. 

As a main example, local image analysis permits to report pixel saliency as a 

function not only of the pixel itself, but also of its surroundings [235], thus 

permitting to reconstruct local geometric interactions, neither quantifiable, not 

even perceivable, in the native intensity images, which require a proper post-

processing. To this purpose, investigating pixel connectivity is a simple yet 

powerful tool to go beyond intensity analyses and access local image structures 

[236]. 

Regarding spatial distributions, image analysis permits to capture phenomena 

hidden from visual inspection [237], to measure molecules dispersion and its 

variations [238], and to represent all of this as 2-D and 3-D pseudo-colour 

quantitative maps [239]. Intuitive and efficient visualization is indeed important 

at all steps of biomedical research: it is indispensable for quality control (for 

example, identification of dead cells, ‘misbehaving’ markers, or image acquisition 

artifacts), the sharing of generated resources among a network of collaborators, or 

the setup and validation of an automated analysis pipeline. Importantly, 

visualization tools have also to show relevant image-based data to biologists in an 

intuitive and interpretable manner, that enables them to identify meaningful 

characteristics and explore potential correlations and relationships between data. 

Several localization maps have been developed through years to facilitate the 

visualization of molecules distribution, especially when more than one molecule 

is investigated at once [216, 240, 241]. Since these maps are simply built on 

binarized signals, they all implicitly assume the perfect detectability of the object 

of interest, expected as compact, unfragmented (i.e., made of connected pixels 

only) and dimensionally well distinguishable by noise. However, it may happen 

that after image pre-processing and thresholding the structural information of the 

‘objects’ of interest can be partly lost, yet more in case of structures whose size is 

close to system resolution. 

Starting from this latter concern, we developed a method that allows resolving 

subcellular structure location by reinforcing each pixel position with the 

information from the surroundings, introducing the novel concept of local density. 

This new concept also conveys three main innovations. The first is a novel 
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descriptor of the signal distribution, the local density index (LDI), representing 

pixel local density as the number of pixels, normalized by a unit area. The second 

consists in the intrinsic property of local analysis to preserve the informativeness 

of spatial distributions, even in images with a reduced resolution. Third, the 

application of the method enables the simple and fast creation of density 

distribution maps (DDMs). Besides quantitatively describing the objects absolute 

and self-relative location, DDMs offer a pictorial view of the density distribution 

of the whole imaged sample, representing an unprecedented support to detect 

possible subpopulations.  

The effectiveness and robustness of DDMs is hereafter demonstrated and 

exemplified through their application to five image sets acquired with confocal 

fluorescence microscopy and micro computed tomography (µCT), which 

demonstrates how local neighbour analysis can enhance information confidence 

even in the absence of high-resolution technologies, and how DDMs extend their 

applicability outside the mere spatial distribution analysis.  

4.4 Materials and methods 

Five datasets are considered in this study: COL7, MG-63, A549sh/p53, HeLa, 

µCT. As the first step, we aim at showing the greater informative content conveyed 

by the DDM in structure identification and how it changes with their application 

to the same dataset sampled at a different resolution. To this purpose, the images 

of COL7 are downsampled, thus deriving a sixth dataset at a halved resolution 

(COL7-h). In this way, COL7 can be used as the benchmark for the analysis 

performed with COL7-h. Secondly, we apply DDMs at three different subcellular 

distribution studies in MG-63, A549sh/p53 and HeLa cells, imaged in 

homonymous datasets. Finally, we show the usefulness of DDMs in a mere 

technical context, to segment mice bone structures from µCT images. Images of 

COL7 were downloaded free of charge from the public repository “The Image Cell 

Library” (CIL-CCDB) (http://www.cellimagelibrary.org) [242]. Images of 

A549sh/p53 and HeLa cells have been acquired for another study we are 

conducting to assess the effect of different stress conditions on RNA:DNA hybrids 

subcellular distribution (Chapter 6). The images of MG-63 have been kindly 
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provided by Dr. Enrico Lucarelli and the laboratory of Regenerative Therapies in 

Oncology (Unit of Osteoncology, Bone and Soft Tissue Sarcomas and Innovative 

Therapies) of the IRCCS Rizzoli Orthopaedic Institute. The images of µCT have 

been kindly provided by the Prof. Carla Palumbo and her team of the Section of 

Human Morphology of the Department of Biomedical, Metabolic and Neural 

Sciences of the University of Modena and Reggio Emilia. 

Image collection 

(1) Images of monkey kidney fibroblast COL7 cells (The Cell Image Library 

[242], CIL:13701) were acquired with a confocal fluorescence laser scanning 

microscope LSM 510 or LSM 710 (Carl Zeiss, Inc., Oberkochen, Germany, 

equipped with a Plan-Apochromat 63×/NA 1.4 objective in multitrack mode. COL7 

cells were indirectly immunolabeled against the wild-type and the W164S mutant 

of the vasopressin V2 receptor (V2R) with anti-myc antibody (Ab), and against 

endosomes with anti–transferrin Ab [243]. (2) Images of human osteosarcoma MG-

63 cells, exposed or not to paclitaxel-loaded nanoparticles (PTX-Ce6@kerag), were 

acquired with a confocal fluorescence laser scanning microscope Ti-E A1R (Nikon, 

Amsterdam, The Netherlands) equipped with a 60×/NA 1.4 oil Plan-Fluo. MG-63 

cells were indirectly immunostained against microtubules (MTs) with anti-tubulin 

Ab and incubated with Phalloidin-FITC for actin staining and with Hoechst for 

nuclei staining [2442]. (3) Human lung adenocarcinoma A549 cells (ATCC, 

Manassas, VA, USA) were cultured in F12K (ATCC) supplemented with 10% FBS 

(Euroclone, Milan, Italy), 1% penicillin/ streptomycin (GE Healthcare, Milan, Italy) 

and 2% amphotericin B (Euroclone, Milan, Italy), then plated at the density of 

30,000 cells/well and infected with lentivirus LV-THMsh-p53 at MOI=10 TU/cell, 

as previously described [245]. Cells were seeded on a glass coverslip at the density 

of 30,000 cells/slide and underwent one-fraction 2-Gy gamma irradiation [246]. 

After 72 h cells were fixed and permeabilized with ice-cold methanol for 10 min 

and acetone for 1 min on ice, blocked with 2% BSA, stained with 1 µg/mL 40,6-

diamidino-2-phenylindole (DAPI) and immunostained for RNA:DNA hybrids 

(primary anti-S9.6 Ab (1:100 dilution, Kerafast, Boston, MA, USA), secondary goat 

anti-mouse Alexa Fluor 568 (1:250; Life Technologies, Carlsbad, CA, USA)). 

A549sh/p53 cells were imaged with inverted confocal laser scanning microscope 
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Eclipse Ti (Nikon Corporation, Tokyo, Japan) equipped with NIS-Elements Ar 

software. 12-bit images were acquired with a Plan Apo 60×/1.4 oil objective with 

lateral resolution of 0.1 µm/pixels and axial resolution of 0.2 µm/pixels. (4) Human 

cervix adenocarcinoma HeLa cells (ATCC, Manassas, VA, USA) were cultured in 

EMEM (ATCC) supplemented with 10% FBS (Euroclone, Milan, Italy), 1% 

penicillin/streptomycin (GE Healthcare, Milan, Italy) and 2% amphotericin B 

(Euroclone, Milano, Italy). Hyperbaric Oxygen Therapy (HBOT) was applied at 1.9 

absolute atmosphere (ATA) in a hyperbaric chamber for 1 h. After 72 h, cells were 

fixed and permeabilized with ice-cold methanol for 10 min and acetone for 1 min 

on ice, blocked with 2% BSA, stained with 1 µg/mL 40,6-diamidino-2-phenylindole 

(DAPI) and immunostained for RNA:DNA hybrids (primary anti-S9.6 Ab (1:100 

dilution, Kerafast, Boston, MA, USA), secondary goat anti-mouse Alexa Fluor 568 

(1:250; Life Technologies, Carlsbad, CA, USA)). HeLa cells were imaged with 

inverted confocal laser scanning microscope Eclipse Ti2-e (Nikon Corporation, 

Tokyo, Japan) equipped with NIS-Elements Ar software. 12-bit images were 

acquired with a Plan Apo 60×/1.4 oil objective with lateral and axial resolution of 

0.1 µm/pixels. (5) Images of harvested mice tibiae were scanned with a µCT using 

a microfocus X-ray tube KEVEX PXS10-65W (Thermo Scientific Co., Waltham, MA, 

USA; 70 kV, 0.035 mA) and captured with a VHR1:1 CCD camera (Photonic Science 

Ltd., East Sussex, UK; 4008×2672 pixels, 9 µm pixel size). Final voxel size (2× 

magnification) was isometric 4.5 µm3. 

Image segmentation 

All image processing procedures are implemented in MATLAB® (R2019a 

v.9.6.0, The MathWorks, Natick, MA, USA). (1) Marked V2R structures in COL7 

and COL7-h cells are first segmented by grey level top hat filtering [125] with disk-

shaped structuring elements (SE) of fixed size (in µm), then thresholded at the 95th 

percentile. (2) MTs in MG-63 cells are segmented by ISODATA thresholding [247] 

of single optical sections. (3) RNA:DNA hybrids in A549sh/p53 cells are segmented 

as follows: (i) maximum intensity projection (MIP) building and denoising by 8-bit 

quantization, (ii) nuclear region delineation by maximum entropy thresholding 

[248] of DAPI signal, (iii) grey level top-hat enhancement with disk-shaped SE of 

fixed size (in µm) in cytoplasm, (iv) ISODATA thresholding in cell nucleus and 
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cytoplasm, separately. (4) RNA:DNA hybrids in HeLa cells were segmented by 

ISODATA thresholding of MIPs’ positive values. (5) Tibial metaphyseal trabeculae 

in µCT images are segmented by (i) first performing an image denoising through 

8-bit conversion, (ii) followed by an image contrast adjustment by adaptive 

histogram equalization [249], (iii) then thresholding the local intensity peaks by 

top-hat, and (iv) finally by applying our method to retain only densely distributed 

peaks, corresponding to metaphyseal trabeculae. 

Local density analysis, LDI and DDMs 

DDMs creation is a two-step procedure (Figure 4.2).  

 
Figure 4.2. Flowchart of a DDM creation pipeline. (a) The acquired image is segmented 

in a binary mask. Then, the mask connectivity is explored by local density analysis to create 

the DDM in pseudo-colours. (b) Details of local density analysis: after setting the search 

(moving) window size, each foreground pixel of the binary mask is assigned a number 

representing the amount of foreground pixels in its locality (i.e., LDI), this constituting the 

input to build the pseudo-colour DDM. Image reproduced from [130] under the CC-BY 

Creative Commons Attribution 4.0 International licence. 

 

First, a 2-D-image (input) is segmented to achieve the foreground (binary) 

mask of the object(s) of interest (Figure 4.2 (a), left and centre). Second, local 

distribution analysis (Figure 4.2 (b)) is performed on the binary mask by assigning 

to each foreground pixel a value corresponding to the number of the foreground 

pixels in its neighbourhood, defined by a rectangular (2Δx+1)×(2Δy+1) search 

window, with Δx and Δy being the half-sides along X and Y directions, 

respectively. Therefore, our method refers to density as the “number of pixels for 

search window”. As an example, without losing generality, in case of a 3×3 
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window, possible values for the reference pixel range from 0 for isolated pixels, to 

8 for full-connected ones. In practice, the value assigned to each pixel represents 

its LDI. The image containing the set of LDI is a DDM, which can also be visually 

represented in pseudo-colours. Therefore, each DDM’s pixel is suggestive of the 

amount of information in its own neighbourhood. It is worth noting that the 

method can be applied to any distribution study, only requiring a binary input 

image, independently of the imaging technique and the acquisition system 

resolution. 

The most important implication of DDM can be seen when created with a 5×5 

(or larger) search window, as illustrated in Figure 4.3. 

 
Figure 4.3. DDM mask creation. The acquired image is firstly segmented and the DDM (a) 

is then created with a 5×5 search window, that is the minimal window size that allows 

discriminating single pixels based on their locality. (b) Pixels semantics: (1) isolated red 

pixels, with LDI=0; (2) green pixels, isolated, but not alone in their 5×5 neighbourhood, 

with LDI ≥ 2; (3) either isolated or “end-point” purple pixels, with LDI=1; (4) connected 

white pixels, with LDI ≥ 2. Scale bar: 5 μm. Image reproduced from [130] under the CC-BY 

Creative Commons Attribution 4.0 International licence. 

 

Starting from a grey level input image and after an independent binarization 

procedure, the DDM is created (Figure 4.3 (a)). Figure 4.3 (b) shows how differently 

single and isolated pixels are semantically treated in this process. Here, red 
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isolated pixels are those having LDI=0, while green isolated pixels have LDI=2 or 

greater, as well as the white ones. Finally, purple pixels, with LDI=1 may be either 

isolated or “end-point” towards no-density space. Isolated red pixels have no 

connections with any object in their 5×5 neighbours and are the best candidate to 

be removed since they do not apparently retain any information. On the contrary, 

it can be seen that green pixels are isolated, but not alone, suggestive to belong to 

structured though fragmented objects that should hence be preserved. This is an 

example of semantic membership assignment of pixels based on their neighbour’s 

information. As LDI is function of single pixels, the objects can be composed of 

pixels with different LDI=1, as it happens for all the white pixels. However, with a 

5×5 window, aggregates of two pixels can be subject to an uneven behaviour. In 

fact, depending on whether the aggregate is nearby a structured object or not, they 

can have one or both pixels with LDI=1, respectively. Nevertheless, if undesirable, 

this behaviour can be modified with ad-hoc assumptions. 

DDM’s search windows for the analysed datasets 

For COL7 dataset, a 5×5 search window is chosen for local distribution analysis 

in the imaged cells, this also permitting to have in COL7-h a halved-size search 

window (3×3) to perform the same analysis. For MG-63, A549sh/p53 and HeLa 

datasets, a 3×3 search window is employed for local distribution analysis, since the 

objects of interest are in the range of few pixels and the smallest window is suited 

for detection and discrimination of single particles from small aggregation events. 

For µCT images, a search window of 29×159 pixels, approximating the real size of 

the imaged tibial metaphysis [250], is selected. 

Assessment of results 

Identifying objects for either object counting, or to know their position, 

represents one of the most grounding steps in biological quantitative imaging. 

Therefore, we choose object counting to evaluate the ability of our method to 

identify single structures and, consequently, the effectiveness in characterizing 

their spatial distribution. Counting is carried out in COL7 segmented images, after 

a preliminary step needed to remove foreground pixels expectedly due to “noise” 
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arising from sample preparation and/or acquisition process. Commonly, the 

denoising methods rely on area-based or connectivity-based thresholding. While 

the former aims at removing too small (or too big) aggregates, the latter also 

encodes neighbouring information aiming at preserving connected pixels. 

Differently, we use our DDMs for a density-based thresholding and compare our 

counting with those achieved by area-based and connectivity-based thresholding 

that is, respectively, after removing 1-pixel (i.e., isolated) objects, or keeping pixels 

with 4-, diagonal- (D-) or 8-connectivity by sequential image opening and closing 

with same 3×3 SE. The outcome is assessed through statistical metrics, most of all 

derived from the contingency table. From here on, objects are defined as 8-

connected. The number of objects in the original binarized image is used as true 

reference condition (i.e., ground truth, GT), where condition positives are 

represented by the number of present objects, whereas condition negatives, in 

particular the true negatives (TNs), in most detection problems as ours cannot be 

univocally defined. The object countings performed after density-, area- and 

connectivity-based processing represent the predicted conditions, that in 

comparison procedure with the reference image allow distinguishing: 

• True Positives (TPs), i.e., the number of detected objects that are also in Im (hits) 

• False Positives (FPs), i.e., the number of detected objects that are not in Im 

(Type I errors) 

• False Negatives (FNs), i.e., the number of objects in Im that are not detected 

after processing (miss, Type II errors). 

Besides TNs that cannot be estimated, also FPs are not detectable, given the 

subtractive nature of the processing methods being considered. Then, only TPs and 

FNs are reported, both in absolute (TP and FN) and percentage (TPR and FNR) 

form, computed as:  

𝑇𝑃𝑅 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒) =
𝑇𝑃

𝐺𝑇 
× 100 (4.1) 
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𝐹𝑁𝑅 (𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒) =
𝐹𝑁

𝐺𝑇 
× 100 (4.2) 

To compare the number of surviving objects in the processed images with the 

original number in the input image, we check the overlap between the object’s 

mask in denoised image and the original mask through the logical “AND” 

operator. The overlap by at least one pixel is enough to detect the object as a TP, 

otherwise it is considered missed (FN). Therefore, only a partial erosion ensures 

the overlap, and a greater overlap hints at a more conservative method, that 

preserves more object properties. Therefore, the overlap computed as: 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑎𝑓𝑡𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑚𝑎𝑔𝑒
× 100 (4.3) 

becomes itself a quality index suggestive of the efficacy of the method. 

However, it may happen that the erosion keeps the object, but does not keep its 

integrity and fragments it. This leads the object to be counted as TP as many times 

as its number of fragments, yielding a consequent non-complementarity between 

TPR and FNR (i.e., TPR+FNR>100). From the need to quantify such phenomenon 

we introduce the Stoichiometric Detection Rate (SDR) that, given a 1:n 

stoichiometric rate, is the percentage of Im detected objects (i.e., the difference 

between GT and FN) that at least partly overlap with n objects in the processed 

image. In practice, n represents the number of fragments, with n=1 pointing out an 

object kept integer. 

In addition, to assess the robustness of the DDM to varying image quality, we 

compare the informative-ness conveyed by DDMs applied to COL7 and to COL7-

h, having a halved resolution, by performing a pattern matching using the 

normalized cross correlation (NCC). 

The MG-63, A549sh/p53 and HeLa datasets are used to exemplify the different 

benefits of applying DDMs in subcellular distribution analysis, aiming at 

identifying a discriminant feature (descriptor) of different cell conditions. A visual 

inspection of DDMs in all datasets suggests us that the LDI percentage (i.e., the 

ratio between the number of pixels with given LDI and the number of all analysed 

pixels) could be a suitable descriptor. Nevertheless, in the HeLa dataset, the 
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number of objects (or better, blobs) composing each density level (weighted by cell 

area) was also considered, in order to refine the assessment of the spatial gathering 

of pixels sharing a same LDI. 

Finally, the µCT dataset is used to exemplify the applicability of the method 

beyond the pure molecular distribution analysis, by using DDM to integrate the 

image segmentation procedure of tibial metaphyseal trabeculae. 

Statistical analysis 

Statistical analyses are performed in MATLAB®. Data deviation from normality 

is early verified by histogram inspection, followed by the Shapiro-Wilk test, based 

on which the discriminatory power of descriptors is assessed by either two-tail 

Student’s t-test or Wilcoxon rank-sum test. p-values<0.05 were considered for 

statistical significance. 

4.5 Results and discussion 

DDMs are effective and robust to quantify spatial distributions 

The DDM’s capability to increase confidence in spatial distribution 

measurement is assessed by its application to object detection and counting in 

comparison with area- and connectivity-based thresholding (Figure 4.4 (a)).  

Specifically, starting from a binarized COL7 image (Im): (1), DDM is created 

and binarized after that isolated pixels (LDI=0) are removed (DDMm); (2) area-

based denoising is performed by removing isolated pixels (Im1); (3) 4- (Im2), 

diagonal- (Im3) and full- (Im4) connectivity-based denoising are carried out by 

morphological opening and closing (Figure 4.4 (a), the squares with the reference 

central red pixel). As reported in Table 4.1, DDMm is the image that better 

approximates the object counting in the original binarized image Im. 
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Figure 4.4. DDMs are effective and robust to quantify spatial distributions. (a) After 

signal binarization, area- (Im1, 1-pixel object removal) or connectivity-based denoising 

(Im2, Im3 and Im4, 4-, diagonal- and full- connectivity-based denoising, respectively) is 

performed. (b) The signal accuracy reduction caused by resolution halving of COL7 to 

COL7-h is better resisted by our method application, as quantified by a maximum NCC 

coefficient of 0.79 for COL7 and COL7-h DDMs. The colorbar indicates the normalized 

function values. Scale bars: 5 µm. Image reproduced from [130] under the CC-BY Creative 

Commons Attribution 4.0 International licence. 

 
Table 4.1. Contingency table for object counting with density-, area- and connectivity-based 

approach. 

Image 1 TP FN 
TPR FNR SDR (%) Overlap 

(%) (%) 1:1 ≥1:2 (%) 

DDMm 1089 649 63 37 100 0 95 

Im1 614 1124 35 65 100 0 92 

Im2 170 1612 10 93 76 24 53 

Im3 139 1625 8 93 82 18 51 

Im4 94 1666 5 96 78 22 42 

1 Ground Truth (GT)=1738. TP, True Positive; FN, False Negative; TPR, True Positive Rate; FNR, 

False Negative Rate; SDR, Stoichiometric Rate. 
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Indeed, it shows by far the highest TPR=63%, and the lowest FNR=37%, 

accordingly. The non-complementarity of TP and FN in Im2, Im3 and Im4 hints at 

a fragmentation of Im objects induced by the connectivity-based denoising, as 

suggested by the 24%, 18% and 22% of objects that are detected with an in-correct 

(i.e., ≥1:2) SDR in these images, respectively (Table 4.2). 

Table 4.2. Stoichiometric detection rate for object counting with density-, area- and connectivity-

based approach. 

Image 1  
Denoising  

principle 
GT - FN 

SDR (%) 

1:1 1:2 1:3 1:4 1:5 

DDMm pixel density 1089 1089 (100) - - - - 

Im1 object area 614 614 (100) - - - - 

Im2 4-conn 126 96 (76) 19 (15) 8 (6) 3 (3) - 

Im3 D-conn 113 93 (82) 16 (14) 3 (3) - 1 (1) 

Im4 8-conn 72 57 (79) 10 (14) 3 (5) 2 (3) - 
1 Ground Truth (GT)=1738. FN, False Negative; SDR, Stoichiometric Detection Rate. 

On the contrary, neither the area-based nor our method fragment the objects. 

Finally, DDMm shows the highest overlap (i.e., the best match) with Im (Table 4.1), 

this suggesting a better accuracy in estimating position and object extension. It is 

worth noting that the overlap difference between DDMm and Im1 is attributable 

to the 1-pixel objects that, being isolated but not alone, are discarded in the latter, 

but not in the former. In conclusion, the behaviour of the considered denoising 

methods can be summarized as following in Table 4.3: 

 
Table 4.3. Comparison of density-, area- and connectivity-based approach effects on objects erosion 

during detection. 

Denoising  

principle 

Can cause objects: 

partial  

erosion 

complete erosion  

(removal) 
fragmentation 

Pixel density Yes Yes No 
Object area No Yes No 

Pixel connectivity Yes Yes Yes 
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Finally, we use the NCC to perform a pattern matching between each analysed 

image and its half-resolved counterpart (Figure 4.4 (b) and Table 4.4). While the 

best result is in the presence of downsampling only (NCC=0.96, that is, 4% 

information loss), DDMm retains the highest correlation between results achieved 

at full and half resolution (NCC=0.79), meaning that it shows the highest 

robustness against resolution reduction. 

 
Table 4.4. Comparison between COL7 and COL7-h. 

Image 1 NCC 

Im 0.96 

DDMm 0.79 

Im1 0.75 

Im2 0.73 

Im3 0.75 

Im4 0.71 

1 Abbreviation list: NCC, Normalized Cross Correlation. 

 

For all these reasons, DDMm represents the best option for object detection, 

and consequently for distribution analysis, as it minimizes FN, maximizes TP and 

the object detection with correct stoichiometry. Therefore, our method can be 

preliminary considered also as an effective denoising procedure in itself that, 

besides retaining objects on the basis of their connectivity, can even keep the most 

informative ones on the grounds of their local density. More importantly, this 

reinforcement of each pixel position by exploiting information from surroundings 

makes our method to be the most robust to resolution variation. This means that, 

independently of the resolution of the acquisition device, our method can 

effectively improve the informativeness of the distribution analysis. 

DDMs disclose hidden distribution properties 

This example shows how to use local density information to strengthen 

ordinary analyses. Figure 4.5 addresses the MTs resolving in confocal images of 
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MG-63 cells exposed to Paclitaxel-loaded nanoparticles (PTX-Ce6@kerag) (Figure 

4.5 (a)) [245].   

 
Figure 4.5. DDMs disclose hidden distribution properties. (a) Top: RGB MIPs of MG-63 

untreated (left) or exposed to PTX-Ce6@kerag nanoparticles (right) cells, stained for DNA 

(blue) and actin (green), and immunolabeled against and β-tubulin (red). Bottom: 

exemplificative optical sections (left) and DDMs (right) of β-tubulin signal distribution 

along Z-axis. Line plots of MTs median intensity (b) and percentage LDI distribution in 

UC (c) and PTX-treated cells (d) along the Z-axis. In PTX presence, MTs are brighter (+126% 

on average, p < 10−5), denser (+69%, on average, p < 10−5) and more present at a high density 

through the sections (average CV through sections for LDI=8: 0.02). Scale bars: 10 µm. 

Image reproduced from [130] under the CC-BY Creative Commons Attribution 4.0 

International licence. 

 

As Paclitaxel (PTX) is expected to suppress MTs dynamic instability [251], the 

MTs signal is investigated through the optical sections. For visualization purposes, 

confocal sections are summarized in MIPs (Figure 4.5 (a), top colour images). By 

comparing untreated control (left) and PTX-treated (right) cells, a different 

subcellular location and intensity of MTs (red) can be noticed. This visual 

consideration still holds for single optical sections (grey level images, bottom left) 

and it is supported by MTs intensity quantification (Figure 4.5 (b): median intensity 

in treated cells greater than 126%, p<10−5, Table 4.5.  
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Table 4.5. Median MTs intensity in MG-63 cells. 

 Median intensity ± MAD 

Optical  

section 

UC  

(n=17) 

PTX-Ce6@-kerag 

(n=14) 

1 24.0±5.00 782±197 

2 36.0±8.00 918±233 

3 53.0±11.0 991±250 

4 76.0±17.0 920±236 

5 123±27.0 781±193 

6 210±46.0 683±163 

7 347±76.0 752±195 

8 460±105 717±180 

9 525±128 828±216 

10 563±143 857±236 

11 555±148 862±237 

12 553±147 789±214 

13 524±141 726±198 

14 460±124 663±181 

15 377±103 - 

16 277±72.0 - 

17 199±50.0 - 

 

Coefficient of variation (CV) through sections: 0.55 (UC), 0.44 (PTX)). However, 

local density analysis of MTs in single sections discloses a hidden aspect of the 

distribution. Indeed, the line plots of LDI percentage in UC (Figure 4.5 (c)) show a 

marked presence of the highest LDI=8 and a reduced presence of LDI between 0 

and 7, which are also more stable through the optical sections (average CV=0.70). 

After PTX delivery (Figure 4.5 (d)), the presence of all LDI becomes constant 

through sections (average CV=0.15) and, most important, LDI=8 becomes nearly 

exclusive and the remaining LDIs almost disappear, since the former significantly 

increases (+69%, p<10−5), while the latter decrease (−68% on average, always 

p<10−3, Table 4.6). The predominant LDI=8 presence could be ascribed to the dense 

and crystallized MTs appearance induced by high PTX concentration [252]. 

Together with LDI=8 constant presence throughout optical sections, this finding 

suggests that Ce6@kerag-mediated PTX delivery is probably even more efficient 
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than what reported by the authors themselves, hence highlighting the prominence 

of such a delivery system for clinical application. 

 
Table 4.6. Statistical analysis of MTs LDI percentage in MG-63 cells. 

 Median percentage (%) ± MAD  

LDI 
UC  

(n=17) 

PTX-Ce6@-kerag 

(n=14) 

p-value 

(<0.05) 

0 1.40±0.96 0.05±0.01 <10-5 

1 2.15±1.26 0.10±0.02 <10-5 

2 3.01±1.53 0.31±0.03 <10-5 

3 4.54±1.87 0.96±0.06 <10-5 

4 5.94±1.05 3.13±0.16 <10-5 

5 8.15±1.08 5.88±0.38 <10-3 

6 9.27±0.79 4.07±0.16 <10-5 

7 12.4±0.79 5.84±0.33 <10-3 

8 47.1±14.2 79.5±0.84 <10-5 

 

DDMs can capture relevant spatial distributions blind to visual inspection 

This example is probably the most effective showing how the hidden 

information disclosed and quantified by DDMs can provide added knowledge. 

Figure 4.6 reports A549sh/p53 UC cells or subject to γ irradiation (2 Gy), marked 

against RNA:DNA hybrids to assess how their subcellular distribution varies in 

response to treatment. An earlier image comparison between irradiated and non-

irradiated cells (Figure 4.6 (a), left) suggests that hybrids differently redistribute in 

cytoplasm and nucleus after cell irradiation, displaying the emptying of nucleus 

and a pan-cytoplasmic dispersion of hybrids. However, DDMs computation 

(Figure 4.6 (a), centre) unveils that what appeared as an uninteresting cytoplasmic 

redistribution unexpectedly consists of an accumulation of hybrids in what looks 

like a cytoplasmic perinuclear ring, that after nuclear boundary segmentation 

results to lie inside the organelle (Figure 4.6 (a), magnification, right). 
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Figure 4.6. DDMs can capture relevant spatial distributions blind to visual inspection. 

(a) Grey level images of untreated and 2-Gy irradiated A549sh/p53 cells are used to 

compute DDMs for immunostained RNA:DNA hybrids. DDMs highlight a perinuclear 

hybrids crowding inside the nucleus of 2-Gy irradiated cells. (b) Bar graphs of LDI 

percentages in the main cell compartments. A549sh/p53 2-Gy irradiation induces hybrids 

de-condensation in both nucleus and cytoplasm, although with a slightly different 

magnitude. * p < 0.05; ** p < 0.01; *** p < 0.001. Scale bars: 10 µm. Image reproduced from 

[130] under the CC-BY Creative Commons Attribution 4.0 International licence. 

 

DDMs analysis allows quantifying a significant increase in both cell nucleus 

and cytoplasm of low LDI percentages (LDI=0-3 {0,1,2,3}, p<10−4), coupled with a 

symmetric decrease in high LDI percentages (LDI={5,7}, p<0.006 in cytoplasm and 

LDI=8, p=0.012 in nucleus, Figure 4.6 (b) and Table 4.7).  

 
Table 4.7. Statistical analysis of hybrids LDI percentage in A549sh/p53 cells. 

 Nucleus  Cytoplasm 

 Median percentage (%) ± MAD  Median percentage (%) ± MAD 

LDI 
UC 

(n=14) 

2 Gy 

(n=14) 

p-value 

(<0.05) 
 

UC 

(n=14) 

2 Gy 

(n=14) 

p-value 

(<0.05) 

0 0.32±0.13 1.63±0.97 <10-4  0.44±0.12 1.86±0.60 <10-5 

1 0.88±0.26 2.39±1.65 <10-3  0.95±0.28 3.02±0.87 <10-5 

2 1.81±0.42 3.84±1.74 <10-2  2.89±0.40 4.79±0.93 <10-5 

3 4.24±0.73 6.07±2.45 0.02  7.85±0.98 9.06±1.29 0.05 

4 7.50±1.11 10.0±3.01 0.08  13.4±1.17 12.1±1.42 0.07 

5 9.91±1.05 11.5±1.83 0.05  14.9±0.89 13.4±0.95 <10-2 

6 10.6±1.03 11.0±1.37 0.30  12.2±0.38 12.6±1.03 0.73 

7 13.6±1.02 13.1±1.71 0.80  15.0±0.38 14.2±0.99 <10-2 

8 51.1±5.05 41.3±12.7 0.01  32.0±3.14 28.0±6.29 0.07 
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This means that 2-Gy irradiation leads to a hybrids de-condensation in both 

compartments, more heavily in cell nucleus, where the decrease involves higher 

density levels. Although this evidence would seem to disagree with the clear 

perinuclear hybrids crowding at 2 Gy, the de-condensation regards the whole 

cellular compartments, while the hybrid accumulation occurs at the sub-regional 

level. Notably, we can conclude that, despite the significant changes in LDI 

percentages, a 2 Gy irradiation can be said to peculiarly affects hybrids subcellular 

location, rather than aggregation state and density, accordingly. Such strong 

hybrids redistribution after treatment was not imaginable before applying DDMs. 

This finding highlights the need of local processing and the importance of DDMs 

to convey both quantitative and visual information, which have to be considered 

together to assist researchers in capturing the complexity of phenomena. 

DDMs can detect and quantify sample heterogeneity 

This example shows how DDMs can be used to disclose and discriminate 

subsamples by the local density distribution of marked structures.  

 
Figure 4.7. DDMs can detect and quantify sample heterogeneity. (a) Grey level images 

and DDMs of untreated (UC) and 1.9 ATA HBO-treated HeLa cells marked against 

RNA:DNA hybrids. DDMs separate three cell groups of cortical (blue), scattered (red) and 

intermediate (green) hybrids distributions among HBO-treated cells. (b) Bar graphs of LDI 

percentages and derived blob number in HeLa cells. * p < 0.05; ** p < 0.01; *** p < 0.001 for 

statistical comparison of the three groups with the untreated control. Scale bars: 10 µm. 

Image reproduced from [130] under the CC-BY Creative Commons Attribution 4.0 

International licence. 
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Figure 4.7 reports HeLa cells exposed (HBO 1.9 ATA) or not (UC) to hyperbaric 

oxygen conditions and marked against RNA:DNA hybrids to assess their 

subcellular distribution variation in response to such stressing condition. Visual 

inspection of acquired images (Figure 4.7 (a)) suggests a difference in hybrids 

signal intensity and distribution between treated and untreated cells. This 

difference is confirmed and stressed by DDMs, which moreover disclose a 

heterogeneous hybrids subcellular distribution among HBO-treated cells, 

identifying three cell subgroups characterized by a cortical, scattered, and 

intermediate distribution, respectively (Figure 4.7 (a), coloured annotations). 

DDMs creation permits to differentiate the three distributions by both LDI 

percentage and number of blobs (Figure 4.7 (b) and Tables 4.8 and 4.9), where the 

latter varies more than the former, meaning that the groups are not so much 

characterized by different densities as they differ in the way the densities are 

spatially distributed.  

 
Table 4.8. Median hybrids LDI percentage and blobs number in HeLa cells. 

 Median percentage (%) ± MAD  (Median blob number (pixel-1) ± MAD) ·10-3 

LDI 
UC 

(n=5) 

Cortical 

(n=4) 

Intermediate 

(n=3) 

Scattered 

(n=3) 
 

UC 

(n=5) 

Cortical 

(n=4) 

Intermediate 

(n=3) 

Scattered 

(n=3) 

0 0.06±0.03 0.20±0.03 0.15±0.01 0.16±0.04  0.11±0.05 0.44±0.07 0.32±0.01 0.36±0.08 

1 0.30±0.04 0.51±0.03 0.49±0.02 0.48±0.01  0.38±0.01 0.76±0.04 0.67±0.05 0.67±0.14 

2 0.58±0.10 1.27±0.11 1.18±0.05 1.25±0.05  0.85±0.20 2.43±0.24 1.99±0.13 2.15±0.05 

3 2.62±0.14 4.21±0.17 4.50±0.56 5.01±0.29  4.57±0.55 8.12±0.07 8.75±0.20 10.10±0.12 

4 10.30±0.78 10.30±0.75 11.70±0.78 12.40±0.57  17.6±1.54 19.60±1.34 21.00±0.88 23.80±0.38 

5 12.50±1.02 14.10±0.32 15.30±1.12 15.64±0.44  18.00±1.46 20.90±0.51 22.50±0.52 25.00±0.08 

6 7.26±0.16 9.12±0.25 9.24±0.07 9.51±0.26  10.70±0.77 15.80±0.09 16.20±0.76 16.90±0.13 

7 13.20±0.58 12.60±0.32 13.50±0.56 14.28±0.14  19.50±1.99 21.40±0.49 22.30±0.96 24.50±0.41 

8 53.00±2.99 48.3±1.05 40.00±4.11 41.68±1.70  2.63±0.10 2.54±0.08 3.79±0.36 3.71±0.44 
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Table 4.9. Statistical analysis of hybrids LDI percentage and blob number in HeLa cells. 

 p-value (<0.05) 

 LDI percentage (%)  Blob number (pixel-1) 

LDI 
UC-

All 

UC-

Cortical 

UC-

Intermediate 

UC-

Scattered 
 

UC-

All 

UC-

Cortical 

UC-

Intermediate 

UC-

Scattered 

0 0.01 0.02 0.14 0.14  0.26 0.19 0.99 0.32 

1 <10-2 0.02 0.14 0.07  0.24 0.22 0.50 0.68 

2 <10-2 0.02 0.04 0.04  0.38 0.76 0.79 0.25 

3 <10-2 0.02 0.04 0.03  0.37 0.03 0.57 0.39 

4 0.31 0.73 0.25 0.07  0.01 0.02 0.07 0.25 

5 0.03 0.41 0.07 0.04  0.01 0.02 0.07 0.25 

6 <10-2 0.02 0.04 0.04  0.03 0.02 0.07 0.79 

7 0.31 0.90 0.57 0.04  <10-2 0.02 0.04 0.07 

8 <10-2 0.06 0.04 0.04  0.01 0.02 0.07 0.29 

 

When grouping all HBO-treated cells together, this heterogeneity results in a 

higher variance in spite of the increased number of samples (Table 4.10), with 

consequent weakening of statistical comparison between treated and control 

group [253].  

 
Table 4.10. Variance of hybrids LDI percentage and blob number in HeLa cells. 

 Variance 

 LDI percentage (%)  Blob number (pixel-1) ·10-7 

LDI 
All 

(n=10) 

Cortical 

(n=4) 

Intermediate 

(n=3) 

Scattered 

(n=3) 
 

All 

(n=10) 

Cortical 

(n=4) 

Intermediate 

(n=3) 

Scattered 

(n=3) 

0 0.003 0.002 0.002 0.004  0.15 0.09 0.10 0.17 

1 0.01 0.002 0.01 0.01  0.09 0.05 0.03 0.22 

2 0.03 0.05 0.04 0.03  1.23 1.94 0.24 0.66 

3 0.32 0.14 0.67 0.10  11.2 3.16 14.6 3.02 

4 1.44 0.89 1.02 0.40  41.1 29.7 9.36 16.4 

5 1.48 0.35 2.61 0.50  35.4 30.9 21.3 11.5 

6 0.12 0.21 0.05 0.08  7.38 6.58 10.5 1.88 

7 0.76 0.75 0.67 0.04  21.0 16.2 10.4 9.06 

8 15.8 9.85 21.4 4.94  4.42 2.17 3.19 2.08 
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In conclusion, in this case DDMs provide some unprecedent information. First, 

they indicate that the sample may be not large enough to account for the 

heterogeneity of the entire population, and that a careful outliers detection and 

removal is needed before data analysis. Second, DDMs reveal that cells of a same 

subgroup are spatially gathered, thus raising doubts on the homogeneity of the 

created hyperoxic environment and suggesting new experiments, under strictly 

controlled conditions, also aiming at investigating the dependence of hybrids 

distribution on the oxygen concentration. At the end, independently of the sample 

heterogeneity, DDMs already reveal that hyperbaric conditions induce a 

redistribution of hybrids and a change in their condensation state. 

DDMs can apply beyond distribution analysis 

In the previous paragraphs, we showed how DDMs can reinforce, supplement 

or disclose distribution information. However, applicability of DDMs extends 

beyond distribution analysis in microscopy cell imaging, for instance, to improve 

image segmentation procedures. Figure 4.8 describes the main steps of the 

automated segmentation of metaphyseal trabeculae from a Mus musculus tibiae in 

µCT images (Figure 4.8 (a) and Chapter 7), that involves local density analysis. 

First, the image contrast is enhanced by 8-bit conversion (Figure 4.8 (b)) and 

adaptive histogram equalization (Figure 4.8 (c)). Then, a top hat filtering of the 

image (Figure 4.8 (d)) with proper SE (i.e., with dimension comparable to that of 

trabeculae to be segmented) permits to retain local intensity peaks (corresponding 

to more mineralized structures), while disregarding irrelevant pixels with low 

values (corresponding to bone cavities). As this procedure well identifies 

metaphyseal trabeculae, it also includes unwanted information from other bone 

structures. To isolate metaphyseal trabeculae, local density analysis can be used 

with denoising purpose, when selecting an appropriate local window size (i.e., 

with dimension comparable to that of metaphysis to be segmented). This way, the 

resulting DDM (Figure 4.8 (e)) permits to distinguish metaphysis trabeculae as the 

denser mineralized structures, and to exploit this information to segment them 

(Figure 4.8 (f)). 
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Figure 4.8. DDMs application to image segmentation. DDMs can applicate beyond 

distribution analysis in microscopy imaging: here, the segmentation of metaphyseal 

trabeculae in µCT (coronal) images of Mus musculus tibiae. The acquired image (a) is 8-bit 

converted for denoising purposes (b), contrast-enhanced by local adaptive histogram 

equalization (c) and top hat-filtered for the segmentation of local intensity peaks (d). This 

procedure well detects metaphyseal trabeculae, but also includes less dense signal from 

other bone structures. DDMs (e) permit to discriminate metaphyseal trabeculae as the 

denser local peaks in the image, and accordingly to segment them based on their local 

density (f). Scale bar: 200 µm. Image reproduced from [130] under the CC-BY Creative 

Commons Attribution 4.0 International licence. 

 

GUI for DDMs creation 

To allow users, even with basic skills, to build DDMs we supply DDMaker 

(Figure 4.9), a software program endowed with a user-friendly GUI, created with 

MATLAB® App Designer, which does not require any training or expertise before 

using.  
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Figure 4.9. Main GUI and logo of DDMaker. The main window is divided into four 

sections: Input: to select the input images’ folder; Binarization: to select the thresholding 

method, choosing whether considering zero-values subtraction before threshold 

calculation and performing image binarization; DDM: to select the half-sides of the search 

window for locality analysis and, to allow user creating and binarizing DDMs after setting, 

the colorbar for DDMs visualization in pseudo-colour and the percentile for DDMs 

thresholding; Output: to visualize and save intermediates and outputs. From left to right, 

top to bottom: grey level input image, binary mask, pseudo-colour DDM, binarized DDM. 

Image reproduced from [130] under the CC-BY Creative Commons Attribution 4.0 

International licence. 

 

In few steps, the software permits to customize the search window size and to 

create the DDMs either directly, starting from binary images, or indirectly, from 

RGB or grey level images, thanks to a dedicated module for image binarization. 

First, the user is required to select the folder where the input images to be 

processed are located. The folder can either contain RGB colour, grey level or 

binary images in the MATLAB-supported formats [254], including uncompressed 

“.tiff”. In the first two cases, the user can binarize the images by choosing among 
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ISODATA, Otsu or Triangle thresholding methods, excluding or not background 

values (i.e., zero-value pixels) from threshold calculation. The basic assumption 

regarding input images is that they are properly acquired, corrected for eventual 

vignetting distortion [177], and minimally affected by photobleaching degradation 

[180] (Subsect. 3.2.4). The resulting binary masks serve as the input for building 

DDMs. However, if users already have their own binary masks to be provided as 

the input, the segmentation step is skipped and DDMs are directly created starting 

from user’s masks. The default search window defining the locality of the analysis 

is a 3 pixels-sided square, chosen assuming that the target structures of interest in 

the images are of few pixels, thus enabling the detection of small aggregation 

events and single particles as well. However, users can customize the search 

window size. 

Moreover, DDMaker allows visualizing the derived DDMs with customizable 

colorbar, and to perform an original DDM’s percentile thresholding, thus enabling 

the input image segmentation by mean of local density. For user’s convenience, 

DDMaker also displays the last input image, the corresponding binary mask, and 

the derived DDM and DDM’s mask. The user can finally save all the intermediate 

analysis as well as the outputs as uncompressed images and portable csv and excel 

files. 

The software builds DDMs and save all data from few seconds to minutes on 

entry-level computers (e.g., a dataset of one hundred grey level images is fully 

processed in a little more than one min on a PC endowed with Intel i3-4005U, 1.70 

GHz processor, and 8 GB RAM). The simplicity in creating and interpreting DDMs, 

jointly with their effectiveness, make DDMaker a valuable tool for fast assessment 

of target distributions. All considered, DDMaker and DDMs could serve as a 

crucial checkpoint for long-lasting experiments, as well as for follow-up and large-

scale studies, that can be monitored on-line and corrected in progress, or even 

stopped, based on the continuous feedback by DDMs. It is worth noting that this 

allows optimizing time and costs by adjusting or rapidly restarting experiments 

that would otherwise have been discarded, just after ending. DDMaker is available 

as a public open-source software written in MATLAB® and as a 64-bit stand-alone 

application [255]. 
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4.6 Conclusions  

In this Chapter, we have presented an innovative method for subcellular 

distribution analysis, able to semantically quantify the local density of pixels, 

summarize it as the Local Density Index, and finally exploit it to build a Density 

Distribution Map in pseudo-colours, to prompt visual survey of the distributions. 

The local density descriptor also provides foundation for a wise denoising, where 

importance and necessity for signal preservation is not restricted to connectivity 

only. Finally, being based on local analysis, DDMs use leads to a more accurate 

estimation of molecules position, and increased robustness to resolution 

variations, if compared with the standard approaches. This allows DDMs to 

characterize and quantify both evident and hidden subcellular distribution, thus 

opening to the formulation of new biological considerations. As such, DDMs 

appear as an innovative enabling tool to supplement intensity analysis even for 

visual assessment, besides quantification of signal distribution. In addition, our 

method can be used for density-driven segmentation, which allows a good 

identification of small and thin morphological structures, like in the µCT images, 

that otherwise would have been merged. Finally, it is worth noting that as a 

resolution-independent technique enhancing the detection of native information 

DDMs can also benefit high-resolution technologies.  

DDMs computation is within every user’s reach with the DDMaker software 

we provide. The immediacy of DDMs creation, besides the exemplifying 

applications herein considered, allows DDMs to be employed in continuous 

monitoring routine and large-scale experiments, planning and progression of 

explorative investigations as for example in the study of cancer cell biology. In 

particular, DDMs analysis permits to detect heterogeneous responses to treatment 

in cell sub-populations, improving clinical drug development and with the 

potential to impact decisively on medicine in general and on oncology in 

particular. 

As regards the limitations, the first is that DDMs can be applied to binary 

images only, although this is intrinsically due to the design of the method itself. 

The second limitation is that, for this reason, DDMs require that previous image 
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acquisition and segmentation steps have been properly carried on. For this reason, 

DDMaker is also endowed with a segmentation module. 

4.7 Content-aware contribution and future developments 

Many steps of this work benefitted of interdisciplinarity and a content-aware 

approach. Thanks to my double formation, I could first analyse both the biological 

and technical properties of my data, understanding what was keeping me to 

measure my objects (i.e., RNA:DNA hybrids) distribution with a biologically 

significant accuracy. RNA:DNA hybrids can indeed range from few base pairs to 

more than 50 [256], and easily fall below the resolution limit of an optical 

microscope. Also, no prior knowledge about their aggregation state in the main 

cell compartments is available. On the contrary, under the hypothesis of their 

exportation from cells [257], their aggregation state should be deemed as 

informative and worthy of investigation. Therefore, even if detected as small, 

fragmented and disconnected, such objects should be retained, and their 

connectivity investigated. 

Then, recognizing the inadequacy of pure signal location for the 

characterization of such object distribution, I could proficiently navigate the 

literature and understand that what is here needed was not available to the 

biologist. No measure of local density was being made whatsoever, and spatial 

distribution was investigated in the field at best with pseudo-colour localization 

maps, that facilitate the molecules position visualization, but add no real 

information about sparse distribution, as the one we were investigating.  

Finally, and greatly, my double formation shaped the conceiving of the local 

density analysis method and the creation of the GUI for its aided execution. Thanks 

to an interdisciplinary approach, I was able to develop a method that is robust, 

effective, and yet provides a measure that is easily and straightforwardly 

interpretable from a biological point of view. Also, the method is supported by a 

software tool that can be installed on any laboratory computer without requiring 

any particular computational power or skills, that can be used in an intuitive way 

to easily obtain a biologically relevant result. In practice, being a biologist allowed 



 

92 
 

me to create the tool in the most biologist-friendly way I could, just as the tool I 

wish I had for myself before this PhD. 

As what concern method future development, an issue that necessarily remain 

to be addressed is the photobleaching contribution to the subcellular distribution 

quantification. Most of subcellular species distribution studies indeed rely on 

fluorescence microscopy, where the use of fluorescent markers permits to 

selectively visualize the structures of interest. However, photobleaching is a 

degradative problem that always affect this microscopy modality (Sect. 3.2.4). 

While its contribution can never be completely avoided, it can be minimized by 

proper experimental procedures and even corrected in post-processing, after the 

characterization of the signal degradation function [177, 258]. Photobleaching is a 

function of time, meaning that it affects not only the reliability of signal intensity 

quantification, but also the execution of follow up experiments, including signal 

tracking.  

Since photobleaching affects signal intensity but not signal structure, our 

method, being based on local density, is expected to be (almost) photobleaching 

insensitive. If we assume the absence of space artefacts in the image (e.g., vignetting 

effect, Sect. 3.2.4), all image pixels intensities are comparably lowered by 

photobleaching, meaning that the image histogram will then be shifted, but not 

reshaped. Therefore, even if we apply histogram-based methods for binarizing the 

signal, the threshold would just be shifted down, and the definition of the 

foreground not significantly changed. Although compelling, this development has 

been so far left upstaged (but not forgot) because of the lack of a proper dataset for 

its demonstration. 
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Chapter 5 

Co-Density Distribution Maps for 

advanced molecule colocalization and 

co-distribution analysis 

In the previous Chapter we discussed the DDM method, developed for the 

analysis of the spatial distribution of single signals in bidimensional images. Here, 

we expand the DDM method to the analysis of the spatial distribution of signal 

couples. The resulting cDDM method permits to advance current colocalization 

analysis by introducing co-density distribution maps (cDDMs), which uniquely 

provide information about molecules absolute and relative position and local 

abundance. Also in this case, the method has been made available to the scientific 

community as an open-source software tool, cDDMaker [205]. 

Following the previous Chapter structure, context and motivations for the 

cDDM method conceiving and design is firstly introduced (Sect. 5.1), and its 

theoretical bases discussed from both a biological and image processing point of 

view (Sect. 5.2). Then, after surveying the method state of the art (Sect. 5.3), the 

method properties, innovation, and convenience to real biomedical problems are 

discussed and exemplified (Sects. 5.4 – 5.6). Finally, the contribution of the content-

aware approach to the study is discussed, together with future perspectives (Sect. 

5.7).  

5.1 Study context 

As the DDM method, the cDDM method arises in the framework PHENOMICS 

Project carried out in collaboration with the Radiobiomics and Drug Discovery 
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Unit of the IRCCS-IRST (Meldola, FC). The Phenomics project firstly involved the 

characterization of RNA:DNA hybrids (Chapter 6) through confocal fluorescent 

microscopy (Subsect. 3.2.3) in A549 cells (Subsect. 2.1.1), under the hypothesis of 

their involvement in the cell response to stress. However, given the small size of 

the imaged structures and the necessity to reliably locate their position, 

particularly affected by tested conditions, we developed the DDM method, 

mapping RNA:DNA hybrids by Density Distribution Maps. A second study 

hypothesis concerned the possibility for RNA:DNA hybrids to act as stress-

induced second messengers, to be released by irradiated cells through CD63 

positive extracellular vesicles (CD63+ EVs) to promote a senescent 

microenvironment. Therefore, we aimed at characterizing also the subcellular 

distribution of EVs, in A549 cells marked against RNA:DNA hybrids and the 

protein CD63 and imaged by confocal fluorescent microscopy, in order to compare 

the two species distributions and infer their colocalization as an indication of 

hybrids loading into EVs. However, as RNA:DNA hybrids, EVs can be smaller 

than the best resolution achievable by an optical microscope [259]. Therefore, their 

subcellular position, eventual aggregation, and colocalization with RNA:DNA 

hybrids especially, can hardly be estimated with a biologically meaningful 

certainty using this imaging modality. For this reason, CD63 signal also needed to 

be mapped with the help of DDMs, that working locally can improve the certainty 

of signal mapping. However, to compare RNA:DNA hybrids and CD63+ EVs 

distributions we would then need a method to compare two DDMs to each other, 

to gain information about the two structures local co-density. We therefore 

developed the cDDM method that, starting from two signals defined over the same 

bidimensional domain, first maps their single distributions through the DDM 

method, and then pixel-wise compare the resulting DDMs to create a co-Density 

Distribution Map (cDDM), which quantifies the local density, co-density and 

colocalization of the two signals.  

 

 



 

95 
 

5.2 Theoretical background 

5.2.1 Image arithmetic and morphology 

Image colocalization is by definition a matter of signals co-occurrence. This 

brings that, regardless of how we decide to quantify it, the first needed step will 

be image segmentation, to define the boundaries of our objects of interest (see 

Subsect. 4.2.2). Then, the second step will be a comparison between objects 

positions. The easiest (and faster) way to do it is by mean of image arithmetic. It 

applies one of the standard arithmetic operations or a logical operator to two or 

more images. The operators are applied locally, in a pixel-by-pixel fashion, which 

means that the value of a pixel in the output image depends only on the values of 

the corresponding pixels in the input images, that have therefore to be of the same 

size. Although applying image arithmetic is the simplest form of image processing, 

there is a wide range of applications. In our case, we make use of pixel-wise image 

subtraction for detecting differences between two signal’s DDMs and producing a 

unique cDDM (Sect. 5.4). The pixel subtraction operator takes two images as the 

input and as the output produces a third image whose pixel values are simply 

those of the first image minus the corresponding pixel values from the second 

image, setting negative values to 0 in case of integer value images. The operation 

is performed independently for each dimension (e.g., channel) of the image.  

Derived from Boolean algebra, a logical operator is identified by a special 

symbol (or word) that connects two or more pieces of information, mostly to test 

whether a certain relationship between the two is true or false. The pixel values in 

a binary image, which are either 0 or 1, can be interpreted as truth values, 

corresponding to Boolean true (1) and false (0). Using this convention, we can 

perform logical operations on images simply by applying the truth-table 

combination rules to the pixel values from a pair of input images (or a single input 

image in the case of NOT), for example to isolate specific region of the imaged 

space. To our purpose, the logical ANDing of two signals’ binary masks, 

identifying their own region of occurrence, permits to define their region of co-

occurrence, fundamental to the quantification of the signals colocalization. As 

exemplified in Table 5.1, given two binary images I1 and I2 of same dimension, 
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their combination by image ANDing (∧) produce a third binary image I3 where the 

value of the pixel P3 of coordinates (x, y) is 1 only and if only both corresponding 

P1 and P2 value in I1 and I2 is 1. Conversely, image ORing (∨) gives to the pixel P3 

a value of 1 if at least one input pixel (P1 or P2) value is 1.  

Table 5.1. Binary NOT, ANDing and ORing. 

 

 

 

 

 

 

The use of logical operators can be also extended to more complex analyses. 

For example, when applied on local groups of pixels rather than on single ones, 

logical operators permit to investigate image objects morphology. Morphological 

operators often combine a binary image and a structuring element (SE) using a set 

Boolean operator, thus defining new region-based image processing operations, as 

erosion, dilation, opening and closing. A structuring element is nothing more than 

a little image (i.e., matrix), whose dimension and distribution of values 

respectively identifies the neighbours of the central pixels (in the original image) 

to be considered when performing the morphological operation. Usually, the SE is 

set based on size and morphology of the objects to be investigated (Figure 5.1).  

 
Figure 5.1. Structuring elements. In the simplest SE used with binary images for 

operations such as erosion (left), the elements only have two values, conveniently 

represented as 0 and 1. More complicated elements, such as those used with grey level 

morphological operations, may have other pixel values (right). The structuring element is 

sometimes called the kernel, however this term is often reserved for the similar objects used 

in convolutions (Subsect. 7.2.2). 

I1 I2 I3 I3 I3 

P1(x, y) P2(x, y) ~P1 P1∧P2(x, y) P1∨P2(x, y) 

0 0 1 0 0 

0 1 1 0 1 

1 0 0 0 1 

1 1 0 1 1 
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When a morphological operation is carried out, the SE is shifted over the image 

and at each pixel of the image its elements are compared with the set of the 

underlying pixels. Discussing the cDDM method capability to selectively retain 

information at the objects edge, we will compare it to binary erosion (⊖, Figure 

5.2), which oppositely remove all edge pixels (or even non-edge, for object regions 

with remarkable border indentation).  

 
Figure 5.2. Binary erosion. If for every pixel in the SE (Structuring Element) the 

corresponding pixel in the image underneath (Input) is a foreground pixel, then the 

reference pixel (Subsect. 4.2.1) is left as it is (Output, white pixels). If any of the 

corresponding pixels in the image are background, the reference pixel is set to background 

(Output, green pixels). Erosion therefore results in objects size shrinking, especially where 

border indentation is higher (lower part of object), and holes enlarging. 

 

5.2.2 Coefficients for colocalization quantification 

In fluorescence microscopy, colocalization refers to the observation of spatial 

overlap between two or more different fluorescent markers, each having a separate 

emission wavelength. Colocalization analysis consists of at least two distinct sets 

of methods: co-occurrence, the simple spatial overlap of two probes, and correlation, 

in which the two signals, beside co-occurring, co-distribute in proportion to one 

another. Co-occurrence measurements are often best utilized to determine what 

proportion of a molecule is present within a particular area, compartment or 

organelle. However, it does not give insight into any concentration relationship 

between two molecules. Correlation, on the other side, is often used to assess a 

functional or stoichiometric relationship between two overlapping species. 

Nonetheless, caution should be used in talking about stoichiometry, since it 

assumes a linearity between marker intensity and marked molecules number that 

we cannot ensure, especially when immunostaining samples with more than one 

antibody that, besides increasing the probability for aspecific staining by cross-
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reactivity, can give rise to signal amplification. Further, it is important to note that 

neither image correlation nor co-occurrence are direct measurements of molecular 

interaction. The resolving power of a microscope is conventionally limited to 

approximately half the wavelength of emitting light [128], while typical interaction 

distances between biomolecules are <10 nm. Even with the advent of super-

resolution imaging techniques, intramolecular interactions cannot be 

unambiguously observed. Only nearfield biophysical techniques, such as Förster 

resonant energy transfer (FRET) or fluorescence recovery after photobleaching 

(FRAP), can be used to directly measure molecular interactions.  

Nonetheless, biomolecules colocalization can still be inferred and semi-

quantified from optical microscopes by co-occurrence and correlation descriptors, 

but with due caution and proper experimental settings before, during and after 

image acquisition. Of course, optimized sample preparation and convenient image 

acquisition settings are both essential for accurate analysis. In addition, post-

acquisition image processing could be necessary, for example for correcting for 

inhomogeneous illumination or photobleaching (Subsect. 3.2.4), or for removing 

unwanted, non-biologically relevant signal. Finally, it is critical to isolate the pixels 

that contain signal from those containing predominantly noise, by image 

thresholding (Subsect. 4.2.2). Our co-density distribution maps fit exactly at this 

last step, providing a different meaning for image segmentation, introducing a 

density concept on which rely on, rather than relying on pixel intensity only.  

Hereafter, we introduce the Pearson’s, Spearmann’s and Mander’s coefficient 

for co-occurrence and correlation quantification, that will be compared in Sect. 5.5 

with cDDM for their capability to describe signal colocalization.   

Pearson’s Correlation Coefficient 

In statistics, the Pearson’s correlation coefficient (ρ, r, or PCC) is a measure of 

linear correlation between two sets of data. It is defined as the quotient of 

covariance (cov) and standard deviation (σ) between two variables x and y, over a 

population of n samples: 
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𝜌 =
𝑐𝑜𝑣(𝑥, 𝑦)

σ𝑥σ𝑦
=

∑ (𝑥𝑖 − �̅�) ∗ ∑ (𝑦𝑖 − �̅�)𝑛
𝑖

𝑛
𝑖

√∑ (𝑥𝑖 − �̅�)𝑛
𝑖

2
∗ ∑ (𝑦𝑖 − �̅�)𝑛

𝑖
2

 
(5.2) 

Therefore, ρ is essentially a normalized measurement of the covariance, and 

its result always has a value between −1 and +1. The correlation sign is determined 

by the regression slope: a positive slope (positive correlation) implies that the 

value of y increases with x, while a negative slope (anti-correlation) implies that 

the value of y decreases as x increases. The closer ρ value to the range extremes, 

the stronger the existing association between the variables, indicating a more linear 

relation. A value of 0 implies that there is no linear dependency between the 

variables (Figure 5.3).  

 

  

Figure 5.3. Pearson’s coefficient quantifies linear correlation only. Several sets of (x, y) 

points, with the correlation coefficient of x and y for each set. Note that the correlation 

reflects the strength and direction of a linear relationship (top row), but not the slope of 

that relationship (middle), nor many aspects of nonlinear relationships (bottom). The 

figure in the centre has a slope of 0 but in that case the correlation coefficient is undefined 

because the variance of y goes to zero. Figure and caption reproduced from [260].  

 

When the two variables x and y describe the pixel intensity of two markers 

imaged in the same domain (i.e., the signals’ co-occurrence region), Equation (5.1) 

can be used to quantify the extent of linear association between the signal 

intensities, as a measure of marked molecules colocalization [163, 261]. A key 
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mathematical property of the Pearson correlation coefficient is that it is invariant 

under separate changes in location and scale in the two variables. That is, we may 

transform x to a+bx and y to c+dy without changing the correlation coefficient, 

where a, b, c, and d are constants with b, d>0. This means, that a linear correlation 

can be detected between two signals even if they don’t take values in the same 

range, because of an offset or of a different magnitude. Many reviews further 

discuss the coefficient history [262], meaning [262, 263] and implications for image 

colocalization [162, 163, 264-266]. 

Spearman’s Correlation Coefficient 

When linearity between the two signal intensities cannot be assumed, 

correlation can be better assessed by the Spearman correlation coefficient (ρs, rs or 

SRCC), replacing in Equation 5.1 the variable values with their rank, i.e., moving 

the variables from the interval to the ordinal scale, as exemplified in Table 5.2. 

 
Table 5.2. Data ranking. 

 

ρs is a nonparametric measure of magnitude and direction of correlation, that 

assesses how well the relationship between two variables, whether linear or not, 

can be described using a monotonic function [267]. If there are no repeated values, 

a perfect Spearman correlation of +1 or −1 occurs when each of the variables is a 

perfect monotone function of the other, i.e., where the values of y are either entirely 

nonincreasing or nondecreasing with x (Figure 5.4).  

x y Rank of x Rank of y ρ(x, y) ρs(x, y) 

1 4 1 2 

0.7541 0.8208 

8 17 3 5 

13 21 4 7.5 

22 18 9 6 

30 21 10 7.5 

Data ranking is performed by pooling x and y values and sorting them in ascending order. Repeated 

values (i.e., tied ranks) are assigned the mean of the ranks that would have been assigned to these 

ranks if they had not been tied. ρ is computed on x and y values (columns 1 and 2), while ρs is 

computed on x and y ranks (columns 3 and 4).  
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Figure 5.4. Monotonic functions. Whether linear or not, monotonic functions are functions 

between ordered sets that preserves or reverses the given order. Monotonicity is a less 

restrictive condition that linearity, as it can occurs also when the order of relation between 

x and y is greater than 1. 

 

Use of ρs instead of ρ can therefore be advisable in many biological 

investigations, where association between variables can be frequently non-linear, 

as it occurs for example studying gene, RNA and protein expression [268, 269], cell 

vesiculation [270, 271] or spatial distribution of imaged biomolecules [272, 273]. 

Mander’s Coefficients 

In 1993 Manders elaborated new coefficients for measuring objects 

colocalization in dual-colour images. He firstly introduced the overlap coefficient 

to supply the lack of interpretability for Pearson’s coefficients negative values 

[163]: 

𝑀𝑂𝐶 =
∑ 𝑥𝑖 ∗ ∑ 𝑦𝑖

𝑛
𝑖

𝑛
𝑖

√∑ (𝑥𝑖)𝑛
𝑖

2
∗ ∑ (𝑦𝑖)𝑛

𝑖
2

 
(5.3) 

By simply removing the average subtraction from the intensity values in 

Equation 5.1, the coefficient is claimed to become “insensitive to differences in 

signal intensities between the components of an imaged caused by different 

labelling with fluorochromes, photobleaching, or different settings of the 

amplifiers”. The value of this coefficient ranges from 0 to 1, and accounts for the 

total amount of fluorophores that overlap with each other. To separate each 

fluorophore contribution and increase the coefficient interpretability, Manders 

further introduces the M1 and M2 coefficients, calculated after image thresholding: 
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𝑀1 =
∑ 𝑥𝑖,𝑐𝑜𝑙𝑜𝑐

𝑛
𝑖

∑ 𝑥𝑖
𝑛
𝑖

 {
𝑥𝑖,𝑐𝑜𝑙𝑜𝑐 = 𝑥𝑖, 𝑖𝑓 𝑦𝑖 > 0

𝑥𝑖,𝑐𝑜𝑙𝑜𝑐 = 0, 𝑖𝑓 𝑦𝑖 = 0
 (5.4) 

𝑀2 =
∑ 𝑦𝑖,𝑐𝑜𝑙𝑜𝑐

𝑛
𝑖

∑ 𝑦𝑖
𝑛
𝑖

 {
𝑦𝑖,𝑐𝑜𝑙𝑜𝑐 = 𝑦𝑖 , 𝑖𝑓 𝑥𝑖 > 0

𝑦𝑖,𝑐𝑜𝑙𝑜𝑐 = 0, 𝑖𝑓 𝑥𝑖 = 0
 (5.5) 

Here, xi and yi refer to the i-th above-threshold pixel value for the first and 

second signal, respectively (m1 region and m2 region in Figure 5.5), with n total 

pixels in each image being analysed. The co-occurrence region is then defined by 

the logical ANDing (Subsect. 5.2.1) of the m1 and m2 regions (Figure 5.5).  

 
Figure 5.5. Definition of the image domains for Manders’ coefficients computation. First, 

each imaged marker signal (m1 and m2) is thresholded to identify its own region of 

occurrence (m1 region and m2 region), that will define the domain of computation for the 

M1 and M2 coefficient. Then, the two signals are superimposed to identify their region of 

co-occurrence, within which will be defined a significative computation of the Mander’s 

overlap coefficient (MOC), as outside this region the numerator of Equation 5.2 goes to 0.  

 

M1 and M2 separate the fluorophores contribution to colocalization, by 

calculating for each fluorophore the fraction of the total intensity that co-occurs. 

Thus, M1 can be defined as the co-occurrence fraction of the first signal with the 

second and, likewise, M2 is the co-occurrence fraction of the second signal with the 

first. Manders’ coefficients provide an important distinction over the simpler area 

overlap calculation, because they give greater importance to brighter pixels and 

lower weight to values near to the set intensity threshold. Since then, Manders’ M1 

and M2 coefficients have been widely used to quantify signals co-occurrence in 
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intensity images. However, doubts on the suitability of the MOC coefficient to the 

quantification of unbiased co-occurrence have been casted [266] and its use along 

with M1 and M2 coefficients is currently under heavy discussion [264,274–277]. 

5.3 State of the art  

In a biological context, colocalization is defined as the presence of two or more 

different molecules residing at the same physical location in a specimen. 

Subcellular spatial colocalization analysis is fundamental for determining whether 

molecules are located in sites where they can interact with each other, especially 

when their reciprocal interaction and reaction cannot be assessed directly. The 

molecules location can be easily and efficiently addressed by confocal fluorescence 

microscopy [278]: while fluorescent probes allow the selective visualization of 

specifically marked molecules [279], the confocality of acquisition allows the 

investigation of their distribution in the whole cellular volume, while reducing the 

out-of-focus contributions to probes signal [264, 280] and avoiding image blurring 

accordingly, which can introduce false positives. A first common method to 

analyse colocalization of fluorescent signals is image superposition (i.e., merging 

or, more technically, fusion) for visual inspection [274, 281]. However, such a 

method is subject to perceptive errors and biases [282], cannot discriminate 

between random and potentially functional colocalization [163] and is poorly 

quantitative [219]. Accordingly, several methods for quantifying colocalization 

have been developed through years. A first discrimination occurs between pixel-

based and object-based methods [283, 284]. As for many other applications, the 

former is based solely on the intensity information in each pixel, while the latter is 

based on information from a set of semantically coherent pixels, called the object. 

Therefore, object-based methods are more appropriate for super-resolution 

microscopy, which is more suitable for accurately separating interacting molecules 

in adjacent pixels and discerning objects boundaries [265, 285], while the 

application of pixel-based methods is quite independent of microscopy resolution. 

Pixel-based methods conventionally regard colocalization as quantifiable by two 

components [283]: co-occurrence and correlation [263, 265]. This approach has 

given rise to a large number of different correlation coefficients [163, 261, 287-290], 
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first of all, Pearson’s [292] and Manders’ [274] coefficients, for their ease of 

implementation [292] and their capability to provide, respectively, a quantification 

of correlation and co-occurrence, when used in pair [266, 274, 282]. Many derived 

forms of these coefficients have been progressively introduced to overcome their 

main drawbacks, such as noise dependency [294], lack of linearity [286] and 

absence of spatial informativeness [263]. However, their adoption is still limited 

by their shared inadequacy to provide an intuitive and effective representation of 

colocalization that could really help researchers in the biological interpretation of 

results. In addition, none of them can provide information about the stoichiometry 

of colocalization [280], which is still approximated from the pixel intensities 

scatterplot as the slope of the fitting line assuming, a priori, a linear relation 

between the two signals intensities [162, 163, 295]. 

All methods exploiting pixel intensities neglect information regarding pixel 

interconnections that, if considered, could permit the enforcement of colocalization 

information. In fact, co-localized pixels, by definition, must appear with the same 

connecting pattern in both channels. Based on this assumption, we developed the 

concept of density distribution (DDM) [130] and co-density distribution (cDDM) 

map, a novel set of tools to automatedly and quantitatively improve colocalization 

analysis in biomedical images. Working on densities, cDDMs introduce an 

additional constraint that makes the overall colocalization assessment more 

reliable, enabling the refinement of correlation coefficients computation, when 

these coefficients are chosen as quantifiers of colocalization. In addition, being 

representative of markers’ local co-density, cDDMs offer a visual support 

preserving the spatial information and making the biological interpretation of 

results easier.  

After presenting the cDDM method and discussing its main implications, we 

hereafter exemplify cDDM effectiveness through their application to two more real 

image datasets acquired by fluorescence microscopy, proving how cDDM can 

advance the actual colocalization analysis framework, provide information about 

markers’ density and degree of colocalization and, thus, open to the formulation 

of new biological considerations. Finally, we updated our previously developed 

software program DDMaker [130] to coDDMaker, again endowed with a user-
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friendly GUI, to support researchers in building DDMs and cDDMs and analysing 

signals colocalization for their own experiments. 

5.4 Materials and methods 

Three datasets are used to exemplify cDDM benefits to biomedical 

colocalization and co-distribution studies: (1) the SYP-VGLUT1 dataset is used to 

present cDDM utilization and main functional implications; (2) the Lamp-1-Ce6 

dataset is used to present a case of limited colocalization between differently dense 

markers, where the analysis is complemented by novel information from the 

cDDM, including indication on the degree of colocalization; (3) the NF200-FM 

dataset is used to present a case of cDDM application at the tissue level, where 

local co-density numerical and spatial information also permits new biological 

considerations about sample’s heterogeneity. The SYP-VGLUT1 and NF200-FM 

datasets have been kindly provided by Prof. Laura Calzà and her team at the IRET 

Foundation. The Lamp-1-Ce6 dataset has been kindly provided by Dr. Enrico 

Lucarelli and the laboratory of Regenerative Therapies in Oncology (Unit of 

Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies) of the 

IRCCS Rizzoli Orthopaedic Institute. 

Image collection  

(1) The 12-bit range images from rat brain immunostained for Synaptophysin 

(SYP, λEX=488 nm, λEM=525 nm) and vesicular glutamate transporter 1 (VGLUT1, 

λEX=561 nm, λEM=595 nm), as described in [296], were sequentially acquired with a 

Nikon Ti-E A1R laser confocal fluorescence microscope (Nikon, Tokyo, Japan), 

equipped with a Plan Apo 60x/1.4 objective at a resolution of 512×512×9 pixels with 

a pixel size (XYZ) of 0.1×0.1×0.25 µm3 (Pinhole size=39.59 µm). (2) The 12-bit range 

images of human osteosarcoma MG-63 cells exposed to Keratin-based 

nanoparticles (PTX-Ce6@kerag NPs, λEX=649 nm, λEM=700 nm) were sequentially 

acquired with a confocal fluorescence laser scanning microscope Ti-E A1R (Nikon, 

Amsterdam, Netherlands), equipped with a 60×/NA 1.4 oil Plan-Fluo at a 

resolution of 1024×1024×19 pixels with a pixel size (XYZ) of 0.2×0.2×0.25 µm3 

(Pinhole size=24.27 µm). MG-63 cells were indirectly immunostained against the 
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Lysosomal-associated membrane protein 1 (Lamp-1, λEX=563 nm, λEM=595 nm) as 

described in [240]. (3) The 8-bit range images from rat spinal cord immunostained 

for neurofilaments (NFs, primary antibody: mouse anti-NF200, 1:800, Sigma 

Aldrich Saint Louis, MO; secondary antibody: Rhodamine Red™-X, 1:100, Jackson 

Immuno Research, Cambridgeshire, UK, λEX=570 nm, λEM=590 nm) and stained for 

myelin with FITC-Fluoromyelin™ (FM, Thermo Fisher, λEX=479 nm, λEM=598 nm) 

were acquired with a Nikon Eclipse E600 (Q Imaging, Surrey, BC, Canada), 

equipped with a Plan Apo 10x/0.4 objective and Q Imaging RETIGA-2000RV 

camera. For each sample, 10 images were acquired and stitched into a single 

mosaic (resolution: 3532×2384 pixels, pixel size: 0.74×0.74 µm2) with Photoshop 

(Adobe Suite, release 22.4.2). 

Image segmentation 

All the following procedures are implemented in MATLAB® (R2019a v.9.7.0, 

The MathWorks, Natick, MA, USA). SYP and VGLUT1 signals are segmented by 

Isodata thresholding. Lamp-1 and Ce6 signals and NF200 and FM signals are 

segmented by Otsu method.  

Local distribution and co-distribution analysis 

Starting from pairs of input grey level images, the cDDM is computed from 

single DDMs (Figure 5.6 (a)). 
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As schematized in Figure 5.6 (b), distribution analysis is performed by firstly 

computing the local density indices (LDIs) and DDM of each imaged marker, as 

described in [130], after setting the search (moving) WS, which can differ for the 

two markers. Then, for each pair of markers, the co-distribution analysis is 

performed by computing the co-density distribution map (cDDM), by subtracting 

the two markers’ DDMs pixel-wise. Consequently, the resulting cDDM values (i.e., 

local co-density indices, cLDIs) can be only computed inside the markers co-

occurrence region, resulting from ANDing the two marker masks, and can range 

from -(WS2-1) to +(WS2-1). Different LDI couples can result in the same cLDI 

(Figure 5.6 (b), red and green arrows). Negative cLDI values indicate pixels where 

the first marker signal is locally denser than the second one, the opposite holds for 

positive values. A cLDI equal to zero indicates pixels where the two markers are 

equally dense, hence defining the equi-density region, where the signals are in a 1:1 

ratio (Figure 5.7).  

 
Figure 5.7. The equi-density region is strictly contained in the co-occurrence region. 

Recalling the m1 and m2 markers distribution of Figure 5.5, the m1 and m2 regions become 

the domain for the computation of m1 and m2 DDM, respectively, and the identified co-

occurrence region becomes the domain of computation for the cDDM. Within the co-

occurrence region, the cDDM identifies the equi-density region, composed of pixels of 

cLDI=0, where m1 and m2 signals are in a 1:1 ratio. As discussed in the following sections, 

m1 and m2 colocalization is more robustly assessed when quantified over the equi-density 

region, rather than on the co-occurrence. Image reproduced from [205] under the CC-BY 

Creative Commons Attribution 4.0 International licence. 

 

However, non-zero cLDIs cannot be considered indicators of a specific ratio, 

but rather, of a specific difference in the markers’ abundance that is, by definition, 
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a more correct indication of the degree of colocalization than of pixel intensities 

correlation. Finally, mapping cLDIs back to the image domain in pseudo-colours 

also allows us to gain information about the markers spatial co-distribution. 

Pixel density as a measure of colocalization 

An established requirement for signals colocalization is their co-occurrence. 

Co-occurring pixels can either be isolated (i.e., they have no neighbouring pixels) 

or not. If we assume that isolated pixels as the result of spurious co-occurrences, 

colocalization is, hence, defined by the presence of at least two adjacent co-

occurring pixels. This means that colocalization presents itself in patterns, in their 

turn defined by connections between pixels. As a consequence, there is the 

necessity to also quantify colocalization with a measure of pixel connectivity (i.e., 

our local co-density), rather than using an intensity-based measure alone. 

Assuming that the objects of interest to be imaged are larger than single pixels, the 

3×3 search window (i.e., WS=3) is the smallest window to analyse pixel 

connectivities and, hence, local densities. Such an assumption is fundamental to 

determine whether the local co-density information carried by cDDMs also brings 

information about objects colocalization. Indeed, when imaging single-pixel 

objects, cLDI cannot be indicative of colocalization, being unable to discriminate 

between a real overlap and a close proximity, since non-overlapping single-pixel 

objects can fall within a single pixel. In such cases, more information about 

colocalization can be drawn from pixel-based correlation coefficients, under the 

assumption of proportionality between marker intensity and molecule number. 

Such an assumption is not exploited in our method, which relies on a more 

straightforward measure of the marked objects abundance based on local density. 

Hence, co-density is a measure of colocalization when the search window has 

a size that is, at most, the same as that of the imaged objects. In such cases, a cLDI 

value of zero indicates the presence of co-occurring and co-dense objects, thus 

identifying those pixels where two signals colocalize not only because they co-

occur (and perhaps correlate), but also because they do it by sharing the same 

pattern density. 
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Colocalization Analysis 

We implemented a colocalization analysis framework according to the most 

common methods in the biomedical literature. Specifically, we quantify the signals 

overlap by Manders’ coefficients MOC, M1 and M2, and signals correlation by 

Pearson’s (ρ) and Spearman’s (ρs) [297] coefficients. Of note, MOC’s 

informativeness as a co-occurrence estimator is actually an ongoing topic of 

discussion [264, 266, 275-277] and the MOC values reported hereafter should be 

carefully interpreted accordingly. In addition, we also evaluate: 

• The markers overlap region through our co-occurrence maps (cOMs) built 

on top of segmented signals, highlighting in four different pseudo-colours 

the pixels where: (1) both markers are absent (background), (2) only the first 

marker is present, (3) only the second marker is present and (4) both 

markers are present (co-occurrence region) 

• The local density and co-density of marked structures, by DDMs and 

cDDMs computation and analysis. 

Assessment of results 

We first verify the appropriateness of cLDI as a colocalization indicator by 

assessing the degree of an order relation between cLDI and correlation coefficient 

values. Hence, we apply a cLDI-based refinement of classical coefficients 

computation, which consists in restricting its domain from the co-occurrence 

region to the equi-density region. 

For each image, each marker signal is binarized in a mask representing its own 

occurring region. Then, the two masks are ANDed to identify the signals’ co-

occurrence region. Finally, the cDDM analyses the co-occurrence region, 

restricting it to the co-density region. Correlation (by ρ and ρs) and overlap (by 

MOC, M1 and M2) are calculated for both the signal intensities (i.e., between the 

pixel values in the two marker images) and the signals’ local density (i.e., between 

the pixel values in the two marker DDMs) to assess to what extent density and 

intensity are comparable descriptors of colocalization. The signal intensity 

correlation (and MOC) is calculated in three increasingly narrowed domains: the 
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entire image, the co-occurrence region, and the co-density region. As expected, the 

first narrowing, from the entire image to the co-occurrence region, always 

decreases the correlation coefficients value, excluding the random colocalization 

of the background. M1 and M2 coefficients are calculated for signal intensity with 

respect to both the co-occurrence and the co-density regions, according to 

Equations (5.3) and (5.4), where the “colocalizing” pixels at the numerators are the 

co-occurring and the co-dense pixels, respectively. The signal density correlation 

and co-occurrence are calculated only for the co-occurrence region. Indeed, density 

computation is theoretically impossible before the co-occurrence region definition, 

whilst inside the co-density region, the coefficients values would be biased by the 

density-based nature of the refinement itself (i.e., all coefficient values would be 

set to 1). 

In addition, we also compare our cDDM-based method to binary erosion 

(Subsect. 5.2.1) for the restriction of the co-occurrence region, using 4-connected 

and 8 (full) -connected SE. However, considering full connection for comparison is 

probably fairer, since cDDMs also explore full connectivity. The comparison 

regards the number of pixels and objects in the masks, as well as the correlation 

coefficient (ρ and ρs) values, before and after pixel removing by erosion and pixel 

selection by cDDMs. 

More benefits and the effectiveness of cDDMs are then discussed in three 

examples. 

5.5 Results and discussion 

Functional implication of cDDMs 

Colocalization can be defined as the functional and non-spurious co-presence 

of molecules, most commonly at the single-pixel level. While co-presence can be 

easily assessed, its functionality must be inferred by other measures, such as signal 

correlation. However, correlation between coexistent signals does not prove, but 

only suggests, the presence of colocalization. Such a suggestion can be then 

corroborated by local co-density analysis that, working locally, improves the 

information of co-location and, being in an order relation with correlation 
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coefficients, can serve to improve the specificity of colocalization analysis. The 

main functional implications of cDDM are schematized in Figure 5.8. 

 

 
Figure 5.8. Functional implications of coDDM. Starting from a couple of imaged markers 

(m1 and m2), colocalization is usually quantified as a combination of markers overlap (by 

co-occurrence mask and Manders’ MOC, M1 and M2 coefficients computation, ①) and 

intensity correlation (primarily by ρ and ρs correlation coefficients, ②). By cLDIs 

computation, co-occurring pixels can be further partitioned by their local co-density and 

resulting groups visualized in a pseudo-colour scattergram (③). When quantifying 

colocalization through markers intensity correlation, the analysis specificity can be 

increased by narrowing the computational domain from the co-occurrence to the equi-

density region (i.e., made of pixels with cLDI=0, ④). In addition, being based on density 

instead of intensity, cLDIs are more appropriate for estimating markers relative 

abundance(⑤). Finally, cDDM permits to preserve the spatiality of original images, 

additionally coding it with colours for the regional investigation of cLDI distribution (⑥). 

Colocalization quantification for the SYP-VGLUT1 dataset and details of presented 

scatterplot have been reported for completeness at the end of this subsection. Image 

reproduced from [205] under the CC-BY Creative Commons Attribution 4.0 International 

licence. 
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Colocalization is usually quantified by markers overlap and intensities in 

correlation coefficients within the co-occurrence region (Figure 5.8, ① and ②), 

defined by the intersection of the two marker (m1, m2) masks. cLDIs computation 

allows the region to be split into subregions of homogeneous co-density, each one 

consisting of the set of pixels at which LDIm1-LDIm2=c, where c is a specific cLDI 

value (Figure 5.8, ③). If we now compute the correlation coefficients (ρ and ρs) 

within each cLDI-defined sub-region (Figure 5.8, central scattergram), we can see 

that correlation between signals intensity increases as cLDI moves from the highest 

(in absolute terms, i.e., |cLDI|=8) to the equi-density condition (i.e., cLDI=0). This 

proportionality confirms that cLDIs can serve as indicators of colocalization, just 

as ρ and ρs, at least when they hold. Then, cDDM can be applied for a density-

based refinement of colocalization quantification by correlation coefficients, 

namely, by restricting their computation from the co-occurrence region to the equi-

density one (Figure 5.8, ④). This means that cDDM can be considered also as a 

denoising tool. On one side, arising from a single step of image subtraction, it 

cannot add any noise to the colocalization quantification procedure, but just 

“conserve” the possible noise introduced during image acquisition and pre-

processing. On the other side, noise is a bias that also affects the computation of 

correlation coefficients. Rather, decreasing the degrees of freedom of single pixels 

by requiring same densities co-occurrence, would probably make the cDDM 

computation more robust to noise. So, denoised by non co-dense signals, the new 

coefficients value will be valid only for the identified subpopulation of co-

occurring, co-dense pixels. This results particularly helpful in case of 

heterogeneous images, in which colocalization does not concern all the signal 

and/or sample.  

Apparently, the same restriction of the computational domain could be 

obtained by a simply binary erosion. However, even under the additional 

assumption of negligible colocalization at the edge of the co-occurrence region, a 

refinement by erosion would remove the outer pixels independently of their 

connection or the presence of colocalization. If this could produce a somewhat 

lightly divergent set of results when the co-occurrence region is dense (i.e., the edge 

pixels are a clear minority), the erosion would yield an increasingly invalid 
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outcome as the border indentation of the co-occurrence region increases, or in the 

presence of small objects. Table 5.3 reports all the results, from the initial whole co-

occurrence mask to the final masks, achieved by erosions and cDDM, used to 

assess colocalization. Accordingly, the numbers of edge pixels are complementary 

(e.g., for NF200-FM the percentage of edge pixels is 34.65). 

 
Table 5.3. Comparison between binary erosion and co-density analysis in refining the correlation 

computation domain. 

MASKS  NF200-FM SYP-VGLUT1 Lamp-1-Ce6 

Co-occurrence 

(before refinement) 

Pixel nr (%1) 1465036  (100) 9343  (100) 737  (100) 

Object nr (%) 19068  (100) 968  (100) 199  (100) 

ρ (ρs) 0.5535  (0.3760) 0.2406  (0.1286) 0.1666  (0.1656) 

Binary erosion  

refinement (4-conn) 2 

Pixel nr (%) 957332  (65.35) 3011  (32.23) 88  (11.94) 

Object nr (%) 

ρ (ρs)  

11244 (58.97) 244 (25.21) 24 (12.06) 

0.6170 (0.4456) 0.3353 (0.2112) 0.1479 (0.1459) 

Binary erosion  

refinement (8-conn)2 

Pixel nr (%) 810579  (55.33) 1865  (19.96) 31  (4.21) 

Object nr (%) 10162  (53.29) 158  (16.32) 9 (4.52) 

ρ (ρs) 0.6416  (0.4736) 0.3707  (0.2536) 0.3454  (0.3288) 

cDDM  

refinement3 

Pixel nr (%) 851042  (58.09) 2394  (25.62) 99  (13.43) 

Object nr (%) 16300  (85.48) 378  (39.05) 46  (23.12) 

ρ (ρs) 0.6508  (0.5031) 0.4824  (0.4635) 0.5156  (0.4353) 
1 Percentages refer to the co-occurrence region (pixel or object number) before its refinement. 

2 3×3 SE. 3 WS=3. 

 

The co-occurrence region border indentation is quantifiable by the number of 

edge (border) pixels. Therefore, eroding with 4-connectivity makes the effects of 

indentation decrease from the NF200-FM dataset (35% of co-occurring pixels are 

on the region border) to SYP-VGLUT1 (68%) and Lamp-1-Ce6 (88%), which shows 

the smallest objects. As expected, this trend still holds when eroding by 

considering full connectivity of pixels, as cDDM does. We can also see that the 

masks achieved with 4-conn erosion are the widest ones (i.e., having the highest 

number of pixels), while showing the worst correlations (hence, the worst 

colocalization performances) over all datasets. This definitely improves with 8-

conn, although the mask achieved yields correlation values that still are poor for 

SYP-VGLUT1 and Lamp-1-Ce6. On the contrary, the masks achieved by cDDMs 

yield the best correlation coefficients, the only mask to bring fair correlations in the 
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two aforementioned datasets. Of course, the best result is achieved with Lamp-1-

Ce6 because, having small objects, the effect of keeping (co-dense) edge pixels is 

emphasized. In practice, cDDMs preserve those edge pixels, removed by the 

erosion without distinction, deserving to be semantically retained instead, since 

contributing to the measured correlation, independently of their position within 

the co-occurrence region. Therefore, cDDMs end in preserving a greater number 

of meaningful pixels and objects than erosion, thus representing a tool for the more 

precise mapping of stronger colocalization regions. 

Let’s now deepen the analysis of the results using cDDM. We have seen that, 

exploiting pixels density, cDDM can also provide information about the degree of 

colocalization (Figure 5.8, ⑤). The markers’ stoichiometric ratio of interaction is 

sometimes inferred from the slope of the fitting line in the intensity scattergram 

[292]. However, such an approach riskily depends on the assumption of linearity 

between the markers’ intensities, that is not the rule when working with biological 

samples. Instead, cLDI reflects markers’ density and is then, by definition, a more 

appropriate indicator of the markers’ relative abundance, even when not relying 

on linearity assumptions. 

Although in the previous case we used the co-density information at a global 

level, to compare it to current colocalization methods we can exploit the locality 

nature of cDDM to open for new investigation paths at the regional level (Figure 

5.8, ⑥). Guided, for instance, by anatomical or functional motivations, co-densities 

distributions can be investigated in specific image sub-regions or, in the opposite 

way around, specific co-densities can be addressed one at a time and their 

distribution singularly investigated at each local level. As attested, especially by 

the last two datasets, cDDM can more generally open for the formulation of new 

biological considerations, as they include spatial quantitative information 

(neglected by most coefficients), which are also locally computed, to provide a 

more detailed and comprehensive overview of the investigated system. 

Finally, cDDMs borrow all the advantages of DDM: first, the capability to pro-

vide a more accurate estimation of molecules position and an increased robustness 

to resolution variations based on DDM local density analysis [130]; second, cDDM 

is easy and fast to build and apply to any study, independently of the specific 

resolution involved.  
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Table 5.4. Comparison between SYP and VGLUT1 intensity and local density colocalization 

analysis, before and after refinement for local co-density. 

 SYP-VGLUT1 

 
co-occurrence region 

(n1=9343) 

co-density region 

(n1=2394) 

 intensity density intensity 

ρ 0.2406 0.0773 0.4824 

ρs 0.1286 0.0953 0.4635 

MOC 0.2420 0.2325 0.9317 

M1 0.1386 0.1354 0.0411 

M2 0.4574 0.4530 0.1479 
1 n: sample size, i.e., number of considered pixels. 

 

 

 
Figure 5.9. Scatterplot of m1 and m2 markers intensity for the SYP-VGLUT1 dataset of 

Figure 5.8, within (red) and outside (blue) the equi-density region identified by the 

cDDM. Image reproduced from [205] under the CC-BY Creative Commons Attribution 4.0 

International licence. 
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Figure 5.10. Scatterplot of m1 and m2 markers intensity for the SYP-VGLUT1 dataset of 

Figure 5.8, partitioned by cLDI sign. Image reproduced from [205] under the CC-BY 

Creative Commons Attribution 4.0 International licence. 
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cDDMs Disclose Information about the Degree of Colocalization 

The second analysed dataset refers to a study of in vitro characterization of a 

drug delivery system [244], in which the authors verify the compartmentalization 

of the developed nanoparticles (PTX-Ce6@kerag NPs) into late endosomes (marked 

by Lamp-1 staining) (Figure 5.12 (a), top). 

 
Figure 5.12. cDDM discloses information about the degree of colocalization. (a) Top: 

Exemplificative immunofluorescence (IF) images of MG-63 cells exposed to PTX-Ce6@kerag 

NPs, marked against late endosomes (Lamp-1), with Ce6 (NPs), or both (fusion). Middle: 

Lamp-1 and Ce6 signals’ binary masks (BW), whose combination produce the co-

occurrence map (cOM). Bottom: Lamp-1 and Ce6 DDMs and cDDM. (b) Bar graph of co-

occurrence region partitioning by co-density, showing a prevalence of negative cLDI 

values that indicate NPs as generally denser than late endosomes. Image reproduced from 

[205] under the CC-BY Creative Commons Attribution 4.0 International licence. 
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We find that 19% of Ce6 signal overlaps with 17% of the Lamp-1 signal, with 

compatible MOC=0.16 and ρ=0.17. Such low MOC and ρ values are explainable 

by the small and sparse nature of the marked structures, which can also explain 

the low correlation values between marker local densities (Table 5.5, first and 

second columns). 

  
Table 5.5. Comparison between Lamp-1 and PTX-Ce6@kerag intensity and local density 

colocalization analysis, before and after refinement for local co-density. 

 Lamp-1-Ce6 

 
co-occurrence region 

(n1=737) 

co-density region 

(n1=99) 

 Intensity Density Intensity 

ρ 0.1666 0.1278 0.5156 

ρs 0.1656 0.1270 0.4353 

MOC 0.1564 0.1669 0.9059 

M1 0.1852 0.1662 0.0246 

M2 0.1712 0.1958 0.0275 
1 n: sample size, i.e., number of considered pixels. 

 

However, the fact that the co-density-based refinement increases the 

correlation coefficients values while decreasing the area of investigation (and 

consequently M1 and M2 value) hints at the capability of our method to selectively 

retain the colocalization between signals, more so than with false positives.   

The cOM (Figure 5.12 (a)) indicates the presence of signals overlap spots 

(Figure 5.12 (a), red spots in cOM magnification) enclosed in single-marker spots 

(Figure 5.12 (a), blue and yellow regions in cOM magnification), suggestive of NPs 

internalization into late endosomes. The cDDM (Figure 5.12 (a)) further separates 

co-occurring pixels by cLDI, reporting co-densities dispersed across the cLDI 

range, with 11 out of 16 cLDIs capturing at least 5% of co-occurring pixels and only 

13% of co-occurring pixels being also equally dense (i.e., cLDI=0, Figure 5.12 (b)). 

The similarity of all coefficient values between the first and second columns of 

Table 5.5 indicates the local density as being an indicator of colocalization, at least 

as valid as pixel intensity. Restricting correlation analysis to pixels with cLDI=0 

strongly increases ρ and ρs values (Table 5.5, third column), suggesting the 

existence of a real, although spatially limited, colocalization. Its detection by 
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correlation coefficients is initially weakened by the scarcity of marked structures 

within the co-occurrence region, but subsequently strengthened by cDDM-driven 

increase in analysis specificity. Moreover, co-density analysis reveals that Ce6 

signal tends to be locally denser than Lamp-1, as attested by the prevalence of 

negative values in the cDDM (Figure 5.12 (b)). This last finding, in agreement with 

expectedly denser NPs due to their nanoformulation [244], also suggests that NPs’ 

internalization into late endosomes could occur at a ratio higher than 1:1, with 

many NPs entering the same endosomes at once. On one hand, this is positive for 

the pharmacokinetic-improving function of the developed system, but on the other 

hand, it opens to the possibility that a different nanoformulation, producing less 

dense NPs, could result in better colocalization values and NPs internalization. 

In summary, the local co-density analysis here improves colocalization 

quantification under different aspects. First, it advances the intensity correlation 

analysis, identifying the sub-regions where a stronger colocalization is likely to 

occur. Second, it provides indication about the degree of colocalization (here, the 

degree of internalization) that, in this case, is suggested to also occur at ratios 

different from 1:1. Finally, the cDDM also allows the formulation of new biological 

hypotheses, whose verification could lead to improvements in the developed drug 

delivery system. 

cDDMs Open to The Formulation of New Biological Considerations 

The third dataset analysed is part of a study aimed at investigating the 

myelination pattern in whole spinal cord coronal section, hence requiring lower 

resolution and greater image size with respect to previously discussed datasets. 

Specifically, the NF200-FM dataset concerns the assessment of co-distribution of 

axons, visualized by NF-200 immunostaining (red), and the surrounding myelin 

sheaths, visualized by Fluoromyelin (green) in rat spinal cord (Figure 5.13 (a), top). 
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Figure 5.13. cDDM opens to the formulation of new biological considerations. (a) Top: 

Exemplificative immunofluorescence (IF) images of rat spinal cord, marked against the 

axonal (NF200), the myelin (FM) components of the cord, or both (fusion). Middle: NF200 

and FM signal binary masks (BW), whose combination produce the co-occurrence map 

(cOM). Bottom: NF200 and FM DDMs and cDDM. (b) Scattergram of NF200 and FM 

signals intensity colour-coded by cLDI, showing a clear prevalence of equi-density pixels 

(grey, cLDI=0). (c) The line plot reports the cLDI values underlying the horizontal red 

arrow (x) inside the “motor pathway” magnification. The cLDI medio-lateral distribution 

is shown in function of the pixel distance (d, yellow line) from the dorsal median sulcus 

(DMS, white line), highlighting a progressive myelin thinning from spinal cord centre to 

periphery. Image reproduced from [205] under the CC-BY Creative Commons Attribution 

4.0 International licence. 

 

Both ascending and descending sensory and motor pathways run in the spinal 

cord and the quantitative evaluation of respective distribution in low-power 

micrographs would permit a rapid quantitative evaluation in physiological and 

pathological conditions, for example, after spinal cord injury. The cOM (Figure 

5.13 (a)) well presents a dorso-ventral pattern, reasonably reflecting the 

distribution of sensory versus motor pathways. In fact, ascending sensory paths, 

localized in the dorsal funiculus and the external part of the lateral funiculus, 
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reveal a different signals’ co-density compared to the other areas of the white 

matter, occupied by descending motor paths (Figure 5.13 (a), cOM, the two 

magnifications). Motor and sensory pathways are quite different under many 

aspects, such as axonal density, myelin sheaths thickness and percentage of 

unmyelinated fibres [297]. In particular, axonal density and myelin sheath 

thickness are lowered in sensory paths. The cDDM (Figure 5.13 (a)) further 

investigates the co-occurrence region, in which the intensity correlation is quite 

fair, but the overlap is suspiciously high (ρ=0.55, MOC=0.57, Table 5.6, first 

column). 

 
Table 5.6. Comparison between NF200 and FM intensity and local density colocalization analysis, 

before and after refinement for local co-density. 

 NF200-FM 

 
Co-Occurrence Region 

(n1=1465036) 

Co-Density Region 

(n1=851042) 

 Intensity Density Intensity 

ρ 0.5535 0.2064 0.6508 

ρs 0.3760 0.2520 0.5031 

MOC 0.5741 0.7221 0.9782 

M1 0.4909 0.5060 0.2983 

M2 0.6772 0.6601 0.4212 
1 n: sample size, i.e., number of considered co-occurring pixels. 

 

Such an MOC value could be read as an artifact of the offsets that seem to 

characterize the FM signal (shifted up, scatterplot Figure 5.13 (b)), that have been 

proved to positively affect the MOC, especially when a scarce correlation between 

the intensities is found [266]. In this sense, a less biased measure of co-occurrence 

can be derived from the cOM and the M1 and M2 coefficients. Most probably, these 

results (Table 5.6, first and second columns) can be interpreted as an artifact of 

image resolution, which is not able to fully capture the concentric nature of the 

myelin signal, surrounding the axon, without overlapping. In any case, these 

results confirm the outcome of cDDM already seen in Lamp1-Ce6, where a 

reduction of the signals co-occurrence is coupled with a marked increase in 

correlation values (ρ and especially ρs value, Table 5.6, third column). In fact, the 

resolution problem seems to be alleviated by our approach, indeed reducing the 

signals overlap, quantified by M1 and M2 of about 40%. The increase in correlation 
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coefficients also indicates that markers intensities should not be assumed a priori 

to linearly correlate, according to the functional heterogeneity of axons and myelin 

distribution in the tissue. Even though most of the co-occurring pixels are also 

equally dense (58%, cLDI=0, Figure 5.13 (b)), a remarkable prevalence of positive 

values in cDDM indicates axons tendency to be denser than myelin, agreeing with 

the reduced myelin sheaths thickness observable for some pathways. Indeed, a 

lower myelin thickness reasonably reflects a lower local density of FM, but not of 

NF200 signal, therefore bringing higher cLDI values and decorrelating the two 

markers density (Table 5.6, second column). Moreover, by locally analysing 

cDDM, we can see that the local density pattern depends on the nature of the 

anatomical pathway (Figure 5.13 (a), cDDM left magnification), specifically being 

enriched in low values (hence, in myelin) in the proximity of the dorsal median 

sulcus (DMS) and in high values (hence, in less myelinated axons) away from it 

(Figure 5.13 (c), line plot of the pixel values underlying the red line in cDDM motor 

pathway magnification). In conclusion, besides exemplifying its applicability at 

the tissue level, here the cDDM also provides new biological information, 

revealing and mapping the spatial heterogeneity of the myelination pattern, which 

could not be derived from the original image. This makes the local co-density an 

effective indicator of the local degree of myelination and the cDDM a possible 

discriminator of neuronal pathways. 

GUI for cDDMs Creation 

To allow any user to work with coDDM we developed coDDMaker, a software 

endowed with a user-friendly GUI, created with MATLAB® App Designer (Figure 

5.14). The software is conceived as an upgrade of the DDMaker software [130] and 

permits the performance of a density-including colocalization analysis of two 

markers co-distribution.  
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Figure 5.14. Main GUI and logo of coDDMaker. The main window is divided into five 

sections: Input: to select the input images folders; Segmentation: to select the thresholding 

method, its locality of application and to eventually perform background correction before 

threshold calculation and image binarization; DDM: to select the search window size for 

local density analysis and to allow user creating and binarizing DDMs after setting the 

colorbar for pseudo-colour DDMs visualization and the percentile for DDMs thresholding; 

cDDM: to allow user creating and binarizing cDDMs after setting, the colorbar for pseudo-

colour cDDMs visualization and the tolerance for equi-density region segmentation; 

Output: to visualize and save intermediates and outputs. From left to right: markers binary 

masks, cOM, pseudo-colour DDMs, pseudo-colour cDDM. Image reproduced from [205] 

under the CC-BY Creative Commons Attribution 4.0 International licence. 

 

coDDMaker was conceived for the guided analysis of the distributions and co-

distribution of marker pairs. Starting from RGB, grey level or directly binary 

images and based on customed search WS, the software builds the markers DDMs, 

cDDM and cOM and tabulates their numerical content. With coDDMaker, we also 

introduce a module for the background correction of non-binary input images 

[298] and a module for their local segmentation to also be used as tools for image 

denoising and correction of distortions.  
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First, the user is required to select the two folders (i.e., one for each marker to 

be analysed) where the input images to be processed are located. Images can either 

be RGB colour, grey level, or binary, in the MATLAB-supported formats [299]. The 

user can binarize RGB and grey level images by choosing among ISODATA or 

Otsu thresholding method. With coDDMaker, the user can now also decide to 

apply the thresholding algorithm locally, by specifying the locality dimension. The 

Triangle method is also supplied for global image thresholding, where it can serve 

outliers removal in heavy-tailed histograms. In addition, images can now be pre-

processed for the correction of uneven illumination that may result from vignetting 

distortion, inaccurate image acquisition or noise [298]. Binary masks, resulting 

from thresholding or already provided by the user, serve as the input for building 

the DDMs, cDDM and cOM. Local density analysis is performed using a default 

WS=3, chosen assuming that the target structures of interest in the images are of 

few pixels, thus enabling the detection of small aggregation events and single 

particles as well. However, users can customize the search WS, besides the colorbar 

for maps visualization. The resulting DDMs can be binarized by percentile 

thresholding, while the equi-density region, identified in the cDDM by cLDI=0, 

can be binarized by setting a co-density tolerance (e.g., a tolerance of 2 identifies as 

co-dense pixels with cLDI ranging from 0-2 to 0+2). To help the user in finding the 

best parameter setting for its analysis, coDDMaker also displays the last binary 

mask for each marker and the derived DDMs, cDDM and cOM. When satisfied 

with the setting, the user can save all the intermediate and final outputs of the 

analysis, which include all the generated images and maps and the numerical data 

associated to DDMs and cDDMs. The images are saved in uncompressed “.tiff” 

format, while other analyses outputs are saved as portable csv and excel files. A 

detailed explanation of coDDMaker utilization can be found in the software 

documentation [299]. 

The software completes the colocalization analysis of a couple of images under 

standard setting (i.e., global image segmentation and WS=3) in less than 30 sec on 

entry-level computers, although the total elapsed time strongly depend on 

different factors (e.g., the size of the objects to be segmented), as exemplified in 

Table 5.7.  
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Table 5.7. coDDMaker time performance evaluation. 

Image  

size 

Background 

correction 

WS (image 

segmentation)1 

WS (density 

analysis) 

Elapsed  

Time2 

1024×1024 No  Global 3 20’’ 

512×512 No Global 3 15’’ 

512×512 Yes Global 3 20’’ 

512×512 Yes 3 3 50’’ 

512×512 Yes 15 3 1’20’’ 

512×512 Yes 15 9 1’25’’ 

1 Otsu thresholding method. 2 Local density and co-density analysis in a couple images on a PC 

endowed with Intel i3-4005U, 1.70 GHz processor, and 8 GB RAM. 

 

As before, the software does not require any training or expertise before use. 

As much as DDMaker, or even more so, coDDMaker could serve as a checkpoint 

for long-lasting experiments, follow-up and large-scale studies, that can be 

monitored on-line and adjusted on the basis of the software feedbacks, therefore, 

optimizing time and costs. coDDMaker is available as a public open-source 

software written in MATLAB® and as a 64-bit stand-alone application [299]. 

5.6 Conclusions  

Image colocalization is commonly assessed by a combination of co-occurrence 

and correlation. However, all current methods exploiting pixel intensities neglect 

information regarding pixel interconnections that, if considered, could permit the 

enforcement of colocalization information. In this perspective, we introduce the 

co-density distribution map as a novel tool for improving the actual colocalization 

analysis framework in biomedical images. Given two imaged markers and built 

their DDMs, the cDDM uniquely describes the distribution of the signal local 

densities, in terms of relative position and abundance of marked structures. When 

imaging objects above the pixel resolution, the cDDM also becomes a powerful 

indicator of colocalization, which can identify the image regions at which 

colocalization is stronger, adding reliability to the correlation coefficients normally 

employed. Conversely, regions where colocalization is weaker are disregarded by 

the cDDM method, method, that can therefore be used also as a density-based 
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denoising tool. The cDDM also provides information about the degree of 

colocalization, which can complement and validate quantitation by other methods. 

Most importantly, cDDM information is, altogether, qualitative, quantitative and 

local, making it a powerful tool for the fast and comprehensive inspection of 

imaged systems. Consequently, it can open the door to new biological 

considerations, both at the global and the regional level. Working locally, DDM 

(and cDDM consequently) can increase the confidence of colocalization when this 

is not achievable by increasing the acquisition resolution, thus enhancing the 

information regarding distributions. Notably, our maps can be applied to any 

resolution study. In addition, being easy to build, the cDDM can benefit routine, 

large-scale and follow-up experiments by providing a tool for near real-time 

monitoring to be used for the adjustment and optimization of experiments. In 

practice, the cDDM we propose represents a fundamental tool to be integrated into 

each colocalization analysis framework, whether it is based on intensity correlation 

or not, to be used synergically with correlation analysis by masking the original 

images before computing the different coefficients. Even though it provides only 

an indication and not a direct measure of the degree of colocalization and, at 

present, it only works for the colocalization of two signals, the cDDM can be used 

to answer a variety of biological questions involving protein–protein interactions 

or co-compartmentalization.  

5.7 Content-aware contribution and future developments 

Just as stated for DDM (Sect. 4.7), the interdisciplinary and content-aware 

nature of my approach permitted me to better estimate cDDM necessity in the 

framework of both our specific experimental goals and general scientific scenario, 

therefore sustaining the method and software conceiving and development. 

Additionally, thanks to my biological formation I could choose the best datasets in 

my hand to demonstrate the validity of the cDDM method, as I could indeed 

hypothesise a priori the expected colocalization features basing on the images 

biological content. Finally, my biological formation drove the elaboration of the 

concept of degree of colocalization and, remarkably, its separation from the 
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concept of molecular stoichiometry of interaction, with which I found it is often 

riskily and erroneously confused.  

As far as the future development of cDDM method is concerned, the main issue 

to address, that has already emerged in this first method presentation, is the 

overlooking by the method of positional information in the co-density pattern. 

Indeed, colocalizing image signals by definition must appear with the same 

connecting pattern of pixels. Therefore, colocalization can be surely improved by 

cDDM introduction, as it moves from being estimated on the sole pixel intensity 

to also their connectivity. However, at the current state, the method considers only 

the number of pixels connection, but not their position. Therefore, the cDDM method 

could be improved by introducing a pattern matching constrain on the definition of 

the image sub-region within which quantify colocalization (Figure 5.15). 

  
Figure 5.15. Pattern matching approach for colocalization quantification. The cDDM 

method can be improved by including in the equi-density region all pixels with cLDI=0, 

but only if they are also defined by a same neighbourhood configuration (i.e., matching 

pattern). 

 

The introduction of a pattern matching constrain also opens for the 

quantification of the probability of colocalization. Following a combinatory 

statistical approach, the probability to observe colocalization of two imaged 

markers m1 and m2 at the pixel p(x, y) can be defined as the joint probability of 

marker signals co-occurrence, co-density and pattern matching:  
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Pcolocalization  = Pco-occurrence · Pco-density · Ppattern matching     =  
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Where: 

• BW range width is the number of possible pixel value in the binary masks 

(that is 0 or 1, i.e., 2) identifying m1 and m2 occurrence region 

• cDDM range width (i.e., n) is the number of possible cLDI values 

• k is the LDI value of the co-dense pixel p(x,y) (i.e., cLDIp=0). 

In turn, the (key) value of n can be calculated as: 

n = 2 · Δx · Δy – 1 - BGcDDMp (5.6) 

where Δx and Δy are the dimensions of the search window size and BGcDDMp is 

the number of cDDM background pixels included by the search window in the 

neighborhood of pixel p. Therefore, BGcDDMp acts as a correcting factor for the 

calculation of the probability of colocalization at the co-occurrence region edges, 

lowering the number of possible co-densities accordingly to local border 

indentation.  

Though preliminary and very naïve in its formulation, the inclusion of the 

pattern matching constrain and the (local) estimation of the probability of 

colocalization is believed to be the ultimate contribution to the creation of a stand-

alone comprehensive tool capable of providing a new indicator of colocalization, 

merging the information from pixel intensity and density. 

Finally, among our future perspective there is also the biological validation of 

the method through nearfield biophysical techniques such as FRET, to confirm that 

the colocalization quantified by our maps does reflect a real interaction between 

molecules. 
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Chapter 6 

Content-aware approach in oncology: 

RNA:DNA hybrids role in tumour 

stress response by automated 

quantitative imaging  

After theoretically introducing preclinical models (Chapter 2) and imaging 

modalities (Chapter 3), and after presenting our main cross-topic methodological 

results (DDMs, Chapter 4, and cDDMs, Chapter 5), the next three Chapters present 

the interdisciplinary collaborative projects that have characterized this PhD, where 

we developed on-purpose imaging solutions to different biomedical problems. 

Importantly, it will be discussed how the automated quantitative imaging 

performed with a content-aware approach has led to significant methodological and 

biological improvements of our analyses.  

In this Chapter, we present the application of our content-aware approach to 

the phenomization of tumour cell response to stress by confocal fluorescent 

imaging. The study was composed of two main investigation blocks. The first 

block identifies the role of onco-suppressor p53 and of the macromolecule group 

of RNA:DNA hybris in tumour response to cell irradiation (IR). The second block 

expanded the investigation on RNA:DNA hybrids role in cell response to a p53-

defective context and to a new source of stress, different from IR.  

In Sect. 6.1, the collaboration framework is first introduced. Then, in Sect. 6.2, 

the biological and image processing theoretical background for our image analysis 

is discussed. Subsect. 6.2.1 summarises the controversial state of the art for 

RNA:DNA hybrids, while Subsect. 6.2.2 briefly discusses geodesic reconstruction 
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by dilation, a method that enabled the image segmentation of RNA:DNA hybrids 

structures in spite of their unfixed size. Sect. 6.3 introduces the state of the art, 

surveying the abscopal effect, tumour cell response to stress and current methods 

for RNA:DNA hybrids imaging. Besides presenting the developed methods for 

image analysis, the successive Material and Methods (Sect. 6.4) covers also the 

previous steps of sample preparation and image acquisition. However, for a 

comprehensive understanding of our work, Results and Discussion (Sect. 6.5) also 

includes the main molecular results of the study, besides all image analysis results. 

Finally, after drawing the main conclusions (Sect. 6.6), the contribution of the 

content-aware approach to the study is recalled, together with future perspectives 

(Sect. 6.7).  

6.1    Study context 

At the beginning of the first year, we started the two-year PHENOMICS Project 

in collaboration with the Radiobiomics and Drug Discovery Unit of the IRCCS-

IRST (Meldola, FC). The main goal of PHENOMICS (cancer stress PHENomics: 

autOmatic Microscopic image analysis for in vitro phenotypization of 

heterogeneIty of stressed tumor CellS) was the functional in vitro phenotypization 

of tumour cells stress response through automatic microscopic quantitative 

imaging. The Project stemmed from some important experimental in vivo 

observations related to the onset of radiation-induced abscopal effect, which is 

observed when localized radiation induces a systemic antitumor response, leading 

to the shrinking or disappearance of tumours in distant body districts not directly 

targeted by therapy. Such data firstly casted doubts on immune system sole 

involvement in abscopal effect mediation, opening for possible additional or 

alternative mechanisms, to be investigated at the cellular level.  

The Project activities can be grouped in two main research blocks. First, we 

focused on the role of the onco-suppressor p53 in tumour response to irradiation, 

in the framework of abscopal effect. This first part of the study identified a class of 

molecules, generally recalled as RNA:DNA hybrids, as partly responsible for 

conveying a senescence message out of IR cells, capable of reaching the  

unirradiated (UnIR) tumour masses. Once defined the pivotal role of wtp53 and 
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RNA:DNA hybrids in tumour cell response to irradiation stress, the second 

research block expanded the investigation on RNA:DNA hybrids role to a p53-

defective context and to a new source of stress, that is oxidative stress. For both 

research blocks, my activity consisted of characterizing the subcellular distribution 

of marked molecules of interest in confocal microscopy images, to gain insight into 

their function in stress response. The characterization concerned – mainly but not 

only – RNA:DNA hybrids, and required the development of a robust pipeline for 

structure segmentation, able to efficiently define the objects of interest 

independently of cell line, source of stress, and nature of marked molecules. 

6.2    Theoretical background 

6.2.1 RNA:DNA hybrids 

During transcription, the nascent RNA very transiently anneals to the single-

stranded (ss) DNA template within the active site of the RNA polymerase, giving 

rise to a short transient double-stranded (ds) RNA:DNA hybrid, which is resolved 

by release of the nascent RNA through a dedicated channel [300]. More stable 

RNA:DNA hybrids can form by very same mechanism behind the polymerase, 

and are feasible to level up to three-stranded R-loop structures by coiling with the 

displaced ss DNA. However, it is still hard to separate nuclear R-loops from 

RNA:DNA hybrids, to the point that the terms are mostly used interchangeably, 

to refer to a unique class of molecules. Despite their accidental origin, R-loops (and 

so RNA:DNA hybrids) are widespread in the genome and enriched at active genes, 

where they have been surprisingly found to play physiological roles. R-loops are 

indeed crucial for many cellular processes such as transcription activation and 

termination [301, 302], chromatin organization and chromosome segregation [301, 

303-305], immunoglobulin class switching recombination of B cells in vertebrates 

[306], CRISPR-Cas9 gene editing [307] and telomere homeostasis [308]. However, 

R-loops persistence or mislocation inside cell nucleus has been reported to 

interfere with DNA replication, repair and transcription, therefore leading to 

double-stranded DNA breaks (DSBs), genomic instability and ultimately to many 

diseases onset, including cancer [309, 310]. To keep the genome stable, cells have 
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evolved a slew of mechanisms to prevent aberrant RNA:DNA hybrids 

accumulation. However, when these mechanisms fail to contain them, hybrids 

start to accumulate and to damage the genome. Many factors have been identified 

as involved in promoting, avoiding or resolving RNA:DNA hybrids formation. 

The Rad51 protein, for example, is a major player in homologous recombination 

during DNA repair of DSBs, and has been shown to promote the strand exchange 

necessary for hybrids formation. Surprisingly, hybrids have been found to 

accumulate more at Rad51 absence, especially inside cell cytosol [311, 312]. Here, 

the exonuclease TREX1 is the main responsible for the degradation of unwanted 

ss DNA, ds DNA and RNA:DNA hybrids. Defects in TREX1 have been indeed 

associated to hybrids cytoplasmic accumulation, too [313]. Today, it is well 

acknowledged that cytoplasmic RNA:DNA hybrids have a pro-inflammatory role 

as activators of the cGAS-STING pathway, a component of the innate immune 

system that helps tissues in contrasting tumorigenesis, viral infections, and 

invasion by some intracellular bacteria, by triggering the expression of 

inflammatory genes that can lead to cellular senescence or to the activation of 

defence mechanisms through the exportation of molecular messages in the tumour 

microenvironment [314]. However, despite more than four decades of 

investigation, we are still far from elucidating the complexity of RNA:DNA 

hybrids functioning inside and outside the cell.  

6.2.2 Geodesic reconstruction 

Image segmentation (Subsect. 4.2.2) is the process of partitioning a digital image 

into multiple image regions made of sets of pixels that share salient characteristics, 

such as colour, intensity, or texture. Here, we shall take the perspective that there 

are essentially two kinds of image segmentation, depending on the characteristics 

of the objects of interest. In the first case, the image contains textured objects and 

is partitioned into regions that share a characteristic set of features (in principle, 

an object can be composed of more sub-regions). In the second case we speak of 

“particles”, meant as usually small objects where the texture cannot be assessed 

nor used as a discriminating factor. In this case, objects are defined as coherent and 

connected sets of pixels (i.e., each object is unitary), this meaning that the extraction 
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of object contour become fundamental. However, it may happen that particles 

touch one another, or even partially overlap, thus needing for a processing method 

able to separate them by introducing as little error as possible. One smart solution 

makes use of geodesic functions, exploiting the idea that each particle is centred 

around its marker, a smaller object that uniquely identifies the particle itself. In 

this Chapter, the marked structures in fluorescent images are always particles. The 

pipeline (Figure 6.1 (a)) is the following: first, the particles are collectively defined 

by conservative thresholding, resulting in a unique binary mask whose 

foreground includes all particles, with different degrees of overlap. Then, for each 

particle a marker is identified by ultimate erosion. Binary erosion (Subsect. 5.2.1) 

is a morphological operation that erodes the boundaries of foreground regions, 

thus shrinking them in size and enlarging object holes. By ultimate erosion (Figure 

6.1. (b)), the foreground is iteratively eroded, and its components progressively 

shrunk and separated from the rest of the set, stopping right before they are 

completely removed from the image. Finally, using the pre-erosion binary mask 

as a marker, the shape of distinct particles is recovered by geodesic reconstruction 

by dilation. Oppositely to binary erosion, binary dilation enlarges the boundaries 

of foreground regions, making objects bigger and holes smaller. By geodesic 

dilation (Figure 6.1 (b)), the particle markers are iteratively dilated by a predefined 

circle-shaped structuring element (geodesic ball, here of 1-pixel radius), bounded 

by the pre-erosion binary mask. At each dilation, each marker can “conquer” the 

binary mask pixels that have not yet been subdue by another marker. This way, 

each pixel of the binary mask is associated to its closest marker, and particle 

boundaries indirectly defined by a minimum distance principle [315].  
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Figure 6.1. Particle segmentation by geodesic reconstruction. (a) Starting from an input 

grey level image, the particle signal is binarized by an appropriate method. Then, particle 

markers are extracted by ultimate erosion. Finally, markers are “grown” back into the 

initial binary mask by geodesic dilation, until full assignment of binary mask’s pixels to 

the closest marker. (b) Ultimate erosion consists of iterative object erosion carried out for 

n-1 steps, where n is the number of erosions necessary to make a marker disappear. Starting 

from identified markers, geodesic dilation consists of masked iterative dilations, in which 

each new pixel identified by dilation is assigned to the closest marker. 

 

6.3     State of the art 

One of the most adopted strategies for solid tumours treatment is local 

radiotherapy (RT), that exerts its clinical effects within the irradiated field for 

locoregional tumour control. However, regression in metastatic lesions distant 

from IR field, albeit uncommon, has been described in patients with different types 

of cancer including non-small cell lung cancer (NSCLC) [316–320]. This 

phenomenon, first described in 1953 and named “abscopal effect” (AE) [321], has 

been an enigma for the scientific community for many years. A growing body of 

evidence addresses the immune system activation as the dominant player in 

radiation-induced AE [322-325]. However, there is very few knowledge about the 

molecular mechanisms involved. Camphausen et al. in 2003 [325] firstly linked 

functional p53 to radiation-induced AE in mice. After his pioneering work, it has 

been confirmed that numerous cancer cell lines carrying wtp53 develop hallmarks 
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of therapy-induced senescence (TIS) in response to DNA-damaging stresses, such 

as radiation or oxidative stress [322, 326]. Recent literature has shed light on the 

importance of cytoplasmic nucleic acid sensors in DNA-damage response (DDR). 

Indeed, when DNA is damaged, the misplaced nucleic acids into the cytoplasm 

engage evolutionary-conserved sensors that trigger inflammation, IFNɑ/β 

pathways and, as recently hypothesized, the establishment of senescence-

associated pro-inflammatory secretome [257]. Besides dsDNA and ssDNA, 

double-stranded RNA:DNA hybrids have been surprisingly found in the cytosol 

of a variety of cell lines acting as activators of the cGAS-STING pathway, 

triggering the expression of inflammatory genes that can lead to cellular 

senescence or to the activation of defence mechanisms through the exportation of 

molecular messages in the tumour microenvironment [327, 328]. Intriguingly, it 

was also reported that RNA:DNA hybrids may be largely constituted by 

transposable elements, in particular, long interspersed element-1 (LINE-1), the 

most ubiquitous transposable element in the mammalian genome, and proposed 

as hallmark of aging [327, 329]. 

Despite their rise in prominence, the rules that govern RNA:DNA hybrids 

formation and dynamics are still controversial, and technical improvements that 

permit the measurement of their turnover are hugely required to distinguish and 

quantify stable and transient hybrids. New technical advances in hybrids 

mapping, such as DNA–RNA immunoprecipitation sequencing and ribonuclease 

H1 (RNaseH1) chromatin immunoprecipitation [302], have allowed the 

assessment of RNA:DNA hybrids distribution and dynamics throughout the 

genome. However, these techniques do not apply to investigation outside of the 

nuclear compartment. Though concerns about its specificity have been raised more 

than once [330, 331], the S9.6 antibody still represents one of the main solutions for 

hybrids detection and, at present, the only available antibody for hybrids detection 

by fluorescence microscopy. However, when coupled with rigorous quantitative 

image analysis it can still provide insights about the radiomorphometry of hybrids 

distribution, necessary to collect information about their subcellular location and 

function in response to treatment. In this perspective, we have also developed a 

novel tool for the local density mapping of fluorescent marked molecules, 

including RNA:DNA hybrids immunostained with S9.6 antibody [130]. 
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In this study, we demonstrated that single high dose irradiation significantly 

inhibits tumour growth in contralateral non-irradiated (NIR) xenografts mice, only 

subordinately to the presence of functional p53 in both IR and NIR tumours. 

Moreover, we showed that in vitro IR A549 cells adopt a senescence-associated 

secretory phenotype (SASP) secreting CD63 positive extracellular vesicles (CD63+ 

EVs) loaded with RNA:DNA hybrids and LINE-1 retrotransposon inducing 

senescence of distant NIR cells. Finally, we demonstrated that RNA:DNA hybrids 

intracellular levels and localization can still be affected in p53-defective cells, when 

a source of oxidative stress is provided.  

6.4     Material and methods 

Cells 

A549 cells (adenocarcinomic human alveolar basal epithelial cells, ATCC, 

Rockville, MD) were cultured in F12K medium (ATCC) supplemented with 10% 

FBS (Euroclone, Milan, Italy). H1299 cells (human non-small lung adenocarcinoma 

cells, ATCC) were cultured in RPMI 1640 medium (ATCC) supplemented with 

10% FBS (Euroclone) and glutamine 2 Mm (Euroclone). HeLa cells (human cervix 

adenocarcinoma, ATCC) were cultured in EMEM medium (ATCC) supplemented 

with 10% FBS (Euroclone), 1% penicillin/streptomycin (GE Healthcare, Milan, 

Italy) and 2% amphotericin B (Euroclone). 3.0×104 A549 cells/well were infected 

with either lentiviruses LV-THM-sh-scr (scrambled shRNA, control) or LV-THM-

shp53 at MOI 10 TU/cell, as previously described [245] to generate A549sh/scr 

(control) and A549sh/p53 cell cultures. 3.0×104 H1299 cells/well were transfected 

with wtp53-expressing vector [332] (1 μg/well) with TransIT®-LT1 Transfection 

Reagent (Thermo Fisher Scientific, Milan, Italy) and used after 72 h to create a 

H1299p53+ (control) colture. All cultures were checked periodically for 

mycoplasma contamination using the MycoAlertTM Mycoplasma Detection Kit 

(Lonza, Basel, Switzerland). Both cell lines were expanded and maintained as a 

monolayer at 37 °C and subcultured weekly.  
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In vitro cell treatment  

A549, A549sh/p53, H1299 and H1299p53+ cells were 1× γ-IR at 10 Gy or 20 Gy 

using the linear accelerator Elekta Synergy Platform system (Elekta Oncology 

Systems, Stockholm, Sweden) as detailed before [246]. HeLa cells were either 

subjected to irradiation (RAD) or oxidative (OX) treatment. RAD treatment 

consisted of 1× γ irradiation at 2 Gy, 7.5 Gy, 10 Gy or 20 Gy as in [246]. OX 

treatment consisted of: a) 72 h of hypoxic culturing conditions (37°C, 1% O2); b) 

full cell growth under normoxic conditions (37°C, 21% O2), followed by 1 h of cell 

exposure to hyperbaric oxygen (37°C, 1.9 ATA HBO) and then 24 h of normoxic 

culturing conditions; c) a sequential combination of hypoxic culturing conditions 

(48 h, 37°C, 1% O2) and cell exposure to hyperbaric oxygen (1 h, 37°C, 1.9 ATA 

HBO). HBO treatment was performed in a hyperbaric chamber expressly designed 

for preclinical studies [333]. First, the air inside the chamber is replaced with 100% 

O2 and the pressure increased for 15 min until 1.9 ATA are reached and maintained 

for 1 h. Finally, decompression from 1.9 ATA back to atmospheric pressure is 

gradually performed over 15 min.  

Fluorescent microscopy 

Cells were either fixed and permeabilized with ice-cold methanol or 

paraformaldehyde, stained with 1 μg/mL 4′,6-diamidino-2-phenylindole (DAPI), 

incubated (overnight at 4 °C) with primary anti-S9.6 antibody (1:100, Kerafast, 

Boston, MA, USA), anti-CD63 antibody (1:150, Abcam, Cambridge, UK) or anti-

ORF1 antibody (1:1000, Sigma-Aldrich, St. Louis, MO), PBS washed, and incubated 

with secondary goat anti-mouse Alexa Fluor 546 (Life Technologies, Carlsbad, CA) 

overnight. Cells were imaged with an inverted confocal laser-scanning microscope 

Eclipse Ti2-e (Nikon Corporation, Tokyo, Japan) equipped with NIS-Elements 

software. 12-bit images were acquired with a Plan Apo 60×/1.4 oil objective with 

XY pixel size of 0.1 µm and an optical sections number sufficient for the full scan 

of cell volumes. For each treatment conditions, at least 30 cells among at least 6 

images are acquired. 
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Image segmentation  

All following procedures were implemented in MATLAB® (R2019a v.9.6.0, The 

MathWorks, Natick, MA, USA). Acquired 3-D 2-channel confocal images were first 

summarised in 2-D single-channel images (MIPs) by maximum intensity 

projection, and further quantized to 8-bit for denoising purposes. For each image, 

single cell border, single nuclei, single cytoplasms and foci of marked structure 

were segmented by our own developed pipeline (Figure 6.2). 

 
Figure 6.2. Method pipeline for RNA:DNA hybrids, CD63+ EVs and ORF1+ 

retrotransposons foci segmentation. 2-channel (DAPI+marker) confocal stacks are first 

summarised as single channel MIPs. From their combination (fusion), the cell border can 

be estimated as conservatively as possible. The nuclear envelope is outlined from DAPI 

signal and the cytoplasm region segmented by difference. Within each region, markers 

(S9.6, CD63 or ORF1) signal is pre-processed and adaptively segmented in coherent 

particles of different size, called foci, that constitute the analysis unit for following 

analyses.  
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Starting from DAPI staining, the nuclear region was segmented by global 

(A549, H1299) or local (Hela, OX) intensity thresholding by ISODATA method 

[334], followed by area-based object retainment (threshold setting by triangle 

method [335]). As an exception, IR HeLa cell nuclei were segmented by computing 

the image local median map [336] and thresholding it at the 50th percentile. Single 

cell borders were conservatively outlined by fusion of 8-bit single-channel MIPs, 

image binarization at histogram mode, and finally by separation of touching cells 

by watershed transform [337]. Single-cell nuclei and cytoplasms were then 

segmented from previously obtained binary masks using logical operators. 

Subregional cell foci segmentation was finally carried out in three steps. First, the 

2-D single-channel MIP of CD63+ signal was pre-processed by top-hat transform 

[125] by an EVs-sized structuring element, to enhance most informative signal foci 

in cell cytoplasm. This step was not needed for RNA:DNA hybrids and ORF1 

retrotransposons, which have no fixed size. Then, by mean of single-cell nuclei and 

cytoplasms masks, the signal was separately segmented inside each cell nucleus 

and cytoplasm by local median map computing and thresholding at the third 

quartile. Finally, single foci were segmented by ultimate erosion and geodesic 

reconstruction by dilation (Subsect. 6.2.2) [315]. Additionally, hybrids nuclear 

clusters were separated from nuclear foci on a size basis, set after preliminary 

experiment, and further distinguished in perinuclear and nucleolar clusters basing 

on their contiguity with the nuclear membrane.  

Local density analysis 

Local density analysis was performed by computing the density distribution map 

(DDM) of each cell, as described in [130] and Chapter 4, using a minimal 3×3 search 

window. Each pixel was thus assigned with a local density index (LDI) ranging 

from 0 for isolated pixels to 8 for full-connected ones, and the distribution was 

quantified and visualized in colormaps that associate each local density with a 

different colour.  
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Assessment of results 

At the regional level (i.e., whole nucleus and whole cytoplasm), abundance of 

markers foci (i.e., RNA:DNA hybrids, CD63+ EVs and ORF1+ retrotransposons) 

and clusters (RNA:DNA hybrids) was quantified trough measurements of their 

number (normalized by region area), size and brightness. Given the small 

dimension of imaged structures, possibly close to pixel size, we here introduced a 

new feature, the Foci Granulation Index (FGI, i.e., the percentage of regional foci 

having 1-pixel area) to quantify those hybrids foci occurring at a size close to the 

resolution limit. By definition, FGI does not apply to nuclear cluster analysis. 

Finally, RNA:DNA hybrids distribution in HeLa cells was also investigated by 

local density analysis. When coupled with global measurements, DDMs permit to 

investigate whether regional phenomena are mirrored at the subregional local 

level, or if a subregional homogeneity is wrongly assumed and summarized in a 

regional measure. 

Statistical analysis 

Data deviation from normality is early verified by histogram inspection, followed 

by the Shapiro-Wilk test, based on which the discriminatory power of descriptors 

is assessed by either two-tail Student’s t-test or Wilcoxon rank-sum test with 

Bonferroni correction for unequal sample size. p-values<0.05 are considered for 

statistical significance. 

6.5     Results and discussion 

Radiation treatment induces SASP in A549 cells in vitro 

 Over the years, several hypotheses have been put forward to explain the 

molecular mechanisms behind the indirect anticancer effects of radiotherapy 

outside the radiation site. Choosing solid murine tumours in immunocompetent 

mice as a model, Camphausen et al. [325] firstly demonstrated that p53 is a key 

mediator of the IR-induced AE in vivo, suggesting its action as a transcription 

factor for the expression and a release in the tumour microenvironment (TME) of 
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cytokines or other factors, leading to a systemic antiangiogenic antitumor effect. 

Tesei et al. [18], using solid xenograft tumours in athymic immunocompromised 

mice, first confirmed the necessity of functional p53 in both IR and NIR tumour 

masses for AE observation, further proving AE independence from T cells and 

reporting the presence of IL6 and senescent cells in contralateral NIR mass. To 

investigate whether AE could be ascribed to the release of pro-senescence 

molecules from IR cells, senescence markers expression in vitro was quantified. 

We found that A549 (p53+) but not H1299 (p53-) exhibited a senescence profile 

after irradiation with a dose of at least 10 Gy, with increased levels of p53 and its 

target gene p21Waf1/Cip1, and expression of IFN-β, IL-1α, IL6 and NF-kB. A549sh/p53 

cells exhibited only a limited expression of these markers [18]. SASP onset in A549 

cells was ultimately confirmed by the collection of increasing amounts of CD63+ 

EVs from culture medium, not observable for A549sh/p53 cells. However, the 

significant radiation dose-dependent increment of EVs production observed in 

H1299 cells led to the exclusion of p53 involvement in modulating EVs secretion 

upon irradiation.  

Image analysis after CD63 signal revealed a significant increase in this 

exosome marker fluorescence intensity in A549 cells, proportional to radiation 

dose (Figure 6.3 (a, b), 3-fold increase after 10 Gy, p<0.001). Conversely, the CD63 

signal intensity was significantly decreased in irradiated H1299 (Figure 6.3 (c, d), 

-50% after 10 Gy, p<0.001) and significantly attenuated in A549sh/p53 cells, 

consistently with previous results (Figure 6.3 (e, f), -29% after 10 Gy, p<0.01).  
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Radiation induces secretion of EVs carrying RNA:DNA hybrids in wtp53 

NSCLC cells 

Since the cytoplasmic misplacement of nucleic acids has recently been 

suggested in the establishment of the senescence-associated pro-inflammatory 

secretome [257], we investigated RNA:DNA hybrids subcellular distribution upon 

irradiation. Interestingly, RNA:DNA hybrids staining intensity was significantly 

reduced in the cytoplasm of IR H1299 (Figure 6.4 (c, d), -58% after 10 Gy, p<0.001) 

and IR A549sh/p53 cells (Figure 6.4 (e, f), -46% after 10 Gy, p<0.001) but not in IR 

A549 cells, where a not significant yet remarkable intensity increase was observed 

at a dose of 10 Gy (Figure 6.4 (a, b)). Furthermore, radiation exposure induced 

significant cluster accumulation of RNA:DNA hybrids in the nuclei of IR A549 

cells (Figure 6.4 (a, b), +35% after 10 Gy, p<0.001) but not in IR H1299 (Figure 6.4 

(c, d), -38% after 10 Gy, p<0.05) and IR A549sh/p53 (Figure 6.4 (e, f), -64% after 10 

Gy, p<0.001). To investigate whether the wtp53-dependent increase of RNA:DNA 

hybrids resulted in their secretion outside the cells, we investigated through dot 

blot analysis their presence in EVs isolated from conditioned media of A549, 

H1299, and A549sh/p53 cells after different radiation doses. The presence of 

RNA:DNA hybrids were detected in 10 Gy-IR A549 EVs but not in the microvesicle 

(MV) fraction. Conversely, neither EVs nor MVs secreted by H1299 and 

A549sh/p53 were positive for the presence of RNA:DNA hybrids. (Figure 6.4 (g)). 

Involvement of p53 in RNA:DNA hybrids secretion through EVs was further 

supported by transient ectopic expression of wtp53 in H1299 cells. Comparably to 

A549, IR H1299p53+ cells released EVs but not MVs loaded with RNA:DNA 

hybrids (Figure 6.4 (g)), with a senescent phenotype similar to that observed in IR 

A549 cells. Accordingly, the EVs secreted by H1299p53+ carrying RNA:DNA 

hybrids also significantly inhibited the colony growth, and induced senescent 

phenotype of H1299 p53+ [18]. As a further control, IR A549 3-D spheroid, bringing 

a better representation of TME, were assessed for senescence, confirming a strong 

positivity to β-Gal assay, a significant induction of the SASP driver molecules 

p21Waf1/Cip1, INF-β and IL6, and a massive nuclear production of RNA:DNA hybrids 

after 10 Gy, but not after 20 Gy, according to confocal image analysis [18].  
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IR A549 cells deliver abscopal signals through EVs loaded with RNA:DNA 

hybrids 

Confocal analysis revealed that UnIR A549 cells exposure to EVs secreted by 

10 Gy-IR A549 did not affect cytoplasmic hybrids (Figure 6.5, (a, b)) but 

significantly increased RNA:DNA hybrids intensity of nuclear foci and clusters 

(Figure 6.5 (c, d), +78% on average from unexposed cells, p<0.001). Moreover, UnIR 

A549 cells exposed to EVs from IR A549 (10 Gy or 20 Gy) induced in recipient cells 

β-Gal positivity, increased expression of p21Waf1/Cip1 and IL6, significant inhibition 

of colony-forming ability and, according to in vivo results, polarization of both 

human and murine macrophage toward M1 pro-inflammatory phenotype [18].  

 
Figure 6.5. RNA:DNA hybrid subcellular distribution in UnIR A549 cells exposed to IR 

A549 EVs. (a) Representative images of unexposed UnIR A549 cells and UnIR A549 cells 

exposed to EVs isolated from culture medium of A549 cells non irradiated or irradiated at 

10 Gy or 20 Gy. Scale bar: 25 μm. Quantification of cytoplasmic (b) and nuclear (c) 

RNA:DNA hybrids foci and nuclear RNA:DNA hybrids clusters (d) intensity in UnIR A549 

cells exposed to EVs from IR A549 cells, reported as grand median ± MAD. *p<0.05, 

**p<0.01 ***p<0.001. Image reproduced from [18] under the CC-BY Creative Commons 

Attribution 4.0 International licence. 
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All considered, the data collected so far strongly support the hypothesis that -ether 

with cellular senescence, apoptosis and innate immunity may drive the abscopal 

effect in our in vivo and in vitro model. Of note, we observed that a minimum 

radiation dose of 10 Gy was needed for the establishment of a SASP phenotype 

characterized by a large cytoplasmic amount of tetraspanin CD63, an increase of 

RNA:DNA hybrids in p53+ cells nuclei and cytoplasms, and the secretion of 

hybrids-loaded EVs capable to induce SASP and reduce cell growth in recipient 

cells.  

Irradiation induces the activation of LINE-1 retrotransposon in p53wt-bearing 

A549 cells. 

To explore the possibility that RNA:DNA hybrids may be constituted by LINE-

1 retrotransposon, previously proposed as hallmark cellular senescence [329], we 

analysed the expression level of both ORF-1 protein and ORF-1/ORF-2 mRNA in 

A549 and A549sh/p53 cells (Figure 6.6).  

 
Figure 6.6. Retrotransposon ORF1 subcellular distribution in A549 and A549sh/p53 cells. 

(a) Representative images of A549 and A549sh/p53 cells exposed to 10 Gy or 20 Gy IR. Scale 

bar: 50 μm. (b) Quantification of nuclear ORF1 retrotransposons foci intensity in A549 and 

A549sh/p53 cells, reported as grand median ± MAD. *p<0.05, **p<0.01 ***p<0.001. Image 

reproduced from [18] under the CC-BY Creative Commons Attribution 4.0 International 

licence. 
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Confocal analysis showed that both cell lines expressed LINE-1, but only in IR 

A549 a significant increase in ORF1 nuclear foci intensity was detected (Figure 6.6, 

+28% after 20 Gy, p<0.001). Notably, co-labelling of ORF1 and RNA:DNA hybrids 

in A549 yielded a Mander’s overlap coefficient (MOC) increasing with radiation 

dose and reaching statistical significance at 20 Gy (5-fold increase from UnIR, 

p<0.01), whereas an opposite MOC trend was observed in IR A549sh/p53. 

Furthermore, a significant increase in ORF1 and ORF2 mRNA (p<0.05) levels was 

observed in IR A549 cells, but not in IR A549sh/p53 cells, while RNA:DNA hybrids 

were reduced in both IR and UnIR A549 cells by the IR pre-treatment with 

Efavirenz, an antiretroviral agent that also abolished their inhibitory effects on 

colony-forming ability of UnIR A549 (p<0.001).  

It was previously reported that exposure to genotoxic stress, such as 

irradiation, often leads to the loss of global DNA methylation primarily from 

repetitive elements, in particular, LINE-1 [338]. The activation of LINE-1 elements 

may induce the synthesis of high amounts of RNA:DNA hybrids at the nuclear 

level, that therefore exit the nucleus in a process that mirrors the self-

retrotranscription activity of retrotransposon elements, that also requires a 

cytoplasmic step before returning to the nucleus [339]. Furthermore, a large 

number of p53-responsive elements and p53 DNA binding sites were reported in 

LINE-1 elements, part of which were functional and served the increase of LINE-

1 mRNA expression levels [340]. Therefore, it is not unreasonable to hypothesize 

that RNA:DNA hybrids conveyed by EVs secreted by IR p53+ cells are at least 

partly constituted by LINE-1 retrotransposons. 

Irradiation decreases RNA:DNA hybrids production and affects their 

condensation in a dose-dependent fashion in p53-defective HeLa cells 

Once established the pivotal role of p53 and RNA:DNA hybrids in tumour cell 

response to high-dose irradiation stress, we further investigated hybrids 

subcellular distribution in p53-defective HeLa cells including lower radiation 

doses of 2 Gy and 7.5 Gy and a different (i.e., oxidative) stress [19]. According to 

the absence of functional p53, IR globally decreased RNA:DNA hybrids density 

(Figure 6.7 (a)) and intensity (Figure 6.7 (b)) in HeLa cells, showing similar trends 

for cell nucleus and cytoplasm.  
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Figure 6.7. Effects of RAD treatments on RNA:DNA hybrids subcellular distribution in 

HeLa cells. Bar graphs of hybrids foci weighted number (density) (a), intensity (b) and FGI 

(c) in the main cell compartments, reported as median ± MAD (a, b) and as mean ± STD (c). 

(d) Representative RGB MIPs (IF, up) and DDMs (down) of HeLa cells unirradiated (UnIR) 

or 1× irradiated at 2 Gy, 7.5 Gy, 10 Gy or 20 Gy, stained for DNA (blue) and immunolabeled 

against RNA:DNA hybrids (red). Scale bars: 25 µm. (e) Bar graph of LDI percentages, 

reported as mean ± STD. Bar graphs of hybrids perinuclear and nucleolar clusters density 

(f) and intensity (g) in the main cell compartments, reported as median ± MAD. *p<0.001. 

Image reproduced from [19] under the CC-BY Creative Commons Attribution 4.0 

International licence. 
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While a dose of 2 Gy moderately decreased hybrids foci number (Figure 6.7 (a), 

-32% on average, p<10-5), higher doses halved both hybrids number (Figure 6.7 (a), 

-48% on average, p<10-5) and intensity (Figure 6.7 (b), -47% on average, p<10-7). As 

cytoplasm hybrids are considered to derive from nuclear displacement [257], the 

parallel decrease in hybrids foci number and intensity in both nucleus and 

cytoplasm suggested an IR-induced declining in their production and a 

consequent exportation to cytoplasm. Also, the exception represented by the 2 Gy 

dose suggested it as a too mild stress for hybrids remarkable alteration, 

appreciable only from 7.5 Gy on. To investigate foci condensation, we introduced 

the Foci Granulation Index (FGI), that is a measure of the percentage of 1-pixel foci. 

Consistently with regional number, hybrids FGI was significantly decreased at all 

tested doses in both cell nucleus and cytoplasm (Figure 6.7 (c), -52% on average,  

p<10-4), except at 10 Gy. Accordingly, only 10 Gy-irradiated cells displayed a local 

hybrid distribution comparable to that of UC (Figure 6.7 (d), DDMs), with dense 

cytoplasmic hybrids crowding at the nuclear and cell membrane. Conversely, at 2 

Gy, 7.5 Gy and 20 Gy hybrids appeared more and more scattered in the cell 

cytoplasm, with nuclear clusters appearing at 2 Gy and then gradually 

disappearing with dose from nuclei. Quantitatively, doses of 2 Gy, 7.5 Gy and 20 

Gy induce a strong increase of high local densities (Figure 6.7 (e), LDI=7-8, +21% 

on average, p<10-6), at the expense of lower ones (Figure 6.7 (e), LDI=1-6, -41% on 

average, p<0.002). Conversely, a dose of 10 Gy increased the presence of low and 

medium densities (Figure 6.7 (e), LDI=0-5, +69% on average, p<10-3), while 

decreasing the higher ones (Figure 6.7 (e), LDI=6-8, -17% on average, p<10-3). 

Therefore, DDMs and FGI indicated that IR induced hybrids condensation, except 

for the 10 Gy dose. The discordance between regional foci number, FGI and DDMs 

(Figure 6.7 (a)) revealed the heterogeneity of cell response, that produces 

subregional variations in foci number and intensity that cannot be summarized in 

a regional measure, at least after 10 Gy irradiation. Finally, an IR dose of at least 

7.5 Gy decreased perinuclear cluster number (Figure 6.7 (f), -56% on dose average, 

p<0.002) and both perinuclear and nucleolar clusters intensity (Figure 6.7 (g), -47% 

on average, p<10-3).  

All considered, ionizing radiations can be speculated to reduce the RNA:DNA 

hybrids production in a dose-dependent manner, at least in HeLa cells. Dose 
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dependency of hybrids production had been only marginally investigated before 

[313], demonstrating the need for a functional p53 for IR-induced hybrids 

reduction. Accordingly, ionizing radiations decrease hybrids presence in HeLa 

cells, where p53 is essentially inactivated by HPV E6 protein. Interestingly, also 

the expression of the DNA exonuclease TREX1 has recently been proved to be 

dose-dependently induced by ionizing radiations [313]. Given TREX1 capability to 

remove cytosolic endogenous DNA and hybrids [256], dose-dependency of 

hybrids accumulation should be also examined in the perspective of being just a 

mirror of their degradation. Finally, according to our previous findings, hybrids 

crowding at the main cell membranes, especially evident at 10 Gy, could be read 

as a pro-exportation event, that could mirror EVs accumulation in multivesicular 

bodies (MVBs) before exiting the cell. Interestingly, given p53 absence in HeLa 

cells, this would mean that p53 is more necessary to hybrids production, rather 

than exportation. However, these hypotheses need solid confirmation by further 

experiments. 

Perturbation of culture oxygenation increases RNA:DNA hybrids production 

and condensation in p53-defective HeLa cells. 

Perturbation of oxygenic culture conditions globally increased the RNA:DNA 

hybrids foci number (Figure 6.8 (a)) and intensity (Figure 6.8 (b)), in both nucleus 

and cytoplasm of HeLa cells [19]. Specifically, the hybrid foci number was 

significantly increased under hypoxic conditions, especially inside cell nucleus 

(Figure 6.8 (a), +36%, p=10-13), whereas hybrids intensity was increased after every 

perturbation of culture oxygenation, especially after HBO exposure and inside cell 

nucleus, where it is more than doubled (Figure 6.8 (b), +117%, p=10-42). As 

cytoplasm hybrids are considered to derive from nuclear displacement [257], 

increase in foci number and intensity value in both compartments can reflect an 

increase in hybrids nuclear production and consequent exportation to cytoplasm, 

with no remarkable constrain [328]. 
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Figure 6.8. Effects of OX treatments on RNA:DNA hybrids subcellular distribution in 

HeLa cells. Bar graphs of hybrids foci weighted number (density) (a), intensity (b) and FGI 

(c) in the main cell compartments, reported as median ± MAD (a, b) and as mean ± STD (c). 

(d) Representative RGB MIPs (IF, top) and DDMs (bottom) of HeLa cells cultured under 

normoxic (UC), hypoxic (HYPOX), hyperoxic (HBO) or combined (HYPOX+HBO) 

conditions, stained for DNA (blue) and immunolabeled against RNA:DNA hybrids (red). 

Scale bars: 25 µm. (e) Bar graph of LDI percentages, reported as mean ± STD. Bar graphs 

of hybrids perinuclear and nucleolar clusters density (f) and intensity (g) in the main cell 

compartments, reported as median ± MAD. *p<0.001. Image reproduced from [19] under 

the CC-BY Creative Commons Attribution 4.0 International licence. 
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The fact that hypoxic and hyperoxic conditions triggered a similar response 

could be ascribed to their common capability to promote intracellular oxidative 

stress through massive production of reactive oxygen species (ROS) [333, 341]. 

Different culture oxygenation levels are likely reflected in different intracellular 

concentration of ROS, that directly determines the extent of DNA breaks, from 

which hybrids are known to arise [342, 343]. Moreover, ROS and hybrids 

involvement in a common pathway is supported by the pro-inflammatory role of 

both [333, 344]. Accordingly, the cell culturing under sequential hypoxic and 

hyperoxic conditions almost never altered hybrids foci number or intensity, thus 

indicating that hyperoxic conditions can alleviate the stress caused on cells by 

hypoxia, as well acknowledged in HBO therapy [345]. In both cell nucleus and 

cytoplasm, under hypoxic conditions hybrid foci were more numerous (Figure 6.8 

(a), +18% on average, p<10-8) but much less bright (Figure 6.8 (b), -92% inside 

nucleus, p=10-47, -36% inside cytoplasm, p=10-22) than under hyperoxia. This 

discrepancy pointed at different RNA:DNA hybrids foci condensation states 

under the two conditions, possibly dependent on oxygen level. To investigate the 

cause of such a difference, we analysed FGI and DDMs. Low and not significant 

differences between cytoplasmic hybrid FGI under hypoxic and hyperoxic 

conditions (Figure 6.8 (c), 8% average difference, p≥0.06) indicate that such 

imbalance between foci number and intensity was not due to a poor image 

resolution, insufficient to capture hybrids smaller than 1 pixel, but derived from a 

different foci distribution. To deepen the investigation, we performed a local 

density analysis by creating Density Distribution Maps (DDMs) [130], revealing 

different distribution of local densities under hyperoxic and hypoxic conditions 

(Figure 6.8 (d)). With respect to hypoxia, hyperoxia was significantly enriched in 

maximum local density (Figure 6.8 (e), LDI=8, +17%, p=10-24) at the expense of the 

lowest ones (Figure 6.8 (e), LDI=0-7, -11% on average, p<10-4), indicating more 

densely packed hybrids under hypoxia. A similar though milder response than 

hyperoxia was reported for the combinatory treatment. Qualitatively, DDMs 

depicted more similarities between signal distributions under hypoxic and 

hyperoxic conditions. In particular, the hybrids gathering at the cell membrane in 

UC cells was coupled to a scattered hybrids signal in cell cytoplasm after every 

treatment of the OX group, especially the hyperoxic one. Moreover, DDMs 
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highlighted dense hybrid clusters inside hyperoxic nuclei, as foreseen by FGI 

decrease. Accordingly, the analysis of nuclear clusters revealed an increase in 

perinuclear clusters number after every perturbation of culture oxygenation 

(Figure 6.8 (f), +97% on average, p<10-13) and an increase in perinuclear clusters 

intensity under hyperoxic conditions (Figure 6.8 (g), +89%, p=10-33). Similarly, 

hyperoxia also increased the hybrids nucleolar clusters intensity (Figure 7.8 (g), 

+84%, p=10-22) and number (Figure 6.8 (f), +45%, p=10-5), this latter variation also 

being induced by hypoxia (Figure 6.8 (f), +31%, p=10-5). Collectively, oxidative 

stress seemed to promote nuclear hybrids production and condensation in 

clusters, especially in consequence of hyperoxic culture conditions. Nucleolar 

clusters can be properly thought as to identify with cell nucleoli, in which hybrids 

have been often reported to accumulate, especially in stressed cancer cells [18, 346, 

345]. On the other hand, increased perinuclear cluster may hint at over-produced 

hybrids that accumulate at the inner surface of nuclear membrane, before being 

exported to cytoplasm [328].  

Despite being “only” imaging based, additional data on HeLa cell, 

investigating also low IR doses and a new source of stress, brings manyfold 

implications. First, being differently affected by different type of stress, RNA:DNA 

hybrids presence can be said to be stress-related but not stress-specific. Secondly, 

our data confirm that ionizing radiation capability to boost hybrids production 

requires the presence of a functional p53. On one hand, this implies that exists at 

least a p53-independent pathway for hybrids production stimulation, activatable 

by oxidative stress stimuli, alternative to radiation exposure. In particular, our 

results suggest that RNA:DNA hybrids could be strongly induced in the absence 

of a functional p53 by hyperbaric oxygen, a well-established treatment used as an 

adjunctive therapy in many disease settings. On the other hand, it indicates that 

stress could promote hybrids production independently of its nature, consistently 

with their capability to activate the pro-inflammatory cGAS-STING pathway [310]. 

Finally, even if in absence of EVs collection data, our DDMs quantification of 

hybrids accumulation at the main cell membranes suggest RNA:DNA hybrids 

exportation from cell nucleus to cytoplasm [257] and to TME, where they have 
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been found to convey a message of senescence stimulating innate immune 

response [18].  

6.6     Conclusions 

With the PHENOMICS Project we investigated the involvement of the onco-

suppressor p53 and RNA:DNA hybrids in tumour response to stress in vivo and in 

vitro. We demonstrated that a single high-dose irradiation of 20 Gy and the 

presence of functional p53 in both IR and contralateral NIR tumour masses are 

necessary to observe the abscopal effect in an in vivo immunocompromised murine 

model. We further demonstrated that this threshold dose must be lowered to 10 

Gy to reproduce the phenomenon in vitro at the cellular level, namely by triggering 

the expression of pro-inflammatory genes, inducing M1 macrophage polarization 

and setting a SASP through the production and exportation of a senescence 

message composed of RNA:DNA hybrids and retrotransposons. Finally, we 

collected evidence for RNA:DNA hybrids to work as SASP and inflammation 

mediators also when the stress source is different from ionizing radiation, and 

when p53 is non-functional or absent. All considered, a model for p53-mediated 

abscopal effect induced by radiotherapy can be produced (Figure 6.9). Our data 

suggest that p53 selectively regulates the secretion of CD63+ EVs carrying a 

senescence message composed of RNA:DNA hybrids and LINE-1 

retrotransposons that can be perceived by cells outside the field of irradiation. 

This, in turn, may activate auto-destruction mechanisms such as cellular 

senescence, apoptosis and innate immunity. However, since EVs are exquisite 

carriers that can target specific cells [348], it is likely that the systemic delivery of 

the message may reach specifically cancer cells that belong to the same lineage as 

the primary tumour. While much remain to be investigated of hybrids roles and 

functions, this work suggests hybrids subcellular distribution and the automated 

quantitative imaging approach as a starting point for a comprehensive 

phenomization of cell response to stress. 
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Figure 6.9. Diagram illustrating the p53-mediated abscopal effect induced by 

radiotherapy. (a) Radiotherapy induces cell damage that leads to cell cycle arrest, necrosis, 

programmed cell death and cellular senescence. In particular, the cells bearing functional 

p53 may acquire SASP and release cytokines, inflammatory- (DAMPs) or senescence- 

(SAMPs) associated molecules. In addition, at the presence of wtp53 radiotherapy activates 

retrotransposon elements which, in turn, increase the level of genotoxic stress. SASP cells 

also release EVs conveying RNA:DNA hybrids and/or retrotransposons which, outside the 

field of irradiation (b), activate autodestruction mechanisms such as cellular senescence, 

apoptosis and innate immunity in p53-competent tumour cells. Image reproduced from 

[18] under the CC-BY Creative Commons Attribution 4.0 International licence. 
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6.7     Content-aware contribution and future developments  

Since its very beginning, the whole PHENOMICS Project was intended to 

benefit from a content-aware and interdisciplinary approach, that would merge 

biological and computer vision knowledge to exhaustively characterize the 

phenomenon of cell response to stress. My biological formation allowed me to 

better comprehend tumour cell dysfunctioning, irradiation and oxidative stress, 

and RNA:DNA hybrids dynamics. Crucially, I had the necessary biological and 

technical knowledge 1) to recognize and give due weight to the fact that the actual 

image resolution, allowed by the imaging modality, was insufficient to accurately 

locate hybrids, 2) to feel the necessity for a method to improve hybrids mapping, 

and 3) to finally conceive and develop such method, the DDM, to quantify and 

visualize molecule local density. By similar reasoning, I could address the problem 

of the measurement of RNA:DNA hybrid foci condensation state, by coupling a 

regional measure of foci abundance (i.e., FGI) with a  subregional investigation of 

foci local density (i.e., DDM).  

As regards future methodological developments, a first step would necessarily 

be the completion of the experimental panel with secondary yet important 

information (Table 6.1).  

Table 6.1. Experimental panel for the PHENOMICS Project. 

 A549 A549sh/p53 H1299 H1299 p53+ HeLa 

p53 expression ✓ ✓ ✓ ✓  

Senescence markers expression ✓ ✓ ✓   

β-gal and colony forming assays ✓ ✓ ✓ ✓  

EVs quantification ✓ ✓ ✓   

EVs and MVs  

RNA:DNA hybrids content 
✓ ✓ ✓ ✓  

CD63+ EVs imaging ✓ ✓ ✓   

RNA:DNA hybrids imaging ✓ ✓ ✓ ✓ ✓ 

ORF1 imaging ✓ ✓    

 

First of all, Table 6.1 highlights the necessity for confirmatory molecular 

experiments in HeLa cells, where RNA:DNA hybrids distribution has been 
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analysed by image analysis only. Secondly, given the results of such image 

analysis and all the results from the PHENOMICS Project, it is of primary interest 

to extend to all cell lines the study of IR-mediated AE at low IR doses, to investigate 

whether and how EVs, RNA:DNA hybrids and retrotransposons contribute to cell 

response in cell irradiated at 2 Gy and 7.5 Gy. In doing so, it is of capital importance 

to collect and quantify CD63+ EVs and their content in all cell lines and after each 

type of tested stress, to define once and for all the condition for a senescence 

message conveyance and confirm p53 role in the process. Further confirmation 

could derive from image analysis after co-staining of CD63+ EVs and RNA:DNA 

hybrids, irreplaceable for understanding hybrids entering and moving in the 

exocytosis pathway. In such analysis, DDMs and cDDM would allow the 

investigation and semi-quantification of EVs and hybrids colocalization. When 

focusing on hybrids production, I would also quantify the expression level and 

activity of p53, RNAseH and TREX1, to respectively confirm p53 influence, the 

hybrid nature of S9.6-marked molecules [349] and gain insights on their 

degradation [313]. Finally, I would verify whether and how non-cancer cells 

differently respond to tested stressing conditions, if they could contribute to AE 

and SASP onset, and if they are sensitive to hybrids loaded EVs.   

From a methodological point of view, a first future development could be the 

identification of a better, salient, feature for hybrid distribution characterization, 

presumably multidimensional and arising from merging the features defined in 

this work. However, this feature validation would require to exponentially 

increase the sample size. Also, discussed relations between foci intensity, 

dimension and number, that we used to speculate on hybrid condensation state, 

are valid in a close system, in which hybrids total amount do not vary. Rather, in 

our open cellular system, hybrids presence is affected by continuous change in 

their production, degradation, and movement across cell boundaries. Secondly, it 

would be interesting to investigate the heterogeneity of cell response. As also 

shown in Sect. 4.5, hybrids seem to distribute differently in similarly stressed cells, 

even when close to each other. Moreover, more than once DDMs reported hybrids 

gathering at the interfaces between neighbouring cells. Considering the results 

collected in this study, such distribution can be definitely hypothesized to be 

functional.  
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Chapter 7 

Content-aware approach in neuro-

motor science: morphometric analysis 

and trabecular classification of 

murine tibial bone in micro-CT scans  

In this Chapter, we present the application of our content-aware approach to a 

bone histomorphometry analysis, carried out within an interdisciplinary study on 

the role of the protein sclerostin in muscle-to-bone crosstalk [118]. The study 

composed of three sequential steps. First, despite being reportedly expressed by 

bone and cartilage only, sclerostin was identified as one of the myokines inhibiting 

bone cell differentiation in vitro. Then, sclerostin expression in muscle cells was 

extensively characterized in in vitro and in vivo murine model. Finally, after in vivo 

sclerostin over-expression in the tibialis anterior muscle of mice, we performed an 

ex vivo characterization of adjacent tibial bone microstructure from µCT scans 

(Subsect. 3.3.1). 

In the next Sections, the collaboration framework is first introduced, as well as 

the necessity for image analysis inclusion in the study (Sect. 7.1). Then, in Sect. 7.2, 

the biological and image processing theoretical background for our image analysis 

is discussed. Subsect. 7.2.1 summarises bone architecture and remodelling 

focusing on long bone, while Subsect. 7.2.2 approaches image filtering for texture 

analysis, serving the introduction of a method we have here developed to 

investigate the micro-architecture of bone samples. Sect. 7.3 introduces the state of 

the art for the whole study, surveying the main muscle-bone crosstalk factors, 
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including sclerostin (Subsect. 7.3.1), and revising current methods for quantitative 

bone imaging (Subsect. 7.3.2). Besides presenting the developed methods for 

image analysis, the successive Material and Methods (Sect. 7.4) covers also the 

previous steps of sample preparation and image acquisition. However, the Results 

and Discussion (Sect. 7.5) opens with a brief account of the molecular results that 

led to image analysis, before moving to discuss the methods applied to image 

analysis and their results. Finally, after drawing the main conclusions (Sect. 7.6), 

the contribution of the content-aware approach to the study is recalled, together 

with future perspectives (Sect. 7.7).  

7.1 Study context 

During the first year of the PhD and out of a specific research project, we 

entered a collaboration with Prof. Carla Palumbo and her research group at the 

Department of Biomedical, Metabolic and Neural Sciences of the University of 

Modena and Reggio Emilia, joining a preclinical study on muscle-to-bone 

crosstalk. First, the group investigated in vitro the effects of muscle cell-produced 

factors on the maturation process of osteoblasts, finding that the glycoprotein 

sclerostin was one of the myokines exerting an inhibitory effect on bone cell 

differentiation. Given the acknowledged role of bone/cartilage-derived sclerostin 

as a negative regulator of bone growth, the investigation moved to the in vitro and 

in vivo characterization of sclerostin production, and finally to the investigation of 

its effects on bone morphology at the macro- and micro-scale. My contribution to 

the collaboration regarded this last analysis. First, dried tibial bone samples were 

µCT-scanned by Prof. Maria Pia Morigi and her team at the Department of Physics 

and Astronomy "Augusto Righi" of the University of Bologna. Then, we carried 

out an automatic image analysis of the scanned bone morphometry, that involved 

the development of an automated method for segmenting imaged metaphyseal 

trabeculae based on their thickness and orientation pattern.  
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7.2 Theoretical background 

7.2.1 Bone architecture and remodelling  

Bone is a living, highly vascularized and highly mineralized connective tissue. 

It largely consists of a very firm extracellular matrix, enriched in arranged collagen 

fibres stiffened by massive deposition of calcium phosphate nanocrystals. Matrix 

mineralization confers to bone the property of mechanical rigidity, necessary to 

protect vital organs from damage and enable movement, by providing mechanical 

support for joints, tendons and ligaments. Moreover, bone provides the medium 

(i.e., the marrow) for the development and storage of blood cells, and act as a 

reservoir for calcium and phosphate, thus preserving normal mineral homeostasis 

[350, 351]. However, rigid bone is not steady, but a living tissue finely reshaped 

throughout life to maintain intact and responsive to new stress or demands. Bones 

constantly undergoes renewal and repair through the process of bone remodelling: 

osteoblasts, involved in bone deposition, and osteoclasts, specialized for bone 

resorption, coordinate this process, which in turn is subjected to systemic and local 

regulation by external cues [352]. 

Two main structural types of bone with different material properties can be 

distinguished: the trabecular (cancellous) bone, which is highly porous in 

structure, and the cortical (compact) bone, composed of a dense and highly 

calcified matrix (Figure 7.1).  
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Figure 7.1. Hierarchical ultrastructure of bone, showing the macroscale (organ-level), 

microscale (tissue-level), sub-microscale (sub tissue-level) and nanoscale (constituent-

level). Image reproduced from [353] under the CC-BY Creative Commons Attribution 4.0 

International license.  

 

Trabecular bone is organized into a network of interconnected rods and plates 

called trabeculae, which surround pores that are filled with bone marrow. 

Trabecular bone is less mineralized than cortical bone and has a larger surface 

exposed to the bone marrow and blood flow. On one side, this makes trabecular 

bone turnover and remodelling faster than in cortical bone. On the other side, it 

gives to the tissue more elasticity and ability to absorb mechanical shocks. 

Conversely, cortical bone is dense and forms an envelope around the marrow 

cavity. It is formed from Haversian systems, which consist of concentric lamellae 

of bone tissue surrounding a central canal that contains blood vessels. Because of 

its dense composition and architecture, cortical bone constitutes a rigid envelope 

for the bone tissue, especially resistant to longitudinal compression. Trabecular 

bone fills the centre of the long bones, flat bones and vertebrae, and is principally 

found in the epiphyses and metaphyses of the long bones. In contrast, cortical bone 

forms primarily the rigid shaft of long bones (Figure 7.2).  
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Figure 7.2. Schematic and µCT of long bone anatomy and microstructure. (a) The 

macrostructure of long bones, such as tibia, femur and humerus, is divided into epiphysis, 

metaphysis and diaphysis. Epiphysis and metaphysis (separated by the epiphyseal plate 

in elongating bones) are mainly composed of trabecular (cancellous) bone interspaced by 

red bone marrow, while diaphysis is made of cortical (dense) bone, enclosing yellow bone 

marrow. (b) Detail of cortical and trabecular bone, adapted from [354] under the CC-BY 

Creative Commons Attribution 4.0 International license. 

 

Long bones, especially the femur and tibia, are subjected to most of the load 

during daily activities and they are crucial for skeletal mobility. Accordingly, it is 

well established that trabecular structures within long bones are aligned in an 

organized manner associated with the direction of load distribution [355]. Long 

bones are structurally distinguishable in three regions: epiphysis, metaphysis and 

diaphysis. The proximal and distal epiphyses are the rounded ends which form 

joints with adjacent bones. Here, the trabecular bone transfers mechanical loads 

from the articular surface to the cortical bone. The diaphysis is the middle tubular 

part of a long bone, composed of compact bone which surrounds a central cavity 

which contains marrow and adipose tissue. The metaphysis is the intermediate 

region between the diaphysis and the epiphysis where bone growth occurs by 

endochondral ossification. During endochondral ossification, chondrocytes 

proliferate, undergo hypertrophy and die; the cartilage extracellular matrix they 

produce is then invaded by blood vessels, osteoclasts, bone marrow cells and 

osteoblasts, the last of which deposit bone on remnants of cartilage matrix. 

Ossification starts from primary (mid diaphysis) and secondary (epiphysis) 

centres of ossification, during prenatal and postnatal-to-adolescence development, 

respectively. The remnant cartilage between the primary and secondary 
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ossification centres is called the epiphyseal (or growth) plate, and it continues to 

form new cartilage up to late adolescence, undergoing ossification, and resulting 

in bone lengthening [356].  

7.2.2 Texture analysis and Gabor filtering  

Texture analysis refers to the characterization of regions in an image that 

present a specific pattern of distribution and dispersion of pixel intensity, repeated 

sequentially throughout the image. Mimicking characteristics of the human visual 

system (HVS), texture analysis attempts to quantify visual properties of images, 

such as smoothness, coarseness and regularity, as a function of the spatial variation 

of pixel intensities. Texture analysis is widely applied in biomedical image 

analysis, when objects in an image are characterized by their texture, besides 

“simple” pixel intensities. Research has demonstrated that the HVS analyses 

scenes generating a multi-resolution decomposition that can be modelled by 2-D 

wavelets, capable to reproduce HVS space–frequency localization properties. 

Among the wavelets, the Gabor wavelet stands out for its simplicity and 

robustness against local distortions, allowing object detection robustly to pose and 

imaging conditions. Moreover, frequency and orientation representations of the 

Gabor wavelet have been reported to represent those of human visual cortical cells. 

[355, 357, 358].  

Introduced by Dennis Gabor in 1946 [359], the Gabor wavelet was firstly 

implemented as a multi-channel 2-D filter and applied to image textures by 

Daugman in the 80’s [360]. In this process, the Gabor filter act as the kernel in the 

neighbourhood operation of image filtering (Subsect. 4.2.1). Mathematically, 

spatial image filtering is carried out by linear convolution, that is the process of 

computing a linear combination of neighbouring image pixels using a predefined 

set of weights (i.e., the kernel). When performed over discrete variables, as images 

are, the convolution can be defined as a `shift and multiply' operation, performed 

by sliding the kernel over the image and sequentially recomputing each pixel value 

as follows: 

O (x,y) = I (x,y) ⊗ K (x,y) = ∑ ∑ 𝐼(𝑥 + 𝑎, 𝑦 + 𝑏) 𝐾 (𝑎, 𝑏)𝑚
𝑏=−𝑚

𝑛
𝑎=−𝑛  (7.1) 
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where O is the output image, I is the input image of dimension X×Y, K is the 

kernel of dimension m×n, x and y are the pixel coordinates, x goes from 1 to X and 

y goes from 1 to Y. 

In the 2-D spatial domain, a Gabor filter can be formed by modulating a 

sinusoidal plane wave by a 2-D Gaussian kernel function (Figure 7.3 (a)).  

 
Figure 7.3. A Gabor filter is the product of a Gaussian kernel and a sinusoidal wave. 

From left to right and from top to bottom: 3-dimensional (3-D) and corresponding colour 

(RGB) and grey-level (GL) bi-dimensional (2-D) example of a sinusoid plane, a 2-D 

Gaussian and the Gabor filter. 

 

In (x, y) coordinate space a simplified form of the Gabor function can be written 

as: 

𝑔(𝑥, 𝑦, 𝜆, 𝜃, 𝜓, 𝜎, 𝛾) = exp (−
𝑥′2 + 𝛾2𝑦′2

2𝜎2
) cos (2𝜋

𝑥′

𝜆
+  𝜓) (7.2) 

where x’=x·cos𝜃+y·sin𝜃, y’=x·sin𝜃+y·cos𝜃, λ is the wavelength of the sinusoidal 

factor, θ is the Gaussian orientation to the parallel stripes of the sinusoid, ψ is the 

phase offset, σ is the standard deviation of the Gaussian envelope, γ is the spatial 

aspect ratio that specifies the ellipticity of the support of the Gabor function. 
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Consequently, by varying the values of these parameters it is possible to modulate 

the appearance of the filter and therefore the type of pattern that can be detected. 

For this reason, a Gabor texture analysis is typically carried out with a multi-

resolution approach, namely by parallelly convolving an image with a family (or 

bank) of Gabor filters, differing in parameters value (Figure 7.4). This way, the 

image is decomposed into a number of filtered images, each containing intensity 

variation over a narrow band of frequency and orientation. 

 
Figure 7.4. Workflow of Gabor-based texture analysis. A single input image is filtered 

(through convolution, ⊗) with a bank of n even-symmetric Gabor filters that uniformly 

covers the spatial-frequency domain. The operation, working as a high-pass filter, 

decomposes the image into n filtered images, enhancing the structures matching the shape 

of the corresponding filter. The filtered images usually undergo further processing, that 

serves the extraction and quantification of the texture features.  

 

For each convolution, a new image in a transformed space is created, whose 

pixels intensity can be read as the degree of local similarity between the image and 

the filter. Finally, the filtered images usually undergo further processing before the 

extraction of texture features, namely quantifiable descriptors of the local 
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geometrical properties of the image. Common texture features include entropy, 

contrast and energy, the latter commonly used to measure the amount of variation 

(i.e., texture uniformity) within a filtered image window [361]. 

In this Chapter, we apply a multi-resolution Gabor filtering method to the 

investigation of bone trabecular microstructure, aiming at classifying tibial 

metaphyseal trabeculae basing on their thickness and orientation.         

7.3 State of the art  

7.3.1 Muscle-bone crosstalk 

The musculoskeletal system (MKS) is a complex organ which includes the 

skeletal bones, skeletal muscles, tendons, ligaments, cartilage, joints, and other 

connective tissue. The coupling of skeletal muscles and bones has long been 

considered primarily to be a mechanical one, in which bone provides an 

attachment site for muscles and muscles apply load to bone [362].  However, 

during the last decade, bone and muscle have been increasingly recognized as 

endocrine target tissues and endocrine organ themselves. In fact, the two tissues 

interact with each other by paracrine and endocrine signals and modulate their 

mutual development and function since intrauterine life to oldness, in a 

continuous crosstalk process of main regulatory importance on tissue function. 

Accordingly, dysregulation of biochemical MKS interaction has been associated to 

the onset of several diseases and disorders, system fractures, lifelong pathologies, 

genetic and metabolic diseases [363], and ageing in general [118]. Therefore, a 

better understanding of the molecular mechanisms responsible for the crosstalk 

among these tissues is needed. 

The muscle–bone crosstalk is supported by preclinical and clinical data, 

showing the presence of many tissue-specific factors released by osteoblasts and 

osteocytes, including prostaglandin E2, osteocalcin, and IGF-1, which have a 

potential impact on skeletal muscle cells. Moreover, a growing number of muscle-

released factors with bone modulating properties have been identified. These 

include insulin-like growth factor-1 (IGF-1), fibroblast growth factor-2, 
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Interleukines IL-6 and IL-15, myostatin, osteoglycin, irisin, and osteoactivin [364-

370]. 

Among others, sclerostin is an established key molecular coordinator of both 

bone formation and bone resorption. Encoded in humans by the SOST gene and 

primarily produced by osteocytes, sclerostin is a secreted glycoprotein capable of 

binding to LRP4 chaperone and LRP5/6 co-receptors and inhibiting the 

Wnt/βcatenin signalling, ultimately leading to reduced bone deposition [371].  

In this study, for the first time, sclerostin is also identified as a new putative 

myokine, demonstrating its expression in in vitro human myocytes and in vivo mice 

muscles of various age and metabolic and load-bearing features. Moreover, 

through a functional approach, muscle-originated sclerostin is demonstrated to 

have an anti-anabolic effect on adjacent bone, and thus hypothesised to act in 

combination with bone sclerostin, for example in severe conditions of increased 

bone fragility.  

7.3.2 Bone quantitative imaging 

Trabecular bone is a hierarchical, malleable and anisotropic tissue whose fine 

architecture conditions, and is conditioned and adaptively remodelled by, the 

mechanical loads that it is subject to. As bone strength directly depends on bone 

shape, imaging technologies rapidly became pillar to the field, allowing non-

invasive quantification of bone morphology at different scales. In particular, given 

the high mineral content of the tissue, X-ray computed tomography (CT) and 

micro–computed tomography (µCT) emerged as methods of choice. X-ray µCT is 

a miniaturized form of CT scanning, used to create 3-D X-ray attenuation maps of 

specimens up to a few millimetres in size, with a resolution typically of the order 

of several microns (Subsect. 3.3.1). High sensitivity to bone and lung, short scan 

time and cost-effectiveness finally make these techniques optimal for trabecular 

bone analysis, both in in vivo and ex vivo applications [372, 373]. 

Trabecular architecture is commonly investigated in µCT scans through 

standardized measurements of bone volume fraction and trabecular number, 

thickness and separation, among others [372]. More sophisticated approaches 

involve self-implemented methods for texture analysis based on image 
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decomposition by wavelets (Subsect, 7.2.2). Among them, the Gabor filter offers 

the possibility to simply yet robustly extract information about the oriented 

structures in an image pattern, mainly through the quantification of texture energy 

and derived anisotropy in filtered images [374, 375]. Since its first application to 

trabecular characterization in 1997 [376], Gabor-based image filtering has been 

extensively used for bone segmentation [377], fracture [378, 379] and osteoporotic 

patients [379, 380] classification and pure texture analysis [355, 381, 382]. Most of 

these studies provides a statistical global sampling of trabecular mass and 

orientation, disregarding the local heterogeneity information. Rather, many 

biomechanical studies highlight the importance of discriminating at least between 

the main trabecular orientations, which align with - and thus mostly bear - the 

major mechanical loads locally acting [357, 383]. Others have recognized the 

importance of discriminating between plate- and rod- like structures in trabecular 

microarchitecture, as different determinants of bone strength [384-386]. However, 

to the best of our knowledge, so far no study has classification single bone 

trabeculae on the basis of their primary attributes of orientation and thickness. To 

this purpose, we have developed a method for trabeculae categorization based on 

Gabor filtering of µCT images, that can however be virtually extended to any other 

imaging solution. This method permits to produce a trabecular map explicative of 

the trabeculae partitioning in different classes of local texture energy, which can 

benefit biomechanical and more generally bone studies by providing a visual 

support for the trabecular pattern.  

7.4 Materials and methods 

In vivo gene transfer and electroporation procedures 

Eight male C57BL/6 mice (Charles River) all belonging to the same progeny 

were housed in the institutional animal facility (Department of Cellular, 

Computational and Integrative Biology (CIBIO), University of Trento, Trento, 

Italy) and maintained on standard chow ad libitum. The pCMV6 expression 

plasmid (MR222588, Origene, Rockville, MD, USA) containing the SOST gene 

tagged with Myc-DDK was amplified in Escherichia coli for two rounds of mice 

electroporation. Eleven and seventeen days after birth, mice were anesthetized by 
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inhaled isoflurane and three animals were electroporated with the pCMV6-Myc-

DDK-hSOST vector (SOST-ET, n=3), three were electroporated with the pCMV6-

Myc-DDK (empty) vector (EV-ET, n=3), and two were non-electroporated (UC, 

n=2). Mice were injected into the tibialis anterior (TA), gastrocnemius (GA), and 

quadriceps femoris (QF) muscles of both hind limbs with a 0.3 mL insulin syringe 

through a 31-gauge needle in a constant volume of ~40 L, receiving ~240 γ of 

plasmid DNA (80/site) each. Stainless-steel plates electrodes at 4–4.5 mm from each 

other were then placed over the muscle to encompass the injection area. 5 min after 

DNA injection, a constant-current (200 V/cm, 20 ms amplitude, 1 Hz) was 

delivered in eight consecutive square-wave pulses with a Digital Stimulator 

(Panlab 3100, Biological Instruments, Harvard Apparatus, Holliston, MA, USA). 

Animals were sacrificed twenty-five days after birth. Animal studies were 

approved by the institutional Animal Use and Welfare Committee and the 

National Ministry of Health (protocol No. 62/2020-PR, granted on the 29 January 

2020). After sacrifice, both left and right tibiae of C57BL/6 mice were harvested, 

paraffin-fixed, and preserved at 4 °C by immersion in paraffine-PBS solution.   

µCT scanning  

Tibiae samples were dried out and axially-scanned at room temperature from 

distal epiphysis to middle diaphysis using a KEVEX PXS10 130 kV–0.5 mA X-ray 

tube (70 kV) and a Photonic Science VHR1 CCD (charge-coupled device) camera 

with a fiber optic plate with a scintillator (FOS) 4000 2600 (9 µm pixel) and with an 

isometric voxel size of 4.5 µm3 and a 2X magnification. Scanning parameters were 

set as follows in Table 7.1: 

 
Table 7.1. Set parameters for µCT scanning of C57BL/6 mice tibiae. 

Parameters Setting 

Voltage (kV) 70 

Beam current (µA) 35 

N° projections 962-1231 

Total rotation angle (°)   720/180 

Exposure Time (s) 4.5 
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Images from single (sample) scans were grouped into single DICOM (Digital 

Imaging and Communications in Medicine) files. All following procedures are 

implemented in MATLAB® (R2019a v.9.6.0, The MathWorks, Natick, MA, USA). 

Regional segmentation of tibial bone 

Single axial scan sections are extracted from DICOM, the acquisition volume 

reconstructed, and single coronal sections drawn for following analyses. The most 

informative (i.e., with less background and more signal, that is, imaged bone) 

coronal section is selected and analysed together with the previous five and the 

subsequent five, for a total of 11 analysed coronal sections per sample. For each 

section, the epiphysis, metaphysis and metaphyseal plate are segmented 

separately and automatedly. The epiphysis is segmented by 1) maximum entropy 

thresholding [387], which identifies all the X ray-adsorbing regions of the samples, 

and 2) DDMs-based refinement of segmented regions [130] (Chapter 4), that 

permits to isolate thick epiphyseal trabeculae by performing a local density 

analysis with a search window size bigger than metaphyseal trabeculae dimension 

and spacing (Figure 7.5 (a)). The metaphysis is segmented by 1) adaptive 

histogram equalization [248], necessary to enhance the metaphyseal trabeculae 

contrast, 2) grey-level image top-hat by small structuring element (Subsect. 5.2.1), 

to selectively enhance bright and small objects (i.e., metaphyseal trabeculae), 3) 

segmentation by maximum entropy thresholding, and 4) refinement by DDM, 

using a region-sized search window to isolate the left small objects that are also 

densely arranged (i.e., metaphyseal trabeculae) (Figure 7.5 (b)). Finally, the 

epiphyseal plate is segmented by 1) logical ANDing (Subsect. 5.2.1) of dilated 

binary masks of previously segmented epiphyseal and metaphyseal region, to 

define the area of interest for further processing, 2) edge detection by Sobel 

operator [388], and ISODATA thresholding [334] , to isolate the plate as the region 

of lower contrast, and 3) refinement by DDM, using a small search window size, 

heuristically determined after preliminary experiments, that permits to isolate the 

main body of the plate object (Figure 7.5 (c)). For methodological comparison, the 

epiphyseal plate is also manually segmented by an expert biologist in Fiji [202].   
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Figure 7.5. Epiphysis, metaphysis and epiphyseal plate segmentation by global 

thresholding and local density analysis in coronal section of µCT scans. (a) Epiphysis is 

segmented by maximum entropy thresholding, DDM computation (WSx=WSy=9) and 

DDM ISODATA thresholding. (b) After enhancement by adaptive histogram equalization 

and top-hat filtering (SE=disk of 2 pixels-radius), metaphyseal trabeculae are segmented 

by maximum entropy thresholding, DDM computation ((WSx=159, WSy=29) and DDM 

ISODATA thresholding. (c) After region of interest definition by logical ANDing of dilated 

epiphyseal and metaphyseal regions, the epiphyseal plate is segmented by ISODATA 

thresholding, DDM computation (WSx=WSy=15) and DDM ISODATA thresholding. Search 

window sizes are after preliminary experiments. Scale bars: 200 µm. 

 

Subregional segmentation of metaphyseal trabeculae 

Due to its matrix composition and trabecular micro-architecture, the long bone 

metaphysis is expectedly one of the most sensitive regions to external remodelling 

stimuli. Accordingly, we developed a method for metaphyseal trabeculae 

segmentation and classification based on Gabor filtering of µCT images, 

schematized in Figure 7.6 using a synthetic pattern, to highlight peculiarities.  
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Figure 7.6. Developed method for automated trabecular classification by thickness and 

orientation. After normalizing pixel values for the isolation of the geometrical content, the 

input image is convolved with a family of Gabor filters distinguished by wavelength and 

orientation and set to uniformly cover an angle of 180° degrees. For each filtered images, 

the texture local energy is computed according to the corresponding filter wavelength. The 

image is finally recomposed by maximum intensity (i.e., energy) projection, and color-

coded for creating the texture colormap.  

 

Starting from any 2-D grey-level image, the method application firstly requires 

a denoising and the input image normalization, to exclude the radiometric 

contribution from the analysis of the pattern geometry and reduce associated 

sensor noise. Then, the normalized image is convolved with a bank of 16 Gabor 

filters, whose members are specified by a unique combination of wavelength (λ) 

and orientation (θ) (Table 7.2). 
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Table 7.2. Wavelength and orientation values for applied Gabor filters.  

Filter ID λ (pixel/circle) θ1(degrees) 

1 2 0.0 

2 3 0.0 

3 2 22.5 

4 3 22.5 

5 2 45.0 

6 3 45.0 

7 2 67.5 

8 3 67.5 

9 2 90.0 

10 3 90.0 

11 2 112.5 

12 3 112.5 

13 2 135.0 

14 3 135.0 

15 2 157.5 

16 3 157.5 

1 With respect to the epiphyseal plate major axis (clockwise direction).  

 

The filter wavelengths have been empirically set to approximately match the 

imaged trabeculae width (i.e., 2-3 pixels, roughly corresponding to 10-15 µm). The 

filter orientations have been heuristically set to uniformly covers all the 

orientations of spatial domain without overlapping. Aware that in the literature 

more than four different orientations are dubiously biologically informative [382], 

we still decided to further partition the space domain to explore possible sub-

patterns. This procedure increases the computational time of the analysis, but does 

not reduce the data significance, as the results for single filterings can be 

subsequently cumulated to reduce the resolution of the analysis, and gain a more 

general perspective on the trabecular pattern. Accordingly, besides partitioning 

the trabeculae in 16 classes, we also pool the results (Sect. 7.5), to reduce the 

partitioning to two main classes of orientation. 

The separate convolution of the normalized image with each filter of the bank 

resulted in 16 images whose intensity values represent the magnitude of local 
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similarity between the input image intensity and the shape of the corresponding 

filter. Then, for each resulting image, the local texture energy is computed by 

replacing each pixel value with the sum of pixel values in its specific 

neighbourhood (i.e., WS=λ of the filter that generated the image). Finally, a 

trabecular map is obtained by replacing each pixel of the input image with the 

“serial number” (i.e., filter ID) of the energy image where the value of that pixel 

was maximum. This way, each pixel can be univocally assigned to the filter that 

best matched its geometry and thus led to its maximum energy value. The 

resulting trabecular map can be visualized by pseudo color-coding, to get a 

simplified and comprehensive view of the different trabecular pattern distribution 

in the image. Moreover, the trabecular map constitutes a segmentation of 

trabeculae by thickness and orientation, and can thus serve further quantitative 

texture analysis. 

Assessment of results 

For regional-level analysis of epiphysis and metaphysis, the mean trabecular 

thickness (Tb. Th), spacing (Tb. Sp), number (Tb. Nr) and intensity (Tb. Int) are 

quantified. Tb. Nr is computed as the inverse of Tb. Sp [372], which is derived via 

the distance-transform method [389], as well as Tb. Th. Tb. Int is analysed as a 

proxy measure of bone mineral density (BMD), aware that no BMD calibration has 

been performed prior to this study [390], as its primary goal is to perform a 

morphological – non radiometrical – bone analysis. Additionally, the epiphyseal 

plate thickness after manual or automated segmentation is expressed as Hausdorff 

Distance [391] between the superior and inferior border of the plate. For 

subregional-level analysis of metaphysis, the thickness (Tb. Thm), number (Tb. 

Nrm), eccentricity (Tb. Ecm) and extension (Tb. Am) are quantified for each class of 

segmented trabeculae.  

Statistical analysis 

Statistical analysis is performed by pooling the left and right tibiae within each 

experimental group (UC, EV-ET, SOST-EV) and testing two-sample hypotheses for 

each group pair and their samples. As an example, after comparing the EV-ET 
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group against the SOST-ET group for a specific feature, we also compared in a two-

sample fashion all the tibiae of the EV-ET group with all the tibiae of the SOST-ET 

group, to see whether and how the trend observed at the group level is 

distinguished among its components. Two left tibiae samples (one from UC and 

one from SOST-ET group) are discarded as outliers, being more than three median 

absolute deviation (MAD) away from the median. One right tibia from the SOST-

ET group is discarded from the analysis of epiphysis and epiphyseal plate, as the 

sample is broken and the regions missing. 

Data deviation from normality is early verified by histogram inspection, 

followed by the Shapiro-Wilk test, based on which the discriminatory power of 

features is assessed by either two-tail Student’s t-test or Wilcoxon rank-sum test 

with Bonferroni correction for multiple comparison procedures. p-values < 0.05 

were considered for statistical significance. 

7.5 Results and discussion 

Plasmid electroporation increases muscle local but not circulating sclerostin 

levels 

Sclerostin is a major secreted inhibitor of bone formation and stands out as an 

important actor upstream of the Wnt signalling pathway. Sclerostin is generally 

considered an osteocyte-specific protein, whose expression is restricted to bone 

tissue, despite circumstantial documentation of its presence in other organs. 

However, in this study sclerostin potential synthesis and secretion by muscle cells 

is investigated for the first time. First in vitro experiments confirmed sclerostin 

expression and release from both myoblast line and primary myocytes, with 

extracellular medium strongly inhibiting osteoblasts mineralization and 

differentiation in two weeks [118]. Further in vivo Western Blot analysis and ELISA 

assay confirmed remarkable, heterogeneous, and dynamically modulated 

sclerostin expression in muscles from different body districts and of different 

metabolic profile. Finally, to investigate a possible role for the muscle form of 

sclerostin, a gain-of-function experiment is performed by transiently 

overexpressing via electroporation a plasmid containing the SOST gene in muscles 

of young mice, as detailed in Figure 7.7 (a).  
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Figure 7.7. (a) Graphical scheme of the sclerostin overexpression experiment. Eight male 

C57BL/6 mice from the same progeny are randomly assigned to three different 

experimental groups: non-electroporated control (UC) or electroporated with an empty 

vector (EV-ET) or with the sclerostin vector (SOST-ET). At day 11 (before electroporation, 

set baseline) and day 25 (before sacrifice) blood serum is collected from each animal. (b). 

Representative histological sections of C57BL/6 TA muscles from UC and SOST-ET mice 

stained with H&E (left) or stained with anti-CD34 and anti-LCA antibodies (right). Black 

arrows indicate inflammatory infiltrate. Scale bar: 100 µm. (c) Exogenous myc-tagged (left) 

and total (right) sclerostin expression by qRT-PCR in TA, GA, and QF muscles of SOST-ET 

and EV-ET mice, expressed as mean ± STD. * p < 0.05 by two-tailed unpaired t-test. Image 

adapted from [118] under the CC-BY Creative Commons Attribution 4.0 International 

license. 

 

To assess the potential injury induced by electroporation, histological analysis 

of electroporated muscles is performed at sacrifice. Hematoxylin and eosin (H&E) 



 

180 
 

staining (Figure 7.7 (b)) reveals limited presence of inflammatory infiltrates and 

newly formed blood vessels, suggesting that the electroporation procedure may 

induce mild inflammatory reactions yet counterbalanced by the onset of 

regenerative processes. Electroporation efficiency is assessed by quantitative 

reverse transcription-PCR (qRT-PCR, Figure 7.7 (c)), showing a significant increase 

of the myc-tagged sclerostin transcripts in electroporated TA muscle for the SOST-

ET group. However, the level of circulating sclerostin appeared to be not 

significantly altered by the electroporation of the SOST-expressing plasmid (data 

not shown). Taken together, these data confirmed that plasmid electroporation 

was successful in yielding a strong local increase in sclerostin in the targeted 

muscles but highlight a limited influence on the circulating levels of sclerostin. 

Sclerostin overexpression in muscle reduces metaphyseal bone trabeculae more 

parallel to the epiphyseal plate in adjacent long bone 

In order to evaluate the microscopic events induced by muscle electroporation 

on adjacent skeletal segments, quantitative image analysis is performed on µCT 

scans of mice tibiae, that lies between the TA and GA muscles targeted by the 

electroporation. For each analysed coronal sections, epiphysis and metaphysis 

morphology, beside the epiphyseal plate thickness, is compared between the UC, 

the EV-ET and the SOST-ET group. At the regional level, no significant changes in 

the epiphyseal and metaphyseal trabecular organization are detected in response 

to electroporation with either the empty or the SOST-bearing vector. When 

segmented manually, the epiphyseal plate thickness is reported to gradually 

increase following electroporation with empty vector (+6% from UC, p=0.8094, 

p<0.0021) and with SOST-expressing vector (+14% from UC, p=10-4, p<0.0025), 

however with no significance between the two electroporations (SOST-ET: +8% 

from EV-ET, p=0.0037, p<0.0017). The total absence of significance for automatedly 

segmented plate hints at the necessity to improve our method for its segmentation, 

made difficult by the total absence of mineralization (and therefore local image 

contrast) for this structure in µCT scans. On the other side, the absence of a ground 

truth for manual plate segmentation cannot exclude some inaccuracies in (some 

steps of) this commonly employed approach [392-394]. 
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At the subregional level, variations in the extension (Table 7.3) and number 

(Table 7.4) of metaphyseal trabeculae were found in response to electroporation 

with the SOST vector. 

 
Table 7.3. Statistical analysis of metaphyseal trabecular classes extension expressed as percentage 

of metaphysis in UC, EV-ET and SOST-ET C57BL/6 mice. 

Tb. class  

(Filter ID) 

Tb. Am 

Median ± MAD (pixel) 
EV-ET – SOST-ET 

p-value (α=0.0014) 
UC EV-ET SOST-ET 

1 0.06 ± 0.02 0.10 ± 0.06 0.09 ± 0.01 0,8609 

2 3.90 ± 0.11 1.64 ± 0.35 1.79 ± 0.14 0,0028 

3 0.08 ± 0.04 0.07 ± 0.02 0.04 ± 0.04 0,0130 

4 3.06 ± 0.29 1.58 ± 0.33 2.38 ± 0.83 0,0002 

5 0.05 ± 0.02 0.07 ± 0.04 0.15 ± 0.05 0,0037 

6 2.74 ± 0.52 2.71 ± 0.65 4.26 ± 1.18 2,92·10-6 

7 0.03 ± 0.03 0.15 ± 0.09 0.04 ± 0.04 0,9433 

8 3.02 ± 0.21 8.21 ± 1.75 23.71 ± 11.82 7,57·10-8 

9 0.24 ± 0.03 0.11 ± 0.11 0.64 ± 0.55 0,1235 

10 7.23 ± 3.64 39.06 ± 8.53 30.66 ± 11.00 0,0002 

11 0.00 ± 0.00* 0.52 ± 0.10 0.04 ± 0.04 2,96·10-8 

12 14.27 ± 4.14 31.53 ± 7.80 10.37 ± 4.67 1,37·10-18 

13 0.65 ± 0.40 0.09 ± 0.02 0.10 ± 0.06 0,0356 

14 37.71 ± 9.20 6.34 ± 0.68 5.12 ± 1.26 0,0006 

15 0.08 ± 0.03 0.11 ± 0.02 0.09 ± 0.03 0,1678 

16 12.54 ± 2.60 2.60± 0.89 2.01 ± 0.10 0,9040 

*Trabecular class undetected in more than half of the samples. 
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Table 7.4. Statistical analysis of metaphyseal class trabecular number in UC, EV-ET and SOST-ET 

C57BL/6 mice. 

Tb. class 

(Filter ID) 

Tb. Nrm 

Median ± MAD (pixel) 
EV-ET – SOST-ET 

p-value (α=0.0014) 
UC EV-ET SOST-ET 

1 9,0 ± 2,0 11,0 ± 5.5 10,0 ± 4.0 0,2371 

2 115,5 ± 14,5 74,5 ± 20.5 75,0 ± 11.0 0,0663 

3 8,0 ± 3.5 9,5 ± 4.5 5,0 ± 4.0 0,0102 

4 91,0 ± 10.0 61,0 ± 17.5 79,0 ± 20.0 0,0215 

5 7,0 ± 3.0 8,0 ± 3.0 19,0 ± 3.0 0,0365 

6 84,5 ± 11.5 77,5 ± 10.0 92,0 ± 10.0 0,0390 

7 4,5 ± 3.5 12,5 ± 7.5 6,0 ± 6.0 0,7360 

8 101,0 ± 22.5 144,0 ± 16.0 102,0 ± 9.0 0,0028 

9 24,0 ± 3.0 9,5 ± 9.5 47,0 ± 35.5 0,0387 

10 124,5 ± 14.0 130,0 ± 33.0 122,0 ± 10.0 0,0431 

11 0,0 ± 0.0* 47,0 ± 15.5 6,0 ± 6.0 1,30·10-9 

12 152,5 ± 13.0 135,5 ± 30.5 152,0 ± 11.0 0,0797 

13 60,5 ± 25.2 12,0 ± 3.0 14,0 ± 9.0 0,2623 

14 117,5 ± 15.5 139,5 ± 20.5 86,0 ± 15.0 1,56·10-10 

15 11,0 ± 4.5 10,0 ± 3.0 11,0 ± 5.0 0,1118 

16 152,5 ± 35.5 82,0 ± 17.0 83,0 ± 10.0 0,7517 

*Trabecular class undetected in more than half of the samples. 

A qualitative inspection of created trabecular maps highlights a shift in 

predominant colour from UC to SOST-ET, that reflects a change in the metaphyseal 

pattern (Figure 7.8 (a)). Then, to increase the biological translatability of the results, 

we grouped the trabeculae into two classes only, namely those “parallel” and 

“perpendicular” to the plate, according to the scheme of Figure 7.8 (b). We found 

that in SOST-electroporated mice parallel trabecular are strongly reduced (-60% 

Tb Am from UC, p=10-7, p<0.0025) while perpendicular ones increase in occupancy 

(+9% Tb Am from UC, p=10-7, p<0.0025) (Figure 7.8 (c)).  
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Figure 7.8. Sclerostin muscle overexpression effect on metaphyseal trabeculae in 

adjacent bone. (a) Exemplificative µCT scans of distal tibial bone for UC, EV-ET and SOST-

ET mice. Yellow arrows highlight trabeculae parallel to the epiphyseal plate, that reduce 

when SOST is overexpressed in adjacent muscle. Scale bars: 200 µm. (b) Texture Class Map 

highlight by color-coding the variation in metaphysis trabecular composition from UC to 

SOST-ET. (c) Trabecular classes colour code and specification by thickness (σ) and 

orientation (θ). Classes 7 to 14 are pooled as perpendicular (to the epiphyseal plate), while 

remaining classes are pooled as parallel. (d) Trabecular class extension (Tb Am, percentage 

of metaphysis) of pooled trabecular classes indicates a significative enrichment in 

perpendicular trabeculae at the expense of parallels. Data reported as median ± MAD. 

Asterisk (*) indicates statistical significance in comparison with UC according to the 

Multiple Comparison test with the Bonferroni correction (α=0.0025). Image reproduced 

from [118] under the CC-BY Creative Commons Attribution 4.0 International license. 
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These findings are in line with the expected anti-anabolic role of sclerostin, and 

with the acknowledged relation between load and trabecular microstructure [355, 

396]. Accordingly, at the presence of overexpressed sclerostin we observe a 

selective enrichment in the trabeculae that are more perpendicular to the 

epiphyseal plate, as they are involved in most of the mechanical load bearing. Since 

oblique and more parallel trabeculae are physiologically expected to reduce with 

ageing [397], a muscle sclerostin contribution to this process should not be 

excluded. Thus, we argue that, particularly in dynamic situations (such as in the 

growing skeleton) and despite sophisticated analyses (such as µCT), the effect of 

downregulation on osteogenesis exerted by sclerostin of muscular origin can be 

masked by the effect exerted on the skeleton by the increase in body mass during 

somatic growth.   

7.6 Conclusions  

Accumulating evidence indicates that myokines may affect adjacent bones 

through paracrine mechanisms, relying on different factors diffusion across 

muscle and bone tissues. In this study, the role of the sclerostin protein in muscle-

to-bone crosstalk was investigated, identifying it as a new putative myokine 

involved in osteogenesis inhibition by paracrine signalling. In vitro analysis 

demonstrated sclerostin dynamic expression and secretion in myocyte cell line and 

primary culture during myogenic lineage progression. In vivo analysis revealed 

that the muscle metabolic and mechanical loading characteristics constitutes a 

further factor for sclerostin modulation. Finally, in vivo transient sclerostin over-

expression followed by on-purpose µCT image analysis disclosed a selective 

paracrine inhibitory role of the muscular sclerostin on adjacent bones, that reduced 

the metaphyseal trabeculae less subjected to increasing load during growth.  

Taken together, these observations suggest that sclerostin released by skeletal 

muscle might synergistically interact with osseous sclerostin and potentiate 

negative regulation of osteogenesis possibly by acting in a paracrine/local fashion. 

Our data point out a role for muscle as a new source of sclerostin, that however 

need to be further investigated before proposing the validation of this protein as a 

therapeutic target. From a molecular point of view, the next steps will expectedly 
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involve the detailed analyses of the biochemical structure of muscular sclerostin, 

in comparison with the osseous one, beside the investigation of potential anti-

sclerostin compounds, to also inhibit the muscular form. From an image analysis 

perspective, improvement of the developed trabecular classification method 

should firstly address the possibility to separate single trabeculae within a class, 

to open for new meaningful characterization (e.g., trabeculae morphology) and 

improve statistical robustness. However, this will necessarily require imaging 

samples at a much higher resolution. The second limitation concerns 

reproducibility. As we directly experienced, the acquisition parameter values and 

the specimen position inside the µCT scanner is of major importance and can 

strongly affect the outcome. Therefore, further analyses must prioritize the 

optimization and standardization of scanning procedures, under penalty of 

reduced or even masked out data significance.  

7.7 Content-aware contribution and future developments 

The entire activity I carried out within this collaboration benefitted the 

interdisciplinarity and the content-aware approach. Crucially, my biological 

formation allowed me to better comprehend bone dynamics and its architecture 

role. Additionally, the study of the Gabor filter opened for the selection and 

development of a more effective and biologically significant method for bone 

remodelling investigation. In particular, I could identify the metaphysis as the 

more responsive and malleable bone region, therefore more worthy of 

investigation. Secondly, I could better understand the importance of metaphyseal 

trabecular orientation and thickness, and how bone strength is a function of the 

formed trabecular pattern, rather than of individual trabeculae. Therefore, I 

decided to quantify muscle sclerostin effect on bone by searching for variation in 

the metaphyseal trabecular pattern, relying on 2-D Gabor filter for a texture 

analysis that resemble the biology of visual cortex [356], and focusing on those 

filter parameters (i.e., σ and θ) that model the main trabecular characteristics. 

As regarding future perspective, much can be done at the methodological level. 

With respect to this specific work, increasing the sample size would be the first 

necessity to improve significance, at present masked by limited number of samples 
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(especially in the control group) and a coarse division between perpendicular and 

parallel trabeculae. Increasing the sample size would also enable correlation 

analysis between molecular and imaging results, and possibly to an unsupervised 

classification analysis, to be separately conducted on right and left tibiae, searching 

for correspondence between paired samples.   

To the best of our knowledge, this is the first example of application of Gabor 

filtering to metaphyseal trabecular pattern classification. Therefore, another pillar 

step would be to find further datasets to demonstrate the validity and 

generalizability of the trabecular classification method. Subordinately to an 

increase in µCT scan resolution, a further step could be the segmentation of 

individual trabeculae and their division in plates and rods [398], for morphological 

investigation. Ideally, we could pair our imaging analysis with finite elements (FE) 

models to determine the strength and stiffness of the bone samples basing on the 

trabecular architecture information [399]. Nonetheless, despite the lack of 

experimental data about the mechanical validity of our trabecular classification, 

our method remains a valid tool for supporting molecular and biomechanics 

studies of bone architectures, not least to provide a visual overview of bone 

trabecular remodelling. 
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Chapter 8 

Content-aware approach in 

developmental and regenerative dental 

biology: characterization of hDPSCs 

spheroids and molar innervation by 

automated quantitative imaging  

In this Chapter, we present the application of our content-aware approach to 

dental biology carried out during my research period abroad, spent at the 

Orofacial Development and Regeneration Unit at the Institute of Oral Biology of 

the University of Zürich (UZH), in Switzerland, under the direct supervision of 

Professor Thimios A. Mitsiadis. The collaboration involved two main activities: the 

characterization of three-dimensional (3-D) organotypic spheroids of human 

dental pulp stem cells (hDPSCs), and the investigation of the role of the Nogo-A 

protein in the 3-D architecture of tooth innervation. 

In the next Sections, the collaboration framework is first introduced (Sect. 8.1). 

Then, in Sect. 8.2, the theoretical background for the two activities is discussed. 

Subsect. 8.2.1 summarises the mammal tooth anatomy and cellular composition, 

focusing on the stem cell pools and DPSCs. Subsect. 8.2.2 instead recapitulates 

mammal dental innervation during development. Sect. 8.3 introduces the state of 

the art for the two activities. With respect to the 3-D hDPSCs spheroids 

characterization study, Subsect. 8.3.1 surveys difficulties and spheroid solutions of 

modelling mesenchymal stem cells (MSCs) and especially MSCs niche. Concerning 

the study of the role of Nogo-A in tooth innervation, Subsect. 8.3.2 summarises the 
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current knowledge on the neurite outgrowth inhibitor Nogo-A, and its functions 

in the nervous system. Then, Material and Methods (Sect. 8.4) and Results and 

Discussion (Sect. 8.5) for the two activities is explicitly separated in two 

Subsections, namely hDPSC spheroids characterization (Subsects. 8.4.1 and 8.5.1) and 

Nogo-A role in tooth innervation (Subsects. 8.4.2 and 8.5.2). Finally, after drawing the 

main conclusions for the two activities (Sect. 8.6), the contribution of the content-

aware approach to the presented studies is recalled, together with future 

perspectives (Sect. 8.7).  

8.1 Study context 

At the beginning of the third year of the PhD, I carried out a three-month period 

as a visiting researcher at the Orofacial Development and Regeneration Unit at the 

Institute of Oral Biology of the UZH, in Switzerland, under the supervision of Prof. 

Thimios A. Mitsiadis. The laboratory is strategically located inside the Center of 

Dental Medicine in Zürich, enabling the direct and fast access to surgical 

specimens for research purposes. Furthermore, the laboratory can easily dispose 

of UZH key infrastructures and their expertise, such as the Center for Microscopy 

and Image Analysis and the Laboratory Animal Services Center (LASC). 

Because of the interdisciplinarity of my PhD, I have been involved from the 

very first day in several lab projects, ending up on two activities. The first activity 

involved the characterization of 3-D organotypic hDPSC spheroids as a new 

reliable in vitro model of dental stem cells niche. My contribution to the activity 

was not limited to image analysis, but extended to image acquisition, carrying out 

of molecular experiments and to experimental planning, with a view to the needs 

of the following image analysis stage. Specifically, I was in charge of characterizing 

spheroids morphology and assessing their viability by image analysis, respectively 

after Bright Field and fluorescence microscopy imaging and developing of on-

purpose analysis pipelines. The second activity involved the investigation of the 

role of the neurite outgrowth inhibitor Nogo-A in tooth innervation during 

development, using both in vivo (i.e., extracted murine first molars) and in vitro (i.e., 

in vitro cultures of explanted sensory ganglia such as Trigeminal Ganglia (TG) and 

Dorsal Root Ganglia (DRG)) models. For both models, I was involved in the 
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analysis of the neuronal network morphology, carried out by developing on-

purpose methods for networks segmentation and quantification after fluorescent 

microscopy imaging (molar model) or by differential interference contrast (DIC) 

microscopy (TG/DRG model). 

8.2     Theoretical background 

8.2.1 Tooth anatomy and DPSCs  

Teeth are hard, calcified structures occurring on the jaws and in or around the 

mouth and the pharynx areas of vertebrates. The general structure of a mammalian 

tooth consists of three layers that uniquely combine hard and soft tissues (Figure 

8.1 (a)). An outer layer of inorganic enamel, the hardest tissue of the human body, 

covers the crown of the tooth. The enamel is supported by a middle layer of 

dentine, a highly mineralized tissue more similar to bone in composition. The 

dentine forms the main bulk of the tooth and is covered by enamel on the crown 

portion and by cementum on the roots. The innermost portion of the tooth is the 

dental pulp, a connective tissue that conveys innervation and vascularisation 

which guarantees trophic support and tooth survival and regeneration. Nerve 

fibres from the trigeminal ganglion enter the dental pulp from the apical foramen, 

an opening at the bottom of the roots, and extend right into the dentine, conducting 

pain and sensitivity. The gumline sets the separation between tooth crown and 

roots. The tooth is anchored to the surrounding alveolar bone through the 

periodontium, which absorbs the various shocks associated with mastication and 

provides the tooth with stability by continuously remodelling its extracellular 

matrix (ECM), the periodontal ligament. Another calcified tissue of the 

periodontium, the cementum, covers the roots and anchors the teeth to the alveolar 

bone through the periodontal ligament, that similarly to the dental pulp is 

supported by a rich vascular plexus and a rich neuronal network [400].  
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Figure 8.1. Mature tooth anatomy and stem cells. (a) Tooth structure and dental tissues, 

with details of odontoblast niche (A), pulp niche (B) and cementum. Image reproduced 

from [401] under the CC-BY Creative Commons Attribution 4.0 International license 

(https://creativecommons.org/licenses/by/4.0/). (b) Oral and dental stem cells. GMSCs, 

gingiva-derived mesenchymal stem cells; DFPCs, dental follicle precursor cells; SCAP, 

stem cells from apical papilla; PDLSCs, periodontal ligament stem cells; DPSCs, dental 

pulp stem cells; SHED, stem cells from human exfoliated deciduous teeth, ABMSCs, 

alveolar bone–derived mesenchymal stem cell. Image reproduced from [402] under the 

CC-BY Creative Commons Attribution 4.0 International license. 

 

The development of the tooth results from sequential and reciprocal 

interactions between cells of the oral epithelium and the cranial neural crest-

derived mesenchyme [403] (Subsect. 8.2.2). Oral epithelial cells generate 

ameloblasts (ABs) that produce the enamel and then drive the development of the 

dental roots. Dental mesenchymal cells generate odontoblasts (OBs), the cells 

responsible for dentine production, as well as the dental pulp and the 

periodontium [404-406]. Both ABs and OBs start matrix secretion in the 
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developmental stage, but while OBs survive the first deposition, ABs either 

undergo apoptosis or are shredded out during tooth eruption, meaning that 

damaged dentin, but not enamel, can be repaired throughout life. Recently, a 

single-cell profiling from the dental pulp and the periodontal tissues in human 

teeth has identified a variety of cell populations, including mesenchymal stem cells 

(MSCs), fibroblasts, odontoblasts, endothelial cells (ECs), Schwann cells (ScCs), 

immune cells, epithelial-like cells, and erythrocytes [407]. MSCs represented on 

average 12% of the adult dental pulp tissue and 19% of periodontium, remarking 

stem cell importance in regenerative processes of dental tissue upon injury.  

Like other organs, tooth compartments harbour a niche of heterogeneous 

stem/progenitor cell populations of embryonic derivation. Three populations of 

stem cells can be found in the periodontium and the dental pulp: the periodontal 

stem cells (PDSCs), the dental pulp stem cells (DPSCs) and the stem cells from the 

apical papilla (SCAPs) (Figure 8.1 (b) [402]. Like bone marrow-derived 

mesenchymal stem cells (BM-MSCs), dental stem/progenitor cells exhibit self-

renewal capacity and multilineage differentiation potential [409], besides 

expressing numerous MSCs stemness markers [408]. The decision between self-

renewal and differentiation is driven by a specialized and highly regulated 

microenvironment called stem cell niche. While SCAPs can be found only in the 

apical root of immature teeth, DPSCs and PDSCs also characterize the adult tooth, 

where they respond to cellular, chemical and physical stimuli to ensure 

homeostasis and regeneration of dental tissues and associated immune system 

[400].  

Despite expressing different MSC markers, DPSCs have an ectodermic origin 

from neural crests, explaining their high differentiation ability towards 

odontoblasts and neural cells. DPSCs, also called postnatal DPSCs, are mainly 

located in perivascular areas of the pulp chamber in adult teeth, where they play 

a central role in tooth regeneration upon injury. By establishing a continuous, 

bidirectional and bifunctional Notch-mediated signalling with ECs, DPSCs 

proliferate and migrate into the damaged tissue to differentiate into odontoblasts 

and form reparative dentin, which has been proposed to be the main mechanism 

leading to reparative dentinogenesis. Notch signalling is indeed fundamental in 

the interactions between stem cells and their microenvironment, mediating stem 
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cells responses to injury or stress and influencing cellular differentiation, 

proliferation and apoptotic events [407, 409, 410]. 

8.2.2 Odontogenesis and tooth innervation  

Odontogenesis, or teeth generation, is a sequential process of several complex 

stages that go from embryonic cells aggregation to tooth eruption into the mouth. 

Remarkably, the tooth tissues originate from different cell lineages. The enamel 

develops from cells derived from the ectoderm of the oral cavity, whereas the 

cementum, dentin, and pulp tissues are derived from neural crest-mesenchyme 

cells of ectodermal and mesodermal origin [411, 412]. In mice, developing teeth go 

through distinct morphological phases that are tightly controlled by epithelial 

signalling centres. Mouse tooth development initiates around embryonic day 11 

(E11, induction phase), when localized epithelial thickenings in the oral ectoderm 

form and establish the molar and incisor dental placodes at E11.5 (Figure 8.2). 

Subsequently, the dental epithelium proliferates and invaginates into the 

underlying mesenchyme, which condenses around the epithelium to form the 

tooth bud (E12.5–E13.5). The initial knot (IK), first described in incisors [413] and 

only recently in molars [414], is the earliest signalling centre thought to drive the 

placode-to-bud progression. Over the successive days, the epithelium continues to 

differentiate and extends around the dental mesenchyme, thereby forming a cap 

(visible at E13.5–E14.5) and later a bell shape (E15.5–E18.5). During the bud-to-cap 

transition, the primary enamel knot (pEK), a transient signalling centre located in 

the dental epithelium, sends key morphogenic signals to the developing molar and 

incisor tooth germs. The Notch/delta signalling has been found crucial for this 

stage. [415, 416]. In response to signals from the pEK, the dental epithelial tissue 

elongates transversely (molars) or longitudinally (incisors), thus extending into 

and around the underlying mesenchyme and forming the cervical loops (CLs) on 

both sides of the condensed mesenchyme, now referred to as the dental papilla. At 

the end of the cap stage, the pEK undergoes apoptosis and, in multicuspid teeth 

such as molars, is replaced by secondary EKs (sEKs). Invagination and elongation 

of the CLs into the dental mesenchyme define the inner and outer enamel epithelia 

(IEE and OEE, respectively), separated by the uniquely vascularized stellate 
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reticulum (SR).  Following further invagination and elongation of the CLs into the 

dental mesenchyme, the crown and root are established, and the dental epithelial 

and mesenchymal cells further differentiate. By the bell stage, ABs precursors 

coordinate enamel deposition, and OBs, future dentine producers, are formed. In 

the final steps, the tooth erupts in the mouth. This involves the coordination of 

bone resorption and root development, and occurs postnatally. Tooth 

development is tightly controlled by multiple evolutionarily conserved signalling 

pathways. In particular, canonical Wnt and Shh signallings appears crucial for 

odontogenesis, as extensively recently reviewed [416]. 

 

Figure 8.2. Overview of mouse tooth development. Embryonic stages of mouse tooth 

development, with divergent morphology of molar and incisor tooth germs. AB, 

ameloblasts; CL, cervical loop; D, dentin; DEJ, dentin-enamel junction; DF, dental follicle; 

DL, dental lamina; DP, dental pulp; En, enamel; E11, embryonic day 11; ERM, epithelial 

cells rests of Malassez; HERS, Hertwig’s epithelial root sheath; IEE, inner enamel 

epithelium; IK, initiation knot; laCL, labial cervical loop; liCL, lingual cervical loop; pEK, 

primary enamel knot; PN7, postnatal day 7; sEK, secondary enamel knot, OB, odontoblasts; 

OEE, outer enamel epithelium; SR, stellate reticulum. Image adapted from [416] under the 

CC-BY Creative Commons Attribution 4.0 International license. 

 

The tooth represents a unique exception to canonical tissue innervation, both 

in terms of development and nerve composition. Accordingly, tooth innervation 

plays unique and fundamental roles in pulp homeostasis, repair, and regeneration. 

First, being composed of highly dense and pain conducting fibres, the tooth 

neuronal network represents a primary surveillance system alerting the central 
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nervous system (CNS) for potential or actual injury. Second, pulp nervous fibres 

are key players in reparative processes as mediators of inflammation and 

modulators of the re-mineralization response. Finally, tooth nerve fibres contribute 

to tooth homeostasis, by taking part in the definition of stem cell niche and 

modulating enamel and dentin mineralization [417-421]. 

During development, teeth acquire a sensory innervation from the trigeminal 

ganglion (TG). Axons reach the jaws before tooth formation and surround the 

dental mesenchyme in basket-like formations already at embryonic day 13.5 

(E13.5). However, it is only after the crown shape is set and the mineralization of 

both enamel and dentin has commenced, around postnatal (PN) day 3–4 in the 

mouse, that pioneer nerve fibres can enter the apical region of the tooth germ. 

Before that, the nerve ingrowth towards the dental epithelium and inside the 

papilla is actively inhibited and regulated by semaphorins [422, 423]. While the 

expression of these neurite inhibitory/repulsive factors decreases in a temporal 

pattern, the expression of different neurotrophins and axon guidance molecules 

takes over, allowing tooth innervation. However, it is only after complete tooth 

eruption, around PN20 in mice [424], that pulp neuronal fibres become functional 

and responsive to external stimuli. [425, 426].  

With respect to other tissues, dental pulp innervation is highly dense, enriched 

in nociceptors and characterized by a progressive thinning and demyelination of 

fibres from roots to crown. Both unmyelinated and myelinated sensory nerves, as 

well as unmyelinated sympathetic neurons, innervate the mature tooth. Within the 

root pulp of permanent teeth, around 70–90% of large and medium axons are of 

unmyelinated sensory fibres, mostly Aδ- and C- nociceptors, while the remainder 

axons of the sympathetic autonomous system, projecting from the superior 

cervical ganglion, serve the pulpal vasculature [427]. Accordingly, heat and cold 

pain is the predominant experience, if not the only, that can be evoked when 

pulpal nerves are excited; pressure and temperature sensations are indeed almost 

exclusive of periodontium nerves. Among the few Aβ-fibres present, some might 

be nociceptive, but most are thought to be low-threshold mechanoreceptors 

(LTMs) that subserve ‘pre-pain’ sensations. In the short intradental course from 

the radicular to the coronal pulp, the network undergoes extensive axonal 

arborization, while up to 90% of the myelinated axons lose their myelin below or 
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in the odontoblast layer region, entering a close association with these cells and 

their niche in what seems to be analogous to a blood-barrier system [428]. Some 

axon terminals proceed beyond this site and continue along the odontoblast 

processes into the dentinal tubules to innervate the inner segment of the dentin. 

8.3 State of the art  

8.3.1 MSCs niche modelling   

Soon after their first description [429], MSCs have represented a unique and 

compelling opportunity for tissue engineering and regenerative medicine 

applications, ultimately aiming at repairing and renewing damaged tissue by 

MSCs transplant [430, 431]. In particular, dental stem cells (DSCs) are excellent 

candidates for such applications, as they are abundant, harvested with minimally 

invasive procedures, raise no ethical concerns and, importantly, apply to the 

regeneration of both dental and non-dental tissues [432, 433]. However, the 

behaviour of these and other stem cell populations is regulated by molecular cues 

produced in their microenvironment by stromal cells, neurons, vascular-related 

cells, and immune cells, as well as by physical factors such as stiffness, topography, 

and shear stress [434]. As a main example, the divergent migration and 

differentiation behaviour observed for DPSCs and PDSCs has been ascribed to 

their interaction with different niches, rather than to intrinsic differences [407]. 

Most of microenvironment cues are obviously missing in traditional 2-D in vitro 

culture models, as they are related to the three-dimensionality of real tissues. 

Consequently, traditional culture systems do not allow proper investigation of 

MSCs behaviour, nor the culturing of a representative MSCs population to be used 

in further preclinical and clinical applications. Indeed, a thorough understanding 

of the interactions between DSCs and their microenvironment niche is still lacking. 

3-D multicellular spheroids constitute a simple yet effective solution to 

strongly improve the representativeness of MSCs models and of human dental 

tissues complexity. Accordingly, 3-D structures such as spheroids and organoids 

allow complex cell-cell interactions, the creation of more physiological gradients 

of oxygen, nutrients and catabolites, and the in vivo-like circulation of soluble 
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signals [435]. Moreover, self-assembly and self-ECM formation make spheroids 

particularly suitable for inexpensively modelling and exploring MSCs specific 

niche, including physiological hypoxic gradients [436]. Indeed, MSCs cultured in 

spheroids have been demonstrated to possess enhanced stemness features, anti-

inflammatory, angiogenic, antifibrotic and anti-inflammatory properties, 

enhanced secretory profile and anti-oxidative capacity [75, 76]. Finally, both in vitro 

and in vivo studies have demonstrated that DSCs differentiation and osteogenic 

potential is improved when cultured as spheroids [436]. However, a major and 

recurrent drawback of spheroid models is the impact of their cell heterogeneity on 

data reproducibility [89] and, specifically to MSCs spheroids, the reduction of cell 

proliferation [436, 437].   

In this context, we developed 3-D organotypic DPSC spheroids to be assessed 

as reliable models to recapitulate the dental pulp niche and investigate DPSCs 

regenerative potential and suitability for personalized regenerative medicine 

strategies. In this first step of the study, where I was directly involved, we chose 

an approach based on spheroid morphological pre-selection to reduce results 

variability, as previously introduced [89]. The main goal was to characterize our 

novel model in terms of DPSCs stemness, viability and proliferation, further 

defining the moment of culture at which spheroid properties are more stable, 

maximising model reproducibility.  

8.3.2 Nogo-A role in the central nervous system  

First discovered in the CNS [439, 440], Nogo-A is a myelin-associated 

oligodendrocyte membrane protein that interacts with neuronal receptors and 

inhibits neurite growth, overall reducing the length and ramification of the 

neuronal network [441, 442]. In the adult CNS, Nogo-A is expressed primarily by 

oligodendrocytes and is mainly known for its inhibitory effects on axon 

regeneration and compensatory sprouting after injury [443, 444]. Accordingly, 

there is a strong interest around Nogo-A potential for clinical applications in the 

treatment of CNS injuries [445-447]. Nogo-A plays further roles during CNS 

development. Depending on the moment and location of expression, Nogo-A can 
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contribute to the regulation of neural growth and branching, myelin formation, 

and neuronal plasticity [448]. 

 
Figure 8.3. Domains, binding partners and signalling of cell membrane Nogo proteins. 

(a) Structure of the three major Nogo isoforms (Nogo-A, Nogo-B and Nogo-C) and their 

functional domains. (b) Nogo-A inhibits neurite outgrowth through Nogo-66 domain to 

the complex NgR1-LINGO1-p75/TROY, leading to an increase in intracellular Ca2+ and 

activation of the Rho–Rho-associated coiled-coil containing protein kinase (ROCK) 

pathway, by which the actin cytoskeleton is destabilized, and the growth cone collapsed. 

The Nogo-A-specific Δ20 domain, interacting with a yet uncharacterized receptor, also 

activates the RHOA protein and increases intracellular Ca2+ levels. Transactivation of the 

epidermal growth factor receptor (EGFR) and of protein kinase C (PKC) has been shown, 

but the detailed pathways involved remain unknown. In addition to NgR1, Nogo-66 can 

interact with paired immunoglobulin-like receptor B (PIRB), an additional potential 

Nogo receptor subunit. Image reproduced from [449] under the CC-BY Creative 

Commons Attribution 4.0 International license. 
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Nogo-A is the largest member of the Nogo protein family encoded by the 

reticulon 4 (RTN4, also known as NOGO) gene (Figure 8.3 (a)). The three main 

Nogo isoforms (Nogo-A, Nogo-B and Nogo-C) only share the last 188 amino acids 

(AA) in the carboxyl terminus (C-t), the so-called Reticulon homology (RTN) 

domain, that contains two long hydrophobic stretches, each of which is long 

enough to span the cell membrane twice. They are linked together by a 66-AA 

segment called Nogo-66. The amino-terminal (N-t) segments of Nogo proteins 

have differing lengths and there is no homology between them. The N-t of Nogo-

A and Nogo-B are identical, consisting of a 172-AA sequence that is encoded by 

RTN4 exons 1 and 2. In Nogo-A only, the N-t is followed by an 800-AA region 

(encoded by axon 3) containing the Nogo-A-specific Δ20 active domain (AA 544–

725). The shortest isoform, Nogo-C, is composed of an N-t of just a few amino acids 

directly followed by the RTN domain. Nogo-A and Nogo-B are derived from 

alternative splicing of the same primary transcript, while the N-t of Nogo-C is 

expressed after a different promoter. In all three Nogo isoforms, the N-t lacks a 

signal sequence for endoplasmic reticulum (ER) translocation. However, Nogo 

proteins are present at ER and cell surface, where the N-ts, Δ20 and Nogo-66 

domains face the cytoplasm and the extracellular space respectively (Figure 8.3 (b)) 

[449, 450].  

Expressed in both glia and neurons, surface Nogo-A interacts via two separate 

extracellular domains (Δ20 and Nogo-66) with several different receptors [449, 451, 

452], such as Nogo receptor 1 (NgR1) [453], Sphingosine-1-phosphate receptor 2 

(S1PR2) [454, 455] and Paired immunoglobulin-like receptor B (PIRB) [456]. In the 

course of axotomy or die-back upon CNS injury, signalling through these receptors 

typically activates actin-modifying pathways involving the actin-modulating 

small GTPase Rho and Rho-associated protein kinase [457, 458], which generally 

resulted in growth cone collapse and inhibition of axonal regeneration. Few 

studies also involve Nogo-A in the activation of intracellular pathways for gene 

expression modification and protein synthesis regulation through inhibition and 

deactivation of CREB [459] and mTOR [460, 461]. 

Despite being well characterized in the CNS, little is known about its functions 

in other body districts innervation. Nogo-A has been found to be strongly 

expressed in cranial nerves and in different organs of the orofacial complex [450, 
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462], suggesting its importance for the establishment of correct craniofacial 

innervation [426]. In this context, we first aimed at uncovering the roles of Nogo-

A in the establishment of tooth innervation. Since this process is known to be 

driven by target-derived factors, and that their proper uptake depends on the 

three-dimensional structure of the network itself, we investigated Nogo-A effect 

on the morphology of the neuronal network under development both in vitro DRG 

cultures and in vivo mouse molars.  

8.4 Materials and methods 

8.4.1 hDPSC spheroids characterization 

hDPSC spheroids production 

Dental pulp tissues were collected at the Center of Dental Medicine (ZZM, 

UZH) from extracted human teeth of three anonymous healthy patients. For cell 

isolation, dental pulp was minced and then enzymatically digested for 1 h at      37 

°C in 3 mg/mL collagenase I (Thermo Fisher Scientific, Waltham, MA) and 4 

mg/mL dispase II (Sigma-Aldrich, St. Louis, MO). The filtered single-cell 

suspension was plated in a T25 flask with standard complete medium, composed 

of Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12, 

Thermo Fisher Scientific) supplemented with 20% of fetal Bovine Serum (FBS, 

Sigma-Aldrich), 100 μg/mL penicillin/streptomycin (P/S, 100 U/mL, Sigma-

Aldrich), 1% L-glutamine (Gibco, Thermo Fisher Scientific), and 0.5 μg/ml 

Amphotericin B (Thermo Fisher Scientific). Cells were cultured in incubator at 37 

°C and 5% of CO2. DPCSs are selected by plastic adherence and self-renewal 

potential in culture [463]. At about 80% of confluence, isolated hDPSCs were 

expanded in standard complete medium and then cryopreserved at passage III. 

One week prior to each experiment, hDPSCs were thawed and 2-D cultured at 

5x105 cell/cm2 in Mesencult medium (STEMCELL Technologies, Vancouver, CA), 

10% FBS and 1% P/S. At the first day of the experiment, cells at passage IV were 

used for spheroid production by hanging drop technique [87]. For each spheroid, 

20’000 cells or additionally at 10'000 cells were seeded in 25 µl drops of Mesencult 

medium previously placed on the inner side of a Petri dish lid, then flipped. 
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Phosphatase buffer saline (PBS, Thermo Fisher Scientific) was added at the bottom 

of the Petri dish to reduce medium evaporation. After 24 h, formed 3-D spheroids 

were transferred to 96 ultra-low attachment plates (ULA plates, Corning, Glendale, 

AZ) and cultured in 100 µl of Mesencult medium for 7 days at 37 °C and 5% CO2, 

with medium change every 72 h. Spheroids morphology and viability were 

assessed at days 1, 2, 3, 4 and 7 after transfering to ULA plates. 

hDPSC spheroids treatment 

24 h after spheroid seeding, a γ-secretase inhibitor (DAPT (GSI-IX), N-[N-(3,5-

Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester, Sigma-Aldrich) was 

used to block Notch signalling. hDPSCs spheroids were treated at day 1 with 2.5 

µM, 5 µM, 10 µM or 15 µM of DAPT (DMSO solution). Morphology and viability 

of treated and untreated spheroids were assessed at days 1, 2, 3 and 6 after 

treatment. 

Bright Field imaging and morphological analysis 

Spheroids were imaged with a Leica DM IL Inverted Microscope (Leica 

Microsystems, Wetzlar, Germany) equipped with a N PLAN 10x/0.25 air objective, 

a DFC 7000T camera (Leica Microsystems) and the Leica Application Suite X (LAS 

X, Leica Microsystems) software. 2-D 32-bit RGB images were obtained with an XY 

resolution of 1920×1440 pixels and an isometric pixel size of 0.664×0.664 µm2, then 

exported in “.tiff” format. Image analysis of spheroids morphology was 

implemented in MATLAB® (R2021b v.9.11.0, The MathWorks, Natick, MA). After 

image conversion from RGB to 8-bit greyscale, spheroids were segmented by 

ISODATA thresholding [334] and their binary masks hole-filled [464]. Spheroids 

morphology was then described through the quantification of descriptors of 

dimension, shape, and compactness, as detailed in Assessment of Results. 
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Alamar Blue assay 

For each experiment, 5 spheroids were incubated with Alamar Blue (AlB, 

Thermo Fisher Scientific, 1:10 dilution in DMEM) at 37 °C in the dark. 4 h later, 

supernatants were transferred in a new 96-multiwell plate, and their absorbance 

read at 570 nm and 600 nm with a Synergy HT microplate reader (BIO-TEK 

instruments, Winooski, VT). The percentage of AlB reduction (resazurin, OX, to 

resorufin, RED) was calculated following the manufacture instruction as: 

% 𝑅𝑒𝑑𝑢𝑐𝑒𝑑 =
(𝜀𝑂𝑋)𝜆2 𝐴𝜆1 − (𝜀𝑂𝑋)𝜆1 𝐴𝜆2

(𝜀𝑅𝐸𝐷)𝜆1 𝐴′𝜆2 − (𝜀𝑅𝐸𝐷)𝜆2 𝐴′𝜆1
∙ 100 (8.1) 

where, the molar extinction coefficients of AlB are εOX (570)=155.677 M-1 cm-1, 

εRED (570)=80.586 M-1 cm-1, εOX (600)=14.652 M-1 cm-1, εRED (600)=117.216 M-1 cm-1. 

FDA/PI staining and viability analysis 

For each experimental condition, 5 spheroids were collected in a 1.5 ml sterile 

tube with 1 ml of DMEM, washed twice with PBS 1X, and incubated with 1.6 µl of 

fluorescein diacetate (FDA, 5 mg/mL aceton solution, Sigma-Aldrich) and 10 µl of 

propidium iodide (PI, 1.6 mg/mL PBS solution, Sigma-Aldrich) for 5 min at room 

temperature (rt) in the dark. After resuspension in PBS 1X, spheroids were 

transferred into a μ-Slide 8-well chamber (ibidi, Gräfelfing, Germany) and imaged 

with a Zeiss Leica DM6000 Microscope (Leica Microsystems) equipped with a HC 

PL FLUOTAR 5x/0.15 air objective (Leica Microsystems), a DFC 350FX camera 

(Leica Microsystems) and the Leica Application Suite X software (LAS X, Leica 

Microsystems) for discrimination between viable (FDA, λem=525 nm) and dead (PI, 

λem=590 nm) cells. Acquired 2-D 32-bit RGB images with XY resolution of 

1392×1040 pixels and isometric pixel size of 1.84×1.84 µm2 were then exported in 

“.tiff” format. Image analysis of spheroids viability after FDA/PI staining was 

implemented in MATLAB® (R2021b v.9.11.0, The MathWorks). After image 

conversion from RGB to 8-bit greyscale, spheroids were segmented by ISODATA 

thresholding [334], and their binary masks hole-filled [464] after intermediate 

cleaning by morphological opening and closing by minimal SE (Subsect. 5.2.1) 

[125]. Spheroids viability was then described through the quantification of 
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spheroids median FDA and PI pixel intensity, and by computation of local maps 

of median pixel intensity [336]. 

Assessment of results 

The aim of this study was to characterize 3-D hDPSC spheroids in terms of cell 

viability and morphology during culture. Spheroid viability was assessed by 

quantification of FDA/PI staining intensity and by AlB assay. Spheroid 

morphology was described in terms of dimension, shape, and compactness 

through the quantification of spheroids equivalent diameter (ED), sphericity index 

(SI) [87], and border indentation (BI), respectively. The ED is defined as the 

diameter of the circle that has the same area as the 2-D major section of the 

spheroid (Equation (8.2) and Figure 8.4 (a)), and can be used as an indicator of 

spheroid volume in the presence of a non-perfect sphericity [89]. The SI quantifies 

spheroid roundness according to the Equation 8.3 (Figure 8.4(b)), returning a 

value ranging from 0 (very flat) to 1 (perfect circle). The BI, calculated as in 

Equation 8.4, describes the level of irregularity at the spheroid surface, since it 

arises from the comparison between the spheroids binary mask and convex mask 

(hull), so between its detected shape and convex one (Figure 8.4 (c)). BI varies 

between 0 (highly angular) to 1 (perfectly convex), and works as an indicator of 

spheroid compactness, since it is sensitive to the presence of buds and concavities. 

𝐸𝐷 = √4
𝐴𝑚

𝜋
 (8.2) 

𝑆𝐼 =
𝜋√4𝐴𝑚

𝜋

𝑃𝑚
 

(8.3) 

𝐵𝐼 =
𝐴𝑚𝑃ℎ

𝑃𝑚𝐴ℎ
 (8.4) 
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where Am and Pm are respectively the area and perimeter of the spheroid cross-

section binary mask (Figure 8.4 (b), m), and Ah and Ph are respectively the area and 

perimeter of the spheroid cross-section convex mask (Figure 8.4 (b), h). 

 
Figure 8.4. Spheroids morphology descriptors. (a)  The ED is defined as the diameter of 

the circle that have the same area of the 2-D major section of the spheroid. (b) The convex 

hull (or mask) is the smallest convex polygon that can contain the object of interest. (c) 

Regular spheroids are characterized by both high SI and high BI, indicating global and 

local (surface) symmetry.   

Statistical analysis 

Data deviation from normality was early verified by histogram inspection, 

followed by the Shapiro-Wilk test, based on which the discriminatory power of 

descriptors is assessed by either two-tail Student’s t-test or Wilcoxon rank-sum 

test. p-values<0.05 were considered for statistical significance. 
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8.4.2 Nogo-A role in tooth innervation 

Ethics statement 

Animal housing and all animal experiments were performed according to the 

guidelines of the Swiss Animal Welfare Law and in compliance with the 

regulations of the Cantonal Veterinary Office of Zürich. 

Generation of Nogo-A knockout mice / murine model 

Nogo-A KO (-/-) mice were previously generated and kindly provided by the 

group of Prof. Martin Schwab (Institute for Brain Research, UZH and ETH Zürich). 

[121]. Mouse genotyping was performed via PCR using the following primers: Fw: 

5’ TGC TTT GAA TTA TTC CAA GTA GTC C 3’, Rv1: 5’ CCT ACC CGG TAG 

AAT ATC GAT AAG C 3’, Rv2: 5’ AGT GAG TAC CCA GCT GCA C 3’. 

Dental pulp isolation 

Dental pulp was isolated from wild-type (WT) and Nogo-A KO (-/-) C57/BL6J 

mice after birth (P0) at postnatal stages PN4, PN7, PN9, PN20, PN25 and PN27. 

Mice were sacrificed by decapitation, following (PN20, PN25, PN27) or not (PN4, 

PN7, PN9) anaesthetic injection (PN20: Ketamine 65mg/kg, PN25: Xylazine 

13mg/kg, PN27: Acepromazine 2mg/kg). Left and right lower first molars were 

manually dissected from the lower jaw in cold 1X PBS (Gibco) and under a 

stereomicroscope. For the PN4, PN7 and PN9 stages, dental pulp was directly 

isolated from the forming hard tissues by hand-dissection, fixed in 4% 

paraformaldehyde (PFA, Sigma-Aldrich) pH 7.4 for 15 min rt, washed 3 times in 

1X PBS and then stored in PBS 0.02% Sodium Azide (Sigma-Aldrich) at 4°C. For 

the PN20, PN25 and PN27 stages, dissected molars were fixed in 4% PFA pH 7.4 

for 30 min rt. After 3 washes in 1X PBS, molars were decalcified in 0.5M EDTA 

(Fluka, Sigma-Aldrich) rt for at least a week. Once softened, the dental pulp was 

hand-dissected from the hard tissues and stored in PBS 0.02% Sodium Azide at 

4°C. 
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Whole-mount immunostaining and Fluorescence confocal microscopy  

Isolated dental pulps were incubated in blocking buffer solution (1X PBS,  

0.02% Sodium Azide, 10% FBS (Sigma-Aldrich), 2% BSA (Carl Roth GmbH, 

Karlsruhe, Germany), 0.05% Saponin (Fluka)) overnight at 4°C on a shaker. Then, 

dental pulps were incubated with the primary antibodies (anti-Neurofilament 

Light antibody (Cell Signaling Technology, Denver, MA) for PN7 and PN9 stages, 

and anti-Peripherin antibody (Merck Millipore, Burlington, MA) for PN4, PN20, 

PN25 and PN27 stages, 1:100 dilution in blocking buffer) for 72 h at 4°C on a 

shaker. After 3 washes (1 h each, rt) on a shaker with blocking buffer, the dental 

pulps were incubated with the secondary antibodies (anti-Rabbit 488 (Invitrogen, 

Waltham, MA) for anti-Neurofilament Light, and anti-Rabbit 568 (Invitrogen) for 

anti-Peripherin, 1:100 dilution in blocking buffer) for 24 h at 4°C on a shaker, 

additioned with 1 μg/mL of 4′,6-diamidino-2-phenylindole (DAPI, Tocris 

Bioscience, Bristol, UK) and incubated for another 24 h. After 3 washes (1 h each, 

rt) on a shaker with blocking buffer, dental pulps were finally incubated overnight 

at 4°C in HistoDenz™ (Sigma-Aldrich) for tissue clearing. Once cleared, the dental 

pulps were mounted on a cover slide moulded with silicone paste KORASILON™ 

(Sigma-Aldrich) and filled with HistoDenz™ to house the sample, finally covered 

with a glass coverslip. Samples were imaged with either a Leica SP8 Falcon or a 

Leica Stellaris confocal microscope (Leica Microsystems), each equipped with the 

Leica Application Suite X (LAS X, Leica Microsystems) software as mosaics of 2, 4 

or 6 images, as needed to cover all dental pulp regions. 12-bit images were 

acquired with a HC PL Fluotar 10×/0.3 air objective with an isometric xyz pixel size 

of 0.89×0.89×4.28 µm3 and stitched by LAS X in images of different final resolution, 

before exporting in the proprietary “.lif” file format.  

Molar neuronal network segmentation 

Single-channel 12-bit grey-level images of Neurofilament Light or Peripherin 

signal were visualized and exported to uncompressed “.tiff” format by LAS X 

software. All subsequent image processing procedures were implemented in 

MATLAB® (R2021b v.9.11.0, The MathWorks). Molar neuronal network was first 

segmented in each 2-D optical section by histogram thresholding with Triangle 
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method [335]. Then, the 3-D network binary mask is created by simple 

juxtaposition of single section binary masks. The 3-D network mask is firstly 

cleaned of small objects, setting the threshold for elimination by Triangle method 

on the histogram of all object dimensions. Then, the maximum intensity projection 

(MIP) of the mask is created, to visually check and eventually manually eliminate 

the artifacts introduced at network periphery by dental pulp dissection. To 

investigate its morphology in terms of branching and extension, the segmented 

network was finally skeletonized (i.e., reduced to 1-pixel wide curved lines, [465, 

466]) to topologically separate nodes from branches without changing the essential 

structure of the image. Network, nodes, and branches properties have been then 

quantified as detailed in Assessment of Results.  

In vitro DRG cultures 

WT and Nogo-A KO C57/BL6J mice were used at embryonic stages. After first 

detection of the mother vaginal plug (embryonic day (E)0) and following more 

accurate staging of the embryos according to morphological criteria, the pregnant 

mother was anaesthetized by injection with Ketamine 65mg/kg at day E13.5 (WT) 

or with Xylazine 13mg/kg at day E14 (KO), and death confirmed by decapitation. 

Collected embryos were kept in cold PBS, and DRG from all vertebral levels were 

manually dissected in cold PBS under a stereomicroscope. DRGs explanted from 

a same embryo were then plated on a same glass coverslip coated with 20µg/ml of 

Poly-D-Lysine (PDL) and 10µg/ml of Laminin (Sigma-Aldrich) and placed in a 12-

well culture plate. Cultures were incubated at 37 °C and 5% CO2 in Neurobasal 

medium (Gibco) supplemented with 20mM Glutamine (Gibco), 1X B-27 (Gibco), 

100 ng/ml NGF (PeproTech, Thermo Fisher Scientific), and 1:100 of Pen/Strep 

(Sigma-Aldrich). 0.25pM cytosine arabinoside (Ara C, Sigma-Aldrich) was added 

to inhibit mitosis of non-neuronal cells. Prior to incubation, WT cultures were 

treated as following: 10µg/ml of anti-Nogo 11C7 antibody [467], or 10µg/ml of 

Mouse IgG antibody (Thermo Fisher Scientific), or 1µM of purified Nogo-A Δ20 

fragment [467], or no treatment. The culture was stopped after 2 days, after visible 

differences in DRG network extension following the different treatments. Cultures 

were then washed with warm (37°C) 1X PBS, incubated in warm 4% PFA pH 7.4 
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for 15 min, washed 3 times in 1X PBS and finally stored in 1X PBS at 4°C until 

imaging. 

DIC imaging  

DRG cultures were imaged by DIC microscopy with an inverted Leica DMi8 

microscope (Leica Microsystem) equipped with a HC PL Fluotar 10×/0.32 air 

objective and the Leica Application Suite X (LAS X, Leica Microsystems) software. 

Mosaics of multiple images, needed to fully image DRG neuronal networks, were 

created by LAS X acquisition software prior to exportation in proprietary “.lif” file 

format, by stitching single 2-D 12-bit images with an XY resolution of 2048×2048 

pixels and an isometric XY pixel size of 0.645×0.645 µm2.  

DRG neuronal network segmentation 

Mosaic images were visualized and exported to uncompressed “.tiff” format 

by LAS X software. Then, the region of interest (ROI) within segment the network 

fibres was defined by an ImageJ (NIH, Bethesda, MD) macro, written on-purpose. 

In brief, the Sobel operator was applied to detect image edges [468], and the 

histogram-based Triangle method [335] used to binarized the result. All following 

procedures were then implemented in MATLAB® (R2021b v.9.11.0, The 

MathWorks). First, the DRG was segmented by intensity thresholding of the 

original image values underlying the ROI with the ISODATA method [334]. Then, 

the network region (NR) was segmented by difference from the ROI. Within the 

NR, the network fibres were segmented by enhancing first the local image contrast 

[469] and then the elongated or tubular structures in the image using Hessian-

based multiscale filtering [470], finally simply binarizing the result setting the 

intensity threshold to zero. Obtained network mask was finally cleaned from air 

bubble artifacts using a Circular Hough Transform-based algorithm [471-473]. 
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Assessment of results 

Two main descriptors of neuronal network morphology are branching (i.e., 

single axon splitting) and defasciculation (i.e., separation of single fibres/axons 

from a bundle) level. Accordingly, the morphology of the molar neuronal network 

both from WT and Nogo-A KO C57/BL6J mice was characterized at PN4, PN7, 

PN9, PN20, PN25 and PN27 by measurements of: a) network volume, surface, and 

surface-to-volume ratio (SVR), estimated from the non-skeletonized network 

mask, b) network length, nodes and branches number, estimated from the 

skeletonized network mask. Given the actual analysis resolution, unsuited to 

capture single axons, nodes and branches number were used as indicators of 

network ramification (without distinction between branching and 

(de)fasciculation), while network length was used as an indicator of network 

extension. Similarly, DRG neuronal network morphology was quantified through 

measurements of network surface, length, and maximum width, as well as 

network nodes and branches density (i.e., nodes/branches number over network 

surface). 

Statistical analysis 

Data deviation from normality was early verified by histogram inspection, 

followed by the Shapiro-Wilk test, based on which the discriminatory power of 

descriptors is assessed by either two-tail Student’s t-test or Wilcoxon rank-sum 

test. p-values<0.05 are considered for statistical significance. 

 

 

 

 

 



 

209 
 

8.5 Results and discussion 

8.5.1  hDPSC spheroids characterization  

With respect to traditional 2-D cultures, 3-D multicellular spheroids have been 

demonstrated to model the MSCs cellular microenvironment more accurately and, 

consequently, to better preserve stemness through culture [75, 76]. Preservation of 

DPSCs stemness was assessed through expression of MSC and ECM markers, 

besides visual inspection of spheroid surface by SEM imaging, which confirmed 

an abundant ECM secretion (data not shown).  

Spheroids morphology and viability have been demonstrated to be a primary 

source of variability in spheroid-based preclinical research, potentially 

undermining the reproducibility of data [89]. Following previous evidence in this 

regard [89], we firstly assessed the capability of spheroid sphericity and dimension 

to affect other morphological parameters and spheroid viability over a culture 

period of 7 days (Figure 8.5 (a)).  

Morphological analysis indicated that spherical (S, SI≥0.9) and non-spherical 

(NS, 0.8≤SI<0.9) spheroids do not differ in dimension (i.e., ED), but differ in shape 

(BIS +12% than BINS on 7 days-average, p<10-5, data not shown). Expectedly, SI and 

BI positively correlate, as both negatively depend on spheroid cross-section 

perimeter (Equations 8.3 and 8.4), affected by irregularities at the spheroids border. 

S spheroids regularize in 24 h after creation, specifically reducing in dimension, 

increasing in sphericity, and stabilizing their morphology for 72 h. NS spheroids 

display a bit more irregular evolution through time, fully stabilizing their 

morphology only for 24 h, from day 3 to day 4 (data not shown). Both S and NS 

spheroids show comparable and strong viability, with FDA signal intensity 7 times 

higher than PI’s on average (p<0.03). Collectively, these data indicate that a pre-

selection between S and NS spheroids is not necessary, though this last 

consideration may not hold for SI values lower than 0.8.  

As far as spheroids dimension is concern, two different seeding densities 

(20’000 cells/drop and 10’000 cells/drop) were tested. Morphological analysis on 

Bright Field microscopy images indicates that 20'000 cell-spheroids (2CS) and 

10'000 cell-spheroids (1CS) expectedly differ in dimension (ED2CS 0.6 times bigger 
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than 1CS’s on average, p<10-10), but not much in shape. As for morphology, 2CS 

and 1CS viability similarly evolved through time, with FDA signal intensity 

always doubling PI’s (+91% on average of days for both 2CS and 1CS, p<0.03). 

Despite their similarities, spheroids visual observation and manipulation 

suggested 2CS as being more resistant to external stress (e.g., transferring, chemical 

dissolution), while 1CS, being much smaller, were lost or disrupted during 

manipulation. However, with due care, small 1CS can be ideal for specific 

applications, such as Organ-on-Chips cultures.  

Without distinction of sphericity or dimension, 3-D hDPSC spheroids created 

by hanging drop technique have a median ED of 565±65 µm at day 1, progressively 

decreasing to 429±35 µm at day 7 of culture (Figure 8.6 (b), -24%, p=10-36). 

Spheroids are quite spherical already from day 1 (median SI=0.81±0.1), moderately 

increasing in sphericity after 24 h (+10%, p=10-6) and slightly dropping again at day 

4 (-1.5%, p=0.034). BI evolve similarly, remarking the necessity of a smooth surface 

for spherical spheroid definition (Figure 8.5 (b)). More generally, the collected 

results indicate that spheroids created by hanging-drop technique require 24 h for 

suitable morphological settlement, (i.e., all features strongly vary from day 1 to day 

2, with p-values no higher than 10-6), becoming more stable between day 2 and 3, 

when they stabilize their shape but not their dimension. Spheroids were highly 

viable during the culture period, reaching a maximum of FDA intensity at day 3, 

when it tripled its initial value (p=0.001, vs dead cells). Moreover, cellular death 

(i.e., PI intensity) was constitutively low (one order of degree lower than FDA’s at 

each time point), showing no significant variation through time. Both FDA and PI 

signals decrease, although not significantly, after day 4 of culture (Figure 8.5 (c)). 

Finally, the metabolic activity of spheroids was stable throughout culture but 

constitutively lower than standard monolayer culture, though these differences 

are never statistically significant (Figure 8.5 (c), -35% on average, p>0.05). 
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Figure 8.5. hDPSCs spheroids morphological characterization. (a) Experimental scheme. 

hDPSCs spheroids were created by hanging drop technique in 24 h and transferred to 96-

well ULA plates for individual characterization of their morphology and viability. (b) 

Representative Bright Field images of spheroids evolution in time. Scale bars: 100 µm. (c) 

Time evolution of hDPSC spheroids dimension (ED), shape (SI), compactness (BI). (d) Time 

evolution of hDPSC spheroids viability, assessed through FDA/PI staining, local maps of 

median FDA/PI intensity (3×3 pixels locality, scale bars: 200 µm) and metabolic activity 

over time expressed as percentage of reduced resazurin (AlB assay). Data reported as 

grand median ± MAD (n=3). *p<0.05, **p<0.01 ***p<0.001 for comparison to day 1. 
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All considered, the hanging drop technique has a mean efficiency of spheroid 

creation of 82% at day 1 that rises to 87% after 24 h. The increase is due to the re-

organization into proper spheroids within the first 24 h of those spheroids that fell 

back to loose cell aggregates during transfer from drop to plate well. As day 3 is 

the day at which viability (by FDA/PI staining) is the highest and morphology is 

more stable, it is here suggested as the best day for spheroids selection for further 

applications. Since no remarkable difference has been detected between 2CS and 

1CS, seeding density may be varied (at least within this tested range) to custom 

spheroids dimension, for example after the needs of following spheroids 

application. Since no remarkable differences have been detected between spherical 

(SI≥0.9) and non-spherical (0.8≤SI<0.9) spheroids, sphericity threshold can be 

lowered to SI=0.8 for spherical spheroids selection. Accordingly, hanging drop 

technique has an efficiency of creation of spherical spheroids of 33% at day 1, 

increasing at 55% at day 3. 

Finally, such established hDPSC 3-D in vitro model was used to investigate the 

influence of Notch signalling pathway. In details, hDPSC spheroids were treated 

with increasing doses of the Notch inhibitor DAPT prior to morphology and cell 

viability assessment. No significant difference from untreated control (UC) was 

ever detected below a DAPT dose of 15 µM. Over 15 µM DAPT, treated spheroids 

dimension and morphology differ from UC on day 1 and day 2 of culture, when 

spheroids are slightly bigger (Figure 8.6 (c), +5% ED on average of days 1-2, 

p<0.02), more spherical (Figure 8.6 (c), +7% SI on average of days 1-2, p<0.04) and 

more compact (Figure 8.6 (c), +3% BI, p<0.02) than UC. AlB assay reported only a 

remarkable but not significant decrease in spheroids viability from day 1 to day 2 

of culture, independently of treatment (data not shown). Together, these 

preliminary findings indicate that DAPT does not remarkably affect hDPSC 

spheroids morphology and viability. Addition data (n=1, data not shown) reported 

a DAPT dose of 50 µM as still being not effective on hDPSCs spheroids 

morphology. Rather, as seen for lower DAPT doses, spheroids appear a bit affected 

(disaggregated) right after treatment (i.e., first 24 h), quickly recovering their 

original UC-like appearance in a 24-48 h (Figure 8.6 (b)). However, given the 

established Notch role in hDPSCs biology [474], Notch receptors expression and 

the effect of higher DAPT doses need to be tested before drawing any conclusion.  
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Figure 8.6. γ-secretase inhibitor DAPT does not affect hDPSCs spheroids properties. (a) 

Experimental scheme. hDPSCs spheroids were created by hanging drop technique in 24 h 

and transferred to 96-well ULA plates. After 24 h for stabilization (day 0), DAPT 0 µM 

(UC), 2.5 µM, 5 µM, 10 µM or 15 µM is added to spheroid medium for individual 

characterization of their morphology and viability. (b) Representative Bright Field images 

of spheroids evolution in time. Scale bars: 100 µm. (c) Time evolution of hDPSCs spheroids 

dimension (ED), shape (SI) and compactness (BI). Data reported as median ± MAD (n=1). 

p<0.05, **p<0.01 ***p<0.001 for intra-day 15 µM DAPT to UC comparison. 
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8.5.2  Nogo-A role in tooth innervation 

Nogo-A impacts size and branching of in vivo molar and in vitro DRG 

innervation 

From a morphological point of view, neuronal Nogo-A has been shown to 

regulate neurites fasciculation, branching and extension in the developing nervous 

system. In particular, while neuronal network physiological growth is 

characterized by both branching (i.e., single axon splitting) and (de)fasciculation 

(i.e., separation of single fibres/axons from a bundle), in conditions of Nogo-A 

genetic depletion the network is expected to be less branched and more 

fasciculated [475]. We therefore investigated how the presence of Nogo-A and the 

developmental moment affect the morphology of molar innervation in mice. At 

PN4, no significative differences were found between WT and Nogo-A KO 

network morphology. However, this could be due to the fact that at PN4 the 

innervation has just begun, and the network has not been properly structured and 

shaped by external cues yet. At PN7, the genetic ablation of Nogo-A more than 

halves the number of nodes and branches (-57% on average, p<0.03), confirming 

the expected reduction in network ramification. However, our data indicates that 

this is not coupled with an increase in network extension in terms of length, 

volume or surface. No significative alteration of network morphology after Nogo-

A depletion is detected in the adult stages (PN20, PN25, PN27). As a sporadic 

exception, at PN25 Nogo-A depletion reduces the network surface by one third (-

31%, p=0.03). When considering the network evolution in time, most significant 

changes were detected during the early development, between PN4 and PN7, 

when the WT network greatly expands in terms of volume (×4.9-fold, p=0.003), 

surface (×4.1-fold, p=0.003) and length (×2.4-fold, p=0.045). At Nogo-A absence 

these increments are doubled, accordingly to expectations for a more extended 

network. Furthermore, moving from PN4 to PN7 also the number of nodes (×10-

fold avg, p<0.02) and branches (×7-fold avg, p<0.03) increases in both WT and 

Nogo-A KO mice. Nogo-A KO number of nodes and branches further (but more 

moderately) increases from PN7 to PN9 (×2-fold avg, p=0.034). Little to no 

significative changes occur after PN9. Collectively, Nogo-A seems to not 
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particularly influence the neuronal network morphology, more affected by the 

developmental stage. To assess whether more marked results could be masked by 

low sample sizes, we repeated the analysis after pooling the data by developmental 

stage. PN4 (early stage) was kept aside, as it is an initial phase of development very 

different from the others. Since tooth eruption represents a turning point for tooth 

innervation, at which the network becomes functional and responsive, PN7 and 

PN9 were pooled in a young (pre-eruption) stage, while PN20, PN25 and PN27 were 

pooled in an adult (post-eruption) stage. However, after data pooling no significant 

difference in neuronal network morphology between WT and Nogo-A KO is 

detected anymore, at any developmental stage. Accordingly, data pooling 

increases the variance associated to any quantified morphological descriptor, 

suggesting that, even if temporally close to each other, the pooled stages are too 

different to be effectively pooled (i.e., to produce a reduction in variance by sample 

size increasing). On the other side, data pooling effectiveness is higher for what 

concern the time evolution of network morphology. Apart from network SVR in 

Nogo-A KO mice, all the other morphological descriptors increase from early to 

pre-eruption stage, according to the important network growth occurring in this 

time frame (data not shown). Following the pre-pooling evidence, except for 

branches number, all increases are doubled at Nogo-A absence. All descriptors 

further increase from pre- to post-eruption stage, with significance strengthened 

by data pooling. Again, the increase in network extension and ramification is more 

moderate in this second step, lowering the average increase for network 

descriptors from 6.8 folds (early to pre-eruption stage) to 2.6 folds (pre-eruption to 

post-eruption).  

All considered, Nogo-A seems to affect the tooth neuronal network 

morphology, however poorly. These results are surely linked to the low number 

of samples, besides to the high variability of phenotypes that characterized the WT 

and especially the Nogo-A KO samples. Accordingly, the few significant 

differences detected between WT and Nogo-A KO network occurred at PN7, the 

stage with the higher sample size. However, our data can be considered as 

preliminary evidence of Nogo-A involvement in tooth innervation during 

development, as highlighted by data plotting over time (Figure 8.7). 
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Figure 8.7. Development of neuronal network morphology in WT and Nogo-A KO mice 

molar. Tooth innervation during development is characterized by a progressive increase 

in network extension and ramification. Before tooth eruption (~PN20 in mice), the WT 

network is more extended and ramified than in Nogo-A KO, while such relationship is 

reversed at later stages, suggesting that Nogo-A may play different roles in early and late 

tooth developmental stages. Image courtesy of Laurence Pirenne, PhD student, Orofacial 

Development and Regeneration Unit, IOB, UZH. 

 

To further investigate the role of Nogo-A in tooth innervation, we also 

considered the neuronal network morphology in trigeminal ganglia in vitro 

cultures. However, due to technical issues, it was necessary to first move the 

investigation to dorsal root ganglia. First, more than 30 DRGs can be harvested 

from each embryo, while the TGs are just two. Second, the much bigger size of 

TGs, with respect to DRGs, makes ganglia attachment to the plate surface much 

harder, therefore strongly hampering the growth of the network. Finally, previous 

preliminary tests on TG (data not shown) seemed to not correlate to DRG results 

[475], suggesting that the TG and DRG may behave differently, when it comes to 

Nogo-A. For these reasons, we first focused on DRG cultures, to optimise the 

culturing, imaging and image processing protocols, so as to be able to move back 
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to TG. Besides assessing the extension and ramification of the neuronal network of 

DRG explanted from WT and Nogo-A KO mice, we also tested, as additional 

controls, the effect of the addition to the WT DRG culture medium of the 11C7 

antibody, the IgG antibody, and the purified Nogo-A specific Δ20 fragment. The 

11C7 antibody is expected to neutralize the Nogo-A protein, leading to its acute 

inhibition, and therefore to increase the length and reduce the ramification of the 

WT DRG network [467]. Oppositely, the IgG antibody is used as a negative control 

to the 11C7 antibody, as it mimics 11C7 structure, but does not specifically target 

the Nogo-A protein. This treatment is therefore not expected to affect the network 

morphology. Finally, the Δ20 fragment is expected to increase the length and 

reduce the ramification of the network, accordingly to its capability to activate 

Nogo-A receptors even in the absence of the whole protein [467] (Figure 8.8 (b)). 

Visually, the only appreciable change in DRG network morphology is its 

shortening and “condensation” after Δ20 addition to WT cultures (Figure 8.8 (a)). 

Quantitatively, Δ20 addition to WT culture medium expectedly decreases both 

network surface and length (Figure 8.8 (b), -55% avg, p=0.037), while increasing 

nodes and branches density (Figure 8.8 (b), +37% avg, p<0.003), presumably 

reflecting an increase in axon fasciculation. According to previous evidence [475] 

and with respect to WT DRG cultures, the density of nodes and branches was 

higher in the Nogo-A KO DRG culture (Figure 8.8 (b), +30% avg, p<10-5), while the 

maximum width (i.e., extension) of the network was higher after 11C7 addition 

(Figure 8.8 (b), +13%, p=0.04) and lower after Δ20 addition (Figure 8.8 (b), -37%, 

p<10-3). With respect to Nogo-A KO DRG network, the addition of anti-Nogo-A 

11C7 antibody decreases ramification (i.e., nodes and branches density, Figure 8.8 

(b), -15% avg, p<0.03) and increases extension (Figure 8.8 (b), +29% network max 

width, p=0.016), suggesting an affective acute inhibition of Nogo-A by 11C7 

antibody. 
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Figure 8.8. Nogo-A affects DRG network size and morphology. (a) Representative images 

of DRG explanted cultures. Scale bar: 500 µm. (b) Bar graphs for quantified morphology 

descriptors. Data reported as median ± MAD. * significance to WT, # significance to Nogo-

A KO. */# p<0.05, **/## p<0.01 ***/### p<0.001.  

All considered, similarly to what was observed in the in vivo molar model, our 

data indicate Nogo-A involvement in the neuronal network structuring, however 

with some controversial results for the Nogo-A KO condition. This could be due 

to fact that in the absence of Nogo-A different compensatory pathways are known 

to be activated. Therefore, the effect of Nogo-A absence on the network 

morphology could be masked by overexpression of other proteins with Nogo-A-

like functions. Indeed, beside confirming Nogo-A mRNA expression in the WT 

mice only, RNA sequencing experiments reported an increased expression levels 

of other Nogo isoforms in Nogo-A KO mice (data not shown), as already 

demonstrated in the CNS [476], presumably triggering alternative compensative 

pathways. Moreover, in our KO mutant only the Nogo-A specific exon 3 is deleted, 

this meaning that compensatory mechanisms can be triggered by other Nogo-A 

domains (e.g., C-t), other Nogo isoforms, or even other proteins, not encoded by 

RTN4. 

8.6 Conclusions  

In this Chapter, we applied our content-aware approach to two different 

studies of dental biology. The first aimed at characterizing 3-D hDPSC spheroids, 

in the perspective of their future utilization as organotypic models for 
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developmental and regenerative medicine studies. To this purpose, we followed 

the evolution in culture of hDPSC spheroids created by hanging drop technique, 

in terms of stemness, proliferation, morphology and viability. Although 

preliminary, collected data provide a solid characterization of 3-D hDPSC 

spheroids in vitro, that enhances stemness and ECM secretion with respect to 2-D 

cultures, without losing cell viability. Our results represent a first solid step 

towards the creation of a 3-D in vitro model of tooth, by which collectively 

investigate innervation, vascularization and immune response and establish the 

basis for future regenerative personalised treatments. 

The second study concerned the investigation of the Nogo-A protein role in the 

3-D architecture of tooth innervation. Our results showed that Nogo-A is 

expressed in DRG, TG and dental tissues from the earliest developmental stages, 

and that this expression persisted until adulthood. Genetic ablation of Nogo-A 

affected the branching and compactness of the dental pulp neuronal network, 

while in the DRG it affected the neuronal projections pattern. Taken together, our 

findings indicate that Nogo-A is a regulator of tooth innervation, whose 

importance in development, homeostasis and regeneration processes will be 

further unravelled by ongoing transcriptomic analyses.  

8.7 Content-aware contribution and future developments 

My presence in the laboratory during the collaboration period has remarkably 

increased the content-aware contribution I could give to the studies. Especially for 

the hDPSC spheroids characterization, for which a dataset of images had not yet 

been created by my arrival, my direct and entire involvement from the very 

beginning of the study allowed to define the best microscopy modality for 

spheroids imaging, to analyse its results in real time, and consequently to redefine 

the experimental pipeline on-line. This way, we could save time while increasing 

the robustness of the analysis, defining from the outset the necessary sample size 

and the importance and necessity of each experiment basing on previous results, 

thus coming to collect a large amount of imaging and molecular data in just three 

months, sufficient for a first high-level publication (on writing).  
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For what concern the study of in vivo molar innervation during development, 

my biological formation was fundamental for a fast and comprehensive 

understanding of the evolution of neuronal network in the developing tooth, and 

of the role of Nogo-A, that together allowed me to define the importance of 

network branching and extension, finally segmenting the 3-D network with an 

acceptable level of approximation, consistent with our timeline and aim.  

For what concern 3-D hDPSC spheroids characterization, conceived as 

forerunner study for a multitude of applications based on this model, possible 

future developments are many and promising. First, we intend to increase the 

analysis robustness and completeness by testing the effect of higher doses of the 

Notch inhibitor DAPT on spheroids properties, with further negative and positive 

controls, also verifying the expression of Notch and its target genes (e.g., DII4, 

Hes1, Hes2, Hey1, Hey2) in both hDPSC 3-D spheroids and 2-D cultures. Then, the 

following steps of the studies will involve: 1) the assessment of spheroids 

regenerative potential by gene and protein expression analysis on spheroid-

released exosomes content, 2) the assessment of spheroids angiogenesis potential 

by creation and characterization of heterotypic spheroids of DPSCs and ECs 

(HUVECs or primary hECs). In this phase, image analysis will be fundamental to 

reconstruct the vascular network and assess its geometrical properties. Once 

validated, this heterotypic model could be a key elucidator of perivascular niche 

mechanisms [474]. A further step would be to add trigeminal ganglia neuronal 

cells to such heterotypic spheroid, to further study tooth innervation and the 

extracellular cues driving its formation. Finally, the transition to Organ-On-Chip 

cultures will ideally enable the creation of a 3-D model of tooth that emulate the 

physiology of human dental tissues, allowing the study of their response to 

environmental and pharmacological stimuli, as well as the generation of fully 

functional dental tissues for regenerative medicine and more meaningful drug 

testing applications. From a methodological point of view, a first necessary 

improvement would be the validation of equivalent diameter measurements by 

confocal microscopy, to demonstrate that, at least up to a certain convenient 

dimension, spheroid volume and ED can be said to linearly correlate (so far, we 

are just assuming a strong local symmetry). Similarly, it would be interesting to 

verify that also in our model, where spheroids are smaller than 650 µm in 
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diameter, spheroids viability is linear to volume, as in [89]. Secondly, spheroid 

heterogeneity could be investigated through the creation of a library of local 

feature maps [336], to look for recurrent patterns and analyse buds presence and 

characteristics. Further development may include the investigation of properties 

of highly irregular spheroids (e.g., SI<0.7, or very different dimension), the 

refinement of viability results by sample size increasing, and the investigation of 

local spheroid properties, for example after imaging by light sheet microscopy. 

For what concern the investigation of the role of Nogo-A in molar innervation, 

additional samples are currently being collected, to investigate the variability of 

Nogo-A KO phenotypes and reduce its impact on the significance of the analysis. 

Then, a first future step will be the comparison of image analysis results with the 

RNA sequencing data checking the expression of Nogo-A, other Nogo isoforms 

and the activation of compensatory pathways in WT and Nogo-A KO mice. 

Methodologically, the next step of image analysis would be the separate 

investigation of tooth crown and roots in adult tooth, to assess a potential different 

role for Nogo-A in the two regions. Interestingly, no method for the automated 

roots-crown separation in microscopy images is currently available in the 

literature. Therefore, one could think of searching for one (or more) neuronal 

network morphological properties on which automatedly basing the distinction. 

In such work, local density analysis by DDMs (Chapter 4, [130]) could provide an 

interesting staring point. Further structural information (e.g., volumetric crown-to-

roots ratio) could be finally drawn from µCT imaging. 

Relatively to DRG analysis, “future” developments are currently focusing on 

the optimization and standardization of DRG culturing and imaging (possibly by 

fluorescence microscopy, to increase the precision of thin fibres segmentation) and 

the setting of methods and pipelines for network image analysis, in order to be 

able to translate the investigation to trigeminal ganglia cultures, in the end. Finally, 

real time monitoring and multimodal imaging of cultures could provide further 

insight into Nogo-A role during development.  
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Chapter 9 

Conclusions 

The last decades have witnessed a new era of biomedical imaging science. 

From microscopy and X-ray imaging to modern computer aided CT, MRI, and 

PET, mankind's naked vision is no longer restricted by the conventional notions of 

space, time, scales, and visibility. Imaging has become a basic investigational tool 

in the field, capable to provide unique advantages to the experimental design, 

from the visual assessment of spatial distributions to the collection of quantitative 

and otherwise unattainable data. Over the last several decades, biomedical 

imaging has been undergoing rapid technological advancements, seeing the 

development of many new imaging technologies and methods for quantitative 

image analysis. Biomedical imaging is indeed a highly interdisciplinary field, that 

requires collaboration among biologists, chemists, medical physicists, 

pharmacologists, computer scientists, and biomedical engineers. However, to 

benefit multidisciplinary work at most, the knowledge transfer between 

researchers of the single disciplines is mandatory. This is especially important in 

biomedical image processing and analysis, since it requires that the experiments 

are designed also considering the needs of automated image analysis to extract 

reliable quantitative information. 

The goal of this Thesis was to demonstrate the superiority of an 

interdisciplinary approach to biomedical investigation based on quantitative 

image analysis. In particular, the activities of this Thesis have been carried out with 

a content-aware approach, that merges biological and computer science 

knowledges to improve the relevance of results, by providing new methodological 

solutions for image analysis that increase the statistical significance of the data, 

meanwhile enforcing the biological outcomes. The effectiveness of such content-

aware approach has here been proved through its application to different studies 
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of biomedical character, where it helped the experimental design and planning, 

the development of new methods for image analysis, and the extraction of 

biologically meaningful data, with rigorousness and precision. To this purpose, 

the studies of this Thesis collectively demonstrated that: 

1. It is important to know and understand the biological problem under 

investigation, in order to be able to choose the best model for reproducing the 

phenomenon of interest, and accordingly the most suitable imaging modality, 

to capture the most salient features for its description (Figure 11.1, red arrows) 

2. It is also equally important to know the pitfalls of image acquisition, the 

properties of an image and the methods for its processing. Following the 

backward path in Figure 11.1 (blue arrows), the posed biological question 

defines the salient features for its description, whose measurability depends 

on the chosen imaging modality, which in turn affects the choice of the 

biomedical model to be imaged. 

 
Figure 9.1. Content-aware experimental planning of biomedical imaging investigations. 

The nature of the biomedical problem poses constraints on the choice of both the study 

model and the phenomenon descriptors, that influence each other through the choice of 

the imaging modality and of the methods for salient features extraction. Therefore, an 

optimal biomedical investigation takes into account these interdependencies, building on 

both biomedical and image processing expertise.  
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Three arguments are often made in favour of interdisciplinary research. First, 

complex modern problems are not amenable to single-discipline investigation, but 

they often require many types of expertise across very different disciplines. 

Second, discoveries are said to be more likely on the boundaries between fields, 

where the latest techniques, perspectives and insights can reorient or increase 

knowledge. Third, these encounters with others benefit single disciplines, 

extending their horizons [477]. The future of health sciences is inevitably linked to 

the use of technologies, and imaging, a central part of present biomedical research, 

is expected to increasingly establish itself as one of the leading fields in the next 

future. In this scenario, biomedical researchers are encouraged to fearfully nurture 

dialogue across traditional disciplines boundaries, to draw the most of old and 

new technologies potential, and synergically advance current sciences.   
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