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ABSTRACT 

Gulyanon, Sarun Ph.D., Purdue University, May 2018. Model and Appearance Based 
Analysis of Neuronal Morphology from Different Microscopy Imaging Modalities. 
Major Professor: Gavriil Tsechpenakis. 

The neuronal morphology analysis is key for understanding how a brain works. 

This process requires the neuron imaging system with single-cell resolution; however, 

there is no feasible system for the human brain. Fortunately, the knowledge can be 

inferred from the model organism, Drosophila melanogaster, to the human system. 

This dissertation explores the morphology analysis of Drosophila larvae at single-

cell resolution in static images and image sequences, as well as multiple microscopy 

imaging modalities. Our contributions are on both computational methods for mor-

phology quantification and analysis of the influence of the anatomical aspect. We 

develop novel model-and-appearance-based methods for morphology quantification 

and illustrate their significance in three neuroscience studies. 

Modeling of the structure and dynamics of neuronal circuits creates understanding 

about how connectivity patterns are formed within a motor circuit and determining 

whether the connectivity map of neurons can be deduced by estimations of neuronal 

morphology. To address this problem, we study both boundary-based and centerline-

based approaches for neuron reconstruction in static volumes. 

Neuronal mechanisms are related to the morphology dynamics; so the patterns of 

neuronal morphology changes are analyzed along with other aspects. In this case, the 

relationship between neuronal activity and morphology dynamics is explored to ana-

lyze locomotion procedures. Our tracking method models the morphology dynamics 

in the calcium image sequence designed for detecting neuronal activity. It follows 
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the local-to-global design to handle calcium imaging issues and neuronal movement 

characteristics. 

Lastly, modeling the link between structural and functional development depicts 

the correlation between neuron growth and protein interactions. This requires the 

morphology analysis of different imaging modalities. It can be solved using the part-

wise volume segmentation with artificial templates, the standardized representation 

of neurons. Our method follows the global-to-local approach to solve both part-wise 

segmentation and registration across modalities. 

Our methods address common issues in automated morphology analysis from ex-

tracting morphological features to tracking neurons, as well as mapping neurons across 

imaging modalities. The quantitative analysis delivered by our techniques enables a 

number of new applications and visualizations for advancing the investigation of phe-

nomena in the nervous system. 
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1 INTRODUCTION 

Studying how a brain works is one of the greatest challenges for modern science. 

It requires an understanding of the structure and function of the nervous system 

during development at the molecular, cellular, and systemic levels [1]. To monitor 

how the human brain works, many tools are invented, e.g., Computerized Axial To-

mography (CAT) Scan, Magnetic Resonance Imaging (MRI), Positron Emission To-

mography (PET) Scan, and especially Electroencephalogram (EEG) and Functional 

MRI (fMRI), which are designed to measure brain activity. EEG is a non-invasive 

method for recording electrical activity of the brain emanated from the ionic current 

within the neurons [2], whilst fMRI indirectly measures brain activity by detecting 

changes of the local blood supply [3]. However, these are tools for studying neural 

connectivity via responses rather than the structural mechanisms that create these 

responses. Without tools capable of monitoring the structural properties of neurons 

that generate these responses, it is impossible for neurologists to identify the links 

between neurons and brain mechanisms. That is why we carry out this study in the 

‘bottom-up’ approach, which builds up knowledge starting from individual neurons, 

the basic element of the nervous system, towards the complete map of the neuronal 

connectivity over time. 

Our focus is on the neuronal morphology because the morphological attributes 

of the axonal and dendritic arborizations are the main components of the neuronal 

phenotype [4]. In addition, neuronal arborization patterns also influence the synaptic 

connectivities, which in turn determine neuronal functions [5]. For these reasons, 

neurobiologists are interested in studying the structures of neurons at the single-cell 

resolution in vivo. Nonetheless, we do not know whether it is the interaction network 

of proteins that raises the probability of physical association between neurons, or if it 

is the other way around where the morphogenesis drives the synaptic connectivities. 
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To address this problem, the multi-modality imagery is used for studying the causality 

between protein interactions (proteome) and cellular complexity (phenome), which 

have been studied independently in previous experimentations [6, 7]. 

Model organism. Imaging the human brain at the single-cell resolution in vivo 

is challenging because the human brain has a vast complexity with billions of neu-

rons and trillions of synapses [8, 9], which make such a system practically infeasible 

with current computational power. Fortunately, the knowledge can be inferred from 

some other species, the model organism, to the human system; therefore, the model 

organism larval Drosophila melanogaster is studied instead. The complete neuronal 

map of the C. elegans nervous system with 302 neurons was created successfully [10]. 

Hence, we select Drosophila larvae whose central nervous system contains approx-

imately 10,000 neurons [11], which is the next step from the nematode worm (C. 

elegans). A brain of an adult fruit fly (Drosophila) has around 100,000 neurons [12] 

and a mouse (Mus musculus) has a much more intricate system with approximately 

4,000,000 neurons [13]. Larval Drosophila is our best option because it is simpler 

than other model organisms. Meanwhile, it is complex enough that the automation 

is required, unlike C. elegans. The manual reconstruction of the neuronal map of 

Drosophila larvae is not feasible due to a large number of neurons and even larger 

number of synapses. The task becomes highly labor intensive and tedious for human 

operators, resulting in error-prone results. Thus, the automated morphology analysis 

is needed. Its major bottleneck is the quantification of neuronal morphology. 

What is neuronal morphology? It is the attributes related to the form, shape, 

and structure of neurons, i.e., the soma or cell body, and particularly neurite (the 

term denoting axon and dendrite). They are essential for understanding how con-

nectivity patterns are formed within neural circuits and how interconnections among 

neural circuits are related with higher-order cognitive functions [1, 4]. Image stacks 

for the study of neuronal morphology are generally acquired by confocal laser scan-

ning microscopy. Computing numerical features for morphology quantification usu-

ally involves the neuron reconstruction process, which extracts the boundary and/or 
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centerline of neurons from input image stacks. These numerical features are a set of 

values measuring either low- or high-level attributes of neuronal morphology. They 

can be categorized into two main types based on the scope of neuronal morphology 

used in the feature extraction: global and local. Global features take into account the 

topology of the whole tree data structure and produce the overall properties without 

any specification of individual neuron branches, while local features describe certain 

properties of the individual neuron branches. Since local features normally involve a 

large number of values, the summarized data produced by applying statistical tech-

niques are often preferred over raw data [14]. 

Examples of frequently used global features are the total height, width, depth, 

length, volume, bifurcation count, and branch tip count of a neuron [15] (Fig. 1.1). 

The spatial distribution of the neuron is usually measured by Sholl analysis [16] or its 

variation. This analysis divides the space around the neuron with concentric circles 

(in 2D) or spheres (in 3D) of increasing radii centered at the soma cell or a reference 

Figure 1.1. Examples of global features: (a) the number of branch tips 
(in cyan), (b) the length of axon, and (c) the shape histogram of neuron’s 
length and its corresponding color-coded plot. 
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point. Sholl profile measures the specific property of a neuron within the regions 

bounded by these concentric circles/spheres. One notable variation is the shape 

histogram, which also divides the surrounding space with equally spaced slices on 

top of concentric circles/spheres. Other common global features are the total number 

of primary, secondary, and tertiary dendrites; the average path length from dendrite 

tips to the cell body; and the radial distances, which is the Euclidean distance from 

dendrite tips to the cell body. Primary dendrites are dendrites directly issued from 

the soma, while secondary dendrites are branches emerging from a primary dendrite 

and tertiary dendrites emanate from secondary dendrites [17]. 

For local features, some examples seen in the literature include branch length, ra-

tios between adjacent branches, bifurcation angles, and branch curvature [18]. With 

high-resolution optical imaging, dendritic spines can be detected. Spines are nor-

mally categorized into three common types based on their shape: thin, mushroom, 

and stubby. Examples of spine quantification include length, diameter, orientation, 

volume, count, and density [1]. 

In this dissertation, our focus is on the single-cell morphology analysis for both 

static images and image sequences. We develop model-and-appearance-based meth-

ods to solve four fundamental tasks in neuronal morphology quantification from dif-

ferent microscopy imaging modalities, i.e., segmentation, tracing, tracking, and part-

wise volume segmentation with artificial templates. Most previous works rely solely on 

the appearance information, which is derived from the input neuron volumes [19–22]. 

Some works employ the simple model information, i.e., local shape of neurons, that 

is manually crafted or learned using the training data [23–25]. On the contrary, our 

methods combine the appearance and model information together, and adopt the 

more sophisticated model encoding the global shape and the structure of the whole 

neuron. To illustrate the significance of our contributions, our methods are applied 

on the three following studies: modeling the structure and dynamics of neuronal cir-

cuits, finding the patterns of the morphology dynamics, and modeling the connection 

between structural and functional development. 
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1.1 Modeling the Structure and Dynamics of Neuronal Circuits 

Neurons do not operate in isolation [26]. There are interactions among neurons, 

where neuronal signal transduction occurs [27]. They form circuits that process spe-

cific types of information through synaptic connectivity, which is dictated by neuronal 

morphology [5]. That is why it is desirable to create the entire neuronal map of indi-

vidual neurons and their synapses at the single-cell level in vivo, called connectome. 

Moreover, the temporal prediction model of neuronal maps must be constructed as 

well to observe the development in connectome. The first steps towards this goal are 

the extraction of neuronal morphology and the computation of a compact, numerical 

representation; the whole process is called neuron reconstruction. 

Some computer scientists might consider the automated neuron reconstruction 

problem is solved since commercial and academic tools, e.g., Neurolucida 3601 , Neu-

ronStudio2 , and Neuromantic3 , are available and claim success [1]. However, their 

automatic functionality operates properly only for certain datasets. Some methods 

try to alleviate the problem by allowing the user input to correct the automatic traces, 

resulting in the lower amount of work required by human operators. Biologists still 

struggle with the neuronal analysis because of a bottleneck in the reconstruction 

process caused by the lack of a generally applicable tool. Thus, some institutes are 

inspired to organize the competition or collaboration like in DIADEM challenge4 [28] 

or BigNeuron project5 [29]. These organizations encourage the development of new 

methods in order to advance the field by creating a large collection of 3D neuron 

morphology data, and developing the standard for the variety of available automated 

neuron reconstruction protocols. 

Here, we develop novel neuron reconstruction methods for extracting neuronal 

morphology from static neuron volumes. They can be classified as boundary-based 

1http://www.mbfbioscience.com/neurolucida360 
2http://research.mssm.edu/cnic/tools-ns.html 
3http://www.reading.ac.uk/neuromantic/body_index.php 
4http://diademchallenge.org/ 
5http://alleninstitute.org/bigneuron 

http://www.mbfbioscience.com/neurolucida360
http://research.mssm.edu/cnic/tools-ns.html
http://www.reading.ac.uk/neuromantic/body_index.php
http://diademchallenge.org/
http://alleninstitute.org/bigneuron
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and centerline-based approaches (Fig. 1.2). These two approaches illustrate the neu-

ron reconstruction results at two different levels, which provide different perspec-

tives for morphology analysis. The boundary-based method describes the neuronal 

morphology at the margin level, whereas the centerline-based method describes the 

neuronal morphology at the structure level. 

• Boundary-based approach involves the neuron segmentation to extract the 

position and outline of a neuron. The segmentation problem is concerned with 

neurite detection and classifying voxels as either neurite or background. This 

aspect delineates the perimeter of a neuron, which is suitable for low-level mor-

phology analysis. 

• Centerline-based approach involves the neuron tracing to obtain the under-

lying model (i.e., tree data structure) of the neuronal topology. The tracing 

problem is focused on centerline extraction and neuronal topology recovery. 

This approach extracts the topological skeleton of a neuron, which contains 

the relevant structural information that allows easy computation of high-level 

measurements of biological variables [1]. 

Figure 1.2. Neuron reconstruction methods of the input image stack 
(left) can be categorized into two groups: boundary-based (middle) and 
centerline-based (right) approaches. 
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Segmentation and tracing problems are tightly related since they both solve the 

neuron reconstruction problem. The improvement in one task would result in the 

improvement of another, so they are usually solved simultaneously. Another bene-

fit of the neuron reconstruction is that it requires less memory storage for storing 

neuronal morphology information, compared to image stacks. The neuron segmen-

tation encodes boundaries of neurons using binary volumes or run-length encoding, 

while the neuron tracing encodes structures of neurons into the compact numerical 

representation (see details in App. A). 

After the reconstruction of neuronal morphology, the next step is modeling the 

dynamics of neuron circuits, which could be solved using the neuron subtype recogni-

tion. Neuron subtypes play the key role in providing the overview of the evolution of 

the nervous system because they are related to the underlying principles of synaptic 

connectivity in a motor neuron circuit [5]. Since neuron subtypes can be modeled 

based on the morphological stereotype [30], the branching details computed by our 

methods could be used to improve the existing neuron subtype classifiers [30–33]. Fi-

nally, with the availability of a neuron subtype recognition system, the neuron circuits 

could be modeled based on the ensembles of neuron subtypes. 

1.2 Finding the Patterns of the Morphology Dynamics 

Neuronal morphology controls how neurons respond to stimuli but the underlying 

mechanism of how topology and its changes affect relevant circuits is still elusive [34]. 

To study this phenomenon, the temporal prediction model of morphology changes, 

or morphology dynamics, must be reconstructed and patterned over the appropriate 

(domain-specific) time intervals. Topology changes captured by neuron image se-

quences have to be recorded along with other properties in order to understand their 

association that controls the neuronal mechanisms. In this case study, we explore 

the relationship between neuronal activity and morphology dynamics to study the 

locomotion behaviors of Drosophila larvae. 
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It is known that the locomotion of an organism is controlled by proprioceptive 

neurons but their relationship is unknown. Understanding this relationship will not 

only give insights into the neural mechanism for locomotion, but also reveal the 

locomotion procedure. To study the mechanism of how the sensory neurons operate 

and coordinate the locomotion, we investigate the relationship between deformation 

of morphology and timing of neurotransmission. 

In the Drosophila larvae, the optogenetic excitation [35] followed by cell-specific 

calcium imaging [36] enables the observing of the link between the micrometer-scale 

neuronal connectome [37] with the millimeter-scale locomotion behavior [38]. The 

neuron reconstruction over calcium image sequence is required to quantify both mor-

phology dynamics and neuronal activity simultaneously (Fig. 1.3). One main issue 

of calcium images is that they produce low responses when there are no neuronal ac-

tivities. Another issue is that the neuron morphology reconstruction of static image 

stack is inadequate for this task because it cannot capture characteristics of mor-

phology dynamics during the locomotion. To address these issues, we develop our 

neurite tracking method for calcium image sequences in order to capture the changes 

occurred in the nervous systems during the locomotion process. 

Our method tracks the movement and deformation of neurons using the local-to-

global design: neuron tracking is guided by local features derived from input volumes, 

Figure 1.3. Morphology dynamics of two neurons (red and green colors) 
over calcium time-lapse sequence at three consecutive time steps from left 
to right. Neuronal activity is directly proportional to calcium responses. 
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while the global model constrains the search space based on the motion model of the 

morphology dynamics. The local features provide the probability to the reconstructed 

neuron proposal over the image sequence. Then, the global model limits the search 

space to increase efficiency and probability of finding an acceptable, optimal solu-

tion. These two components are then combined in the principled manner through the 

graphical model. 

The neuron reconstruction and morphology dynamics over the calcium image se-

quence computed by our tracking method can be linked with the neuronal activity 

Figure 1.4. Patterning morphology dynamics of proprioceptors. ddaD 
(red) and ddaE (green) neurons usually appear together as a cluster of 
neurons (top). ddaE neurons expand towards the posterior of the lar-
vae, while ddaD neurons branch out towards the anterior. The maximum 
intensity projection of an input volume is displayed for the purpose of 
visualization. The deformation of these neurons occurs in a cycle that 
composes of two main processes: contraction (middle) and relaxation (bot-
tom). From left to right, 3D neuron rendering shows three time steps of 
the contraction and relaxation processes in a cycle during the forward 
movement. The phase of this muscle contraction cycle is used as the 
reference for comparison between larval movements. 
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information directly. In our experiments, we apply our neuron tracking method to 

model the morphological changes of proprioceptors, i.e., ddaD and ddaE neurons, dur-

ing the movement of the Drosphila embryo. The deformation occurs in tandem with 

a similar pattern composed of two processes: contraction and relaxation (Fig. 1.4). 

This cycle is used as the reference for comparison between larval movements and pat-

terning the changes in morphology along with the associated neuronal activity. This 

scheme creates the new technique for visualizing the connection between the neuronal 

activities indicated by transmission of nerve impulse, and the morphology of neurons 

during the locomotion process. 

1.3 Modeling the Link between Structural and Functional Development 

Studying the neuronal morphology provides only the anatomical aspect of neu-

rons; however, there are other aspects such as neuron functionality influencing the 

neuron mechanisms. The analysis must take into account all aspects of neurons al-

together in order to fully understand the whole picture of the neuron mechanisms. 

Therefore, neuroscientists are interested in the study of the connection between neu-

ron functionality at the molecular level and neuron structure at the cellular level. 

Studying different aspects requires different imaging systems, i.e., FRET microscopy 

acquires the nanometer-scale protein network, and confocal laser scanning microscopy 

acquires the micrometer-scale cellular complexity. 

Unfortunately, combining information from multiple modalities is not a trivial 

task since the information is described in different scales. The information across 

modalities must be aligned into the same coordinate to enable the relevant integration 

across modalities. Furthermore, the alignment must be carried out according to the 

neuron structures usually described qualitatively by neuroscience experts to provides 

the biological interpretation. Therefore, the conventional registration techniques are 

inadequate because they register images based on the appearance and ignore the 

neuron shape. 
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For this reason, we tackle the problem of analyzing different microscopy imag-

ing modalities as the part-wise neuron volume segmentation problem with artificial 

templates (Fig. 1.5). To provide the reference for biologically meaningful comparison 

across modalities, we create the ‘prototype’, which is the standardized representation 

of a neuron regardless of modality. This artificial template is generated based on the 

input from domain expertise, which is a common practice in biology and life science. 

It contains the pre-determined partition based on context-specificity, e.g., topology 

regarding the natural environment, neuron shape, and function of compartments, 

which provides the biological interpretation. Hence, we develop the simultaneous 

registration and segmentation method for solving the part-wise neuron volume seg-

mentation problem with artificial templates. In addition, our method also computes 

Figure 1.5. Part-wise volume segmentation problem with artificial tem-
plates. Given image stacks with different spatial resolutions (top) and the 
template (middle) partitioned according to the input from domain exper-
tise. The goal is to separate input neuron volumes from their surroundings 
and partition them accordingly (bottom). Different colors correspond to 
different compartments. 
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the mapping function between compartments to combine information about protein 

interaction and morphology, and facilitate the study of the link between the func-

tionality and structure of neurons. Our method follows the global-to-local approach: 

the template acts as the global feature, which constrains the part-wise segmentation 

derived from local features to ensure the interpretability. 

Given the registration across multiple modalities, we can visualize the link be-

tween protein interaction and morphology/cellular complexity. In our exploration of 

aCC volumes, the protein interaction concentration map, which has low spatial res-

olution, can be mapped to the high resolution image of a neuron using our method 

(Fig. 1.6). As a result, we obtain the estimation of the protein interaction at the 

branch level. This provides the tool for neuroscientists to study the correlation and 

causality between protein interactions (proteome) and cellular complexity (phenome). 

Figure 1.6. Mapping protein interaction across modalities through the 
artificial template. The protein interaction localization in the low resolu-
tion volume (top) is mapped to the artificial template (middle) using our 
part-wise segmentation method. Then, this step is repeated to map the 
template to the high resolution volume with branching details (bottom). 
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1.4 Challenges 

Neuron reconstruction has been viewed as one of the most challenging tasks for 

computational neuroscience. The major challenge of automated neuron reconstruc-

tion for single image stack is mainly influenced by four factors: device limitations, 

noise, structural complexity, and structure variability [39]. 

Dendrites and spines are small compared to the achievable resolution from the 

imaging systems, so they are usually just a few voxels wide in the image stack. Their 

boundaries are often blurred because of the diffraction. In addition, the resolution 

along the depth of image stacks is usually low, especially for in vivo samples; other-

wise, the integrity of the image stack might be compromised because image slices are 

taken in sequence. 

The signal-to-noise ratio (SNR) of input image stacks can be poor. The neuronal 

structure can be discontinuous or occluded by undesired structures like parts of other 

neurons or body walls. The contrast inhomogeneity may occur within images, which 

is influenced by many causes such as non-uniform illumination and non-uniform in-

tracellular distribution of fluorophores. 

The structure of the neurons could be complex, especially when neurites are inter-

twined together. It is tricky to separate the adjacent neurites in such situations (e.g., 

crossovers and bifurcations). With the combination of complex structures and low 

resolution images, neurites could appear like knots that are highly ambiguous even 

to the human operators. 

Finally, the high variability in the neuronal topology and appearance makes it 

difficult to model neurites. The number of bifurcations could range from a few to 

hundreds, while the thickness and length of neurites could vary within the same 

neuron. Due to the variation in both neuronal structure and appearance, it is difficult 

to create a robust mathematical model with the flexibility to represent all possible 

neurons. 
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Furthermore, the tracking problem in the time-lapse sequence of calcium images 

is challenging due to the characteristics of neuron’s locomotive behavior and calcium 

imaging. Time-lapse image stacks contain image noise and out-of-focus regions, while 

neurons exhibit the inherent structural complexity and variability of neurites. In ad-

dition, calcium signals are sensitive to neuronal activities so neurons become invisible 

when they are stationary. Another issue is the locomotion characteristics of larvae, 

which produce movement pauses followed by severe deformations of neurons. 

In the part-wise segmentation problem with artificial templates, the reference 

image is an artificially generated neuron model so the intensity of the reference image 

is unavailable. Although this is the segmentation problem, the partition must be done 

according to the template. Hence, the registration techniques can be applied between 

the segmentations of input images and the template to ensure that the constraint is 

complied. However, there are appearance differences between the reference and target 

images. So the conventional registration techniques cannot be applied here because 

they assume that input images have similar appearance. 

1.5 Thesis Statement 

The model-and-appearance-based analysis combines high- and low-level features 

derived from input volumes and domain knowledge to accurately extract neuronal 

morphology properties from multi-modal microscopy images. 

1.6 Contributions and Dissertation Organization 

This dissertation is organized into seven chapters including the introduction, back-

ground, four chapters that constitute our contributions, and summary. Our work 

contributes to both the computer science and biology communities. In the computer 

vision area, we develop novel model-and-appearance-based methods for solving four 

main tasks in the automated morphology analysis: segmentation, tracing, tracking, 

and part-wise segmentation with artificial templates. These methods enable the ad-
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vance of neuroscience research by creating new techniques for computationally quan-

tifying the anatomical aspect and new visualizations for links between properties of 

neurons. Moreover, their applications allow neuroscientists to investigate a nervous 

system at the most fundamental level, the single neuron resolution. The datasets used 

in this dissertation and details of imaging preparation of our datasets are described 

in Appendix B. The brief overview for each of these four chapters are provided below. 

Chapter 3 introduces a novel segmentation method for time-lapse image stacks 

based on the co-segmentation principle. Our method aggregates information from 

multiple stacks to improve the segmentation task of individual stack, using a neurite 

model and a tree similarity term. The neurite model takes into account branching 

characteristics, such as local shape smoothness and continuity, while the tree sim-

ilarity term exploits the local branch dynamics across image stacks. Our approach 

improves accuracy in ambiguous regions, handling successfully out-of-focus effects and 

branching bifurcations. It also detects the topological changes on neurons over the 

image sequence. We validate our method using Drosophila sensory neuron datasets 

and made comparisons with existing methods. 

Chapter 4 presents two novel methods for three-dimensional neurite tracing using 

a population of open-curve active contour models: joint probability and conditional 

random field methods. Our aim is to increase the robustness under spatially varying 

neurite-background contrast. While most existing active contour model methods per-

form tracing by evolving snakes in a sequential manner, ours implement a simultane-

ous evolution. Our methods combine the active contour model with the probabilistic 

framework to incorporate the local shape model, image statistics, and the global shape 

encoded by the pairwise interaction among snakes based on their spatial proximity 

and shapes. This interaction helps resolve the connectivity of active contour popula-

tion, resulting in increased accuracy in ambiguous regions (e.g., low contrast, neurite 

bifurcations and crossovers, etc.). We illustrate the performance of our methods and 

compare them with existing frameworks on publicly available datasets: wild-type 

sensory neurons in the larval Drosophila, DIADEM, and FlyCircuit datasets. 
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In Chapter 5, we present the novel neuron tracking method based on the local-to-

global approach for time-lapse calcium images. Locomotion is controlled by sensory 

neurons, yet a fundamental, unanswered question is how this happens. We use time-

lapse calcium imagery to observe and model the link between locomotion and sensory 

neuron activity in larval Drosophila. The main issue with calcium images is that 

they produce low responses when there is little or no neuronal activity. Here we 

use a neurite centerline tracking technique to tackle this issue, even under significant 

deformations during movement. Our method incorporates both local features (image 

appearance and local shape) and the global model (global shape and motion) in a 

Markov random field (MRF) framework. The objective function is optimized using 

Quadratic Pseudo-Boolean Optimization (QPBO) with α-expansion, which is also 

known as fusion moves. In our experiments, we illustrate how our method can track 

neurites in time-lapse calcium images under severe local intensity ambiguities. 

Chapter 6 illustrates how to analyze multiple image stacks with different modali-

ties by solving part-wise segmentation problem with artificial templates. We analyze 

neuronal morphology during development over volumes with different spatial reso-

lutions using artificially created templates. Such templates serve as input from the 

domain expertise: a standardized representation of the neuron, independent from 

imaging modalities and resolutions, is what a neurobiologist can provide from knowl-

edge and qualitative observations under the microscope. This is the first method 

that uses the totally artificial templates rather than the data-driven ones since it 

is a common practice in biology or life science for experts to describe knowledge 

qualitatively based on their observations. Moreover, computing data-driven tem-

plate requires training data that captures sufficient variance of neuronal morphology, 

which is usually not true for the available neuron datasets. The artificial template 

is divided into context-specific (topology, shape, and/or function) compartments to 

provide the interpretable compartmentalization and comparison among neurons; and 

our task is to segment input neuron volumes from their surroundings and partition 

them accordingly. We solve this problem using our novel simultaneous registration 
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and segmentation method following the global-to-local approach. We first employ 

a global transformation that serves as part-wise alignment of the template with the 

input volume. Then, we apply the local, deformable compartment shape registration 

technique, the MRF-based free-form deformations (FFD). We validate our results us-

ing aCC motorneuron image stacks from larval Drosophila, at multiple developmental 

instances and different spatial resolutions. 
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2 BACKGROUND 

In this chapter, we review a number of basic concepts for solving four fundamental 

problems in neuronal morphology analysis: segmentation (Sec. 2.1), tracing (Sec. 2.2), 

tracking (Sec. 2.3), and part-wise segmentation with artificial templates (Sec. 2.4). 

There has been extensive research in these four areas so the aim of this chapter is to 

provide the overview and contrast of related concepts, where a more comprehensive 

survey is provided in the following chapters. We also discuss the differences between 

existing concepts and our methods to illustrate the significance of our contributions. 

2.1 Neuron Segmentation 

The neuron segmentation is a boundary-based neuron reconstruction that detects 

the outline of a neuron. Given a temporal sequence of image stacks X = {X0 , ..., XT } 

and a set of corresponding parameters, θ = {θ0, ..., θT }, the objective function for the 

segmentation problem over time-lapse data volume can be defined by, X � � 
E(X) = Espatial f(X

t, θt) + Etemporal (f(X, θ)) (2.1) 
t 

where f is the feature extraction function from input volumes. Espatial is the energy 

within an individual image stack, while Etemporal is the energy across image stacks. 

Here we discuss three existing concepts for segmentation over time-lapse image stacks: 

graph registration, image registration, and co-segmentation. 

Graph registration exploits the underlying tree data structure of neurons by for-

mulating the neuron segmentation problem as the registration problem over graphs 

[40–44]. This scheme adopted a function f that converts the input volume Xt into a 

graph. Espatial acts as the measurement of how well the dendritic tree model fits the 
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input volume, while Etemporal defines the similarity criteria for aligning tree structures 

across image stacks. 

Image registration selects the mapping function that maximizes the neuron im-

age similarity, measured by Etemporal, among segmented neuron images, produced by 

Espatial. A choice of similarity criteria, such as residual sum of squares or normalized 

cross-correlation [45], depends on the type of algorithm, which can be feature-based or 

intensity-based or the combination of both. In feature-based algorithms, a function f 

extracts feature points from the neuron volume. Instead, the function f in intensity-

based methods computes features from the image intensity of every pixel/voxel. 

Co-segmentation is normally defined as the task of jointly segmenting ‘similar 

things’ in a given set of images [46]. Similarly, neuron co-segmentation is defined as 

the joint segmentation problem of similar neurites over a set of neuron images. In this 

scheme, Espatial generates neurite-like region proposals, while Etemporal ensures the co-

existence of neurites across images. The co-segmentation problem can be solved using 

Markov random field (MRF) [19] or conditional random field (CRF) [47] frameworks. 

MRF is the undirected graphical model following the probabilistic generative 

framework (Fig. 2.1). It models the joint probability of the observed data and the 

corresponding labels. Given the observed data like image stack in our case, we divide 

the observed data into sites. For example, the image stack can be divided into one 

voxel per site, where each site has the corresponding label or configuration. In the 

neuron co-segmentation problem, the site’s label is either neurite or background. 

Let X = {xi}i∈S denote the observed data divided into a set of site S, where xi is 

the data from ith site. Let Y = {yi}i∈S denote the set of the corresponding labels. 

The MRF framework follows the Bayes’ rule, 

P (Y|X) ∝ P (X, Y) = P (Y)P (X|Y) (2.2) 
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Figure 2.1. Markov random field. The observed data is divided into sites 
xi (blue circles) with the corresponding label or configuration yi (black 
circles). 

Q
where the likelihood model P (X|Y) = P (xi|yi) is factorized by sites. Whilei∈S 

the prior P (Y) is modeled by the product of potential function ψC over the maximal 

cliques yC of the graph [48], Y1 
P (Y) = ψC (yC ) (2.3)

Z 
C 

where Z is the partition function that ensures the distribution P (Y) is correctly 

normalized. Then, we substitute the likelihood and the prior into eq. (2.2), Y Y1 
P (X, Y) = ψC (yC ) P (xi|yi) (2.4)

Z 
C i∈S 

Given the energy function EC of the maximal clique, ψC (yC ) = exp{−EC (yC )}, 

the above equation can be rewritten as: ( )X X1 
P (X, Y) = exp − EC (yC ) + log P (yi|xi) (2.5)

Z 
C i∈S 

Following the Hammersley-Clifford theorem [49], we assume only up to pairwise 

clique potentials to be nonzero [48]. We can rearrange the equation into the following: ( )X XX1 
P (Y|X) ∝ exp A(xi, yi) + I(yi, yj ) (2.6)

Z 
i∈S i∈S j∈Ni 

where Ni is the set of neighbors of yi. A is the association potential or the data cost 

term, and I is the interaction potential or the smoothing term [50]. 
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Given the above formulation, the inference is the problem of finding the optimal 

labels Y of all sites with respect to the cost function in eq. (2.6). There are many 

methods for inference in MRF, e.g., ICM [51], HCF [52] graph cuts [53], QPBO [54], 

and fast-PD [55]. 

CRF is another undirected graphical model, similar to MRF, but the difference 

is that CRF is the discriminative model that directly models the conditional distribu-

tion over labels, i.e., P (Y|X). One advantage of CRF over MRF is that dependencies 

among the input variables X do not need to be explicitly represented because the 

model is conditional, which allows factors on both the individual sites and edges to 

depend on rich global features of the input [56] (Fig. 2.2). Lafferty et al. in 2001 [57] 

gave the following formal definition: 

Let G = {S, E} be a graph such that Y = {yi}i∈S , so that Y is indexed 

by the vertices of G. Then (X, Y) is a “conditional random field” in case, 

when conditioned on X, the random variables yi obey the Markov property 

with respect to the graph: P (yi | X, yj , i 6= j) = P (yi | X, yj , i ∼ j), where 

i ∼ j means that i and j are neighbors in G. 

According to the above definition, CRF can be written as the conditional dis-

tribution. Let X denote the observed data and Y = {yi}i∈S denote the set of the 

Figure 2.2. Conditional random field. All labels or configurations yi (black 
circles) depends on the observed data X (blue circle). 
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corresponding labels, as either neurite or background for the neuron co-segmentation 

problem. Let G be a factor graph over Y, then the conditional probability is the 

product of factors Ψa ∈ G [56], Y1 
P (Y|X) = Ψa(xa, ya) (2.7)

Z 
Ψa∈G 

where xa and ya are data sites and their corresponding labels in the factor Ψa, and Z 

is the partition function that ensures the distribution P (Y|X) is correctly normalized. 

Similarly to MRF, using the Hammersley-Clifford theorem [49], the CRF framework 

is defined as the conditional distribution over the label given the observed data [50],( )X XX1 
P (Y|X) = exp A(yi, X) + I(yi, yj , X) (2.8)

Z 
i∈S i∈S j∈Ni 

There are two main differences between CRF in eq. (2.8) and MRF in eq. (2.6). 

First, the association potential in MRF at any site yi is a function of the associated 

observation xi, while in CRF, it is a function of all observation X. The second 

difference is that the interaction potential for each pair of sites in MRF is a function of 

their corresponding labels, whereas in CRF, the interaction potential also includes the 

observation X along with labels of a pair of sites. The discriminative approach allows 

the modeling of arbitrary interactions between observed data and labels in a principled 

manner, which enables arbitrary potentials dependent on the whole observation [50]. 

In CRF, the inference is the problem of finding the optimal labels Y over the sites 

with respect to the cost function in eq. (2.8). Most inference methods for MRF can 

be modified for the inference in CRF as well. 

Our MRF-based neuron co-segmentation. Our contributions in the neuron 

segmentation task are the introduction of the novel function f and energy function 

Etemporal. Our function f exploits the local branch characteristics of neurons to im-

prove neurite detection, while our energy function Etemporal enforces the coherency 

across images at the structure level, unlike conventional methods that ensure the co-

herency at the appearance level. As a result, our structure level coherency improves 

the accuracy over branching bifurcations. 
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2.2 Neuron Tracing 

The neuron tracing is the centerline-based neuron reconstruction that extracts 

the tree model of the neuronal topology. Here we discuss two main types of tracing 

scheme for data volumes with spatially varying contrast: global and local methods. 

2.2.1 Global Methods 

Global methods extract underlying tree data structures of neurons using the signal 

distribution of the entire input images [58]. Given the input image stack X and the 

parameter θ, global methods optimize the following objective function, 

� � 
E(X) = Eglobal f(X, θ) (2.9) 

where Eglobal is the energy derived from the global signal distribution. Global methods 

can be categorized into skeletonization, minimal path, and graph-based methods. 

Skeletonization is the task of computing the binary image of the neuron centerline 

from input volumes. In this scheme, a function f produces the segmented image on 

which the energy function Eglobal applies the medial axis transform to extract the 

topological skeleton [59]. 

Minimal path-based methods extract neurite traces by computing the geodesic 

path between seed points, usually solved by the fast marching method [60]. In this 

framework, the function f extracts seed points from input volume, while the energy 

function Eglobal connects these seed points using minimal paths to recover the tree 

structure of neurons. 

Graph-based methods solve the neurite tracing problem using graph theory on 

the tree-like structure of a neuron. According to this scheme, the function f converts 

X into a graph, where the energy function Eglobal selects the optimal graph with 

respect to some criteria based on the neuron’s model [61, 62]. 
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2.2.2 Local Methods 

Local methods carry out the neuron tracing process based on the signal distri-

bution of local regions. Given the subregion of image stack, Xi ⊂ X, and its corre-

sponding parameter θi, the objective function of local methods is defined by, X � � 
E(X) = Elocal f(Xi, θi) (2.10) 

i 

where Elocal is the energy derived from the signal distribution of local regions. 

Sequential tracing is the repetitious framework that traces the vicinity of seed 

points iteratively until the neuronal morphology is obtained. This framework employs 

a function f that measures the compatibility of the neuron segment model and the 

subvolume, while the energy function Elocal selects the best-fit parameter θi [58, 63]. 

Deformable models select the neuron’s boundary based on local image features 

that satisfies constraints with respect to the shape of the neuron. There are two main 

types of deformable models based on the curve representation: parametric [64–66] 

and geometric [67–69]. 

(a) (b) 

Figure 2.3. Parametric (left) and geometric (right) deformable models. 
(a) The open-snake s has α and β parameters to regularize the ‘elasticity’ 
and ‘rigidity’ of the curve. (b) The level set φ implicitly represents the 
curve C and it is evolved in the direction of the normal unit vector ~n. 
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Parametric deformable model or active contour model, usually denoted by 

snake, was first introduced in [64]. It represents the region of interest (ROI) by the 

curve delineating its boundary. For the curvilinear structure like neuron centerline, 

the ROI is represented by the open curve s, called the open-snake (Fig. 2.3(a)). Given 

the snake curve s and the snake parameter encoding its normalized arc-length t, the 

corresponding position is s(t) = {x(t), y(t), z(t)}. The snake deforms towards the 

ROI, while it ensures the smoothness of the curve by minimizing the following energy 

function, where S is the set of snakes: X 
Elocal(X) = Esnake(s) Zs∈S Z (2.11)

1 1 

Esnake(s) = Eint(s)dt + Eext(s)dt 
0 0 

The snake energy Esnake is composed of the internal energy Eint and the external 

energy Eext [70]. The internal energy regularized the snake curve by enforcing the 

curve smoothness through the elasticity and rigidity, where α and β are the elasticity 

and rigidity weights: 

Eint(s) = α(t)|rs(t)|2 + β(t)|r2 s(t)|2 (2.12)| {z } | {z } 
elasticity rigidity 

The elasticity term uses the first-order derivative to contract the snake when it 

is stretched. The rigidity employs the second-order derivative to restrict the snake 

from bending. While the external energy guides the snake curve towards the salient 

feature based on the edge detector function, g : Ω → R+ , that gives high value only 

at the vicinity of the edge, 

Eext(s) = −|g(s(t))|2 (2.13) 

The above formulation can be minimized using the gradient descent algorithm, 

where the derivative can be analytically solved using the variational calculus. The 

function Esnake can be redefined as, Z 1 
0 00)Esnake(s) = F (t, s, s , s dt (2.14) 

0 
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where we abbreviate function s and its derivatives for readability: s = s(t), s0 = 

rs(t), s00 = r2s(t). Following these definitions, the change of the energy function 

Esnake with respect to s can be described by the Taylor expansion, Z 1 ∂F ∂F ∂F 
δEsnake(s) ≈ · δs + · δs0 + 

∂s00 
· δs00 dt (2.15) 

0 ∂s ∂s0 

Then, we break down δs0 and δs00 by the chain rule, Z 1 ∂F d ∂F d2 ∂F 
δEsnake(s) ≈ · δs + · δs + · δs dt (2.16) 

0 ∂s dt ∂s0 dt2 ∂s00 

At minimum, δEsnake = 0, 

∂F d ∂F d2 ∂F 
+ + = 0 (2.17)

∂s dt ∂s0 dt2 ∂s00 

In 3D space, assuming that α(t) = α and β(t) = β are constant, substituting 

eq. (2.14) in eq. (2.17) gives rise to the Euler equation, 

∂Eext 
+ βs0000+ αs00 = 0 (2.18)

∂s 

The derivatives of snakes are approximated using the finite difference method, 

s(t) ≈ vi = {xi, yi, zi} [64]. Then, eq. (2.12) can be rewritten as, 

|vi − vi−1|2 |vi−1 − 2vi + vi+1|2 

Eint(i) = αi + βi (2.19)
2h2 2h4 

Thus, the Euler equation in eq. (2.18) is, 

αi|vi − vi−1| − αi+1|vi+1 − vi| 

+ βi−1|vi−2 − 2vi−1 + vi| 

− 2βi|vi−1 − 2vi + vi+1| (2.20) 

+ βi+1|vi − 2vi+1 + vi+2| 
d 

+ Eext = 0 
dt 

It can be rewritten in the matrix form into three equations as, 

d 
Ax + Eext = 0 

dx 
d 

Ay + Eext = 0 (2.21)
dy 
d 

Az + Eext = 0 
dz 
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Following the gradient descent algorithm, the position of snake curve at time n 

given time n − 1 is optimized by, 

d 
Axn + Eext(xn−1, yn−1, zn−1) = −γ(xn − xn−1)

dx 
d 

Ayn + Eext(xn−1, yn−1, zn−1) = −γ(yn − yn−1) (2.22)
dy 
d 

Azn + Eext(xn−1, yn−1, zn−1) = −γ(zn − zn−1)
dz 

Rearranging the above equations gives the update function of the snake curve 

position for minimizing the snake energy function Esnake at each iteration n [23], � � 
∂Eext(xn−1, yn−1, zn−1) 

xn = (A + γI)−1 γxn−1 − 
∂x � � 

∂Eext(xn−1, yn−1, zn−1) 
yn = (A + γI)−1 γyn−1 − (2.23)

∂y � � 
∂Eext(xn−1, yn−1, zn−1) 

zn = (A + γI)−1 γzn−1 − 
∂z 

On the other hand, if snakes are discretized then eq. (2.11) can be solved straight-

forwardly using dynamic programming [71] or greedy algorithm [72], where derivatives 

can be approximated using the finite difference method. 

Geometric deformable model or level set method is originally introduced 

in [73]. It is built upon the parametric deformable model to overcome the mathemat-

ical challenge, where the boundary curve and input images have a different number 

of dimensions, i.e., snake splines are in 1D while neuron images are in 2D (or 3D for 

volumes). To avoid this issue, the curve C delineating the ROI is represented implic-

itly via a Lipschitz function φ, C = {x | φ(x) = 0} (Fig. 2.3(b)). There are numbers 

of variations of level set methods, but notable models are Mumford-Shah [74], Chan-

Vese [68], and geodesic active contours [67]. The main difference between these models 

is their assumption about the ROI. 

Given the function for extracting features from an image stack f : Ω → R, the 

Mumford-Shah model [74] optimizes the following piecewise-smooth function, Z Z 
arg min µ · Length(C) + λ · f(x) − u(x) 

�2 
dx + |ru(x)|2dx (2.24) 

u,C Ω Ω\C 
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where u is the solution image formed by smooth regions with constant intensity. µ 

and λ are model parameters regularizing the length of object and balancing between 

the regularization and image feature respectively. 

On the contrary, the Chan-Vese model [68] follows the piecewise-constant formu-

lation, 

arg min µ · Length(C) + ν · Area(inside(C)) 
c1,c2,C Z 

+ λ1 |f(x) − c1|2dx (2.25) 
inside(C)Z 

+ λ2 |f(x) − c2|2dx 
outside(C) 

where c1 and c2 are two possible value of u. ν is the regularization parameter on the 

enclosed area. λ1 and λ2 are model parameters tuning the image feature inside and 

outside of C respectively. 

The key differences between the Chan-Vese and Mumford-Shah models are the 

additional regularization on the enclosed area and the removal of the smoothness 

term, which is compensated by the simplification that u have only two possible values: 

c1 and c2 [75]. 

The geodesic active contour evolves the curve based on the edge information, 

unlike the Mumford-Shah and Chan-Vese models that incorporate only the region 

information. Its energy function is derived from the parametric active contour model, 

which is defined by the following [67]: Z 1 � � 
min g C(t) |C 0(t)| dt (2.26)
C 0 

In this work, we follow the Chan-Vese model for representing the boundary of a 

neuron since it is simpler than the Mumford-Shah model [75]. The geodesic active 

contour can be integrated to incorporate the edge information [76]. Given the image 

stack, the objective function in eq. (2.25) is redefined using the level set function φ, 
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Z � � � � 
Elocal(X) = µ δ φ(x) |rφ(x)|dx + νH φ(x) 

Ω Z � � 
+ λ1 |f(x) − c1|2H φ(x) dx (2.27) ZΩ � � �� 
+ λ2 |f(x) − c2|2 1 − H φ(x) dx 

Ω 

where H is the Heaviside function and δ is the Dirac measure. ⎧ ⎪⎨1 , z ≥ 0, 
H(z) = ⎪⎩0 , z < 0, (2.28) 

d 
δ(z) = H(z)

dz 

The objective function is minimized with respect to c1 and c2 by keeping φ fixed, R � � 
Ω f(x)H φ(x) dx 

c1 = R � � 
H φ(x) dx

Ω � ��R � (2.29) 
Ω f(x) 1 − H φ(x) dx 

c2 = � ��R � 
Ω 1 − H φ(x) dx 

H needs to be a continuous function so the level set can be evolved using the 

gradient descent algorithm, and its derivatives can be computed using the variational 

calculus; the Heaviside function and the Dirac measure are thereby approximated by, � � �� 1 2 z 
H�(z) = 1 + arctan 

2 π � 
(2.30)

� 
δ�(z) = 

φ(�2 + z2) 

With these definitions, we update φ to minimize eq. (2.25) at time t of the level 

set curve evolution and solve its derivative in eq. (2.27) using the variational calculus, � � � � 
∂φ rφ � �2 � �2 

= δ�(φ) µ div − ν − λ1 f(X) − c1 + λ2 f(X) − c2
∂t |rφ| 

(2.31)
δ�(φ) ∂φ 

subject to = 0 on the boundary 
|rφ| ∂~n 

where ~n denotes the normal vector. There are many numerical methods [68, 77–79] 

for computing eq. (2.31). 
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Our neuron tracing method combines both local and global signal distributions 

through the set of parametric deformable models, and obtains the best of both worlds. 

The local features enable spatially adaptive filtering to enhance neuron detection in 

an efficient manner, while the global features derived from interactions among active 

contour models ensure the structural coherency to improve the topology recovery. 

2.3 Neuron Tracking 

The neuron tracking traces the neuron centerlines over time-lapse sequence in 

order to capture the changes in its morphology. Given a temporal sequence of image 

stacks X = {X0 , ..., XT } and a set of corresponding parameters, θ = {θ0, ..., θT }, the 

objective function of tracking problem is defined by, X� � �	 � � 
E(X) = Eapp f(X

t, θt) + Emodel f(X, θ) (2.32) 
t 

where Eapp is the appearance energy of individual image stack, and Emodel ensures 

temporal smoothness over the consecutive frames. Here we discuss three existing con-

cepts for tracking over time-lapse calcium images: tracking-by-detection, articulated 

neuron, and optical flow. 

Tracking-by-detection. This scheme traces every neuron image stack indepen-

dently, e.g., [80,81], and applies registration technique, e.g., [44], to enforce temporal 

smoothness. The energy function Eapp is the tracing criteria and Emodel is the regis-

tration metric for aligning neuron traces. In this framework, these two problems are 

decoupled and they are optimized in sequence. 

Articulated neuron. In this framework, the neuron’s tree is modeled by the kine-

matic articulated structure [82,83]. A function f fits the neuron’s model with config-

uration parameter θ to the data volumes. While Eapp computes the optimal neuron’s 

model and Emodel ensures the smooth transition between consecutive time steps. 
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Optical flow is the estimation of a dense motion field corresponding to the dis-

placement of each pixel in neuron volume [84]. It gives the low-level motion analysis 

of intensities in the image plane, which provides the foundation for a more sophis-

ticated analysis. Optical flow usually follows the Brightness Constancy Constraint 

Equation (BCCE). At a given voxel x ∈ Ω at time t, BCCE is defined by, 

df 
(x, t) = 0 (2.33)

dt 

where f : Ω × T → R is the feature calculated from image sequence. Ω is the im-

age domain and T is the sampled time interval from the sequence. The discrete 

approximation of eq. (2.33) is given by, 

f(x + w(x), t + 1) − f(x, t) = 0 (2.34) 

where w : Ω → R is the motion field at time t of the image Xt . In this framework, 

Eapp computes the optimal motion field w, while Emodel enforces the temporal intensity 

smoothness constraint. 

Our local-to-global approach models the neuronal morphology using the kine-

matic articulated structure with novel constraints, which take into account the mo-

tion and global shape of a neuron. The integration of motion into the energy function 

Emodel helps detect neurons even when they are invisible, as occur in noisy calcium 

images. While local features are constrained by the global shape through Eapp to 

cope with severe deformations from neuron’s movement behavior. 

2.4 Part-Wise Neuron Volume Segmentation with Artificial Templates 

This task is to segment input neuron volumes from their surroundings and parti-

tion them according to templates. They are artificial and derived from the domain 

knowledge to provide biologically meaningful comparison and registration. The tem-

plates cannot be created using a data-driven methodology such as maximum a pos-

teriori (MAP) framework [85] and active shape model [86, 87] because the available 
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data is insufficient to capture enough variation to build the acceptable templates. 

Fortunately, it is a common practice in biology or life science for experts to describe 

knowledge qualitatively, where biologists draw the neuronal morphology template 

based on their observations. Hence, the man-made templates are used in this prob-

lem instead of the data-driven ones. 

This problem can be solved by the simultaneous registration and segmentation 

(SRS) techniques; however, the template is only the label function and the registration 

over segmentations must be consistent with the partition. Hence, given the input 

volume X and the artificial template A, the objective function is formulated as, 

� � � � 
E(X, A) = Eseg f(X, θ) + Ereg L(X), T[L(A)] (2.35) 

where Eseg is the segmentation criteria and Ereg ensures the consistency between the 

segmentations of the input volume and the template. f is the feature extraction 

function, L is the label function of the volume, and T is the transformation function, 

e.g., transformation matrix, vector field, or free-form deformation (FFD). 

FFD is the geometric technique for modeling the non-linear deformation [88] 

by enclosing the object (e.g., a neuron) with the lattice and deforming the lattice to 

transform the object (fig. 2.4). The deformation is defined over the set of control 

Figure 2.4. The 2D FFD of a cat image with 5 × 5 grid (lattice) control 
points (green dots). Before (left) and after (right) transformations. 
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points rather than every point in the space to reduce the number of parameters and 

ensure the space continuity. The popular configuration is the uniform cubic B-spline 

FFD because of its efficiency and flexibility, as well as a guarantee of continuity. 

Let T(x) denote the 3D deformation at point x, and C be the set of nx × ny × nz 

grid control points ci,j,k with uniform spacing. Then, the transformation at x is 

defined by the combination of the grid control points as the tensor products of three 

1D cubic B-splines, X 
Tn(x) = η(x, c)dc 

c∈C 

3 3 3XXX 
= Bp(u)Bq(v)Br(w)ci+p,j+q,k+r 

p=0 q=0 r=0 

B0(u) = (1 − u)3/6 (2.36) 

B1(u) = (3u 3 − 6u 2 + 4)/6 

B2(u) = (−3u 3 + 3u 2 + 3u + 1)/6 

B3(u) = u 3/6 

where η is the coefficient of the control point c with displacement dc at point x. 

i = bx/nxc − 1, j = by/nyc − 1, and k = bz/nzc − 1 are the index of control points. 

u = x/nx −bx/nxc, v = y/ny −by/nyc, and w = z/nz −bz/nzc are spline parameters. 

Bp represents the pth basis function of the uniform B-spline, 

Existing SRS methods can be categorized into two main types based on their 

optimization techniques: variational-based and Bayesian-based. 

Variational-based framework solves the SRS problem in the continuous space 

[22, 89, 90]. This framework usually decouples the neuron registration and neuron 

segmentation problems, and alternatively optimize Eseg and Ereg. The popular opti-

mization technique for this framework is the gradient descent algorithm, where the 

derivatives are computed by variational calculus. Then, the energy functions Eseg 

and Ereg are updated by calculating dEseg/dθ and dEreg/dT respectively. 
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Bayesian-based framework follows the probabilistic framework by estimating the 

maximum a posteriori probability [85,91,92]. The framework operates in the discrete 

space to make the problem feasible. The benefit is that probabilistic framework has 

efficient inference techniques for computing the good approximation of the global 

optimum. In addition, the probabilistic framework enables the more sophisticated 

energy functions Eseg and Ereg since their derivatives are not required. 

Our global-to-local approach adopts the Bayesian-based framework with the 

integration of the structure information (i.e., axonal centerline) into both energy 

functions Eseg and Ereg. Existing frameworks use only the appearance features of 

neurons, which are not suitable for this task because the artificial template can be 

very different to the input neurons in term of the appearance. However, the artificial 

template and input neurons share the same structure. Our framework employs the 

global-to-local approach: first, the global information from the artificial template is 

used to obtain the part-wise alignment. Then, the local registration is applied to 

align compartment boundaries. 
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3 NEURON SEGMENTATION FOR TEMPORAL IMAGE SEQUENCES 

In this chapter, we introduce the novel segmentation method [93]. It is a boundary-

based approach for extracting the neuron reconstruction. A video presentation of our 

work with supplemental material is available at https://youtu.be/MqzPoIBDsps. 

We improve the performance of the segmentation process by exploiting the occurrence 

of common neuron structures over time-lapse sequences. This problem is solved using 

the co-segmentation principle, which allows us to aggregate structure information 

across image stacks to improve the segmentation of individual volume, especially in 

ambiguous regions like branching bifurcations, and out-of-focus regions. 

3.1 Segmentation of Neuronal Morphology 

Studying the changes in neuronal topology is crucial for understanding the under-

lying biological processes in the nervous system, such as the functional mechanisms 

yielded from protein interactions. Another example is the wiring of motoneurons 

during the developmental stages. A complete anatomical description of larval motor 

neurons at single-cell resolution during the morphogenesis is required for observing 

how synaptic connectivities of motor circuits regulate the locomotion behavior of 

Drosophila [94]. Therefore, we apply the segmentation over time-lapse image stacks 

to model the morphological dynamics across developmental stages of neurons. Time-

lapse neuronal stacks allow us to exploit the temporal continuity to improve the 

segmentation in a similar way to the methods in [24, 95]. 

Most existing neuron reconstruction methods rely on initialization in the form of 

either seed points or initial/approximate segmentation; this step usually exploits the 

notion of vesselness. Popular choices of vesselness are the Frangi filter [96] and the 

Optimally Oriented Flux (OOF) [97]. However, these methods do not provide robust-

https://youtu.be/MqzPoIBDsps
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ness under locally varying contrast between neurite and background, as it appears in 

our examined dataset. Here we aim to improve the segmentation of the neuron from 

surroundings over time-lapse image stacks with globally varying contrast. 

To address this issue, we solve the neurite segmentation problem by incorporating 

information from temporally neighboring image stacks (successive instances during 

development) via the co-segmentation principle, in a seamless fashion. The idea of 

co-segmentation exploits common information about the appearance and/or shape 

of target regions throughout a given set (collection of images) [19, 98], instead of 

using prior knowledge in the form of training samples in a supervised classification 

manner. Most of co-segmentation approaches focus on dealing with object shape 

and appearance variations across images, as well as approximating the locations of 

commonly appearing objects. On the contrary, the goal in neurite co-segmentation is 

finding the correct branch correspondences, as a simultaneous tree segmentation and 

registration-like task, across temporally successive volumes. 

In our co-segmentation framework, we introduce (a) a neurite model that tackles 

branch intensity ‘gaps’ by incorporating local characteristics, such as shape smooth-

ness and continuity (Sec. 3.4), and (b) a tree similarity term that disambiguates neu-

rite from background, especially at branching points, by enforcing coherency over time 

(temporally successive stacks) (Sec. 3.5). We evaluate our neuron co-segmentation 

method using the sensory neurons of Drosophila larvae dataset, which has spatio-

temporally varying contrast background, and compare our results with vesselness-

based segmentation (Sec. 3.6). 

3.2 Related Work 

One way to reconstruct neurites is to segment each image stack in the develop-

ment sequence independently from temporally neighboring volumes. Then, one can 

register the results using graph-based or image-based registrations to enforce tempo-

ral smoothness and model the neuronal dynamics. Most of segmentation techniques 
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for a single image stack involve detecting vessel-like structures. There are numbers 

of vesselness filters such as [96, 97, 99–102]. Then, the binary segmentation can be 

obtained by thresholding the vesselness responses. 

The method presented in [24, 95] shows that exploiting temporal continuity in 

tracing time-lapse neuronal stacks can yield more robust results. The co-segmentation 

framework can achieve the same goal of incorporating consistency within and across 

image stacks. Here we discuss three possible solutions to extend these vesselness filters 

for segmentation over time-lapse image stacks: graph-based registration, image-based 

registration, and co-segmentation. 

3.2.1 Graph-Based Registration 

The structure of neurons, i.e., centerline of neurite, that is extracted from the 

segmentation of the single input stack, can be represented by tree data structures. 

Hence, matching neuron branches becomes a graph registration problem. Some tech-

niques in [40,41] match graph branch points based on Euclidean or geodesic distances, 

which are sensitive to changes in the graph appearance like length and size; therefore, 

those techniques are inappropriate for this task because of neuronal dynamics, which 

cause the changes in the morphology and appearance across image stacks. To deal 

with non-linear deformation, authors in [42, 43] proposed a non-rigid graph registra-

tion. They divide the registration process into two steps, coarse and fine alignments. 

In coarse alignment, they find the correspondence between branch and leaf nodes us-

ing Gaussian Process Regression (GPR) [103]. Then, they refine the edge alignment 

using the Hungarian algorithm [104]. Another approach in [44] aligns branches in the 

hierarchical fashion to model the neuronal dynamics. 

Alternatively, the neuron reconstruction can be solved simultaneously over all im-

age stacks in the time-lapse sequence by the method proposed in [24,95]. The method 

yields more robust results by exploiting temporal continuity and spatial consistency. 

However, all these methods relies heavily on the initialization step, either as detecting 
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seed points or extracting tree structures. This initialization process is computed in 

each image independently and it performs poorly on noisy datasets. 

3.2.2 Image-Based Registration 

Image-based registration computes the mapping by maximizing image similarity 

criteria such as normalized cross-correlation and mutual information [105, 106]. For 

example, the method in [107] finds the mapping that maximizes mutual information 

between the model and the image. Authors in [88] solved the registration problem by 

minimizing a combination of the cost associated with the transformation smoothness 

and image similarity. These methods assume that image stacks contain distinguish-

able objects; however, the varying signal-to-noise ratio (SNR) in our dataset violates 

this assumption, which makes this approach inappropriate to our task. 

3.2.3 Co-Segmentation 

Co-segmentation approach is typically defined as the task of jointly segmenting 

the similar regions in a given set of images [108]. There are many ways to tackle this 

problem. For instance, authors in [19] solved the problem using the Markov random 

field (MRF) framework, which separates foreground from background and maximizes 

the similarity between foreground features of two images. While, authors in [98] for-

mulated this problem as the hard combinatorial optimization problem. They used 

spectral clustering to determine similarity between foregrounds and discriminative 

clustering to separate foreground and background. Some methods also incorporate 

region matching or registration to improve accuracy. For example, authors in [109] 

performed co-segmentation at pixel-level as well as region-level. They enforced the 

consistency between adjacent pixels and regions within the images, as well as the com-

patibility between pixels and assigned regions. While, authors in [110] applied the 

feature matching method based on hough transform and inverted hough transform. 

Then, they enforced the appearance consistency across images and the geometric 
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coherency of the object over correspondences. Another example is the method pre-

sented in [111], which uses the consistent functional maps to represent the relationship 

among the set of image stacks. The new representation permits efficient optimization 

and ensures the temporal consistency and the agreement between image cues and 

segmentation boundary. 

Most of these approaches focus on dealing with the variation of objects and ap-

proximating their location; however, the main issue in neuron co-segmentation lies in 

finding the correct registration across volumes and locating the exact position of the 

neurites. So none of the previous methods are suitable for the neuron segmentation 

task. 

3.3 Neuron Co-Segmentation 

Let X = {Xt , Xt+1} be a pair of data volumes of the same neuron at two con-

secutive time instances; for simplicity, here we consider two volumes, although our 

framework can be extended to higher number of successive data. We postulate the co-

segmentation framework as the MRF model [19], where sites are the voxels xti ∈ Xt , 

t+1 ∈ Xt+1xl , and the objective function at time t is, 

E(Xt) = (1 − α) 

⎛ ⎜⎜⎝ 
⎞ ⎟⎟⎠ XX X 

t+1t t t 
i) + j ) − α H(x tA(x I(x ) (3.1)i, x i, xl 

(xt
i,x t+1 

l )∈Ct
i∈Xt (xt

i,x
t
j)∈Xt ,x 
i6=j 

where α ∈ [0, 1] is a model parameter regulating temporal smoothing, i.e., the conti-

nuity assumption across successive stacks (red line correspondences in Fig. 3.1). 

Data penalty term A in eq. (3.1) is the cost of labeling voxels as ‘neurite’ or 

‘background’, independently from the spatio-temporally neighboring voxels. It is 

defined as the negative logarithm of the product of image and model probabilities, 

t t tA(xi) = − ln Pimg(xi) − ln Pmodel(xi) (3.2) 
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Figure 3.1. Overview of our approach. Top: For the two instances, the 
gray nodes, yellow edges, and red lines represent data, shape smooth-
ness, and tree similarity terms respectively. The blue lines show the local 
neurite structure, while the dashed blue line illustrates correspondence 
with local structure in the previous instance. Introducing temporal co-
segmentation aims at solving such conflicts in structure that raise from 
intensity ambiguities. Bottom: Volume rendering of the raw intensity 
of two image stacks at consecutive time steps (left); the ground truth is 
highlighted in red. The rightmost panel is the segmentation result for the 
first volume. 

The image probability is the posterior distribution from a Gaussian Mixture Model 

(GMM) [112]: a GMM with K components is applied over the feature space f , which 

is composed by intensity and vesselness, and is computed by the OOF [97], 

X tK 
1 

� 
[f(x ) − µk]

2 � 
Pimg(xi

t) = wk p exp − i 

2σ2 (3.3) 
2πσ2 

kk=1 k 
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where wk, µk, and σk are the weight, mean, and covariance of the Gaussian component 

k. The model probability Pmodel is the probability map generated by the neurite 

configuration/topology and is detailed in Section 3.4. 

Smoothness penalty I in eq. (3.1) measures the cost of assigning different labels 

to two neighboring voxels within the same stack, and is defined as, � t t � kf(x ) − f(x )k 
t t i j

I(xi, x ) = exp − (3.4)j t t2hkf(xi) − f(xj )ki 

where h·i denotes the expectation value over all neighboring voxels within the stack 

[112]. 

Tree similarity function H in eq. (3.1) encodes the tree structure coherency of 

the neurite across image stacks, measured over a set C of temporally matched voxels 

between t and t + 1, as detailed in Section 3.5. 

3.4 Neurite Model 

Our model probability, Pmodel in eq. (3.2), indicates regions that are likely to be 

part of the neurite, based on an intermediate segmentation outcome, and is similar 

to the interaction potential in [81]. We observe that neurites have two local char-

acteristics: spatial continuity and local shape smoothness. Therefore, our model 

incorporates two main factors: proximity and orientation (Fig. 3.2). The proximity 

term captures nearby branches using the geodesic distance over intensity, which is 

computed by the fast marching method [60]. This term ensures spatial continuity of 

neurites, since it has a high value when there is a path towards foreground voxels of 

high intensity (Fig. 3.2(a)). It also contributes in removing isolated, high intensity 

voxels, which are usually noise or parts of other neurons in the background. The 

orientation term detects smooth paths between neurite parts in an intermediate seg-

mentation result: the orientations of two branch segments indicate a smooth neurite 

path between them when the angles at their proximal, terminal voxels and the angle 
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(a) 

(b) 

Figure 3.2. Neurite model. (a) From left to right: original image, prox-
imity term, orientation term, and probability map. (b) The orientation 
term; from left to right: synthetic image of a neurite gap, ridge filter 
response, VFC, and the orientation map. 

under which one ‘faces’ the other are in agreement [81]. We calculate this term using 

the steerable filter in [113] at multiple scales along with the Vector Field Convolution 

(VFC) [114] (Fig. 3.2(b)). Alternatively one can first extract the centerlines of the 

segmented branches and then use the approach in [81]. 

We define the model probability at each voxel xi
t as, 

� � 
t t tPmodel(xi) = exp − D(xi) · Rvfc(xi) (3.5)| {z } | {z } 

Proximity Orientation 

where D is the geodesic (unsigned) distance function from foreground voxels, while 

Rvfc is the ridge filter response along VFC. 
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3.5 Tree Similarity 

The tree similarity term in eq. (3.1) enforces tree structure coherency across time-

lapse stacks. Although neurite morphology does not change dramatically between 

successive time instances, variations in the appearance are commonly observed due to 

imaging-related issues (e.g., random out-of-focus effects). We enforce tree coherency 

when there is a conflict between paths across volumes, and specifically when a neurite 

path exists in one volume but not in the other. We define, n o 
t t+1 t t+1 t t+1H(xi, xl ) = max Pmodel(xi), Pmodel(xl ) , ∀(xi, xl ) ∈ C (3.6) 

t t+1 ∈ Xt+1where C is the set of all corresponding voxel pairs xi ∈ Xt and xl , such that 

t t+1either one or both of xi, xl belong to the imaged neurite (we ignore background 

voxels for efficiency). 

Generating C requires volume registration as well as local branch matching, tak-

ing into account the neuronal dynamics. We find a mapping between the two tree 

Figure 3.3. Tree Registration of two consecutive image stacks. (a) medial 
axes, (b) correspondence by thresholding NCC at branch points. and (c) 
GPR Geometric mapping. 
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structures, as approximated by the medial axis [59] in an initial/intermediate seg-

mentation. We initialize registration by first aligning somata (neuron bodies existing 

in the stacks) and then applying a rigid transformation using the finite Iterative 

Closest Point (ICP) approach [115], assuming there is no significant global change in 

the neuron configuration (which holds given the imaging time intervals). We calcu-

late sample correspondences through thresholding the Normalized Cross-Correlation 

(NCC) values between branching points [24]. Then, we apply Gaussian Process Re-

gression (GPR) to find the non-linear mapping between two graphs based on these 

correspondences [42, 103] (Fig. 3.3), which yields the set C. 

3.6 Experiments 

We evaluate our method on the larval Drosophila sensory neurons dataset, which 

contains four neuron samples imaged with three time instances each and we apply 

pair-wise co-segmentation over image stacks with consecutive time steps. 

Our method was executed iteratively, where two iterations were enough in all ex-

periments. For initialization, we used randomly thresholded OOF vesselness [97], and 

in all experiments the image probability was modeled by GMMs with 4 components, 

fitted by the Expectation-Maximization algorithm. The objective function in eq. (3.1) 

was solved using graph cuts [53]. For post-processing, we kept only the largest seg-

ment based on the assumption that the image stack contains only one neuron and a 

component represents a neuron. 

We compare our results with the popular or state-of-the-art curvilinear structure 

detection methods such as OOF [97], Frangi filter [96], and the Multiscale Centerline 

Detection (MCD) [102]. Their segmentation outcomes are produced by thresholding 

responses with the optimal value for each image stack. The responses of the MCD 

are computed using the pre-trained model on Vivo2P, which is the dataset of the 3D 

in vivo two-photon images of a rat brain. We use the optimal threshold value for 

each data volume to show the best possible outcomes of these methods in the ideal 
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scenarios. Nevertheless, the following evaluation suggests that our method is superior 

to the competition. 

Four evaluation criteria that we adopted in this work include the Dice index 

D(A, B) = 2|A ∩ B|/|A| + |B|, where A denotes the ground truth and B is a seg-

mentation outcome (D ∈ [0, 1]), as well as precision/recall: precision is defined as 

the number of correctly classified foreground voxels over the total number of voxels 

predicted as foreground, and recall is defined as the number of correctly classified 

foreground voxels over the total number of ground truth foreground voxels. In addi-

tion, we also validate our results using the mutual information metric that measures 

the similarity between two segmentations. It is computed by the segmentation eval-

uation software in [116]. It was first used as a similarity measurement by Viola and 

Wells [107]. The advantage of the mutual information metric is that it is insensitive 

to errors that increase the recall, so it prefers the errors from enlarging the segmented 

volume over the errors from reducing the segmented volume. This characteristic is 

desired in this case because we want to recover the whole neuron from the image 

stack, whereas the incorrect background classification is more tolerable than missing 

a neurite. However, it also takes into account the true negatives, so the score tends to 

have small value since it is overwhelmed by the background as neurons occupy only 

a small portion of the data volume [116]. It is defined by, 

MI(A, B) = H(A) + H(B) − H(A, B) (3.7) 

where H is the entropy of the ground truth A and the segmentation outcome B, X 
H(A) = − P (Ai) log P (Ai) 

iX 
H(B) = − P (Bi) log P (Bi) (3.8) 

iX 
H(A, B) = − P (Ai, Bj ) log P (Ai, Bj ) 

ij 
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Specifically, in the binary case, the entropy value is given by, 

TP + FN TN + FN 
P (A1) = P (A0) = 

n n (3.9)
TP + FP TN + FP 

P (B1) = P (B0) = 
n n 

where n is the total number of voxels, and A0 , A1 are the background and foreground 

of A respectively, and the same goes for B. The joint probabilities are defined by, 

TP FN 
P (A1, B1) = P (A1, B0) = 

n n (3.10)
FP TN 

P (A0, B1) = P (A0, B0) = 
n n 

Note that we also tested the method in [101], which produced better results than 

the considered competition, however it took more than 24 hours to segment each 

1024 × 1024 × 20 image stack, on a Mac Pro (2×2.66 GHz 6-Core Intel Xeon, 20GB 

1333MHz DDR3 ECC); the run time of our method was about 10 minutes per stack. 

Figures 3.4 and 3.5 show the Dice index and mutual information results of our 

method, OOF, Frangi filter, and MCD for 11 different cases. Both metrics illustrate 

that our method outperforms the three competitions in all cases. The superiority 

of our results is due to three inherent properties of our method: (a) it successfully 

handles data with spatially inhomogeneous SNR, (b) it bridges neurite gaps sourcing 

from imaging inaccuracies, and (c) it exploits the ‘best’ local intensity and shape 

information among image stacks in a co-segmentation fashion. Figure 3.6 illustrates 

the effect of the tree similarity term that helps connect branches together and re-

moves spurious voxels/segments. The limitation of our method is in handling highly 

cluttered branches that may be either over-simplified (under-segmented) by the neu-

rite model (Sec. 3.4, Fig. 3.2), or mismatched during calculation of the local tree 

similarity. Therefore, as shown in Table 3.1, our method can yield lower precision, 

compared to the competition, however the recall is overwhelmingly higher, which ren-

ders the overall performance of our method better. Moreover, our method was able to 

segment ambiguous regions, such as bifurcation points, where the competition failed 

(Fig. 3.7). 
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Table 3.1. 
Precision and recall of our method and the competitions. For these results, 
we empirically set the values of α in eq. (3.1): #1–5 : α = 0.5, #6–8 : 
α = 0.06, #9–11 : α = 0.1. 

Sample 

Volume 

Frangi 

P R 

OOF 

P R 

M

P 

CD 

R 

Ours 

P R 

#1 0.828 0.286 0.597 0.505 0.514 0.579 0.473 0.730 

#2 0.935 0.172 0.606 0.529 0.412 0.509 0.558 0.669 

#3 0.700 0.153 0.510 0.588 0.375 0.528 0.530 0.586 

#4 0.359 0.215 0.277 0.363 0.213 0.385 0.345 0.572 

#5 0.834 0.290 0.620 0.548 0.598 0.619 0.770 0.633 

#6 0.446 0.424 0.375 0.502 0.389 0.473 0.352 0.759 

#7 0.911 0.396 0.749 0.668 0.664 0.664 0.754 0.815 

#8 0.817 0.541 0.691 0.669 0.578 0.676 0.547 0.906 

#9 0.917 0.165 0.637 0.524 0.564 0.583 0.795 0.580 

#10 0.929 0.173 0.640 0.566 0.676 0.586 0.778 0.707 

#11 0.904 0.199 0.637 0.499 0.589 0.616 0.745 0.655 

Figure 3.4. Dice index results from our neuron co-segmentation method 
and the competitions for 11 image stacks. 
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Figure 3.5. Mutual information results from our neuron co-segmentation 
method and the competitions for 11 image stacks. 

Finally, Figure 3.8 shows the Dice index when the value of α in eq. (3.1) varies. 

For a larger α value, we emphasize the tree similarity across image stacks. Due to 

tree similarity errors during volume registration, spurious voxels may be introduced 

in the results. Therefore, we see a rise in recall and a drop in precision when the α 

value increases. When α is zero, our method degenerates into traditional MRF-based 

segmentation, where each stack is considered independently. 

3.7 Conclusion 

We presented a method for neuron co-segmentation over time-lapse image stacks. 

Our method was motivated by the neurite structure coherency over successive time 

instances during development. Our framework incorporates spatial and temporal 

constraints in a seamless fashion, also taking into account local structural dynamics. 

We evaluate our method using noisy datasets, the Drosophila sensory neurons with 

spatio-temporally varying contrast between neurite and background, and we compare 

our results with vesselness-based segmentation. In the next chapter, we will discuss 

the centerline-based approach, which extracts the structure by tracing instead of 

delineating the boundary by segmentation. 
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Figure 3.6. The effect of the tree similarity term. The first row shows 
the collapsed image stacks at two consecutive time steps. The numbered 
points indicate correspondences between the two tree structures. The 
second row shows the initial segmentation computed by thresholding ves-
selness produced by OOF. The third row illustrates the results from our 
method that removes noise/spurious structures and bridges neurite gaps. 
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Figure 3.7. Segmenting ambiguous regions. The first row shows the 
original image and the ground truth (magnification). The second row 
shows the results of (from left to right) Frangi filter, OOF, MCD, and our 
method. 

Figure 3.8. Effect of α parameter. Blue and red lines represents scores for 
two indicative stacks in our dataset, #9 and #10 in Table 3.1 
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4 NEURITE CENTERLINE DELINEATION 

In this chapter, we introduce the novel tracing methods [80, 81] to compute the 

centerline-based neuron reconstruction. In the previous chapter, we discussed the 

boundary-based approach, which extracts the neuronal morphology for low-level anal-

ysis. On the contrary, the centerline-based approach extracts the topological skele-

ton, which is more suitable for computing high-level measurements of biological vari-

ables. A video presentation of our work with supplemental material is available at 

https://youtu.be/sxnIxPcQA7Q. Extraction of centerlines is the fundamental task 

critical for quantitative research on the morphological properties that directly influ-

ence the neural integration and synaptic input processing [32]. Hence, the automated 

3D digital neuron reconstruction system is required to reduce the manual tracing time 

and storage size. Such a system must be capable of identifying neuron’s parts (soma, 

axon, dendrites), tracing axon and dendrite branches, and storing traces usually as 

graphs or tree data structures [1]. Our methods based on the population of snakes 

are designed for data volumes with globally varying signal-to-noise ratio (SNR). 

4.1 Tracing of Neuronal Morphology 

We assert that the examined images do not provide sufficient contrast between 

neurite and background, and the SNR varies spatially. Although many tracing meth-

ods have been shown to perform sufficiently on specific data [1], one common drawback 

limits their generalization: they usually perform poorly, if they are examining data 

with insufficient contrast and low SNR. The issue with most existing active contour-

based methods [23, 66] is that they evolve multiple active contour models along the 

neurite centerline in a sequential manner so they do not take into account the global 

shape geometry, i.e., smoothness at snake endpoints. We address the problem by the 

https://youtu.be/sxnIxPcQA7Q
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simultaneous evolution, which enables the pairwise interaction between neighboring 

snakes to smoothly merge snakes together. Using neighbors to guide the evolution 

also improves the correctness of tracing, as it compensates for the unreliable intensity. 

We tackle this problem using a hybrid framework (Sec. 4.2). Our methods aim 

to handle image stacks with insufficient contrast and spatially varying SNRs. We 

developed two tracing methods for a single image stack based on open-snake popu-

lation with simultaneous evolution. The first method [80] in Section 4.3 formulates 

the problem as the joint probability between shape and appearance that optimizes 

both tracing and segmentation. The image stack is split into box sub-volumes to 

handle the varying contrast. Inside each box, a number of curves deform based on 

three criteria: local image statistics, local shape smoothness, and a term that enforces 

pairwise attraction between snakes, given their spatial proximity and shapes. 

The second method [81] in Section 4.4 is built upon our first method and findings 

from method comparisons [80] to construct a mathematically simpler framework that 

retains the increased accuracy in noisy data, while significantly reducing the compu-

tational complexity. Specifically, in a similar way as in [80], this approach simulta-

neously evolves the population of open-curve active contours within the conditional 

random field (CRF) framework, which allows us to specify the relations among snakes 

in a more principled manner and exploit the efficient inference technique. 

Section 4.5 illustrates and compares the complexity analysis of our methods. 

In Section 4.6, we validate our two methods against existing frameworks for neu-

ron reconstruction on three public datasets: wild-type sensory neurons in the larval 

Drosophila, DIADEM, and FlyCircuit datasets. 

4.2 Related Work 

Neuron reconstruction of the single data volume problem is composed of two 

main steps — segmentation and tracing. However, these two subproblems are tightly 

related, so they are usually solved simultaneously. There is a large number of neuron 
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reconstruction approaches that have been extensively reviewed, e.g., in [1] and [23]. 

They can be categorized into global, local, and a combination of the two methods. 

4.2.1 Global Tracing 

Global methods extract skeletons of neurites based on the global signal distribu-

tion of the input images [58]. They can be categorized into skeletonization, minimal 

path, and graph-based methods. 

Skeletonization is the process of extracting the binary skeleton image of the neu-

ronal structure. Early methods usually use the thinning algorithm or the medial 

axis extraction [59] for the centerline detection. Authors in [20] use multi-scale Cen-

ter Surround Filters (CSF) or multi-scale Laplacian of Gaussian (LoG) for enhancing 

tubular structure; a binary image is obtained by thresholding the filter responses then 

applying the voxel-coding algorithm [117]. This type of technique usually suffers from 

binarization errors, and it is likely to produce spurs and loops. 

Minimal path-based methods trace neurites by finding the geodesic path between 

seed points, usually computed by the fast marching method [60]. For example, au-

thors in [118] use Optimally Oriented Flux (OOF) [97] as steerable filter [113]. They 

formulate the metric function based on the filter responses and use the fast march-

ing method for path tracing. The main issues with such methods are that they rely 

heavily on the seed point selection, and extracted paths may not be in the center 

of the neurites. To avoid these issues, some techniques [118, 119] require manual se-

lection of seed points, whereas some others obtain sample points by either spatially 

distributing over the image domain [120], or selecting by a classifier [121]. Nonethe-

less, these methods have a potential for semi-automatic systems, but not for the 

complete automation [23]. So the minimal path is used for initialization or with the 

post-processing step to mitigate its drawbacks. The method in [122] uses minimal 

path to obtain the initial trace, then the active learning is applied on branching mor-

phology to correct the neuronal topology. While All-Path-Pruning (APP and APP2) 
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algorithms [123,124] create the over-reconstruction of the neuron using minimal path 

between the seed points and every voxel, then the initial result is pruned to obtain 

the topology. 

Graph-based methods pose the neurite tracing problem as a graph problem, con-

sidering the inherent tree structure of neuron topology. For instance, the method 

in [125] detects anchor points using steerable filter responses [113] and formulates 

the graph using those points as nodes; thereby the trace can be obtained by finding 

the k-minimum spanning tree (k-MST). The performance of these methods relies on 

the graph formulation and the optimization technique. Most graph based methods 

adopt the geodesic path to formulate edges in the graph. However, this is usually not 

robust to spatially varying noise. To overcome the limitation of the geodesic path 

in intensity inhomogeneity, authors in [61, 62] convert edges into the Histogram of 

Gradient Deviation (HGD) descriptors, instead of deriving the feature vectors from 

geodesic paths. Then, they adopt the Gradient Boosted Decision Tree classifier to 

determine the probability of the path being neurite, and find the optimal neuronal 

topology using the Quadratic Mixed Integer Program (Q-MIP). 

4.2.2 Local Tracing 

Local methods start tracing from seed points located automatically or manually, 

and iteratively trace the neurite centerline using local signal features. They can be 

categorized into sequential tracing and deformable model-based methods. 

Sequential tracing involves iterative tracing in the vicinity from the seed points 

until the neuronal morphology is recovered. Authors in [58] fit a cylinder model 

representing a neuron fiber to the seed points. Then, they advance along the direction 

of a neuron fiber and repeat the process until the entire neuron is traced. The method 

in [63] extracts the centerline using the principal curve: starting from a seed point, it 

iteratively computes the mean-shift to determine the new principal curve direction, 

and moves along that direction until the whole branch is detected. These methods 
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are most effective when neurites meet the modeling assumption. They usually suffer 

from discontinuities, i.e., gaps and holes, and their performance depends on the pre-

processing step, i.e., roughly separating neurite from background. 

Deformable models, which are widely used in medical image segmentation, detect 

the object’s boundary based on the shape of the boundary curve and local image 

data. They can be categorized into two types based on the curve representation: 

parametric [64–66] and geometric [67–69] deformable models. Both categories have 

been used in solving neurite tracing [23, 126, 127]. 

Parametric deformable model or active contour models use parametric curves to 

represent the region of interest (ROI). It evolves towards desired features by minimiz-

ing the energy function, regulated by internal and external forces. The internal force 

discourages the curve from stretching and bending, while the external force moves 

the curve towards the desired features like edges. There is a large variety of external 

forces proposed by [128–130]. The most popular techniques for solving the optimiza-

tion problem include variational calculus [64], dynamic programming [71], and greedy 

algorithms [72]. Variational calculus operates in continuous space, while dynamic pro-

gramming and greedy algorithms work in discrete space over pixels/voxels. Although 

greedy algorithms are usually inferior to dynamic programming in terms of accuracy, 

they are far more efficient. 

Geometric deformable models or implicit models use level set function to repre-

sent the contour of the ROI in a higher dimension [68], which allows a more direct 

mathematical description. The contour is evolved using the gradient descent process 

by solving the partial difference equation (PDE) of the level set function [69]. For ex-

ample, authors in [127] evolve the curve based on the Tubularity Flow Field (TuFF), 

which utilizes the local tubularity of the neurites to guide the curve evolution along 

the centerline and towards the boundary of the tubular structures. They also intro-

duce local attraction force to mitigate the discontinuities in neuronal topology. The 

advantage of geometric deformable models is that the model of the contour has the 

same dimensionality as the data. This property allows us to handle topology varia-
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tion naturally and use a more direct mathematical description of a deformable model. 

However, geometric active contours usually have difficulty extracting the boundaries 

of objects having open or broken edges because of its flexibility in handling the topol-

ogy [130]. 

4.3 Joint Probability between Shape and Appearance Formulation 

In this approach, we deal with high intensity variation in the background by split-

ting the image stack into box sub-volumes, where the foreground and background 

Figure 4.1. First approach. A stack is divided into box sub-volumes (top 
left). In each box, we evolve open-curve snakes based on local image fea-
tures, shape smoothness, and snake interactions, regulated by proximity 
and shapes (top right): (s1, s2, s4) are close to each other and have com-
patible shapes; (s3, s5) do not appear to belong to the same branch, and 
therefore do not interact with (s1, s2, s4). Under noise, we can successfully 
reconstruct the neuron in 3D (bottom). 
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intensities can be sufficiently classified. Within each sub-volume, we started from 

initial seeds, detected by classification, and we evolved different open-curve snakes 

based on three criteria: (i) local intensity, (ii) individual curve shape smoothness, 

and (iii) interactions between neighboring snakes (Sec. 4.3.1), based on their prox-

imity and local shapes, including snakes in neighboring sub-volumes (Fig. 4.1). We 

formulated the solution as a maximum a posteriori probability estimation between 

shape and appearance, where the objective is a joint probability of the snake popula-

tion configuration (positions and shapes) and the labels of the voxels (neurite against 

background). The optimization of the joint probability is explained in Section 4.3.2. 

Let the data volume be V ∈ R3 , partitioned into non-overlapping box sub-

volumes. Also let V i and V j , i 6= j, denote two adjacent boxes, considering locally 

27-box neighborhoods. Within each box sub-volume V i , we detected seed points 

probabilistically, as we describe below; these seeds are the initialization for a set of 

snakes that we evolve locally. 

Let Si be the set of snakes in sub-volume V i , Si = {sn}nN 
=1, and S = 

SK skk=1 

denote the set of all snakes in the 27-box neighborhood (K ≥ N). There can be S 
attraction between any two curves in Si Sj , i 6= j, given (a) that V i and V j are 

adjacent sub-volumes, (b) their close spatial proximity and their compatible shape 

configurations (Fig. 4.1). 

On the other hand, every voxel v ∈ V can be classified as neurite or background, 

i.e., y(v) = {+1, −1}, where y is the binary variable of the voxel label. Let the set 

of voxel labels in sub-volume V i be denoted by Y i = {y(v)}v∈V i , and Y = 
S27 Y i i=1 

be all the labels in the box-neighborhood. Each Y i is calculated independently from 

the neighboring sub-volumes, to account for local feature variations. 

Given the above notations, we formulate our objective locally as a joint optimiza-

tion of the snake configuration and voxel labels, 

bhSb , Yi = arg max P (S, Y|X) (4.1) 
hS,Yi 
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S27where X = i=1 X
i denotes the features calculated from the data, and the objective 

joint conditional probability is, 

P (S, Y|X) ∝ P (X|Y) · P (Y|S) · P (S) 
(4.2) 

∝ P (X) · P (Y|X) · P (Y|S) · P (S) 

The data prior P (X) is expressed locally as a Gaussian distribution of tubularity. 

Here, as data features, we use indicatively the Frangi filter responses [96]; however, 

one may use other vesselness/tubularity features. Thus, we define, � � 
1 [xi(v)]2 

P (x i(v)) = p exp − 
σ2 , (4.3) 

2πσ0
2 

0 

where xi(v) is the Frangi filter response at the location v ∈ V i . Again, to calculate 

such features, we consider each sub-volume independently, as separate data. 

The factor P (Y|X) is essentially the data term that drives the snake evolution in 

the vicinity. It is calculated independently within each box sub-volume, as P (Y i|X i); 

therefore, there is no probability smoothness imposed between neighboring boxes, 

with respect to spatial distribution. The reason for such choice is to consider each 

box as separate data (stack), and calculate probabilities based only on local intensity 

(Frangi response) statistics. To calculate such probability fields, we used a Discrim-

inative Random Field (DRF) [50], where we solved inference with the graph cuts 

algorithm [50], due to its accuracy and efficiency. In our implementation, we used 

the positively classified voxels with high tubularity as initial seeds that determine the 

snake population. 

The term P (Y|S) encodes the likelihood of voxels being part of the neurite, given 

the configuration of the snakes. If dk is the (unsigned) distance function for each 

snake sk ∈ S, � � 
P y(v)|sk � � = exp{−dk(v)}� � � � �	 (4.4) 
P y(v)|S = max P y(v)|s1 , ..., P y(v)|sK 

Finally, P (S) corresponds to the local smoothness of the models and their pairwise 

attractions, � 
P (Si) = exp −Es(S

i) − Ea(S
i) , (4.5) 



�� �� �� ��

59 

The smoothness energy for the population Si in V i is, 

N �Z �X 1 h i 
2Es(S

i) = α(t) rsn 
2 
+ β(t) r sn 

2 
dt , (4.6) 

0n=1 

with t encoding the normalized arc-length of each snake, and (α, β) being the elasticity 

and rigidity weights; we consider α = β = 1 for all snakes in the entire volume. 

4.3.1 Attraction Model 

The effect of attraction energy Ea in eq. (4.5) is shown in Fig. 4.1. Each point 

at a (normalized) location t along a snake, contributes to an attraction field, i.e., an 

energy that drives the extension of all snakes towards certain directions. 

Let us consider a single model sn ∈ Si and how it affects its surroundings. Using 

its distance function dn, we define, 

Dn(v) = exp {−γdn(v)} , 0 ≤ γ ≤ 1, (4.7) 

Figure 4.2. Illustration of how a single snake participates in the attraction 
energy. Top (from left to right): distance map dn, Dn in eq. (4.7), and 
Fn in eq. (4.9). Bottom (from left to right): DnFn, Gn in eq. (4.11), 
and DnFnGn. In eq. (4.12) we use (1 − Dn)(1 − Fn)(1 − Gn) for energy 
minimization. 
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which implies that the further a location v from sn, the lower the degree of influence 

at v from that model. We used γ to control the slope of the exponential: higher γ 

values produce narrower zones of influence around the curve (Fig. 4.2). 

We also consider that only the end-parts of the snake can create attraction; there-

fore, we define the functional that assigns weights to curve points as, 

−δt −δ(1−t)f(t) = e + e , t ∈ [0, 1], (4.8) 

which imposes higher attraction by points at the two curve ends, and practically no 

influence by intermediate points. We calculate the map (Fig. 4.2), n o 
Fn(v) = f(t0) |v(t0) − v| = dn(v) , (4.9) 

where t0 is the location along the normalized arc length of the curve, with cartesian 

coordinates v(t0), closest to the voxel v. 

We also determine an angle of influence θ, with respect to the direction of the 

curve’s first derivative. Every location v can be affected by any point t on the snake 

based on, ⎧⎪⎨ ⎪ 
�� 

cos ∠rsn|t − cos ∠rsn|t + θ , θ ∈ [−ϑ, +ϑ] 
gn(v, t) = , (4.10)⎩0, otherwise 

where ∠rsn|t is the tangential orientation at point t on the curve, and θ is the angle 

between v(t)v and rsn|t. In all our experiments, we considered ϑ = π/3. We define 

(Fig. 4.2), Y 
Gn(v) = gn(v, t), (4.11) 

t∈[0,1] 

Using the definitions of eqs. (4.7), (4.9), and (4.11), since 0 ≤ Dn(v), Fn(v), 

Gn(v) ≤ 1, we formulate the attraction map of snake sn, 

An(v) = (1 − Dn(v))(1 − Fn(v))(1 − Gn(v)) (4.12) 

� 
where low values indicate high influence. 

sn 6= sk, [ 
Therefore, for any sn 

27

∈ Si and sk ∈ S, 

Ank(v) = max An(v), Ak(v) , ∀v ∈ V i (4.13) 
i=1 
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which essentially encodes that two models can be attracted to each other only when 

the highest value among the two attraction maps at location v is low enough. The at-

traction energy of every curve sn in V i sources from all snakes in the box-neighborhood 

as, Z " 1 X # 
ea(sn) = Ank(v(t)) dt, sk 6= sn (4.14) 

0 sk∈S 

and for the population Si }N= {sn n=1, 

NX 
Ea(S

i) = ea(sn) (4.15) 
n=1 

Notice that all snakes in the box sub-volume neighborhood participate in this 

energy of the set Si , given their pairwise proximity imposed by the terms D (eq. (4.7)) 

and F (eq. (4.9)). 

4.3.2 Optimization 

Using the definitions in eqs. (4.6) and (4.15), we calculate the prior P (Si) in 

eq. (4.5). Then, we solved the objective in eqs. (4.1) and (4.2) iteratively in a narrow 

band around each open curve. In eq. (4.2), the terms P (Y|X) and P (Y|S) are calcu-

lated within each box sub-volume separately, while P (S) involves shape and location 

information from snakes across all neighboring sub-volumes. Figure 4.3 illustrates in 

Figure 4.3. Evolution instances of different snakes (in colors). From left 
to right: iteration ]5, 10, 15, 20, 25, 30 and 40 (termination). The images 
have been enhanced for illustration. 
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2D the evolution of nine snakes, corresponding to the initial seeds detected by the 

DRF-based classification. For simplicity, we considered two adjacent box-volumes 

with virtually no background noise. 

4.4 CRF Formulation 

The second approach was built upon the first method in Section 4.3. We in-

creased robustness under spatially varying contrast, and at the same time reduced 

the computational complexity by a simpler mathematical framework, compared to 

the state-of-the-art method in [80]. Here we describe how we model the snake popu-

lation within the CRF framework and how we solve inference in a more efficient way 

(Sec. 4.4.3). The implementation details is also given in Section 4.4.4. 

Let X ∈ R3 be the data volume, and S = {si}N be the configurations (shapes) i=1 

of the population of N open curve snakes. Our objective function is formulated as 

the conditional distribution over the set S, given the data volume X (Fig. 4.4), )X( 
1 

P (S|X) = exp − E(si)
Z 

1 
= exp
Z 

⎧⎨ ⎩ 
si∈S ⎫⎬ ⎭ 

(4.16)XXX 
− A(si, X) − I(si, sj , X) 

si∈S si∈S sj ∈N i 

Figure 4.4. Second approach. The snake population (s1, s2, s3, s4, s5) is 
formulated using the CRF framework, where snakes are nodes and snake 
configurations are states. Edges exist between neighboring snakes. 
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where Z is the partition function, E(si) is the individual snake energy, and N i is the 

set of neighboring snakes of si. A and I are the association (Sec. 4.4.1) and interaction 

(Sec. 4.4.2) potentials respectively [50]. 

4.4.1 Association Potential 

Association potential A(si, X) measures the likelihood of the snake si fitting the 

neurite centerline so it is basically the energy function of active contour model [64]. 

It is given in terms of the snake shape and appearance energies, 

A(si, X) = Eshape(si) + Eapp(si), (4.17) 

The shape term Eshape models the local shape smoothness through the first and 

second order derivatives of snake curve [80], similar to eq. (4.6), Z 1 h i 
2 2 

Eshape(si) = α(t) rsi(t) + β(t) r 2 si(t) dt, (4.18) 
0 

where t encodes the normalized arc-length of the snake curve, and (α, β) are the 

elasticity and rigidity weights. In this work, discrete snakes were adopted, specifically, 

the snake curve si(t) is represented by a sequence of points, where t becomes the index 

of snake point. rsi is approximated by the deviation of the distance between two 

adjacent points from the average to encourage even spacing between snake points [72], 

rsi(t) = |~ut| − h|~ut|i (4.19) 

where h·i is the expected value and ~ut = si(t)−si(t−1) is the vector between adjacent 

snakes points at position t of snake si [72]. α(t) = 0 at endpoints to allow snakes to 

stretch along the centerline [23]. The curvature is approximated by, 

2 
2 ~ut ~ut+1 r si(t) = − (4.20)

|~ut| |~ut+1| 

Other approximations of curvature can be used and they are reviewed in [72]. 
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The appearance term Eapp deforms snakes towards the centerline based on local 

image features. It is a function of tubularity that we compute here using the OOF [97]; 

however, other tubularity measures can also be used. Regions with low tubularity 

response, or already occupied by other snakes, penalize snake energy; this prevents 

snakes from evolving in the background or overlapping with neighboring snakes, !Y 
Eapp(si) = � 1 � 

1 + f si(t), X ⎧t 
(4.21)⎪⎨0 , if si(t) is occupied 

f(si(t), X) = � ��⎪ �⎩fvessel X si(t) , otherwise 

where fvessel is the vesselness/tubularity response. 

4.4.2 Interaction Potential 

I(si, sj , X) measures how snakes si and sj interact given the data volume X based 

on the compatibility between snakes. The objective is to merge neighboring snakes 

that (i) ‘align’ towards each other, (ii) are close to each other, with distance regulating 

their interaction, and (iii) have sufficient length, considering that short curves can 

be produced by spurious background features. The compatibility is influenced by 

4 factors: orientation, endpoint, distance, and curve length. It is similar to the 

attraction model in Section 4.3.1 (Fig. 4.2). 

If θ(t) encodes the angles between the evolving directions of si along t, rsi(t), 

and the direction towards another snakes sj ∈ N i in the vicinity, si(t)sj , we define, 

G(t) = max(cos θ(t), cos ϑ) (4.22) 

where ϑ is the maximum angle that si is allowed to bend towards sj ; in all our 

experiments, we considered ϑ = π/3. Similarly to our work in [80], attraction between 

snakes is created only at curve endpoints; therefore, we assign weights along each curve 

like in eq. (4.8), where δ is a positive constant, 

−δt −δ(1−t)F (t) = e + e , t ∈ [0, 1] (4.23) 
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The interaction attenuates as the distance increases; therefore, we define, 

D(t) = si(t)sj 
2 
d(t) (4.24) 

where d(t) accounts for the angle θ(t) described above in eq. (4.22), 

1 
d(t) = 

1 + ec(cos θ(t)−cos ϑ) 
(4.25) 

where the constant c regulates the exponentially decreasing slope as θ(t) becomes 

smaller than ϑ (we assumed angles in the range [0,π/2] from rsi(t) and here we fix 

c = 10). 

From these definitions, the interaction potential in eq. (4.16) is, 

− maxt{G(t)F (t) }I(si, sj , X) = (|si||sj |) D(t) (4.26) 

where |si| and |sj | are snake curve’s geodesic lengths of si and sj respectively, used 

to ignore short curves corresponding to spurious high tubularity regions in the back-

ground. 

4.4.3 Inference 

Using the above formulation to evolve the snake population and capture the neu-

rite centerline, we pose the problem as a multiclass CRF model, where snakes are 

the sites. The main challenge is that the evolving curves yield a practically infinite 

number of CRF configurations or site states, owing to the infinite number of pos-

sible snake curve configurations. Therefore, inference methods like the loopy belief 

propagation and graph cuts algorithms whose complexity depends on the number of 

classes are infeasible. On the other hand, the Highest Confidence First (HCF) frame-

work [52,131] allows us to optimize multiple sites in parallel without the dependency 

on the number of states. 
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Highest Confidence First for Snake Population 

According to HCF, site stability [52] determines the order in which sites are opti-

mized. Iteratively, HCF chooses to optimize the sites of the CRF whose stabilities are 

local minima in their neighborhood; these sites are then fixed and their neighbors can 

be influenced by them (i.e., change their stability) according to the CRF formulation 

in eq. (4.16). Note that snakes are considered neighbors if there are within a fixed 

number of voxels from each other (here it is 20 voxels), as in [58]. 

While traversing the sites, priority is given to snakes whose curves are short and 

have the least amount of neighbors in order to avoid evolving snakes in sequence 

(Fig. 4.5). A low number of neighbors means that these snakes affect and are affected 

by a lower number of snakes, and therefore the computation of the interaction term 

is faster. On the other hand, when a site/snake becomes stable, it means that its 

energy is locally minimized, its curve is sufficiently long, and it has a higher number 

of neighbors that it can affect. Low energy can be seen as certainty of being on the 

neurite centerline. Thus, we defined stability as, 

|si| · |N i|
stability(si) = (4.27)

E(si) 

where |si| is the length of snake si and E(si) is from eq. (4.16), X 
E(si) = A(si, X) − I(si, sj , X) (4.28) 

sj ∈N i 

where N i and |N i| denote the set of neighbors of si and its size respectively. 

Greedy Algorithm for Individual Snake 

After HCF selects sites or snakes with locally minimal stability, each selected 

snake can be optimized independently when its neighbors are fixed. There are mul-

tiple methods to find the optimal configuration of the individual snake like dynamic 

programming [71] and variational calculus [64], but greedy algorithm is preferred be-

cause it gives comparable results and it is more efficient [72]. It works as follows: 
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Figure 4.5. The population of seven snakes (in different colors) evolves 
based on the stability function given in eq. (4.27) (top) compared to 
stability(si) = E(si) (bottom). From left to right, the evolution of seven 
snakes at iterations #5, #10, #25, #40 respectively. Our stability func-
tion evolves all snakes simultaneously, while the latter evolves snakes in 
sequence. 

first, it computes the snake energy when the snake point is at the original location 

and adjacent voxels using eqs. (4.17) and (4.26). Then, the snake point moves to 

the adjacent voxel with the optimal energy, or remains at the same voxel if it is the 

optimum. These steps are repeated for every snake point from one endpoint to the 

other end. 

4.4.4 Implementation 

The overall algorithm for optimizing our model in eq. (4.16) consists of the fol-

lowing steps. 

(i) Image preprocessing is required to deal with blurred boundaries and intensity 

inhomogeneity of the neurite. First, Curvelet transformation [132] and LoG [20] 

are applied to enhance the linear structure. Then, the OOF [97] is applied to 

calculate the vesselness/tubularity. 
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(ii) Initial seed points are automatically selected according to three criteria: (a) 

they should fall inside the neurite volume, (b) they should not overlap each 

other, and (c) there exists at least one seed point on every branch of the neurite 

(between intersection/branching points). In our methods, ridge points [66], or 

local maxima of tubularity along any axis that have OOF responses higher 

than a user-defined threshold, are selected as candidate seeds. Although these 

points are usually inside the neurite volume, they may be spatially adjacent 

or too close to each other; therefore, the local maxima among the candidate 

seeds are selected as the initialization of the snake population. Finally, each 

snake is initially expanded along the eigenvector with the smallest eigenvalue, 

as computed by eigen-decomposition of the tubularity Hessian matrix [96]. 

(iii) Inference of the model in eq. (4.16) is calculated by finding sites that satisfy 

criteria described in Section 4.4.3. Then greedy snake optimization is applied 

to these sites to update curve configurations. 

(iv) The stability of sites is updated using eqs. (4.27) and (4.28). This method usu-

ally gets trapped in local minima if we only consider the lowest energy configu-

ration of each snake/site in each iteration, due to local image inhomogeneities. 

Thus, sites converge when their stability does not increase for a few consecutive 

iterations, to avoid premature convergence. 

(v) Finally, after the HCF convergences, we obtain a set of snakes that capture 

individual parts of the neurite. To merge all snakes into a single trace, we apply 

the minimum spanning tree (MST) technique. 

4.5 Complexity 

Our Joint Probability (JP) method [80] in Section 4.3 considers the probabilistic 

model, where for a population of snakes S, a prior P (S) requires the most com-

putational cost. The prior probability incorporates shape and appearance terms of 
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each snake along with pairwise interactions in the set S. Shape and appearance are 

jointly optimized using the variational calculus, with complexity O(n) [64], given 

n points along each snake. For N snakes in S, this yields O(Nn2). Moreover, for 

each snake, the fast marching method [60] is applied to find the shortest geodesic 

distance to neighboring snakes in order to compute pairwise interactions. The com-

plexity of the fast marching method is O(A) [133, 134], where A is the number of 

grid points. If H is the average number of neighboring snakes, the computation 

of the interaction term takes O(NnHA) overall, since we increase the length of 

N snakes that costs O(n). Therefore, the total complexity of our first method is 

O(Nn2 + NnHA) = O(Nn(n + HA)). 

In our Conditional Random Field (CRF) method in Section 4.4, deforming a 

snake using the greedy algorithm takes O(nm) per site (snake), where m is the num-

ber of possible moves of each point [72]. The HCF algorithm visits sites in O(V ), 

where V is the number of visits. For every visit, we need to go through all (H, on 

average) neighbors to update stability and check for collision. Therefore, updating 

the stability of HCF takes O(V H). Moreover, maintaining stability in sorted or-

der takes O(log N) per visit, which can be ignored as insignificant. Thus, the total 

complexity is O(V nm + V H); however, the number of visits V is bounded by Nn 

(V = O(Nn)) because our method visits every site, and each snake takes n iterations 

before it converges. Therefore, the total complexity of the second method becomes 

O(V nm + V H) = O(Nn2m + NnH) = O(Nn(n + H)), since m is considered a con-

stant (m = 27 for 3D data) [72], which yields significantly less computation compared 

to our JP method in [80]. 

4.6 Results 

In this section, we compared the results of our two methods: JP (Sec. 4.3) [80] 

and CRF (Sec. 4.4) [81] methods, with the APP2 algorithm [124] and all five finalist 

algorithms from the DIADEM challenge [28], namely the k-MST based method [125], 
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the Farsight toolbox [23], the Neuron Circuit Tracer (NCT) [20], the Principal Curve 

Tracing (PCT) [63], and the neuTube [58, 135]. All algorithms were tested on three 

different sources: (a) 10 stacks from two datasets of the DIADEM challenge, which 

are available online at the challenge’s website [28]; (b) 10 image stacks from FlyCircuit 

[136], which is the public database of neurons in the Drosophila brain; (c) 11 image 

stacks of sensory neurons in the wild-type larval Drosophila for the study of dendritic 

arborization patterns over the four instars of development. 

The accuracy of our approach and the competition was quantified by five measure-

ments, the DIADEM metric [137], precision, recall, F1 score, and mean absolute error 

(MAE). DIADEM metric was selected because it measures the correctness of the po-

sition of branch points and leaf nodes, as well as the trace topology by comparing the 

path length of branches [137]. The metric is designed to substitute the expert quali-

tative measurement and measure the editing time, which are the two most important 

quantities for evaluating automatic neuron reconstruction. The advantage of DIA-

DEM metric is that it produces the similarity value ranged from 0 to 1, rather than 

a distance value produced by other metrics like the tree edit distance (TED) [138]. 

Another issue with the TED is that it ignores node locations. The mistake arises 

when there is a growth in one branch while another branch shrinks. Then, the TED 

would not detect the total length difference. To make matters worse, if these two 

branches originate from the same bifurcation, then the TED would consider them 

correct. 

Because DIADEM metric considers both location and topology, the poor quality 

in one of the aspects can heavily reduce the score. Therefore, we also validate our 

work with the F1 score, which emphasizes only on the correctness of the neurite 

location. Precision and recall are computed by measuring the length of incorrect 

traces as false positives (FP), and missing traces as false negatives (FN). The length 

of correct traces is counted as true positives (TP): a trace is considered correct if it 

is within a small distance (here it is 4 voxels) from the closest point of ground truth. 

TP TP 2PR From these definitions, precision (P) = , recall (R) = , and F1 = 
P +R .TP +FP TP +FN 
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While the F1 score measures the correctness of the centerline position, the MAE 

measures its quality based on the distance by which the predicted trace deviates from 

the ground truth. It is defined by the mean between (a) the average distance of 

predicted nodes to the closest ground truth nodes and (b) the average distance of 

ground truth nodes to the closest predicted nodes. The MAE in voxels is given by, X X1 
n 

1 
m 

MAE(P, Q) = min |pi − qj | + min |qi − pk| (4.29) 
n j m k 

i=1 i=1 

where P = {p1, ..., pn} are points of the ground truth and Q = {q1, ..., qm} are points 

of the predicted trace [127]. 

4.6.1 DIADEM Challenge 

All algorithms are validated on the Olfactory Projection Fibers (OP) and Cere-

bellar Climbing Fibers (CF) datasets. In these datasets, it is not always obvious how 

much better our approach performs compared to the other six examined methods. In 

Figure 4.6, we illustrate three cases from the OP dataset where our CRF method and 

the competitions perform overall equally well. This is mainly due to the fact that in 

such data, there is very little background variation, and we do not fully exploit our 

method’s focus on local ambiguities. Our observation is reinforced by the quantitative 

results in Table 4.1 as well as the MAE score in Figure 4.7, which indicates that trace 

results produced by our methods and other frameworks have the comparable quality. 

Some methods like NCT and Farsight have difficulty detecting neurites from parts 

of images with poor SNR, resulting in fragmented traces. Although NCT can recover 

most of the traces, they are in fragments so it produced a low DIADEM score because 

the metric considers only one tree structure of the trace. Our CRF method addressed 

this problem using the interaction potential (Sec. 4.4.2) to attract snakes together, 

which in turn helps remove gaps and improve neurite detection in inhomogeneous 

regions. As a result, our CRF method produced higher F1 score (Table 4.2). 

Another issue is the images with dense dendrite branches like OP9 in Figure 4.6. 

Our approach has the limitation in recovering the topology from cluttered branches, 
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OP7 OP8 OP9 

Ground truth 

k-MST 

Farsight 

PCT 

Our CRF 

Figure 4.6. Tracing results (in cyan color) on the DIADEM Olfactory 
Projection Fibers dataset. From top to bottom: the ground truth, the 
results of k-MST based method [125], Farsight [23], PCT [63], and our 
CRF method [81] respectively. Columns correspond to different image 
stacks (OP7, OP8, and OP9). 
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Figure 4.7. MAE score on OP dataset of our methods and existing frame-
works. 

Table 4.2. 
F1 score on Olfactory Projection Fibers dataset of our methods and ex-
isting frameworks per sample stack; the best scores are shown in bold. 

OP1 0.875 0.680 0.818 0.840 0.399 0.700 0.753 0.680 

OP3 0.526 0.245 0.429 0.466 0.495 0.132 0.438 0.197 

OP4 0.796 0.576 0.624 0.745 0.439 0.606 0.742 0.506 

OP5 0.167 0.029 0.072 0.004 0.106 0.019 0.098 0.069 

OP6 0.194 0.271 0.137 0.000 0.226 0.261 0.184 0.239 

OP7 0.586 0.537 0.389 0.521 0.534 0.428 0.445 0.399 

OP8 0.626 0.308 0.376 0.639 0.658 0.251 0.572 0.270 

OP9 0.673 0.458 0.504 0.524 0.420 0.408 0.482 0.457 
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which results in a lower DIADEM score. Although the APP2 algorithm can trace 

dense branches well, it is sensitive to noise so its score fluctuates. The noise sensitivity 

of the APP2 algorithm is reflected by the MAE score as shown in Figure 4.7. 

Figure 4.8 shows the qualitative result on one of the image stacks from the CF 

dataset that our methods and others produced similar quality results. Figure 4.8(e) 

Table 4.3. 
DIADEM score on Cerebellar Climbing Fibers dataset of our methods and 
existing frameworks per sample stack. 

Size (voxel) 

CF1 6120 × 4343 × 34 0.241 0.146 0.383 0.243 0.144 0.000 0.421 

CF2 5100 × 3102 × 28 0.173 0.266 0.107 0.101 0.170 0.096 0.243 

Table 4.4. 
F1 score on Cerebellar Climbing Fibers dataset of our methods and exist-
ing frameworks per sample stack. 

Our CRF Our JP k-MST Farsight PCT neuTube APP2 

CF1 0.430 0.443 0.295 0.242 0.274 0.062 0.079 

CF2 0.328 0.340 0.271 0.242 0.171 0.113 0.074 

Table 4.5. 
Precision and recall on Cerebellar Climbing Fibers dataset of our CRF 
method and three other existing frameworks per sample stack. 

Image Our CRF k-MST Farsight APP2 

Stack P R P R P R P R 

CF1 0.255 0.241 0.108 0.120 0.106 0.089 0.014 0.022 

CF2 0.218 0.260 0.128 0.170 0.142 0.136 0.016 0.031 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4.8. Tracing results (in cyan color) on the CF1 image stack of 
the DIADEM Cerebellar Climbing Fibers dataset. The first row shows 
(a) the ground truth and (b) the result of our CRF method. The second 
row shows traces obtained from (c) k-MST based method [125] and (d) 
APP2 algorithm [124]. The third row shows the ground truth and our 
CRF results respectively at magnified regions circled in (b). From left to 
right, (e) the example of parallel trace that our method failed to detect 
and (f) an example of noise similar to neurite that was correctly traced. 
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shows the main issue of our method that we encountered in this dataset when two or 

more adjacent dendrites elongate in the direction parallel to each other. Our method 

failed to recognize two separate neurites and merged them into one neurite, resulting 

in the over-simplified topology. Hence, our DIADEM score is lower than the APP2 

algorithm as shown in Table 4.3. 

Nevertheless, our methods produce a much higher F1 score as well as precision 

and recall compared to others, especially the APP2 algorithm, as shown in Tables 4.4 

and 4.5. The reason is that there are segments from other neurons that appear in 

the image stack. Some of these undesired segments locate close to the neuron we 

are tracing; and the gaps between these segments and the neuron are so small that 

other methods consider them as the intensity inhomogeneity, and incorrectly merge 

these gaps. Our methods manage to distinguish the gaps and intensity inhomogene-

ity by incorporating the global shape geometry through the interaction potential in 

Section 4.3.1 and 4.4.2 as shown in Figure 4.8(f). 

4.6.2 FlyCircuit 

We evaluate our CRF method on 10 image stacks from FlyCircuit dataset. Most 

data volumes in this dataset have a constant background similar to the DIADEM 

dataset in the previous section. Hence, the main source of error comes from the 

topology recovery and neurite detection over cluttered dendrite branches. 

Here we emphasize the significance of the interaction among the population of 

open-snake. The results of two sample volumes of our CRF method with and without 

the interaction potential in Section 4.4.2 are shown in Figure 4.9. In eq. (4.16), when 

I(si, sj , X) = 0, our method evolves snakes independently based solely on the local 

image feature. So it is no difference to the conventional frameworks that evolve snakes 

in the sequential manner and ignore the global shape information. As a consequence, 

snakes failed to trace over locally ambiguous regions, e.g., bifurcation points and 

branches with inhomogeneity intensity; therefore, gaps occur in the result traces 
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and the neuron fragmentation issue arises. On the other hand, our results with 

the interaction potential do not have any of these issues because the global shape 

geometry of neurons is taken into account to resolve the ambiguities. 

Ground truth 

Our result 

Our result 

without I 

Figure 4.9. The significance of the interaction potential. From top to 
bottom, the ground truth, our tracing results with and without the inter-
action potential, i.e., I(si, sj , X) = 0, respectively. Columns correspond 
to two sample volumes from FlyCircuit dataset. The blue colored lines 
represent the 3D traces. Their 2D projection overlays the maximum in-
tensity projection of the image stack. Other colors show neurite fragments 
that failed to merge with the neuron. 
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4.6.3 Larval Drosophila Sensory Neurons 

All algorithms were tested on our datasets depicting sensory neurons in the wild-

type larval Drosophila. These volumes are around 1024 × 1024 × 20 in size and 

representative of spatially inhomogeneous signal-to-noise ratios. Indicatively, on a 

MacBook Pro (2.7 GHz Intel Core i7, 16GB 1600 MHz DDR3), our second method [81] 

in Section 4.4 ran on average 20 minutes per image stack (Matlab v.2014a), compared 

to our first method [80] in Section 4.3 that needs on average 2 hours per stack. Each 

of the methods [124], [125], [23], [20], and [63] ran on average 10-60 minutes per stack. 

In Figure 4.10, we illustrate tracing results of our approaches, compared with the 

two existing methods. The two cases shown in (a) and (b) are typical examples of 

where our approaches provide increased robustness, in the presence of varying contrast 

and noise. According to the DIADEM score in Table 4.6, our CRF method performs 

better in most of the examined volumes. The quality of our results in term of distance 

from the predicted traces to the ground truth is also superior overall, as shown by the 

MAE score in Figure 4.11. However, the F1 score of our method is comparable to our 

JP method [80] as shown in Table 4.7. Note that our definition of the F1 score for 

this application only considers the correctness of the trace localization. The DIADEM 

metric also accounts for nodes having matching paths from matching ancestor nodes, 

as well as path length errors [137]. These comparisons, along with the complexity 

analysis in Section 4.5 and the average execution times we reported above, justify 

our claim that our CRF approach improves both accuracy in topological recovery 

over noisy data and the trade-off between accuracy and efficiency compared to our 

JP method. 

Figure 4.12 shows the qualitative analysis of two sample volumes that our meth-

ods produce lower DIADEM score than existing methods, namely the k-MST based 

method [125] and Farsight [23]. The k-MST based method can accurately trace main 

branches but it fails to trace small neurites. The DIADEM score assigns weight to 

trace nodes based on the size of the subtrees, and it takes into account the correctness 
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(a) 

(b) 

Figure 4.10. Qualitative comparison between the ground truth traces, 
the results of our methods, and the competition in two sample volumes 
of Drosophila sensory neurons. Top rows in (a) and (b) (from left to 
right): collapsed image stack of the neuron, and magnified region where 
the ground truths (in red) from manual tracing are shown. Bottom rows in 
(a) and (b), the collapsed 3D traces superimposed on the collapsed stacks 
for illustration purposes (from left to right): NCT [20], Farsight [23], and 
our JP and CRF methods [80,81] respectively. Different colors correspond 
to different neurons. 
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of both topology recovery and trace localization. Due to the fact that the poor trace 

quality of nodes close to the root can overwhelm the DIADEM score, our results pro-

duce a lower score than the k-MST based method in a few cases. On the other hand, 

the Farsight method evolves snakes independently and sequentially so the disconti-

nuity may occur in the trace. There are a few image volumes without discontinuities 

so the Farsight method performs better than ours on this occasion. Nonetheless, our 

methods outperform the competition in trace localization as shown by the average 

precision and recall in Figure 4.13. 

Finally, we must note that we have identified one main problem that causes inaccu-

racies in our methods, which is also common for most existing approaches: perceived, 

even after pre-processing, gaps in the neurite that bring up the issue of the trade-off 

between ‘bridging’ gaps and falsely tracing different neurites in the vicinity. Intu-

itively, according to our methods, when more emphasis is given to the attraction 

between snakes, it is more likely for such gaps to be bridged. In single neuron imag-

ing, this is not a problem and our methods yield great accuracy. However, when more 

than one neurons are present in the examined volume, a gap-width threshold must 

be manually imposed. 

Figure 4.11. The box plot of the MAE score in log scale of our methods 
and existing frameworks. 
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Table 4.6. 
DIADEM score on larval Drosophila sensory neurons dataset of our meth-
ods and existing frameworks per sample stack; the best scores are shown 
in bold. 

Size (voxel) 

#1 1024 × 1024 × 23 0.669 0.669 0.420 0.284 0.029 0.151 0.109 

#2 1024 × 1024 × 13 0.617 0.496 0.389 0.153 0.003 0.298 0.162 

#3 1024 × 1024 × 19 0.286 0.232 0.393 0.088 0.034 0.048 0.046 

#4 1024 × 1024 × 15 0.615 0.275 0.288 0.012 0.185 0.006 0.150 

#5 1024 × 1024 × 24 0.537 0.312 0.355 0.417 0.107 0.052 0.453 

#6 1024 × 1024 × 11 0.581 0.539 0.684 0.096 0.460 0.369 0.630 

#7 1024 × 1024 × 16 0.804 0.572 0.596 0.582 0.314 0.703 0.724 

#8 1024 × 1024 × 16 0.811 0.813 0.541 0.513 0.508 0.582 0.776 

#9 1024 × 1024 × 14 0.606 0.565 0.404 0.573 0.074 0.395 0.306 

#10 1024 × 1024 × 15 0.704 0.627 0.330 0.784 0.272 0.233 0.428 

#11 1024 × 1024 × 16 0.708 0.526 0.349 0.704 0.222 0.044 0.491 
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Table 4.7. 
F1 score on larval Drosophila sensory neurons dataset of our methods and 
existing frameworks per sample stack; the best scores are shown in bold. 

Our CRF Our JP k-MST Farsight NCT neuTube APP2 

#1 0.901 0.864 0.852 0.686 0.157 0.683 0.463 

#2 0.811 0.615 0.727 0.604 0.097 0.658 0.516 

#3 0.737 0.739 0.829 0.470 0.199 0.470 0.426 

#4 0.837 0.794 0.529 0.319 0.548 0.231 0.399 

#5 0.916 0.871 0.698 0.728 0.163 0.319 0.520 

#6 0.909 0.921 0.768 0.543 0.319 0.797 0.719 

#7 0.926 0.944 0.823 0.905 0.111 0.848 0.730 

#8 0.923 0.939 0.830 0.869 0.198 0.879 0.737 

#9 0.903 0.919 0.695 0.805 0.222 0.663 0.732 

#10 0.921 0.935 0.665 0.931 0.316 0.597 0.742 

#11 0.944 0.884 0.639 0.951 0.266 0.432 0.752 
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Ground truth 

k-MST 

Farsight 

Our CRF 

Figure 4.12. Tracing results (in red color) on the sensory neurons of 
larval Drosophila dataset. Columns correspond to different stacks (#6 
and #10). From top to bottom: the ground truth, the results of k-MST 
based method [125], Farsight [23], and our CRF method [81] respectively. 
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Figure 4.13. Average precision and recall on larval Drosophila sensory 
neurons dataset of our methods and existing frameworks. 

4.7 Conclusion 

We presented the joint probability between shape and appearance and the con-

ditional random field frameworks. They are for evolving populations of snakes and 

capturing neurite centerlines in three dimensions. The implementation of the simul-

taneous evolution allows the incorporation of the global shape geometry of neurons to 

address the noise and fragmentation problems due to spatially varying contrast. Our 

CRF method considers each snake as a site, and spatially neighboring sites interact 

with each other, which results in snake collisions and finally merging. We showed 

theoretically and experimentally how we improve efficiency and accuracy compared 

to our JP method in [80], while maintaining increased accuracy compared to other ex-

isting approaches. We validate our results using publicly available datasets, namely 

the DIADEM challenge and FlyCircuit datasets, as well as sensory neurons in the 

wild-type larval Drosophila, whose volumes illustrate spatially varying signal-to-noise 

ratios. 
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5 NEURON TRACKING IN TIME-LAPSE CALCIUM IMAGES 

In this chapter, we examine temporal morphology changes to gain understanding of 

how neuronal mechanisms are related to the morphology dynamics. Topology changes 

are captured over the appropriate (domain-specific) time intervals and recorded along 

with other neuronal properties to reveal their association that controls the neuronal 

mechanisms. Here, our case study is about how the neuronal activity and morphol-

ogy dynamics respond to motion stimuli during larval locomotion. The morphology 

analysis of single data volume, i.e., neuron tracing and segmentation, is insufficient. 

Therefore, we develop the novel neurite tracking method [139] for time-lapse calcium 

images to capture the morphology dynamics of neurons. A video presentation of our 

work with supplemental material is available at https://youtu.be/N4TLjLFP8-M. 

Our method follows the local-to-global approach to handle severe deformations of 

neurons and local intensity ambiguities from calcium images. 

5.1 Tracking Morphology Dynamics over Time-Lapse Sequence 

Neuronal topology and morphology dynamics control how neurons respond to 

stimuli [34]. Nonetheless, it remains unknown exactly how these neurons are acti-

vated during the responses. To investigate the underlying molecular mechanisms, we 

need the reconstruction of the morphology dynamics, which involves neuron tracking 

problem. Hence, neuron image sequences are used instead of static images. More-

over, the changes in the intrinsic properties of neurons must be gathered as well over 

the suitable time intervals depending on the properties of interest. Then, these two 

features could be analyzed together to establish the patterns of the system. In this 

case study, we explore the correlation between morphology dynamics and neuronal 

activity in order to understand the locomotion behaviors of Drosophila larvae. 

https://youtu.be/N4TLjLFP8-M
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Sensory neurons beneath the epidermis of larval Drosophila [140] provide impor-

tant proprioceptive feedback to the brain. In the absence of sensory signals from these 

proprioceptors, larval locomotion is uncoordinated and slow. Although the signals 

of these sensory neurons are important to proper locomotion [141], it is unknown 

exactly what these signals are. For instance, what is the relationship between neu-

ronal firing and muscle contractions in a segment? Are sensory neurons activated 

by stretching during muscle relaxation? Or are the sensory neurons activated during 

muscle contraction? 

To uncover the relationship between the neural activities and the locomotion 

mechanism of the Drosophila larvae, the imaging process has been developed to vi-

sualize the calcium responses in the proprioceptive neurons during larval locomotion. 

Calcium imaging reveals spatio-temporal information of activities in neurons at the 

single-cell level. Due to the large amount of image sequences required for learning the 

link between locomotion and sensory neuron activity, an automated neurite tracking 

system is needed. However, a unique characteristic of calcium images is that they 

produce low responses when there is little or no neuronal activity, which causes parts 

of dendrites to become ambiguous or even invisible. In addition, larval locomotion 

produces movement of the dendrites, which results in severe deformations, rendering 

dendrite tracking rather challenging. 

Here we consider the time-lapse sequences over a short period of time so there is 

no sudden changes to neuronal topology, apart from the displacement of neurons. To 

address these problems, our method represents the neuron trace by the generalized 

pictorial structure. Neuron traces are modeled following the Markov random field 

(MRF) framework, where pre-determined neurite parts (branches) are the sites, ad-

jacency between parts is captured by edges, and global configuration also includes 

relative part orientation. Using hard constraints on topology allows us to tackle 

intensity ambiguities and abrupt deformations during locomotion. 

Section 5.3 describes how we integrate 5 factors that drive our tracking system: a) 

image feature, b) global dynamics, c) displacement smoothness, d) repellent term, and 
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e) line potential. These factors take into account appearance, global motion, local de-

formations, part-wise structure, and local shape constraints respectively. Each factor 

addresses the issue that occurs in neuron tracking. No frameworks in our knowledge 

have ever incorporate this number of factors before. They adopted only the partial 

of factors, so our method outperforms others because they did not handle all issues 

like ours. Section 5.4 explains the implementation details of our pictorial structure 

that make the problem feasible. In Section 5.5, our method is compared against the 

state-of-the-art optical flow estimation technique and the automated tracing method 

applied to each frame; all methods are validated with our calcium image dataset. 

5.2 Related Work 

In addition to existing problems in neuron reconstruction, another main issue of 

neuron tracking in time-lapse sequences is the mapping function estimation between 

consecutive image stacks. Existing tracking approaches usually fail to detect and track 

neurites under spatially inhomogeneous intensity ambiguities, commonly observed in 

calcium images, and under non-smooth movement patterns. There are a number of 

techniques proposed for recovering the mapping function. Here we reviewed three 

possible solutions: tracking-by-detection, articulated neuron, and optical flow. 

5.2.1 Tracking-by-Detection 

The simplest way to track neuron is to apply the neuron detection technique 

to every frame. There are a number of methods for neurite tracing in each frame 

independently, such as neuron reconstruction methods discussed in Chapter 4. Then, 

trace registration, e.g., [44], can be applied to improve temporal smoothness and 

obtain local trajectories. 

Tracing and registration problems could be solved simultaneously using methods 

similar to [24, 95]. The method traces neuron at multiple time instances simultane-

ously by enforcing consistency within and across image stacks, yielding more robust 
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results. However, these methods rely on seed point detection for initialization, which 

are not robust to disappearing neurite parts and local deformations as appeared in 

calcium images, resulting in error accumulation over time. 

5.2.2 Articulated Neuron 

In neuronal movement analysis, the centerlines of neuron’s axon and dendrite can 

be represented by tree data structures. With the isomorphism property, neurons can 

be tracked by fitting a fixed model. We can model the neuron’s dendritic tree using 

the kinematic structure of articulated models in a similar way to body pose tracking 

and recognition [142,143]. Authors represented the human body by the loose-limbed 

model, which is a variant of the pictorial structure [82, 83] with elastic connections 

between adjacent parts. Tracking problem can be formulated as a graphical model, 

where body parts are sites and their configuration contains the position and orien-

tation of parts. Edges encode the position and angle relationships between adjacent 

parts. Other variations of kinematic skeleton-based methods are reviewed in [144]. 

The articulated neuron can also employ a part-wise (global) shape model, which 

incorporates the domain knowledge with respect to the neuron’s tree structure and 

motion, to provide the desired robustness. Furthermore, the assumption about the 

neuron structure also limits the number of possible solutions and makes the prob-

lem feasible. Another benefit of using the model like the articulated body is that 

only regions of interest are detected and tracked, along with the recovery of its pose 

estimation or the neuronal morphology in an efficient manner. 

An issue we face in the neuron tracking problem, with respect to existing artic-

ulated models, is the neurite’s high degrees of freedom (large configuration search 

space), which is due to a potentially large number of branching points that define 

the considered joints. Second, the degrees of freedom vary among different neurites, 

as opposed to a pre-determined fixed structure (e.g., human body). Another issue 
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is the unreliable image cues from calcium images, unlike the issues in human-body 

tracking, which are self-occlusion and appearance variation from clothing. 

5.2.3 Optical Flow 

A large number of optical flow-based methods were reviewed in [84]. Optical flow 

produces dense motion fields over the entire image domain. Two classic methods 

for optical flow estimation are Lucas-Kanade [145] based on the the least-squares 

approach, and Horn-Schunck [146] following the variational approach. These methods 

are local methods because they take a small vicinity into account for updating the 

optical flow. Their main issue is the large displacement. The standard technique for 

coping with the issue is to adopt the coarse-to-fine scheme [147, 148]. Its drawback 

is that small and/or rapidly moving objects are smoothed in the coarse level and 

disappear into the background. 

Recently, new methods combine the feature matching to handle the very large dis-

placement problem [149]. Due to the recent breakthrough in feature matching using 

the deep learning technique [150, 151], new optical flow methods are able to han-

dle occlusions and large displacement motions by incorporating the feature matching 

technique using the Convolutional Neural Network (CNN) [152]. To handle the local 

minimum problem, some methods solve the optical flow estimation in the discrete 

space, which allows them to employ the efficient approaches for finding good approx-

imated global optimum [21]. 

Most optical flow methods follow the temporal intensity smoothness constraint 

[84], which assumes that pixel intensity remains constant locally during displacement. 

This assumption does not hold in calcium images whose responses change with the 

activities of neurons. While some methods, e.g., [84], employ successful data-specific 

modeling that limits their generalization. Moreover, the deforming tissue during 

locomotion introduces noise in the background, which occupies most of the image area, 

yielding misleading neurite movement despite any spatial regularization/smoothing. 
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5.3 MRF-Based Neurite Tracking 

Let the centerline of a neurite at time t ∈ [0, T] be represented by the pictorial 

structure model [82, 83], Gt = {Xt , ER}, where Xt = {xt} is the set of the treei 

structure vertices, i = 1, ..., n, depicting Cartesian coordinates, and ER = {eR } isij 

the set of edges between all pairwise adjacent vertices (i, j), i =6 j (Fig. 5.1). Let 

Kn = {V , E} be the complete graph of the set of vertices V with n vertices and edge 

set E = {eij }, and EG = {eG} be the set of repulsive edges [153], which are not edgesij 

of the tree structure, EG = E \ER. Also, let Vt = {vt} be a set of the mapping vectors i 

t t t−1that transform Xt−1 to Xt: v = x − x .i i i 

We formulate the objective function as the conditional distribution over the neurite 

shape St = {Xt , E} for each frame, given the image sequence I = {It} and previous 

neurite shape St−1 , 

Sbt P (St|I, St−1)= arg max 
St 

(5.1) 
= arg max P (Xt|I, St−1) 

Xt 

Figure 5.1. Graphical model principle for quantifying the topological 
structure among neighboring branches: pictorial structure (middle) of the 
considered neurites (left; dots show control points/nodes) and the corre-
sponding graphical model (right). Red cliques ER form the tree structure. 
Green cliques EG represent the repulsive edges, while blue cliques corre-
spond to the line potential. Some of the green and blue cliques are not 
shown for visualization purposes. 
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We assume that the topology of the neurite is fixed, i.e., Gt is isomorphic for ∀t ∈ 

[0, T ], and there are local deformations. Thus, our objective optimization corresponds 

to displacing the centerline locations Xt . It can be solved using a second-order multi-

label MRF, where sites are nodes xi
t ∈ Xt and their configuration is every possible 

coordinate. 

P (Xt|I, St−1) ∝ exp 

⎧⎨ ⎩ 
⎫⎬ ⎭ X 

− E(xi
t , I, St−1) 

xt
i∈Xt XX 

t t t t t t tE(xi, I, S
t−1) = − log U(xi, I, S

t−1) + W (xi, xj , S
t−1) + H(xp, xi, xq), 

(xt
i,x

t
j) : eij =1 (xt

i,x
t
p,x

t
q) : 

R 
ip,e 

(5.2) 

In the above notations, we consider binary representation of the adjacency matrix 

of the graph St . The term U is the unary potential (Sec. 5.3.1), W is the pairwise 

smoothness (Sec. 5.3.2), and H is a local line-type smoothness (Sec. 5.3.3), where we 

also show that the careful choice of the function H allows us to decompose the second-

order term into a pairwise function without adding an auxiliary node; therefore, the 

graphical model can be described by the graph St . 

5.3.1 Unary Potential 

The unary potential determines the centerline position based on image features 

and global model dynamics, 

R{e }=1, p6=qiq 

��� 
t t tU xi, I, S

t−1 = Uimg xi, I + Umodel xi, I, S
t−1 (5.3) 

Image feature term Uimg in eq. (5.2) assigns node positions based on the responses 

of Frangi filter [96] for branches, and of another Hessian-based function for branch-

ing points (Fig. 5.2). Frangi filter is a vesselness-filter designed to detect only the 

line-like structure and it produces low responses over branch points; hence, a dif-

ferent function is required for detecting bifurcation points. In 2D, the branch point 

appears like a blob so we design a function similar to Frangi filter that has high value 
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Figure 5.2. The synthetic neurite at a branching point (left) with the cor-
responding Frangi filter (middle) and the Hessian-based function (right) 
responses from eq. (5.4). Frangi filter yields lower response at the branch-
ing point while the Hessian-based function yields high response at the 
branching point and low values elsewhere. 

when both eigenvalues of Hessian matrix have high magnitude (the sign indicates the 

brightness/darkness). ⎧ � �� � �� � � ⎨⎪ exp −
2 
R

β 
B 
2

2 1 − exp − S
2

2 , if deg(xt
i) ≤ 2 

Uimg xi
t , I = ⎪� � ��� 2c � �� (5.4)⎩ − RA − S

2 
1 − exp 1 − exp , otherwise

2β2 2c2 

where deg(xi
t) is the degree of the node xi

t , which is less than or equal to two if they 

are branches; otherwise, they are branching points. RB = λ1/λ2 indicates vesselness 

using the Hessian matrix eigenvalues (λ1, λ2) at xi
t , where λk is the eigenvalue with p

the kth smallest magnitude. RA = min(λ1, 0) · min(λ2, 0) measures the similarity 

with a blob (both eigenvalues are negative at branching points for images with dark 

background). S = λ1
2 + λ22 distinguishes the neurite from the background, while β 

and c are parameters controlling the sensitivity to (RA, RB) and S respectively [96]. 

Global dynamics term Umodel in eq. (5.2) adjusts the position of each node xi
t based 

on the global motion determined by the soma displacement. In calcium images, it is 

often very challenging to detect branches due to aforementioned problems; therefore, 

image feature alone is insufficient. Nonetheless, the soma is always visible. It can be 

detected using the circular Hough transform [154,155], and tracked using the FullFlow 

approach [21]. The dynamics model solves this problem by introducing the initial 
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guess of the centerline location through the global motion model to complement the 

image feature. Our global motion model at time t is denoted by Yt = {yt}, which isi 

obtained by shifting the previous trace St−1 so that the soma is at the current location, 

t t−1 0 0 t−1 yi = Tt−1,t(xi ) and yi = xi , where Tt−1,t(xi ) is the displacement operator for 

soma’s position from t − 1 to t applied to xi
t−1 . Also, when locomotion (deformation 

and translation) is small and periodic, we can replace the previous trace St−1 with the 

initial centerline configuration S0 . With the above global motion model, the global 

dynamics term is formulated by, 

� � � 
t t tUmodel xi, I, S

t−1 = exp −αd xi − yi (5.5) 

where k · k is the Euclidean distance, αd regulates the sensitivity to global motion. 

5.3.2 Pairwise Potential 

The pairwise smoothness term W in eq. (5.2) assigns node positions such that 

tracking is part-wise smooth over the edge set ER = {eR}, and the new neuriteij 

location maintains its global shape by including the repulsive [153] edges EG = {eG},ij 

⎧ 
t t Rαp · kvi − vj k , if eij = 1 (5.6a)h i⎪ t t t t G⎨� 

t t 
� xi − xj ≤ xk − xl eR =1 

, if eij = 1 ∧ 
W xi, xj , S

t−1 = kl (5.6b) 
br(xt

i) 6= br(xt
j )⎪⎩ 

0 , otherwise (5.6c) � ��−1 
where αp = 2 vt−vt scales small and large vector differences to a proper rangei j 

[156], [·] is the binary indicator function, h·i represents the expectation value, and 

br(xt
i) denotes the branch where node xt

i is in the tree structure. Again, in the above 

notation we consider binary representation of graph adjacencies, i.e., {eijR, eijG}i=6 j ∈ 

{0, 1}. 

The first case in eq. (5.6a) enforces the displacement smoothness between mapping 

vectors of adjacent nodes. It is defined as the difference between mapping vectors of 
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t t Rnodes x and x when e = 1. It encourages adjacent nodes to have a similar mapping i j ij 

vector. 

While the second case in eq. (5.6b) constrains the morphology such that dendrites 

repel each other to prevent undesired intersections. Repulsive edges eG are addedij 

between nodes from different branches [153]. Repellent term gives higher energy 

when dendrites overlap. A pair of dendrites are overlapped if the distance between 

them is less than the average length between adjacent nodes. 

5.3.3 Line Potential 

Local line-type potential H in eq. (5.2) ensures local branch shape smoothness 

using the internal energy of the active contour model [64]. Considering the neighbors � � 
t t t t t R Rx , x of xi, i.e., {x , x } : {eip, e } = 1 , the line potential can be expressed in terms p q p q iq 

of curvature, � �2 � �2t t t t t t t tH(x , xi, x ) = x − x + x − 2xi + x (5.7)p q p i p q 

Computing curvature requires the second-order potential function. Unlike [157], 

here we avoid adding auxiliary nodes by using the triangle inequality, where the clique 

t t t t t{x , xi, x } of three nodes is broken down into three pairwise cliques — {x , x },p q p i 

t t t t{xi, x }, and {x , x },q p q 

t t k2kx − x 
k2 k2 − p qt t t t t t tH(x , x ) = kx − x + kx − x (5.8)p i, xq p i i q 4 

t t tThe optimal curvature value is obtained when xp, xi, and xq form the straight line, 

xt xt = xt xi
t + xi

txt , so our simplification in eq. (5.8) has the same optimum as thep q p q 

potential in eq. (5.7) (Fig. 5.3). The individual quadratic terms also enforce short 

distances between nodes. 

t t tThe last term is divided by 4 to ensures that it is always H(xp, xi, xq) ≥ 0. 

According to the triangle inequality, we get, 

t t t t t tkx − x k + kx − x k ≥ kx − x kp i i q p q 

t t t t t t(kxp − xik + kxi − xqk)2 ≥ kxp − xqk2 
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Figure 5.3. Our curvature simplification. Although our decomposition 
is different from the curvature definition, they share the same optimum 

xt
i+ xt

ix
t
q 

t
px

t
q = xt

pwhen nodes form a straight line, x (left), and discourage 
t
i + xt

ix
t
q 

t
p 

t
q 

t
pxbending when x (right). < xx 

t t
i 

t
i 

tLet a = max{kx − x k, kx − x k}, thenp q 

(2a)2 ≥ kx k2t t− xp q 

k2t tkx − x 
a 2 ≥ p q 

4 
k2t tkx − x 

k2 + kx ti k2 ≥ p qt t
i 

tkx − x − xp q 4 

5.4 Implementation 

Algorithm 1 shows the summary of our method, given I and S0 , where the Carte-

sian coordinates of the centerline location Xt is discretized for the feasibility of the 

problem. In line 8, the energy function of eq. (5.2) is non-submodular, and therefore 

the MRF is optimized using the α-expansion [53] with quadratic pseudo-boolean op-

timization [158,159], also known as fusion moves [54]. For efficiency, the search space 

is reduced by limiting the number of candidate positions and pruning the redundant 

edges from St . 

Specifically, to limit candidate positions, we consider the surrounding regions 

(within 20 pixels in our experiments) around the starting location Xe t , which are 

the possible node locations based on the previous trace and the global displacement. 

The starting location of each node at time t during the optimization is computed 

by applying the displacement operator that shifts soma’s location in the previous 

instance to the current position, xeti = Tt−1,t(x t−1 
i ). 
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Redundant edges are repulsive edges linking nodes that are unlikely to overlap; 

therefore, removing those edges has no effect to the model. St is pruned such that 

there is at most one edge between a node and a set of nodes on a different branch; we 

choose the edge determining the shortest distance. For example, in Fig. 5.1, node x6 

would be connected (green cliques) to all other nodes, considering a fully connected 

graph. Instead, we simplify the graph accordingly to this schema by maintaining 

only the clique between x6 and x3 due to their proximity. This way, we limit the 

number of repulsive edges at each node to the maximum number of branches in the 

fixed-sized surrounding area, which is some constant values. Thus, we reduce the 

number of repulsive edges |EG| = O(N), and the total number of edges in our model 

is also O(N). 

Algorithm 1: Neurite tracking 
Input: I, S0 

Result: S 

1 for t = 1 to T do 

2 Compute Tt−1,t using FullFlow [21] 

// Soma is detected using the Hough transform [154, 155] 

3 Update global motion model in eq. (5.5) 

t t−1 t−1 ∈ St−1// For severe deformation, y = Tt−1,t(x ) and x .i i i 

t 0 0// For small and periodic deformation, yi = T0,t(xi ) and xi ∈ S0 . 

4 Initialize starting location Xe t = Tt−1,t(Xt−1) 

5 Compute U (xi
t , I, St−1) using eq. (5.3)� � 

6 Compute W xi
t , xt

j , S
t−1 using eq. (5.6) 

t t t
7 Compute H(xp, xi, xq) using eq. (5.8) 

8 St ← arg maxXt P (Xt|I, St−1) 

// Optimized by fusion moves 

9 end 
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Ground truth 

Our model 

w/o global 

dynamics 

w/o 

displacement 

smoothness 

w/o repellent 

term 

w/o line 

potential 

Figure 5.4. Tracking results (superimposed in red) for 3 successive frames 
(columns), depicting the importance of individual terms in our model. 
From top to bottom: ground truth, our integrated model, our model 
without the global dynamics term of eq. (5.5), our model without the 
local displacement smoothness (first case of eq. (5.6a)), our model without 
the repellent term (second case in eq. (5.6b)), and our model without the 
line potential of eq. (5.8). Note that here we study dendrite arborization 
neurons of class I type, which have the simplest arbor structure. 
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5.5 Results 

Larvae expressing the genetically-encoded calcium sensor GCaMP6.0F in the pro-

prioceptors were observed in four-dimensional confocal microscopy imagery. This is 

possible because the neurons are found directly beneath the cuticle and epidermis, 

which are optically transparent. Analysis of the neurons in these volumes presents 

specific challenges that are not present in typical calcium time series, since the neu-

rons of interest are moving in 3D. However, the z-axis has low resolution due to the 

device limitation. Hence, we used the 2D maximum intensity projection images for 

tracking, albeit the availability of image stacks. 

In this dataset, each sequence captured neuronal displacements and deformations 

during larval locomotion, with an average duration of about 10 frames per cycle. 

To obtain the ground truth, we traced the neurites of interest manually in frames, 

where they could be observed due to sufficient calcium signal, using neuTube [135]. 

For quantifying accuracy, we used five metrics: Spatial Distance (SD), Substantial 

SD (SSD), the percentage of sample points used in SSD (%SSD), false negative rate 

(FNR), and false positive rate (FPR). Specifically, let a ground truth trace be SA 

and a calculated trace be SB. Then, SD(SA,SB ) is defined as the mean between (a) 

the average Euclidean distance of nodes in SA to the closest nodes in SB and (b) 

the average Euclidean distance of nodes in SB to the closest nodes in SA. (Note: 

all nodes are one pixel apart.) Using only SD, mismatches that are due to local 

deformations cannot be captured, when the majority of the nodes between ground 

truth and calculated traces coincide. Therefore, we also used SSD(SA,SB), which 

quantifies the SD error for only the mismatched nodes of SA and SB (nodes that 

are at least 2 pixels apart), and %SSD that indicates the ratio of mismatched nodes 

between SA and SB, as detailed in [160]. In addition, we also computed FNR and FPR 

to measure geometric errors. These criteria identify what kinds of errors occurred: 

missing or extra branches. They are defined as follow, 

https://GCaMP6.0F
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FNR = M(SA, SB) 
(5.9) 

FPR = M(SB, SA) 

where M(S1, S2) is the metric that estimates the fraction of S1 omitted from S2. It 

is defined by, 
n � � ��X1 d(x, X2)

2 

M(S1, S2) = 1 − exp (5.10) 
n 2σ2 

x∈X1 

where d(x, X2) is the distance from point x to the closest point in X2, and σ is the 

sensitivity parameter. Eq. (5.10) is equivalent to applying the Gaussian filter to S2. 

The Gaussian filter is required because it is extremely unlikely that S1 and S2 will 

precisely overlap. Therefore, σ indicates the tolerance of the distance error. The 

geometric errors are computed by the software called ‘NetMets’ [161]. 

We compare our method with the optical flow-based tracking, ‘FullFlow’ [21] and 

with the automated tracing feature in neuTube [58,135] applied to each image stack 

independently. Our experiments were carried out on a Mac Pro (2×2.66 GHz 6-Core 

Intel Xeon, 20GB 1333MHz DDR3 ECC). The run time of our method was on average 

one second per frame, per neuron (for cases where multiple neurons were present in 

the data), with frame dimensions of 512×192 pixels. 

Figure 5.4 shows the importance of each factor in our model, or a lack thereof. The 

global dynamics term is required to compensate for intensity ambiguities at the neu-

rite region and enforces the initialization for the MRF optimization. Otherwise, nodes 

move towards pixels with high intensity regardless of neuron’s shape, especially the 

dendrites close to adjacent neurons. Displacement similarity between adjacent nodes 

prevents local movement ambiguities and results in locally smooth shape mapping 

between time instances. The repellent term prohibits intersections between branches. 

Finally, the line potential yields local branch smoothness. 

We evaluate our method and the competition on sequences with low and high 

signal-to-noise ratios (SNR), as shown in Figure 5.5. The box plot of SD scores in the 

first column shows that the results of our method and the optical flow-based tracking 

are comparable when SNR is high; however, when SNR is low, our method yields 
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Figure 5.5. Similarity (error) scores — SD, SSD, and %SSD, of neuTube 
[58], FullFlow [21], and our method. Rows illustrate the tracking results 
over different neurons when SNR is high (top two rows) and low (bottom 
two rows). SD is displayed in the box plot (left), while SSD and %SSD 
are displayed for every frame (middle and right, respectively). The results 
correspond to indicative segments from longer sequences. 
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better accuracy. Whereas, the tracing method produces poor results because it fails 

to detect neurons when they are totally or partially inactive. The second and third 

columns illustrate the SSD and %SSD scores per frame (x-axis), respectively. Error 

peaks in our method (primarily visible in %SSD) occur when local neurites deform 

significantly, due to locomotion (and its effect on the 3D-to-2D projection), as well 

as blurring effects under significant movement. Yet, the error magnitudes are low — 

less than 5 pixels on average (SSD). 

The results above are also supported by the qualitative observations in Figure 5.6. 

The optical flow-based method fails to recover the motion field when SNR is low so 

it yields poorly tracked centerline. While the tracing method is unable to extract the 

neuron in any case due to noisy data, it misses neurite branches and detects adjacent 

neurons instead. Our method, on the other hand, integrates global and local shape 

with motion information and intensity to produce robust results. 

In Figure 5.7, we show the overall performance of our method compared to the 

competition. Results agree across metrics that our tracking method outperforms 

others. Here we show the boxplot of SD, %SSD, FPR, and FNR over the whole 

dataset. Our data contain the ground truth of subsequences during the motion. We 

do not evaluate when neurons are stationary to avoid bias over the inactive periods 

since they occupy most of the sequence. These criteria point to the same suggestion 

that our method is superior as our method produces lower errors as shown by all 

four metrics. In addition, the errors our method produced tend to be FPR rather 

than FNR, which is more desirable if the total level of errors (i.e., the sum of FPR 

and FNR) is the same because over-segmentation is less severe than missing parts of 

neurons for this task. Tracing neuron in each frame independently ignores the time 

dependency, resulting in poor performance. On the other hand, the optical flow-based 

method performs quite well; however, the shortcoming is that errors occur when there 

is a significant movement, especially during the contraction, where neurons appear 

blurry owing to the out-of-focus effect. Then, errors continue to propagate throughout 

the whole sequence. 
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Figure 5.6. Qualitative comparisons (from top to bottom): ground truth, 
neuTube, FullFlow, and our method. Columns correspond to tracking 
in different frames when SNR is high (first column) and low (last two 
columns). 
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Figure 5.7. Box plots of SD, %SSD, FPR, and FNR respectively over the 
whole sequence during the motion. 
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5.6 Conclusion 

We introduce a neurite tracking approach that allows for automated, in vivo, 

single-cell analysis from calcium image sequences. Our method incorporates local 

image appearance, global and local shape characteristics, and global motion. We 

formulate the objective with a non-submodular, second-order, multi-label MRF, con-

sidering the neurite as an articulated body. We evaluate our method using noisy 

calcium image sequences of Drosophila sensory neurons, and we compare our results 

with the optical flow-based tracking and automated tracing methods. 
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6 PART-WISE SEGMENTATION WITH ARTIFICIAL TEMPLATES 

Neuron mechanisms cannot be explained based on a single aspect such as structure 

information obtained from neuron reconstruction. Hence, other aspects such as func-

tionality must be considered as well. Integration of multi-modality images involves 

the domain knowledge-based part-wise segmentation problem to provide a meaningful 

registration and compartmentalization. We solve this problem using our novel simul-

taneous registration and segmentation method [162], where the registration is needed 

to ensure that segmentations comply with the artificial template encoding the domain 

knowledge. A video presentation of our work with supplemental material is available 

at https://youtu.be/sDdOicyIq6I. Our main contributions are developing the first 

method that uses the totally artificial template drawn by experts, and introducing the 

structure information, which is resolution-agnostic unlike the appearance information, 

in the global-to-local design, resulting in increased partition accuracy. 

6.1 Domain Knowledge-Based Part-Wise Segmentation 

Different modalities of single-neuron imaging can provide information for analyz-

ing morphology at different levels of detail. For example, Mosaic Analysis with a 

Repressible Cell Marker (MARCM) [163] can be used for classifying global morphol-

ogy [4], whereas GFP-labeled neurons under a confocal laser scanning microscope can 

yield branching details for local dendritic complexity analysis [80, 81]. In addition, 

different modalities also give different perspectives. For instance, nano-scale images 

from FRET (Förster Resonance Energy Transfer) microscopy provide the concentra-

tion map of protein-protein interactions on neurons, in contrast to micro-scale images 

from confocal microscopy. Integrating information across modalities would create 

the platform for analyzing multiple aspects of neurons altogether and give valuable 

https://youtu.be/sDdOicyIq6I
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insights into the relationship between the structure and functionality of neurons. Fur-

thermore, such scheme would provide the necessary tools to study how specific genes 

affect neuronal function and morphology by comparing wild-types and knockouts, as 

some mutations result in the drastic changes in the appearance of neurons. 

The integration of multi-modality images is not a trivial task. It involves aligning 

different neurons in different resolutions and finding correspondences across neuron 

volumes for meaningful comparison. Volume registration techniques cannot be applied 

directly because the alignment must be executed based on some context that provides 

the biological meaning for further analysis. Instead, we segment image stacks accord-

ing to the generated prototypes with pre-determined compartmentalization, which 

acts as a standardized representation of neurons. Then, the part-wise registration is 

applied to align neurons by compartments; this provides the biological interpretability. 

In this chapter, we develop the novel global-to-local method for part-wise segmenta-

tion of image stacks across different modalities with respect to the artificially created 

template that enables the comparison among neurons with meaningful interpretation. 

Independently from spatial resolutions, generating morphology prototypes can 

provide top-down solutions for segmenting neuron volumes and partitioning them 

into pre-determined compartments (segmentation-by-registration). Instead of build-

ing (training) such prototypes using computational approaches, it is often required 

that domain expertise directly drives the objective: using microscopic observations 

and domain knowledge, we can design artificial (instead of data-driven) neuron pro-

totypes with compartments annotated based on some context (e.g., topology with 

respect to the natural environment, shape, and/or function). The data-driven tem-

plates are undesirable and infeasible in this problem because atlas generation meth-

ods [85–87] require training data that captures a substantial amount of the variation 

of the dataset, which is not true for the available data. Moreover, in biology or 

life science, experts usually describe the neuronal morphology template qualitatively 

based on their observations. Here, we use such a generated prototype with 10 pre-

determined compartments to segment and partition single-neuron volumes (Fig. 6.1). 
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Our approach is motivated by the application of mapping protein interactions [164] 

into a ‘standardized’ (prototype) aCC motorneuron model, for studying causality 

between proteome and phenome at different development stages of the Drosophila 

embryo. 

Section 6.3 introduces our method, which is based on the simultaneous registration 

and segmentation (SRS) principle using Markov random fields (MRFs) for fitting an 

artificial 10-compartment neuron prototype to input neuron volumes. Since the refer-

ence image is an artificial ‘hypothetical’ neuron model, the intensity in the reference is 

not available; therefore, the registration process is guided by the segmentation of the 

target volume as well as the pre-determined neuronal structure. Section 6.4 presents 

our global-to-local approach. We first employ the global transformation based on the 

neuron-specific ‘standardized’ coordinate system, namely the axonal centerline, to 

initialize the SRS process, since it can provide a unifying reference across all neurons 

of any type and at any stage of development. Then, we apply the local registration us-

ing MRF-based free-form deformation (FFD) to deform compartments towards their 

perimeters. In Section 6.5, we validate our results against an existing SRS method us-

ing aCC motorneuron image stacks from larval Drosophila, at multiple developmental 

instances and different spatial resolutions. 

6.2 Related Work 

One possible solution for matching artificially created neuron templates with in-

put volumes is to perform the tasks of part-wise segmentation (e.g., multiple object 

geometric deformable model [76]) and registration (e.g., mutual information-based 

technique [105]) sequentially. However, in our context, these two tasks depend on 

each other and therefore coupling them into a single process improves the accu-

racy [22, 25, 89, 91]. SRS methods can be categorized into two types — variational-

based and Bayesian-based methods. 
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6.2.1 Variational-Based Methods 

The variational-based methods usually represent objects using level sets so the 

problem can be solved using the gradient descent algorithm. These methods inter-

leave segmentation and registration iteratively, which are optimized locally using the 

variational calculus. They operate in the continuous space, which usually yields to 

getting trapped at local minima. Moreover, they only support certain functions that 

are differentiable with respect to the shape and transformation parameters. 

The variational-based SRS was introduced by Yezzi et al. in 2001. The piecewise-

constant geometric active contour model [68] and the linear transformation were 

used [89]. Authors segment the target image by the transformed segmentation of 

the reference image, optimized by the gradient descent algorithm. Derivatives are 

computed with respect to objects’ boundary and the geometric transformation. 

This method was extended to non-rigid transformation in [22, 165–167]. Intro-

ducing the non-rigid registration creates the ill-posed problem. To avoid this issue, 

authors in [165] penalize the segmentation’s area to regularize the object’s bound-

ary curve, and employ the linear diffusion [168] to regularize the mapping vector 

field. While, some methods adopt the more sophisticated regularization to provide 

a unique solution and handle the large distance deformations. Authors in [22, 167] 

use the nonlinear-elasticity-based regularization based on the Saint Venant-Kirchhoff 

model. They assume that the segmentation of the reference image is given; and the 

partition of the target image is the transformation of the reference segmentation. 

Thus, only the vector field is needed to be optimized. The complex regularization 

creates the non-differentiable objective function, which is simplified by adding an 

auxiliary variable to replace the non-linear term and decouple the segmentation and 

registration tasks. 

Using the segmentation and its transformation creates a tight dependency between 

registration and segmentation tasks. Hence, authors in [166] decouple these two tasks 

by introducing the auxiliary term that measures the compatibility between the two 
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solutions using the distance between two boundary curves in the level set space. The 

introduction of this new term plays a crucial role in separating the segmentation and 

registration tasks so they can be optimized independently in an alternate manner. 

6.2.2 Bayesian-Based Methods 

The second type of SRS techniques adopts the Bayesian framework [85, 87, 90– 

92, 169–171]. This type of method formulates the solution as a maximum a poste-

riori (MAP) probability estimation, using MRF or Expectation Maximization (EM) 

frameworks. They usually operate in the discrete space. Despite the loss of precision 

compared to the variational-based methods, the benefit is that they can use efficient 

techniques for finding a good approximation of the global optimum. Also, they can 

accommodate more complex functions, since they do not require the computation of 

derivatives. 

In the early stage, the transformation and segmentation were formulated as two 

MAP functions and estimated alternately [90]. Authors compute a hidden Markov 

random vector field that assigns the probability of pixels belonging to regions, instead 

of the hard segmentation. While, the non-linear transformation is represented by the 

cubic B-spline FFD [88]. 

Then, the segmentation and registration tasks are formulated as a single MAP es-

timation. For example, authors in [87] estimates MAP using the Iterative Conditional 

Mode (ICM) strategy, which alternately optimizes the segmentation and registration 

components in the objective function. While, methods in [85, 91, 169] use the EM 

algorithm. The optimization alternates between the soft segmentation of magnetic 

resonance images in the E-step and updating mapping parameters as well as object 

intensity distribution in the M-step. 

Later on, some methods extend the Bayesian framework assumption further by 

employing the graphical model, which simultaneously optimizes both segmentation 

and registration tasks. Authors in [92, 170,171] assume that the segmentation of the 
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reference image is given; and the objective function is defined as a function of trans-

formation, represented by the cubic B-spline FFD [88]. They then apply the MRF 

over the control points, where states are their displacement and object labels. To im-

prove the performance, the novel optimization method, Fast-PD [55], was introduced. 

The advantage of this method is the optimality of the solution but its drawback is 

the limited precision based on the spacing of control points. 

This problem can be alleviated using the hierarchical cubic B-spline FFD. The 

method in [25] is based on three factors: segmentation, registration, and coherence. 

Segmentation and registration are solved separately, while the coherence term en-

sures the consistency between these two tasks by measuring the dissimilarity between 

the segmentation of the atlas and the transformed segmentation of input images. 

The intensity distribution of compartments are modeled by Gaussian Mixture Model 

(GMM). The inference of MRF is computed using the graph cuts algorithm [53]. 

Previous SRS methods are not suitable for this problem because their similarity 

criteria is based solely on appearance. Since the reference image is the artificial tem-

plate without image intensity and target images are acquired from multiple modalities, 

the appearance-based matching criteria are ineffective. We employed the graphical 

model because it provides a good approximated global solution and it can accom-

modate sophisticated objective functions, which can incorporate resolution-agnostic 

attributes like structure information. 

6.3 Simultaneous Registration and Segmentation 

Given a target image stack I : Ω → R, where Ω is the volume domain, and LJ 

an employed, artificially created template containing N compartments, O0, O1, ...ON ; 

to facilitate notation, we also consider the background as a compartment, O0. Each 

compartment contains points x ∈ Ω such that points from all compartments cover SNthe whole image domain without overlapping, = Ω and Oi ∩ Oj = ∅, ∀i =6 j.i=0 Oi 

Each compartment Oi is represented implicitly [76] via a signed distance function 
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φi : Ω → R, Oi = {x | φi(x) > 0}, ∀x ∈ Ω, while its boundary is defined by 

∂Oi = {x | φi(x) = 0}. Therefore, the artificial template including the background 

can be defined as LJ(x) = {i | φi(x) > 0, i = 0, ..., N}. 

We aim at finding the geometric transformation T that best fits the template 

LJ to the target volume I globally and locally, namely LI = T(LJ(x)), ∀x ∈ Ω 

(Fig. 6.1). We formulate the objective function as the conditional distribution of the 

transformation T over the entire domain Ω, ( )X XX 
P (T|I, LJ) ∝ exp − U(x) − W (x, y) (6.1) 

x∈Ω x∈Ω y∈Nx 

where U and W are the unary (Sec. 6.3.1) and pairwise (Sec. 6.3.2) potentials respec-

tively. Nx is the set of spatial neighbors of x. The geometric transformation solution 

is derived as Tb = arg maxT P (T|I, LJ). 

6.3.1 Unary Potential 

U in eq. (6.1) registers compartments based on shape, appearance, and relative 

location within the neuron with respect to the axonal centerline. The shape com-

Figure 6.1. Target neuron volume I (collapsed, left), an artificially created 
template LJ with 10 compartments (middle), and the desired segmenta-
tion outcome LI (right). Here, the target is an aCC motorneuron in the 
Drosophila embryo, at the first instar (right at the dendrite initiation), la-
beled genetically with plasma membrane-targeted eGFP. The (numbered) 
pre-determined compartments in the reference sketch are: cell body (#1), 
axon hillock (#2), proximal neurite (#3), dendrite base (#4), dendrite 
shaft (#5), dendrite tip (#6), distal neurite (#7), neurite junction (#8), 
nerve exit (#9), and axon (#10). 
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ponent ensures the smoothness of the transformed compartments by applying the 

regularization. Here the intensity image of the template does not exist, so the ap-

pearance component is the similarity function that measures the compatibility of the 

segmentation outcome LI (the transformed template) to the target image I. While, 

the structure of neurons is taken into account by matching centerlines in the target 

image and template. 

U(x) = Ushp(x) + Uimg(x) + Ucl(x) (6.2) 

Shape energy term Ushp imposes the shape regularization of the transformed com-

partments based on their local boundary smoothness and area [68], 

NXn � �o 
Ushp(x) = αikrφi(x)k∂φi(x) + βiH φi(x) (6.3) 

i=1 

where αi and βi are the corresponding regularization parameters for compartment 

Oi, ∂φi is an indicator function of a narrow band around the compartment boundary, 

and H is the Heaviside function, which is defined by, 

⎧ ⎪⎨1, if z ≥ 0 
H(z) = (6.4)⎪⎩0, if z < 0 

Image energy term Uimg penalizes intensity dissimilarity between corresponding 

compartments of the target image I and a solution LI, i.e., it biases a transformation 

towards producing compartments with piecewise-constant intensity, 

NXn� � �o 
i 
�2 

Uimg(x) = I(x) − µLI 
H φi(x) (6.5) 

i=0 

where I(x) denotes the intensity of voxel x in the target image and µi
LI 

denotes the 

average intensity of compartment i in LI, R 
I(T(y))H(T(φi(y)))dy 

µ i = Ω R (6.6)LI 
Ω H(T(φi(y)))dy 
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Figure 6.2. Axonal centerline (in red) in the target image I (left) and a 
segmentation outcome LI (middle), along with its corresponding unsigned 
distance function ϕT (right). 

Centerline location term Ucl matches the axonal centerlines of the target image 

and the template. Though the appearance of neurons may change dramatically, its 

structure captured by the axonal centerlines usually exhibit slight changes. Center-

lines are defined by the unsigned distance function over the volume domain instead of 

point distributions or splines, so the centerline location term can be easily integrated 

into the framework. � �2� 
Ucl(x) = ϕT(x) exp − ϕI(x) (6.7) 

where ϕT and ϕI are the unsigned distance functions of the axonal centerlines in LI 

and I respectively (Fig. 6.2). 

6.3.2 Pairwise Potential 

W in eq. (6.1) enforces spatially smooth transformation; in this work, we use the 

diffusion regularization, which is defined as [172], 

W (x, y) = kdx − dyk (6.8) 

where dx and dy denote the displacement vectors of x ∈ Ω and y ∈ Nx respectively. 

6.4 Transformations 

Given that every input target image I is inherently in Cartesian while the em-

ployed morphology template in a ‘standardized’, with respect to some context-specific 

reference, coordinate system, the desired transformation is [88], 
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T = Tlocal ◦ Tglobal (6.9) 

where Tglobal transforms the template from ‘standardized’ to Cartesian coordinates, 

while Tlocal finds the best fitting solution LI to the data I. The ‘standardized’ coordi-

nate system is preferred because it describes template compartments with respect to 

the axonal centerline and it is resolution-agnostic, unlike Cartesian coordinates that 

describe spatial relationships between compartments for a specific data acquisition 

modality. 

Our method is implemented as in Algorithm 2. We assume that there exists only 

one neuron in data I; for images with multiple neurons, a user-defined mask is applied 

to filter out neurons in the background. 

Algorithm 2: Implementation of our MRF-based SRS 
Input: I, LJ 

Result: T 

1 Compute centerline spline S from I ; // use shortest geodesic distance 

2 Compute global transformation Tglobal 

3 LI = Tglobal(LJ); 

4 T = Tglobal ; // initialization as Tglobal 

5 for iter=1; rE > �; iter++ do 

// E = energy of MRF (see eq. (6.1)) 

6 Update µL
i 
I 
, i = 0, ..., N 

// here we consider N=10 compartments 

// plus background (also see eq. (6.5)) 

7 Solve MRF for Tlocal using graph cuts [53] 

8 LI = Tlocal(LI); 

9 T = Tlocal ◦ T; 

10 end 
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6.4.1 Global Transformation 

To compute Tglobal, the axonal centerline in the target image I is required: we 

define it as the shortest geodesic path between soma and the axon’s endpoint. Specif-

ically, the soma xsoma is detected using the Hough transform [154] in the intensity 

domain; alternatively, one can use, e.g., tensor voting [99]. An approximation of axon 

is derived using high values of vesselness, as computed by the Hessian-based Frangi 

filter [96]. The axon’s endpoint x ∗ is defined as the farthest voxel from the soma 

along the axon’s orientation u (unit vector), with the smallest geodesic distance, � Z � 
1 

x ∗ = arg max (x − xsoma) · u − min dp (6.10) 
x Px I(p)p∈Px 

where Px is the shortest geodesic path, which is the axonal centerline, computed by 

the fast marching method [60]; alternatively, one can use neurite-specific tracing, such 

as [80, 81]. 

Given a spline S representing the axonal centerline in the input volume, any point 

x = (x, y, z) in Cartesian coordinates can be represented with respect to S and its 

normalized arc-length indexing parameter. Specifically, let r(x) be the minimum 

Euclidean distance of x from S, and {A(x), a(x)} be the azimuth and altitude of x 

from its closest point t(x) ∈ S respectively, with respect to the spline’s normal, u⊥, 

and tangential, uk, vectors on the xy-plane at t(x) (Fig. 6.3), 

Figure 6.3. Location parameters for resolution-agnostic (standardized) 
representation: the axonal centerline (in blue) can be used as reference to 
represent the relative location of every point. 
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t(x) = arg min |x − S(l)|
l 

r(x) = |x − S(t(x))| 
(6.11)u⊥(t(x)) • [x − Sxy(t(x))]

A(x) = arctan 
uk(t(x)) • [x − Sxy(t(x))] 

z − Sz(t(x)) 
a(x) = arcsin 

r(x) 

where Sxy(t(x)) is the projection of S(t(x)) on the xy-plane, Sz(t(x)) is the z-

coordinate of S(t(x)) (Fig. 6.3), and ‘•’ denotes inner product. 

We transform the resolution-agnostic prototype from its Cartesian coordinates x, 

as (Fig. 6.4), 

LI(x) = Tglobal[LJ(x)] = LJ(x̃) 
(6.12) 

x̃ = SJ(t(x)) + r(x) · Rz(A(x)) · R 
⊥(t(x))(a(x)) · uk 

J(t(x))Ju 

where SJ , u⊥ 
J , and uk 

J are the axonal centerline spline, normal vectors, and tangential 

vectors in the prototype LJ respectively, while Ru⊥ 
and Rz are the rotation ma-J 

trices about the normal vector uJ and z-axis respectively. Since any point can be ⊥ 

Figure 6.4. Global alignment of the artificially created morphology pro-
totype (top left) with the target volume (bottom left); color-labels cor-
respond to the ten pre-determined, context-specific compartments (also 
see Fig. 6.1). The global transformation of the prototype (top right) pro-
vides a good initialization for the entire volume and each compartment 
individually (bottom right: transformed prototype superimposed on the 
target). 
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represented by either Cartesian coordinates or with respect to the reference axonal 

centerline, the distance functions φi, i = 0, ..., N , in the original volume domain can 

be transformed based on the axon reference, and vice versa (Fig. 6.4). 

6.4.2 Local Transformation 

Tlocal can be formulated using a MRF, based on [173]; however, this framework 

requires costly computations due to a large number of parameters. We can reduce 

the number of parameters by using the uniform cubic B-spline FFD. Specifically, let 

Tlocal(x) be the 3D FFD at voxel location x, and C be the set of the grid control 

points. Then, the transformation at x is defined as, X 
Tlocal(x) = η(x, c)dc (6.13) 

c∈C 

where η is the coefficient of control point c at location x with displacement dc . The 

MRF is formulated over FFD, thus the objective function in eq. (6.1) is redefined 

over the set of grid control points C, ( )X XX 
P (T|I, LJ) ∝ exp − U(c) − W (c, b) 

c∈C c∈C b∈NcZ 
(6.14)

U(c) = η̂(x, ci)U(x)dx 
x∈Ω 

W (c, b) = kdc − dbk 

where Nc is the set of neighbors of c in the grid and η̂(x, c) is the influence of voxel 

x to the control point c, 
η(x, c)

η̂(x, c) = R (6.15)
η(y, c)

y∈Ω 

To guarantee diffeomorphism of the transformation, we limit the maximum dis-

placement to less than half of the control point spacing [174,175] and adopt the FFDs 

in [176] to compensate for small deformations. 
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6.5 Experiments 

We validate our method using 45 aCC motorneuron image stacks from Drosophila 

larvae1 , wild-types and mutants, in two different resolutions, and at different devel-

opment instances. We evaluate our results using four metrics: Dice index, Hausdorff 

distance, mean distance, and mutual information. The Dice index is D(s, G) = 

2|s ∩ G|/(|s| + |G|) [177], where s is a segmentation outcome and G denotes the 

ground truth (D ∈ [0, 1]). The Hausdorff distance is the maximum distance from a 

set of points to the nearest point in another set. It measures the proximity of outliers 

between two compartments, which is defined by, 

HD(s, G) = max {hd(s, G), hd(G, s)} 
(6.16) 

hd(s, G) = max min |x − y|
x∈s y∈G 

Unlike the Hausdorff distance, the mean distance is the average distance from a set of 

points to the nearest point in another set. It measures the average proximity between 

two compartments, X X1 1 
MD(s, G) = min |x − y| + min |y − x| (6.17)

2|s| y∈G 2|G| x∈s 
x∈s y∈G 

The last metric is the mutual information, which measures the similarity between 

compartments, MI(G, s) = H(G) + H(s) − H(G, s), as described in Section 3.6. 

For the multi-class problem, we evaluate the segmentation of each compartment 

separately, and calculate the average index over all compartments. In this work, 

our artificially created template contains 10 compartments. The ground truth was 

generated by manual part-wise segmentation. We used the FFD with adaptive spacing 

between 5 and 80 voxels. The largest image stack we used was 1024 × 1024 × 10, so 

the maximum number of control points was 208 × 208 × 5. 

We evaluate the segmentation of: (a) the entire volume, what we denote as binary 

(neuron/background); (b) soma, axon, and dendrite, SAD (three compartments plus 

1The samples were labeled genetically with plasma membrane-targeted eGFP, and imaged with a 
conventional fluorescent microscope with 250 × 250 × 500nm spatial resolution. 
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background), where we merged compartments #1 and #2 for the soma, #5 and #6 

for the dendrite, and the rest for the axon (Fig. 6.1); and (c) all ten-compartments, 

denoted as All. Different segmentation scenarios emphasize the difficulty of this 

problem, as well as the effectiveness of our method. 

To show the significance of describing the volume topology with respect to the 

axonal centerline, we tested our method against two scenarios (Table 6.1). In the first 

scenario we replaced our global transformation with a rigid transformation computed 

by the finite iterative closest point approach [115]. In the second scenario, we removed 

the centerline term Ucl of eq. (6.7) from the energy function. Finally, we also compare 

our method against sequential segmentation and registration, as well as existing SRS 

framework in [25] (Table 6.1). 

Figure 6.5. Results for three aCC neurons. For each volume, the maximal 
projection is displayed along with the multiple compartment (in different 
colors) segmentation. 
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Table 6.1. 
Mean Dice index of our method, existing SRS method [25], and three 
baselines: (i) ‘Trigid ’ replaces Tglobal with a rigid transformation, (ii) ‘No 
Ucl ’ ignores the centerline location term from the objective function, and 
(iii) ‘Sequential’ solves segmentation and registration sequentially. We 
compute the mean Dice for three segmentation tasks: binary, SAD, and 
all ten-compartments (see text). 

Ours Trigid No Ucl Sequential SRS [25] 

Binary 0.6869 0.6657 0.6496 0.5789 0.4623 

SAD 0.5034 0.4881 0.4673 0.4113 0.3025 

All 0.2748 0.2650 0.2515 0.2103 0.1537 

Table 6.2. 
Mutual information of our method and three baselines, as well as the 
competition [25]. We compute the average mutual information for binary, 
SAD, and all ten-compartments segmentations (see text). 

Ours Trigid No Ucl Sequential SRS [25] 

Binary 0.1394 0.1329 0.1265 0.1116 0.0726 

SAD 0.0608 0.0565 0.0548 0.0518 NaN 

All 0.0152 0.0136 0.0134 0.0131 NaN 

Table 6.3. 
Mean Hausdorff distance (in voxels) of our method and three baselines, 
as well as the competition [25]. We compute the mean Hausdorff distance 
for binary, SAD, and all ten-compartments segmentations (see text). 

Ours Trigid No Ucl Sequential SRS [25] 

Binary 41.541 43.107 56.909 53.765 66.776 

SAD 56.475 56.865 58.979 60.973 ∞ 

All 53.809 54.270 54.980 58.005 ∞ 



122 

Table 6.4. 
Average mean distance (in voxels) of our method and three baselines, as 
well as the competition [25]. We compute the average mean distance for 
binary, SAD, and all ten-compartments segmentations (see text). 

Ours Trigid No Ucl Sequential SRS [25] 

Binary 2.492 2.689 4.052 4.192 8.187 

SAD 6.493 6.544 7.448 7.612 ∞ 

All 13.530 13.767 14.668 16.3521 ∞ 

Our results in Tables 6.1 and 6.2 indicate improved segmentation performance, 

which is mainly due to considering structure information in both Tglobal and Tlocal 

(Fig. 6.5). The global transformation exploits the neuronal morphology directly by 

describing the volume with respect to the axonal centerline. While local transforma-

tion integrates the centerline location term into the objective function so that the 

MRF framework takes into account both compartment shapes and volume structure. 

Removing any of these components, as shown in the first two scenarios (‘Trigid ’ and 

‘No Ucl ’ in Table 6.1), reduces accuracy. 

Our method also improves the quality of results in term of distance to ground 

truth as shown in Tables 6.3 and 6.4. The state-of-the-art SRS framework in [25] 

performs poorly on our dataset because of the drastic changes in appearance, the sole 

attribute on which this method relies. It fails to detect some compartments so its 

mutual information score is not-a-number (NaN) and its distance scores are infinity 

for SAD and all ten-compartments segmentation tasks. 

The main source of inaccuracies, shown in figure 6.6, is the numerically ‘am-

biguous’ compartment annotation in the artificially created prototype. Specifically, 

our method does not consider inter-compartment relationships (e.g., adjacency) or 

relative locations within the Drosophila Ventral Nerve Cord (VNC). Some of the 

compartments are defined based on the neuron location in its natural environment, 

and therefore intensity and/or shape are not sufficient for their segmentation: e.g., see 
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Figure 6.6. Average Dice index by compartment of our results. 

compartment #2 in relation to soma, as well as compartments #3–10 along the axon 

whose context is determined by the surroundings in the animal (Figs. 6.1 and 6.4). 

Also, due to spatial resolution limitations, the dendritic compartments #5 and #6 

are difficult to distinguish. 

6.6 Conclusion 

We presented the novel SRS method following the global-to-local approach for 

matching artificially created, multi-compartment neuron morphology templates with 

target volumes. Our method is the first to use totally artificial templates drawn by ex-

perts. This template acts as the standardized representation of neurons allowing the 

integration of information across imaging modalities, and the meaningful comparison 

between developmental stages and sample types. We employed the global transfor-

mation to align the template/prototype with the data, and the local transformation 

based on the MRF realization of FFDs. Both transformations use the axonal center-

line as a reference, which increases accuracy in compartment-wise segmentation. We 

validate our results using aCC motorneurons in the Drosophila embryo. 
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7 SUMMARY 

In this dissertation, we study the morphology analysis at the single-cell resolution in 

vivo. A number of model-and-appearance-based methods are developed to solve four 

fundamental tasks essential for morphology analysis. In Section 7.1, we highlight the 

advantages of our methods and our contributions in computer vision on these four 

tasks, i.e., segmentation, tracing, tracking, and part-wise segmentation with artifi-

cial templates. These tasks solve the morphology quantification problem in different 

scenarios from static images to image sequences, as well as multi-modal microscopy 

images. Then, our fully automated morphology quantification methods are employed 

in neuroscience studies to illustrate the significance of our contributions in biology. 

Section 7.2 discusses three example applications of our methods that assist in ad-

vancing the field of neuroscience: neuron recognition and retrieval, visualization of 

neuronal activity, and protein-protein interaction visualization. The availability of 

these applications provide powerful tools for computationally quantifying the mor-

phological attributes of interest, comprehensively visualizing specific characteristics 

of neurons, and conducting sophisticated statistical analysis. Furthermore, our au-

tomated morphology analysis helps create the standard to remove the bias among 

human operators, and reduce the human intervention time. 

7.1 Research Contributions 

Our contributions are in both computer science and biology disciplines. In com-

puter vision, we develop computational methods for four main tasks in the automated 

morphology analysis: segmentation, tracing, tracking, and part-wise segmentation 

with artificial templates. Our model-and-appearance-based methods solve these tasks 

by incorporating the appearance information with the sophisticated models that en-
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code both local shape and global structure of neurons. These methods have appli-

cations in neuroscience as they enable new techniques for quantifying the neuronal 

morphology in different scenarios and new visualizations for relationships between 

properties of neurons. Furthermore, we also develop the new ‘bottom-up’ analysis 

technique that analyzes the influence of the anatomical aspect of neurons at the 

single-cell resolution. This allows neuroscientists to investigate a nervous system at 

the most fundamental level. 

In Chapter 3, we describe our novel segmentation method, the boundary-based 

neuron reconstruction that extracts neurons as binary images. Most existing neuron 

reconstruction techniques require some kind of segmentation for the initialization 

process. Poor performance in segmentation resulting in failure to detect neurons can 

undermine the whole process. To improve the initialization, our method exploits 

the time-lapse data volumes to improve the segmentation of an individual image 

stack. We integrate the structural information across the sequence through the co-

segmentation principle in the seamless manner. The integration of neuron’s structure 

alleviates out-of-focus effects, and helps resolve ambiguous regions such as bifurcation 

points. 

Chapter 4 presents two novel neurite tracing methods for image stacks with spa-

tially varying noise. Neuron tracing is the centerline-based neuron reconstruction 

that depicts the neuronal topology as a tree data structure, unlike binary image that 

outlines the boundary. The tree representation of neurons is suitable for statistical 

analysis of neuronal morphology [1]. Our two methods are based on the population of 

open-curve snakes, that evolves simultaneously. The evolution of snakes is driven by 

local data features, shape smoothness, and pairwise interaction with nearby snakes. 

The cooperation among snakes helps resolve tracing over regions with local intensity 

ambiguities. 

The neuron reconstruction of the single static image stacks is unable to capture 

the dynamics of nervous systems. Chapter 5 introduces our novel tracking method 

for modeling the morphology dynamics over noisy calcium image sequence, which is 
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sensitive to neuronal activities. Our MRF-based neurite tracking method follows the 

local-to-global approach designed for modeling the locomotive behavior of Drosophila 

larvae. We track neurons using the local features, which are constrained by our 

generalized pictorial structure. The constraint helps handle severe deformations and 

local intensity ambiguities, especially among inactive neurons that appear invisible 

in calcium images. 

Finally, the morphology acquired by confocal laser scanning microscopy is not 

the only attribute that influences the neuron mechanisms. There are other influen-

tial attributes such as neuronal functionality that can be obtained by other imaging 

system like FRET microscopy. Therefore, the analysis must be conducted across 

multi-modality imaging to obtain the whole picture of how nervous systems operate. 

This task can be formulated as the part-wise segmentation problem with artificial 

templates. Chapter 6 presents the novel simultaneous registration and segmentation 

technique for solving this problem in the global-to-local manner. Our method is the 

first to use the generated ‘hypothetical’ prototype encoding the domain knowledge, 

which provides the biologically comprehensible comparison across modalities. The 

global transformation aligns parts of neurons at the morphology level, while the local 

transformation deforms parts towards their boundary. The advantage of incorpo-

rating the structure (i.e., axonal centerline) is that the morphology changes slightly 

across modalities compared to the appearance. 

7.2 Applications 

Our modal-and-appearance-based methods are employed to assist neuroscientists 

on the three following studies: modeling the structure and dynamics of neuronal 

circuits, finding the patterns of the morphology dynamics, and modeling the con-

nection between structural and functional development. Specifically, we apply our 

morphology analysis techniques on three applications essential for the studies men-
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tioned above: neuron recognition and retrieval, visualization of neuronal activity, and 

protein-protein interaction visualization. 

1. Neuron recognition and retrieval. Neuron subtypes can be used for pat-

terning the evolution of nervous systems because they influence the synaptic 

connectivity in motoneuron circuits. This property combining with the fact 

that neuron subtypes can be distinguished based on their morphology [31] makes 

neuron subtypes an important component for modeling the structure and dy-

namics of neuronal circuits. Existing works in [30–33] proposed the novel neu-

ron subtype classifiers based on the variation of the CRF over the morphology 

features, which could be computed using our tracing methods. Our tracing soft-

ware (available at http://neurovision.cs.iupui.edu) is able to extract the 

morphology and compute the global features as well as dendritic arborization 

features, such as branching point locations, branch lengths, principal directions 

of branches, etc. These features encode the branching details that could be used 

to improve the classification of neuron subtypes (Fig. 7.1). 

Figure 7.1. Neuron recognition process. In the first step, the traces of 
neurons are extracted from input image stacks using our method. Second, 
various morphological attributes are quantified through our application. 
Last, supervised learning techniques like hidden CRF [31] could be applied 
on these features to categorize neuron subtypes. 

http://neurovision.cs.iupui.edu
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Figure 7.2. Two mutations of motor neurons. Dendritic morphology of 
motor neuron (left). Bronte mutants show reduced dendritic branching 
and dendrite guidance defects (middle), while Sterope mutants only show 
reduced branching (right). 

In addition, the neuron reconstruction also has a use in the categorization of 

single neuron morphology into either wild types or mutants for the study of 

neuron degeneration. The introduction of mutation usually causes the defect 

and reduction of dendritic branching (Fig. 7.2). Tracking the change of neu-

ronal morphology over the development and comparing between wild types and 

mutants would help identify genes that cause the specific motor neuron degen-

erations. 

Neuron recognition also has an application in morphological retrieval, which is 

an effective way to navigate through the databases of neurons. The method 

in [178] encodes the traces with the novel binary coding. Then, it applies 

the hash function on binary codes to index and efficiently retrieve neurons 

with similar topology [178]. The morphology quantification produced by our 

framework could improve the encoding process by providing the interpretable 

hash codes. 

2. Visualization of neuronal activity. To study the relationship between neu-

ronal activity and morphology dynamics, the new visualization technique is 

required for exploring the structure of neurons and signal strength of calcium 

responses altogether in an intuitive manner. To examine how dendritic defor-

mation relates to neuronal signals, we track proprioceptors, i.e., ddaD and ddaE 
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neurons, in the calcium image sequence during the movement of Drosphila em-

bryo. The recording in Fig. 7.3 shows that the morphology deformations of 

ddaD and ddaE are distinct, as well as the calcium responses. Although the 

changes in calcium responses can be collected easily, understanding how the 

responses related to the phases of the muscle contraction cycle is not trivial. 

The comparison cannot be simply carried out against time because each of the 

samples moves differently and the samples also vary in size. 

Figure 7.3. Neuron activity visualization over a contraction cycle. From 
top to bottom, the calcium image overlaid by two reconstructed neurons 
of ddaD (magenta) and ddaE (green), soma distance, bending parameter, 
and normalized neuronal activity level of the ddaE neuron. Red lines in 
the plots indicate the time instance of the image. Soma distance measures 
the distance between soma (green and cyan spheres). Bending parameter 
measures the fold angle of dendrites. It shows the difference in morphology 
changes of two neurons. The normalized neuronal activity level is plotted 
along with shaded error bar. 
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To overcome this issue, we use the position of the soma in adjacent segments 

as fiduciary landmarks to indicate the phase of the segmental contraction cy-

cle. In a cycle, a muscle pull adjacent neurons closer together followed by the 

relaxation, which put the adjacent neurons back to their original distance. To 

measure the distance, neurons are tracked in GFP image sequence as well. In 

our novel scheme (Fig. 7.3), the neuronal activity and morphology deformation 

are measured by the strength of calcium responses and the bending parameters 

of traces respectively. The segmental contraction cycle is used as the refer-

ence for finding correspondences because the locomotion occurs in cycle with 

the same pattern. Thus, this representation is reproducible and consistent. 

This new visualization technique displays the quantified neuronal activity and 

morphology dynamics to assist neuroscientists in providing statistical analysis 

and detecting patterns of changes between neuronal activity and morphology 

dynamics. 

3. Protein-protein interaction visualization. Another possible application of 

our methods is the single-neuron computational analysis platform for advancing 

molecular and cellular biology of neurons. The aim is to investigate the link 

between the nanometer-scale protein network and the micrometer-scale cellular 

complexity. This task involves processing hundreds of multi-modal microscopic 

images of same-type neurons in Drosophila, namely aCC neurons, to recognize 

the normal development patterns of morphology and observe the network of co-

expressed proteins. Therefore, this platform must facilitate multi-scale analysis. 

The relationship between these two vastly different scales can be quantified 

automatically using our method; however, the new visualization technique is 

required to provides an intuitive navigation for exploring and modeling the 

correlation between neuron growth and protein interactions. 

Our part-wise neuron segmentation method with artificial templates divides 

the neuron volume according to the prototype aCC and provides the mapping 
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Figure 7.4. Visualization of the protein-protein interaction with respect to 
the topology. The magnified region (green box) of the image stack (left) 
is combined with the protein concentration map through the prototype 
aCC to provides the 3D visualization (right). The color encodes the level 
of protein interaction, where purple indicates high concentration and gray 
indicates low level. The wire-frames show the boundary of neurons. 

function. Then, a two-way mapping between protein interactions and an aCC 

volume can be computed using the prototype as the reference. 

Given the registration across multiple modalities, the connection between the 

protein interactions and the neuronal morphology can be quantified and de-

scribed in the same coordinate system. As a result, the comparison becomes 

a trivial task and the connection between phenome and proteome can be es-

tablished. Then, we render these two quantities together (Fig. 7.4). We could 

apply machine learning models to examine causality between every interacting 

pair of co-expressed proteins and local morphology complexity. 

The core idea in this dissertation is to introduce the automation in neuroscience 

field using technological developments and research in computer vision. This idea 

would enable the rapid advance and might revolutionize how research is conducted 

in this field. At the same time, neuroscience problems also give rise to new kinds 

of problems extending the horizon of computer vision research. We believe that our 

work contributes to the invention of the automated morphology analysis framework 

for multiple microscopy imaging modalities, and in consequence takes us one step 

closer to understand how a brain works. 
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APPENDIX A: SWC FORMAT 

Digitally reconstructed neurons used in this work are stored as the tree data structure 

following the SWC format [179], which is non-proprietary. The tree data structure 

is represented by the 3D vector-based reconstruction. Files may begin with headers, 

which start with #. Tree structure parameters are organized into 7 columns, where 

each row represents one trace point. From left to right, these columns are: the unique 

identity value of trace point, the structure type identifier, xyz-coordinates, radius, 

and the identity value of parent point (i.e., the trace point that comes before and 

connects to the current trace point). An example SWC file with 10 points is provided 

below1: 

#Example header text here 

1 2 882 797 19 9 -1 

2 2 882 797 19 9 1 

3 2 875 821 19 10 2 

4 2 852 849 19 21 3 

5 2 842 827 18 12 4 

6 2 835 816 18 7 5 

7 2 827 807 18 7 6 

8 2 814 797 18 4 3 

9 2 803 785 18 4 8 

10 2 785 763 18 4 9 

The first row is the example header text, which is not a part of the neuron trace. 

While, the second row represents the trace point which has the identity = 1, type 

= 2 (i.e., axon), x = 882, y = 797, z = 19, radius = 9, and no parent’s trace point 

1More details in http://diademchallenge.org/faq.html 

http://diademchallenge.org/faq.html
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because its parent identity number = -1. Hence, the second row is the root point of 

the reconstruction. The fourth row has the identity = 3, type = 2 (i.e., axon), x = 

875, y = 821, z = 19, radius = 10, and trace point 2 is its parent. 

The first, second, and last columns are integers, while other columns are real values 

whose units correspond to the reconstructions process, e.g., pixels or micometers. 

The identity number in the first column must be ordered and always increase by one, 

whereas the parent identity number in the last column does not have such restrictions 

but it must be less than its identity number in the first column of the same row. If 

multiple points have the same parent trace point, then that trace point is a bifurcation 

point. 

The value for the second column is the structure type identifier, which encodes the 

neuronal compartments. It depends on the standard that the dataset adopted. For 

DIADEM datasets, 1 = cell body, 2 = axon, and 3 = dendrite. For the standardized 

SWC format2: 0 = undefined, 1 = soma or cell body, 2 = axon, 3 = (basal) dendrite, 

4 = apical dendrite, 5+ = custom. 

2More details in http://www.neuromorpho.org/myfaq.jsp 

http://www.neuromorpho.org/myfaq.jsp
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APPENDIX B: DATASETS 

In this dissertation, we validate our methods using both public and private datasets. 

The public datasets that we used are DIADEM challenge1 , FlyCircuit2 , and sensory 

neurons in the larval Drosophila dataset3 . The private datasets that we used are 

calcium images of ddaD and ddaE neurons, and aCC motorneuron images. 

B.1 DIADEM Challenge Datasets 

DIADEM challenge datasets are available online on the DIADEM challenge’s web-

site. They compose of six datasets: Cerebellar Climbing Fibers, Hippocampal CA3 

Interneuron, Neocortical Layer 1 Axons, Neuromuscular Projection Fibers, Olfactory 

Projection Fibers, and Visual Cortical Layer 6 Neuron. Here we evaluate against 

only two datasets — the Olfactory Projection Fibers (OP) and the Cerebellar Climb-

ing Fibers (CF) — because they are the only two datasets with single neuron per 

image stack. 

OP dataset are images of Olfactory Bulb region of Drosophila captured by 2-

channel confocal microscopy. Green Fluorescent Protein (GFP) was used for labeling 

axons. This dataset contains 9 grayscale image stacks. 

CF dataset contains images of Cerebellar Cortex region of rat taken by transmitted 

light bright-field microscopy. Biotinylated Dextran Amine (Anterograde) was used 

for labeling neuronal arbors. The image slice is stored as an RGB image. The dataset 

contains 3 image stacks. 

We evaluate our methods on only 8 stacks from the Olfactory Projection Fibers 

(OP) dataset, and 2 stacks from the Cerebellar Climbing Fibers (CF) dataset [28]. 

1http://diademchallenge.org/ 
2www.flycircuit.tw 
3http://neurovision.cs.iupui.edu/ 

http://diademchallenge.org/
www.flycircuit.tw
http://neurovision.cs.iupui.edu/
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We left out some image stacks because they either contain more than one neuron or 

they are unstitched. 

B.2 FlyCircuit 

FlyCircuit database is one of the largest collection of neuronal images at single-cell 

resolution. It is a public database for online archiving, cell type inventory, browsing, 

searching, analysis and 3D visualization of individual neurons in the Drosophila brain. 

Sample image stacks were acquired by a Zeiss LSM 510 confocal microscope with a 

40× C-Apochromat water-immersion objective lens (numerical aperture value 1.2, 

working distance 220 µm). The voxel size ratio is 0.32 × 0.32 × 1 µm and data 

volumes are around 1024 × 1024 × 130 voxels in size. Images from FlyCircuit were 

obtained from the NCHC (National Center for High-performance Computing) and 

NTHU (National Tsing Hua University), Hsinchu, Taiwan [136]. The manual recon-

struction was produced by the cooperation of 6 or 7 annotators [29,180]. We validate 

our methods on 10 image stacks4 from this dataset that also appear in the BigNeuron 

project [29]. 

B.3 Sensory Neurons in the Larval Drosophila 

The fruit fly samples were prepared and imaged by Dr. Akira Chiba and his 

team [80]. The sample preparation process can be divided into five steps: 

1. Fly propagation. Adult flies (ppk-GAL4 mCD8::GFP) were kept in vials and 

stored at room temperature. Vials contained fly feed composed of cornstarch, 

agar, molasses, and yeast. 

2. Genetic crosses. 3-4 males and females were placed in mating cages to fa-

cilitate larval collection. Cages were loaded with grape agar plates containing 

two drops of live active yeast on the center of the agar plate. Agar plates were 

4https://www.dropbox.com/sh/c7tttjv0vicgdo5/AADma_T9New3uGcIA6ofEpWZa?dl=0 

https://www.dropbox.com/sh/c7tttjv0vicgdo5/AADma_T9New3uGcIA6ofEpWZa?dl=0
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swapped at appropriate times to ensure correct age of larval development (72 

hours for 1st day 3rd instar). Larvae were checked for typical morphological 

features to ensure correct age. The cages and plates were incubated at 25°C. 

3. Mounting. Larvae were mounted one per slide (75 × 25 × 1 mm) in Halocarbon 

1000N oil to match the refractive index of microscope objective oil-immersion 

fluid. Coverslips (22 × 22 mm) were secured using putty in order to apply 

appropriate pressure without popping the larva and to prevent larva movement 

while imaging. 

4. Anatomy. Larvae for all experiments were 48-72 hours old (2nd-3rd instar). 

The neurons used in imaging were on the distal left side along the larvae’s dorsal 

end, within hemisegments T2, T3, A1, and A2. 

5. Microscopy. Image stacks (.5 micron sections) of Class IV da (dendritic ar-

borization) sensory neurons were detected with an inverse confocal laser scanning 

microscope (Zeiss LSM 780) using a Plan-Neofluar 40x/1.30 Oil M27 objective 

(Zeiss) and the ZEN 2010 software. The system utilized an argon laser line 

(Ar-Laser Multiline 458/488/514 nm; Zeiss) for GFP excitation (488 nm) at 5% 

intensity, beam splitter MBS 488, and a pinhole size of 1 airy unit. 

This dataset contains 11 image stacks of the sensory neurons in the wild-type 

larval Drosophila. It is for the study of dendritic arborization patterns over the four 

instars of development. These volumes are around 1024 × 1024 × 20 in size and their 

background has spatially inhomogeneous signal-to-noise ratios. 

B.4 Calcium Images 

Calcium images allow us to visualize the neuronal activities by measuring calcium 

responses produced by cellular signaling. The dataset contains image sequences dur-

ing the locomotion of the Drosophila larvae. In calcium image acquisition process, 

larvae expressing the genetically encoded calcium sensor GCaMP6.0F in the proprio-

ceptors, i.e., ddaD and ddaE, were observed in three dimensional confocal microscopy 

https://GCaMP6.0F
https://40x/1.30
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volumes over time. This is possible because the neurons are found directly beneath 

the cuticle and epidermis, which are optically transparent. Data analysis of neurons 

in these volumes presents specific challenges that are not present in typical calcium 

time series because the neurons of interest are moving in 4D. 

Our dataset contains a number of sequence volumes with varying number of frames 

from a few hundreds to nearly a thousand frames. The entire sequence contains mul-

tiple neurons (usually around 6-7 neurons), where each frame contains a few neurons. 

The ground truths are manually traced only during the larval locomotion because 

there are only insignificant changes in morphology when neurons are stationary. In 

addition, inactive neurons occupy most of the sequence so stationary periods should 

be ignored to remove the bias from recurring frames/traces. 

B.5 aCC Motorneuron Images 

This dataset contains images of aCC (anterior corner cell) neurons in multiple 

spatial resolutions at multiple developmental stages. High resolution neuron volumes 

are for studying morphological complexity, while lower resolution neuron volumes 

are for detecting protein interaction localization/annotation within the Drosophila 

Ventral Nerve Cord (VNC). 

Protein interaction imaging was acquired using a custom-assembled frequency-

domain upright Fluorescence Lifetime Imaging Microscope (FLIM) system [181]. Im-

ages were taken in a focal plane, where the embryo’s Central Nervous System (CNS) 

possessed maximal neuropil width. FLIM used in this study combines the microm-

eter spatial resolution of fluorescence imaging with nanosecond temporal resolution 

of fluorescence lifetime. We measure the lifetime and concentration of protein inter-

actions utilizing Förster Resonance Energy Transfer (FRET). FRET leads to both 

energy loss from fluorescence donor molecule and corresponding gain by fluorescence 

acceptor molecule during the protein interaction. Then, FLIM measures the protein 
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interaction through the change in the donors fluorescence lifetime within each image 

pixel. More details of image acquisition are described in [164]. 

The ground truths of 45 aCC motorneuron image stacks of larval Drosophila are 

available. They contain both wild-type and knockout samples, in two spatial res-

olutions, and at different development instances. Each neuron volume is manually 

segmented into ten neuronal compartments based on the biological context. 
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