13 research outputs found

    Burn Area Processing to Generate False Alarm Data for Hotspot Prediction Models

    Get PDF
    Developing hotspot prediction models using decision tree algorithms require target classes to which objects in a dataset are classified.  In modeling hotspots occurrence, target classes are the true class representing hotspots occurrence and the false class indicating non hotspots occurrence.  This paper presents the results of satellite image processing in order to determine the radius of a hotspot such that random points are generated outside a hotspot buffer as false alarm data.  Clustering and majority filtering were performed on the Landsat TM image to extract burn scars in the study area i.e. Rokan Hilir, Riau Province Indonesia.  Calculation on burn areas and FIRMS MODIS fire/hotspots in 2006 results the radius of a hotspot 0.90737 km.  Therefore, non-hotspots were randomly generated in areas that are located 0.90737 km away from a hotspot. Three decision tree algorithms i.e. ID3, C4.5 and extended spatial ID3 have been applied on a dataset containing 235 objects that have the true class and 326 objects that have the false class. The results are decision trees for modeling hotspots occurrence which have the accuracy of 49.02% for the ID3 decision tree, 65.24% for the C4.5 decision tree, and 71.66% for the extended spatial ID3 decision tree

    Efficient Large Scale Clustering based on Data Partitioning

    Get PDF
    3rd IEEE International Conference on Data Science and Advanced Analytics (DSAA 2016), Montreal, Canada, 17-19 October, 2016Clustering techniques are very attractive for extracting and identifying patterns in datasets. However, their application to very large spatial datasets presents numerous challenges such as high-dimensionality data, heterogeneity, and high complexity of some algorithms. For instance, some algorithms may have linear complexity but they require the domain knowledge in order to determine their input parameters. Distributed clustering techniques constitute a very good alternative to the big data challenges (e.g.,Volume, Variety, Veracity, and Velocity). Usually these techniques consist of two phases. The first phase generates local models or patterns and the second one tends to aggregate the local results to obtain global models. While the first phase can be executed in parallel on each site and, therefore, efficient, the aggregation phase is complex, time consuming and may produce incorrect and ambiguous global clusters and therefore incorrect models. In this paper we propose a new distributed clustering approach to deal efficiently with both phases; generation of local results and generation of global models by aggregation. For the first phase, our approach is capable of analysing the datasets located in each site using different clustering techniques. The aggregation phase is designed in such a way that the final clusters are compact and accurate while the overall process is efficient in time and memory allocation. For the evaluation, we use two well-known clustering algorithms; K-Means and DBSCAN. One of the key outputs of this distributed clustering technique is that the number of global clusters is dynamic; no need to be fixed in advance. Experimental results show that the approach is scalable and produces high quality results.Science Foundation Irelan

    Characterization of behavioral patterns exploiting description of geographical areas

    Get PDF
    Abstract The enormous amount of recently available mobile phone data is providing unprecedented direct measurements of human behavior. Early recognition and prediction of behavioral patterns are of great importance in many societal applications like urban planning, transportation optimization, and health-care. Understanding the relationships between human behaviors and location's context is an emerging interest for understanding human-environmental dynamics. Growing availability of Web 2.0, i.e. the increasing amount of websites with mainly user created content and social platforms opens up an opportunity to study such location's contexts. This paper investigates relationships existing between human behavior and location context, by analyzing log mobile phone data records. First an advanced approach to categorize areas in a city based on the presence and distribution of categories of human activity (e.g., eating, working, and shopping) found across the areas, is proposed. The proposed classification is then evaluated through its comparison with the patterns of temporal variation of mobile phone activity and applying machine learning techniques to predict a timeline type of communication activity in a given location based on the knowledge of the obtained category vs. land-use type of the locations areas. The proposed classification turns out to 1 arXiv:1510.02995v1 [cs.SI] 11 Oct 2015 be more consistent with the temporal variation of human communication activity, being a better predictor for those compared to the official land use classification

    State of the Art, Trends and Future of Bluetooth Low Energy, Near Field Communication and Visible Light Communication in the Development of Smart Cities

    Get PDF
    The current social impact of new technologies has produced major changes in all areas of society, creating the concept of a smart city supported by an electronic infrastructure, telecommunications and information technology. This paper presents a review of Bluetooth Low Energy (BLE), Near Field Communication (NFC) and Visible Light Communication (VLC) and their use and influence within different areas of the development of the smart city. The document also presents a review of Big Data Solutions for the management of information and the extraction of knowledge in an environment where things are connected by an “Internet of Things” (IoT) network. Lastly, we present how these technologies can be combined together to benefit the development of the smart city

    The role of random forest and Markov chain models in understanding metropolitan urban growth trajectory

    Get PDF
    IntroductionThis study delves into the spatiotemporal dynamics of land use and land cover (LULC) in a Metropolitan area over three decades (1991–2021) and extends its scope to forecast future scenarios from 2031 to 2051. The intent is to aid sustainable land management and urban planning by enabling precise predictions of urban growth, leveraging the integration of remote sensing, GIS data, and observations from Landsat satellites 5, 7, and 8.MethodsThe research employed a machine learning-based approach, specifically utilizing the random forest (RF) algorithm, for LULC classification. Advanced modeling techniques, including CA–Markov chains and the Land Change Modeler (LCM), were harnessed to project future LULC alterations, which facilitated the development of transition probability matrices among different LULC classes.ResultsThe investigation uncovered significant shifts in LULC, influenced largely by socio-economic factors. Notably, vegetation cover decreased substantially from 49.21% to 25.81%, while forest cover saw an increase from 31.89% to 40.05%. Urban areas expanded significantly, from 7.55% to 25.59% of the total area, translating into an increase from 76.31 km2 in 1991 to 258.61 km2 in 2021. Forest area also expanded from 322.25 km2 to 409.21 km2. Projections indicate a further decline in vegetation cover and an increase in built-up areas to 371.44 km2 by 2051, with a decrease in forest cover compared to its 2021 levels. The predictive accuracy of the model was confirmed with an overall accuracy exceeding 90% and a kappa coefficient around 0.88.DiscussionThe findings underscore the model’s reliability and provide a significant theoretical framework that integrates socio-economic development with environmental conservation. The results emphasize the need for a balanced approach towards urban growth in the Islamabad metropolitan area, underlining the essential equilibrium between development and conservation for future urban planning and management. This study underscores the importance of using advanced predictive models in guiding sustainable urban development strategies

    Big Data Computing for Geospatial Applications

    Get PDF
    The convergence of big data and geospatial computing has brought forth challenges and opportunities to Geographic Information Science with regard to geospatial data management, processing, analysis, modeling, and visualization. This book highlights recent advancements in integrating new computing approaches, spatial methods, and data management strategies to tackle geospatial big data challenges and meanwhile demonstrates opportunities for using big data for geospatial applications. Crucial to the advancements highlighted in this book is the integration of computational thinking and spatial thinking and the transformation of abstract ideas and models to concrete data structures and algorithms

    Discovery of Spatiotemporal Event Sequences

    Get PDF
    Finding frequent patterns plays a vital role in many analytics tasks such as finding itemsets, associations, correlations, and sequences. In recent decades, spatiotemporal frequent pattern mining has emerged with the main goal focused on developing data-driven analysis frameworks for understanding underlying spatial and temporal characteristics in massive datasets. In this thesis, we will focus on discovering spatiotemporal event sequences from large-scale region trajectory datasetes with event annotations. Spatiotemporal event sequences are the series of event types whose trajectory-based instances follow each other in spatiotemporal context. We introduce new data models for storing and processing evolving region trajectories, provide a novel framework for modeling spatiotemporal follow relationships, and present novel spatiotemporal event sequence mining algorithms
    corecore