78 research outputs found

    Smoothing and Matching of 3-D Space Curves

    Get PDF
    International audienceWe present a new approach to the problem of matching 3-D curves. The approach has a low algorithmic complexity in the number of models, and can operate in the presence of noise and partial occlusions. Our method builds upon the seminal work of Kishon et al. (1990), where curves are first smoothed using B-splines, with matching based on hashing using curvature and torsion measures. However, we introduce two enhancements: -- We make use of nonuniform B-spline approximations, which permits us to better retain information at highcurvature locations. The spline approximations are controlled (i.e., regularized) by making use of normal vectors to the surface in 3-D on which the curves lie, and by an explicit minimization of a bending energy. These measures allow a more accurate estimation of position, curvature, torsion, and Frtnet frames along the curve. -- The computational complexity of the recognition process is relatively independent of the number of models and is considerably decreased with explicit use of the Frtnet frame for hypotheses generation. As opposed to previous approaches, the method better copes with partial occlusion. Moreover, following a statistical study of the curvature and torsion covariances, we optimize the hash table discretization and discover improved invariants for recognition, different than the torsion measure. Finally, knowledge of invariant uncertainties is used to compute an optimal global transformation using an extended Kalman filter. We present experimental results using synthetic data and also using characteristic curves extracted from 3-D medical images. An earlier version of this article was presented at the 2nd European Conference on Computer Vision in Italy

    Performance characterization of fundamental matrix estimation under image degradation

    Get PDF
    The fundamental matrix represents the epipolar geometry between two images. We describe an algorithm for simultaneously estimating the fundamental matrix and corresponding points automatically from the two images. The performance of this algorithm is then assessed as the images are degraded by JPEG lossy compression. A number of performance measures are proposed and evaluated over image pairs corresponding to different camera motions and scene types

    A Real-time Model for Multiple Human Face Tracking from Low-resolution Surveillance Videos

    Get PDF
    AbstractThis article discusses a novel approach of multiple-face tracking from low-resolution surveillance videos. There has been significant research in the field of face detection using neural-network based training. Neural network based face detection methods are highly accurate, albeit computationally intensive. Hence neural network based approaches are not suitable for real-time applications. The proposed approach approximately detects faces in an image solely using the color information. It detects skin region in an image and finds existence of eye and mouth region in the skin region. If it finds so, it marks the skin region as a face and fits an oriented rectangle to the face. The approach requires low computation and hence can be applied on subsequent frames from a video. The proposed approach is tested on FERET face database images, on different images containing multiple faces captured in unconstrained environments, and on frames extracted from IP surveillance camera

    Projective Invariants from Multiple Images: A Direct and Linear Method

    Get PDF

    Automatic calibration and removal of distortion from scenes of structured environments

    Get PDF
    International audienceMost algorithms in 3D computer vision rely on the pinhole camera model because of its simplicity, whereas video optics, especially low-cost wide-angle lens, generate a lot of nonlinear distortion which can be critical. To find the distortion parameters of a camera, we use the following fundamental property: a camera follows the pinhole model if and only if the projection of every line in space onto the camera is a line. Consequently, if we find the transformation on the video image so that every line in space is viewed in the transformed image as a line, then we know how to remove the distortion from the image. The algorithm consists of first doing edge extraction on a possibly distorted video sequence, then doing polygonal approximation with a large tolerance on these edges to extract possible lines from the sequence, and then finding the parameters of our distortion model that best transform these edges to segments. Results are presented on real video images, compared with distortion calibration obtained by a full camera calibration method which uses a calibration grid

    Assessment of Left Ventricular Function in Cardiac MSCT Imaging by a 4D Hierarchical Surface-Volume Matching Process

    Get PDF
    Multislice computed tomography (MSCT) scanners offer new perspectives for cardiac kinetics evaluation with 4D dynamic sequences of high contrast and spatiotemporal resolutions. A new method is proposed for cardiac motion extraction in multislice CT. Based on a 4D hierarchical surface-volume matching process, it provides the detection of the heart left cavities along the acquired sequence and the estimation of their 3D surface velocity fields. A Markov random field model is defined to find, according to topological descriptors, the best correspondences between a 3D mesh describing the left endocardium at one time and the 3D acquired volume at the following time. The global optimization of the correspondences is realized with a multiresolution process. Results obtained on simulated and real data show the capabilities to extract clinically relevant global and local motion parameters and highlight new perspectives in cardiac computed tomography imaging

    Sensor Integration in a Low Cost Land Mobile Mapping System

    Get PDF
    Mobile mapping is a multidisciplinary technique which requires several dedicated equipment, calibration procedures that must be as rigorous as possible, time synchronization of all acquired data and software for data processing and extraction of additional information. To decrease the cost and complexity of Mobile Mapping Systems (MMS), the use of less expensive sensors and the simplification of procedures for calibration and data acquisition are mandatory features. This article refers to the use of MMS technology, focusing on the main aspects that need to be addressed to guarantee proper data acquisition and describing the way those aspects were handled in a terrestrial MMS developed at the University of Porto. In this case the main aim was to implement a low cost system while maintaining good quality standards of the acquired georeferenced information. The results discussed here show that this goal has been achieved

    Omnidirectional Vision Based Topological Navigation

    Get PDF
    Goedemé T., Van Gool L., ''Omnidirectional vision based topological navigation'', Mobile robots navigation, pp. 172-196, Barrera Alejandra, ed., March 2010, InTech.status: publishe
    corecore