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The projective reconstruction of 3D structures from 2D images is a central problem in computer vision. Existing methods for this
problem are usually nonlinear or indirect. In the previous direct methods, we usually have to solve a system of nonlinear equations.
They are very complicated and hard to implement. The previous linear indirect methods are usually imprecise. This paper presents
a linear and direct method to derive projective structures of 3D points from their 2D images. Algorithms to compute projective
invariants from two images, three images, and four images are given. The method is clear, simple, and easy to implement. For the
first time in the literature, we present explicit linear formulas to solve this problem.Mathematica codes are provided to demonstrate
the correctness of the formulas.

1. Introduction

The recovery of the geometric structure of 3D points from
their 2D projection images is fundamental in computer
vision. It is known that the structure of a 3D point set cannot
be recovered from a single image generally [1]. When two or
more images are available, the 3D point structure of a scene
can be recovered up to an unknown projective transforma-
tion.The projective reconstruction of camera parameters and
3D scene structure from multiple uncalibrated views is also
called projective structure frommotion [1–6].The problem is
well studied after decades of research. However, an ultimate
solution for this problem is pending.

There are mainly three types of methods to solve the
structure from motion problem. The first type of methods
computes the projective invariants of the 3D points. Groups
of researchers studied differently the problem of computing
3D projective invariants of a point set from its 2D images [7–
10]. Previous methods to compute 3D projective invariants of
six 3D points from three uncalibrated images can be found in
[7, 9]. Previous method to compute 3D projective invariants
of seven 3D points from two images can be found in [10].
However, these methods are very complicated. Solutions of
polynomial equations up to the eighth degree are needed.
Wang et al. proposed an explicit method to derive projective

invariants of six 3D points from three uncalibrated images
[11]. All these methods produce three possible solutions for
the reconstruction problem. We need further information to
select the unique solution. In the literature, it is not quite clear
how to determine the unique solution.

There are methods to recover 3D shapes indirectly. Ten-
sors of multiple images of the 3D scene are estimated first.
A second-order tensor usually called the fundamental matrix
captures the geometry between two views of a 3D scene.
A third-order tensor usually called trifocal tensor captures
the geometry among three views of a 3D scene. When
these tensors of multiple views of a scene are known, there
are many algorithms to recover the 3D geometric structure
of the scene from them [12–17]. There are two kinds of
methods to estimate these tensors, nonlinear methods and
linear methods. The problem of the nonlinear methods is
that they produce multiple solutions. For example, the seven-
point nonlinear method to estimate the fundamental matrix
produces up to three solutions. The problem of the linear
methods is that they do not produce the precise solution.
For example, the eight-point linear algorithm to derive the
fundamental matrix generally produces a matrix that does
not satisfy the rank constraint.

There are methods to estimate the structure and motion
through the projective factorization technique [4, 14–16].This
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technique organizes a set of constraints into a single 3𝑚 × 𝑛

matrix 𝑀. When all the projective depths in 𝑀 are known,
it is possible to factor 𝑀 into motion and shape matrices
using the rank constraint. The general method to factor
𝑀 is through singular value decomposition. Since there is
no mathematical proof that the derived motion and shape
matrices by this technique are the real motion and shape
matrices, we do not discuss this type of methods further in
this paper.

In the literature, there is a well-known result demon-
strated by Carlsson and Weinshall that the projective recon-
structionwith 𝑛points and𝑚 images is equivalent to thatwith
𝑚+4points and 𝑛−4 images.Wewould like to emphasize that,
for this theorem to be true, the number of points should be
no less than six, and the number of images should be no less
than two. So the minimal number of point correspondences
for projective reconstruction from two images is seven. The
minimal number of point correspondences for projective
reconstruction from three images is six. The minimal num-
ber of point correspondences for projective reconstruction
from four images is also six. It is generally impossible to
projectively recover a 3D structure from less than six point
correspondences no matter how many images are available.

For the fundamental projective reconstruction problem,
it is generally accepted that we need to consider only the
cases of two views, three views, and four views. While
quadrifocal tensor is the most complicated and controversial
tensor in multiple view geometry, we will demonstrate that
the configuration of six points and four views is the most
natural configuration for deriving 3D projective invariants.

This paper presents linearmethods for computing projec-
tive invariants of 3D points from their 2D images directly. A
3D point structure can be configured by first choosing four
reference points as a basis and then representing the other
points under this basis. The cross ratios of the coordinates
of the other points under this basis are projective invariant.
Systems of bilinear equations are derived then. Traditional
methods to solve nonlinear multivariable equations are very
complicated. The main contribution of this paper is that
we will show that these systems of equations can be easily
transformed into systems of linear equations. We present the
solutions of the systems of linear equations in the explicit
form.

The rest of the paper is organized as follows. First, we
review some of the previous works. In Section 3, we define
the form of the 3D projective invariants and derive the
basic relations of projective invariants among multiple views.
Next, we present a linear method to compute 3D projective
invariants of six points from four images. In Section 5, we
present a linear method to compute 3D projective invariants
of seven points from three images. In Section 6, we present a
linear method to compute 3D projective invariants of eight
points from two images. Final section is Conclusion. We
presentmathematica codes to demonstrate the correctness of
the method in Appendix.

2. Previous Works

We review a few related works in this section.

A camera is a device that transforms properties of a 3D
scene onto an image plane. A pinhole camera model is used
to represent the linear projection from 3D space onto each
image plane. In this paper, 3D world points are represented
by homogeneous 4-vector𝑋

𝑖
= (𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
, 1)
𝑇. The projection

of the 𝑖th 3D point is represented by a homogeneous 3-vector
𝑥
𝑖
= (𝑢
𝑖
, V
𝑖
, 1)
𝑇. The relationships among the 3D points 𝑋

𝑖

and their 2D projections are

𝜆
𝑗

𝑖
𝑥
𝑗

𝑖
= 𝑃
𝑗
𝑋
𝑖
, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚, (1)

where 𝑃𝑗 is the projection matrix (which is 3 × 4 and is
also called the camera matrix) of the 𝑗th camera, 𝜆𝑗

𝑖
is a

nonzero scale factor called projective depth, and 𝑥𝑗
𝑖
is the 𝑗th

projection of the 𝑖th 3D point. Suppose that 𝑚 perspective
images of a set of 𝑛 3D points are given. The structure and
motion problem is to recover the 3D point locations and
camera parameters from the image measurements. When
the cameras are uncalibrated and no additional geometric
information of the point set is available, the reconstruction
is determined only up to an unknown projective transforma-
tion. For any 3D projective transformation matrix𝐻,𝑃𝑗𝐻−1
and𝐻𝑋

𝑖
produce an equally valid reconstruction.

The projective geometry between two views of a 3D scene
is completely captured by the epipolar geometry. Let 𝑥1 and
𝑥
2 be images of a 3D point 𝑋 observed by two cameras with

optical centers𝑂1 and𝑂2. The epipolar constraint says that if
𝑥
1 and 𝑥2 are images of the same 3D point 𝑋, then 𝑥2 must

lie on the epipolar line associated with 𝑥1. That is,

𝑥
1
𝐹𝑥
2
= 0, (2)

where 𝐹 is a 3 × 3matrix called the fundamental matrix.
The fundamental matrix is of rank two and is defined

up to a scalar factor. It encodes all the geometric informa-
tion among two views when no additional information is
available. Numerous algorithms are designed to estimate this
matrix. The most famous algorithms are the linear eight-
point algorithm and the nonlinear seven-point algorithm
[1, 3, 13, 17, 18]. The input to those methods is a set of point
correspondences between the two images. The eight-point
algorithm is simple, fast, and easy to implement.However, the
fundamentalmatrix estimated by the eight-point algorithm is
usually full rank.

Hartley proposed a method to recover the 3D scene
from the fundamental matrix [12]. Two camera matrices 𝑃1
and 𝑃2 with different projection centers uniquely determine
the fundamental matrix 𝐹. On the other hand, the camera
matrices 𝑃1 and 𝑃

2 are not uniquely determined by the
fundamental matrix 𝐹. If the fundamental matrix is factored
into

𝐹 = (

0 −𝑡
3

𝑡
2

𝑡
3

0 −𝑡
1

−𝑡
2

𝑡
1

0

)𝑀, (3)
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then a realization of the fundamental matrix 𝐹 is

𝑃
1
= (𝐼 | 0) ,

𝑃
2
= (𝑀 | 𝑡) ,

(4)

where 𝐼 is 3×3 identitymatrix,𝑀 is a 3×3nonsingularmatrix,
and

𝑡 = (

𝑡
1

𝑡
2

𝑡
3

). (5)

The 3D scene point 𝑋 is then determined by the two
camera matrices, 𝑃1 and 𝑃

2, and the two projections of 𝑋,
𝑥
1 and 𝑥2.
Quan proposed an algorithm to compute projective inva-

riants of six 3D points from three projection images [9].
Given any six 3D points, the author selected five points as
the standard projective basis. The six unknown points in 3D
space are projective equivalent to the following normalized
points:

𝑋
1
=(

1

0

0

0

),

𝑋
2
=(

0

1

0

0

),

𝑋
3
=(

0

0

1

0

),

𝑋
4
=(

0

0

0

1

),

𝑋
5
=(

1

1

1

1

),

𝑋
6
=(

𝑋

𝑌

𝑍

𝑇

).

(6)

We then normalize the known point locations in the three
images accordingly. They are corresponding to

𝑥
𝑗

1
= (
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0

) ,

𝑥
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1
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𝑥
𝑗

4
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1

1

1

) ,

𝑥
𝑗

5
= (

𝑢
𝑗

5

V𝑗
5

𝑤
𝑗

5

),

𝑥
𝑗

6
= (

𝑢
𝑗

6

V𝑗
6

𝑤
𝑗

6

),

𝑗 = 1, 2, 3.

(7)

From these relations, a homogeneous nonlinear equation
of the form

𝑖
𝑗

1
𝑋𝑌 + 𝑖

𝑗

2
𝑋𝑍 + 𝑖

𝑗

3
𝑋𝑇 + 𝑖

𝑗

4
𝑌𝑍 + 𝑖

𝑗

5
𝑌𝑇 + 𝑖

𝑗

6
𝑍𝑇 = 0 (8)

can be derived for the 𝑗th image, where

𝑖
𝑗

1
= 𝑤
𝑗

6
(𝑢
𝑗

5
− V𝑗
5
) ,

𝑖
𝑗
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6
(𝑤
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𝑗

5
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𝑗

5
(V𝑗
6
− 𝑤
𝑗

6
) ,
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𝑗

6
(V𝑗
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− 𝑤
𝑗

5
) ,

𝑖
𝑗

5
= V𝑗
5
(𝑤
1

6
− 𝑢
𝑗

6
) ,

𝑖
𝑗

6
= 𝑤
𝑗

5
(𝑢
𝑗

6
− V𝑗
6
) ,

𝑗 = 1, 2, 3.

(9)

It is also noticed that

𝑖
𝑗

1
+ 𝑖
𝑗

2
+ 𝑖
𝑗

3
+ 𝑖
𝑗

4
+ 𝑖
𝑗

5
+ 𝑖
𝑗

6
= 0, 𝑗 = 1, 2, 3. (10)

Since six 3D points have 18 degrees of freedom and a
3D projective transformation has 15 degrees of freedom,
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six points in 3D space can have 3 independent projective
invariants.There are many forms of projective invariants. It is
noticed that the ratios of 𝑋, 𝑌, 𝑍, and 𝑇 in (6) are projective
invariant. The three independent such invariants can be

𝛼 =
𝑋

𝑇
,

𝛽 =
𝑌

𝑇
,

𝛾 =
𝑍

𝑇
.

(11)

So the goal is to compute these unknown 3D projective
invariants from three of the 2D images.

Quan tried to solve the system of bilinear equations
(8) using the classical resultant technique. After eliminating
the variable 𝑍, he obtained two homogeneous polynomial
equations of the third degree in three variables:

𝐺
1
≡ 𝑒
1

1
𝑋
2
𝑌 + 𝑒
1

2
𝑋𝑌
2
+ 𝑒
1

3
𝑋𝑌𝑇 + 𝑒

1

4
𝑋
2
𝑇 + 𝑒
1

5
𝑋𝑇
2

+ 𝑒
1

6
𝑌
2
𝑇 + 𝑒
1

6
𝑌𝑇
2
= 0,

𝐺
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≡ 𝑒
2

1
𝑋
2
𝑌 + 𝑒
2

2
𝑋𝑌
2
+ 𝑒
2

3
𝑋𝑌𝑇 + 𝑒

2

4
𝑋
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𝑇 + 𝑒
2

5
𝑋𝑇
2

+ 𝑒
2

6
𝑌
2
𝑇 + 𝑒
2

6
𝑌𝑇
2
= 0.

(12)

Eliminating𝑌 again will result in a homogeneous polynomial
equation in𝑋 and𝑇 of degree eight. After that, a third degree
polynomial equation can be derived numerically through
polynomial factorization of the following form:

𝑋𝑇 (𝑋 − 𝑇) (𝑏1𝑋
2
+ 𝑏
2
𝑋𝑇 + 𝑏

3
𝑇
2
)

⋅ (𝑎
1
𝑋
3
+ 𝑎
2
𝑋
2
𝑇 + 𝑎
3
𝑋𝑇
2
+ 𝑎
4
𝑇
3
) = 0.

(13)

Heyden presented a similar method to compute projec-
tive invariants of six 3D points from three views [7].

As we can see from the procedure described above, the
method proposed by Quan is hard to implement by ordinary
users and inconvenient for real applications. In [11], Wang
et al. proposed a method to eliminate variables 𝛾 and 𝛽 in
a single step. A third degree polynomial equation in a single
variable 𝛼 was given explicitly.

There are also methods to compute projective invariants
of 3D points from two view images [10].

In the literature, it is generally noted that the minimal
number of point correspondences needed for projective
reconstruction from two images is seven. The minimal
number of points needed for projective reconstruction from
three images is six. This does not mean that we can obtain a
definite reconstruction from the minimal number of points
only. More points are needed to get a unique solution.

3. Relations of Projective Invariants among
Multiple Views

In this section, we will first define the form of the 3D
projective invariants. We then derive the basic relations of
projective invariants among multiple views.

Suppose that a set of 𝑛 3D points labeled𝑋
𝑖
, 𝑖 = 1, . . . , 𝑛,

is given. The geometric structure of it is unknown. The point
set is projected into view images by 𝑚 unknown camera
matrices 𝑃𝑗, 𝑗 = 1, . . . , 𝑚. The relationships between them
are

𝜆
𝑗

𝑖
𝑥
𝑗

𝑖
= 𝑃
𝑗
𝑋
𝑖
, (14)

where 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑚. The only information
available is the point locations in the images and point
correspondences between the projections

𝑥
𝑗

𝑖
= (

𝑢
𝑗

𝑖

V𝑗
𝑖

1

)

←→ 𝑥
𝑘

𝑖
= (

𝑢
𝑘

𝑖

V𝑘
𝑖

1

) ,

(15)

where 𝑖 = 1, . . . , 𝑛 and 𝑗, 𝑘 = 1, . . . , 𝑚. It is often supposed
that no four points in space are coplanar and no three points
in the images are collinear. Otherwise, the problem is much
simpler. We can select 𝑋

1
, 𝑋
2
, 𝑋
3
, and 𝑋

4
as a basis of the

vector space. Other points can be represented as the linear
combinations of𝑋

1
, 𝑋
2
, 𝑋
3
, and𝑋

4
:

𝑋
𝑖
= 𝛼
1

𝑖
𝑋
1
+ 𝛼
2

𝑖
𝑋
2
+ 𝛼
3

𝑖
𝑋
3
+ 𝛼
4

𝑖
𝑋
4
, (16)

where 𝑖 = 5, . . . , 𝑛. Since points 𝑋
1
, 𝑋
2
, 𝑋
3
, and 𝑋

4
are

linearly independent, this representation is unique. Since
no four points are coplanar, all the coefficients in (16) are
nonzero.

Six 3D points in general position have 18 degrees of
freedom. Seven 3D points in general position have 21 degrees
of freedom. Eight 3D points in general position have 24
degrees of freedom. The 3D projective transformation has 15
degrees of freedom. So six 3D points have three independent
projective invariants, seven 3D points have six independent
projective invariants, and eight 3D points have nine indepen-
dent projective invariants.There aremany forms of projective
invariants. It is known that the cross ratios of coefficients in
(16) are projective invariant. A set of independent invariants
of this form are

𝐼
1
=
𝛼
1

5
𝛼
2

6

𝛼
1

6
𝛼
2

5

,

𝐼
2
=
𝛼
1

5
𝛼
3

6

𝛼
1

6
𝛼
3

5

,

𝐼
3
=
𝛼
1

5
𝛼
4

6

𝛼
1

6
𝛼
4

5

,

𝐼
4
=
𝛼
1

5
𝛼
2

7

𝛼
1

7
𝛼
2

5

,
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𝐼
5
=
𝛼
1

5
𝛼
3

7

𝛼
1

7
𝛼
3

5

,

𝐼
6
=
𝛼
1

5
𝛼
4

7

𝛼
1

7
𝛼
4

5

,

𝐼
7
=
𝛼
1

5
𝛼
2

8

𝛼
1

8
𝛼
2

5

,

𝐼
8
=
𝛼
1

5
𝛼
3

8

𝛼
1

8
𝛼
3

5

,

𝐼
9
=
𝛼
1

5
𝛼
4

8

𝛼
1

8
𝛼
4

5

.

(17)

In the rest of this paper, the symbols 𝐼
𝑘
, 𝑘 = 1, . . . , 9,

will always denote these invariants. Since all the coefficients
in (16) are nonzero, all the invariants in (17) cannot be zero.

The set of projective invariants have the property that
when an invariant equals one, four of the 3D points are
coplanar. This can be proved easily. For example, if 𝐼

1
= 1,

then 𝛼1
5
𝛼
2

6
= 𝛼
1

6
𝛼
2

5
. From (16) we have

𝛼
1

6
𝑋
5
= 𝛼
1

5
𝛼
1

6
𝑋
1
+ 𝛼
2

5
𝛼
1

6
𝑋
2
+ 𝛼
3

5
𝛼
1

6
𝑋
3
+ 𝛼
4

5
𝛼
1

6
𝑋
4
, (18)

𝛼
1

5
𝑋
6
= 𝛼
1

5
𝛼
1

6
𝑋
1
+ 𝛼
1

5
𝛼
2

6
𝑋
2
+ 𝛼
1

5
𝛼
3

6
𝑋
3
+ 𝛼
1

5
𝛼
4

6
𝑋
4
. (19)

Subtracting (18) from (19), we get

(𝛼
3

5
𝛼
1

6
− 𝛼
1

5
𝛼
3

6
)𝑋
3
+ (𝛼
4

5
𝛼
1

6
− 𝛼
1

5
𝛼
4

6
)𝑋
4
− 𝛼
1

6
𝑋
5

+ 𝛼
1

5
𝑋
6
= 0.

(20)

Since 𝛼1
5
and 𝛼

1

6
are not zero, we have a nontrivial linear

combination of points 𝑋
3
, 𝑋
4
, 𝑋
5
, and 𝑋

6
. So they are

coplanar. On the other hand, if points𝑋
3
, 𝑋
4
, 𝑋
5
, and𝑋

6
are

coplanar, there are 𝛽
3
, 𝛽
4
, 𝛽
5
, 𝛽
6
such that

𝛽
3
𝑋
3
+ 𝛽
4
𝑋
4
+ 𝛽
5
𝑋
5
+ 𝛽
6
𝑋
6
= 0. (21)

Substituting𝑋
5
and𝑋

6
using (16) into (21), we obtain

(𝛼
1

5
𝛽
5
+ 𝛼
1

6
𝛽
6
)𝑋
1
+ (𝛼
2

5
𝛽
5
+ 𝛼
2

6
𝛽
6
)𝑋
2

+ (𝛼
3

5
𝛽
5
+ 𝛼
3

6
𝛽
6
+ 𝛽
3
)𝑋
3

+ (𝛼
4

5
𝛽
5
+ 𝛼
4

6
𝛽
6
+ 𝛽
4
)𝑋
4
= 0.

(22)

Since points𝑋
1
, 𝑋
2
, 𝑋
3
, and𝑋

4
are not coplanar, we have

𝛼
1

5
𝛽
5
+ 𝛼
1

6
𝛽
6
= 0,

𝛼
2

5
𝛽
5
+ 𝛼
2

6
𝛽
6
= 0.

(23)

From (23) we obtain

𝐼
1
=
𝛼
1

5
𝛼
2

6

𝛼
1

6
𝛼
2

5

= 1. (24)

Next, wewill derive the basic relations of projective invariants
among multiple views. Multiplying each side of (16) by the
projection matrices 𝑃𝑗, we have

𝜆
𝑗

𝑖
𝑥
𝑗

𝑖
= 𝛼
1

𝑖
𝜆
𝑗

1
𝑥
𝑗

1
+ 𝛼
2

𝑖
𝜆
𝑗

2
𝑥
𝑗

2
+ 𝛼
3

𝑖
𝜆
𝑗

3
𝑥
𝑗

3
+ 𝛼
4

𝑖
𝜆
𝑗

4
𝑥
𝑗

4
, (25)

where 𝑖 = 5, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑚. That is,

𝜆
𝑗

𝑖
𝑢
𝑗

𝑖
= 𝛼
1

𝑖
𝜆
𝑗

1
𝑢
𝑗

1
+ 𝛼
2

𝑖
𝜆
𝑗

2
𝑢
𝑗

2
+ 𝛼
3

𝑖
𝜆
𝑗

3
𝑢
𝑗

3
+ 𝛼
4

𝑖
𝜆
𝑗

4
𝑢
𝑗

4
,

𝜆
𝑗

𝑖
V𝑗
𝑖
= 𝛼
1

𝑖
𝜆
𝑗

1
V𝑗
1
+ 𝛼
2

𝑖
𝜆
𝑗

2
V𝑗
2
+ 𝛼
3

𝑖
𝜆
𝑗

3
V𝑗
3
+ 𝛼
4

𝑖
𝜆
𝑗

4
V𝑗
4
,

𝜆
𝑗

𝑖
= 𝛼
1

𝑖
𝜆
𝑗

1
+ 𝛼
2

𝑖
𝜆
𝑗

2
+ 𝛼
3

𝑖
𝜆
𝑗

3
+ 𝛼
4

𝑖
𝜆
𝑗

4
,

(26)

where 𝑖 = 5, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑚. Applying variable elim-
inations to (26), we get

𝛼
1

𝑖
𝜆
𝑗

1
𝑎
𝑗

𝑖1
+ 𝛼
2

𝑖
𝜆
𝑗

2
𝑎
𝑗

𝑖2
+ 𝛼
3

𝑖
𝜆
𝑗

3
𝑎
𝑗

𝑖3
+ 𝛼
4

𝑖
𝜆
𝑗

4
𝑎
𝑗

𝑖4
= 0,

𝛼
1

𝑖
𝜆
𝑗

1
𝑏
𝑗

𝑖1
+ 𝛼
2

𝑖
𝜆
𝑗

2
𝑏
𝑗

𝑖2
+ 𝛼
3

𝑖
𝜆
𝑗

3
𝑏
𝑗

𝑖3
+ 𝛼
4

𝑖
𝜆
𝑗

4
𝑏
𝑗

𝑖4
= 0,

(27)

where

𝑎
𝑗

𝑖𝑘
= 𝑢
𝑗

𝑘
− 𝑢
𝑗

𝑖
,

𝑏
𝑗

𝑖𝑘
= V𝑗
𝑘
− V𝑗
𝑖
,

𝑖 = 5, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚, 𝑘 = 1, 2, 3, 4.

(28)

Dividing each side of (27) by 𝛼1
𝑖
𝜆
𝑗

1
, we have

𝑎
𝑗

𝑖1
+ 𝑎
𝑗

𝑖2

𝛼
2

𝑖
𝜆
𝑗

2

𝛼
1

𝑖
𝜆
𝑗

1

+ 𝑎
𝑗

𝑖3

𝛼
3

𝑖
𝜆
𝑗

3

𝛼
1

𝑖
𝜆
𝑗

1

+ 𝑎
𝑗

𝑖4

𝛼
4

𝑖
𝜆
𝑗

4

𝛼
1

𝑖
𝜆
𝑗

1

= 0,

𝑏
𝑗

𝑖1
+ 𝑏
𝑗

𝑖2

𝛼
2

𝑖
𝜆
𝑗

2

𝛼
1

𝑖
𝜆
𝑗

1

+ 𝑏
𝑗

𝑖3

𝛼
3

𝑖
𝜆
𝑗

3

𝛼
1

𝑖
𝜆
𝑗

1

+ 𝑏
𝑗

𝑖4

𝛼
4

𝑖
𝜆
𝑗

4

𝛼
1

𝑖
𝜆
𝑗

1

= 0,

𝑖 = 5, 6, 7, 8, 𝑗 = 1, 2, 3, 4.

(29)

Rewriting (29) in another form, we obtain

(
(
(
(
(
(
(
(
(
(
(
(

(

𝑎
𝑖

51
𝑎
𝑖

52
𝑎
𝑖

53
𝑎
𝑖

54

𝑏
𝑖

51
𝑏
𝑖

52
𝑏
𝑖

53
𝑏
𝑖

54

𝑎
𝑖

61
𝑎
𝑖

62
𝐼
1
𝑎
𝑖

63
𝐼
2
𝑎
𝑖

64
𝐼
3

𝑏
𝑖

61
𝑏
𝑖

62
𝐼
1
𝑏
𝑖

63
𝐼
2
𝑏
𝑖

64
𝐼
3

𝑎
𝑖

71
𝑎
𝑖

72
𝐼
4
𝑎
𝑖

73
𝐼
5
𝑎
𝑖

74
𝐼
6

𝑏
𝑖

71
𝑏
𝑖

72
𝐼
4
𝑏
𝑖

73
𝐼
5
𝑏
𝑖

74
𝐼
6

𝑎
𝑖

81
𝑎
𝑖

82
𝐼
7
𝑎
𝑖

83
𝐼
8
𝑎
𝑖

84
𝐼
9

𝑏
𝑖

81
𝑏
𝑖

82
𝐼
7
𝑏
𝑖

83
𝐼
8
𝑏
𝑖

84
𝐼
9

)
)
)
)
)
)
)
)
)
)
)
)

)

(

1

𝑈
𝑖

𝑉
𝑖

𝑊
𝑖

)= 0, (30)
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where

𝑈
𝑖
=
𝛼
2

5
𝜆
𝑖

2

𝛼
1

5
𝜆
𝑖

1

,

𝑉
𝑖
=
𝛼
3

5
𝜆
𝑖

3

𝛼
1

5
𝜆
𝑖

1

,

𝑊
𝑖
=
𝛼
4

5
𝜆
𝑖

4

𝛼
1

5
𝜆
𝑖

1

,

𝑖 = 1, 2, 3, 4.

(31)

Since the system of equations in (30) has a nontrivial solution
(1, 𝑈
𝑖
, 𝑉
𝑖
,𝑊
𝑖
), the determinants of every four rows of the

coefficients matrix in (30) must be rank deficient. We will use
these constraints to derive the 3D projective invariants.

4. Projective Invariants from Four Views

In [9], the author notes that it is possible to compute pro-
jective invariants of six 3D points from five images linearly.
In this section, we will derive formulas to compute the
3D projective invariants of six 3D points from four images
linearly. The result was first presented in [19].

In the case of four images and six points, from (30) we
have the constraints

det(

𝑎
𝑖

51
𝑎
𝑖

52
𝑎
𝑖

53
𝑎
𝑖

54

𝑏
𝑖

51
𝑏
𝑖

52
𝑏
𝑖

53
𝑏
𝑖

54

𝑎
𝑖

61
𝑎
𝑖

62
𝐼
1
𝑎
𝑖

63
𝐼
2
𝑎
𝑖

64
𝐼
3

𝑏
𝑖

61
𝑏
𝑖

62
𝐼
1
𝑏
𝑖

63
𝐼
2
𝑏
𝑖

64
𝐼
3

)= 0, (32)

where 𝑖 = 1, 2, 3, 4. Expanding the determinant in (32), we
obtain a system of bilinear equations in variables 𝐼

1
, 𝐼
2
, and 𝐼

3

of the following form:

(𝑎
𝑖

53
𝑏
𝑖

54
− 𝑎
𝑖

54
𝑏
𝑖

53
) (𝑎
𝑖

61
𝑏
𝑖

62
− 𝑎
𝑖

62
𝑏
𝑖

61
) 𝐼
1

+ (𝑎
𝑖

54
𝑏
𝑖

52
− 𝑎
𝑖

52
𝑏
𝑖

54
) (𝑎
𝑖

61
𝑏
𝑖

63
− 𝑎
𝑖

63
𝑏
𝑖

61
) 𝐼
2

+ (𝑎
𝑖

52
𝑏
𝑖

53
− 𝑎
𝑖

53
𝑏
𝑖

52
) (𝑎
𝑖

61
𝑏
𝑖

64
− 𝑎
𝑖

64
𝑏
𝑖

61
) 𝐼
3

+ (𝑎
𝑖

51
𝑏
𝑖

54
− 𝑎
𝑖

54
𝑏
𝑖

51
) (𝑎
𝑖

62
𝑏
𝑖

63
− 𝑎
𝑖

63
𝑏
𝑖

62
) 𝐼
1
𝐼
2

+ (𝑎
𝑖

53
𝑏
𝑖

51
− 𝑎
𝑖

51
𝑏
𝑖

53
) (𝑎
𝑖

62
𝑏
𝑖

64
− 𝑎
𝑖

64
𝑏
𝑖

62
) 𝐼
1
𝐼
3

+ (𝑎
𝑖

51
𝑏
𝑖

52
− 𝑎
𝑖

52
𝑏
𝑖

51
) (𝑎
𝑖

63
𝑏
𝑖

64
− 𝑎
𝑖

64
𝑏
𝑖

63
) 𝐼
2
𝐼
3
= 0,

(33)

where 𝑖 = 1, 2, 3, 4.
Let 𝑇 denote the coefficients matrix of the system of

equations in (33). It is a 4 × 6 matrix. The first column of
𝑇 corresponds to the coefficients of 𝐼

1
, the second column

of 𝑇 corresponds to the coefficients of 𝐼
2
, and so forth. Let

𝑇
𝑘
denote the 𝑘th column of the matrix 𝑇, 𝑘 = 1, . . . , 6. It is

checked that

𝑇
1
+ 𝑇
2
+ 𝑇
3
+ 𝑇
4
+ 𝑇
5
+ 𝑇
6
= 0. (34)

Although 𝐼
1
= 0 or 𝐼

2
= 0 or 𝐼

3
= 0 is possible solution

of the system of bilinear equations (33), we discard these
solutions since the invariants cannot be zero by definition.

Next, we will derive the solutions of (33) such that 𝐼
𝑘
is

not zero, where 𝑘 = 1, 2, 3. Rewriting (33) in another form,
we have

(𝑇1 𝑇2 + 𝑇4𝐼1 𝑇3 + 𝑇5𝐼1 𝑇6)(

𝐼
1

𝐼
2

𝐼
3

𝐼
2
𝐼
3

)= 0. (35)

From (35), we can obtain
det (𝑇1 𝑇2 + 𝑇4𝐼1 𝑇3 + 𝑇5𝐼1 𝑇6) = 0. (36)

This is a second-degree polynomial equation in variable 𝐼
1
.

Applying constraints (34) to (36), we obtain
det (𝑇1 (𝑇4 + 𝑇5) (𝐼1 − 1) 𝑇

3
+ 𝑇
5
𝐼
1
𝑇
6) = 0. (37)

The solutions of (37) are 𝐼
1
= 1 and

𝐼
1
= −

det (𝑇1 𝑇4 + 𝑇5 𝑇3 𝑇6)
det (𝑇1 𝑇4 𝑇5 𝑇6)

. (38)

The solution 𝐼
1
= 1 corresponds to the condition that four

of the 3D points are coplanar. So it is discarded if we assume
that no four of the 3D points are coplanar. Similarly, we can
obtain the solutions of 𝐼

2
and 𝐼
3
linearly. The solution of 𝐼

2
is

𝐼
2
= −

det (𝑇4 + 𝑇6 𝑇2 𝑇3 𝑇5)
det (𝑇4 𝑇2 𝑇6 𝑇5)

. (39)

The solution of 𝐼
3
is

𝐼
3
= −

det (𝑇5 + 𝑇6 𝑇2 𝑇3 𝑇4)
det (𝑇5 𝑇6 𝑇3 𝑇4)

. (40)

As we can see from the previous derivation, four images
of six 3D points are the simplest configuration to compute
3D projective invariants. On the contrary, it is very hard to
estimate the quadrifocal tensor of four images. It requires the
solution of a system of 81 multilinear equations.

5. Projective Invariants from Three Views

In this section, we will derive formulas to compute the 3D
projective invariants of seven 3D points from three images
linearly. To our knowledge, there is no similar method
reported. There are nonlinear methods to compute the 3D
projective invariants of six 3D points from three images [7, 9].

In the case of three images and seven points, from (30) we
have

(
(
(
(

(

𝑎
𝑖

51
𝑎
𝑖

52
𝑎
𝑖

53
𝑎
𝑖

54

𝑏
𝑖

51
𝑏
𝑖

52
𝑏
𝑖

53
𝑏
𝑖

54

𝑎
𝑖

61
𝑎
𝑖

62
𝐼
1
𝑎
𝑖

63
𝐼
2
𝑎
𝑖

64
𝐼
3

𝑏
𝑖

61
𝑏
𝑖

62
𝐼
1
𝑏
𝑖

63
𝐼
2
𝑏
𝑖

64
𝐼
3

𝑎
𝑖

71
𝑎
𝑖

72
𝐼
4
𝑎
𝑖

73
𝐼
5
𝑎
𝑖

74
𝐼
6

𝑏
𝑖

71
𝑏
𝑖

72
𝐼
4
𝑏
𝑖

73
𝐼
5
𝑏
𝑖

74
𝐼
6

)
)
)
)

)

(

1

𝑈
𝑖

𝑉
𝑖

𝑊
𝑖

)= 0, (41)

where 𝑖 = 1, 2, 3.
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Since the system of equations in (41) has a nontrivial
solution (1, 𝑈

𝑖
, 𝑉
𝑖
,𝑊
𝑖
), the determinant of the coefficients

matrices of every four equations in (41) must be zero.
From these constraints, we obtain the following system of
equations:

(𝑎
𝑖

54
𝑏
𝑖

53
− 𝑎
𝑖

53
𝑏
𝑖

54
) 𝑎
𝑖

62
𝑎
𝑖

71
𝐼
1
+ (𝑎
𝑖

52
𝑏
𝑖

54
− 𝑎
𝑖

54
𝑏
𝑖

52
) 𝑎
𝑖

63
𝑎
𝑖

71
𝐼
2

+ (𝑎
𝑖

53
𝑏
𝑖

52
− 𝑎
𝑖

52
𝑏
𝑖

53
) 𝑎
𝑖

64
𝑎
𝑖

71
𝐼
3

+ (𝑎
𝑖

53
𝑏
𝑖

54
− 𝑎
𝑖

54
𝑏
𝑖

53
) 𝑎
𝑖

61
𝑎
𝑖

72
𝐼
4

+ (𝑎
𝑖

54
𝑏
𝑖

52
− 𝑎
𝑖

52
𝑏
𝑖

54
) 𝑎
𝑖

61
𝑎
𝑖

73
𝐼
5

+ (𝑎
𝑖

52
𝑏
𝑖

53
− 𝑎
𝑖

53
𝑏
𝑖

52
) 𝑎
𝑖

61
𝑎
𝑖

74
𝐼
6

+ (𝑎
𝑖

51
𝑏
𝑖

54
− 𝑎
𝑖

54
𝑏
𝑖

51
) 𝑎
𝑖

62
𝑎
𝑖

73
𝐼
1
𝐼
5

+ (𝑎
𝑖

53
𝑏
𝑖

51
− 𝑎
𝑖

51
𝑏
𝑖

53
) 𝑎
𝑖

62
𝑎
𝑖

74
𝐼
1
𝐼
6

+ (𝑎
𝑖

54
𝑏
𝑖

51
− 𝑎
𝑖

51
𝑏
𝑖

54
) 𝑎
𝑖

63
𝑎
𝑖

72
𝐼
2
𝐼
4

+ (𝑎
𝑖

51
𝑏
𝑖

52
− 𝑎
𝑖

52
𝑏
𝑖

51
) 𝑎
𝑖

63
𝑎
𝑖

74
𝐼
2
𝐼
6

+ (𝑎
𝑖

51
𝑏
𝑖

53
− 𝑎
𝑖

53
𝑏
𝑖

51
) 𝑎
𝑖

64
𝑎
𝑖

72
𝐼
3
𝐼
4

+ (𝑎
𝑖

52
𝑏
𝑖

51
− 𝑎
𝑖

51
𝑏
𝑖

52
) 𝑎
𝑖

64
𝑎
𝑖

73
𝐼
3
𝐼
5
= 0,

(𝑎
𝑖

54
𝑏
𝑖

53
− 𝑎
𝑖

53
𝑏
𝑖

54
) 𝑎
𝑖

62
𝑏
𝑖

71
𝐼
1
+ (𝑎
𝑖

52
𝑏
𝑖

54
− 𝑎
𝑖

54
𝑏
𝑖

52
) 𝑎
𝑖

63
𝑏
𝑖

71
𝐼
2

+ (𝑎
𝑖

53
𝑏
𝑖

52
− 𝑎
𝑖

52
𝑏
𝑖

53
) 𝑎
𝑖

64
𝑏
𝑖

71
𝐼
3

+ (𝑎
𝑖

53
𝑏
𝑖

54
− 𝑎
𝑖

54
𝑏
𝑖

53
) 𝑎
𝑖

61
𝑏
𝑖

72
𝐼
4

+ (𝑎
𝑖

54
𝑏
𝑖

52
− 𝑎
𝑖

52
𝑏
𝑖

54
) 𝑎
𝑖

61
𝑏
𝑖

73
𝐼
5

+ (𝑎
𝑖

52
𝑏
𝑖

53
− 𝑎
𝑖

53
𝑏
𝑖

52
) 𝑎
𝑖

61
𝑏
𝑖

74
𝐼
6

+ (𝑎
𝑖

51
𝑏
𝑖

54
− 𝑎
𝑖

54
𝑏
𝑖

51
) 𝑎
𝑖

62
𝑏
𝑖

73
𝐼
1
𝐼
5

+ (𝑎
𝑖

53
𝑏
𝑖

51
− 𝑎
𝑖

51
𝑏
𝑖

53
) 𝑎
𝑖

62
𝑏
𝑖

74
𝐼
1
𝐼
6

+ (𝑎
𝑖

54
𝑏
𝑖

51
− 𝑎
𝑖

51
𝑏
𝑖

54
) 𝑎
𝑖

63
𝑏
𝑖

72
𝐼
2
𝐼
4

+ (𝑎
𝑖

51
𝑏
𝑖

52
− 𝑎
𝑖

52
𝑏
𝑖

51
) 𝑎
𝑖

63
𝑏
𝑖

74
𝐼
2
𝐼
6

+ (𝑎
𝑖

51
𝑏
𝑖

53
− 𝑎
𝑖

53
𝑏
𝑖

51
) 𝑎
𝑖

64
𝑏
𝑖

72
𝐼
3
𝐼
4

+ (𝑎
𝑖

52
𝑏
𝑖

51
− 𝑎
𝑖

51
𝑏
𝑖

52
) 𝑎
𝑖

64
𝑏
𝑖

73
𝐼
3
𝐼
5
= 0,

(𝑎
𝑖

54
𝑏
𝑖

53
− 𝑎
𝑖

53
𝑏
𝑖

54
) 𝑏
𝑖

62
𝑎
𝑖

71
𝐼
1
+ (𝑎
𝑖

52
𝑏
𝑖

54
− 𝑎
𝑖

54
𝑏
𝑖

52
) 𝑏
𝑖

63
𝑎
𝑖

71
𝐼
2

+ (𝑎
𝑖

53
𝑏
𝑖

52
− 𝑎
𝑖

52
𝑏
𝑖

53
) 𝑏
𝑖

64
𝑎
𝑖

71
𝐼
3

+ (𝑎
𝑖

53
𝑏
𝑖

54
− 𝑎
𝑖

54
𝑏
𝑖

53
) 𝑏
𝑖

61
𝑎
𝑖

72
𝐼
4

+ (𝑎
𝑖

54
𝑏
𝑖

52
− 𝑎
𝑖

52
𝑏
𝑖

54
) 𝑏
𝑖

61
𝑎
𝑖

73
𝐼
5

+ (𝑎
𝑖

52
𝑏
𝑖

53
− 𝑎
𝑖

53
𝑏
𝑖

52
) 𝑏
𝑖

61
𝑎
𝑖

74
𝐼
6

+ (𝑎
𝑖

51
𝑏
𝑖

54
− 𝑎
𝑖

54
𝑏
𝑖

51
) 𝑏
𝑖

62
𝑎
𝑖

73
𝐼
1
𝐼
5

+ (𝑎
𝑖

53
𝑏
𝑖

51
− 𝑎
𝑖

51
𝑏
𝑖

53
) 𝑏
𝑖

62
𝑎
𝑖

74
𝐼
1
𝐼
6

+ (𝑎
𝑖

54
𝑏
𝑖

51
− 𝑎
𝑖

51
𝑏
𝑖

54
) 𝑏
𝑖

63
𝑎
𝑖

72
𝐼
2
𝐼
4

+ (𝑎
𝑖

51
𝑏
𝑖

52
− 𝑎
𝑖

52
𝑏
𝑖

51
) 𝑏
𝑖

63
𝑎
𝑖

74
𝐼
2
𝐼
6

+ (𝑎
𝑖

51
𝑏
𝑖

53
− 𝑎
𝑖

53
𝑏
𝑖

51
) 𝑏
𝑖

64
𝑎
𝑖

72
𝐼
3
𝐼
4

+ (𝑎
𝑖

52
𝑏
𝑖

51
− 𝑎
𝑖

51
𝑏
𝑖

52
) 𝑏
𝑖

64
𝑎
𝑖

73
𝐼
3
𝐼
5
= 0,

(𝑎
𝑖

54
𝑏
𝑖

53
− 𝑎
𝑖

53
𝑏
𝑖

54
) 𝑏
𝑖

62
𝑏
𝑖

71
𝐼
1
+ (𝑎
𝑖

52
𝑏
𝑖

54
− 𝑎
𝑖

54
𝑏
𝑖

52
) 𝑏
𝑖

63
𝑏
𝑖

71
𝐼
2

+ (𝑎
𝑖

53
𝑏
𝑖

52
− 𝑎
𝑖

52
𝑏
𝑖

53
) 𝑏
𝑖

64
𝑏
𝑖

71
𝐼
3

+ (𝑎
𝑖

53
𝑏
𝑖

54
− 𝑎
𝑖

54
𝑏
𝑖

53
) 𝑏
𝑖

61
𝑏
𝑖

72
𝐼
4

+ (𝑎
𝑖

54
𝑏
𝑖

52
− 𝑎
𝑖

52
𝑏
𝑖

54
) 𝑏
𝑖

61
𝑏
𝑖

73
𝐼
5

+ (𝑎
𝑖

52
𝑏
𝑖

53
− 𝑎
𝑖

53
𝑏
𝑖

52
) 𝑏
𝑖

61
𝑏
𝑖

74
𝐼
6

+ (𝑎
𝑖

51
𝑏
𝑖

54
− 𝑎
𝑖

54
𝑏
𝑖

51
) 𝑏
𝑖

62
𝑏
𝑖

73
𝐼
1
𝐼
5

+ (𝑎
𝑖

53
𝑏
𝑖

51
− 𝑎
𝑖

51
𝑏
𝑖

53
) 𝑏
𝑖

62
𝑏
𝑖

74
𝐼
1
𝐼
6

+ (𝑎
𝑖

54
𝑏
𝑖

51
− 𝑎
𝑖

51
𝑏
𝑖

54
) 𝑏
𝑖

63
𝑏
𝑖

72
𝐼
2
𝐼
4

+ (𝑎
𝑖

51
𝑏
𝑖

52
− 𝑎
𝑖

52
𝑏
𝑖

51
) 𝑏
𝑖

63
𝑏
𝑖

74
𝐼
2
𝐼
6

+ (𝑎
𝑖

51
𝑏
𝑖

53
− 𝑎
𝑖

53
𝑏
𝑖

51
) 𝑏
𝑖

64
𝑏
𝑖

72
𝐼
3
𝐼
4

+ (𝑎
𝑖

52
𝑏
𝑖

51
− 𝑎
𝑖

51
𝑏
𝑖

52
) 𝑏
𝑖

64
𝑏
𝑖

73
𝐼
3
𝐼
5
= 0,

(42)

where 𝑖 = 1, 2, 3.
The total number of equations in (42) is 12.We choose the

first ten equations as the system of equations to compute the
3D projective invariants. Let 𝐶 denote the coefficients matrix
of this system of equations. It is a 10 × 12 matrix. The first
column of 𝐶 corresponds to the coefficients of 𝐼

1
, the second

columnof𝐶 corresponds to the coefficients of 𝐼
2
, and so forth.

Let 𝐶
𝑘
denote the 𝑘th column of the matrix 𝐶, 𝑘 = 1, . . . , 12.

Let Γ
𝑖,𝑗,𝑘,𝑙

denote the submatrix of the matrix 𝐶 with its 𝑖th,
𝑗th, 𝑘th, and 𝑙th columns deleted. It is checked that

12

∑

𝑘=1

𝐶
𝑘
= 0. (43)

Let us denote

𝐴 = (𝐼1 𝐼2 𝐼3 𝐼4 𝐼2𝐼4 𝐼2𝐼6 𝐼3𝐼4 𝐼3𝐼5)
𝑇
. (44)

Rewriting the system of (42) in the concise form, we have

(𝐶5 + 𝐶7𝐼1 𝐶6 + 𝐶8𝐼1 Γ5,6,7,8)(

𝐼
5

𝐼
6

𝐴

) = 0. (45)
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Since the system of equations in (45) has nontrivial solutions,
the determinant of the coefficients matrix must be zero. That
is,

det (𝐶5 + 𝐶7𝐼1 𝐶6 + 𝐶8𝐼1 Γ5,6,7,8) = 0. (46)

Applying the constraint (43) to (46), we have

det ((𝐶7 + 𝐶8) (𝐼1 − 1) 𝐶
6
+ 𝐶
8
𝐼
1
Γ
5,6,7,8) = 0. (47)

The solution 𝐼
1
= 1 of (47) corresponds to the condition that

four of the 3D points are coplanar, so we simply discard it.
The unique solution of 𝐼

1
is

𝐼
1
=
det (𝐶6 𝐶7 + 𝐶8 Γ5,6,7,8)

det (𝐶7 𝐶8 Γ5,6,7,8)
. (48)

Similarly, we can have the solutions of 𝐼
2
, 𝐼
3
, 𝐼
4
, 𝐼
5
, and 𝐼

6
.The

solution of 𝐼
2
is

𝐼
2
=
det (𝐶6 𝐶9 + 𝐶10 Γ4,6,9,10)

det (𝐶9 𝐶10 Γ4,6,9,10)
. (49)

The solution of 𝐼
3
is

𝐼
3
=
det (𝐶5 𝐶11 + 𝐶12 Γ4,5,11,12)

det (𝐶11 𝐶12 Γ4,5,11,12)
. (50)

The solution of 𝐼
4
is

𝐼
4
=
det (𝐶3 𝐶9 + 𝐶11 Γ2,3,9,11)

det (𝐶9 𝐶11 Γ2,3,9,11)
. (51)

The solution of 𝐼
5
is

𝐼
5
=
det (𝐶3 𝐶7 + 𝐶12 Γ1,3,7,12)

det (𝐶7 𝐶12 Γ1,3,7,12)
. (52)

The solution of 𝐼
6
is

𝐼
6
=
det (𝐶2 𝐶8 + 𝐶10 Γ1,2,8,10)

det (𝐶8 𝐶10 Γ1,2,8,10)
. (53)

6. Projective Invariants from Two Views

In this section, we will derive explicit formulas to compute
the 3D projective invariants of eight 3D points from their two
images linearly.

Since the system of equations in (30) has a nontrivial
solution (1, 𝑈

𝑖
, 𝑉
𝑖
,𝑊
𝑖
), the determinant of the coefficients

matrices of every four equations in (30) must be zero.

From these constraints, we obtain the following system of
equations:

− 𝑎
𝑖

54
𝑎
𝑖

62
𝑎
𝑖

73
𝑎
𝑖

81
𝐼
1
𝐼
5
+ 𝑎
𝑖

53
𝑎
𝑖

62
𝑎
𝑖

74
𝑎
𝑖

81
𝐼
1
𝐼
6

+ 𝑎
𝑖

54
𝑎
𝑖

62
𝑎
𝑖

71
𝑎
𝑖

83
𝐼
1
𝐼
8
− 𝑎
𝑖

53
𝑎
𝑖

62
𝑎
𝑖

71
𝑎
𝑖

84
𝐼
1
𝐼
9

+ 𝑎
𝑖

54
𝑎
𝑖

63
𝑎
𝑖

72
𝑎
𝑖

81
𝐼
2
𝐼
4
− 𝑎
𝑖

52
𝑎
𝑖

63
𝑎
𝑖

74
𝑎
𝑖

81
𝐼
2
𝐼
6

− 𝑎
𝑖

54
𝑎
𝑖

63
𝑎
𝑖

71
𝑎
𝑖

82
𝐼
2
𝐼
7
+ 𝑎
𝑖

52
𝑎
𝑖

63
𝑎
𝑖

71
𝑎
𝑖

84
𝐼
2
𝐼
9

− 𝑎
𝑖

53
𝑎
𝑖

64
𝑎
𝑖

72
𝑎
𝑖

81
𝐼
3
𝐼
4
+ 𝑎
𝑖

52
𝑎
𝑖

64
𝑎
𝑖

73
𝑎
𝑖

81
𝐼
3
𝐼
5

+ 𝑎
𝑖

53
𝑎
𝑖

64
𝑎
𝑖

71
𝑎
𝑖

82
𝐼
3
𝐼
7
− 𝑎
𝑖

52
𝑎
𝑖

64
𝑎
𝑖

71
𝑎
𝑖

83
𝐼
3
𝐼
8

− 𝑎
𝑖

54
𝑎
𝑖

61
𝑎
𝑖

72
𝑎
𝑖

83
𝐼
4
𝐼
8
+ 𝑎
𝑖

53
𝑎
𝑖

61
𝑎
𝑖

72
𝑎
𝑖

84
𝐼
4
𝐼
9

+ 𝑎
𝑖

54
𝑎
𝑖

61
𝑎
𝑖

73
𝑎
𝑖

82
𝐼
5
𝐼
7
− 𝑎
𝑖

52
𝑎
𝑖

61
𝑎
𝑖

73
𝑎
𝑖

84
𝐼
5
𝐼
9

− 𝑎
𝑖

53
𝑎
𝑖

61
𝑎
𝑖

74
𝑎
𝑖

82
𝐼
6
𝐼
7
+ 𝑎
𝑖

52
𝑎
𝑖

61
𝑎
𝑖

74
𝑎
𝑖

83
𝐼
6
𝐼
8

+ 𝑎
𝑖

51
𝑎
𝑖

62
𝑎
𝑖

73
𝑎
𝑖

84
𝐼
1
𝐼
5
𝐼
9
− 𝑎
𝑖

51
𝑎
𝑖

62
𝑎
𝑖

74
𝑎
𝑖

83
𝐼
1
𝐼
6
𝐼
8

− 𝑎
𝑖

51
𝑎
𝑖

63
𝑎
𝑖

72
𝑎
𝑖

84
𝐼
2
𝐼
4
𝐼
9
+ 𝑎
𝑖

51
𝑎
𝑖

63
𝑎
𝑖

74
𝑎
𝑖

82
𝐼
2
𝐼
6
𝐼
7

+ 𝑎
𝑖

51
𝑎
𝑖

64
𝑎
𝑖

72
𝑎
𝑖

83
𝐼
3
𝐼
4
𝐼
8
− 𝑎
𝑖

51
𝑎
𝑖

64
𝑎
𝑖

73
𝑎
𝑖

82
𝐼
3
𝐼
5
𝐼
7
= 0,

𝑖 = 1, 2,

− 𝑎
𝑖

54
𝑎
𝑖

62
𝑎
𝑖

73
𝑏
𝑖

81
𝐼
1
𝐼
5
+ 𝑎
𝑖

53
𝑎
𝑖

62
𝑎
𝑖

74
𝑏
𝑖

81
𝐼
1
𝐼
6

+ 𝑎
𝑖

54
𝑎
𝑖

62
𝑎
𝑖

71
𝑏
𝑖

83
𝐼
1
𝐼
8
− 𝑎
𝑖

53
𝑎
𝑖

62
𝑎
𝑖

71
𝑏
𝑖

84
𝐼
1
𝐼
9

+ 𝑎
𝑖

54
𝑎
𝑖

63
𝑎
𝑖

72
𝑏
𝑖

81
𝐼
2
𝐼
4
− 𝑎
𝑖

52
𝑎
𝑖

63
𝑎
𝑖

74
𝑏
𝑖

81
𝐼
2
𝐼
6

− 𝑎
𝑖

54
𝑎
𝑖

63
𝑎
𝑖

71
𝑏
𝑖

82
𝐼
2
𝐼
7
+ 𝑎
𝑖

52
𝑎
𝑖

63
𝑎
𝑖

71
𝑏
𝑖

84
𝐼
2
𝐼
9

− 𝑎
𝑖

53
𝑎
𝑖

64
𝑎
𝑖

72
𝑏
𝑖

81
𝐼
3
𝐼
4
+ 𝑎
𝑖

52
𝑎
𝑖

64
𝑎
𝑖

73
𝑏
𝑖

81
𝐼
3
𝐼
5

+ 𝑎
𝑖

53
𝑎
𝑖

64
𝑎
𝑖

71
𝑏
𝑖

82
𝐼
3
𝐼
7
− 𝑎
𝑖

52
𝑎
𝑖

64
𝑎
𝑖

71
𝑏
𝑖

83
𝐼
3
𝐼
8

− 𝑎
𝑖

54
𝑎
𝑖

61
𝑎
𝑖

72
𝑏
𝑖

83
𝐼
4
𝐼
8
+ 𝑎
𝑖

53
𝑎
𝑖

61
𝑎
𝑖

72
𝑏
𝑖

84
𝐼
4
𝐼
9

+ 𝑎
𝑖

54
𝑎
𝑖

61
𝑎
𝑖

73
𝑏
𝑖

82
𝐼
5
𝐼
7
− 𝑎
𝑖

52
𝑎
𝑖

61
𝑎
𝑖

73
𝑏
𝑖

84
𝐼
5
𝐼
9

− 𝑎
𝑖

53
𝑎
𝑖

61
𝑎
𝑖

74
𝑎
𝑖

82
𝐼
6
𝐼
7
+ 𝑎
𝑖

52
𝑎
𝑖

61
𝑎
𝑖

74
𝑏
𝑖

83
𝐼
6
𝐼
8

+ 𝑎
𝑖

51
𝑎
𝑖

62
𝑎
𝑖

73
𝑏
𝑖

84
𝐼
1
𝐼
5
𝐼
9
− 𝑎
𝑖

51
𝑎
𝑖

62
𝑎
𝑖

74
𝑏
𝑖

83
𝐼
1
𝐼
6
𝐼
8

− 𝑎
𝑖

51
𝑎
𝑖

63
𝑎
𝑖

72
𝑏
𝑖

84
𝐼
2
𝐼
4
𝐼
9
+ 𝑎
𝑖

51
𝑎
𝑖

63
𝑎
𝑖

74
𝑏
𝑖

82
𝐼
2
𝐼
6
𝐼
7

+ 𝑎
𝑖

51
𝑎
𝑖

64
𝑎
𝑖

72
𝑏
𝑖

83
𝐼
3
𝐼
4
𝐼
8
− 𝑎
𝑖

51
𝑎
𝑖

64
𝑎
𝑖

73
𝑏
𝑖

82
𝐼
3
𝐼
5
𝐼
7
= 0,

𝑖 = 1, 2,

− 𝑎
𝑖

54
𝑎
𝑖

62
𝑏
𝑖

73
𝑎
𝑖

81
𝐼
1
𝐼
5
+ 𝑎
𝑖

53
𝑎
𝑖

62
𝑏
𝑖

74
𝑎
𝑖

81
𝐼
1
𝐼
6

+ 𝑎
𝑖

54
𝑎
𝑖

62
𝑏
𝑖

71
𝑎
𝑖

83
𝐼
1
𝐼
8
− 𝑎
𝑖

53
𝑎
𝑖

62
𝑏
𝑖

71
𝑎
𝑖

84
𝐼
1
𝐼
9

+ 𝑎
𝑖

54
𝑎
𝑖

63
𝑏
𝑖

72
𝑎
𝑖

81
𝐼
2
𝐼
4
− 𝑎
𝑖

52
𝑎
𝑖

63
𝑏
𝑖

74
𝑎
𝑖

81
𝐼
2
𝐼
6

− 𝑎
𝑖

54
𝑎
𝑖

63
𝑏
𝑖

71
𝑎
𝑖

82
𝐼
2
𝐼
7
+ 𝑎
𝑖

52
𝑎
𝑖

63
𝑏
𝑖

71
𝑎
𝑖

84
𝐼
2
𝐼
9
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− 𝑎
𝑖

53
𝑎
𝑖

64
𝑏
𝑖

72
𝑎
𝑖

81
𝐼
3
𝐼
4
+ 𝑎
𝑖

52
𝑎
𝑖

64
𝑏
𝑖

73
𝑎
𝑖

81
𝐼
3
𝐼
5

+ 𝑎
𝑖

53
𝑎
𝑖

64
𝑏
𝑖

71
𝑎
𝑖

82
𝐼
3
𝐼
7
− 𝑎
𝑖

52
𝑎
𝑖

64
𝑏
𝑖

71
𝑎
𝑖

83
𝐼
3
𝐼
8

− 𝑎
𝑖
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(54)

Let 𝑆 denote the coefficients matrix of the above system
of equations. It is a 22 × 24 matrix. The first column of 𝑆
corresponds to the coefficients of 𝐼

1
𝐼
5
, the second column of

𝑆 corresponds to the coefficients of 𝐼
1
𝐼
6
, and so forth. Let 𝑆

𝑘

denote the 𝑘th column of the matrix 𝑆, 𝑘 = 1, . . . , 24. Let
Φ
𝑖,𝑗,𝑘,𝑙

denote submatrix of the matrix 𝑆 with its 𝑖th, 𝑗th, 𝑘th,
and 𝑙th columns deleted. It is checked that

24

∑

𝑘=1

𝑆
𝑘
= 0. (55)

Similarly, as in the previous section, we have the solutions
of 𝐼
1
, 𝐼
2
, 𝐼
3
, 𝐼
4
, 𝐼
5
, 𝐼
6
, 𝐼
7
, 𝐼
8
, and 𝐼

9
:

𝐼
1
=
det (𝑆18 𝑆19 + 𝑆20 Φ16,18,19,20)

det (𝑆19 𝑆20 Φ16,18,19,20)
, (56)

𝐼
2
=
det (𝑆17 𝑆21 + 𝑆22 Φ14,17,21,22)

det (𝑆21 𝑆22 Φ14,17,21,22)
, (57)

𝐼
3
=
det (𝑆15 𝑆23 + 𝑆24 Φ13,15,23,24)

det (𝑆23 𝑆24 Φ13,15,23,24)
, (58)
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𝐼
4
=
det (𝑆12 𝑆21 + 𝑆23 Φ8,12,21,23)

det (𝑆21 𝑆23 Φ8,12,21,23)
, (59)

𝐼
5
=
det (𝑆11 𝑆19 + 𝑆24 Φ4,11,19,24)

det (𝑆19 𝑆24 Φ4,11,19,24)
, (60)

𝐼
6
=
det (𝑆7 𝑆20 + 𝑆22 Φ3,7,20,22)
det (𝑆20 𝑆22 Φ3,7,20,22)

, (61)

𝐼
7
=
det (𝑆10 𝑆22 + 𝑆24 Φ6,10,22,24)

det (𝑆22 𝑆24 Φ6,10,22,24)
, (62)

𝐼
8
=
det (𝑆9 𝑆20 + 𝑆23 Φ2,9,20,23)
det (𝑆20 𝑆23 Φ2,9,20,23)

, (63)

𝐼
9
=
det (𝑆5 𝑆19 + 𝑆21 Φ1,5,19,21)
det (𝑆19 𝑆21 Φ1,5,19,21)

. (64)

7. Conclusion

We have presented a novel method to derive 3D projective
invariants of 3D points from their 2D images.We have shown
that, for two images, eight-point correspondences are needed
to derive linearly the 3D projective invariants. For three
images, seven-point correspondences are needed to derive
linearly the 3D projective invariants. For four images, six
point correspondences are needed to derive linearly the 3D
projective invariants. This study gives deeper understanding
of the structure andmotion problem.Wehave known that it is
very hard to estimate the quadrifocal tensor from four images.
So it is a little surprise that the configuration of four images
and six points is the most natural configuration to derive
3D projective invariants. The proposed method is clear and
simple. They are easy to implement since explicit formulas
are given. Future research is using the idea to obtain robust
estimation of the invariants in the noisy situation.

Appendix

We have tested the proposed projective invariants on the
mathematica platform. The mathematica codes for comput-
ing the invariants from four projections of six 3D points
can be found in [19]. We present the mathematica codes for
computing the invariants from three projections of seven 3D
points in the following:

X = RandomReal[{-1000,1000},{7,4}];
M = RandomReal[{-1,1},{3,3,4}];
T = RandomReal[{0,1},{3,4}];
x = RandomReal[{0,1},{3,7,3}];
a = RandomReal[{0,1},{3,7,4}];
b = RandomReal[{0,1},{3,7,4}];
u = RandomReal[{0,1},{3,7}];
v = RandomReal[{0,1},{3,7}];
X[[1,4]] = 1;

X[[2,4]] = 1;
X[[3,4]] = 1;
X[[4,4]] = 1;
X[[5,4]] = 1;
X[[6,4]] = 1;
X[[7,4]] = 1;
For[i = 1,i <= 3,i++,For[j = 1,j <= 7,j++,
x[[i,j]] = M[[i]] . X[[j]];
u[[i,j]] = x[[i,j,1]]/x[[i,j,3]];
v[[i,j]] = x[[i,j,2]]/x[[i,j,3]];
]];
For[i = 1,i <= 3,i++,For[j = 5,j <= 7,j++,
a[[i,j,1]] = u[[i,1]] - u[[i,j]];
a[[i,j,2]] = u[[i,2]] - u[[i,j]];
a[[i,j,3]] = u[[i,3]] - u[[i,j]];
a[[i,j,4]] = u[[i,4]] - u[[i,j]];
b[[i,j,1]] = v[[i,1]] - v[[i,j]];
b[[i,j,2]] = v[[i,2]] - v[[i,j]];
b[[i,j,3]] = v[[i,3]] - v[[i,j]];
b[[i,j,4]] = v[[i,4]] - v[[i,j]];
]];
XT = Transpose[{X[[1]],X[[2]],X[[3]],X[[4]]}];
AA = LinearSolve[XT,X[[5]]];
BB = LinearSolve[XT,X[[6]]];
CC = LinearSolve[XT,X[[7]]];
Inv1 = (AA[[1]] BB[[2]])/(AA[[2]] BB[[1]]);
Inv2 = (AA[[1]] BB[[3]])/(AA[[3]] BB[[1]]);
Inv3 = (AA[[1]] BB[[4]])/(AA[[4]] BB[[1]]);
Inv4 = (AA[[1]] CC[[2]])/(AA[[2]] CC[[1]]);
Inv5 = (AA[[1]] CC[[3]])/(AA[[3]] CC[[1]]);
Inv6 = (AA[[1]] CC[[4]])/(AA[[4]] CC[[1]]);
Print[''The six invariants computed from 3D point
locations: '',

Inv1,'';'',Inv2,'';'',Inv3,''; '',Inv4,'';'',Inv5,'';'',Inv6];

For[i = 1,i <= 3,i++,
T[[i,1]] = {
(a[[i,5,4]] b[[i,5,3]] - a[[i,5,3]] b[[i,5,4]])a[[i,6,2]]
a[[i,7,1]],
(a[[i,5,2]] b[[i,5,4]] - a[[i,5,4]] b[[i,5,2]])a[[i,6,3]]
a[[i,7,1]],
(a[[i,5,3]] b[[i,5,2]] - a[[i,5,2]] b[[i,5,3]])a[[i,6,4]]
a[[i,7,1]],
(a[[i,5,3]] b[[i,5,4]] - a[[i,5,4]] b[[i,5,3]])a[[i,6,1]]
a[[i,7,2]],
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(a[[i,5,4]] b[[i,5,2]] - a[[i,5,2]] b[[i,5,4]])a[[i,6,1]]
a[[i,7,3]],
(a[[i,5,2]] b[[i,5,3]] - a[[i,5,3]] b[[i,5,2]])a[[i,6,1]]
a[[i,7,4]],
(a[[i,5,1]] b[[i,5,4]] - a[[i,5,4]] b[[i,5,1]])a[[i,6,2]]
a[[i,7,3]],
(a[[i,5,3]] b[[i,5,1]] - a[[i,5,1]] b[[i,5,3]])a[[i,6,2]]
a[[i,7,4]],
(a[[i,5,4]] b[[i,5,1]] - a[[i,5,1]] b[[i,5,4]])a[[i,6,3]]
a[[i,7,2]],
(a[[i,5,1]] b[[i,5,2]] - a[[i,5,2]] b[[i,5,1]])a[[i,6,3]]
a[[i,7,4]],
(a[[i,5,1]] b[[i,5,3]] - a[[i,5,3]] b[[i,5,1]])a[[i,6,4]]
a[[i,7,2]],
(a[[i,5,2]] b[[i,5,1]] - a[[i,5,1]] b[[i,5,2]])a[[i,6,4]]
a[[i,7,3]]
};
T[[i,2]] = {
(a[[i,5,4]] b[[i,5,3]] - a[[i,5,3]] b[[i,5,4]])a[[i,6,2]]
b[[i,7,1]],
(a[[i,5,2]] b[[i,5,4]] - a[[i,5,4]] b[[i,5,2]])a[[i,6,3]]
b[[i,7,1]],
(a[[i,5,3]] b[[i,5,2]] - a[[i,5,2]] b[[i,5,3]])a[[i,6,4]]
b[[i,7,1]],
(a[[i,5,3]] b[[i,5,4]] - a[[i,5,4]] b[[i,5,3]])a[[i,6,1]]
b[[i,7,2]],
(a[[i,5,4]] b[[i,5,2]] - a[[i,5,2]] b[[i,5,4]])a[[i,6,1]]
b[[i,7,3]],
(a[[i,5,2]] b[[i,5,3]] - a[[i,5,3]] b[[i,5,2]])a[[i,6,1]]
b[[i,7,4]],
(a[[i,5,1]] b[[i,5,4]] - a[[i,5,4]] b[[i,5,1]])a[[i,6,2]]
b[[i,7,3]],
(a[[i,5,3]] b[[i,5,1]] - a[[i,5,1]] b[[i,5,3]])a[[i,6,2]]
b[[i,7,4]],
(a[[i,5,4]] b[[i,5,1]] - a[[i,5,1]] b[[i,5,4]])a[[i,6,3]]
b[[i,7,2]],
(a[[i,5,1]] b[[i,5,2]] - a[[i,5,2]] b[[i,5,1]])a[[i,6,3]]
b[[i,7,4]],
(a[[i,5,1]] b[[i,5,3]] - a[[i,5,3]] b[[i,5,1]])a[[i,6,4]]
b[[i,7,2]],
(a[[i,5,2]] b[[i,5,1]] - a[[i,5,1]] b[[i,5,2]])a[[i,6,4]]
b[[i,7,3]]
};
T[[i,3]] = {
(a[[i,5,4]] b[[i,5,3]] - a[[i,5,3]] b[[i,5,4]])b[[i,6,2]]
a[[i,7,1]],
(a[[i,5,2]] b[[i,5,4]] - a[[i,5,4]] b[[i,5,2]])b[[i,6,3]]
a[[i,7,1]],
(a[[i,5,3]] b[[i,5,2]] - a[[i,5,2]] b[[i,5,3]])b[[i,6,4]]
a[[i,7,1]],

(a[[i,5,3]] b[[i,5,4]] - a[[i,5,4]] b[[i,5,3]])b[[i,6,1]]
a[[i,7,2]],
(a[[i,5,4]] b[[i,5,2]] - a[[i,5,2]] b[[i,5,4]])b[[i,6,1]]
a[[i,7,3]],
(a[[i,5,2]] b[[i,5,3]] - a[[i,5,3]] b[[i,5,2]])b[[i,6,1]]
a[[i,7,4]],
(a[[i,5,1]] b[[i,5,4]] - a[[i,5,4]] b[[i,5,1]])b[[i,6,2]]
a[[i,7,3]],
(a[[i,5,3]] b[[i,5,1]] - a[[i,5,1]] b[[i,5,3]])b[[i,6,2]]
a[[i,7,4]],
(a[[i,5,4]] b[[i,5,1]] - a[[i,5,1]] b[[i,5,4]])b[[i,6,3]]
a[[i,7,2]],
(a[[i,5,1]] b[[i,5,2]] - a[[i,5,2]] b[[i,5,1]])b[[i,6,3]]
a[[i,7,4]],
(a[[i,5,1]] b[[i,5,3]] - a[[i,5,3]] b[[i,5,1]])b[[i,6,4]]
a[[i,7,2]],
(a[[i,5,2]] b[[i,5,1]] - a[[i,5,1]] b[[i,5,2]])b[[i,6,4]]
a[[i,7,3]]
};
T[[i,4]] = {
(a[[i,5,4]] b[[i,5,3]] - a[[i,5,3]] b[[i,5,4]])b[[i,6,2]]
b[[i,7,1]],
(a[[i,5,2]] b[[i,5,4]] - a[[i,5,4]] b[[i,5,2]])b[[i,6,3]]
b[[i,7,1]],
(a[[i,5,3]] b[[i,5,2]] - a[[i,5,2]] b[[i,5,3]])b[[i,6,4]]
b[[i,7,1]],
(a[[i,5,3]] b[[i,5,4]] - a[[i,5,4]] b[[i,5,3]])b[[i,6,1]]
b[[i,7,2]],
(a[[i,5,4]] b[[i,5,2]] - a[[i,5,2]] b[[i,5,4]])b[[i,6,1]]
b[[i,7,3]],
(a[[i,5,2]] b[[i,5,3]] - a[[i,5,3]] b[[i,5,2]])b[[i,6,1]]
b[[i,7,4]],
(a[[i,5,1]] b[[i,5,4]] - a[[i,5,4]] b[[i,5,1]])b[[i,6,2]]
b[[i,7,3]],
(a[[i,5,3]] b[[i,5,1]] - a[[i,5,1]] b[[i,5,3]])b[[i,6,2]]
b[[i,7,4]],
(a[[i,5,4]] b[[i,5,1]] - a[[i,5,1]] b[[i,5,4]])b[[i,6,3]]
b[[i,7,2]],
(a[[i,5,1]] b[[i,5,2]] - a[[i,5,2]] b[[i,5,1]])b[[i,6,3]]
b[[i,7,4]],
(a[[i,5,1]] b[[i,5,3]] - a[[i,5,3]] b[[i,5,1]])b[[i,6,4]]
b[[i,7,2]],
(a[[i,5,2]] b[[i,5,1]] - a[[i,5,1]] b[[i,5,2]])b[[i,6,4]]
b[[i,7,3]]
};
];
CoF = {T[[1,1]],T[[1,2]],T[[1,3]],T[[1,4]],T[[2,1]],

T[[2,2]],T[[2,3]],T[[2,4]],T[[3,1]],T[[3,2]]};
CoF = Transpose[CoF];
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I1 = Det[Prepend[Prepend[Delete[CoF,{{5},{6},{7},
{8}}],

Part[CoF,7]+Part[CoF,8]],Part[CoF,6]]]/
Det[Prepend[Prepend[Delete[CoF,{{5},{6},{7},
{8}}],
Part[CoF,8]],Part[CoF,7]]];

I2 = Det[Prepend[Prepend[Delete[CoF,{{4},{6},{9},
{10}}],

Part[CoF,10]+Part[CoF,9]], Part[CoF,6]]]/
Det[Prepend[Prepend[Delete[CoF,{{4},{6},{9},
{10}}],
Part[CoF,10]],Part[CoF,9]]];

I3 = Det[Prepend[Prepend[Delete[CoF,{{4},{5},{11},
{12}}],

Part[CoF,12]+Part[CoF,11]], Part[CoF,5]]]/
Det[Prepend[Prepend[Delete[CoF,{{4},{5},{11},
{12}}],
Part[CoF,12]],Part[CoF,11]]];

I4 = Det[Prepend[Prepend[Delete[CoF,{{2},{3},{9},
{11}}],

Part[CoF,11]+Part[CoF,9]], Part[CoF,3]]]/
Det[Prepend[Prepend[Delete[CoF,{{2},{3},{9},
{11}}],
Part[CoF,11]],Part[CoF,9]]];

I5 = Det[Prepend[Prepend[Delete[CoF,{{1},{3},{7},
{12}}],

Part[CoF,12]+Part[CoF,7]], Part[CoF,3]]]/
Det[Prepend[Prepend[Delete[CoF,{{1},{3},{7},
{12}}],
Part[CoF,12]],Part[CoF,7]]];

I6 = Det[Prepend[Prepend[Delete[CoF,{{1},{2},{8},
{10}}],

Part[CoF,10]+Part[CoF,8]], Part[CoF,2]]]/
Det[Prepend[Prepend[Delete[CoF,{{1},{2},{8},
{10}}],
Part[CoF,10]],Part[CoF,8]]];

Print[''The six invariants computed from 2D projec-
tions: '',

I1,'';'',I2,'';'',I3,'';'', I4,'';'',I5,'';'',I6];
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