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Automatic calibration and removal of distortion from scenes ofstructured environmentsFrédéric Devernay Olivier FaugerasINRIA Sophia Antipolis, BP 9306902 Sophia Antipolis Cedex, FranceABSTRACTMost algorithms in 3-D Computer Vision rely on the pinhole camera model because of its simplicity, whereasvideo optics, especially low-cost wide-angle lens, generate a lot of non-linear distortion which can be critical.To �nd the distortion parameters of a camera, we use the following fundamental property: a camera followsthe pinhole model if and only if the projection of every line in space onto the camera is a line. Consequently, ifwe �nd the transformation on the video image so that every line in space is viewed in the transformed image asa line, then we know how to remove the distortion from the image.The algorithm consists of �rst doing edge extraction on a possibly distorted video sequence, then doingpolygonal approximation with a large tolerance on these edges to extract possible lines from the sequence, andthen �nding the parameters of our distortion model that best transform these edges to segments.Results are presented on real video images, compared with distortion calibration obtained by a full cameracalibration method which uses a calibration grid.1 INTRODUCTION1.1 EXTERNAL, INTERNAL, AND DISTORTION CALIBRATIONIn the context of 3-D computer vision, camera calibration consists of �nding themapping between the 3-D spaceand the camera plane. This mapping can be separated in two di�erent transformation: �rst, the displacementbetween the origin of 3-D space and the camera coordinate system, which forms the external calibration parameters(3-D rotation and translation), and second the mapping between 3-D points in space and 2-D points on the cameraplane in the camera coordinate system, which forms the internal camera calibration parameters.The internal camera calibration parameters depend of the camera. In the case of an orthographic or a�necamera model, optic rays are orthogonal to the camera plane and there are only 3 parameters corresponding tothe spatial sampling of the image plane. The perspective (or projective) camera model involves two more cameraparameters corresponding to the position of the principal point in the image (which is the intersection of theoptical axis with the image plane). For many application which require high accuracy, or in cases where low-costor wide-angle lens are used, the perspective model is not su�cient and more internal calibration parameters must1



be added to take into account camera lens distortion.The distortion parameters are most often coupled with internal camera parameters, but we can also use acamera model in which they are decoupled. Decoupling the distortion parameters from others can be equivalentto adding more degrees of freedom to the camera model.1.2 BRIEF SUMMARY OF EXISTING RELATED WORKHere is an overview of the di�erent kinds of calibration methods available. The goal of this section is not todo an extensive review, and the reader can �nd more information in.13,15The �rst kind of calibration method is the one that uses a calibration grid with feature points whose world 3-Dcoordinates are known. These feature points, often called control points, can be corners, dots, or any features thatcan be easily extracted for computer images. Once the control points are identi�ed in the image, the calibrationmethod �nds the best camera external (rotation and translation) and internal (image aspect ratio, focal length,and possibly others) parameters that correspond to the position of these points in the image. The simplest form ofcamera internal parameters is the standard pinhole camera,11 but in many cases the distorsion due to wide-angleor low-quality lens has to be taken into account.18,2 Using a calibration method with a pinhole camera model onlens with non-negligible distortion may result in high calibration errors.The problem with these methods that compute the external and internal parameters at the same time arisesfrom the fact that there is some kind of coupling between internal and external parameters that result in higherrors on the camera internal parameters.19Another family of methods is those that use geometric invariants of the image features rather than their worldcoordinates, like parallel lines5,1 or the image of a sphere.14The last kind of calibration techniques is those that do not need any kind of known calibration points. Theseare also called auto-calibration methods, and the problem with these methods is that if all the parameters ofthe camera are unknown, they are still very unstable.10 Known camera motion helps in getting more stable andaccurate results17,12 but it's not always that easy to get �pure camera rotation�.A few other calibration methods are only interested in distortion calibration, like the plumb line method.4Another method presented in3 uses a calibration grid to �nd a generic distortion function.1.3 OVERVIEW OF OUR METHODSince many auto-calibration10 or weak calibration20 techniques rely on a pinhole (i.e. perspective) cameramodel, our main idea was to calibrate only the image distortion, so that any camera could be considered as apinhole camera after the aplication of the inverse of the distortion function to image features. We also don't wantto rely on a particular camera motion17 in order to be able to work on any kind of video recordings or snapshots(e.g. surveillance video recordings) for which there can be only little knowledge on self-motion, or some observedobjects may be moving.The only constraint is that the world seen though the camera must contain 3-D lines and segments. It canbe city scenes, interior scenes, or aerial views containing buildings and human-made structures. Edge extractionand polygonal approximation is performed on these images in order to detect possible 3-D edges present in theimages, and after this we just look for the distortion parameters that minimize the distortion of the 3-D segmentsprojected to the image.



After we found a �rst estimate of the distortion parameters, we perform another polygonal approximation onthe undistorted edges, this way 3-D lines that were broken into several segments because of distortion will becomeone segment, and outliers (3-D curves that were detected as a 3-D segment because of their small curvature) areimplicitly eliminated. We continue this iterative process until we fall into a stable minimum of the distortionerror after the polygonal approximation step.2 DESCRIPTION OF THE METHOD2.1 THE DISTORTION MODELThe mapping between 3-D points and 2-D image points can be decomposed into a perspective projection anda function that models the deviations from the ideal pinhole camera. A perspective projection associated withthe focal length f maps a 3-D pointM whose coordinates in the camera-centered coordinate system are (X;Y;Z)to an �undistorted� image point mu = (xu; yu) on the image plane:xu = f XZ (1)yu = f YZThen, the image distortion transformsmu to a distorted image pointmd. The image distortion model15 is usuallygiven as a mapping from the distorted image coordinates, which are observable in the acquired images, to theundistorted image coordinates, which are needed for further calculations.Finally, image plane coordinates are converted to frame bu�er coordinates, which can be expressed either inpixels or in normalized coordinates (i.e. pixels divided by image dimensions), depending on the unit of f :xi = sxxd + cx (2)yi = yd + cyThe image distortion function can be decomposed in two terms: radial and tangential distortion. Radialdistortion is a deformation of the image along the direction from a point called the center of distortion to theconsidered image point, and tangential distortion is a deformation perpendicular to this direction. The center ofdistortion is invariant under both transformations.It was found that for many machine vision applications, tangential distortion need not to be considered.18The lens distortion can then be written as an in�nite series:xu = xd(1 + �1r2d + �2r4d + � � �) (3)where rd = px2d + y2d. Several tests2,18 showed that using only the �rst order radial symmetric distortionparameter �1, one could achieve an accuracy of about 0.1 pixels in image space, using lenses exhibiting largedistortion together with the other parameters of the perspective camera.11In our case we want to decouple the e�ect of distortion from the projection on the image plane, because all wewant to calibrate is the distortion. Consequently, in our model, the center of distortion (cx; cy) will be di�erentfrom the principal point. It was shown16 that this is mainly equivalent to adding decentering distortion terms tothe distortion model of equation 3. A higher order e�ect of this is to apply an (very small) a�ne transformationto the image, but the a�ne transform of a pinhole camera is also a pinhole camera.Moreover, the image aspect ratio that we use in the distortion model may not be the same as the real aspectratio. The di�erence between these two aspect ratios will result in another term of tangential distortion. To



summarize, �1 is the �rst order distortion, the coordinates of the center of distortion (cx; cy) correspond todecentering distortion because the center of distortion may be di�erent from principal point, and the di�erencebetween the distorsion aspect ratio sx and the real aspect ratio correspond to a term of tangential distortion.In the following, all coordinates are frame bu�er coordinates, either expressed in pixels or normalized (bydividing x by the image width and y by the image height) to be unit-less.The undistorted coordinates are given by the formula:xu = xd + (xd � cx)�1r2d (4)yu = yd + (yd � cy)�1r2dwhere rd =r�xd�cxsx �2 + (yd � cy)2 is the distorted radius.The distorted coordinates in function of the undistorted coordinated are given by the solution of the equation:ru = rd �1 + �1r2d� (5)where ru =r�xu�cxsx �2 + (yu � cy)2 is the undistorted radius and rd the distorted radius.This is a polynomial of degree three of the form r3d + crd + d = 0, with c = 1�1 and d = �cru, which can besolved using the Cardan method which is a direct method for solving polynomials of degree three. It has eitherone or three real solutions, depending on the sign of the discriminant:� = Q3 +R2where Q = c3 and R = � d2 .If � > 0 there is only one real solution:rd = 3qR +p�+ Q3pR +p� (6)and if � < 0 there are three real solutions but only one is valid because when ru is �xed, rd must be continuousin function of �1. The continuity at �1 = 0 gives the solution:rd = �S cosT + Sp3 sinT (7)where S = 3ppR2 �� and T = 13 arctan p��RThe distorted coordinates are then given by:xd = cx + (xu � cx) rdru (8)yd = cy + (yu � cy) rdruIt is cheaper in terms of calculations to detect features in the distorted image and to undistort them than toundistort the whole image (which requires solving a third degree polynomial equation at each point and bilinearinterpolation to compute the gray level) and to extract the feature from the undistorted image. For some kindsof features which depend on the perspective projection and that must be detected directly in the intensity image,one must nevertheless undistort the whole image. It that case, if calibration time is not crucial but images need



to be undistorted quickly, i.e. only the transform function from undistorted to distorted coordinated is to be usedmore often than its inverse in a program's main loop, then a good solution is to switch the distortion function andits inverse. Equation 4 would become the distortion function and equation 8 its inverse. That way the automaticdistortion calibration step would be costly because it requires undistorting edge features, but one the camera iscalibrated, the un-distortion of the whole intensity images would be faster.2.2 PRINCIPLEThe goal of the distortion calibration is to �nd the transformation (or un-distortion) that maps the actualcamera image plane onto an image following the perspective camera model. To �nd the distortion parametersdescribed in section 2.1, we use the following fundamental property: a camera follows the perspective cameramodel if and only if the projection of every 3-D line in space onto the camera plane is a line. Consequently, allwe need is a way to �nd projections of 3-D lines in the image (they are not lines anymore in the images, sincethey are distorted, but curves), and a way to measure how much each 3-D line is distorted in the image. Thenwe will just have to let vary the distortion parameters and try to minimize the distortion of edges transformedusing these parameters.2.3 EDGE DETECTION WITH SUB-PIXEL ACCURACYThe �rst step of the calibration consists of extracting edges from the images. Since image distortion issometimes less than a pixel at image boundaries, there was de�nitely a need for an edge detection method witha sub-pixel accuracy. We developed an edge detection method9 based on the classical Non-Maxima Suppression(NMS) of the gradient norm in the direction of the gradient which gives edge position with a precision varyingfrom 0.05 pixels for a noise-free synthetic image to 0.3 pixels for an image Signal to Noise Ratio (SNR) of 18dB(which is actually a lot of noise, the VHS videotapes SNR is about 50dB).2.4 FINDING 3-D SEGMENTS IN A DISTORTED IMAGEIn order to calibrate distortion, we must �nd edges in the image which are most probably images of 3-Dsegments. The goal is not to get all segments, but to �nd the most probable ones. For this reason, we do notcare if a long segment, because of its distortion, is broken into smaller segments.Therefore, and because we are using a subpixel edge detection method, we use a very small tolerance forpolygonal approximation: the maximum distance between edge points and the segment joining both ends of theedge must typically be less than 0.4 pixels. We also put a threshold on segment length of about 60 pixels for a640� 480 image, because small segments may contain more noise than useful information about distortion.Moreover, because of the corner rounding e�ect6,7 due to edge detection, we throw out a few edgels (between3 and 5, depending of the amount of smoothing performed on the image before edge detection) at both ends ofeach detected segment edge.2.5 MEASURING DISTORTION OF A 3-D SEGMENT IN THE IMAGEIn order to �nd the distortion parameters we use a measure of how much each detected segment is distorted.This distortion measure will then be minimized to �nd the best calibration parameters. One could use for example



the mean curvature of the edges, or any distance function on the edge space that would be zero if the edge is aperfect segment and the more the segment would be distorted, the bigger the distance would be.We chose a simple measure of distortion which consists of doing a least squares approximation of each edgewhich should be a projection of a 3-D segment by a line,8 and to take for the distortion error the sum of squaresof the distances from the point to the line (i.e. the �2 of the least square approximation). That way, the error iszero if the edge lies exactly on a line, and the bigger the curvature of the edge, the bigger the distortion error.For each edge, the distortion error is de�ned to be:�2 = a sin2 ! � 2 jbj jsin!j cos! + c cos2 ! (9)where: a = nXi=1 x2i � 1n  nXi=1 xi!2 (10)b = nXi=1 xiyi � 1n nXi=1 xi nXi=1 yi (11)c = nXi=1 y2i � 1n  nXi=1 yi!2 (12)� = a � c (13)� = �2p�2 + 4b2 (14)jsin!j = r12 � b (15)cos! = r12 + b (16)! is the angle of the line in the image, and sin! should have the same sign as b.2.6 THE WHOLE CALIBRATION PROCESSThe whole distortion calibration process is not done in only one iteration (edge detection, polygonal approxima-tion, and optimization), because there may be outliers in the segments detected by the polygonal approximation,i.e. edges which aren't really 3-D segments. Moreover, some 3-D segments may be broken into smaller edgesbecause the �rst polygonal approximation is done on distorted edges. By doing another polygonal approximationafter the optimization, on undistorted edges, we can eliminate many outliers easily and get longer segments whichcontain more information about distortion. This way we get even more accurate calibration parameters.A �rst version of the calibration process is:1. Load images.2. Do subpixel edge detection and linking on the images.3. Do polygonal approximation on distorted edges to extract segment candidates.4. Compute the distortion error E0 =P�2 (sum is done over all the detected segments).5. Optimize the distortion parameters �1; cx; cy ; sx to minimize distortion error.



6. Compute the distortion error E1 for the optimized parameters.7. If the relative change of error E0�E1E1 is less than a threshold, stop here.8. Do polygonal approximation on undistorted edges.9. Go to step 4.By minimizing on the four parameters when the data still contains many outliers, there is a risk of gettingfarther from the optimal parameters. For this reason, steps 3 to 9 are �rst done with optimization only on �1until the termination condition of step 7 is veri�ed, then cx and cy are added, and �nally full optimization on thefour distortion parameters is performed.3 EXPERIMENTAL SETUP3.1 HARDWAREWe used various hardware setups to test the accuracy of the distortion calibration, from low-cost video-conference video hardware to high-quality cameras and frame-grabber.The lowest quality hardware is a very simple video acquisition system included with every Silicon GraphicsIndy workstation. This system is not designed for accuracy nor quality and consists of an IndyCam cameracoupled with the standard Vino frame grabber. The acquired image is 640� 480 pixels interlaced, and containsa lot of distortion and blur caused by the cheap wide-angle lens. The use of an on-line camera allows very fastimage transfer between the frame grabber and the program memory using Direct Memory Access (DMA), so thatwe are able to do fast distortion calibration. The quality of the whole system seems comparable to this of a VHSvideotape.Other images were acquired using an Imaging Technologies acquisition board together with several di�erentcamera setups: a Sony XC75CE camera with 8mm, 12.5mm, and 16mm lens (the smaller the focal length, themore important the distortion), and an old Pulnix TM-46 camera with 8mm lens.3.2 SOFTWAREThe distortion calibration program is a stand-alone program that can either work on images acquired on-lineusing a camera and a frame grabber or acquired o�-line and saved to disk. Computation of the image gradient andedge detection were done using the Robotvis libraries available at ftp://krakatoa.inria.fr/pub/robotvis.The optimization step was performed using the subroutine lmdif from MINPACK or the subroutine dnls1from SLATEC, both packages are available from Netlib, at http://www.netlib.org/.



4 RESULTS AND COMPARISON WITH A FULLCALIBRATION METHOD4.1 THE FULL CALIBRATION METHODIn order to evaluate the validity of the distortion parameters obtained by our method, we compared themto those obtained by a method for full calibration (both external and internal) that incorporates comparabledistortion parameters. The software we used to do full calibration implements the Tsai calibration method18and is freely available (the source code can be found at ftp://ftp.teleos.com/VISION-LIST-ARCHIVE/). Thissoftware implements calibration of external (rotation and translation) and internal camera parameters at the sametime. The internal parameter set is composed of the pinhole camera parameters except for the shear parameter(which is very close to zero on CCD cameras anyway2), and of the �rst radial distorsion parameter. From theresult of this calibration mechanism, we can extract the position of the principal point, the image aspect ratio,and the �rst radial distortion parameter.As seen in section 2.1, though, these are not exactly the same parameters as those that we can computeusing our method, since we allow more degrees of freedom for the distortion function: two more parameters ofdecentering distortion and one parameter of tangential distortion. Having di�erent coordinates for the principalpoint and the center of distortion, and for the image aspect ratio and distortion aspect ratio.4.2 RESULTSThe distortion calibration method was applied to sets of about 30 images (see Figure 1) for each camera/lenscombination, and the results for the four parameters of distortion are shown in Table 1. The initial values for thedistortion parameters before the optimization were set to �reasonable� values, i.e. the center of distortion wasset to the center of the image, �1 was set to zero, and sx to the image aspect ratio, computed for the cameraspeci�cations. For the IndyCam, this gave cx = cy = 12 , �1 = 0 and sx = 34 .
Figure 1: Some of the images that were used for distortion calibration.Figure 2 shows a sample image, before and after the correction. This image was a�ected by pin-cushiondistortion, corresponding to a positive value of �1. Barrel distortion corresponds to negative values of �1.We also calibrated the same cameras using the Tsai method and a calibration grid (Figure 3) with 128 points,and we computed some parameters corresponding more or less to our distortion parameters from the result ofthis full calibration method (Table 2). As explained in section 2.1, these are not the same as our distortionparameters, because we introduced a few more degrees of freedom in the distortion function, allowing decenteringand tangential distortion. This explains why the distortion center found on low-distortion cameras such as theSony 16mm are so far away from the principal point.



camera/lens IndyCam Sony 8mm Sony 12.5mm Sony 16mm Pulnix 8mm�1 0.154 0.0412 0.0164 0.0117 -0.0415cx 0.493 0.635 0.518 0.408 0.496cy 0.503 0.405 0.122 0.205 0.490sx 0.738 0.619 0.689 0.663 0.590Table 1: The distortion parameters obtained on various camera/lens setups using our method, in normalizedimage coordinates: First radial distortion parameter, position of the center of distortion, and distortion aspectratio.

Figure 2: A distorted image with the detected segments (left) and the same image at the end of the distortioncalibration with segments extracted from undistorted edges (right): some outliers were removed and longersegments are detected.

Figure 3: The calibration grid used for Tsai calibration: original distorted image (left) and image undistortedusing the parameters computed by our method (right).



camera/lens IndyCam Sony 8mm Sony 12.5mm Sony 16mm�1 0.135 0.0358 0.00772 0.00375cx 0.475 0.514 0.498 0.484cy 0.503 0.476 0.501 0.487sx 0.732 0.678 0.679 0.678Table 2: The distortion parameters obtained using the Tsai calibration method, in normalized image coordinates:First radial distortion parameter, position of the principal point, and image aspect ratio. They do not have thesame meaning as in Table 1, as explained in section 2.1.For cameras with high distortion, like the IndyCam and the cameras with 8mm lens, The center of distortionand the distortion aspect ratio are close to the principal point and the image aspect ratio. For better comparisonwith a grid-based calibration, we should use a camera model that includes the same distortion parameters asours, i.e. introduce the center of distortion and distortion aspect ratio.5 DISCUSSIONWith computer vision applications demandingmore and more accuracy in the cameramodel and the calibrationof its parameters, there is de�nitely a need for calibration methods that don't rely on the simple and linear pinholecamera model. Camera optics still have lots of distortion, and zero-distortion wide-angle lens exist but remainvery expensive.The automatic distortion calibration method presented here has many advantages over other existing cali-bration methods that use a camera model with distortion.2,3,17,18 First, it makes very few assumptions on theobserved world: there is no need for a calibration grid.2,3,18 All it needs is images of scenes containing 3-Dsegments, like interior scenes or city scenes. Second, it is completely automatic, and camera motion need not tobe known.16,17 It can be applied to images acquired o�-line, as an example they could come from a surveillancevideotape or a portative camcorder. The comparison with a full grid-based calibration method presented in thispaper is still not complete, since the grid-based calibration method we used didn't have the same distortionparameters as our method. The next step in the validation of this method is to do better comparisons.Once the distortion is calibrated, any computer vision algorithm that relies on the pinhole cameramodel can beused, simply by applying the inverse of the distortion either to image features (edges, corners, etc.) or to the wholeimage. This method could also be used together with auto-calibration or weak calibration methods that wouldtake into account the distortion parameters. The distortion calibration could be done before auto-calibration, sothat the latter would use un-distorted features and images, or during auto-calibration, the distortion error beingtaken into account during the auto-calibration process.6 REFERENCES[1] P. Beardsley, D. Murray, and A. Zissermann. Camera calibration using multiple images. In G. Sandini,editor, Proceedings of the 2nd European Conference on Computer Vision, pages 312�320, Santa MargheritaLigure, Italy, May 1992. Springer-Verlag.[2] Horst A. Beyer. Accurate calibration of CCD-cameras. In Proceedings of the International Conference on
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