139 research outputs found

    Deciding FO-Rewritability of Ontology-Mediated Queries in Linear Temporal Logic

    Get PDF

    Universal Solutions in Temporal Data Exchange

    Get PDF
    During the past fifteen years, data exchange has been explored in depth and in a variety of different settings. Even though temporal databases constitute a mature area of research studied over several decades, the investigation of temporal data exchange was initiated only very recently. We analyze the properties of universal solutions in temporal data exchange with emphasis on the relationship between universal solutions in the context of concrete time and universal solutions in the context of abstract time. We show that challenges arise even in the setting in which the data exchange specifications involve a single temporal variable. After this, we identify settings, including data exchange settings that involve multiple temporal variables, in which these challenges can be overcome

    Temporal JSON

    Get PDF
    JavaScript Object Notation (JSON) is a format for representing data. In this thesis we show how to capture the history of changes to a JSON document. Capturing the history is important in many applications, where not only the current version of a document is required, but all the previous versions. Conceptually the history can be thought of as a sequence of non-temporal JSON documents, one for each instant of time. Each document in the sequence is called a snapshot. Since changes to a document are few and infrequent, the sequence of snapshots largely duplicates a document across many time instants, so the snapshot model is (wildly) inefficient in terms of space needed to represent the history and time taken to navigate within it. A more efficient representation can be achieved by “gluing the snapshots together to form a temporal model. Data that remains unchanged across snapshots is represented only once in a temporal model. But we show that the temporal model is not a JSON document, and it is important to represent a history as JSON to ensure compatibility with web services and scripting languages that use JSON. So we describe a representational model that captures the information in a temporal model. We implement the representational model in Python and extensively experiment with the model. Our experiments show that the model is efficient

    Deciding FO-rewritability of ontology-mediated queries in linear temporal logic

    Get PDF
    Our concern is the problem of determining the data complexity of answering an ontology-mediated query (OMQ) given in linear temporal logic LTL over (Z,<) and deciding whether it is rewritable to an FO(<)-query, possibly with extra predicates. First, we observe that, in line with the circuit complexity and FO-definability of regular languages, OMQ answering in AC0, ACC0 and NC1 coincides with FO(<,\equiv)-rewritability using unary predicates x \equiv 0 mod n), FO(<,MOD)-rewritability, and FO(RPR)-rewritability using relational primitive recursion, respectively. We then show that deciding FO(<)-, \FO(<,\equiv)- and FO(<,MOD)-rewritability of LTL OMQs is ExpSpace-complete, and that these problems become PSpace-complete for OMQs with a linear Horn ontology and an atomic query, and also a positive query in the cases of FO(<)- and FO(<,\equiv)-rewritability. Further, we consider FO(<)-rewritability of OMQs with a binary-clause ontology and identify OMQ classes, for which deciding it is PSpace-, Pi_2^p- and coNP-complete

    First-Order Rewritability and Complexity of Two-Dimensional Temporal Ontology-Mediated Queries

    Get PDF
    Aiming at ontology-based data access to temporal data, we design two-dimensional temporal ontology and query languages by combining logics from the (extended) DL-Lite family with linear temporal logic LTL over discrete time (Z,<). Our main concern is first-order rewritability of ontology-mediated queries (OMQs) that consist of a 2D ontology and a positive temporal instance query. Our target languages for FO-rewritings are two-sorted FO(<) - first-order logic with sorts for time instants ordered by the built-in precedence relation < and for the domain of individuals - its extension FOE with the standard congruence predicates t \equiv 0 mod n, for any fixed n > 1, and FO(RPR) that admits relational primitive recursion. In terms of circuit complexity, FOE- and FO(RPR)-rewritability guarantee answering OMQs in uniform AC0 and NC1, respectively. We proceed in three steps. First, we define a hierarchy of 2D DL-Lite/LTL ontology languages and investigate the FO-rewritability of OMQs with atomic queries by constructing projections onto 1D LTL OMQs and employing recent results on the FO-rewritability of propositional LTL OMQs. As the projections involve deciding consistency of ontologies and data, we also consider the consistency problem for our languages. While the undecidability of consistency for 2D ontology languages with expressive Boolean role inclusions might be expected, we also show that, rather surprisingly, the restriction to Krom and Horn role inclusions leads to decidability (and ExpSpace-completeness), even if one admits full Booleans on concepts. As a final step, we lift some of the rewritability results for atomic OMQs to OMQs with expressive positive temporal instance queries. The lifting results are based on an in-depth study of the canonical models and only concern Horn ontologies

    Deciding FO-rewritability of Regular Languages and Ontology-Mediated Queries in Linear Temporal Logic

    Get PDF
    Our concern is the problem of determining the data complexity of answering an ontology-mediated query (OMQ) formulated in linear temporal logic LTL over (Z,<) and deciding whether it is rewritable to an FO(<)-query, possibly with some extra predicates. First, we observe that, in line with the circuit complexity and FO-definability of regular languages, OMQ answering in AC0, ACC0 and NC1 coincides with FO(<,≡)-rewritability using unary predicates x ≡ 0 (mod n), FO(<,MOD)-rewritability, and FO(RPR)-rewritability using relational primitive recursion, respectively. We prove that, similarly to known PSᴘᴀᴄᴇ-completeness of recognising FO(<)-definability of regular languages, deciding FO(<,≡)- and FO(<,MOD)-definability is also PSᴘᴀᴄᴇ-complete (unless ACC0 = NC1). We then use this result to show that deciding FO(<)-, FO(<,≡)- and FO(<,MOD)-rewritability of LTL OMQs is ExᴘSᴘᴀᴄᴇ-complete, and that these problems become PSᴘᴀᴄᴇ-complete for OMQs with a linear Horn ontology and an atomic query, and also a positive query in the cases of FO(<)- and FO(<,≡)-rewritability. Further, we consider FO(<)-rewritability of OMQs with a binary-clause ontology and identify OMQ classes, for which deciding it is PSᴘᴀᴄᴇ-, Π2p- and coNP-complete

    28th International Symposium on Temporal Representation and Reasoning (TIME 2021)

    Get PDF
    The 28th International Symposium on Temporal Representation and Reasoning (TIME 2021) was planned to take place in Klagenfurt, Austria, but had to move to an online conference due to the insecurities and restrictions caused by the pandemic. Since its frst edition in 1994, TIME Symposium is quite unique in the panorama of the scientifc conferences as its main goal is to bring together researchers from distinct research areas involving the management and representation of temporal data as well as the reasoning about temporal aspects of information. Moreover, TIME Symposium aims to bridge theoretical and applied research, as well as to serve as an interdisciplinary forum for exchange among researchers from the areas of artifcial intelligence, database management, logic and verifcation, and beyond

    Innovative Wireless Localization Techniques and Applications

    Get PDF
    Innovative methodologies for the wireless localization of users and related applications are addressed in this thesis. In last years, the widespread diffusion of pervasive wireless communication (e.g., Wi-Fi) and global localization services (e.g., GPS) has boosted the interest and the research on location information and services. Location-aware applications are becoming fundamental to a growing number of consumers (e.g., navigation, advertising, seamless user interaction with smart places), private and public institutions in the fields of energy efficiency, security, safety, fleet management, emergency response. In this context, the position of the user - where is often more valuable for deploying services of interest than the identity of the user itself - who. In detail, opportunistic approaches based on the analysis of electromagnetic field indicators (i.e., received signal strength and channel state information) for the presence detection, the localization, the tracking and the posture recognition of cooperative and non-cooperative (device-free) users in indoor environments are proposed and validated in real world test sites. The methodologies are designed to exploit existing wireless infrastructures and commodity devices without any hardware modification. In outdoor environments, global positioning technologies are already available in commodity devices and vehicles, the research and knowledge transfer activities are actually focused on the design and validation of algorithms and systems devoted to support decision makers and operators for increasing efficiency, operations security, and management of large fleets as well as localized sensed information in order to gain situation awareness. In this field, a decision support system for emergency response and Civil Defense assets management (i.e., personnel and vehicles equipped with TETRA mobile radio) is described in terms of architecture and results of two-years of experimental validation
    • …
    corecore