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Abstract

Aiming at ontology-based data access to temporal data, we design two-dimensional
temporal ontology and query languages by combining logics from the (extended) DL-Lite
family with linear temporal logic LTL over discrete time (Z, <). Our main concern is first-
order rewritability of ontology-mediated queries (OMQs) that consist of a 2D ontology and
a positive temporal instance query. Our target languages for FO-rewritings are two-sorted
FO(<)—first-order logic with sorts for time instants ordered by the built-in precedence
relation < and for the domain of individuals—its extension FO(<,≡) with the standard
congruence predicates t ≡ 0 (mod n), for any fixed n > 1, and FO(RPR) that admits
relational primitive recursion. In terms of circuit complexity, FO(<,≡)- and FO(RPR)-
rewritability guarantee answering OMQs in uniform AC0 and NC1, respectively.

We proceed in three steps. First, we define a hierarchy of 2D DL-Lite/LTL ontology
languages and investigate the FO-rewritability of OMQs with atomic queries by construct-
ing projections onto 1D LTL OMQs and employing recent results on the FO-rewritability
of propositional LTL OMQs. As the projections involve deciding consistency of ontologies
and data, we also consider the consistency problem for our languages. While the unde-
cidability of consistency for 2D ontology languages with expressive Boolean role inclusions
might be expected, we also show that, rather surprisingly, the restriction to Krom and Horn
role inclusions leads to decidability (and ExpSpace-completeness), even if one admits full
Booleans on concepts. As a final step, we lift some of the rewritability results for atomic
OMQs to OMQs with expressive positive temporal instance queries. The lifting results are
based on an in-depth study of the canonical models and only concern Horn ontologies.

1. Introduction

Ontology-based data access (Calvanese et al., 2007b), also known as virtual knowledge
graphs (Xiao et al., 2019), has recently become one of the most successful applications of
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ontologies. The main aim of ontology-based data access (OBDA, for short) is to facilitate
access to possibly heterogeneous, distributed and incomplete data for non-IT-users. To
this end, an ontology is employed to provide both a user-friendly and uniform vocabulary
for formulating queries and a conceptual model of the domain for capturing background
knowledge and obtaining more complete answers. Thus, instead of querying data directly
by means of often convoluted and ad hoc database queries, one can use ontology-mediated
queries (OMQs) of the form q = (O, φ) with an ontology O and a query φ over the fa-
miliar and natural vocabulary provided by O. The answers to q over a data instance A
(which can often be obtained via mappings from the original data) are then those tuples
of individual names from A that satisfy φ in every model of O and A. After nearly 20
years of research, OMQ answering is now well understood both in theory and real-world
applications; consult Bienvenu and Ortiz (2015), Xiao et al. (2018, 2019) for surveys.

One of the main challenges in OBDA has been to identify ontology languages that
strike a good balance between the expressive power required for conceptual modelling and
querying on the one hand and the computational complexity of answering OMQs on the
other. The ontology languages employed for OMQ answering nowadays are either based on
description logics—DLs for short—(Baader et al., 2007, 2017), and in particular the DL-Lite
family (Poggi et al., 2008; Artale et al., 2009), or extensions of datalog and various forms
of tuple-generating dependences (Abiteboul, Hull, & Vianu, 1995) such as linear and sticky
sets of tgds (Cal̀ı et al., 2012b; Cal̀ı et al., 2012a) and existential rules (Baget, Leclère,
Mugnier, & Salvat, 2011). The data complexity of answering OMQs, where only the data is
regarded as an input, while the OMQ is deemed to be fixed (or negligibly small compared
to the data), and the rewritability of OMQs into conventional database queries that can
be directly evaluated over the data without ontology reasoning have emerged as the two
most important measures of the efficiency of OMQ answering. Thus, the DL-Lite-based
ontology language OWL2QL1, which was standardised by W3C specifically for OBDA and
supported by systems such asMastro2 andOntop3, ensures rewritability of all OMQs with
conjunctive queries into first-order (FO) queries, i.e., essentially SQL queries (Abiteboul
et al., 1995). Complexity-wise, it means that such OMQs can be answered in LogTime-
uniform AC0, one of the smallest complexity classes (Immerman, 1999).

In many applications, data comes with timestamps indicating at which moment of time
a fact holds. For instance, suppose we have a database on the submission and publication
of papers in the area of computer science collected from various sources on the Web and
elsewhere. The database may contain, among others, the facts

underSubmissionTo(a, JACM, Feb2017), UnderSubmission(b, Jan2021),

underSubmissionTo(a, JACM, Sep2020), Published(b, Oct2021),

authorOf(Bob, b, May2014), Journal(JACM, Jan1954)

stating that paper a was under submission to JACM in February 2017 and September 2020;
paper b, authored by Bob in May 2014, was under submission in January 2021 (to an
unknown venue) and was published (again in an unknown venue) in October 2021; JACM

1. https://www.w3.org/TR/owl2-profiles
2. https://www.obdasystems.com
3. https://ontopic.ai
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was a journal in January 1954. Observe that the predicates in the snippet above have
a timestamp as their last argument (e.g., Feb2017) and either one or two object domain
arguments (e.g., a, b, Bob, JACM).

While existing standard ontology languages could use concrete datatypes to support
answering queries over timestamped data (e.g., the datatype xsd:dateTime represents times-
tamps in OWL), they do not have the expressive power to model even basic temporal aspects
of the domain, and thus support the formulation of queries taking temporal domain knowl-
edge into account. In particular, OWL does not have comparison operators over concrete
domains, the so-called concrete predicates (Lutz, Areces, Horrocks, & Sattler, 2005), and
so is unable to express any temporal constraints for domain concepts. For instance, in the
context of publishing papers, both ontology engineers and users need means for referring
to a discrete linearly ordered temporal precedence relation in order to define axioms such
as ‘all published papers have previously been accepted’ and formulate queries such as ‘find
all journals x and months t such that all papers under submission at x in t were eventually
published.’

In this article, we combine DLs from the DL-Lite family with the well-established linear
temporal logic LTL (Demri, Goranko, & Lange, 2016) to obtain a hierarchy of ontology
languages that support temporal conceptual modelling and OMQ answering over temporal
data. Our main aim is to explore the trade-off between the expressive power and com-
putational complexity/FO-rewritability of OMQs formulated in these combined languages
that are interpreted over the two-dimensional Cartesian products of an object domain and
a discrete linear order representing a flow of time.

Combinations of DLs with temporal formalisms have been widely investigated since the
pioneering work of Schmiedel (1990) and Schild (1993) in the early 1990s; we refer the
reader to Gabbay et al. (2003), Baader et al. (2007), Artale and Franconi (2005), Lutz et al.
(2008) for surveys and Pagliarecci et al. (2013), Artale et al. (2014), Gutiérrez-Basulto et al.
(2014, 2015, 2016b), Baader et al. (2020a) for more recent developments. However, the main
reasoning task targeted in this line of research was concept satisfiability rather than OMQ
answering, and the general aim was to identify and tailor combinations of temporal and
DL constructs that ensure decidability of concept satisfiability with acceptable combined
complexity.4 In contrast, our main concern in this article is OMQ answering, and thus we
focus instead on the data complexity and FO-rewritability of ontology-mediated queries.

We use the standard discrete time model with the integers Z and the order < as prece-
dence. The temporal operators supplied by LTL are ⃝F (at the next moment of time), 3F

(eventually), 2F (always in the future), U (until), and their past-time counterparts ⃝P (at
the previous moment), 3P (some time in the past), 2P (always in the past) and S (since);
e.g., (Manna & Pnueli, 1992; Gabbay, Hodkinson, & Reynolds, 1994; Demri et al., 2016).

Following the DL terminology, we refer to data instances as ABoxes; in the ABox snip-
pet A above, we call the binary relations UnderSubmission, Published and Journal concept
names and the ternary relations underSubmissionTo and authorOf role names. In general,

4. In a nutshell, the rule of thumb is that to be decidable a temporalised DL should be embeddable into
the monodic fragment of first-order temporal logic, where no temporal operator is applied to a formula
with two free variables (Hodkinson, Wolter, & Zakharyaschev, 2000). Even tiny additions to one-variable
temporal FO such as the ‘elsewhere’ quantifier lead to undecidability (Hampson & Kurucz, 2015).
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an ABox is a finite set of atoms of the form A(a, ℓ) and P (a, b, ℓ), where a, b are individual
names, ℓ ∈ Z is a timestamp, A a concept name, and P a role name.

The combined DL-Lite/LTL ontologies we consider are finite sets of inclusions between
concepts and between roles in the style of DL-Lite, in which temporal operators and DL
constructs (e.g., intersection ⊓ or union ⊔) can be applied to concept and role names to
construct compound concepts and roles. Concept and role inclusions are assumed to be
true at all moments of time. In contrast to standard DL-Lite (and generally DLs), here we
treat roles in the same way as concepts and thus also allow Boolean operators to be applied
to roles. We illustrate the expressive power of our languages using the domain of computer
science papers. By applying temporal operators to roles we can state, for instance, that
underSubmissionTo is convex using

3PunderSubmissionTo ⊓3FunderSubmissionTo ⊑ underSubmissionTo, (1)

and that authorOf is rigid (does not change in time):

3PauthorOf ⊑ authorOf, 3FauthorOf ⊑ authorOf. (2)

Similarly, we can postulate that concept Journal is rigid.5 We could state inclusion similar
to (1) also for the concept name UnderSubmission, but observe that, while convexity of role
underSubmissionTo corresponds to the widespread policy that a paper can be submitted
to the same venue only once, convexity of concept UnderSubmission implies that rejected
papers cannot be submitted to another venue. So far, the role names have not been linked
to the corresponding concept names. From DL-Lite we inherit the capability of doing so
via domain and range restrictions. Thus, we can extend our ontology with the equivalences

∃underSubmissionTo ≡ UnderSubmission, ∃publishedIn ≡ Published, (3)

the first of which, for example, says that every article that is under submission to some
venue is submitted (and the other way round). Observe that a concept inclusion stating
that UnderSubmission and Published are disjoint will imply that the roles underSubmissionTo
and publishedIn are also disjoint. The converse does not hold as there can be submitted
papers that have already been published elsewhere. Additional vocabulary items can be
introduced by stating, for example, that one can only submit to conferences or journals:

∃underSubmissionTo− ⊑ Conference ⊔ Journal, (4)

where the role underSubmissionTo− is the inverse of underSubmissionTo. We denote by O the
ontology snippet with inclusions (1)–(4). To illustrate OMQ answering, consider the atomic
query φ1 = UnderSubmission that asks to find all pairs (x, t) such that paper x is under
submission at time point t. By inclusions (1) and (3) of O, (b, Jan2021) and all pairs in the
interval (a,Feb2017), . . . , (a,Sep2020) are answers to the OMQ q1 = (O, φ1) over A. Next,
consider the OMQ q2 = (O, φ2) with instance query φ2 = ∃authorOf.(UnderSubmission ⊓
3FPublished) asking for pairs (x, t) such that x is an author of a paper that is under submis-
sion at time point t but eventually published. Then, by inclusion (2), (Bob, Jan2021) is the

5. Subtler modelling would be to state that each instance of Journal remains a journal within its lifespan,
which could be done using an additional concept ‘exists’ that, for any moment of time, comprises those
objects that exist at that moment (e.g., Gabbay et al., 2003).
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single answer to this query over A. Observe that both OMQs are rewritable into FO(<),
two-sorted FO with quantification over the convex closure of the time points in the ABox
with the temporal precedence relation < supplemented by quantification over the ABox
individuals. In fact, the following formulas are FO(<)-rewritings of q1 and q2, respectively:

Q1(x, t) = UnderSubmission(x, t) ∨ underSubmissionTo(x, y, t) ∨
∃y, t′, t′′

(
(t′ < t < t′′) ∧ underSubmissionTo(x, y, t′) ∧ underSubmissionTo(x, y, t′′)

)
,

Q2(x, t) = ∃y, t′
(
authorOf(x, y, t′) ∧Q1(y, t) ∧

∃t′′
[
(t′′ > t) ∧

(
Published(y, t′′) ∨ ∃z publishedIn(y, z, t′′)

)])
.

It follows that answering such OMQs is in AC0 for data complexity and can be implemented
using conventional relational database management systems (RDBMSs).

In this article, we determine classes of OMQs all of which are FO(<)-rewritable. To
illustrate, call a concept basic if it is of the form A or ∃S, where A is a concept name,
and S a role name or the inverse thereof. The set of CPrior-concepts is obtained from basic
concepts using arbitrary Boolean connectives and Prior’s temporal operators 2P , 3P , 2F

and 3F (Prior, 1956; Vardi, 2008). CPrior-concept inclusions (CIs) are inclusions between
CPrior-concepts. Also, let R3

horn+ denote the class of role inclusions (RIs) R1⊓· · ·⊓Rn ⊑ R,
where the Ri are roles possibly prefixed by 3P or 3F and R is either ⊥ or a role possibly
prefixed by 2P or 2F . The ontology O above is a union of CPrior-CIs and R3

horn+-RIs. An
atomic OMQ (OMAQ, for short) takes the form (O, B), where B is a basic concept. We
obtain the following rewritability result:

Theorem A. All OMAQs (O, B), where O is a union of CPrior-CIs and R3
horn+-RIs, are

FO(<)-rewritable.

Our next aim is to go beyond OMAQs, as in Theorem A, and admit 2D instance queries
that support both DL and LTL constructs. In fact, our main expressive instance query
language is given by positive temporal concepts, κ, that are constructed from concept
names using ⊓, ⊔, any temporal operators of LTL, and the DL construct ∃S.κ, where
S is a role name or its inverse. An OMQ (O,κ) with such a κ is called an ontology-
mediated positive instance query (or OMPIQ). We cannot expect Theorem A to generalise
to OMPIQs as already for the atemporal ontology consisting of the CI ⊤ ⊑ A⊔B answering
OMPIQs (even without temporal operators in the query) is coNP-hard (Schaerf, 1993),
which implies non-FO(<)-rewritability. This coNP-hardness result also holds for OMPIQs
with a single temporal CI A ⊑ 3PB in the ontology. Nevertheless, we can define an
expressive ontology language with OMPIQs rewritable into FO(<). Let C3

horn denote the
class of CIs C1⊓· · ·⊓Cn ⊑ C, where the Ci are basic concepts possibly prefixed by operators
of the form 3P ,2P ,3F ,2F , and C is either ⊥ or a basic concept possibly prefixed by 2P

or 2F .

Theorem B. All OMPIQs (O,κ), where O is the union of C3
horn-CIs and R3

horn+-RIs, are
FO(<)-rewritable.

Notice that the ontology O from our example without CI (4) is covered by Theo-
rem B. The combined ontology languages considered up to now do not use the temporal
operators ⃝P and ⃝F . In fact, as observed by Artale et al. (2021), already the OMAQ
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({A ⊑ ⃝FB,B ⊑ ⃝FA}, A) is not FO(<)-rewritable. Following this work, we extend FO(<)
to obtain a suitable target language for rewriting OMQs using ⃝P and ⃝F with the data
complexity still in AC0. Let FO(<,≡) be the extension of FO(<) with the unary congru-
ence predicates t ≡ 0 (mod n), for any fixed n > 1. To illustrate our rewritability results
with the target language FO(<,≡), let a DL-Lite⃝core ontology contain any inclusion ϑ1 ⊑ ϑ2
or ϑ1 ⊓ ϑ2 ⊑ ⊥, in which ϑ1, ϑ2 are either basic concepts or roles possibly prefixed by the
operators ⃝P and/or ⃝F . In other words, DL-Lite⃝core is the extension of the DL-Lite dialect
underpinning OWL2QL with the operators ⃝P and ⃝F .

Theorem C. All OMPIQs (O,κ) with a DL-Lite⃝core ontology O are FO(<,≡)-rewritable.

Observe that rigidity of concepts and roles as in (2) can also be expressed using ⃝P

and ⃝F . To cover ontologies that are able to capture (1) and more general Horn-shaped
inclusions as well as ⃝P and ⃝F , we have to go beyond FO(<,≡) as the target language
for rewritings and admit some form of recursion. Again following Artale et al. (2021), we
consider the extension FO(RPR) of FO(<) with relational primitive recursion. Rewritability
into FO(RPR) implies that OMQ answering is in NC1 ⊆ L for data complexity. Note that
FO(RPR)-queries can be expressed in SQL with recursion or procedural extensions, which
are, in general, less efficient and not always supported by RDBMSs. A DL-Lite2⃝

horn ontology
contains CIs and RIs of the form ϑ1 ⊓ · · · ⊓ ϑn ⊑ ϑ, where each ϑi is a basic concept/role
possibly prefixed by operators of the from ⃝F ,3F ,2F ,⃝P ,3P ,2P , and ϑ is either ⊥ or a
basic concept/role possibly prefixed by operators of the form ⃝F ,2F ,⃝P ,2P .

Theorem D. All OMPIQs (O,κ) with a DL-Lite2⃝
horn ontology O are FO(RPR)-rewritable.

Theorems A–D only show a few ‘impressions’ of the results obtained in this article. To
give a natural hierarchy of the combined DL-Lite/LTL OMQs and facilitate a systematic
study of their rewritability and data complexity, we present the ontology languages in a
rather different way than in Theorems A–D, using a clausal normal form to be introduced
in Section 2. An overview of our rewritability and complexity results for ontologies in the
normal form will be provided in Table 3 (Section 5) and Table 4 (Section 6). The theorems
above are then obtained by straightforward polynomial-time normalisations.

We establish our results via a series of reductions to simpler cases. Our first main step

(prj) projects two-dimensional DL-Lite/LTL OMAQs onto one-dimensional LTL OMQs.

Here, by 1D LTL we mean propositional LTL speaking, intuitively, about how a single
individual develops in time; input data is given by 1D ABoxes containing assertions of
the form A(ℓ) with ℓ ∈ Z, and answers to 1D OMQs are sets of timestamps from the 1D
ABox. Artale et al. (2021) obtain 1D rewritability results for the target languages FO(<),
FO(<,≡) and FO(RPR) using automata-theoretic machinery with a few model-theoretic
insights. We apply those results here in a black-box manner. Thus, despite the fact that
ultimately the results obtained in this article heavily rely on automata theory, it is only
present implicitly as the vehicle used by Artale et al. (2021) to obtain 1D rewritings.

It turns out, however, that reduction (prj) is not always possible and, even if possi-
ble, it requires careful treatment. Recall that the interaction between concepts and roles
in classical atemporal DL-Lite ontologies is by design rather weak: it can be captured by
the one-variable fragment of FO if all role inclusions are Horn and by the two-variable
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fragment of FO otherwise (Kontchakov, Ryzhikov, Wolter, & Zakharyaschev, 2020). Tem-
poralised concepts and roles interpreted over 2D Cartesian products of DL-Lite and LTL
structures make the combined logic more expressive than both of its components. For
example, answering OMAQs with Booleans on roles turns out to be similar to reasoning
with the two-variable first-order LTL, which is known to be undecidable (Hodkinson et al.,
2000); see Theorem 10. Even more unexpectedly, as we show in Theorem 27, answering
OMAQs with Horn-shaped CIs and RIs having 2-operators on roles only is NC1-complete
(and so needs recursion), while the OMAQs in the respective DL-Lite and LTL component
fragments are FO(<)-rewritable: in fact, the combined logic is capable of expressing the
operators ⃝F and ⃝P using 2F , 2P and ⊓.

We construct a projection of 2D OMAQs with Boolean CIs and Horn RIs onto 1D LTL
OMAQs by showing that the interaction between the component logics can be captured
using (exponentially many, in general) ‘connecting axioms’ in the form of an implication
between propositional variables possibly prefixed by a temporal operator that, in many
cases, has to be ⃝F or ⃝P , which explains the unexpected increase of expressivity mentioned
above. This projection is, however, sound and complete only if the input OMAQs are
evaluated over ABoxes that are consistent with the ontology. So, before applying (prj), a
preliminary reduction step is required:

(con) reduce FO-rewritability of OMAQs to FO-rewritability of ⊥-free quasi-OMAQs
(restricted OMPIQs with the same rewritability properties as OMAQs),

whose ontology is consistent with any ABox, ensuring soundness and completeness of (prj).
Reduction (con) brings up the problem of deciding whether an ABox is consistent with

an ontology. As this problem is of independent interest for temporal conceptual modelling,
we consider not only the data complexity of deciding consistency but also its combined com-
plexity. Our results are given in Table 2 (Section 4) and provide a systematic investigation
into the way how expressive role inclusions affect the complexity of consistency. While we
confirm that full Boolean expressive power on roles leads to undecidability, we also show
that, rather surprisingly, the restriction to Krom and Horn RIs leads to decidability and
ExpSpace-completeness, even if one admits full Booleans on concepts. The latter result is
one of the very few instances breaking the monodicity barrier in temporal first-order logic,
according to which in almost all instances reasoning about the temporal evolution of binary
relations enables the encoding of undecidable tiling problems (Gabbay et al., 2003). The
upper bounds are proved by relating the temporal DLs considered here to the one-variable
fragment of first-order LTL.

The final and technically most difficult step of our construction shows how to

(lift) lift rewritability and data complexity results from OMAQs to OMPIQs.

This is again not always possible. In particular, as already mentioned above, if the ontology
language admits disjunction, answering OMPIQs is coNP-hard. We thus focus on OMPIQs
whose ontology is given in the combined Horn DL-Lite/LTL language. We construct our
rewritings inductively from the known rewritings of the constituent OMAQs by describing
possible embeddings of the query into the canonical model. The classical atemporal FO-
rewritings of DL-Lite OMQs of, say Poggi et al. (2008), Bienvenu, Kikot, Kontchakov,
Podolskii, and Zakharyaschev (2018), rely upon the key property of DL-Lite that can be
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characterised as ‘concept locality’ in the sense that the concepts a given individual belongs
to in the canonical model only depend on the ABox concepts containing that element, if
any, and the roles adjacent to it, but not on other individuals. The rewritability results
in the temporal case are only possible because concept locality comes together with the
(exponential) periodicity of the temporal evolution of each pair of domain elements in the
canonical models, which can also be captured in FO for any given Horn OMPIQ.

We have chosen to focus in this investigation on OMQs with positive instance queries
because, under the open-world semantics, answers to queries involving negation, implication,
or universal quantification are typically rather uninformative. To illustrate, consider the
OMQ ‘find all journals x and months t such that all papers under submission to x at t are
eventually published in x’,

φ(x, t) = ∀y
(
underSubmissionTo(y, x, t) → 3FpublishedIn(y, x, t)

)
,

where 3FpublishedIn(y, x, t) is an atom built from a positive temporal role 3FpublishedIn.
Under the open-world semantics, this query has no answers over any ABox simply because,
for any journal and month, we can add a paper under submission that was never published.
The epistemic semantics for OMQs with FO-queries proposed by Calvanese, De Giacomo,
Lembo, Lenzerini, and Rosati (2007a) and partially realised in SPARQL (Glimm & Ogbuji,
2013) yields more useful answers. In the query above, the answers (x, t) are then such that
every paper y known to be under submission to x at t is eventually published in x. We
observe that, as expected from the atemporal and 1D temporal cases, for OMQs with FO-
queries that use positive temporal concepts and roles as atoms (e.g., 3FpublishedIn(y, x, t))
interpreted under the epistemic semantics, the data complexity is the same as for OMPIQs.

The article is structured as follows. In the remainder of this section, we briefly dis-
cuss related work. Section 2 introduces our classification of temporal DL-Lite logics, and
Section 3 defines and illustrates OMAQs and OMPIQs with their semantics. Section 4
investigates the combined complexity of checking consistency of knowledge bases in our for-
malisms. Section 5 identifies classes of FO-rewritable OMAQs by projection to LTL, while
Section 6 lifts the obtained results from Horn OMAQs to OMPIQs. First-order temporal
OMQs under the epistemic semantics are briefly considered in Section 7. We conclude in
Section 8 by discussing open problems and directions of further research.

1.1 Related Work

We have already discussed the main related work on atemporal OBDA and on combining
DLs and temporal logic. In this section, we focus on two related topics: (1) work on OMQ
answering over temporal data with discrete linear time and (2) work on temporal deductive
databases. For detailed recent surveys of temporal OMQ answering in general we refer the
reader to Artale et al. (2017), Ryzhikov et al. (2020).

In temporal OMQ answering, there is a basic distinction between formalisms where
temporal constructs are added to both ontology and query languages (as in this article)
and those in which only the query language is temporalised while ontologies are given in
some standard atemporal language. The main advantage of keeping the ontology language
atemporal is that the increase in the complexity of query answering compared to the atem-
poral case (observed also in this article) is less severe, if any. Temporal OMQ answering
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with atemporal ontologies has been introduced and investigated in the context of semantic
technologies for situation awareness; a detailed introduction is given by Baader, Borgwardt,
Koopmann, Thost, and Turhan (2020b). A basic query language, LTL-CQ, proposed in
this framework is obtained from LTL formulas by replacing occurrences of propositional
variables by arbitrary conjunctive queries (CQs). In this framework, a fundamental dis-
tinction is between answering LTL-CQs without any additional temporal constraints and
answering LTL-CQs when some concept and/or role names are declared rigid so that their
interpretation does not change over time. Baader, Borgwardt, and Lippmann (2013, 2015b)
analyse the problem of answering LTL-CQs with respect to ALC and SHQ ontologies and
show, for example, that LTL-CQ answering under ALC ontologies is ExpTime-complete in
combined complexity without rigid names but 2ExpTime-complete with rigid names. Borg-
wardt and Thost (2015a, 2015b) and Baader, Borgwardt, and Lippmann (2015a) analyse
the complexity of answering LTL-CQs for weaker ontology languages such as EL (see below)
and DL-Lite, while Borgwardt, Lippmann, and Thost (2013, 2015) study rewritability of
LTL-CQs. Bourgaux, Koopmann, and Turhan (2019) investigate the problem of querying
inconsistent data, and Koopmann (2019) proposes an extension to probabilistic data. As
the monitoring of systems based on data streams is a major application area for these logics,
it is of interest to be able to answer queries without storing the whole ABox; for such results
on the query language LTL-CQs, we refer the reader to Borgwardt et al. (2015).

In the monitoring context, the temporal query language STARQL inspired by SPARQL
has been proposed and investigated (Özcep & Möller, 2014): its expressive power is quite
different from LTL-CQs as it extends SPARQL with time window operators and comes
with an epistemic semantics similar to ours in Section 7. Efficient query answering under
the assumption that only restricted portions of data, or time windows, are available for
querying is the central problem of a more recent research direction of stream reasoning (e.g.,
Dell’Aglio et al., 2019; Beck et al., 2018; Ajileye et al., 2021).

We next consider the work on OMQ answering with temporal ontologies that combine
LTL with EL instead of DL-Lite. EL underpins the OWL2EL profile of OWL2 (Baader
et al., 2017), and, unlike DL-Lite, it admits qualified existential restrictions, ∃R.C, but not
inverse roles. Since OMQ answering with atemporal EL is P-complete for data complexity,
a more expressive target language than FO(<) is required. Gutiérrez-Basulto et al. (2016a)
consider combinations of fragments of LTL and EL and investigate the complexity and
rewritability of atomic queries. Since those combinations contain no RIs, the only temporal
expressive power in the ontology language for roles is to declare them rigid (CIs can contain
temporal operators). The target language for rewritings is the extension datalog1s of datalog
with a single successor function succ introduced by Chomicki and Imieliński (1988), and
answering atomic OMQs is shown to be P-complete for data and PSpace-complete for
combined complexity in an EL/LTL combination without rigid roles, and PSpace-complete
for data and in ExpTime for combined complexity if rigid roles can occur only on the
left-hand side of CIs. For acyclic ontologies, rewritability into the extension of FO(<)
with the standard numerical predicate + is obtained. Borgwardt, Forkel, and Kovtunova
(2022) investigate an extension of ELH⊥ with diamond-type temporal operators for bridging
gaps in sparse temporal data and show that answering metric temporal rooted CQs with
guarded negation under the minimal-world semantics is P-complete for data and ExpSpace-
complete for combined complexity.
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The extension of relational databases to temporal deductive databases has been an
active area of research for almost 40 years. It is beyond the scope of this discussion to
provide a survey of this field, and we refer the reader instead to the Encyclopaedia of
Database Systems for brief introductions and pointers to the literature (Liu & Özsu, 2018).
Of particular relevance here is the work on the extension of logic programming languages by
temporal operators or by terms for the natural numbers or integers representing time points
and possibly constraints over them in the sense of constraint databases (Kuper, Libkin, &
Paredaens, 2000). Two basic such languages are Templog, which extends Prolog with
the operators 2F , 3F , and ⃝F (restricted to admit Herbrand models) interpreted over the
natural numbers (Baudinet, Chomicki, & Wolper, 1993) and the aforementioned datalog1s,
which offers terms 0, succ(0), . . . ; for further relevant languages consult Revesz (2000). We
share with this research direction the issue of having to deal with infinite intended models
over the integers and thus answering queries over infinite domains. Another main concern
of temporal deductive databases is the problem of finding finite representations of infinite
answers (Baudinet et al., 1993). This problem is beyond the scope of this article, where we
follow the standard approach, which is taken in both database theory and OBDA, and only
look for answers to OMQs from the finite active domain of the input ABox.

The expressive power of the ontologies and OMQs considered in this article and the
queries considered in temporal datalog extensions are incomparable. A major insight of
research into OBDA was the need for existential restrictions on the right-hand side of
concept inclusions. The main datalog extensions considered in temporal deductive databases
do not admit such existential quantifiers (except possibly over the time points). On the other
hand, plain datalog without additional temporal features is already much more expressive
than OMQs with ontologies in Horn DL-Lite dialects without time. As temporal extensions
of datalog inherit this expressive power, query answering is much harder in data complexity
than in the languages we are investigating. Finally, we mention the recent temporalisations
of datalog using the operators of metric temporal logic MTL rather than LTL (Brandt et al.,
2018; Walega et al., 2020a, 2020b; Tena Cucala et al., 2021).

2. Temporal DL-Lite Logics

We begin by defining the ontology languages we investigate in the context of temporal
OBDA via FO-rewriting. The W3C standardised ontology language OWL2QL for atem-
poral OBDA is based on the DL-Lite family (Calvanese et al., 2007b; Artale et al., 2009)
of description logics that was designed as a compromise between two aims:

– the logics should be expressive enough to represent basic conceptual modelling con-
structs (thereby providing a link between relational databases and ontologies), and

– simple enough to guarantee uniform reducibility of OMQ answering to standard
database query evaluation (that is, FO-rewritability, which also ensures that answer-
ing OMQs can be done in AC0 for data complexity).

Conceptual data models for temporal databases (Chomicki, Toman, & Böhlen, 2001) were
analysed and encoded in 2D temporalised DL-Lite logics by Artale et al. (2014), but the
rewritability properties of those logics have remained open. The temporal DL-Lite logics
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we are about to define are constructed similarly to those of Artale et al. (2014). However,
following the standard atemporal OWL2QL, we opted not to include cardinality constraints
in our languages as their interaction with role inclusions ruins FO-rewritability already in
the atemporal case (Artale et al., 2009). On the other hand, we allow role inclusion axioms
of the same shape as concept inclusion axioms.

The alphabet of our temporal DL-Lite logics contains countably infinite sets of individual
names a0, a1, . . . , concept names A0, A1, . . . , and role names P0, P1, . . . . We then construct
roles S, temporalised roles R, basic concepts B, and temporalised concepts C by means of
the following grammar:

S ::= Pi | P−i , R ::= S | 2FR | 2PR | ⃝FR | ⃝PR,

B ::= Ai | ∃S, C ::= B | 2FC | 2PC | ⃝FC | ⃝PC

with the temporal operators 2F (always in the future), 2P (always in the past), ⃝F (at the
next moment), and ⃝P (at the previous moment). A concept or role inclusion takes the form

ϑ1 ⊓ · · · ⊓ ϑk ⊑ ϑk+1 ⊔ · · · ⊔ ϑk+m, (5)

where the ϑi are all temporalised concepts of the form C or, respectively, temporalised roles
of the form R. As usual, we denote the empty ⊓ by ⊤ and the empty ⊔ by ⊥. A TBox T
and an RBox R are finite sets of concept inclusions (CIs, for short) and, respectively, role
inclusions (RIs); their union O = T ∪ R is called an ontology. In the sequel, O, T and R
(possibly with decorations) always denote an ontology, TBox and RBox, respectively.

Following Artale et al. (2021), we classify ontologies depending on the form of their
concept and role inclusions and the temporal operators that are allowed to occur in them.
Let c, r ∈ {g-bool, bool, horn, krom, core} and o ∈ {2,⃝,2⃝}. We denote by DL-Liteoc/r
the temporal description logic whose ontologies contain inclusions of the form (5) with the
(future and past) operators indicated by o (for example, o = 2 means that only 2F and 2P

can be used); in addition, CIs in DL-Liteoc/r satisfy the following restrictions on k and m

in (5) indicated by c:

(horn) m ≤ 1 if c = horn,

(krom) k +m ≤ 2 if c = krom,

(core) k +m ≤ 2 and m ≤ 1 if c = core,

(g-bool) k ≥ 1 and any m if c = g-bool,6

(bool) any k and m if c = bool,

and RIs in DL-Liteoc/r satisfy analogous restrictions on k and m indicated by r. Whenever
c = r, we use a single subscript: DL-Liteoc = DL-Liteoc/c. We shall also require the fragments
DL-Liteo

c/horn+ of DL-Liteoc/horn that disallow temporal operators on the left-hand side of
RIs; without temporal operators, horn+ coincides with horn. Containment between the
fragments are shown in Fig. 1. Note that all of our logics feature disjointness inclusions of
the form ϑ1 ⊓ ϑ2 ⊑ ⊥. However, unlike the standard atemporal DL-Lite logics (Calvanese
et al., 2007b; Artale et al., 2009), which can have various types of CIs but allow only core

6. Here, g stands for ‘guarded’ (Andréka, Németi, & van Benthem, 1998).
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core

krom

hornhorn+

boolg-bool
⊆
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⊆

⊆
⊆

⊆

Figure 1: Containment between fragments (only the shown containments hold).

RIs (of the form S1 ⊑ S2 and S1 ⊓ S2 ⊑ ⊥), we treat CIs and RIs in a uniform way and
impose restrictions on the clausal structure of CIs and RIs separately (the complexity of
reasoning with such atemporal DLs is discussed in Section 2.1 below).

An ABox (or data instance), A, is a finite set of atoms of the form Ai(a, ℓ) and Pi(a, b, ℓ),
where a and b are individual names and ℓ ∈ Z is a timestamp. We write P−(a, b, ℓ) ∈ A
whenever P (b, a, ℓ) ∈ A. We denote by ind(A) the set of individual names that occur in A,
by minA and maxA the minimal and maximal integer numbers occurring in A, and set
tem(A) =

{
n ∈ Z | minA ≤ n ≤ maxA

}
. To simplify constructions and without much

loss of generality, we assume that 0 = minA and 1 ≤ maxA, implicitly adding ‘dummies’
such as D(a, 0) and D(a, 1) if necessary, where D is a fresh concept name (which will
never be used in queries). A DL-Liteoc/r knowledge base (KB) is a pair (O,A), where O
is a DL-Liteoc/r ontology and A an ABox. The size |O| of an ontology O is the number
of occurrences of symbols in O; the size of a TBox, RBox, ABox, and knowledge base is
defined analogously assuming that the numbers (timestamps) in ABoxes are given in unary.

A (temporal) interpretation is a pair I = (∆I , ·I(n)), where ∆I ̸= ∅ and, for each n ∈ Z,

I(n) = (∆I , aI0 , . . . , A
I(n)
0 , . . . , P I(n)0 , . . . ) (6)

is a standard (atemporal) description logic interpretation with aIi ∈ ∆I , AI(n)i ⊆ ∆I and
P I(n)i ⊆ ∆I ×∆I . Thus, we assume that the domain ∆I and the interpretations aIi ∈ ∆I

of the individual names are the same for all n ∈ Z. (However, we do not adopt the unique
name assumption, which does not affect our results.) The description logic and temporal
constructs are interpreted in I(n) as follows:

(P−i )I(n) =
{
(u, v) | (v, u) ∈ P

I(n)
i

}
, (∃S)I(n) =

{
u | (u, v) ∈ SI(n), for some v

}
,

(2Fϑ)
I(n) =

⋂
k>n

ϑI(k), (2Pϑ)
I(n) =

⋂
k<n

ϑI(k), (7)

(⃝Fϑ)
I(n) = ϑI(n+1), (⃝Pϑ)

I(n) = ϑI(n−1). (8)

CIs and RIs are interpreted in I globally in the sense that inclusion (5) is true in I if

ϑ
I(n)
1 ∩ · · · ∩ ϑI(n)k ⊆ ϑ

I(n)
k+1 ∪ · · · ∪ ϑI(n)k+m, for all n ∈ Z.

As usual, ⊥ (the empty ⊔) is interpreted by ∅, and ⊤ (the empty ⊓) by ∆I for concepts
and by ∆I × ∆I for roles. Given an inclusion α, we write I |= α if α is true in I. We
call I a model of (O,A) and write I |= (O,A) if I |= α for all α ∈ O, aI ∈ AI(ℓ) for all
A(a, ℓ) ∈ A, and (aI , bI) ∈ P I(ℓ) for all P (a, b, ℓ) ∈ A. We say that O is consistent if there
is an interpretation I, a model of O, such that I |= α, for all α ∈ O; we also say that A
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is consistent with O if there is a model of (O,A). For an inclusion α, we write O |= α if
I |= α for every model I of O. A concept C is consistent with O if there is a model I of O
and n ∈ Z such that CI(n) ̸= ∅; consistency of roles with O is defined analogously.

In the sequel, we assume that our RBoxes are closed under taking the inverses of roles in
RIs in the sense that, together with every RI (say, ⃝PP1⊓2FP

−
2 ⊑ P−3 ), the RBox contains

the corresponding RI for the inverse roles (⃝PP
−
1 ⊓ 2FP2 ⊑ P3 in this instance). However,

to avoid notational clutter, we do not mention RIs with inverse roles in our examples.

It is not hard to see that, for any DL-Liteoc/r ontology O, one can construct a DL-Liteoc/r
ontology O′, possibly using some fresh concept and role names, such that O′ contains no
nested temporal operators, the size of O′ is linear in the size of O, and O′ is a model-
conservative extension7 of O, which implies that O and O′ give the same certain answers
to queries (to be formally defined in Section 3). For example, the inclusion 2F⃝PA ⊑ B
in O can be replaced with two inclusions ⃝PA ⊑ A′ and 2FA

′ ⊑ B, where A′ is a fresh
name. In what follows and where convenient, we assume without loss of generality that our
ontologies do not contain nested temporal operators.

Although we do not include the standard LTL operators 3F (eventually), 3P (some time
in the past), U (until) and S (since) in our ontology languages, all of them can be expressed
in the bool fragment (but not necessarily in smaller fragments). For example, A ⊑ 3FB can
be simulated by two krom inclusions with 2F and a fresh name A′: namely, A ⊓ 2FA

′ ⊑ ⊥
and ⊤ ⊑ A′ ⊔ B. However, it cannot be expressed in core or horn fragments; more details
and examples can be found in (Artale et al., 2021). Each of our ontology languages can say
that a concept A is expanding (by means of A ⊑ ⃝FA in the languages with ⃝ and A ⊑ 2FA
in the languages with 2) or rigid (using, in addition, A ⊑ ⃝PA and A ⊑ 2PA, respectively),
and similarly for roles. Finally, note that DL-Lite2

horn/horn+ extends the temporal ontology
language TQL (Artale, Kontchakov, Wolter, & Zakharyaschev, 2013b), which only allows
3P and 3F on the left-hand side of horn CIs and RIs: 3PA ⊑ B is equivalent to A ⊑ 2FB.
Thus, convexity axioms such as (1) for both concepts and roles are expressible in this
language:

underSubmissionTo ⊑ 2FwasUST, underSubmissionTo ⊑ 2PwillBeUST,

wasUST ⊓ willBeUST ⊑ underSubmissionTo,

where wasUST and willBeUST are two fresh roles names.

2.1 Remarks on the Underlying Description Logics

We conclude Section 2 with a brief summary of what is known about the computational
complexity of reasoning with the DL fragments of our temporal DL-Lite logics; for more
details the reader is referred to Kontchakov et al. (2020).

Table 1a shows the known results on the combined complexity of checking whether
a given knowledge base is consistent (with both ontology and ABox regarded as input).
Observe first that the most expressive DL-Lite logic, which admits Boolean CIs and RIs, is

7. An ontology O′ is a model conservative extension of an ontology O if O′ entails O, the signature of O is
contained in the signature of O′, and every model of O can be extended to a model of O′ by providing
interpretations of the fresh symbols of O′ and leaving the domain and the interpretation of the symbols
in O unchanged.
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role concept inclusions
inclusions bool krom horn core

bool NExpTime NExpTime
g-bool ExpTime ExpTime
krom NP NL NP NL
horn NP P P P
core NP NL P NL

a) Consistency: combined complexity.

role concept inclusions
inclusions bool krom horn core

bool coNP coNP
g-bool coNP coNP
krom coNP/in AC0 coNP/in AC0

horn coNP/in AC0 in AC0

core coNP/in AC0 in AC0

b) Instance/atomic queries: data complexity.

Table 1: Complexity of the underlying (non-temporal) description logics. For data com-
plexity, a single result is shown when it holds for both instance queries (ELUI-
concepts) and atomic queries (concept names).

contained in the two-variable fragment FO2 of first-order logic (FO) in the sense that, for
every inclusion, one can construct in linear time an equivalent sentence in FO2. From the
NExpTime upper bound for consistency in FO2 we then obtain NExpTime membership
for consistency for all our DL-Lite logics. A matching lower bound is proved by Kontchakov
et al. (2020) for the logic admitting Boolean CIs and RIs by observing that the extension
ALC⊤,id,∩,¬,− of ALCI with Boolean operators for roles captures FO2 (Lutz, Sattler, &
Wolter, 2001) and that, for every CI without the identity role in ALC⊤,id,∩,¬,−, one can
construct in polynomial time a model conservative extension in the DL-Lite logic. By
disallowing RIs of the form ⊤ ⊑ ϑ1 ⊔ · · · ⊔ ϑm, we obtain a DL-Lite logic whose CIs and
RIs are translated into guarded FO2-sentences (Andréka et al., 1998). Observe that no such
restriction is needed for CIs: for instance, the standard FO-translation of the CI ⊤ ⊑ A⊔B
is the guarded sentence ∀x

(
(x = x) → A(x) ∨ B(x)

)
. This logic inherits from guarded

FO2 that consistency is ExpTime-complete. The DL-Lite logics with Horn/Krom RIs are
polynomially reducible (preserving Horness/Kromness) to propositional logic. Finally, the
DL-Lite logics with core RIs are well-documented in the literature: the one with core CIs
goes under the monikers DL-LiteR (Calvanese et al., 2007b) and DL-LiteHcore (Artale et al.,
2009); the one with Horn CIs is known as DL-LiteR,⊓ (Calvanese, De Giacomo, Lembo,
Lenzerini, & Rosati, 2006) and DL-LiteHhorn (Artale et al., 2009); the remaining two logics
are called DL-LiteHkrom and DL-LiteHbool (Artale et al., 2009).

In the context of answering ontology-mediated queries to be discussed in the sequel,
we are interested in the data complexity (when only the ABox is regarded as input) of the
instance checking problem for concepts constructed from concept names using ⊓, ⊔ and the
qualified existential restriction ∃S.C (in other words, ELUI-concepts). The coNP upper
bound in Table 1b follows, e.g., from the results on the two-variable FO with counting
quantifiers (Pratt-Hartmann, 2009), the coNP lower bound for the ontology {⊤ ⊑ A ⊔B}
with a single Krom CI was established by Schaerf (1993); see also Section 6. This Krom CI
can obviously be expressed by a Krom RI; using the guarded RI P ⊑ R⊔Q, one can capture
the CI A ⊑ B⊔C, for which instance checking is also coNP-hard (e.g., Gerasimova, Kikot,
Kurucz, Podolskii, & Zakharyaschev, 2020). The AC0 upper bound (FO-rewritablity, to
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be more precise) for Horn CIs and core RIs is a classical result of Calvanese et al. (2006,
2007b), which can be readily extended to Horn RIs (Kontchakov et al., 2020). The AC0

upper bound can also be extended to Krom RIs for atomic queries (which is essentially the
consistency problem). On the other hand, for DL-Lite ontologies with (guarded) Boolean
RIs, coNP-hardness already holds for atomic queries (concept names) as we can encode
instance queries in the ontology by using the correspondence with ALC⊤,id,∩,¬,− mentioned
above; see Theorem 43 in Appendix A.

3. Ontology-Mediated Atomic and Positive Instance Queries

We use as our main query language positive temporal concepts and roles. The most impor-
tant alternative options are (fragments of) two-sorted first-order logic, and we first briefly
motivate our choice. The restriction to positive fragments is standard in OBDA since the
use of negation, implication, or universal quantification hardly yields satisfactory answers
to queries. For those connectives, an epistemic semantics appears to be more appropriate;
we shall discuss it in Section 7. Using (variations of) LTL to query temporal data has a
long tradition, going back more than 30 years (Chomicki, 1994). In fact, by Kamp’s cele-
brated theorem (Kamp, 1968), propositional temporal logic over discrete (and more general
Dedekind complete) linear orders has the same expressive power as monadic first-order
logic, and so LTL supplies a user-friendly query language without sacrificing expressivity.
An analogous result can be proved for the positive fragment of LTL (Artale et al., 2021).
It follows that as far as querying the temporal evolution of a single individual is concerned,
we do not lose any expressive power compared to positive monadic first-order logic. In con-
trast, in the 2D case our language does have less expressive power than positive two-sorted
first-order logic since already the atemporal part of our queries only captures tree-shaped
positive existential queries rather than arbitrary positive existential queries. We believe
this restriction is justified as it leads to a user-friendly variable-free query language com-
plementing the language used in the ontology. The extension of our results to a language
supporting arbitrary positive existential queries is non-trivial and left for future work.

We now introduce our basic language for querying temporal knowledge bases. It consists
of positive temporal concepts, κ, and positive temporal roles, ϱ, that are defined by the
following grammar:

κ ::= ⊤ | Ak | ∃S.κ | κ1 ⊓ κ2 | κ1 ⊔ κ2 | op1 κ | κ1 op2 κ2,

ϱ ::= S | ϱ1 ⊓ ϱ2 | ϱ1 ⊔ ϱ2 | op1 ϱ | ϱ1 op2 ϱ2,

where op1 ∈ {⃝F ,3F ,2F ,⃝P ,3P ,2P} and op2 ∈ {U ,S}. Let I = (∆I , ·I(n)) be an inter-
pretation. The extensions κI(n) of κ in I, for n ∈ Z, are determined using (7)–(8) and the
following:

⊤I(n) = ∆I , (∃S.κ)I(n) =
{
u ∈ ∆I | (u, v) ∈ SI(n), for some v ∈ κI(n)

}
,

(κ1 ⊓ κ2)
I(n) = κI(n)1 ∩ κI(n)2 , (κ1 ⊔ κ2)

I(n) = κI(n)1 ∪ κI(n)2 ,

(3Fκ)I(n) =
⋃
k>n

κI(k), (3Pκ)I(n) =
⋃
k<n

κI(k),

(κ1 U κ2)
I(n) =

⋃
k>n

(
κI(k)2 ∩

⋂
n<m<k

κI(m)
1

)
, (κ1 S κ2)

I(n) =
⋃
k<n

(
κI(k)2 ∩

⋂
k<m<n

κI(m)
1

)
.
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Figure 2: Fragments of models in Example 1.

The definition of ϱI(n) is analogous. Note that positive temporal concepts κ and roles ϱ
include all temporalised concepts C and roles R, respectively (∃S is a shortcut for ∃S.⊤).

A DL-Liteoc/r ontology-mediated positive instance query (OMPIQ) is a pair of the form

q = (O,κ) or q = (O, ϱ), whereO is a DL-Liteoc/r ontology, κ is a positive temporal concept,

and ϱ a positive temporal role (which can use all temporal operators, not necessarily only
those in o). If κ is a basic concept (i.e., A or ∃S) and ϱ a role, then we refer to q as
an ontology-mediated atomic query (OMAQ). The size, |κ|, |ϱ|, and |q|, is the number of
occurrences of symbols in κ, ϱ and q, respectively.

A certain answer to an OMPIQ (O,κ) over an ABox A is a pair (a, ℓ) ∈ ind(A)×tem(A)
such that aI ∈ κI(ℓ) for every model I of (O,A). A certain answer to (O, ϱ) over A is
a triple (a, b, ℓ) ∈ ind(A) × ind(A) × tem(A) such that (aI , bI) ∈ ϱI(ℓ) for every model I
of (O,A). The set of all certain answers to q over A is denoted by ans(q,A). As a technical
tool in our constructions, we also require ‘certain answers’ in which ℓ ranges over the whole Z
rather than only the finite active temporal domain tem(A); we denote the (possibly infinite)
set of such certain answers over A and Z by ansZ(q,A).

Example 1. Suppose T = {A ⊑ ∃P }, R = {P ⊑ ⃝FQ }, and κ = ∃P.⃝F∃Q−.B.
For A1 = {P (a, b, 0), Q(c, b, 1), B(c, 1)} and q1 = (∅,κ), we have ans(q1,A1) = {(a, 0)}
because aI ∈ κI(0) for any model I of A1; see Fig. 2a. For A2 = {P (a, b, 0), B(a, 1)} and
q2 = (R,κ), we also have ans(q2,A2) = {(a, 0)} because (aI , bI) ∈ QI(1), for every model I
of A2 and R; see Fig. 2b. For A3 = {A(a, 0), B(a, 1)} and q3 = (T ∪ R,κ), we again have
ans(q3,A3) = {(a, 0)} because, in every model I of (T ∪ R,A3), there exists u ∈ ∆I with
(aI , u) ∈ P I(0) and (aI , u) ∈ QI(1); see Fig. 2c.

Consider ϱ = P ⊓⃝FQ with T and R as above. For A4 = {A(a, 0)} and q4 = (T ∪R, ϱ),
we obviously have ans(q4,A4) = {(a, b, 0)}, while ans(q5,A4) = ∅ for q5 = (T ∪ T ′, ϱ),
where T ′ = { ∃P− ⊑ ⃝F∃Q− }.

By the OMPIQ answering problem for DL-Liteoc/r we understand the decision problem
for the set ans(q,A), where q is a DL-Liteoc/r OMPIQ and A an ABox. In the context of
OBDA, we are usually interested in the data complexity of this problem when q is considered
to be fixed or negligibly small compared to data A, which is regarded as the only input to the
problem (Vardi, 1982). In the atemporal case, the data complexity of answering conjunctive
queries mediated by ontologies from the DL-Lite family is well understood (Calvanese et al.,
2007b; Artale et al., 2009): it ranges from AC0—which guarantees FO-rewritability (see
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below)—to P and further to coNP (see also Table 1)8. The data complexity of answering
LTL OMQs is either AC0 or NC1 (Artale et al., 2021); we remind the reader that

AC0 ⊊ NC1 ⊆ L ⊆ P ⊆ coNP.

As our aim here is to identify families of OMPIQs answering which can be done in AC0 or
NC1, we now look at these two complexity classes in more detail.

Let A be an ABox with ind(A) = {a0, . . . , am}. Without loss of generality, we always
assume that maxA ≥ m (if this is not so, we simply add a ‘dummy’ D(a0,m) to A). We
represent A as a first-order structure SA with domain tem(A) ordered by < such that

SA |= A(k, ℓ) iff A(ak, ℓ) ∈ A and SA |= P (k, k′, ℓ) iff P (ak, ak′ , ℓ) ∈ A,

for any concept and role names A, P and any k, k′, ℓ ∈ tem(A). To simplify notation, we
often identify an individual name ak ∈ ind(A) with its numerical representation k ∈ tem(A).
As a technical tool in our constructions, we also use infinite first-order structures SZ

A with
domain Z that are defined in the same way as SA but over the whole Z.

The structure SA represents a temporal database over which we can evaluate first-order
formulas (queries) with data atoms of the form A(x, t) and P (x, y, t) as well as atoms with
the order t1 < t2 and congruence t ≡ 0 (mod n) predicates, for n > 1. It is well-known (Im-
merman, 1999) that the evaluation problem for FO-formulas with arbitrary numerical pred-
icates is in non-uniform AC0 for data complexity, the class of languages computable by
bounded-depth polynomial-size circuits with unary not-gates and unbounded fan-in and-
and or-gates. In this article, we require FO(<)-formulas, which only use data and or-
der atoms, and FO(<,≡)-formulas, which in addition may contain congruence atoms of
the form t ≡ 0 (mod n). Evaluation of FO(<,≡)-formulas is known to be in LogTime-
uniform AC0 for data complexity (Immerman, 1999). We also use FO(RPR)-formulas,
that is, FO-formulas extended with relational primitive recursion (RPR), whose evaluation
is in NC1 for data complexity (Compton & Laflamme, 1990), the class computed by a
family of polynomial-size logarithmic-depth circuits with gates of at most two inputs. We
remind the reader that, using RPR, we can construct formulas Φ(z, z1, . . . ,zn) such as Q1(z1, t) ≡ Θ1

(
z1, t, Q1(z1, t− 1), . . . , Qn(zn, t− 1)

)
. . .
Qn(zn, t) ≡ Θn

(
zn, t, Q1(z1, t− 1), . . . , Qn(zn, t− 1)

)
 Ψ(z, z1, . . . ,zn),

where the part of Φ within [. . . ] defines recursively, via the FO(RPR)-formulas Θi, the
interpretations of the predicates Qi in the FO(RPR)-formula Ψ. The recursion starts at
t = 0 assuming that Qi(zi,−1) is false for all Qi and zi, 1 ≤ i ≤ n. Thus, the truth
value of Qi(zi, 0) is computed by substituting falsehood ⊥ for all Qi(zi,−1). We allow
the relation variables Qi to occur in only one recursive definition [. . . ], so it makes sense
to write SA |= Qi(ni, k), for any tuple ni in tem(A) and k ∈ tem(A), if the computed
value is ‘true’. Using thus defined truth-values, we compute inductively the truth-relation
SA |= Ψ(n,n1, . . . ,nn), and so SA |= Φ(n,n1, . . . ,nn), as usual in first-order logic. It

8. The fine-grained combined complexity of answering conjunctive queries mediated by OWL2QL ontolo-
gies was investigated by Bienvenu et al. (2018).
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is to be noted that FO(RPR) offers a rather limited form of recursion that can only infer
a predicate at t if certain predicates hold at t − 1, which puts RPR near the bottom in
the hierarchy of fixed-point operations, below the (deterministic) transitive closure, least
fixed-point, etc. (Immerman, 1999).

Definition 2. Let L be one of the three classes of FO-formulas introduced above. A
constant-free L-formula Q(x, t) is said to be an L-rewriting of an OMPIQ q = (O,κ) if
ans(q,A) =

{
(a, ℓ) ∈ ind(A) × tem(A) | SA |= Q(a, ℓ)

}
, for any ABox A. Similarly, a

constant-free L-formula Q(x, y, t) is an L-rewriting of an OMPIQ q = (O, ϱ) if we have
ans(q,A) =

{
(a, b, ℓ) ∈ ind(A)× ind(A)× tem(A) | SA |= Q(a, b, ℓ)

}
, for any ABox A.

It follows from the definition that answering FO(<)- and FO(<,≡)-rewritable OMPIQs
is in AC0 for data complexity, and answering FO(RPR)-rewritable OMPIQs is in NC1. We
illustrate these three types of FO-rewriting by instructive examples.

Example 3. Consider the DL-Lite⃝core OMPIQs q = (T ∪R, Q) and q′ = (T ∪R,κ), where
T , R and κ are as in Example 1. It is readily seen that Q(x, y, t) = Q(x, y, t)∨P (x, y, t−1)
is an FO(<)-rewriting of q, where P (x, y, t− 1) abbreviates

∃t′
(
(t′ < t) ∧ ¬∃s

(
(t′ < s) ∧ (s < t)

)
∧ P (x, y, t′)

)
;

consult Artale et al. (2021, Remark 3). The ABoxes A1–A3 from Example 1 show three
sets of atoms at least one of which must be present in an ABox A for (a, 0) to be a certain
answer to q′ over A; see Fig. 2. This observation implies that an FO(<)-rewriting of q′ can
be defined as Q′(x, t) = Q1(x, t) ∨Q2(x, t) ∨Q3(x, t), where

Q1(x, t) = ∃y, z
(
P (x, y, t) ∧Q(z, y, t+ 1) ∧B(z, t+ 1)

)
,

Q2(x, t) = ∃y
(
P (x, y, t) ∧B(x, t+ 1)

)
,

Q3(x, t) = A(x, t) ∧B(x, t+ 1),

and B(x, t+ 1) and B(z, t+ 1) are shortcuts similar to P (x, y, t− 1) above.

Example 4. Consider the DL-Lite2horn/core OMPIQ q = (T ∪ R, A ⊓ ∃S) with

T = { ∃R ⊑ ∃S }, R = {S ⊑ 2PT, S ⊑ 2F2F2FP, 2P2P2PT ⊓2FP ⊑ R }.

We first observe that R |= S ⊑ ⃝F⃝FR, and so T ∪ R |= ∃S ⊑ ⃝F⃝F∃S, although we do
not have T ∪R |= S ⊑ ⃝F⃝FS; see Fig. 3. Now, for every ABox An = {S(a, b, 0), A(a, n) },
n ≥ 0, we have ans(q,An) = {(a, n)} iff n is even; otherwise, ans(q,An) = ∅. This suggests
the following FO(<,≡)-rewriting of q:

Q(x, t) = A(x, t) ∧ ∃y, s
([
R(x, y, s) ∨ S(x, y, s)

]
∧ (t− s ∈ 0 + 2N)

)
,

where t−s ∈ 0+2N is an FO(<,≡)-formula φ(t, s) such thatSA |= φ(n,m) iff n−m ∈ 0+2N
and p+ qN is the set { p+ qk | k ≥ 0 }, for p, q ≥ 0 (Artale et al., 2021, Remark 3). Note,
however, that q is not FO(<)-rewritable since properties such as ‘the size of the domain
is even’ are not definable by FO(<)-formulas, which can be established using a standard
Ehrenfeucht-Fräıssé argument (Straubing, 1994; Libkin, 2004). On the other hand, all
LTL2

horn OMPIQs are FO(<)-rewritable (Artale et al., 2021).
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Figure 3: Structure of models in Example 4 (roles T and P are shown only for (u, v)).

Example 5. As shown by Artale et al. (2021, Example 5), the OMAQ q = (O, B0) with

O = {⃝PBk ⊓A0 ⊑ Bk, ⃝PB1−k ⊓A1 ⊑ Bk | k = 0, 1 }

encodes Parity in the following sense. For any binary word e = (e1, . . . , en) ∈ {0, 1}n, let
Ae = {B0(a, 0) } ∪ {Aei(a, i) | 0 < i ≤ n }. Then (a, n) is a certain answer to q over Ae iff
the number of 1s in e is even. As Parity is not in AC0 (Furst, Saxe, & Sipser, 1984), q is
not rewritable to any FO-formula with numerical predicates. An FO(RPR)-rewriting of q
inspired by Artale et al. (2021, Example 5) is shown below:

Q(x, t) =

[
Q0(x, t) ≡ Θ0(x, t,Q0(x, t− 1), Q1(x, t− 1))
Q1(x, t) ≡ Θ1(x, t,Q0(x, t− 1), Q1(x, t− 1))

]
Q0(x, t),

where, for k = 0, 1, the formula Θk(x, t,Q0(x, t− 1), Q1(x, t− 1)) is

Bk(x, t) ∨
(
Qk(x, t− 1) ∧A0(x, t)

)
∨
(
Q1−k(x, t− 1) ∧A1(x, t)

)
.

We obtain our FO-rewritability results for temporal DL-Lite OMPIQs in three steps.
First, we reduce FO-rewritability of OMAQs to FO-rewritability of ⊥-free OMPIQs of some
restricted form (whose ontology is consistent with all ABoxes). Then, we further reduce,
where possible, FO-rewritability of those ⊥-free restricted OMPIQs to FO-rewritability
of LTL OMAQs, which has been thoroughly investigated by Artale et al. (2021). This
‘projection’ of a 2D formalism onto one of its ‘axes’ relies on the fact that atemporal DL-
Lite ontologies with Horn or Krom RIs can be encoded in the one-variable fragment of
first-order logic (Artale et al., 2009). The third step reduces FO-rewritability of some
DL-Lite2⃝

horn OMPIQs to FO-rewritability of OMAQs using model-theoretic considerations.
In the remainder of Section 3, we first briefly remind the reader of LTL OMAQs and

OMPIQs (Artale et al., 2021) and make two basic observations on the reducibility of an-
swering DL-Liteoc/r OMAQs that do not contain interacting concepts and roles to answering
LTLo

c and LTLo
r OMAQs.

3.1 LTL OMAQs and OMPIQs

LTLo
c OMAQs and OMPIQs can be defined as DL-Liteoc OMAQs and OMPIQs of the form

q = (O, A) and, respectively, q = (O,κ) that contain no occurrences of roles. In this case,
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O is referred to as an LTLo
c ontology. We assume (without loss of generality) that an LTL

ABox A has one fixed individual name, a, and consists of assertions of the form C(a, ℓ)
with a role-free temporalised concept C. In an LTL interpretation I, we have ∆I = {a}
and P

I(n)
i = ∅ for all role names Pi and n ∈ Z. To simplify notation, we write I |= C(n)

instead of aI ∈ CI(n) and C(ℓ) ∈ A instead of C(a, ℓ) ∈ A.
The key property of LTL2⃝

horn we need is that every consistent LTL2⃝
horn KB (O,A) has a

canonical model CO,A, which can be defined as the intersection of all of its models:

CO,A |= Ai(n) iff I |= Ai(n), for all models I with I |= (O,A), (9)

for every concept name Ai (Artale, Kontchakov, Ryzhikov, & Zakharyaschev, 2013a). (An
alternative, syntactic, definition of the canonical models is given in Section 6.1.)

Denote by subO the set of all subconcepts occurring inO and their negations. By τO,A(n)
we denote the set of all C ∈ subO with CO,A |= C(n), where we write CO,A |= ¬C ′(n) iff
CO,A ̸|= C ′(n). It is known that every satisfiable LTL-formula is satisfied in an ultimately
periodic model (Sistla & Clarke, 1985). Since CO,A is the minimal model in the sense
of (9), it is also ultimately periodic. This is formalised in the next lemma, which follows
immediately from Lemmas 19 and 21 by Artale et al. (2021). The periodic structure will
be used for defining our FO-rewritings in the sequel.

Lemma 6. (i) For any consistent LTL2⃝
horn KB (O,A) with {C | C(ℓ) ∈ A} ⊆ subO, there

are positive integers sO,A ≤ 2|O| and pO,A ≤ 22|O| such that

τO,A(n) = τO,A(n− pO,A), for n ≤ minA− sO,A,

τO,A(n) = τO,A(n+ pO,A), for n ≥ maxA+ sO,A.
(10)

If O is an LTL2
horn ontology, one can take sO,A ≤ |O| and pO,A = 1.

(ii) For any LTL2⃝
horn ontology O, there are positive integers sO ≤ 2|O| and pO ≤ 22|O|·2

|O|

such that, for any ABox A consistent with O and with {C | C(ℓ) ∈ A} ⊆ subO, we have

τO,A(n) = τO,A(n− pO), for n ≤ minA− sO,

τO,A(n) = τO,A(n+ pO), for n ≥ maxA+ sO.
(11)

If O is an LTL2
horn ontology, one can take sO ≤ |O| and pO = 1.

3.2 Projecting Temporal DL-Lite OMAQs to LTL: Initial Observations

Consider a DL-Liteoc/r OMAQ q = (T , B0) with a basic concept B0 such that the ontology
does not have role inclusions. Define an LTLo

c OMAQ q† = (T , B0)
† as follows. For basic

concepts A and ∃S, set
A† = A and (∃S)† = ES ,

where ES is a fresh concept name, the surrogate of ∃S. The TBox T † of (T , B0)
† is

obtained from T by replacing every basic concept B with B†; the LTL-translation C† of a
temporalised concept C is defined analogously. Given an ABox A and a ∈ ind(A), denote

by A†a an LTL ABox that consists of all ground atoms A(ℓ) for A(a, ℓ) ∈ A and ES(ℓ) for
S(a, b, ℓ) ∈ A (remembering that S−(b, a, ℓ) ∈ A iff S(a, b, ℓ) ∈ A).
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Suppose now that the TBox T does not contain ⊥ in the sense that all inclusions have
at least one temporalised concept on the right-hand side; such T is called ⊥-free. We claim
that

ansZ(q,A) =
{
(a, n) | a ∈ ind(A) and n ∈ ansZ(q†,A†a)

}
. (12)

Indeed, it suffices to show that, for any a ∈ ind(A) and n ∈ Z, there is a model I of (T ,A)

with a /∈ B
I(n)
0 iff there is a model Ia of (T †,A†a) with Ia ̸|= B†0(n). Direction (⇒) is easy:

every model I of (T ,A) gives rise to the LTL-interpretations Ib, for b ∈ ind(A), defined
by taking Ib |= A(n) iff b ∈ AI(n), and Ib |= ES(n) iff b ∈ (∃S)I(n). It is readily seen
by induction that, for any temporalised concept C and any n ∈ Z, we have b ∈ CI(n) iff
Ib |= C†(n), and so the Ib are models of (T †,A†b).

For (⇐), a bit more work is needed. For each b ∈ ind(A) different from the given a, we

take any model Ib of (T †,A†b). Further, for any role S and any n ∈ Z, we take a model
IS,n of (T , {∃S−(wS , n)}), for some fresh individual name wS . These models exist because
T is ⊥-free. Finally, define an interpretation I by taking, for all b, c ∈ ind(A) and n ∈ Z:
b ∈ AI(n) iff Ib |= A(n), (b, c) ∈ SI(n) iff S(b, c, n) ∈ A, and (b, wS) ∈ SI(n) iff Ib |= ES(n).
Note that b ∈ (∃S)I(n) iff In |= ES(n). Using this fact, it is not hard to show by induction
that, for any temporalised concept C and any n ∈ Z, we have b ∈ CI(n) iff Ib |= C†(n). It
follows that I is the model of (T ,A) as required.

Equality (12) gives us the following:

Proposition 7. Let L be FO(<), FO(<,≡), or FO(RPR). A ⊥-free DL-Liteoc/r OMAQ
(T , B) with a basic concept B is L-rewritable if the LTLo

c OMAQ (T , B)† is L-rewritable.

Proof. We obtain an L-rewriting of (T , B) from an L-rewritingQ†(t) of (T , B)† by replacing
every atom of the form A(s) with A(x, s), every EP (s) with ∃y P (x, y, s) and every EP−(s)
with ∃y P (y, x, s). In the case of FO(RPR), we additionally replace every Q(t1, . . . , tk), for
a relation variable Q, with Q(x, t1, . . . , tk). ❑

Consider now a DL-Liteoc/r OMPIQ q = (O, ϱ) with O = T ∪R and a positive temporal
role ϱ. For every role name P , we introduce two concepts names AP and AP− . LetR‡ and ϱ‡
be the results of replacing each role S in them with AS , and let q‡ = (O, ϱ)‡ = (R‡, ϱ‡).
Given an ABox A and a, b ∈ ind(A), denote by A‡a,b the LTL ABox with the atoms AS(ℓ)
such that S(a, b, ℓ) ∈ A; by the assumption made in Section 2, A‡b,a will contain AS−(ℓ).

First, observe that ontologies without TBoxes have the following important property:

Proposition 8. A DL-Liteoc/r KB (R,A) is consistent iff the LTLo
r KB (R‡,A‡a,b) is con-

sistent, for every a, b ∈ ind(A).

Proof. Every interpretation I with domain ind(A) and empty concept names is the ‘sum’
of LTL interpretations Ia,b for the concepts S‡, with a, b ∈ ind(A): if the Ia,b and Ib,a agree
on role inverses, then we take P I(n) = {(a, b) | Ia,b |= P ‡(n)}, for each role name P . It
remains to observe that every consistent (R,A) has a model with domain ind(A) and the
empty interpretation of concept names. ❑

Suppose now that q = (O, ϱ) is ⊥-free. We claim that

ansZ(q,A) =
{
(a, b, n) | a, b ∈ ind(A) and n ∈ ansZ(q‡,A‡a,b)

}
. (13)
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Indeed, since R is ⊥-free and so trivially consistent, models of (R,A) are ‘sums’ of models of
(R‡,A‡a,b); see Proposition 8. As T is ⊥-free, the TBox does not affect ansZ(q,A). Indeed,
every model of (O,A) is a model of (R,A), and conversely, every model I of (R,A) gives
rise to a model J of (O,A) that has the same interpretation of roles as I on the ABox
individuals. More precisely, the model J is obtained by extending the domain of I with a
special object w and interpreting all concept names by the whole domain; the interpretation
of roles on the ABox is inherited from I; in addition, the (aJ , w), for individual names a,
and (w,w) belong to all roles at all time instants. That J is a ‘saturated’ model of (O,A)
follows from the assumption that O is ⊥-free. Thus, we obtain the following transfer result:

Proposition 9. Let L be FO(<), FO(<,≡) or FO(RPR). A ⊥-free DL-Liteoc/r OMPIQ
(O, ϱ) with a positive temporal role ϱ is L-rewritable if the LTLo

r OMPIQ (O, ϱ)‡ is L-
rewritable.

Proof. Suppose Q‡(t) is an L-rewriting of (O, ϱ)‡. We can assume that Q‡(t) is constructed
from atoms of the form AP (s) and AP−(s), with P occurring in (O, ϱ), and the built-in
predicates and constructs of L. We obtain the required L-rewriting Q(x, y, t) from Q‡(t)
by replacing every AP (s) with P (x, y, s), every AP−(s) with P (y, x, s) and, in the case
of FO(RPR), by additionally replacing every occurrence of Q(t1, . . . , tk), for a relation
variable Q, with Q(x, y, t1, . . . , tk). ❑

In Section 5, we show that answering OMAQs in temporal DL-Lite can be reduced to
answering restricted OMPIQs with ⊥-free ontologies. This reduction relies on our ability
to decide consistency of temporal DL-Lite KBs, which will be studied in the next section.

4. Consistency of Temporal DL-Lite Knowledge Bases

The consistency problem for temporal DL-Lite KBs that do not contain CIs can be reduced
by Proposition 8 to LTL satisfiability, which is known to be decidable and in fact PSpace-
complete (Sistla & Clarke, 1985). On the other hand, due to the interaction of Boolean RIs
with CIs, both consistency and OMAQ answering with DL-Lite⃝core/g-bool ontologies turn out

to be undecidable (even for data complexity):

Theorem 10. (i) Checking consistency of DL-Lite⃝core/g-bool KBs is undecidable.

(ii) There is a DL-Lite⃝core/g-bool ontology O such that the following problems are unde-

cidable: whether a given ABox A is consistent with O, whether the pair (a, 0) is a certain
answer over a given ABox A to OMAQ (O, A) with a concept name A, and whether (a, b, 0)
is a certain answer over a given ABox A to OMAQ (O, P ) with a role name P .

Proof. (i) The proof is by reduction of the N × N-tiling problem, which is known to be
undecidable (Berger, 1966): given a finite set T of tile types {1, . . . ,m}, decide whether T
can tile the N × N grid. For each T, we denote by up(i), down(i), left(i) and right(i) the
colours on the four edges of any tile type i ∈ T. Define a DL-Lite⃝core/g-bool ontology OT,
where T is a role name and the Ti and the Ri are role names associated with tile types
i ∈ T, by taking

T ⊑
⊔
i∈T

Ri, ∃Ri ⊓ ∃Rj ⊑ ⊥, for i, j ∈ T with i ̸= j,
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role concept inclusions
inclusions bool horn krom core

(g-)bool ? ? ? ?
krom ? ? ? ?
horn in ExpSpace [Th. 14]

core in PSpace [Th. 16]

a) o = 2.

role concept inclusions
inclusions bool horn krom core

(g-)bool undecidable [Th. 10]

krom ExpSpace∗ [Th. 18] in PSpace∗ [Th. 19]

horn ExpSpace [Th. 14] in ExpSpace [Th. 14]

core PSpace [Th. 16] in PSpace [Th. 16]

b) o = ⃝ or o = 2⃝.

Table 2: Combined complexity of the consistency problem for DL-Liteoc/r (the upper bounds

in cases with ∗ are only known for o = ⃝).

∃R−i ⊑ ∃Ti, Ti ⊑
⊔
j∈T

up(i)=down(j)

Rj and Ri ⊑
⊔
j∈T

right(i)=left(j)

⃝FRj , for i ∈ T.

It is readily checked that {T (a, b, 0)} is consistent with OT iff T can tile the N× N grid.

(ii) Using the representation of the universal Turing machine by means of tiles (Börger,
Grädel, & Gurevich, 1997), we obtain a set U of tile types for which the following problem
is undecidable: given a finite sequence of tile types i0, . . . , in, decide whether U can tile
the N × N grid so that tiles of types i0, . . . , in are placed on (0, 0), . . . , (n, 0), respectively.
Given such i0, . . . , in, we take the ABox A = {T (a, b, 0), Ri0(a, b, 0), . . . , Rin(a, b, n) }. Then
U can tile N × N with i0, . . . , in on the first row iff A is consistent with OU iff A(a, 0) is
not a certain answer to OMAQ (OU, A) over A, where A is a fresh concept name. Similar
considerations apply to the case of a fresh role P . ❑

In Sections 4.1 and 4.3, we show that, by admitting Horn or Krom RIs only, we make KB
consistency decidable in ExpSpace; see Table 2. These results are established by reduction
to the one-variable fragment FOLTL1 of first-order LTL, which is known to be ExpSpace-
complete (Halpern & Vardi, 1989; Gabbay et al., 2003). We remind the reader that formulas
in FOLTL1 are constructed from predicates with individual constants and a single individual
variable x using the Boolean connectives, first-order quantifiers ∀x, ∃x and LTL operators.
Interpretations, M, for first-order LTL are similar to the DL interpretations (6): for all
n ∈ Z, we have standard FO-structures M(n) with the same domain ∆M and the same
interpretations aM of individual constants a but possibly varying interpretations PM(n) of
predicate symbols P . At each time instant n, the quantifiers ∀x and ∃x are interpreted
over the domain of M as usual, while the LTL operators are interpreted over (Z, <), also
as usual, given an assignment of x to some domain element of ∆M. For a formula φ with a
free variable and an individual constant a, we write M, n |= φ(a) to say that the formula φ
is true at moment n in M under the assignment x 7→ aM. We abbreviate 2F2P by 2 and
a sequence of ℓ-many ⃝F and ⃝P by ⃝ℓ

F and ⃝ℓ
P , respectively. Also, ⃝kϑ stands for ⃝k

Fϑ if
k > 0, ϑ if k = 0, and ⃝−kP ϑ if k < 0.
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4.1 Consistency of DL-Lite2⃝
bool/horn KBs

Let K = (O,A) be a DL-Lite2⃝
bool/horn KB with O = T ∪ R. As in Section 3.1, denote by

subT the set of subconcepts in T and their negations. For τ ⊆ subT , let τ
† be the result

of replacing each B in τ with B† (see Section 3.2). A concept type τ for T † is a maximal
subset τ of subT such that τ † is consistent with T † (note, however, that τ is not necessarily
consistent with T : for example, τ † can be consistent with T † even if ∃P ∈ τ and T contains
∃P− ⊑ ⊥). A beam b for T is a function from Z to the set of all concept types for T † such
that, for all n ∈ Z, we have the following:

⃝FC ∈ b(n) iff C ∈ b(n+ 1), ⃝PC ∈ b(n) iff C ∈ b(n− 1), (14)

2FC ∈ b(n) iff C ∈ b(k), for all k > n, 2PC ∈ b(n) iff C ∈ b(k), for all k < n. (15)

Given an interpretation I and u ∈ ∆I , the function bIu : n 7→
{
C ∈ subT | u ∈ CI(n)

}
is a

beam; we refer to it as the beam of u in I. Here and below, we normally omit the negated
elements of types, which is unambiguous due to their maximality.

Assume that R contains all roles that occur in T . Denote by subR the set of subroles
in R and their negations. A role type ρ for R is a maximal subset of subR consistent with R
(equivalently, by Proposition 8, ρ‡ is consistent with the LTL2⃝

horn ontology R‡) and a rod r
for R is a function from Z to the set of all role types for R such that (14) and (15) hold for
all n ∈ Z with b replaced by r and C by temporalised roles R. Given an interpretation I
and u, v ∈ ∆I , the function rIu,v : n 7→

{
R ∈ subR | (u, v) ∈ RI(n)

}
is a rod for R; we call

it the rod of (u, v) in I.
In this section we consider Horn RIs, and the key property of LTL2⃝

horn is that every
consistent LTL2⃝

horn KB (R‡,A‡) has a canonical model CR‡,A‡ ; see Section 3.1. Since the

RIs in R are Horn, given any LTL ABox A‡, which is a set of atoms of the form S‡(ℓ), we
define the R-canonical rod rA‡ for A‡ (provided that A‡ is consistent with R‡) by taking
rA‡ : n 7→

{
R ∈ subR | R‡(n) ∈ CR‡,A‡

}
. In other words, R-canonical rods are the minimal

rods for R ‘containing’ all atoms of A‡: for any R and n ∈ Z,

R ∈ rA‡(n) iff R ∈ r(n), for all rods r for R such that S ∈ r(ℓ) for all S‡(ℓ) ∈ A‡. (16)

Finally, given a beam b, we say a rod r is b-compatible if ∃S ∈ b(n) whenever S ∈ r(n),
for all n ∈ Z and basic concepts ∃S in T . We are now fully equipped to prove the following
characterisation of DL-Lite2⃝

bool/horn KBs consistency.

Lemma 11. Let K = (O,A) be a DL-Lite2⃝
bool/horn KB with O = T ∪ R. Let

Ξ = ind(A) ∪
{
wP , wP− | P a role name in O

}
.

Then K is consistent iff there are beams bw, w ∈ Ξ, for T satisfying the following conditions:

A ∈ ba(ℓ), for all A(a, ℓ) ∈ A, (17)

if ∃S ∈ bw(n), then ∃S− ∈ bwS− (k), for some k ∈ Z, (18)

for every a, b ∈ ind(A), there is a ba-compatible rod r for R (19)

such that S ∈ r(ℓ) for all S(a, b, ℓ) ∈ A,
if ∃S ∈ bw(n), then there is a bw-compatible rod r for R such that S ∈ r(n). (20)
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Figure 4: The beams and rods in Example 12 (left) and the temporal interpretation I
obtained by unravelling them (right).

Moreover, for any beams bw, w ∈ Ξ, for T satisfying (17)–(20), there is a model I of K
such that

– for any a ∈ ind(A), the beam of aI in I coincides with ba,

– for any u ∈ ∆I \ {aI | a ∈ ind(A)}, there are S and n ∈ Z with bIu(k) = bwS (k + n),
for all k ∈ Z,

– for any a, b ∈ ind(A), the rod of (aI , bI) in I is the R-canonical rod for A‡a,b, and

– for any u ∈ ∆I , v ∈ ∆I \ {aI | a ∈ ind(A)}, the rod of (u, v) in I is the R-canonical
rod for some {S‡(n)}.

Before proving the lemma, we illustrate the construction by an example.

Example 12. Consider the KB K = (O, {Q(a, b, 0)}), where O consists of

∃Q ⊓2FA ⊑ ⊥, ⊤ ⊑ A ⊔ ∃P and P− ⊑ ⃝FQ,

which is the result of converting ∃Q ⊑ 3F∃P and P− ⊑ ⃝FQ into normal form (5). Beams
ba, bb, bwP− and bwP are depicted in Fig. 4 (left) by horizontal lines: the type contains ∃P
or ∃Q whenever the large node is grey; similarly, the type contains ∃P− or ∃Q− whenever
the large node is white (the label of the arrow specifies the role); we omit A to avoid clutter.
The rods are the arrows between the pairs of horizontal lines. For example, the rod required
by (19) for a and b is labelled by ra,b: it contains only Q at 0 (we specify only the positive
components of the types); the rod required by (19) for b and a is labelled by rb,a, and in this
case, it is the mirror image of ra,b. In fact, if we choose R-canonical rods in (19), then the
rod for any b, a will be the mirror image of the rod for a, b. The rod rP,2 required by (20)
for ∃P on ba at moment 2 is depicted between ba and uP,2: it contains P at 2 and Q at 3.
In fact, it should be clear that, if we choose R-canonical rods in (20), then they will all be
isomorphic copies of at most |O| rods: more precisely, the rods will be of the form r{S‡(n)},
for a role S from O. In the proof of Lemma 11, we show how this collection of beams and
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R-canonical rods can be used to obtain a model I of K depicted on the right-hand side of
Fig. 4 (with A omitted again). We now proceed with the proof of the lemma.

Proof. (⇐) Suppose that we have the required collection of beams bw for T . We construct
by induction onm < ω a sequence of temporal interpretations Im = (∆Im , ·Im(n)) and maps
fm : ∆Im×Z → Ξ×Z. The meaning of fm is as follows: if fm(λ, n) = (w, k), then the type of
the element λ in Im at moment n is ‘copied’ from the beam bw at moment k. For the basis of
induction, set ∆I0 = ind(A), AI0(n) = {a | A ∈ ba(n)} and P I0(n) = {(a, b) | P ∈ ra,b(n)},
for all concept and roles names A and P and all n ∈ Z, and f0(a, n) = (a, n), for all
a ∈ ind(A) and n ∈ Z, where ra,b is the R-canonical rod for A‡a,b, which exists by (19) and
which, by (16), is compatible with ba, while its inverse is compatible with bb.

Suppose next that Im and fm, for m ≥ 0, have already been defined, that the elements
of ∆Im are words of the form λ = aSn1

1 . . . Snl
l , for a ∈ ind(A), ni ∈ Z and l ≥ 0. We

call a pair (λ, n) an S-defect in Im if fm(λ, n) = (w, k), ∃S ∈ bw(k), and (λ, λ′) /∈ SIm(n)

for any λ′ ∈ ∆Im . For any role S and any S-defect (λ, n) in Im, we add the word λSn

to ∆Im and denote the result by ∆Im+1 . By (18), we have ∃S− ∈ bwS− (k
′), for some k′ ∈ Z.

We fix one such k′ and extend fm to fm+1 by setting fm+1(λS
n, n′) = (wS− , n′ − n + k′),

for any n′ ∈ Z. We also define AIm+1(n′) by extending AIm(n′) with those λSn for which
A ∈ bwS− (n

′ − n + k′), and define P Im+1(n′) by extending P Im(n′) with (λ, λSn) for which
P ∈ rS,n(n

′) and with (λSn, λ) for which P− ∈ rS,n(n
′), where rS,n is the R-canonical rod

for {S‡(n)}, which exists by (20) and, by (16), is compatible with the respective beams.

Finally, let I and f be the unions of all Im and fm, for m < ω, respectively. We show
that I is a model of K. It follows immediately from the construction that I is a model
of R and A. To show that I is also a model of T , it suffices to prove that, for any λ ∈ ∆I

and any role Q, we have λ ∈ (∃Q)I(n
′) iff ∃Q ∈ bw(k

′), where f(λ, n′) = (w, k′). The
implication (⇐) follows directly from the procedure of ‘curing defects’. Let λ ∈ (∃Q)I(n

′),
and so (λ, λ′) ∈ QI(n

′), for some λ′ ∈ ∆I . Two cases are possible now.

– If λ, λ′ ∈ ind(A), then Q ∈ rλ,λ′(n′). Then, by (19), ∃Q ∈ bλ(n
′). It remains to recall

that f(λ, n′) = f0(λ, n
′) = (λ, n′).

– If λ′ /∈ ind(A), then λ′ = λSn, for some S and n, and Q ∈ rS,n(n
′). We also have

∃S ∈ bw(k), where f(λ, n) = (w, k). By (20), there is a rod r for R such that
S ∈ r(n), and so, we must have Q ∈ r(n′). Since r is compatible with bw, we obtain
∃Q ∈ bw(n

′ − n+ k). It remains to recall that f(λ, n′) = (w, n′ − n+ k).

(⇒) Given a model I of K, we construct beams bw for T as follows. Set ba = bIaI , for all
a ∈ ind(A). For each S, if SI(n) ̸= ∅, for some n ∈ Z, then set bwS = bIu, for u ∈ (∃S)I(n);
otherwise, set bwS = bIaI , for an arbitrary a ∈ ind(A). It is straightforward to check that
these beams are as required. ❑

We now reduce the existence of the required collection of beams to the ExpSpace-
complete satisfiability problem for FOLTL1 (Halpern & Vardi, 1989; Gabbay et al., 2003),
thereby establishing the upper complexity bound for DL-Lite2⃝

bool/horn. Let K = (O,A)
be a DL-Lite2⃝

bool/horn KB with O = T ∪ R and let Ξ be as in Lemma 11. We treat its
elements as constants in the first-order language and define a translation ΨK of K into
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FOLTL1 with a single individual variable x as a conjunction of the following sentences, for
all constants w ∈ Ξ:

2
(
C1(w) ∧ · · · ∧ Ck(w) → Ck+1(w) ∨ · · · ∨ Ck+m(w)

)
, (21)

for all C1 ⊓ · · · ⊓ Ck ⊑ Ck+1 ⊔ · · · ⊔ Ck+m in T ,
2∀x

(
R1(w, x) ∧ · · · ∧Rk(w, x) → R(w, x)

)
, for all R1 ⊓ · · · ⊓Rk ⊑ R in R, (22)

2∀x
(
R1(w, x) ∧ · · · ∧Rk(w, x) → ⊥

)
, for all R1 ⊓ · · · ⊓Rk ⊑ ⊥ in R, (23)

⃝ℓ
FA(a), for all A(a, ℓ) in A, (24)

⃝ℓ
FP (a, b), for all P (a, b, ℓ) in A, (25)

2
(
∃S(w) → 3F3P∃S−(wS−)

)
, for all roles S in O, (26)

2
(
∃S(w) ↔ ∃xS(w, x)

)
, for all roles S in O. (27)

Thus, in ΨK, we regard concept names A and basic concepts ∃S as unary predicates and
roles S as binary predicates, assuming that (P−)− is P and S−(w, x) is S(x,w). The
interesting conjuncts in ΨK are (26) and (27), which reflect the interaction between T andR.

Lemma 13. A DL-Lite2⃝
bool/horn KB K is consistent iff ΨK is satisfiable.

Proof. Each collection of beams bw, w ∈ Ξ, for T gives rise to a model M of ΨK: the
domain of M comprises Ξ and elements uS,m, for a role S and m ∈ Z. We fix R-canonical
rods ra,b for A‡a,b, which are guaranteed to exist by (19), and R-canonical rods rS,m for
{S‡(m)} for each S and m ∈ Z with ∃S ∈ bw(m), for some w ∈ Ξ, which are guaranteed to
exist by (20), and set

M, n |= B(w) iff B ∈ bw(n), for all w ∈ Ξ, n ∈ Z and basic concepts B,

M, n |= P (a, b) iff P ∈ ra,b(n), for all a, b ∈ ind(A), n ∈ Z, and role names P,

M, n |= S′(w, uS,m) iff S′ ∈ rS,m(n),

for all w ∈ Ξ, n,m ∈ Z and roles S, S′ with ∃S ∈ bw(m).

It is readily checked that M is as required; see also Fig. 4, where, in the context of Exam-
ple 12, the uS,m are represented explicitly by grey horizontal lines. Conversely, it can be
verified that every model M of ΨK gives rise to the required collection of beams for T . ❑

Theorem 14. Checking consistency of DL-Lite2⃝
bool/horn and DL-Lite⃝horn KBs is ExpSpace-

complete.

Proof. The upper bound follows from Lemma 13 and ExpSpace-completeness of FOLTL1.
The hardness is proved by reduction of the non-halting problem for deterministic Turing
machines with exponential tape. We assume that the head of a given machineM never runs
beyond the first 2n cells of its tape on an input word a of lengthm, where n = p(m) for some
polynomial p; we also assume that it never attempts to access cells before the start of the
tape. We construct a DL-Lite⃝horn ontology that encodes the computation of M on a using
a single individual. The initial configuration is spread over the time instants 1, . . . , 2n, from
which the first m instants represent a and the remaining ones encode the blank symbol #
(time instant 0 also contains #). The second configuration uses the next 2n instants,
2n + 1, . . . , 2n + 2n, etc. The configurations are encoded with the following concept names:
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– Hq,a contains the ABox individual at the moment i2n+ j whenever the machine head
scans the jth cell of the ith configuration and sees symbol a, with q being the current
state of the machine;

– Ca contains the ABox individual at i2n+j whenever the jth cell of the ith configuration
contains a but is not scanned by the head.

For example, if a = a1, . . . , am is the input and q0 is the initial state of M , then the ABox,
which encodes the initial configuration, consists of

I(e, 0), C#(e, 0), Hq0,a1(e, 1), Ca2(e, 2), . . . , Cam(e,m), E(e,m+ 1),

where concept names I and E mark the start and the end of the input a, respectively.
Then, we use DL-Lite⃝horn CIs

I ⊑ ⃝2n

F F, F ⊑ ⃝PF, E ⊑ ⃝FE, E ⊓ F ⊑ C#

to fill the rest of the tape in the initial configuration with #: concept name F marks all the
cells of the first configuration (along with all negative time points), and E is propagated
to all the cells starting from the end of the input a in the first configuration along with all
cells in all other configurations. Next, we encode computations of the deterministic Turing
machine M with tape alphabet Γ and transition function δ : Q × Γ → Q × Γ × {R,L} by
means of the following DL-Lite⃝horn CIs:

⃝PCa′ ⊓Hq,a ⊓⃝FCa′′ ⊑ ⃝2n

F (⃝PCa′ ⊓ Cb ⊓⃝FHq′,a′′), for δ(q, a) = (q′, b, R) and a′, a′′ ∈ Γ,

⃝PCa′ ⊓Hq,a ⊓⃝FCa′′ ⊑ ⃝2n

F (⃝PHq′,a′ ⊓ Cb ⊓⃝FCa′′), for δ(q, a) = (q′, b, L) and a′, a′′ ∈ Γ,

⃝PCa′ ⊓ Ca ⊓⃝FCa′′ ⊑ ⃝2n

F Ca, for a, a′, a′′ ∈ Γ,

where ϑ ⊑ ⃝n
F (ϑ1 ⊓ · · · ⊓ ϑk) abbreviates the ϑ ⊑ ⃝n

F ϑi, 1 ≤ i ≤ k. Finally, CIs

Hq,a ⊑ ⊥, for each accepting and rejecting state q and a ∈ Γ,

ensures that accepting and rejecting states never occur in the encodings of computations.
These CIs are of exponential size, and our next task is to show how to convert them into a
DL-Lite⃝horn ontology of polynomial size.

Consider a CI of the form A ⊑ ⃝2n
F B. First, we replace the temporalised concept ⃝2n

F B
by ∃P and add the CI ∃Q ⊑ B to the TBox, where P and Q are fresh role names. Then,
we add the following RIs to the RBox, R, for fresh role names P0, . . . , Pn−1, P̄0, . . . , P̄n−1:

P ⊑ ⃝F (P̄n−1 ⊓ · · · ⊓ P̄0),

Pn−1 ⊓ · · · ⊓ P0 ⊑ Q,

P̄k ⊓ Pk−1 ⊓ · · · ⊓ P0 ⊑ ⃝F (Pk ⊓ P̄k−1 ⊓ · · · ⊓ P̄0), for 0 ≤ k < n,

P̄j ⊓ P̄k ⊑ ⃝F P̄j and Pj ⊓ P̄k ⊑ ⃝FPj , for 0 ≤ k < j < n.

Intuitively, these RIs encode a binary counter from 0 to 2n− 1, where roles P̄i and Pi stand
for ‘the ith bit of the counter is 0’ and, respectively, ‘is 1’, and ensure that R |= P ⊑ ⃝2n

F Q
but R ̸|= P ⊑ ⃝i

FQ for any i ̸= 2n (remember that ∃P generates different P -successors at
different time points). Further details are left to the reader. Note that the encoding of ⃝2n

F

on concepts using an RBox of size polynomial in n is based on the same idea as the encoding
of ⃝F on concepts using an RBox with 2 operators only in Example 5 and Theorem 27. ❑
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4.2 Consistency of DL-Lite2⃝
bool/core KBs

We now adapt the technique of Section 4.1 to reduce consistency of DL-Lite2⃝
bool/core KBs to

that of LTL KBs. The modification is based on the observation that the logical consequences
of core RIs, and so the auxiliary R-canonical rods as well, have a simpler structure than
those of Horn RIs: intuitively, while core RIs can entail R |= P ⊑ ⃝nQ for n exponentially
large in the size of R, it must also be the case that R |= P ⊑ ⃝iQ for either all i < n
or all i > n. Using this property and a trick with binary counters (see below), we reduce
satisfiability of K to satisfiability of a polynomial-size LTL KB.

Let R be a DL-Lite2⃝
bool/core RBox and r the R-canonical rod for some A‡R = {R‡(0)}.

Then S ∈ r(n) iff one of the following conditions holds:

– (R′)‡,A‡R |= S‡(n), where R′ is obtained from R by removing the RIs with 2,

– there is m > n with |m| ≤ 2|R| and 2PS ∈ r(m),

– there is m < n with |m| ≤ 2|R| and 2FS ∈ r(m).

Let minR,S be the minimal integer m with 2FS ∈ r(m); if it exists, then |minR,S | ≤ 2|R|.
The maximal integer m with 2PS ∈ r(m) is also bounded by 2|R| (if defined at all). The
following example shows that these integers can indeed be exponential in |R|.

Example 15. Let R be the DL-Lite2⃝
bool/core RBox with the following RIs:

P ⊑ R0, Ri ⊑ ⃝FRi+1 (mod 2), for 0 ≤ i < 2, R1 ⊑ S,

P ⊑ Q0, Qi ⊑ ⃝FQi+1 (mod 3), for 0 ≤ i < 3, Q1 ⊑ S, Q2 ⊑ S,

P ⊑ S, P ⊑ 2PS.

Clearly, R |= P ⊑ ⃝6
F2PS. If instead of the 2- and 3-cycles we use p1, p2, . . . , pn-cycles,

where pi is the ith prime number, for 1 ≤ i ≤ n, then R |= P ⊑ ⃝p1×···×pn
F 2PS.

In any case, the restriction to core RIs brings down the complexity:

Theorem 16. Checking consistency of DL-Lite2⃝
bool/core and DL-Lite⃝horn/core KBs is PSpace-

complete.

Proof. We encode the given KB K in LTL following the proof of Lemma 13 and repre-
senting ΨK as an LTL-formula with propositional variables of the form Cu and Ru,v, for
u, v ∈ Ξ, assuming that R−u,v = Rv,u; in particular, (∃S)w denotes the propositional variable
for the unary atom ∃S(w) of ΨK. Sentences (21)–(26) can be translated into LTL by simply
instantiating all universal quantifiers by constants in Ξ. Sentences (27), however, require a
special treatment. First, we take

2
(
⃝1(∃S1)w → ⃝2(∃S2)w

)
, for every ⃝1S1 ⊑ ⃝2S2 in R, (28)

where each ⃝i is ⃝F , ⃝P or blank. We also require the consequences of R of the form
∃R ⊑ ⃝maxR,S2P∃S and ∃R ⊑ ⃝minR,S2F∃S, for all R and S with defined maxR,S and
minR,S , that are not entailed by (28). First, we use a PSpace subroutine to check the
existence and compute the minR,S and maxR,S : we guess the binary representation of, say,
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minR,S and check whether the conjunction of R‡, R‡(0) and ⃝maxR,S
F ¬2PS

‡(0) is unsatisfi-
able; as the latter conjunct can be exponential in |R|, we need to represent it by O(|R|2)
conjuncts using the binary counter (similarly to the proof of Theorem 18). By Savitch’s
theorem and the PSpace membership for LTL satisfiability (Sistla & Clarke, 1985), such a
non-deterministic subroutine can be implemented in PSpace. Next, we encode the required
consequences of R: for example, if maxR,S ≥ 0, then ∃R ⊑ ⃝maxR,S2P∃S gives rise to

2
(
2F3F (∃R)w → 2F (∃S)w

)
, (29)

2
(
(∃R)w ∧ ¬3F (∃R)w → ⃝maxR,S

F 2P (∃S)w
)
, (30)

where ⃝
maxR,S
F can again be expressed by O(|R|2) binary counter formulas. To explain the

meaning of (29)–(30), consider any w ∈ ∆I in a model I of K. If w ∈ (∃R)I(n) for infinitely
many n > 0, then w ∈ (∃S)I(n) for all n, which is captured by (29). Otherwise, there is
n such that w ∈ (∃R)I(n) and w /∈ (∃R)I(m), for m > n, whence w ∈ (∃S)I(k), for any
k < n+maxR,S , which is captured by (30). The LTL translation Ψ′K of K is a conjunction
of (21)–(26) and (28), as well as (29)–(30) for all R and S with defined maxR,S and their
counterparts for ∃R ⊑ ⃝minR,S2F∃S. One can show that K is satisfiable iff Ψ′K is satisfiable.

The PSpace lower bound follows from the fact that LTL⃝
horn is PSpace-complete and

every LTL⃝
horn-formula is equisatisfiable with some DL-Lite⃝horn/core KB. ❑

4.3 Consistency of DL-Lite⃝
bool/krom KBs

Let K = (T ∪ R,A) be a DL-Lite⃝bool/krom KB. We assume that K has no nested temporal
operators and that, in RIs of the form ⊤ ⊑ R1 ⊔ R2 and R1 ⊓ R2 ⊑ ⊥ from R, both Ri

are plain (atemporal) roles. We construct a FOLTL1 sentence ΦK with one variable x.
First, we set ΦK = ⊥ if (R,A) is inconsistent, which can be checked in polynomial time
by Proposition 8 and Lemma 5.3 by Artale et al. (2014). If, however, (R,A) is consistent,
then we treat basic concepts in K as unary predicates (see Lemma 13) and define ΦK as a
conjunction of the following FOLTL1 sentences:

2∀x
(
C1(x) ∧ · · · ∧ Ck(x) → Ck+1(x) ∨ · · · ∨ Ck+m(x)

)
, (31)

for all C1 ⊓ · · · ⊓ Ck ⊑ Ck+1 ⊔ · · · ⊔ Ck+m in T ,
2∀x

(
∃S1(x) ∨ ∃S2(x)

)
∧ 2

(
∀x ∃S1(x) ∨ ∀x ∃S−2 (x)

)
, for all ⊤ ⊑ S1 ⊔ S2 in R, (32)

⃝ℓ
FA(a), for all A(a, ℓ) in A, (33)

⃝ℓ
F∃P (a) and ⃝ℓ

F∃P−(b), for all P (a, b, ℓ) in A, (34)

2
(
∃x ∃P (x) ↔ ∃x ∃P−(x)

)
, for all role names P in T , (35)

2∀x
(
⃝1∃S1(x) → ⃝2∃S2(x)

)
, for all ⃝1S1 ⊑ ⃝2S2 (36)

with R |= ⃝1S1 ⊑ ⃝2S2,

where each ⃝i is ⃝F , ⃝P or blank, and S1 can be ⊤ and S2 can be ⊥ (we assume that if
S1 is ⊤, then ∃S1(x) is simply ⊤ rather than an atom with a unary predicate; similarly,
∃S2(x) is ⊥ if S2 is ⊥). Note that the problem of checking whether R |= ⃝1S1 ⊑ ⃝2S2 is
in P (Artale et al., 2014, Lemma 5.3), and so ΦK can be constructed in polynomial time.

Lemma 17. A DL-Lite⃝bool/krom KB K is consistent iff ΦK is satisfiable.
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Proof. (⇒) Suppose I |= K. Treating I as a temporal FO-interpretation, we show that
I |= ΦK. The only non-standard sentences are (32). Suppose I |= ⊤ ⊑ S1 ⊔ S2 and
I, n ̸|= ∃S1(d), for some d ∈ ∆I and n ∈ Z. Then, for every e ∈ ∆I , we have I, n |= S2(d, e),
and so I, n |= ∃S−2 (e).

(⇐) Suppose M |= ΦK. We require the following property of M, which follows, for any
RI ⊤ ⊑ S1 ⊔ S2 in R, from (32): for any n ∈ Z and d, e ∈ ∆M, either

M, n |= ∃S1(d) and M, n |= ∃S−1 (e) or M, n |= ∃S2(d) and M, n |= ∃S−2 (e). (37)

We construct a model I of K in a step-by-step manner, regarding I as a set of ground
atoms. To begin with, we put in I all P (a, b, n) ∈ A and then proceed in three steps.

Step 1: If ⊤ ⊑ S1 ⊔ S2 is in R with M, n |= ∃S1(a) and either M, n ̸|= ∃S2(a) or
M, n ̸|= ∃S−2 (b), for n ∈ Z and a, b ∈ ind(A), then, by (37), M, n |= ∃S−1 (b), and we add
S1(a, b, n) to I. We do the same for ∃S−1 , ∃S2 and ∃S−2 (recall that R is closed under
role inverses). We now show that the constructed interpretation I is consistent with R.
Suppose otherwise, that is, there are some P (a, b, n) and R(a, b, n) in I with P ⊓ R ⊑ ⊥
in R. Two cases need consideration. (i) If both atoms were added at Step 1 because of
some RIs ⊤ ⊑ P ⊔ Q and ⊤ ⊑ R ⊔ S, then R |= P ⊑ S and so, by (36), M, n |= ∃S(a)
and M, n |= ∃S−(b), contrary to the definition of Step 1. (ii) Otherwise, as A is consistent
with R, the only other possibility is that R(a, b, n) ∈ A and P (a, b, n) was added at Step 1
because of some RI ⊤ ⊑ P ⊔Q. In this case, R |= R ⊑ Q, whence, by (34), M, n |= ∃Q(a)
and M, n |= ∃Q−(b), contrary to P (a, b, n) being added at Step 1.

Step 2: For all roles P and R and all n, k ∈ Z, if P (a, b, n) ∈ I and R |= P ⊑ ⃝kR,
then we add R(a, b, n + k) to I. We show that the resulting I remains consistent with R.
Suppose otherwise, that is, there are R1(a, b, n), R2(a, b, n) ∈ I with R1 ⊓ R2 ⊑ ⊥ in R.
Suppose that Ri(a, b, n), for i = 1, 2, was added to I for R |= Pi ⊑ ⃝kiRi and a Pi-atom
constructed at Step 1. As R |= ¬Ri ⊑ ¬⃝−kiPi, we arrive to a contradiction with the
consistency of I at Step 1.

Step 3: For each RI ⊤ ⊑ P ⊔ Q in R, each a, b ∈ ind(A) and each n ∈ Z such that
M, n |= ∃P (a), M, n |= ∃P−(b), M, n |= ∃Q(a), M, n |= ∃Q−(b), but neither P (a, b, n) nor
Q(a, b, n) are in I, we add one of them, say P (a, b, n), to I. The result remains consistent
with R: indeed, if we had S(a, b, n) ∈ I with P ⊓ S ⊑ ⊥ in R, then Q(a, b, n) would have
been added to I at Step 2 because R |= S ⊑ Q. We take the closure of P (a, b, n) as at
Step 2 and repeat the process.

We conclude the first stage of constructing I by extending it with all B(a, n) such that
M, n |= B(a), for n ∈ Z and a ∈ ind(A). By construction, P (a, b, n) ∈ I implies ∃P (a, n)
and ∃P−(b, n) ∈ I, but not necessarily the other way round. So, suppose ∃P (a, n) ∈ I
but there is no P (a, b, n) in I. Take a fresh individual wP , add it to the domain of I and
add P (a,wP , n) to I. By (36) and (35), the result is consistent with R. By (35), there is
d ∈ ∆M with M, n |= ∃P−(d). So, we add B(wP ,m) to I for each basic concept B and
m ∈ Z with M,m |= B(d). We then apply to I the three-step procedure described above
and repeat this ad infinitum.

It is readily seen that the obtained interpretation I is a model of K (the complete
argument is left to the reader, noting that a similar unravelling construction is given in
detail in the proof of Lemma 11). ❑
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Figure 5: Structure of models in the proof of Theorem 18. The horizontal dashed arrows
connect representations of the same cell in successive configurations, and diagonal
dashed arrows connect successive cells in the same configuration. Roles SCa and
SHq,a are not shown, and roles QCa and QHq,a are only partially depicted: if,
for example, QCa contains some (eI , vi) at t, then it contains all (u, v) at t.

It follows from the proof of Lemma 17 that it is always possible to construct a model I
of R from a model M of ΦK if M satisfies the domain/range restrictions for the roles in R
encoded by (32) and (36). One reason why this encoding is enough is that, e.g., the CI
⃝F∃P ⊑ ∃Q is sufficient to capture the effect of the RI ⃝FP ⊑ Q on the domains/ranges.
However, 2FP ⊑ Q does not entail 2F∃P ⊑ ∃Q, and it is not clear what domain/range
axioms can be used to capture the impact of the RI on domains/ranges in the presence of
2-operators. The complexity of the consistency problem for DL-Lite2bool/krom remains open.

Theorem 18. Checking consistency of DL-Lite⃝bool/krom and DL-Lite⃝horn/krom KBs is
ExpSpace-complete.

Proof. The upper bound follows from Lemma 17. We prove the matching lower bound by
reduction of the non-halting problem for deterministic Turing machines with exponential
tape, as in the proof of Theorem 14. We also make the same assumptions as in that proof
and use the concept names Ca and Hq,a with the same meaning. This time, though, the
computation is encoded on 2n successors of a single ABox element, e; see Fig. 5.

If the input a is a1, . . . , am and q0 is the initial state of the Turing machine M , then the
ABox consists of the following:

I(e, 0), C#(e, 0), P (e, v1, 1), Hq0,a1(v1, 1), P (e, v2, 2), Ca2(v2, 2), . . . ,

P (e, vm,m), Cam(vm,m), E(e,m+ 1),

where concept names I and E mark the start and the end of the input a, respectively. Then
we use the CIs

I ⊑ ⃝2n

F F, F ⊑ ⃝PF, E ⊑ ⃝FE, E ⊓ F ⊑ ∃P#, ∃P# ⊑ C#
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to fill the rest of the tape in the initial configuration with #, similarly to the proof of
Theorem 14. So, we obtain m ‘named’ P -successors v1, . . . , vm of e and 2n−m ‘anonymous’
P#-successors of e, which will be denoted vm+1, . . . , vn. Each of the successors is labelled
with the Hq,a or Ca from the initial configuration of M on a. Next, we use a Krom RI and
CI to ‘propagate’ the information from the labels Ca and Hq,a to other domain elements:
for example,

⊤ ⊑ SCa ⊔QCa and Ca ⊓ ∃SC−a ⊑ ⊥

mean that, if any element v is labelled by Ca at moment n, then any pair (v′, v) must
belong to role QCa at moment n. We use similar RIs and CIs with roles SHq,a and QHq,a

for labels Hq,a. Moreover, we state that the domains of distinct QCa and QHq,a are disjoint:

∃QCa ⊓ ∃QCa′ ⊑ ⊥, for a ̸= a′, ∃QCa ⊓ ∃QHq,a ⊑ ⊥,
∃QHq,a ⊓ ∃QHq′a′ ⊑ ⊥, for (q, a) ̸= (q′, a′).

This ensures that if a successor vi of e is labelled with Ca, then (e, vi) and indeed every
(e, vj) belongs to QCa; the same applies to labels Hq,a and roles QHq,a. Next, we encode
computations ofM with tape alphabet Γ and transition function δ : Q×Γ → Q×Γ×{R,L}
by means of the following CIs, for δ(q, a) = (q′, b, R) and a′, a′′ ∈ Γ:

Ca′ ⊓⃝F∃QH−q,a ⊑ ⃝2n

F Ca′ ,

H−q,a ⊑ ⃝2n

F Cb,

⃝P∃QH−q,a ⊓ Ca′′ ⊑ ⃝2n

F Hq′,a′′ .

Note that only one of the concepts on the left-hand side of the CIs is a label (Ca or Hq,a),
while the other (if present) is the range of the respective role: this ensures that labels occur
only every 2n moments on each of the successors vi. We use similar CIs for δ(q, a) = (q′, b, L)
and a′, a′′ ∈ Γ. We also need the following CIs, for a, a′, a′′ ∈ Γ:

⃝P∃QCa′ ⊓ Ca ⊓⃝F∃QCa′′ ⊑ ⃝2n

F Ca,

to ensure that the contents of the tape does not change unless it’s overwritten by the head
of the Turing machine. Finally, CIs

Hq,a ⊑ ⊥, for each accepting and rejecting state q and a ∈ Γ,

ensures that accepting and rejecting states never occur in the encodings of computations.
These CIs are of exponential size, and our next task is to show how to convert them into a
DL-Lite⃝horn/krom ontology of polynomial size.

Consider, for example, a CI I ⊑ ⃝2n
F F . We express it using the following CIs:

I ⊑ ⃝F (B̄n−1 ⊓ · · · ⊓ B̄0),

Bn−1 ⊓ · · · ⊓B0 ⊑ F,

B̄k ⊓Bk−1 ⊓ · · · ⊓B0 ⊑ ⃝F (Bk ⊓ B̄k−1 ⊓ · · · ⊓ B̄0), for 0 ≤ k < n,

B̄j ⊓ B̄k ⊑ ⃝F B̄j and Bj ⊓ B̄k ⊑ ⃝FBj , for 0 ≤ k < j < n,
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DL-Lite2c/r DL-Lite⃝c/r and DL-Lite2⃝
c/r

∗/(g-)bool coNP-hard [Th. 43] undecidable [Th. 10]

∗/krom ? ?

bool/horn, horn FO(RPR) [Th. 26/31], NC1-hard [Th. 27 (i)]

FO(RPR) [Th. 26 (ii)/31 (iii)]

NC1-hard
(Artale et al., 2021, Th. 10)

krom/horn, core/horn FO(<,≡) [Th. 26 (i)/31 (ii) & Th. 27 (ii)]

∗/horn+

FO(<) [Th. 30/31 (i)]bool/core, horn/core

krom/core, core FO(<,≡) [Th. 26 (i)/31 (ii)]

Table 3: Rewritability and data complexity of DL-Liteoc/r OMAQs and OMPIQs of the

form (O, ϱ) with a positive temporal role ϱ, where * denotes any of bool, horn,
krom or core.

which have to be converted into normal form (5). Intuitively, they encode a binary counter
from 0 to 2n−1, where B̄i and Bi stand for ‘the ith bit of the counter is 0’ and, respectively,
‘the ith bit of the counter is 1’. Other CIs of the form C1 ⊑ ⃝2n

F C2 are handled similarly,
each with a fresh set of concept names B̄i and Bi. ❑

The next result follows from Lemma 17 and an observation that ΦK is a formula in the
Krom fragment of FOLTL1, the satisfiability in which is known to be PSpace-complete (Ar-
tale, Kontchakov, Lutz, Wolter, & Zakharyaschev, 2007, Theorem 9):

Theorem 19. Checking consistency of DL-Lite⃝krom KBs is in PSpace.

5. Rewriting DL-Lite2
⃝

bool/horn OMAQs by Projection to LTL

Our aim in this section is to identify classes of FO-rewritable DL-Lite2⃝
bool/horn OMAQs, which

will be done by projecting them to LTL OMAQs and using the classification of Artale et al.
(2021). Initial steps in this direction have been made in Section 3.2 for OMAQs without ⊥
and interacting concepts and roles. The results of this section are summarised in Table 3.

We begin by showing how to get rid of ⊥ from DL-Lite2⃝
bool/horn ontologies.

Lemma 20. Let L be one of FO(<), FO(<,≡), or FO(RPR), r ∈ {core, horn+, horn}.
Suppose O = T ∪R is a DL-Liteoc/r ontology. Denote by O′ the ⊥-free DL-Liteoc/r ontology

obtained by removing all disjointness axioms ϑ1⊓· · ·⊓ϑk ⊑ ⊥ from O, and let κ′⊥ = 3P3Fκ⊥
and ϱ′⊥ = 3P3Fϱ⊥ with

κ⊥ =
⊔

C1⊓···⊓Ck⊑⊥ in T
(C1 ⊓ · · · ⊓ Ck) ⊔

⊔
S is a role with
O|=S⊑⊥

∃S and ϱ⊥ =
⊔

R1⊓···⊓Rk⊑⊥ in R
(R1 ⊓ · · · ⊓Rk).

Assume that QT⊥(x, t) and QR⊥(x, y, t) are L-rewritings of the OMPIQs (O′,κ′⊥) and (O′, ϱ′⊥),
respectively, and χ⊥ = ∃x, tQT⊥(x, t) ∨ ∃x, y, tQR⊥(x, y, t). Then the following hold :
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(i) for any basic concept B, if Q′(x, t) is an L-rewriting of the OMPIQ (O′,κ′⊥ ⊔ B),
then Q′(x, t) ∨ χ⊥ is an L-rewriting of the OMAQ (O, B);

(ii) for any positive temporal role ϱ, if Q′(x, y, t) is an L-rewriting of the OMPIQ (O′, ϱ),
then Q′(x, y, t) ∨ χ⊥ is an L-rewriting of the OMPIQ (O, ϱ).

Proof. As we establish below, χ⊥ is true when evaluated over an ABoxA (that is, SA |= χ⊥)
iff O and A are inconsistent. Thus, it suffices to show that, for any ABox A,

– O and A are consistent iff ans(O′,κ′⊥,A) = ∅ and ans(O′, ϱ′⊥,A) = ∅;

– if O and A are consistent, then ansZ(O, B,A) = ansZ(O′,κ′⊥ ⊔ B,A), for any basic
concept B, and ansZ(O, ϱ,A) = ansZ(O′, ϱ,A), for any positive temporal role ϱ.

If O and A are consistent, any model I of O and A is trivially a model of O′ with κI(n)⊥ = ∅
and ϱI(n)⊥ = ∅, for all n ∈ Z. So ans(O′,κ′⊥,A) = ∅ and ans(O′, ϱ′⊥,A) = ∅. Also, we clearly
have ansZ(O, B,A) ⊇ ansZ(O′,κ′⊥ ⊔B,A) and ansZ(O, ϱ,A) ⊇ ansZ(O′, ϱ,A).

Next, suppose ans(O′,κ′⊥,A) = ∅ and ans(O′, ϱ′⊥,A) = ∅. We show how to construct a
model I of (O,A). By definition, O′ and A are consistent. Since ans(O′,κ′⊥,A) = ∅, for
each a ∈ ind(A), there is a model Ia of (O′,A) such that aIa /∈ κIa(n)⊥ for all n ∈ Z. Also, for
each role S consistent with O, there is a model IS of (O′, {S(w, u, 0)}) with wIS /∈ κIS(n)⊥
for all n ∈ Z. We take, for each a ∈ ind(A), the beam ba for aIa in Ia, and, for each role S
consistent with O, the beam bwS of wIS in IS . Observe that ϱ⊥ and the second group of
disjuncts in κ⊥ ensure that, for the chosen beams, there are compatible R′-canonical rods,
which also satisfy disjointness axioms in R. We then apply Lemma 11 to obtain a model I
of (O′,A). By construction, κI(n)⊥ = ∅, for all n ∈ Z, and so I |= T . Since the R′- and
R-canonical rods coincide, we also have I |= R. Thus, I is a model of (O,A).

It remains to show that ansZ(O, B,A) ⊆ ansZ(O′,κ′⊥ ⊔ B,A) for consistent O and A.
Suppose (a, ℓ) /∈ ansZ(O′,κ′⊥ ⊔ B,A). Then there is a model Ia of (O′,A) such that
aIa /∈ (κ′⊥ ⊔ B)Ia(ℓ), whence aIa /∈ BIa(ℓ) and aIa /∈ κIa(n)⊥ , for all n ∈ Z. Take the
beam ba of aIa in Ia. As O and A are consistent, ans(O′,κ′⊥,A) = ∅, and so, for every
b ∈ ind(A) \ {a}, there is a model Ib of (O′,A) such that bIb /∈ κIb(n)⊥ , for all n ∈ Z. Take
the beam bb of bIb in Ib. We now construct a model I of (O,A) with aI /∈ BI(ℓ) from the
chosen beams using Lemma 11 in the same way as in the previous paragraph. It follows
that (a, ℓ) /∈ ansZ(O, B,A). The case of role OMPIQs is similar except that no individual
requires any special treatment like a above. ❑

It is to be noted that the asymmetricity of the OMPIQs (O′,κ′⊥ ⊔B) and (O′, ϱ) in (i)
and (ii) above is explained by the fact that c can be bool or krom, while r is always horn.
To illustrate, consider O with CIs C ⊑ B⊔E and D⊓E ⊑ ⊥. Clearly, O |= C⊓D ⊑ B, and
so, over A = {C(a, 0), D(a, 0)}, which is consistent with O, we have (O,A) |= B(a, 0). On
the other hand, (O′,A) ̸|= B(a, 0) because there are models I of (O′,A) with aI /∈ BI(0)

and aI ∈ EI(0). The disjunct κ′⊥ = 3P3F (D ⊓ E) is needed to capture such models.

Proposition 9 allows us to project the ⊥-free DL-Liteoc/r OMPIQs of the form (O′, ϱ)
and (O′, ϱ′⊥) to LTL OMPIQs. Thus, it remains to deal with ⊥-free DL-Liteoc/r OMPIQs
of the form (O′,κ′⊥ ⊔ B) and (O′,κ′⊥). Observe that κ′⊥ contains no qualified existential
restrictions—that is, subqueries of the form ∃S.λ with λ ̸= ⊤—and conjunctions in κ′⊥ are

1257



Artale, Kontchakov, Kovtunova, Ryzhikov, Wolter & Zakharyaschev

prefixed by 3P3F and match the form of CIs allowed by c. So we next focus on projecting
such OMPIQs with interacting concepts and roles to the LTL axis.

5.1 L-Rewritability of DL-Lite2⃝
bool/horn OMAQs

We begin with two examples illustrating the interaction between the DL and temporal
dimensions in DL-Lite2⃝

bool/horn we need to take into account when constructing rewritings.

Example 21. Let T = {B ⊑ ∃P, ∃Q ⊑ A } and R = {P ⊑ ⃝FQ }. An obvious idea of
constructing a rewriting for the OMAQ q = (T ∪R, A) would be to find first a rewriting of
the LTL OMPIQ (T , A)† obtained from (T , A) by replacing the basic concepts ∃P and ∃Q
with their surrogates (∃P )† = EP and (∃Q)† = EQ, respectively. This would give us the
first-order query A(t) ∨ EQ(t). By restoring the intended meaning of A and EQ (see the
proof of Proposition 7), we would then obtain A(x, t)∨∃y Q(x, y, t). The second step would
be to rewrite, using the RBox R, the atom Q(x, y, t) into Q(x, y, t) ∨ P (x, y, t − 1). Alas,
the resulting formula

A(x, t) ∨ ∃y
(
Q(x, y, t) ∨ P (x, y, t− 1)

)
falls short of being an FO(<)-rewriting of q as it does not return the certain answer (a, 1)
over A = {B(a, 0) }. The reason is that, in our construction, we did not take into account
the CI ∃P ⊑ ⃝F∃Q, which is a consequence of R. If we now add the ‘connecting axiom’
(∃P )† ⊑ ⃝F (∃Q)† to T †, then in the first step we obtain A(t)∨EQ(t)∨EP (t−1)∨B(t−1),
which gives us the correct FO(<)-rewriting

A(x, t) ∨ ∃y
(
Q(x, y, t) ∨ P (x, y, t− 1)

)
∨ ∃y P (x, y, t− 1) ∨ B(x, t− 1)

of q, where the third disjunct is obviously redundant and can be omitted.

Example 22. Consider now the OMAQ q = (T ∪ R, A) with

T = { ∃Q ⊑ 2PA }, R = {P ⊑ 2FP1, T ⊑ 2FT1, T1 ⊑ 2FT2, P1 ⊓ T2 ⊑ Q }.

The two-step construction outlined in Example 21 would give us first the formula

Φ(x, t) = A(x, t) ∨ ∃t′
(
(t < t′) ∧ ∃y Q(x, y, t′)

)
as a rewriting of (T , A). It it readily seen that the following formula is a rewriting of (R, Q):

Ψ(x, y, t′) = Q(x, y, t′) ∨
([
P1(x, y, t

′) ∨ ∃t′′
(
(t′′ < t′) ∧ P (x, y, t′′)

)]
∧[

T2(x, y, t
′) ∨ ∃t′′

(
(t′′ < t′) ∧

(
T1(x, y, t

′′) ∨ ∃t′′′
(
(t′′′ < t′′) ∧ T (x, y, t′′′)

)))])
.

However, the result of replacing Q(x, y, t′) in Φ(x, t) with Ψ(x, y, t′) is not an FO-rewriting
of (O, A): when evaluated over A = {T (a, b, 0), P (a, b, 1) }, it does not return the certain
answers (a, 0) and (a, 1); see Fig. 6. (Note that these answers would be found had we
evaluated the obtained ‘rewriting’ over Z rather than {0, 1}.)

This time, in the two-step construction of the rewriting, we are missing the ‘consequence’
∃(2FP1⊓2FT2) ⊑ 2F∃Q of R and T . To fix the problem, we can take a fresh role name Gρ,
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0 1 2 3 4

a A A A A A

b
T P , T1 P1, T1, T2, Q P1, T1, T2, Q P1, T1, T2, Q

Figure 6: A typical model for (T ∪ R, {T (a, b, 0), P (a, b, 1)}) in Example 22.

for ρ = {2FP1,2FT2 }, and add the ‘connecting axiom’ ∃Gρ ⊑ 2F∃Q to T . Then, in the
first step, we rewrite the extended TBox and A into the formula

Φ′(x, t) = A(x, t) ∨ ∃t′
(
(t < t′) ∧ ∃y Q(x, y, t′)

)
∨ ∃t′∃y Gρ(x, y, t

′),

where we replace Q(x, y, t′) with Ψ(x, y, t′) as before, and restore the intended meaning of
Gρ(x, y, t

′) by rewriting (R,2FP1 ⊓2FT2) into

P (x, y, t′) ∧
(
T1(x, y, t

′) ∨ ∃t′′
(
(t′′ < t′) ∧ T (x, y, t′′)

))
and substituting it for Gρ(x, y, t

′) in Φ′(x, t).

We now formally define the connecting axioms for a given DL-Lite2⃝
bool/horn ontology

O = T ∪ R. Again, we assume that R contains all role names from T . Recall that a role
type ρ for R is a maximal subset of subR consistent with R. As before, we only specify the
positive part of role types and say that a role type is non-empty if it contains some role R.
Given a role type ρ, we consider theR-canonical rod rρ (see Section 4.1) for {R‡(0) | R ∈ ρ}.
Note that, by definition, we have rρ(0) = ρ. By Lemma 6 (i), we can find positive integers
s ρ ≤ |R| and p ρ ≤ 22|R| such that

rρ(n) = rρ(n− p ρ), for n ≤ −s ρ, and rρ(n) = rρ(n+ p ρ), for n ≥ s ρ.

For a role type ρ for R, we take a fresh role name Gρ and fresh concept names Dn
ρ , for

−s ρ − p ρ < n < s ρ + p ρ, and define the following CIs:

∃Gρ ⊑ D0
ρ, Dn

ρ ⊑ ⃝FD
n+1
ρ , for 0 ≤ n < s ρ + p ρ − 1, Ds ρ+p ρ−1

ρ ⊑ ⃝FD
s ρ

ρ ,

and Dn
ρ ⊑ ∃S, for roles S ∈ rρ(n) and 0 ≤ n < s ρ + p ρ,

together with symmetrical CIs for −s ρ− p ρ ≤ n ≤ 0 for the past-time ‘loop’. Let (con) be
the set of all such CIs for all possible role types ρ for R, and let TR = T ∪ (con).

Example 23. In Example 21, for the role type ρ = {P,⃝FQ}, we have s ρ = 2, p ρ = 1, and
so TR contains the following:

∃P ⊑ D0
ρ, D0

ρ ⊑ ⃝FD
1
ρ, D1

ρ ⊑ ⃝FD
2
ρ, D2

ρ ⊑ ⃝FD
2
ρ, and D0

ρ ⊑ ∃P, D1
ρ ⊑ ∃Q,

which imply ∃P ⊑ ⃝F∃Q. In the context of Example 22, for the role type ρ = {2FP1,2FT2},
we have s ρ = 1, p ρ = 1, and so TR contains the following CIs:

∃Gρ ⊑ D0
ρ, D0

ρ ⊑ ⃝FD
1
ρ, D1

ρ ⊑ ⃝FD
1
ρ, and D1

ρ ⊑ ∃P1, D1
ρ ⊑ ∃T2, D1

ρ ⊑ ∃Q.

Note that, in this case, instead of two CIs D0
ρ ⊑ ⃝FD

1
ρ and D1

ρ ⊑ ⃝FD
1
ρ, we could use a

single D0
ρ ⊑ 2FD

1
ρ.
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Denote by T †R the LTL2⃝
bool ontology obtained from TR by replacing every basic concept B

in it with B†. Consider an ABox A. For any a, b ∈ ind(A), let ra,b be the R-canonical rod
for A‡a,b. We split A into the concept and role components, U and B, as follows:

U =
{
A(a, ℓ) | A(a, ℓ) ∈ A

}
,

B =
{
∃Gρ(a, ℓ) | a ∈ ind(A), ℓ ∈ tem(A), ρ = ra,b(ℓ) is non-empty, for some b ∈ ind(A)

}
.

We denote by U†a and B†a the sets of all atoms A†(ℓ), for A(a, ℓ) ∈ U , and (∃Gρ)
†(ℓ), for

∃Gρ(a, ℓ) ∈ B, respectively. Observe that the connecting axioms are such that (con)† is an
LTL⃝

core ontology, and the ABox B is defined so that, for any a ∈ ind(A) and n ∈ Z,

S ∈ ra,b(n) for some b ∈ ind(A) iff (∃S)†(n) ∈ C
(con)†,B†a

for any role S in R. (38)

Indeed, let S ∈ ra,b(n). If n ∈ tem(A), then S ∈ ρ and ∃Gρ(a, n) ∈ B, for ρ = ra,b(n),

whence (∃Gρ)
†(n) ∈ B†a, and so (∃S)†(n) ∈ C

(con)†,B†a
. If n > maxA, then we consider

ρ = ra,b(maxA). It should be clear that the canonical model of (R‡, {R‡(maxA) | R ∈ ρ})
contains S(n). So ρ is non-empty and ∃Gρ(a,maxA) ∈ B, whence (∃Gρ)

†(maxA) ∈ B†a,
and so (∃S)†(n) ∈ C

(con)†,B†a
The case n < minA is symmetric. The converse implication

follows from the definition of (con). We use (38) to establish the following key result:

Lemma 24. Let (O,κ) be a ⊥-free DL-Lite2⃝
bool/horn OMPIQ that contains no qualified

existential restrictions. Then, for any ABox A, we have

ansZ(O,κ,A) =
{
(a, n) | a ∈ ind(A) and n ∈ ansZ(T †R,κ†,U†a ∪ B†a)

}
.

Proof. (⊆) Suppose that n /∈ ansZ(T †R,κ†,U
†
a ∪ B†a). Then there is an LTL model Ia of

(T †R,U
†
a ∪ B†a) with Ia ̸|= κ†(n). We define a model I of (O,A) with aI /∈ κI(n) using

unravelling (Lemma 11) similarly to the proof of Lemma 20. To begin with, we take
the beam ba : n 7→

{
C ∈ subT | Ia |= C†(n)

}
; note that ba is a beam for T because T †R

extends T †. By (38), the R-canonical rod ra,b for A‡a,b is ba-compatible, for each b ∈ ind(A).
Next, we fix a model J of (O,A) and, for every b ∈ ind(A) \ {a}, take the beam bb of bJ

in J . By Lemma 11, we obtain a model I of (O,A) with aI /∈ κI(n).
The inclusion (⊇) is straightforward. ❑

We now use this technical result to generalise Proposition 7 and construct rewritings for
OMPIQs (O,κ) that contain no qualified existential quantifiers from rewritings of suitable
LTL OMPIQs, where we identify a role type ρ with the intersection of all R ∈ ρ, i.e.,
ρ =

d
R∈ρR, and ρ

‡ with the intersection of all R‡, for R ∈ ρ:

Lemma 25. Let L be one of FO(<), FO(<,≡), or FO(RPR), and r ∈ {core, horn+, horn}.
A ⊥-free DL-Liteoc/r OMPIQ q = (O,κ) that contains no qualified existential restrictions
is L-rewritable whenever

– the LTL
o∪{⃝}
c OMPIQ q† = (TR,κ)† is L-rewritable and

– the LTLo
r OMPIQs q‡ρ = (R, ρ)‡ are L-rewritable, for role types ρ for R.
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Proof. By Proposition 9, we have an L-rewriting Qρ(x, y, t) of every qρ = (R, ρ). Similarly
to the proof of Proposition 7, we claim that the L-formula Q(x, t) obtained from an L-
rewriting Q†(t) of q† by replacing every A(s) with A(x, s), every (∃P )†(s) with ∃y P (x, y, s),
every (∃P−)†(s) with ∃y P (y, x, s), every (∃Gρ)

†(s) with ∃yQρ(x, y, s), and, in the case of
FO(RPR), by replacing every Q(t1, . . . , tk), for a relation variable Q, with R(x, t1, . . . , tk)
is an L-rewriting of q.

Indeed, we show that O,A |= κ(a, ℓ) iff SA |= Q(a, ℓ), for any ABox A, any ℓ ∈ tem(A)

and any a ∈ ind(A). By Lemma 24, O,A |= κ(a, ℓ) iff T †R,U
†
a ∪ B†a |= κ†(ℓ). As Q†(t) is an

L-rewriting of (T †R,κ†), the latter is equivalent to SU†
a∪B†a

|= Q†(ℓ). Now, since Qρ(x, y, t)

is an L-rewriting of qρ, for all b ∈ ind(A) and n ∈ tem(A), we have (∃Gρ)
†(n) ∈ B†b iff

ρ = rb,c(n) for the R-canonical rod for A‡b,c, for some c ∈ ind(A), iff SA |= ∃yQρ(b, y, n).

Then, SU†
a∪B†a

|= Q†(ℓ) iff SA |= Q(a, ℓ), as required. ❑

We are now in a position to obtain our first set of concrete rewritability results for
OMAQs. Let q = (O, B) be a DL-Lite2⃝

krom/core OMAQ with O = T ∪ R and a basic
concept B. By Lemma 20 (i), q is L-rewritable whenever OMPIQs (O′, ϱ′⊥), (O′,κ′⊥) and
(O′,κ′⊥ ⊔ B) are L-rewritable. Suppose O′ = T ′ ∪ R′. By Proposition 9, the first OMPIQ
is L-rewritable if the LTL2⃝

core OMPIQ (R′, ϱ′⊥)‡ is L-rewritable, while, by Lemma 25, the
other two are L-rewritable whenever the LTL2⃝

core OMPIQs (R′, ϱ)‡, for role types ϱ for R′,
and the LTL2⃝

krom OMPIQs (T ′R′ ,κ′⊥)† and (T ′R′ ,κ′⊥ ⊔ B)† are L-rewritable. Theorems 24
and 27 of Artale et al. (2021) show that all LTL2⃝

core and LTL2⃝
krom OMPIQs are FO(<

,≡) and FO(RPR)-rewritable, respectively. Note, however, that the consistency checking
concept κ′⊥ in the two LTL2⃝

krom OMPIQs above has a special shape (see Lemma 20), and
so the two OMPIQs are in fact equivalent to the LTL2⃝

krom OMAQs (TR,⊥)† and (TR, B)†,
respectively, where TR is constructed for O. The latter class of OMAQs is FO(<,≡)-
rewritable (Artale et al., 2021, Theorem 16), which gives us our first optimal result. The
case of DL-Lite2⃝

krom/core OMAQs of the form (O, S) with a basic role S is similar; note that

the OMPIQ with the consistency checking concept κ′⊥ is required even for role OMAQs. In
the same way, DL-Lite2krom/horn OMAQs are reducible to LTL2⃝

krom OMPIQs of special form

(equivalent to OMAQs) and LTL2
horn OMPIQs, which, by Theorems 16 and 24 of Artale et al.

(2021), are FO(<,≡)- and FO(<)-rewritable, respectively. It is worth pointing out that the
TBox TR in Lemma 25 requires the use of the ⃝ operators, which leads to the increased
language expressivity for LTL2⃝

krom OMAQs. Finally, DL-Lite2⃝
bool/horn OMAQs are reducible

to LTL2⃝
bool and LTL2⃝

horn OMPIQs, which are known to be FO(RPR)-rewritable (Artale et al.,
2021, Theorems 8). Hence, we obtain:

Theorem 26. (i) All DL-Lite2⃝
krom/core and DL-Lite2krom/horn OMAQs are FO(<,≡)-rewritable.

(ii) All DL-Lite2⃝
bool/horn OMAQs are FO(RPR)-rewritable.

Despite FO(<)-rewritability of LTL2
horn OMPIQs, we cannot obtain FO(<)-rewritability

of DL-Lite2horn OMAQs because the connecting axioms (con) use the next-time operator ⃝F .
We now show that actually there are DL-Lite2horn OMAQs that are not FO(<)- and not
even FO(<,≡)-rewritable:

Theorem 27. (i) There is a DL-Lite2horn OMAQ, answering which is NC1-hard for data
complexity.

(ii) There is a non-FO(<)-rewritable DL-Lite2core/horn OMAQ.
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Figure 7: Proof of Theorem 27.

Proof. (i) Consider the DL-Lite2horn OMAQ q = (O, ∃S0) with O = T ∪ R and

T =
{
∃Rk ⊓A0 ⊑ ∃Sk, ∃Rk ⊓A1 ⊑ ∃S1−k | k = 0, 1

}
∪

{
B ⊑ ∃S0

}
,

R =
{
Sk ⊑ Fk, Sk ⊑ 2FFk, Sk ⊑ 2PPk, 2FFk ⊓ Pk ⊑ Rk | k = 0, 1

}
;

cf. Example 5. For e = (e0, . . . , en−1) ∈ {0, 1}n, let Ae = {B(a, n)} ∪ {Aei(a, i) | i < n }.
Then (a, 0) is a certain answer to q over Ae iff the number of 1s in e is even—see Fig. 7 and
note that ∃Sk(a, n) always generates a fresh witness aSn

k . The same idea can be used to
simulate arbitrary NFAs as in the proof of Theorem 10 by Artale et al. (2021), which shows
NC1-hardness. We leave details to the reader. The case of OMAQs of the form (O, S), for
a role S, can be dealt with similarly to the proof of Theorem 10 above.

To prove (ii), we can use the RBox R defined above and the fact that the OMAQ
({A0 ⊑ ⃝PA1, A1 ⊑ ⃝PA0}, A0) is not FO(<)-rewritable (Artale et al., 2021). ❑

5.2 FO(<)-Rewritability of Role-Monotone DL-Lite2⃝
bool/horn OMAQs

As follows from Theorem 27, DL-Lite2horn turns out to be fundamentally different from
LTL2

horn: in the proof, we used basic concepts of the form ∃Q and Horn RIs with 2F and 2P

to encode the ⃝P operator on concepts in the sense that O |= ∃Sk ⊑ ⃝P∃Rk. Our aim now
is to give a sufficient condition under which the connecting axioms (con) can be expressed
in DL-Lite2core, which would guarantee FO(<)-rewritability of q† in Lemma 25.

We say that a DL-Lite2⃝
bool/horn RBox R (and an ontology with such R) is role-monotone

if, for any role type ρ for R and any role S,

S ∈ rρ(n) and n ̸= 0 implies S ∈ rρ(k) for all k ≥ n or for all k ≤ n. (39)

In other words,
{
n ∈ Z | S ∈ rρ(n)

}
= ISP ∪ IS0 ∪ ISF , where each of ISP , I

S
0 and ISF is either

empty or an interval of the form (−∞,m′], {0} and [m,∞), respectively; see Fig. 8 for an
illustration of the possible cases. The proof of Theorem 27 gives an example of an RBox
that is not role-monotone: for the role type ρ containing Sk, Fk, 2FFk and 2PPk, we have
Rk ∈ rρ(−1), but neither Rk ∈ rρ(−2) nor Rk ∈ rρ(0).

We now show how to replace (con) for a role-monotone R with a set of DL-Lite2core CIs.
Let ρ be a role type for R. We consider the following four groups of cases for each role S.
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(i0/1): I
S
P = ISF = ∅

−5 −4 −3 −2 −1 1 2 3 4 50

S

(ii0/1): I
S
P = ∅ and ISF = [3,∞)

−5 −4 −3 −2 −1 1 2 3 4 50

S S S S

(ii2): I
S
P = ∅ and ISF = [−2,∞) ⊃ IS0

−5 −4 −3 −2 −1 1 2 3 4 50

S S S S S S S S

(iii0/1): I
S
F = (−∞,−3] and ISF = ∅

−5 −4 −3 −2 −1 1 2 3 4 50

SS S S

(iii2): I
S
P = (−∞, 2] ⊃ IS0 and ISF = ∅

−5 −4 −3 −2 −1 1 2 3 4 50

S S S S S S S S

(iv0/1): I
S
P = (−∞,−3] and ISF = [3,∞)

−5 −4 −3 −2 −1 1 2 3 4 50

SS S S S S S

(iv2): I
S
P = (−∞,−4] and ISF = [−1,∞) ⊃ IS0

−5 −4 −3 −2 −1 1 2 3 4 50

S S S S S S S S S

(iv3): I
S
P = (−∞, 1] ⊃ IS0 and ISF = [4,∞)

−5 −4 −3 −2 −1 1 2 3 4 50

S S S S S S S S S

(iv4): I
S
P = (−∞, 0] and ISF = [0,∞)

−5 −4 −3 −2 −1 1 2 3 4 50

S S S S S S S S S S S

Figure 8: Examples of possible configurations for a role in a role-monotone RBox: IS0 = ∅
in (i0) and I

S
0 = {0} in (i1); similarly for other cases.

(i) If ISP = ISF = ∅, then we take the CI

∃Gρ ⊑ ∃S, if IS0 ̸= ∅; (i1)

otherwise—that is, in case S /∈ rρ(n), for all n ∈ Z—we do not need any CIs.

(ii) If ISP = ∅ and ISF = [m,∞), then we take the following CIs, depending on m and IS0
(note that IS∅ ⊂ ISF if m ≤ 0):

∃Gρ ⊑ 2m
F ∃S, if m > 0 and IS0 = ∅; (ii0)

∃Gρ ⊑ ∃S and ∃Gρ ⊑ 2m
F ∃S, if m > 0 and IS0 ̸= ∅; (ii1)

∃Gρ ⊑ 2FDρ,S and 2−m+1
F Dρ,S ⊑ ∃S, if m ≤ 0, for a fresh Dρ,S . (ii2)

(iii) If ISP = (−∞,m′] and ISF = ∅, then we take the mirror image of (ii), with 2P , <, ≥
and m′ in place of 2F , >, ≤ and m, respectively.

(iv) If ISP = (−∞,m′] and ISF = [m,∞), then we take the respective CIs from both cases
(ii) and (iii).
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The resulting set of CIs for all role types ρ for R and all roles S is denoted by (mon-con).
It is readily seen that the connecting axioms (con) can be replaced by (mon-con) in the
definition of TR; the resulting TBox is denoted by Tmon-R. Thus, we obtain:

Lemma 28. For any role-monotone O, Lemmas 24 and 25 hold for Tmon-R in place of TR.

We show now that all DL-Lite2core RBoxes as well as DL-Lite2horn RBoxes without 2-
operators on the left-hand side of RIs are role-monotone. Recall that the fragment of
DL-Lite2bool/horn with RIs of the latter type is denoted byDL-Lite2bool/horn+ . Note that instead
of RIs with 2-operators on the right-hand side only we can take RIs with 3-operators on
the left-hand side only (see the discussion on TQL in Section 2).

Lemma 29. All DL-Lite2bool/core and DL-Lite2bool/horn+ ontologies are role-monotone.

Proof. Suppose first that O = T ∪R is a DL-Lite2bool/core ontology and ρ a role type for R.

Denote by rαρ (n) the set of temporalised roles R such that R‡(n) ∈ clαR‡({R‡(0) | R ∈ ρ});
cf. the canonical model construction in Section 6.1 below or (Artale et al., 2021, Section 7).
It is readily seen by induction that, for any α < ω1, if R ∈ rαρ (n) and n ̸= 0, then R ∈ rαρ (k)
either for all k ≥ n or for all k ≤ n. In DL-Lite2bool/horn+ , there are no 2-operators on the
left-hand side of RIs, and so the rules (2←F ) and (2←P ) in the canonical model construction
of Section 6.1 become redundant. In view of this, we can easily show that if R ∈ rαρ (n) and
either 0 < n < k or k < n < 0, then R ∈ rαρ (k). ❑

Following the lines of the argument for Theorem 26, Lemmas 28 and 29 and using FO(<)-
rewritability of LTL2

bool OMAQs and LTL2
horn OMPIQs (Artale et al., 2021, Theorems 11

and 24), we obtain:

Theorem 30. All DL-Lite2bool/core and DL-Lite2bool/horn+ OMAQs are FO(<)-rewritable.

6. Rewriting DL-Lite2
⃝

horn OMPIQs

Our next aim is to lift, where possible, the rewritability results obtained in Section 5 for
temporal DL-Lite OMAQs to OMPIQs. First, we observe that, for OMPIQs of the form
(O, ϱ) with a positive temporal role ϱ, Lemma 20 (ii), Proposition 9 and Lemmas 25, 28
and 29 (for the consistency concept OMPIQ in Lemma 20 (ii)) together with the LTL-
rewritability results of Artale et al. (2021) give us the following (see Table 3):

Theorem 31. For OMPIQs of the form (O, ϱ) with a positive temporal role ϱ,
(i) all DL-Lite2bool/core and DL-Litebool/horn+ OMPIQs are FO(<)-rewritable;
(ii) all DL-Lite2⃝

krom/core OMPIQs and DL-Lite2krom/horn are FO(<,≡)-rewritable;
(iii) all DL-Lite2⃝

bool/horn OMPIQs are FO(RPR)-rewritable.

So it remains to consider OMPIQs of the form (O,κ) with a positive temporal concept κ.
Recall that all LTL OMPIQs are FO(RPR)-rewritable, and so answering them can always be
done in NC1 for data complexity. On the other hand, as follows from the results of Schaerf
(1993), answering atemporal DL-Litekrom OMPIQs with positive temporal concepts can
encode 2+2SAT: (

{⊤ ⊑ A ⊔B }, ∃R.(∃P1.A ⊓ ∃P2.A ⊓ ∃N1.B ⊓ ∃N2.B)
)
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DL-Lite2c/r DL-Lite⃝c/r and DL-Lite2⃝
c/r

∗/(g-)bool coNP-hard (Schaerf, 1993) undecidable [Th. 10]

∗/krom

coNP-hard (Schaerf, 1993)
bool/horn, krom/horn

bool/horn+, krom/horn+

bool/core, krom/core

horn FO(RPR) [Th. 41 (iii)], NC1-hard [Th. 27 (i)]

FO(RPR) [Th. 41 (iii)]

NC1-hard
(Artale et al., 2021, Th. 10)

core/horn FO(<,≡) [Th. 41 (ii) & Th. 27 (ii)]

horn/horn+, core/horn+

FO(<) [Th. 41 (i)]horn/core

core FO(<,≡) [Th. 41 (ii)]

Table 4: Rewritability and data complexity of DL-Liteoc/r OMPIQs of the form (O,κ), for
a positive temporal concept κ, where * denotes any of bool, horn, krom or core.

is coNP-complete for data complexity. In a similar manner, one can show that answering
OMPIQs with the DL-Lite2krom ontology {A ⊑ 3FB} is coNP-complete because its normal
form is {A⊓2FA

′ ⊑ ⊥, ⊤ ⊑ A′⊔B}. There are also DL-Litekrom OMPIQs that are complete
for L, NL and P (Gerasimova et al., 2020), with the inclusion NC1 ⊆ L believed to be strict.
(Note that these results require ABoxes with an unbounded number of individual names.)
Thus, in the remainder of Section 6, we focus on DL-Lite2⃝

horn OMPIQs; see Table 4.

6.1 Canonical Models

The proofs of the rewritability results for OMPIQs require canonical models for fragments
of DL-Lite2⃝

horn, which generalise the canonical models of Artale et al. (2021).
Suppose we are given a DL-Lite2⃝

horn ontology O and an ABox A. Let Λ be a countable
set of atoms of the form ⊥, C(w, n) and R(w1, w2, n), where C is a temporalised concept, R
a temporalised role and n ∈ Z. To simplify notation, we refer to the concept and role atoms
C(w, n) and R(w1, w2, n) as ϑ(w, n), calling w—that is, w or (w1, w2)—a tuple. Denote by
clO(Λ) the result of applying non-recursively to Λ the following rules, where S is a role:

(mp) if O contains ϑ1 ⊓ · · · ⊓ ϑm ⊑ ϑ and ϑi(w, n) ∈ Λ for all i, 1 ≤ i ≤ m, then we add
ϑ(w, n) to Λ;

(cls) if O contains ϑ1 ⊓ · · · ⊓ ϑm ⊑ ⊥ and ϑi(w, n) ∈ Λ for all i, 1 ≤ i ≤ m, then we add ⊥;

(2→F ) if 2Fϑ(w, n) ∈ Λ, then we add all ϑ(w, k) with k > n;

(2←F ) if ϑ(w, k) ∈ Λ for all k > n, then we add 2Fϑ(w, n);

(⃝→F ) if ⃝Fϑ(w, n) ∈ Λ, then we add ϑ(w, n+ 1);

(⃝←F ) if ϑ(w, n+ 1) ∈ Λ, then we add ⃝Fϑ(w, n);
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Figure 9: The interpretation CO,A in Example 32.

(2→P ), (2←P ), (⃝→P ), (⃝←P ) are the past-time counterparts of the four rules above;

(inv) if S(w1, w2, n) ∈ Λ, then we add S−(w2, w1, n) to Λ (assuming that (P−)− = P );

(∃←) if S(w1, w2, n) ∈ Λ, then we add ∃S(w1, n);

(∃→) if ∃S(w, n) ∈ Λ, then we add S(w,wSn, n), where wSn is an individual name called
the witness for ∃S(w, n).

We set cl0O(Λ) = Λ and, for any successor ordinal ξ + 1 and limit ordinal ζ,

clξ+1
O (Λ) = clO(cl

ξ
O(Λ)) and clζO(Λ) =

⋃
ξ<ζ

clξO(Λ). (40)

Let CO,A = clω1
O (A), where ω1 is the first uncountable ordinal (as clω1

O (Λ) is countable, there
is an ordinal α < ω1 such that clαO(Λ) = clβO(Λ), for all β ≥ α). We regard CO,A as both
a set of atoms of the form ⊥ and ϑ(w, n) and as an interpretation whose domain, ∆CO,A ,
comprises ind(A) and the witnesses wSn that are used in the construction of CO,A, and the
interpretation function is defined by taking w ∈ ηCO,A(n) iff η(w, n) ∈ CO,A, for any concept
or role name η.

Example 32. The interpretation CO,A for A = {A(a, 0) } and

O =
{
A ⊑ 2F∃P, P ⊑ ⃝FR, R ⊑ ⃝FR, 2FR ⊑ S, ∃S− ⊑ ∃T, ∃T− ⊑ A

}
is shown in Fig. 9. Note that its construction requires ω2 applications of clO: ω + 2 appli-
cations are needed to derive S(a, aP 1, 1) (in fact, all S(a, aP k, n), for n ≥ k > 0), then a
T -successor with A is created, and the process is repeated again and again. The resulting
interpretation has infinite branching and infinite depth.
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Let I = (∆I , ·I(n)) be a temporal interpretation. A homomorphism from CO,A to I
is a map h : ∆CO,A → ∆I such that h(a) = aI , for a ∈ ind(A), and w ∈ ηCO,A(n) implies
h(w) ∈ ηI(n), for any concept or role name η, any tuple w from ∆CO,A and any n ∈ Z,
where h(w1, w2) = (h(w1), h(w2)). We now show that the canonical models of DL-Lite2⃝

horn

KBs satisfy the following important properties; cf. Theorem 18 by Artale et al. (2021).

Theorem 33. Let O be a DL-Lite2⃝
horn ontology and A an ABox. Then the following hold :

(i) for any temporalised concept or role ϑ, any tuple w in ∆CO,A and any n ∈ Z, we have
w ∈ ϑCO,A(n) iff ϑ(w, n) ∈ CO,A;

(ii) for any model I of O and A, there exists a homomorphism h from CO,A to I;

(iii) if ⊥ ∈ CO,A, then O and A are inconsistent ; otherwise, CO,A is a model of O and A;

(iv) if O and A are consistent, then, for any OMPIQ q = (O,κ) and any n ∈ Z, we have
(a, n) ∈ ansZ(q,A) iff a ∈ κCO,A(n); similarly, for any OMPIQ q = (O, ϱ), we have
(a, b, n) ∈ ansZ(q,A) iff (a, b) ∈ ϱCO,A(n).

Proof. Claim (i) is proved by induction on the construction of ϑ. The basis of induction
(for a concept or role name ϑ) follows from the definition of CO,A. Suppose ϑ = ∃S and
w ∈ (∃S)CO,A(n). Then (w,w′) ∈ SCO,A(n), for some w′ ∈ ∆CO,A , and so, by the induc-
tion hypothesis, S(w,w′, n) ∈ CO,A, which gives ∃S(w, n) ∈ CO,A by (∃←). Conversely, if
∃S(w, n) ∈ CO,A then, by (∃→), we have S(w,wSn, n) ∈ CO,A, whence, by the induction
hypothesis, (w,wSn) ∈ SCO,A(n), and so w ∈ (∃S)CO,A(n). The case of ϑ = P− is straight-

forward by (inv). For ϑ = 2Fϑ1, suppose first that w ∈ (2Fϑ1)
CO,A(n). Then w ∈ ϑ

CO,A(k)
1

for all k > n, whence, by the induction hypothesis, ϑ1(w, k) ∈ CO,A, and so, by (2←F ),
we obtain 2Fϑ1(w, n) ∈ CO,A. Conversely, if 2Fϑ1(w, n) ∈ CO,A then, by (2→F ), we have
ϑ1(w, k) ∈ CO,A for all k > n. By the induction hypothesis, w ∈ ϑ

CO,A(k)
1 for all k > n, and

so w ∈ (2Fϑ1)
CO,A(n). The other temporal operators, 2P , ⃝F and ⃝P , are treated similarly.

(ii) Suppose I is a model of O and A. By induction on α < ω1, we construct a map
hα from ∆CO,A to ∆I such that, for any ϑ, any tuple w in ∆CO,A and any n ∈ Z, if
ϑ(w, n) ∈ clαO(A) then hα(w) ∈ ϑI(n). For the basis of induction, we set h0(a) = aI .
By (i), the basis is chosen correctly. Next, for a successor ordinal ξ + 1, we define hξ+1

by extending hξ to the new witnesses wSn introduced by the rule (∃→) at step ξ + 1. If
∃S(w, n) ∈ clξO(A), then hξ(w) ∈ (∃S)I(n) by the induction hypothesis, and so there is
w′ ∈ ∆I such that (hξ(w), w′) ∈ SI(n). We set hξ+1(wSn) = w′ for all such wSn and keep
hξ+1 the same as hξ on the domain elements of clξO(A). That ϑ(w, n) ∈ clξ+1

O (A) implies
hξ+1(w) ∈ ϑI(n) follows from the induction hypothesis and the fact that I is ‘closed’ under
all of our rules save (∃→). For a limit ordinal ζ, we take hζ to be the union of all hξ,
for ξ < ζ.

(iii) Suppose first that ⊥ ∈ CO,A. Then there is an axiom ϑ1 ⊓ · · · ⊓ ϑm ⊑ ⊥ in O and
n ∈ Z such that ϑi(w, n) ∈ CO,A for all i (1 ≤ i ≤ m). By (i) and (ii), w ∈ ϑI(n)i , for all
models I of O and A and all i (1 ≤ i ≤ m). But then A is inconsistent with O. On the
other hand, if A is consistent with O, then CO,A is a model of O by (i) and closure under
the rules (mp) and (cls) since ⊥ /∈ CO,A; CO,A is a model of A by definition.
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To show (iv), observe that, for any interpretations I and J , if ηI(n) ⊆ ηJ (n) for all
n ∈ Z and all concept and role names η, then ϑI(n) ⊆ ϑJ (n) for all n ∈ Z and all positive
temporal concepts and roles ϑ. Now, that (w, n) ∈ ansZ(q,A) implies w ∈ ϑCO,A(n) follows
by (iii) from the fact that CO,A is a model of O and A, while the converse direction follows
from (i), (ii) and the observation above. ❑

Items (iii) and (iv) allow us to establish the following simpler analogue of Lemma 20 (i),
which holds for Horn OMPIQs (rather than OMAQs with Boolean CIs):

Lemma 34. Let L be one of FO(<), FO(<,≡), or FO(RPR), r ∈ {core, horn+, horn} and
c ∈ {core, horn}. Let O be a DL-Liteoc/r ontology and O′, κ′⊥ and ϱ′⊥ as in Lemma 20. For
any positive temporal concept κ, if Q′(x, t), QT⊥(x, t) and QR⊥(x, y, t) are L-rewritings of the
OMPIQs (O′,κ), (O′,κ′⊥) and (O′, ϱ′⊥), respectively, then Q′(x, t) ∨ χ⊥ is an L-rewriting
of the OMPIQ (O,κ), where χ⊥ = ∃x, tQT⊥(x, t) ∨ ∃x, y, tQR⊥(x, y, t).

We also require the following simple properties of the canonical models:

Lemma 35. Let O be a DL-Lite2⃝
horn ontology with O = T ∪R and A an ABox. If O and A

are consistent, then, for any role S and n ∈ Z, we have

(i) wSn ∈ ∆CO,A iff ∃S(w, n) ∈ CO,A, for any w ∈ ∆CO,A ;

(ii) R(w,wSn,m) ∈ CO,A iff R |= S ⊑ ⃝m−nR, for any temporalised role R, wSn ∈ ∆CO,A

and m ∈ Z;

(iii) C(wSn,m) ∈ CO,A iff O |= ∃S− ⊑ ⃝m−nC, for any temporalised concept C, any
wSn ∈ ∆CO,A and any m ∈ Z.

Proof. Claim (i) follows immediately from rule (∃→) in the definition of CO,A.
(ii) SupposeR |= S ⊑ ⃝m−nR and wSn ∈ ∆CO,A . Then S(w,wSn, n) ∈ CO,A by the def-

inition of CO,A. By Theorem 33 (iii), CO,A |= R, and so R(w,wSn,m) ∈ CO,A. Conversely,
suppose R(w,wSn,m) ∈ CO,A. By the construction of CO,A, we have S(w,wSn, n) ∈ CO,A
and R(w,wSn,m) ∈ CR,{S(w,wSn,n)}. It follows, by (9), that R |= S ⊑ ⃝m−nR.

The proof of (iii) is similar. ❑

6.2 Rewriting DL-Lite2⃝
horn OMPIQs

In this section, we prove our main technical result that reduces rewritability of ⊥-free
DL-Lite2⃝

horn OMPIQs q = (O,κ) with a positive temporal concept κ to rewritability of
DL-Lite2⃝

horn OMAQs. Without loss of generality, we assume that all concept and roles
names in κ occur in O = T ∪ R and that a role name occurs in T iff it occurs in R.

In order to encode the structure of the infinite canonical model in a finite way, we use
phantoms (Artale et al., 2021), which are formulas that encode certain answers to OMPIQs
beyond the active temporal domain tem(A). In the context of DL-Lite, we require the
following modification of the original definition.

Definition 36. Let L be one of FO(<), FO(<,≡), or FO(RPR). An L-phantom of the
given OMPIQ q = (O,κ) for k ̸= 0 is an L-formula Φk

q(x) such that, for any ABox A,

SA |= Φk
q(a) iff (a, σA(k)) ∈ ansZ(q,A), for any a ∈ ind(A),
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where

σA(k) =

{
maxA+ k, if k > 0,

minA+ k, if k < 0.

Similarly, an L-phantom of an OMPIQ q = (O, ϱ) for k ̸= 0 is an L-formula Φk
q(x, y) such

that, for any ABox A,

SA |= Φk
q(a, b) iff (a, b, σA(k)) ∈ ansZ(q,A), for any a, b ∈ ind(A).

For ⊥-free OMPIQs of the form q = (O, ϱ), we can, by (13), construct L-phantoms
Φk
q(x, y) from L-phantoms Φk

q‡ for the LTL OMPIQs q‡ = (R, ϱ)‡, provided that they exist.
For ⊥-free OMAQs of the form q = (O, B), we have the following analogue of Lemma 25:

Lemma 37. Let L be one of FO(<), FO(<,≡), or FO(RPR). A ⊥-free DL-Lite2⃝
horn OMAQ

(O, B) with O = T ∪ R and a basic concept B has an L-phantom for k ̸= 0 whenever

– the LTL2⃝
horn OMAQ q† = (TR, B)† has an L-phantom for k and

– the LTL2⃝
horn OMPIQs q‡ρ = (R, ρ)‡ are L-rewritable, for role types ρ for R.

The proof relies on the fact that Lemma 24 applies to all n ∈ Z and proceeds by
taking an L-phantom for q† and replacing every A(s) with A(x, s), every (∃P )†(s) with
∃y P (x, y, s), every (∃P−)†(s) with ∃y P (y, x, s) and every (∃Gϱ)

†(s) with ∃yQρ(x, y, s),
where Qρ(x, y, s) is an L-rewriting for (R, ρ) provided by Proposition 9 for each q‡ρ.

Since the LTL canonical models have ultimately periodic structure, there are only finitely
many non-equivalent phantoms for any OMPIQ q = (O,κ). We also have the following:

Lemma 38. For any DL-Lite2⃝
horn ontology O, there are positive integers sO and pO such

that, for any positive temporal concept κ (all of whose concept and role names occur in O),
any ABox A consistent with O, and any w ∈ ∆CO,A,

CO,A, k |= κ(w) iff CO,A, k + pO |= κ(w), for any k ≥Mw
A + sO + |κ|pO,

CO,A, k |= κ(w) iff CO,A, k − pO |= κ(w), for any k ≤ M̄w
A − (sO + |κ|pO),

where, for w = aSm1
1 . . . Sml

l ∈ ∆CO,A, with l ≥ 0, we denote

Mw
A = max{maxA,m1, . . . ,ml } and M̄w

A = min{minA,m1, . . . ,ml }.

The bounds on sO and pO are double- and triple-exponential in the size of O, and
the proof of this lemma, which generalises Lemma 6 in Section 3.1, can be found in Ap-
pendix B.2; cf. Lemma 22 by Artale et al. (2021) for the LTL case.

We now have all of the ingredients to prove Lemma 40, our main technical result in
Section 6. First, we illustrate the rather involved construction in its proof by an example.

Example 39. Consider the OMPIQ q = (O,κ) with κ = ∃Q.3FB and O = T ∪R, where

T =
{
A ⊑ ⃝F∃P, ∃P− ⊑ ⃝2

FB, ∃Q ⊑ ∃Q
}

and R =
{
P ⊑ ⃝PQ

}
(recall that we require that the TBox contains the same role names as the RBox). We
construct an FO(<,≡)-rewriting QO,κ(x, t) of q by induction. To illustrate, consider an
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Figure 10: Cases in Example 39: κ = ∃Q.3FB.

ABox A consistent with O, a ∈ ind(A) and ℓ ∈ tem(A) such that a ∈ (∃Q.3FB)CO,A(ℓ). Our
rewriting has to cover two main cases; see Fig. 10.

Case 1: If there is b ∈ ind(A) with (a, b) ∈ QCO,A(ℓ) and b ∈ (3FB)CO,A(ℓ), then we can
describe this configuration by the formula

∃y
[
QR,Q(x, y, t) ∧QO,3FB(y, t)

]
, (41)

where QR,Q(x, y, t) is a rewriting of the OMAQ (R, Q) provided by Proposition 9, and
QO,3FB(x, t) is a rewriting of a simpler OMPIQ (O,3FB), which can be defined as follows:

QO,3FB(x, t) = ∃s
(
(s > t) ∧QO,B(x, s)

)
∨

∨
k∈(0,N ]

Φk
O,B(x),

where QO,B(x, t) is the rewriting and the Φk
O,B(x) are the phantoms of the OMAQ (O, B)

provided by Lemmas 25 and 37, respectively, and N = sO + |κ|pO; see Lemma 38. That is,
N is a suitable integer that depends on q and reflects the periodicity of the canonical model
of O: a ‘witness’ B(b,m) for (3FB)(b, ℓ) is either in the active temporal domain tem(A)
(see Case 1.1 in Fig. 10) or at a distance k ≤ N from maxA (see Case 1.2 in Fig. 10).
The latter requires phantoms Φk

O,B(x); note that due to 3F we look only at integers larger
than ℓ (in particular, only positive k).

Case 2: If there exists n ∈ Z such that

– the canonical model for (O,A) contains P (a, aPn, n),

– the canonical model for (R, {P (a, aPn, n)}) contains Q(a, aPn, ℓ),

– the canonical model for (O, {P (a, aPn, n)}) contains (3FB)(aPn, ℓ),

then we consider two further options.
Case 2.1: If n ∈ tem(A), then, for the first item, we use a rewriting QO,∃P (x, s) of the
OMAQ (O, ∃P ). For the second, we need a formula ΘP;Q(s, t) such thatSA |= ΘP;Q(n, ℓ)
iff the canonical model for (R, {P (a, b, n)}) contains Q(a, b, ℓ), for n, ℓ ∈ tem(A). To capture
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the third condition, we need a formula Ψ̃P,3FB(x, s, t) such that SA |= Ψ̃P,3FB(a, n, ℓ) iff
the canonical model for (O, {P (a, b, n)}) contains (3FB)(b, ℓ), for n, ℓ ∈ tem(A). Assuming
that these formulas are available, we can express Case 2.1 by the formula

∃s
[
QO,∃P (x, s) ∧ ΘP;Q(s, t) ∧ Ψ̃P,3FB(x, s, t)

]
. (42)

Case 2.2: If n /∈ tem(A), then we need phantom versions Φµ
O,∃P (x), Θ

µ
P;Q(t) and Ψ̃µ

P,3FB(x, t)

of the subformulas in (42). For example, Ψ̃µ
P,3FB(x, t) should be such thatSA |= Ψ̃µ

P,3FB(a, ℓ)
iff the canonical model for (O, {P (a, b, σA(µ))}) contains (3FB)(b, ℓ), for ℓ ∈ tem(A). Pro-
vided that such phantoms are available, Case 2.2 can be represented by the formula∨

µ∈[−N,0)∪(0,N ]

[
Φµ
O,∃P (x) ∧ Θµ

P;Q(t) ∧ Ψ̃µ
P,3FB(x, t)

]
; (43)

notice that the quantifier ∃s (corresponding to the choice of n) is replaced by the (finite) dis-
junction over µ, while the argument s of the subformulas is now shifted to the superscript µ
of the phantoms.

The required FO(<,≡)-rewriting QO,κ(x, t) of q is a disjunction of (41)–(43). All
auxiliary formulas mentioned above are constructed using the same type of analysis that
will be explained in full detail below. For example, in formula (42), that is, Case 2.1 with
n ∈ tem(A), one can take

Ψ̃P,3FB(x, s, t) = ∃s′
(
(s′ > t) ∧ Ψ̃P,B(x, s, s

′)
)

∨
∨

k∈(0,N ]

Ψ̄k
P,B(x, s),

where Ψ̄k
P,B(x, s) is such that SA |= Ψ̄k

P,B(a, n) iff the canonical model for (O, {P (a, b, n)})
contains B(b, σA(k)). Note the similarity to formula QO,3FB(x, t) in Case 1 above: the first
disjunct covers the case when the canonical model contains B(b,m) with n in the active
temporal domain tem(A), while the second disjunct covers the case when B(b,m) is found
beyond tem(A), and so we have to resort to the phantoms.

Lemma 40. Let L be one of FO(<), FO(<,≡), or FO(RPR). A ⊥-free DL-Lite2⃝
horn OM-

PIQ q = (O,κ) with O = T ∪ R and a positive temporal concept κ is L-rewritable if

– for any OMAQ q = (O, B) with B in the alphabet of O, there exist an L-rewriting
Q(x, t) of q and L-phantoms Φk

q(x) of q for all k ̸= 0;

– for any OMAQ q = (O, P ) with P from O, there exist an L-rewriting Q(x, y, t) of q
and L-phantoms Φk

q(x, y) of q for all k ̸= 0.

Proof. We require a number of auxiliary FO-formulas (similar to Θk
P;Q(t) and Ψk

P,3FB(x, t)
in Example 39), which are characterised semantically in Table 5 and defined syntactically
in Appendix B. For the last two items in Table 5, examples of the canonical model C
are illustrated in Fig. 11 for l = 3; note that, in general, the order of the time instants
m1, . . . ,ml, n can be arbitrary. Note that if µi ̸= 0, then the formula Ψµ1,...,µl

S1...Sl,κ(x, t1, . . . , tl, t)

does not depend on ti. In the context of Example 39, we have Ψ̃P,κ(x, s, s
′) = Ψ0

P,κ(x, s, s
′),

1271



Artale, Kontchakov, Kovtunova, Ryzhikov, Wolter & Zakharyaschev

SA |= ΘS;S1(n, n1) ⇐⇒ R |= S ⊑ ⃝n1−nS1

SA |= Θk
S;S1

(n1) ⇐⇒ R |= S ⊑ ⃝n1−σA(k)S1

SA |= Θ̄k1
S;S1

(n) ⇐⇒ R |= S ⊑ ⃝σA(k1)−nS1

SA |= Θk,k1
S;S1

⇐⇒ R |= S ⊑ ⃝σA(k1)−σA(k)S1

SA |= ΞB;B1(n, n1) ⇐⇒ O |= B ⊑ ⃝n1−nB1

SA |= Ξk
B;B1

(n1) ⇐⇒ O |= B ⊑ ⃝n1−σA(k)B1

SA |= Ξ̄k1
B;B1

(n) ⇐⇒ O |= B ⊑ ⃝σA(k1)−nB1

SA |= Ξk,k1
B;B1

⇐⇒ O |= B ⊑ ⃝σA(k1)−σA(k)B1

SA |= Ψµ1,...,µl
S1...Sl,κ(a, n1, . . . , nl, n) ⇐⇒

S1(w0, w1,m1), . . . , Sl(wl−1, wl,ml) ∈ C and wl ∈ κC(n),
SA |= Ψµ1,...,µl,k

S1...Sl,κ (a, n1, . . . , nl) ⇐⇒
S1(w0, w1,m1), . . . , Sl(wl−1, wl,ml) ∈ C and wl ∈ κC(σA(k)),

where C = CO,{∃S1(a,m1)}, w0 = a and wi = wi−1S
mi
i , for all i, 1 ≤ i ≤ l,

and mi =

{
ni, if µi = 0,

σA(µi), otherwise,
for all i, 1 ≤ i ≤ l.

Table 5: Semantic characterisations of the auxiliary formulas in rewritings: a ∈ ind(A),
n, n1, . . . , nl ∈ tem(A), k ∈ Z \ {0} and µ1, . . . , µl ∈ Z.

Ψ̃µ
P,κ(x, t) = Ψµ

P,κ(x, 0, t) and Ψ̄k
P,κ(x, s) = Ψ0,k

P,κ(x, s), where 0 is used in place of the dummy

argument because Ψµ
P,κ(x, t1, t) does not depend on t1.

As we shall see in Appendix B, the formulas in Table 5 are all in FO(<,≡) if O is a
DL-Lite2⃝

horn ontology, and in FO(<) if O is in DL-Lite2horn/core and DL-Lite2
horn/horn+ . Using

these formulas, we now construct an L-rewriting QO,κ(x, t) of q and L-phantoms Φk
O,κ(x)

for k ̸= 0. For the given DL-Lite2⃝
horn ontology O = T ∪R, we take sO and pO as defined in

Lemma 38.

Case κ = A. An L-rewriting QO,A(x, t) and L-phantoms Φk
O,A(x) are given by the formu-

lation of the theorem.

Cases κ = κ1 ⊓ κ2 and κ = κ1 ⊔ κ2 are trivial.

Case κ = 2Fκ′. Using Lemma 38, we take N = sO + |κ|pO and set

QO,2Fκ′(x, t) = ∀s
[
(s > t) → QO,κ′(x, s)

]
∧

∧
k∈(0,N ]

Φk
O,κ′(x),

Φk
O,2Fκ′(x) =


∧

i∈(k,k+N ]

Φi
O,κ′(x), if k > 0,

∧
i∈(k,0)

Φi
O,κ′(x) ∧QO,2Fκ′(x, 0), if k < 0,

The cases of the other temporal operators are similar and left to the reader.
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m1
n1

m2
n2
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n3 n

minA maxA
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aSm1
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1 Sm2

2

aSm1
1 Sm2

2 Sm3
3 κ

S1

S2

S3

m2
minA+ µ2

minA m1
n1

maxA m3
maxA+ µ3

a ∃S1

aSm1
1

aSm1
1 Sm2

2
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2 Sm3
3 κ

S1

S2

S3k

µ3

−µ2

Figure 11: Canonical model for Ψ0,0,0
S1,S2,S3,κ(a, n1, n2, n3, n) and Ψ0,µ2,µ3,k

S1,S2,S3,κ(a, n1, 0, 0).

Case κ = ∃S.κ′. The rewriting reflects the possible configurations depicted in Fig. 10.
Case 1 is straightforward and involves individual names only, but in Case 2 we need to
pinpoint the time instant when a suitable witness is created. Case 2.1 deals with the
(finite) active domain, and so an existential quantifier can be used to fix the required time
instant. Case 2.2, however, deals with the infinitely many time instants outside the active
domain, but Lemma 45 from Appendix B shows that it actually is enough to consider only
a bounded number of time instants before minA and after maxA, which can be referred to
by suitable phantoms. Using this observation, we take N = sO + |κ|pO and set

QO,∃S.κ′(x, t) = ∃y
(
QR,S(x, y, t) ∧QO,κ′(y, t)

)
∨∨

role S1 in O

[
∃t1

(
QO,∃S1

(x, t1) ∧ΘS1;S(t1, t) ∧Ψ0
S1,κ′(x, t1, t)

)
∨∨

µ∈[−N,0)∪(0,N ]

(
Φµ
O,∃S1

(x) ∧Θµ
S1;S(t) ∧Ψµ

S1,κ′(x, 0, t)
)]
.

The three groups of disjuncts correspond to Cases 1, 2.1 and 2.2 in Example 39, respectively.
We define the phantoms for k > 0 as follows:

Φk
O,∃S.κ′(x) = ∃y

(
Φk
R,S(x, y) ∧ Φk

O,κ′(y)
)

∨∨
role S1 in O

[
∃t1

(
QO,∃S1

(x, t1) ∧ Θ̄k
S1;S(t1) ∧Ψ0,k

S1,κ′(x, t1)
)

∨∨
µ∈[−N,0)∪(0,k+N ]

(
Φµ
O,∃S1

(x) ∧Θµ,k
S1;S ∧Ψµ,k

S1,κ′(x, 0)
)]
.

If k < 0, then we replace the bounds of the last disjunction by [k −N, 0) ∪ (0, N ]. ❑

As a consequence of Lemmas 34, 37 and 40 together with the LTL-rewritability results
of Artale et al. (2021) we obtain:

Theorem 41. For OMPIQs of the form (O,κ) with a positive temporal concept κ,
(i) all DL-Lite2horn/core and DL-Lite2horn/horn+ OMPIQs are FO(<)-rewritable;

(ii) all DL-Lite2⃝
core OMPIQs and DL-Lite2core/horn are FO(<,≡)-rewritable;

(iii) All DL-Lite2⃝
horn OMPIQs are FO(RPR)-rewritable.
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7. First-Order Temporal OMQs under the Epistemic Semantics

We use positive temporal concepts and roles as building blocks for our most expressive
query language. It is inspired by the epistemic queries introduced by Calvanese et al.
(2007a) and the SPARQL 1.1 entailment regimes (Glimm & Ogbuji, 2013); cf. Motik (2012),
Gutierrez, Hurtado, and Vaisman (2007). The definition and main rewritability result are
straightforward, so this section will be brief. A (temporal) ontology-mediated query (OMQ)
is a pair q = (O, ψ(x, t)), in which O is an ontology and ψ(x, t) a first-order formula
built from atoms of the form κ(x, t), ϱ(x, y, t), and t < t′, where κ and ϱ are a positive
temporal concept and role, respectively, x and y are individual variables, and t and t′

temporal variables; the free variables x and t of ψ are called the answer variables of q.
Given an ABox A, the OMQ q is evaluated over a two-sorted structure GO,A with domain
ind(A) ∪ tem(A), where the extension of κ, ρ and < in GO,A is defined by setting, for any
assignment a mapping individual and temporal variables to elements of ind(A) and tem(A):

GO,A |=a κ(x, t) iff (a(x), a(t)) ∈ ans(O,κ,A),

GO,A |=a ϱ(x, y, t) iff (a(x), a(y), a(t)) ∈ ans(O, ϱ,A),

GO,A |=a t < t′ iff a(t) < a(t′).

We extend these to arbitrary formulas ψ using the standard clauses for the Boolean con-
nectives and first-order quantifiers over both ind(A) and tem(A). Let x = x1, . . . , xk and
t = t1, . . . , tm be the free variables of ψ. We say that (a1, . . . , ak, ℓ1, . . . , ℓm) is an answer to
the OMQ q = (O, ψ(x, t)) over A if GO,A |=a ψ, where a(xi) = ai, for all i, 1 ≤ i ≤ k, and
a(tj) = ℓj , for all j, 1 ≤ j ≤ m. Thus, we keep the open-world interpretation of positive
temporal concepts and roles, the individual and temporal variables of OMQs range over the
active domains only, and the first-order constructs in ψ are interpreted under the epistemic
semantics (Calvanese et al., 2007a). Let L be one of FO(<), FO(<,≡), or FO(RPR). We
call an OMQ q = (O, ψ(x, t)) L-rewritable if there is an L-formula Q(x, t) such that, for
any ABox A and any tuples a and ℓ in ind(A) and tem(A), respectively, the pair (a, ℓ) is
an answer to q over A iff SA |= Q(a, ℓ). It is straightforward to construct an L-rewriting
of q by replacing all occurrences of positive temporal concepts and roles in ψ with their
L-rewritings. Thus, we obtain:

Theorem 42. Let L be one of FO(<), FO(<,≡), or FO(RPR), and q = (O, ψ) an OMQ.
If all OMPIQs (O,κ) and (O, ϱ) with positive temporal concepts κ and roles ϱ in ψ are
L-rewritable, then q is also L-rewritable.

8. Conclusions

In this article, aiming to extend the well-developed theory of ontology-based data access
(OBDA) to temporal data, we designed a family of 2D ontology languages that combine
logics from the DL-Lite family for representing knowledge about object domains and clausal
fragments of linear temporal logic LTL over (Z, <) for capturing knowledge about the
evolutions of objects in time. We also suggested a 2D query language that integrates first-
order logic for querying the object domains with positive temporal concepts and roles as FO-
atoms. The FO-constructs in these queries are interpreted under the epistemic semantics,
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while the temporal concepts and roles under the open-world semantics. The resulting
ontology-mediated queries (OMQs) can be regarded as temporal extensions of SPARQL
queries under the (generalised) OWL2QL direct semantics entailment regime (Kontchakov,
Rezk, Rodriguez-Muro, Xiao, & Zakharyaschev, 2014). Our main result is the identification
of classes of OMQs that are FO(<)-, FO(<,≡)-, or FO(RPR)-rewritable, with the first two
types of rewriting guaranteeing OMQ answering in AC0 and the last one in NC1 for data
complexity. In particular, we proved that all DL-Lite2core OMQs are FO(<)-rewritable
and all DL-Lite2⃝

core OMQs are FO(<,≡)-rewritable, which means that classical atemporal
OBDA with the W3C standard ontology language OWL2QL and SPARQL queries can be
extended to temporal ontologies, queries and data without sacrificing the data complexity
of OMQ answering.

Having designed suitable languages for temporal OBDA and established their efficiency
in terms FO-rewritability and data complexity, we are facing a number of further open
questions.

(succinctness) What is the size of (various types of) minimal rewritings of temporal
OMQs compared to that of OWL2QL OMQs investigated by Bienvenu et al. (2018),
Bienvenu, Kikot, Kontchakov, Podolskii, Ryzhikov, and Zakharyaschev (2017), Bi-
envenu, Kikot, Kontchakov, Ryzhikov, and Zakharyaschev (2017) The FO-rewritings
constructed in this article seem to be far from optimal.

(parameterised complexity) What is the combined complexity of answering temporal
OMQs, in which, for example, the temporal depth of positive temporal concepts and
roles is regarded as the parameter? Or what is the data complexity of OMQ answering
over data instances where the number of individual objects and/or the number of
timestamps are treated as parameters.

(non-uniform approach) How complex is it to decide, given an arbitrary DL-Lite2⃝
bool/horn

OMAQ or OMPIQ, whether it is FO(<)-, FO(<,≡)-, or FO(RPR)-rewritable? For
atemporal OMQs with DL-ontologies, this non-uniform approach to OBDA has been
actively developed since the mid 2010s (Bienvenu, ten Cate, Lutz, & Wolter, 2014;
Bienvenu, Hansen, Lutz, & Wolter, 2016; Barceló, Berger, Lutz, & Pieris, 2018). In
the temporal case, first steps have recently been made for LTL OMQs by Ryzhikov,
Savateev, and Zakharyaschev (2021).

(two-sorted conjunctive queries) Is it possible to generalise the results of this article
from OMPIQs to two-sorted first-order conjunctive queries under the open-world se-
mantics? Which of these two languages or their fragments would be more suitable for
industrial users?

(Krom RIs) Are all DL-Lite2krom OMAQs FO(<)-rewritable? Are all DL-Lite2⃝
krom OMAQs

FO(<,≡)-rewritable? What is the combined complexity of the consistency problem
for DL-Lite2bool/krom KBs? To answer these questions, one may need a type-based

technique similar to the approach in the proof of Theorem 16 by Artale et al. (2021)
as our Lemma 25 is not applicable to Krom role inclusions.

We conclude by emphasising another aspect of the research project we are proposing in
this article. It has recently been observed (Xiao et al., 2019) that OBDA should be regarded
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as a principled way to integrate and access data via virtual knowledge graphs (VKGs). In
VKGs, instead of structuring the integration layer as a collection of relational tables, the
rigid structure of tables is replaced by the flexibility of graphs that are kept virtual and
embed domain knowledge. In this setting, we propose to integrate temporal data via virtual
temporal knowledge graphs.
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Appendix A. Proof of Theorem 43

Theorem 43. There is a DL-Litecore/g-bool ontology O such that answering OMAQs of the
form (O, B), for a basic concept B, and of the form (O, S), for a role S, is coNP-hard.

Proof. The proof is by reduction of the 2+2 SAT problem, which is known to be NP-
complete (Schaerf, 1993). A 2+2-CNF formula over a set Σ of propositional variables is a
CNF formula φ = c1 ∧ c2 ∧ · · · ∧ cn such that each clause ci is of the form l1i ∨ l2i ∨¬l3i ∨¬l4i ,
for 1 ≤ i ≤ n, where lji are elements of Σ̄ = Σ ∪ {true, false}.

Let φ be a 2+2-CNF. We construct an OMAQ with a DL-Litecore/g-bool ontology O and
an ABox A such that a fixed individual is a certain answer to the OMAQ over A iff φ is
unsatisfiable. The ABox A has an individual l for each letter l ∈ Σ̄ (including true and
false), an individual ci for each clause ci, and an individual f for the formula. It consists of
the following atoms, with concepts Ctrue, Cfalse, and roles L, P1, P2, N3, and N4:

Ctrue(true), Cfalse(false),

L(ci, f), P1(ci, l
1
i ), P2(ci, l

2
i ), N3(ci, l

3
i ), N4(ci, l

4
i ), for 1 ≤ i ≤ n.

The ontology O = T ∪ R has additional roles T , F , and Hj , Gj , Rj , for 1 ≤ j ≤ 4:

R = { Pj ⊑ T ⊔ F and Nj ⊑ T ⊔ F, for j = 1, 2,

P1 ⊓ F ⊑ H1, P2 ⊓ F ⊑ H2, N3 ⊓ T ⊑ H3, N4 ⊓ T ⊑ H4,

L ⊑ Gj ⊔Rj and Gj ⊓Rj ⊑ ⊥, for 1 ≤ j ≤ 4, G1 ⊓G2 ⊓G3 ⊓G4 ⊑ Q } and

T = { ∃T− ⊓ ∃F− ⊑ ⊥, ∃T− ⊓ Cfalse ⊑ ⊥, ∃F− ⊓ Ctrue ⊑ ⊥,
∃Hj ⊓ ∃Rj ⊑ ⊥ for 1 ≤ j ≤ 4 }.

Informally, each model is viewed as a truth assignment to the propositional variables: a
propositional letter belongs to the range of T if it is assumed to be true (and false otherwise,
that is, if it belongs to the range of F ). Then, rolesHj pick up those literals in every clause ci
that are false under this assignment, and role Q aggregates this information: tuple (ci, f)
belongs to Q if all of its literals are false, and so is the clause ci. In other words, f is

1276



FO-Rewritability of Two-Dimensional Temporal Ontology-Mediated Queries

a certain answer to OMAQ (O, ∃Q−) just in case, for every truth assignment, there is a
clause ci whose positive variables are false, and whose negative variables are true.

We claim that

φ is unsatisfiable iff ans(O,∃Q−,A) = {f}.

Suppose φ is unsatisfiable. Let I be a model of (O,A). We define a truth assignment σ by
taking σ(l) to be true iff l ∈ (∃T−)I . Since φ is unsatisfiable, there is a clause ci such that
σ(l1i ∨ l2i ∨¬l3i ∨¬l4i ) is false under the resulting σ, which means l1i ∈ (∃F−)I , l2i ∈ (∃F−)I ,
l3i ∈ (∃T−)I and l4i ∈ (∃T−)I . Consequently, ci ∈ ∃HIj , and (ci, f)

I ∈ GIj , for each j,

1 ≤ j ≤ 4, and so (ci, f)
I ∈ QI . It follows that (O,A) |= ∃Q−(f).

Conversely, suppose φ is satisfied under a truth assignment σ. Consider an interpre-
tation I such that T I = {(ci, lji )I | σ(lji ) is true}, F I = {(ci, lji )I | i, j} \ T I , HIj =

{(ci, lji )I | (ci, lji )I ∈ F I}, for j = 1, 2, HIj = {(ci, lji )I | (ci, lji )I ∈ T I}, for j = 3, 4, and

RIj = {(ci, f)I | (ci, lji )I ̸∈ HIj } with GIj = {(ci, f)I | i} \ RIj . It can be easily verified that
I is a model of (O,A). Since φ is satisfied under σ, for every ci, there is either j = 1, 2
with true σ(lji ) or j = 3, 4 with false σ(lji ). Thus, for every ci, there is j, 1 ≤ j ≤ 4, with

(ci, l
j
i )
I /∈ HIj and (ci, f)

I ∈ RIj . Since Rj and Gj are disjoint, I ̸|= ∃Q−(f). ❑

Appendix B. Definitions of Formulas in Table 5

We provide syntactic definitions of the auxiliary formulas in Table 5 for a given ⊥-free
DL-Lite2⃝

horn ontology O with a TBox T and an RBox R. Recall from Section 3.2 that R‡

is the translation of R to LTL2⃝
horn, which uses the concept names AS for roles S, while T †R

is the translation of TR = T ∪ (con) to LTL2⃝
horn defined in Section 5.1, which uses concept

names from T along with concept names (∃S)† = ES for roles S.
In the auxiliary formulas we use the FO(<,≡)-abbreviation t− t′ ∈ r+ pN, for r, p ≥ 0,

from Remark 3 (ii) of Artale et al. (2021) with the following meaning: for n, n′ ∈ tem(A),

SA |= n− n′ ∈ r + pN iff n′ + r ∈ tem(A) and n = n′ + r + pk, for some k ∈ N.

Note that, if n′+ r > maxA, then the formula evaluates to ⊥. We use two more shortcuts:
t− t′ = r for t− t′ ∈ r + 0N and t ∈ r + pN for t− 0 ∈ r + pN.

Observe that, if p = 1, then FO(<,≡)-formula t − t′ ∈ r + pN is equivalent to an
FO(<)-formula that we abbreviate by t− t′ > r and define by taking t > t′ for r = 0 and

∃t1, . . . , tr
(
(t > tr) ∧ (tr > tr−1) ∧ · · · ∧ (t2 > t1) ∧ (t1 > t′)

)
for r > 0.

Also, we need symbols max and min that are used in place of temporal variables: max
stands for a variable tmax additionally satisfying ¬∃t (t > tmax); similarly, min stands for a
variable tmin with for ¬∃t (t < tmin). Finally, as usual, the empty disjunction is ⊥.

B.1 Θ- and Ξ-formulas.

To define the four types of Θ-formulas, we consider the R-canonical rod r for {S‡(0)}; see
Section 4.1. Let s = sR‡,{S‡(0)} and p = pR‡,{S‡(0)} be the integers provided by Lemma 6 (i).
Let 0 ≤ s1 < · · · < sl ≤ s be all the numbers with S1 ∈ r(si) and let 1 ≤ p1 < · · · < pm ≤ p
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tmin max max+k1

S S1

s+ pi p p p p

k1 mod p

p− k1 mod p

max − t > s+ pi

tmin max max+k1

S S1

s+ pi p p p

q

s+ pi − q

max − t ≤ s+ pi

Figure 12: Two cases for Θ̄k1
S;S1

(t).

be all the numbers with S1 ∈ r(s + pi). Symmetrically, let 0 ≤ s′1 < · · · < s′l′ ≤ s and
1 ≤ p′1 < · · · < p′m′ ≤ p be all the numbers with S1 ∈ r(−s′i) and S1 ∈ r(−s− p′i).

Formulas ΘS;S1(t, t1) simply list the cases for the distance between t1 and t such that
an S at t implies an S1 at t1: by Lemma 6 (i), the distance can be one of the si, or one of
the −s′i, or belong to one of the the arithmetic progressions s + pi + pN or −s − p′i − pN.
So, we define the formula by taking

ΘS;S1(t, t1) =
∨

1≤i≤l
(t1 − t = si) ∨

∨
1≤i≤m

(t1 − t ∈ s+ pi + pN) ∨

∨
1≤i≤l′

(t− t1 = s′i) ∨
∨

1≤i≤m′

(t− t1 ∈ s+ p′i + pN);

note that the s′i and the p′i are non-negative, and we flip the sign of the arithmetic expressions
when t1 < t.

Formulas Θ̄k1
S;S1

(t) follow the same principle. If k1 > 0, then we list the cases when
the distance between t and max + k1 is suitable. Note, however, that, as t ranges over the
active temporal domain only, we have t < max + k1, and so, we need only cases with the si
and the pi, but not with the s′i and the p′i. So, we set

Θ̄k1
S;S1

(t) =
∨

1≤i≤l
(max − t = si − k1) ∨

∨
1≤i≤m

[
(max − t ∈ s+ pi + (p− k1 mod p) + pN) ∨

∨
0≤q≤s+pi with
k1∈s+pi−q+pN

(max − t = q)
]
.

Since the value of max+k1 does not belong to the active temporal domain, we cannot use
the (max+k1) − t ∈ s + pi + pN abbreviation directly and have to consider two cases,
depending on whether max − t is larger or smaller than s+pi (see Fig. 12): these two cases
are encoded in the two disjuncts in the second line of the definition of Θ̄k1

S;S1
(t). The case

k1 < 0 is similar and left to the reader.
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Formulas Θk
S;S1

(t1) are constructed similarly to Θ̄k1
S;S1

(t).

Formulas Θk,k1
S;S1

have no free variables, but follow the same principle. We only consider
the most interesting case of k < 0 and k1 > 0 (leaving the three remaining cases to the
reader): in this formula, we check that the difference between max + k1 and min + k either
is one of the si (again, the s

′
i are irrelevant because the difference is positive) or belongs to

one of the the arithmetic progressions s + pi + pN (the p′i are irrelevant), where we again
have two cases, with max −min larger/smaller than s+ pi. We denote k̄ = k1 − k and set

Θk,k1
S;S1

=
∨

1≤i≤l
(max −min = si − k̄)) ∨

∨
1≤i≤m

[
(max −min ∈ s+ pi + (p− k̄ mod p) + pN) ∨

∨
0≤q≤s+pi with
k̄∈s+pi−q+pN

(max −min = q)
]
.

We note that if R is a DL-Lite2horn RBox, then, by Lemma 6 (i), we can take p = 1, and

so ΘS;S1(t, t1), Θ
k
S;S1

(t1), Θ̄
k1
S;S1

(t) and Θk,k1
S;S1

are equivalent to FO(<)-formulas.
The Ξ-formulas are constructed similarly to the Θ-formulas using the ontology T †R (see

Lemma 24) and the beam in CT †
R,{B†(0)} (see Section 4.1), instead of R‡ and the R-canonical

rod for {S‡(0)}. Observe that, for role-monotone DL-Lite2horn-ontologies O, those formulas
are in FO(<) because T †R is in LTL2

horn.
To sum up, we have shown the following:

Lemma 44. Let O = (T ,R) be a ⊥-free DL-Lite2⃝
horn ontology, k, k1 ∈ Z \ {0}, B, B1 basic

concepts, and S, S1 roles. Then there are FO(<,≡)-formulas ΘS;S1(t, t1), Θk
S;S1

(t1),

Θ̄k1
S;S1

(t), Θk,k1
S;S1

, as well as ΞB;B1(t, t1), Ξk
B;B1

(t1), Ξ̄k1
B;B1

(t), Ξk,k1
B;B1

satisfying the
characterisations in Table 5.

Moreover, if O is a DL-Lite2horn/core or DL-Lite2
horn/horn+ ontology, then those formulas

are in FO(<).

B.2 Ψ-formulas

The formulas Ψµ1,...,µl
S1...Sl,κ(x, t1, . . . , tl, t) and Ψµ1,...,µl,k

S1...Sl,κ (x, t1, . . . , tl) have, however, more in-
volved definitions, which take into account the periodicity of the canonical model CO,A.
The next lemma characterises the temporal periodicity of CO,A on both ABox and non-
ABox elements.

Lemma 38. For any DL-Lite2⃝
horn ontology O, there are positive integers sO and pO such

that, for any positive temporal concept κ (all of whose concept and role names occur in O),
any ABox A consistent with O, and any w ∈ ∆CO,A,

CO,A, k |= κ(w) iff CO,A, k + pO |= κ(w), for any k ≥Mw
A + sO + |κ|pO,

CO,A, k |= κ(w) iff CO,A, k − pO |= κ(w), for any k ≤ M̄w
A − (sO + |κ|pO),

where, for w = aSm1
1 . . . Sml

l ∈ ∆CO,A, with l ≥ 0, we denote

Mw
A = max{maxA,m1, . . . ,ml } and M̄w

A = min{minA,m1, . . . ,ml }.
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Proof. Since the number of role types is bounded by 2|R|, the size of (con) is bounded
by 2|R|(3 + 2(|R| + 22|R|)(1 + |R|)) ≤ 24|R| (assuming that R is non-empty). It follows

that |TR| = |T | + |(con)| ≤ |T | + 24|R| ≤ 24|O|. Therefore, we have sTR < 2|TR| ≤ 22
4|O|

and pTR < 22|TR|·2
|TR| ≤ 22

(24|O|+4|O|+1) ≤ 22
25|O|

. Set sO = sTR + pTR and pO = pTR . Note
that sO ≥ pO. Also, as (con) mimics the behaviour of roles using concept names, we can
assume in applications of Lemma 6 (ii) to R below that sO ≥ sR and pO is divisible by pR.

The proof of the lemma is by induction on the construction of κ. In fact, we also prove
(by simultaneous induction) the following auxiliary claim:

Claim 1. For any wTn1
1 . . . Tnr

r ∈ ∆CO,A , with r > 0, we have

CO,A, k |= κ(wTn1
1 . . . Tnr

r ) ⇐⇒ CO,A, k + pO |= κ(wTn1+pO
1 . . . Tnr+pO

r ),

for any k ≥Mw
A + sO + |κ|pO provided that n1 ≥Mw

A + sO,

CO,A, k |= κ(wTn1
1 . . . Tnr

r ) ⇐⇒ CO,A, k − pO |= κ(wTn1−pO
1 . . . Tnr−pO

r ),

for any k ≤ M̄w
A − (sO + |κ|pO) provided that n1 ≤ M̄w

A − sO,

We prove only the first equivalence in each pair; the other is shown by a symmetric argument.
First, observe that, by Lemma 6 (ii), if n1 ≥Mw

A + sO, then wT
n1+pO
1 . . . Tnr+pO

r ∈ ∆CO,A ,
and similarly, if n1 ≤ M̄w

A − sO, then wTn1−pO
1 . . . Tnr−pO

r ∈ ∆CO,A . We now proceed by
induction on the structure of κ.
Cases κ = A and κ = ∃S.⊤ for both the claim of the lemma and Claim 1 follow immediately
from Lemmas 6 (ii) and 35 (i).

Case κ = ∃S.κ′ with |κ′| ≥ 1. We first prove the claim of the lemma. Suppose first that
CO,A, k |= κ′(w′) and CO,A, k |= S(w,w′), for some w′ ∈ ∆CO,A . There are two possible
locations for w′.

– Let w′ = aSm1
1 . . . S

ml−1

l−1 (if l > 0). Since Mw′
A ≤Mw

A , and so k ≥Mw′
A + sO + |κ′|pO,

by the induction hypothesis, we obtain CO,A, k+ pO |= κ′(w′). On the other hand, by
Lemma 35 (ii), we have S−(w′, w, k) ∈ CR,{Sl(w′,w,ml)}, and so S− ∈ rl(k), where rl
is the R-canonical rod for {Sl(ml)}. Since k ≥ ml + sO, by Lemma 6 (ii), we obtain
S− ∈ rl(k + pO) and S

−(w′, w, k + pO) ∈ CR,{Sl(w′,w,ml)}, whence, by Lemma 35 (ii),
CO,A, k + pO |= S(w,w′).

– Let w′ = wS
ml+1

l+1 . We have two further cases to consider.

Ifml+1 < Mw
A+sO, thenM

w′
A < Mw

A+sO. As sO ≤ pO, we have k ≥Mw′
+sO+|κ′|pO.

By the induction hypothesis, we obtain CO,A, k + pO |= κ′(w′); see Fig. 13a. On the
other hand, since k ≥ ml+1 + sO, we can apply the argument with the R-canonical
rods as above and obtain CO,A, k + pO |= S(w,w′).

If ml+1 ≥ Mw
A + sO, then, by applying Claim 1 (as the induction hypothesis) to

w′′ = wS
ml+1+pO
l+1 , we obtain CO,A, k+ pO |= κ′(w′′); see Fig. 13b. On the other hand,

S(w,w′, k) ∈ CR,{Sl+1(w,w′,ml+1)}, whence, by shifting the time instant for Sl+1, we
obtain S(w,w′′, k + pO) ∈ CR,{Sl+1(w,w′′,ml+1+pO)}, and so CO,A, k + pO |= S(w,w′′).

The converse, CO,A, k + pO |= κ′(w′) and CO,A, k + pO |= S(w,w′) imply CO,A, k |= κ′(w′)
and CO,A, k |= S(w,w′), is shown similarly.

We now establish Claim 1 by distinguishing the following two cases.
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Figure 13: Proof of Lemma 38.

– Suppose CO,A, k |= κ′(wTn1
1 . . . T

nr−1

r−1 ) and CO,A, k |= S(wTn1
1 . . . Tnr

r , wTn1
1 . . . T

nr−1

r−1 ).
Observe that, by shifting the time instant for T1 (and therefore for all T2, . . . , Tr),
we obtain CO,A, k + pO |= S(wTn1+pO

1 . . . Tnr+pO
r , wTn1+pO

1 . . . T
nr−1+pO
r−1 ). If r = 1,

then, by the induction hypothesis of the lemma, CO,A, k+pO |= κ′(w). Otherwise, by

Claim 1 as the induction hypothesis, we have CO,A, k+pO |= κ′(wTn1+pO
1 . . . T

nr−1+pO
r−1 ).

In either case, CO,A, k + pO |= ∃S.κ′(wTn1+pO
1 . . . Tnr+pO

r ). The converse is similar.

– Suppose CO,A, k |= κ′(wTn1
1 . . . T

nr+1

r+1 ) and CO,A, k |= S(wTn1
1 . . . Tnr

r , wTn1
1 . . . T

nr+1

r+1 ).
Again, by shifting the time instant for T1 (and therefore for all T2, . . . , Tr+1), we obtain
CO,A, k+pO |= S(wTn1+pO

1 . . . Tnr+pO
r , wTn1+pO

1 . . . T
nr+1+pO
r+1 ). On the other hand, by

the induction hypothesis (Claim 1), CO,A, k+ pO |= κ′(wTn1+pO
1 . . . T

nr+1+pO
r+1 ). Thus,

CO,A, k + pO |= ∃S.κ′(wTn1+pO
1 . . . Tnr+pO

r ). The converse implication is similar.

Cases κ = κ1 ⊓ κ2 and κ = κ1 ⊔ κ2 are easy and left to the reader.

Cases of temporal operators follow from the proof of Lemma 22 by Artale et al. (2021): we
use |κ|pO instead of lκpO, where lκ is the number of temporal operators in κ. ❑

Lemma 45. In the context of Lemma 38, for any w ∈ ∆CO,A, any role T from O, and any
n ∈ tem(A), we have

CO,A, n |= κ(wT k) ⇐⇒ CO,A, n |= κ(wT k+pO), for every k ≥Mw
A + sO + |κ|pO,

CO,A, n |= κ(wT k) ⇐⇒ CO,A, n |= κ(wT k−pO), for every k ≤ M̄w
A − (sO + |κ|pO).

To prove this lemma, it is more convenient to show a more general result for an arbitrarily
long role chain and disregard the active domain boundaries for n.

Claim 2. For roles T1, . . . , Tr from O, k1, . . . , kr ∈ Z, r ≥ 0, the following holds:

CO,A, n |= κ(wT k1
1 . . . T kr

r ) ⇐⇒ CO,A, n |= κ(wT k1+pO
1 T k+2

2 . . . T k+r
r ),

1281



Artale, Kontchakov, Kovtunova, Ryzhikov, Wolter & Zakharyaschev

a) k+r = kr
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r−1T
kr
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kr−1 kr−1 + pO

krn
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. . .

Tr−1. . .

Tr−1. . .
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κ

κ
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≥ sO

b) k+r = kr + pO

w

wr−1

wr = wr−1T
kr
r
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r−1

w+
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r−1T
kr+pO
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. . .
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< sO≥ sO
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Figure 14: Two cases for k+i for the basis of induction in Lemma 45: k+r−1 = kr−1 + pO,

wr−1 = wT k1
1 . . . T

kr−1

r−1 , and w+
r−1 = wT k1+pO

1 . . . T
kr−1+pO
r−1 .

for every k1 ≥Mw
A + sO and every n ≤ k1 − (r · sO + |κ|pO),

CO,A, n |= κ(wT k1
1 . . . T kr

r ) ⇐⇒ CO,A, n |= κ(wT k1−pO
1 T k−2

2 . . . T k−r
r ),

for every k1 ≤ M̄w
A − sO and every n ≥ k1 + r · sO + |κ|pO,

where

k+i =

{
ki, if there is 1 < j ≤ i with kj−1 − kj ≥ sO,

ki + pO, otherwise,

k−i =

{
ki, if there is 1 < j ≤ i with kj − kj−1 ≥ sO,

ki − pO, otherwise.

Proof. We are going to show only the former statement; a proof for the latter will follow
the same line of reasoning.

We abbreviate wT k1
1 T k2

2 . . . T kr
r and wT k1+pO

1 T k+2
2 . . . T k+r

r by wr and w+
r , respectively,

and begin by observing that, if k1 ≥Mw
A + sO, then

wr ∈ ∆CO,A iff w+
r ∈ ∆CO,A . (44)
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The argument is by induction on r. For the basis case, r = 1, we have w1 = wT k1
1 and

w+
1 = wT k1+pO

1 , and (44) follows from Lemmas 6 (ii) and 35 (i). For the inductive step,
suppose (44) holds for r−1. If k+r−1 = kr−1, then also k+r = kr, and so (44) is immediate from
the induction hypothesis. If k+r−1 = kr−1+pO, then we need to consider two further cases. If
k+r = kr+pO, then again (44) is immediate. If k+r = kr, then suppose first wr ∈ ∆CO,A . Then
CO,A, kr |= ∃Tr(wr−1). As k+r−1 = kr−1 + pO, we observe that CO,A, kr + pO |= ∃Tr(w+

r−1),
which, by Lemma 6 (ii), implies CO,A, kr |= ∃Tr(w+

r−1) because kr + pO ≤ (kr−1+ pO)− sO.
Thus, w+

r ∈ ∆CO,A . The converse direction is similar. This completes the argument for (44).

Now, we proceed by induction on the construction of κ to show Claim 2.

Cases κ = A and κ = ∃S.⊤. If k+r = kr, then the claim is immediate from Lemma 35 (iii)
as the beams of both wr and w+

r are generated by ∃T−r at kr; see Fig. 14a. Otherwise,
kj−1 − kj < sO, for all 1 < j ≤ r, and w+

r = wT k1+pO
1 T k2+pO

2 . . . T kr+pO
r ; see Fig. 14b. In

this case, by Lemma 35 (iii), CO,A, n |= κ(wr) iff CO,A, n+ pO |= κ(w+
r ), for all n ∈ Z.

By applying Lemma 6 (ii) to w+
r , we obtain CO,A, n + pO |= κ(w+

r ) iff CO,A, n |= κ(w+
r ),

for every n with n + pO ≤ (kr + pO) − sO, that is, for every n ≤ kr − sO, which, in view
of our assumption on the kj , means that CO,A, n |= κ(wr) iff CO,A, n |= κ(w+

r ) for every
n ≤ k1 − r · sO (for example, consider n ≤ k2 − sO: as k1 − k2 < sO, we have k2 > k1 − sO,
and so the equivalence holds for every n ≤ k1 − 2sO ≤ k2 − sO).

Case κ = ∃S.κ′ with |κ| ≥ 1. Suppose first CO,A, n |= S(wr, w
′) and CO,A, n |= κ′(w′), for

some w′ ∈ ∆CO,A . There are two possible locations for w′.

– If w′ = wr−1 = T k1
1 T k2

2 . . . T
kr−1

r−1 , then we can repeat the argument from the basis case
with Lemma 35 (iii) replaced by Lemma 35 (ii) and show that CO,A, n |= S(w+

r , w
+
r−1),

where w+
r−1 = wT k1+pO

1 T k+2
2 . . . T k+r−1

r−1 , because n ≤ k1 − r · sO. On the other hand, by
the induction hypothesis, CO,A, n |= κ′(w+

r−1) whenever n ≤ k1− (r− 1) · sO − |κ′|pO,
which, in particular, holds if n ≤ k1 − r · sO − |κ|pO because sO, pO ≥ 0.

– Otherwise, w′ = wr+1 = wrT
kr+1

r+1 . Let w+
r+1 = w+

r T
k+r+1

r+1 . If k+r = kr, then also
k+r+1 = kr+1, and, by Lemma 35 (ii), CO,A, n |= S(w+

r , w
+
r+1). Otherwise, k+r = kr+pO,

and we need to consider two further cases.

– If k+r+1 = kr+1, then, by Lemma 35 (ii), we have CO,A, n |= S(w+
r , w

+
r+1).

– If k+r+1 = kr+1+pO, then, by Lemma 35 (ii), we have CO,A, n+ pO |= S(w+
r , w

+
r+1).

By Lemma 6 (ii) applied to the rod, we obtain CO,A, n |= S(w+
r , w

+
r+1) whenever

n + pO ≤ (kr+1 + pO) − sO. Since kj−1 − kj < sO, for all 1 < j ≤ r + 1, this
holds, in particular, if n ≤ k1 − (r + 1) · sO.

On the other hand, by the induction hypothesis, we have CO,A, n |= κ′(w+
r+1) provided

that n ≤ k1−(r+1) ·sO−|κ′|pO, which, in particular, holds if n ≤ k1−(r ·sO+ |κ|pO)
because sO ≤ pO.

Thus, in each case we obtain CO,A, n |= κ(w+
r ) provided that n ≤ k1− (r · sO+ |κ|pO). The

converse implication, if CO,A, n |= S(w+
r , w

′) and CO,A, n |= κ′(w′), for some w′ ∈ ∆CO,A , is
treated in a similar way.

Cases κ = κ1 ⊓ κ2 and κ = κ1 ⊔ κ2 are easy and left to the reader.
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Cases of temporal operators follow from the proof of Lemma 22 by Artale et al. (2021).

This completes the proof of Claim 2. ❑

We can now define the remaining two formulas in Table 5, Ψµ1,...,µl
S1,...,Sl,κ(x, t1, . . . , tl, t)

and Ψµ1,...,µl,k
S1,...,Sl,κ(x, t1, . . . , tl). The definition is by induction on the structure of κ. For

convenience, we denote the sequence S1, . . . , Sl by Sl, the sequence t1, . . . , tl by tl, and
the sequence µ1, . . . , µl by µl and adopt similar notation for their prefixes: for exam-
ple, S0 is the empty list of roles. We also assume that Ψ

µ0
S0,κ′(x, t) = ΦO,κ′(x, t) and

Ψµ0,k
S0,κ′(x, t) = Φk

O,κ′(x, t), for any κ′.

Case κ = A. If µl = 0, then Ψ
µl
Sl,κ(x, tl, t) = Ξ∃S−

l ;A(tl, t) and Ψ
µl,k
Sl,κ(x, tl) = Ξ̄k

∃S−
l ;A

(tl).

Otherwise, we take Ψ
µl
Sl,κ(x, tl, t) = Ξµl

∃S−
l ;A

(t) and Ψ
µl,k
Sl,κ(x, tl) = Ξµl,k

∃S−
l ;A

.

Case κ = ∃S.κ′. Let N = (l + 1)(sO + |κ|pO); here we propagate the worst-case creation
time boundaries from Lemma 45 for a witness of depth l + 1.
If µl = 0, then Ψ

µl
Sl,κ(x, tl, t) is the following:

∨
role Sl+1 in O

(
∃tl+1

[
Ξ∃S−

l ;∃Sl+1
(tl, tl+1) ∧ΘSl+1;S(tl+1, t) ∧Ψ

µl,0
Sl,Sl+1,κ′(x, tl, tl+1, t)

]
∨

∨
i∈[−N,0)∪(0,N ]

[
Ξ̄i
∃S−

l ;∃Sl+1
(tl) ∧Θi

Sl+1;S(t) ∧Ψ
µl,i
Sl+1,κ′(x, tl, tl+1, t)

])
∨

[
ΘSl;S−(tl, t) ∧Ψ

µl−1

Sl−1,κ′(x, tl−1, t)
]
,

and the Ψ
µl,k
Sl,κ(x, tl) are obtained from the above by removing occurrences of variable t and

adding the k decoration instead:∨
role Sl+1 in O

(
∃tl+1

[
Ξ∃S−

l ;∃Sl+1
(tl, tl+1) ∧ Θ̄k

Sl+1;S(tl+1) ∧Ψ
µl,0,k
Sl,Sl+1,κ′(x, tl, tl+1)

]
∨

∨
i∈[−N,0)∪(0,N ]

[
Ξ̄i
∃S−

l ;∃Sl+1
(tl) ∧Θi,k

Sl+1;S ∧Ψ
µl,i,k
Sl,Sl+1,κ′(x, tl, tl+1)

])
∨

[
Θ̄k

Sl;S−(tl) ∧Ψ
µl−1,k

Sl−1,κ′(x, tl−1)
]
.

If µl ̸= 0, then Ψ
µl
Sl,κ(x, tl, t) is the following:

∨
role Sl+1 in O

(
∃tl+1

[
Ξµl

∃S−
l ;∃Sl+1

(tl+1) ∧ΘSl+1;S(tl+1, t) ∧Ψ
µl,0
Sl,Sl+1,κ′(x, tl, tl+1, t)

]
∨

∨
i∈[−N,0)∪(0,N ]

[
Ξµl,i

∃S−
l ;∃Sl+1

∧Θi
Sl+1;S(t) ∧Ψ

µl,i
Sl,Sl+1,κ′(x, tl, tl+1, t)

])
∨

[
Θµl

Sl;S−(t) ∧Ψ
µl−1

Sl−1,κ′(x, tl−1, t)
]
,

and the Ψ
µl,k
Sl,κ(x, tl) are again obtained by replacing t with the k decorations:
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∨
role Sl+1 in O

(
∃tl+1[Ξ

µl

∃S−
l ;∃Sl+1

(tl+1) ∧ Θ̄k
Sl+1;S(tl+1) ∧Ψ

µl,0,k
Sl,Sl+1,κ′(x, tl, tl+1)] ∨

∨
i∈[−N,0)∪(0,N ]

[Ξµl,i

∃S−
l ;∃Sl+1

∧Θi,k
Sl+1;S ∧Ψ

µl,i,k
Sl,Sl+1,κ′(x, tl, tl+1)

])
∨

[
Θµl,k

Sl;S− ∧Ψ
µl−1,k

Sl−1,κ′(x, tl−1)
]
.

Case κ = 2Fκ′. By Lemma 38, we take again N = (l + 1)(sO + |κ|pO) and set

Ψ
µl
Sl,κ(x, tl, t) = ∀s [(s > t) → Ψ

µl
Sl,κ′(x, tl, s)] ∧

∧
k∈(0,N ]

Ψ
µl,k
Sl,κ′(x, tl),

Ψ
µl,k
Sl,κ(x, tl) =



∧
i∈(k,k+N ]

Ψ
µl,i
Sl,κ′(x, tl), if k > 0;

∀sΨµl
Sl,κ′(x, tl, s) ∧

∧
i∈(k,0)∪(0,N ]

Ψ
µl,i
Sl,κ′(x, tl), if k < 0.

The cases of other temporal operators are similar, and the cases κ = κ1⊓κ2 and κ = κ1⊔κ2

are trivial. This completes the construction of the Ψ-formulas in Table 5. To sum up, we
have shown the following:

Lemma 46. Let (O,κ) be a ⊥-free DL-Lite2⃝
horn OMPIQ with a positive temporal concept κ,

k ∈ Z\{0}, and S1, . . . , Sl roles. Then there are FO(<,≡)-formulas Ψµ1,...,µl
S1...Sl,κ(x, t1, . . . , tl, t)

and Ψµ1,...,µl,k
S1...Sl,κ (x, t1, . . . , tl) satisfying the characterisations in Table 5.

Moreover, if O is a DL-Lite2horn/core or DL-Lite2
horn/horn+ ontology, then those formulas

are in FO(<).
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