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ABSTRACT

Temporal JSON

by

Aayush Goyal, Master of Science

Utah State University, 2019

Major Professor: Curtis Dyreson, Ph.D.
Department: Computer Science

Web services are the primary suppliers of data on the web. Data supplied by a service is

typically formatted using JavaScript Object Notation (JSON) and only the current JSON

snapshot is available from a service. But data evolves over time as it is added to, modified,

or reduced. Providing an historical view of data is important in many applications. This

thesis describes how to capture the evolving history of a JSON document and how to

support temporal queries on the history. Our approach is to model temporal JSON as a

virtual document in which time metadata is mixed with JSON data. The time metadata

records when the JSON data is alive. We also describe how to navigate to data within

the virtual document. The primary technical contribution of the thesis is to show how to

represent the virtual model in JSON and how to map temporal path expressions to the

representational model. Experiments show that our model is efficient.

(73 pages)
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PUBLIC ABSTRACT

Temporal JSON

Aayush Goyal

JavaScript Object Notation (JSON) is a format for representing data. In this thesis we

show how to capture the history of changes to a JSON document. Capturing the history

is important in many applications, where not only the current version of a document is

required, but all the previous versions. Conceptually the history can be thought of as a

sequence of non-temporal JSON documents, one for each instant of time. Each document

in the sequence is called a snapshot. Since changes to a document are few and infrequent,

the sequence of snapshots largely duplicates a document across many time instants, so the

snapshot model is (wildly) inefficient in terms of space needed to represent the history

and time taken to navigate within it. A more efficient representation can be achieved by

“gluing” the snapshots together to form a temporal model. Data that remains unchanged

across snapshots is represented only once in a temporal model. But we show that the

temporal model is not a JSON document, and it is important to represent a history as

JSON to ensure compatibility with web services and scripting languages that use JSON. So

we describe a representational model that captures the information in a temporal model.

We implement the representational model in Python and extensively experiment with the

model. Our experiments show that the model is efficient.
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CHAPTER 1

Introduction

Web applications increasingly rely on web services to read and write to a database.

There are many tools for constructing and documenting web services, such as Swagger, but

there are no technologies for temporal web services. A temporal web service is a service that

provides a temporal view of data, that is, a view of not only the current data, but past data

or how the data has changed over time.

There has been extensive previous research to supporting temporal data [1–3]. This

research has fallen into two broad categories: versioning and timestamp-based support.

Timestamp-based queries are common in temporal relational databases. A temporal re-

lational database [4] stores data that is annotated with time metadata. The time meta-

data records when the data was alive in some time domain, e.g., transaction time [5], valid

time [6], or both. Such databases can be queried in various ways. For instance in TSQL2 [7]

a query can be evaluated to retrieve the data’s history e.g., a timeslice query [8], or retrieve

the data as of some time instant, e.g., a snapshot query [9], or perform a query at every time

instant in the data’s history, e.g., a sequenced query [10]. But TSQL2 does not support

queries that ask for versions of data, e.g., get the second version of an employment record

or retrieve the changes to the employment record. Data versioning is more common in

temporal object-oriented databases [11] or temporal documents where each edit or change

creates a new version of an object or document. Users can navigate among the versions and

restore old versions if necessary.

Semi-structured data representations such as JSON, XML, and YAML are used to

represent both data and documents and thus need to support both timestamp and version

histories [12–17]. Semi-structured data changes over time, sometimes frequently, as new data

is inserted and existing data is edited and deleted [18–20]. Previous research in temporal

XML and JSON called elements that maintain their identity over time items [21–23]. Items
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are timestamped with a lifetime and as an element can be moved within a document. Each

change to an item creates a version, which is also timestamped. Previous research showed

how to represent, query, describe with a schema and validate temporal semi-structured

data. Differences in XML and JSON spawned further research in schema validation and

versioning for JSON data [24].

JSON differs from XML in some key aspects. First, XML is a document representation

so the ordering of elements is important. JSON is undordered. Second, JSON has an array

type that XML lacks. Third, XML allows multiple subelements with the same name, in a

JSON key/value set only unique keys are allowed. Fourth, JSON is integrated into many

scripting languages, such as JavaScript, whereas XML has a separate query language, i.e.,

XQuery and XPath. JSON is used to represent objects, swizzling and unswizzling of JSON

is natively supported, and object path expressions, i.e., “dot” notation, are used to navigate

within a JSON document as well as an object hierarchy.

This thesis proposes a new way to represent temporal JSON documents that better

supports path expressions. We make the following contributions.

• We model JSON at three levels: snapshot, temporal, and representational. The snap-

shot model is a sequence of timestamped JSON documents. The temporal model

glues the snapshots together to provide a temporal and version history for each value

in a document. Finally, the representational model is how the temporal model is rep-

resented in JSON itself. JSON representation is important to providing backwards-

compatibility with existing web service and JSON technology. If temporal JSON can

be represented in JSON then it can be sent and received by web services, and it

can be tightly integrated with scripting languages, just as JSON itself is. The repre-

sentational model is an adaptation of the representational model for temporal XML

developed by Currrim et. al [22].

• We describe operations for temporal JSON, namely, time snapshot, version snapshot,

time slice, and version slice, and we give algorithms for implementing the operations.
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• We implement temporal JSON in Python and extensively evaluate the implementation

with experiments that empirically measure the cost of the temporal operations on the

representational model.

In sum, we provide a complete description of temporal JSON and in future work describe

potential improvements.

This thesis is organized as follows. The next section is an example of temporal JSON.

We then describe the three models and how they are implemented. The evaluation of the

implementation is followed by conclusions and a discussion of future work.
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CHAPTER 2

Example

Assume that data on the specimen Canadian Hawkweed (Hieracium umbellatum) is

described in a JSON data collection called specimen.json as shown in Figure 2.1. The

collection also has information about taxonomic authority, which is unknown in 2015.

{

"specimen": {

"name": "Hieracium umbellatum",

"colloquial": "Canadian Hawkweed"

},

"taxaAuthority": {

"author": "Unknown"

}

}

Fig. 2.1: The file specimen.json in 2015

In subsequent months, there is new scientific data about Hieracium umbellatum. In

2016 it was learned that Hieracium umbellatum was identified first by Barkworth. The value

of the author field was updated creating a new version of the data, as shown in Figure 2.2.

Additionally the habitat for the specimen was described.

{

"specimen": {

"name": "Hieracium umbellatum",

"colloquial": "Canadian Hawkweed",

"habitat": ["rocky shoreline", "conifer forest"]

},

"taxaAuthority": {

"author": "Barkworth"

}

}

Fig. 2.2: Hieracium umbellatum identified by Barkworth, as of 2016
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In 2018, the specimen description became more specific, relating Hieracium umbellatum

to Narrowleaf Hawkweed so additional text was added to the colloquial field as shown

in Figure 2.3, and the habitat was further clarified.

{

"specimen": {

"name": "Hieracium umbellatum",

"colloquial": "Canadian Hawkweed, Narrowleaf Hawkweed",

"habitat": ["rocky shoreline", "conifer forest", "sand dune"]

},

"taxaAuthority": {

"author": "Barkworth"

}

}

Fig. 2.3: Hieracium umbellatum is related to Narrowleaf Hawkweed, as of 2018

Researchers would like to learn of changes to the Hieracium umbellatum data over time.

Hence it is important to capture the entire history of the data. Figure 2.4 shows the history

of the Hieracium umbellatum data. The specimenItem is shown in Figure 2.5 while the

taxaAuthorityItem is shown in Figure 2.6. The data lists specimen and taxaAuthority

items. An item is a datum that retains its temporal identity through changes to the data.

Each specimenItem has a nameItem, a colloquialItem and a habitatItem. Each item

has an associated timestamp that indicates the version at each point in time. A new version

of the item is created each time the item changes.

{

"specimenItem": {...}

"taxaAuthorityItem" : {...}

}

Fig. 2.4: Temporal JSON data, the specimen item is shown in Figure 2.5
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{

"timestamp" : "2015-2018",

"specimenVersions": [{...specimen version 1...},{...specimen version 2...}]

}

Fig. 2.5: The specimenItem

{

"timestamp" : "2015-2018",

"taxaAuthorityVersions": [{...taxaAuthority version 1...},{...taxaAuthority version 2...}]

}

Fig. 2.6: The taxaAuthorityItem

{

"timestamp": "2015-2015",

"data": {

"specimen": {

"nameItem": {

"timestamp": "2015-2015",

"nameVersions": [{

"timestamp": "2015-2015",

"data": {

"name": "Hieracium umbellatum"

}

}]

},

"colloquialItem": {

"timestamp": "2015-2015",

"colloquialVersions": [{

"timestamp": "2015-2015",

"data": {

"colloquial": "Canadian Hawkweed"

}

}]

}

}

}

}

Fig. 2.7: The first element in the specimenVersions list
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{

"timestamp": "2016-2018",

"data": {

"specimen": {

"nameItem": {

"timestamp": "2016-2018",

"nameVersions": [{

"timestamp": "2016-2018",

"data": {

"name": "Hieracium umbellatum"

}

}]

},

"colloquialItem": {

"timestamp": "2016-2018",

"colloquialVersions": [{

"timestamp": "2016-2017",

"data": {

"colloquial": "Canadian Hawkweed"

}

},

{

"timestamp": "2018-2018",

"data": {

"colloquial": "Canadian Hawkweed, Narrowleaf Hawkweed"

}

}

]

},

"habitatItem": {

"timestamp": "2016-2018",

"habitatVersions": [{

"timestamp": "2016-2017",

"data": {

"habitat": ["rocky shoreline", "conifer forest"]

}

},

{

"timestamp": "2018-2018",

"data": {

"habitat": ["rocky shoreline", "conifer forest", "sand dune"]

}

}

]

}

}

}

}

Fig. 2.8: The second element in the specimenVersions list
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CHAPTER 3

Models

Temporal JSON is modeled at three levels: snapshot, temporal, and representational.

The snapshot model is the sequence of snapshots, or non-temporal JSON documents, that

represent the document at a particular moment in time. The temporal model is how the

document’s history is made available to a user. The representational model is how the

document is transported or stored. Importantly we believe that the representational model

should be a JSON-based model to ensure compatibility with web services that provide data

in JSON. So both the snapshot and representational models use JSON, while the temporal

model uses temporal JSON. This section describes the three models, starting with the

snapshot model.

3.1 Snapshot Model

The snapshot model is built from a sequence of JSON documents.

Definition 3.1.1 (JSON document) A JSON document, D, is a value that could be

either

• a literal, that is a string, number or boolean,

• a set of key/value pairs, {(k1, v1), . . . , (kn, vn)}, where each key, ki, is a string and vi

is a value,

• or an array, [v1, . . . , vm] where each vi is a value.

The snapshot model is a set of JSON documents, where each document is paired with

a timestamp.

Definition 3.1.2 (Snapshot Model) A snapshot model, MS(D), of an evolving JSON

document, D, is a set of JSON documents from time 0 to time n: {(D0, 0), . . . , (Dn, n)},

where document Di represents the JSON document at time i.
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A snapshot model support two operations: snapshot and path lookup within a snap-

shot.

Definition 3.1.3 (Snapshot) Let S be the snapshot operator.

S(MS(D), t) = (Dt, t) ∈MS(D)

Path lookup uses a path expression.

Definition 3.1.4 (Path Lookup) Let P be the lookup operator, p be a path expression,

and D be a JSON document. A path expression consists of three forms.

• k.α where α is a path expression and k is a string then P(D, k.α) = P(v, α) if (k, v) ∈

D else nil.

• ε where ε is the empty string, then P(D, k) = D.

• k[i].α where the value of k is a list, then P(D, k[i].α) = P(v, α) if (k, a) ∈ D ∧ v =

a[i] else nil.

3.2 Temporal Model

A temporal model captures the evolving history of a JSON document as a sequence

of snapshots and versions. An important part of the temporal model is time metadata

that records when each part of the document is live is some temporal dimension. The time

metadata is a timestamp with times taken from several kinds of clocks.

There are two widely-accepted kinds of time in a temporal data collection: valid time

and transaction time. The valid time represents real-world time, while the transaction time

is when the data was current in the database, i.e., the time between being inserted and

deleted. As an example the valid time of a person’s birth might be January 1, 2019, while

the transaction time would be when that fact was entered into a data collection on March

17, 2019 until the time it is deleted (if it has not been deleted it is still current). In the

thesis we record only the transaction time.
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To record versions we introduce version clocks. Each change to a value in a JSON

document creates a new version of the value. A version clock records when (in transaction

time) the version was current. As an example suppose that a version clock records two

versions, the first started at time 4 and ended at time 7, and the second was current from

time 8 to time 10, then the version clock would be [4, 7, 8, 10].

The clocks form a timestamp.

Definition 3.2.1 (Timestamp) A timestamp is a pair, (i, t), such that i is the clock

identifier and t is a clock measurement.

We will use two clocks, a version clock, with identifier vc, and a parent’s version clock, with

identifier pc.

Temporal JSON glues information from a sequence of snapshots into a meaningful

history of times and versions. Each change to a value produces a new version of that value.

The kinds of changes depend on the type of the value.

• If the value is a literal, that is a string, number or Boolean, then there is only one

version of the value (literals are not versioned).

• If the value is a set of key/value pairs, {(k1, v1), . . . , (kn, vn)}, where each key, ki, is

a string and vi is a value, then any change to the set (insertion or deletion of a pair)

creates a new version of the set and any change to a vi creates a new version of the

pair.

• If the value is an array, [v1, . . . , vm] where each vi is a value then the array is modeled

as a set of key/value pairs by using the array index as the key, e.g., key “0” is paired

with the first array value, and versioning is applied as if the array were a set of

key/value pairs.

A temporal JSON model is based on a snapshot model.

Definition 3.2.2 (Temporal model) For a snapshot model, DS, let

• P be the set of valid path expressions across all of the snapshots, that is,
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P = {(p, k) | ∃k, p [Dk ∈ DS ∧ P(Dk, p) 6= nil]},

• L be the set of valid literals prefixed with path expressions,

L = {(p.z, k) | ∃k, p, z [Dk ∈ DS ∧ P(Dk, p) = z ∧ z is a literal]},

• Z be the union of L and P , Z = P
⋃

L,

• Tv be the transaction time function that determines a transaction time timestamp,

Tv(p, Z) = {[. . . , [ti, ti+1], . . .] | (p, ti − 1) /∈ Z

∧ (p, ti+1 + 1) /∈ Z

∧ ∀ti ≤ k ≤ ti+1[(p, k) ∈ Z]},

• F (p) be the longest prefix function, F (a1. . . . .an−1, an = a1. . . . .an−1

• C(p, t) be the set of children of p at time t,

C(p, t) = {x | F (x) = p ∧ (x, t) ∈ Z},

• and Tc be the version clock function that determines a child version clock timestamp.

Tc(p, Z) = {[. . . , [ti, ti+1], . . .] | C(p, ti − 1) 6= C(p, ti)

∧ C(p, ti+1 + 1) 6= C(p, ti+1)

∧ ∀ti ≤ k < ti+1[C(p, k) = C(p, k + 1)]}.

Then a temporal model, DT , is a graph, (V,E), where

• V = {(p, Tv(p, Z), Tc(p, z)) | ∃t[(p, t) ∈ Z]}

• E = {(v, w) | v, w ∈ V ∧ v = (p, , ) ∧ w = (c, , ) ∧ F (c) = p}

As an example consider the representation of the temporal model shown in Figure 3.1. The

model is the history of the snapshots shown in Figures 2.1 through 2.3. To save space in

the figure just the specimen value is shown. In the figure the timestamps are shown below
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Fig. 3.1: The history of the specimen

each value. Each timestamp has a transaction time (clock id “tt”) or a version time (clock

id “vc”). The version clock for a value represents its versions. For instance, consider the

habitat value. It was added to the specimen key/value set in 2016, so the version clock for

specimen has two timestamps, indicating two versions, and the transaction time of habitat

places it in the second version. Note that literals have only one version, hence we show only

the transaction time since it is the same as the version time.

There are three things to note about the temporal model. First, it is implicitly co-

alesced [25]. A model would not be coalesced if there existed siblings in the graph that

represented the same value. But this is not possible since each node has a unique identity,

specified by its path. Second, each timestamp is a temporal element [26], i.e., a set of

temporal periods (intervals). The timestamp functions in the temporal model definition

stipulate that the timestamps must be maximal (periods in the set cannot be temporally

adjacent). Third, the model is not JSON. A key in a key/value pair may be connected to

more than one value (over time). For instance, the colloquial key has two children (each
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Fig. 3.2: Result of path lookup for specimen.colloquial

of which is a literal).

A temporal model has several operators.

Temporal path lookup uses a path expression to navigate within a temporal model to

a specified value. The path expression is sequenced [10], that is, it navigates paths in all

the snapshots simultaneously.

Definition 3.2.3 (Temporal path Lookup) Let PT be the temporal lookup operator, p

be a path expression, and DT be a temporal model. Then PT (DT , p) = (VT , ET ) where

• VT = {(s, x, y) | s = p ∨ p is a prefix of s}, and

• Et = {(v, w) | v, w ∈ Vt ∧ (v, w) ∈ E}

As an example, ifDT is the temporal model shown in Figure 3.1 then PT (DT , specimen.colloquial)

yields the model shown in Figure 3.2.

The time slice operator slices the temporal model at a specific time returning a temporal

model restricted to the give time.

Definition 3.2.4 (Time Slice) Let T T be the temporal time slice operator, DT = (V,E)

be a temporal model, and t be a timestamp, then T T (DT , t) = (Vt, Et) where

• Vt = {(p, x
⋂
t, y

⋂
t) | (p, x, y) ∈ V ∧ x

⋂
t 6= ∅ ∧ y

⋂
t 6= ∅}, and

• Et = {(v, w) | v, w ∈ Vt ∧ (v, w) ∈ E}

As an example, if DT is the temporal model shown in Figure 3.1 then T T (DT , 2015) yields

the model shown in Figure 3.3.
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Fig. 3.3: Result of a time slice of 2015 on the model in Figure 3.1

A version slice uses a path expression to navigate to a value, and then uses time slice

on the times for that version.

Definition 3.2.5 (Version slice) Let VT be the version slice operator, DT = (V,E) be a

temporal model, ET (DT , n) be the nth timestamp in the version clock time of the root value

in the temporal model, and n be a version number, then VT (DT , n) = T T (DT , E(DT , n)).

As an example, if DT is the temporal model shown in Figure 3.1 then VT (DT , 1) yields the

model shown in Figure 3.4 (note that the version numbers start at 0).

The snapshot operators produce a snapshot JSON document.

Definition 3.2.6 (Time snapshot) Let T S be the time snapshot operator, DT be a tem-

poral model, t be a time, and S(FT ) be a function that removes the timestamps from each

node in a temporal model. Then T S(Dt, t) = S(T T (Dt, t)).

Note that the operator selects a temporal model as of specific time. The model represents a

snapshot, but has extra timestamps that are stripped to get the snapshot. As an example,

if DT is the temporal model shown in Figure 3.1 then T S(DT , 2015) yields the model shown

in Figure 3.5, which corresponds to the JSON of Figure 2.1.

Version snapshot is similar to time snapshot.
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Fig. 3.4: The second version of specimen

Fig. 3.5: Result of a time snapshot of 2015 on the model in Figure 3.5, which corresponds
to the JSON of Figure 2.1
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Definition 3.2.7 (Version snapshot) Let VS be the version snapshot operator, DT be a

temporal model, ET (DT , n) be the nth timestamp in the version clock time of the root value

in the temporal model, and n be a version number, then VT (DT , n) = T S(DT , E(DT , n)).

As an example, the first version snapshot of specimen, VS(DT , 0), gives the same result as

the time snapshot at 2015 as shown in Figure 3.5.

Path expressions in the temporal model can be extended to support the temporal

operators. We describe a denotational semantics for temporal path expressions. Let J KT [Dt]

denote the temporal semantic function applied to temporal model DT and J K[D] denote the

snapshot semantic function applied to JSON document D. We assume that the snapshot

semantics of path expressions is given.

Dot notation

Jx.αKT [DT ] ≡ JαKT [PT (DT , x)]

Time slice

JtimeSlice(t).αKT [DT ] ≡ JαKT [T T (DT , t)]

Version slice

JversionSlice(n).αKT [DT ] ≡ JαKT [VT (DT , n)]

Time snapshot

JtimeSnapshot(t).αKT [DT ] ≡ JαK[T S(DT , t)]

The current snapshot, that is, the snapshot as of now, has special syntax

Jcurrent().αKT [DT ] ≡ JαK[T S(DT , now)]

Version snapshot

JversionSnapshot(n).αKT [DT ] ≡ JαK[VS(DT , t)]

As an example the expression specimen.colloquial.versionSlice[1] would be trans-

lated as follows.

Jspecimen.colloquial.versionSlice(1)KT [DT ] ≡

Jcolloquial.versionSlice(1)KT [PT (DT , specimen)]
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JversionSlice(1)KT [PT (PT (DT , specimen), colloquial)]

V T (PT (PT (DT , specimen), colloquial), 1)

3.3 Representational Model

The temporal model is the model for querying and managing a temporal JSON data

collection. Though the model can be implemented in a straightforward manner using a

graph data structure, the goal of our research is to use JSON to represent the temporal

model. The primary reason why we want to use JSON is for compatibility with existing

technologies that utilize JSON. Web services send and receive JSON data. JSON is also

tightly integrated in scripting languages such as JavaScript and Python. These languages

have special libraries and syntax for parsing and navigating paths within a JSON document.

Hence it is important to use JSON for the representational model in order to send temporal

JSON through the web and integrate it into scripting languages.

The representational model is based on prior research in temporal XML [22]. That

work referred to elements that retain their identity over time as items. Each change to an

item produces a new version of the item.

We utilize the framework developed by Currim et. al to represent items and versions

but adapt their framework from XML to JSON. In our representational model each key in

a key/value set represents an item. Recall that we model arrays as key/value sets with the

array index as the key. For instance, suppose we had key/value set {(k1, v1), . . . , (kn, vn)}

then the items in the set would be represented as shown in Figure 3.6. The timestamp in

the representation of an item is the transaction time timestamp.

Changes to a value (a key/value set, a literal, or an array) creates a new version of

an item. The version representation captures the version as shown in Figure 3.7. The

timestamp in a version is a version clock timestamp.

The representational model has operations similar to the temporal model.

Path lookup has two changes from the snapshot model. First, a path expression must

navigate through Item and versions. Consider for instance the expression specimen.name.
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{
k1Item: {

timestamp:

versions:[. . .]
}
k2Item: {. . .}
. . .
knItem: {. . .}

}

Fig. 3.6: Format of a key/value set as a set of items

{
timestamp:

data: {
ki:. . .

}
}

Fig. 3.7: Format of a key/value set as a set of items with Version representation

This expression must first find the versions of the specimen item.

specimenItem.versions

Next, the array of versions must be traversed to access the corresponding nameItems as

shown in the pseudo-code of Algorithm 1. The second change is that the resulting array of

items must be coalesced. Figure 3.8 shows name and colloquial items across two versions

of their parent(specimen). Because a new key-value of habitat was added, a new version

of specimen was created. But name did not change so same version is copied in the second

version of specimenItem. Similarly, there is a version of colloquial which is present in

both versions of specimenItem. These version of children need to be coalesced to represent

a single version as their values did not change.

The snapshot function shows a non-temporal view of the document at a particular time

or a particular version as requested by the user. Examples of path expressions using the

snapshot function are given below.
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Fig. 3.8: Coalescing
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Algorithm 1: Path lookup in the representational model

Output: List K of Keys, Representational Document DR

Output: List R of Items

Procedure pathLookup(Keys K, Doc DR)

h← DR.K.pop().Item

if K is empty then
return h

end
R← [ ]
for v ∈ h.versions do

R.append(pathLookup(K, h)
end

return R

[{

"time": "2015-2015",

"data": {

"specimen": {

"name": "Hieracium umbellatum",

"colloquial": "Canadian Hawkweed"

}

}

}]

Fig. 3.9: Time snapshot as of 2015

• specimen.TimeSnapshot(2015) Evaluating this expression should return the snap-

shot shown in Figure 3.9. Note that an array of snapshots is returned with the time

of each snapshot given by the timestamp key and the snapshot in the data key.

• specimen.TimeSnapshot(2016-2018) would output Figure 3.10.

• habitat.TimeSnapshot(2016-2018), time snapshots of habitat item would look like

Figure 3.11.

Version snapshot retrieves all the snapshots of particular version of the specimen. A

version changes if a new item has been added or an older one has been deleted or modified to

previous version. In our example, there is no habitat item in the first version of specimen,

but in 2016 habitat is added which creates a second version of specimen.
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[{

"time": "2016-2017",

"data": {

"specimen": {

"name": "Hieracium umbellatum",

"colloquial": "Canadian Hawkweed",

"habitat": ["rocky shoreline", "conifer forest"]

}

}

},

{

"time": "2018-2018",

"data": {

"specimen": {

"name": "Hieracium umbellatum",

"colloquial": "Canadian Hawkweed, Narrowleaf Hawkweed",

"habitat": ["rocky shoreline", "conifer forest", "sand dune"]

}

}

}

]

Fig. 3.10: Time Snapshots of Specimen as of 2016-2018

[{

"time": "2016-2017",

"data": {

"habitat": ["rocky shoreline", "conifer forest"]

}

},

{

"time": "2018-2018",

"data": {

"habitat": ["rocky shoreline", "conifer forest", "sand dune"]

}

}

]

Fig. 3.11: Time Snapshots of habitat 2016-2018
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[{

"time": "2015-2015",

"data": {

"specimen": {

"name": "Hieracium umbellatum",

"colloquial": "Canadian Hawkweed"

}

}

}]

Fig. 3.12: Version one snapshot of specimen

• specimen.versionSnapshot(0) should output all the snapshots in the first version

of specimen.

• Similarly specimen.versionSnapshot(1) should output all the snapshots in second

version of specimen.

Slicing is an operation performed on temporal JSON which gives a temporal view of

the document at a particular slice of time or version. Unlike snapshot, which retrieves

just the actual data at particular of particular time or version, slicing retrieves a temporal

(representational) document. There are two types of slice operations namely time slice and

version slice.

A version slice is used to obtain slice of a version with its temporal details. Unlike

version snapshot which gives the version’s data content without any temporal information,

slicing gives all the data along with time information. There can be different versions of an

item, a new version is created when an attribute is added, deleted or changed from previous

version. e.g.,, specimen.versionSlice(0) would output the JSON in Figure 3.14.
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[{

"timestamp": "2016-2017",

"data": {

"specimen": {

"name": "Hieracium umbellatum",

"colloquial": "Canadian Hawkweed",

"habitat": ["rocky shoreline", "conifer forest"]

}

}

},

{

"timestamp": "2018-2018",

"data": {

"specimen": {

"name": "Hieracium umbellatum",

"colloquial": "Canadian Hawkweed, Narrowleaf Hawkweed",

"habitat": ["rocky shoreline", "conifer forest", "sand dune"]

}

}

}

]

Fig. 3.13: Snapshots of specimen Version 2
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{

"specimenItem": {

"timestamp": "2015-2015",

"specimenVersions": [{

"timestamp": "2015-2015",

"data": {

"specimen": {

"nameItem": {

"timestamp": "2015-2015",

"nameVersions": [{

"timestamp": "2015-2015",

"data": {

"name": "Hieracium umbellatum"

}

}]

},

"colloquialItem": {

"timestamp": "2015-2015",

"colloquialVersions": [{

"timestamp": "2015-2015",

"data": {

"colloquial": "Canadian Hawkweed"

}

}]

}

}

}

}]

}

}

Fig. 3.14: Version(0) Slice of Specimen
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{

"specimenItem": {

"timestamp": "2015-2015",

"specimenVersions": [{

"timestamp": "2015-2015",

"data": {

"specimen": {

"nameItem": {

"timestamp": "2015-2015",

"nameVersions": [{

"timestamp": "2015-2015",

"data": {

"name": "Hieracium umbellatum"

}

}]

},

"colloquialItem": {

"timestamp": "2015-2015",

"colloquialVersions": [{

"timestamp": "2015-2015",

"data": {

"colloquial": "Canadian Hawkweed"

}

}]

}

}

}

}]

}

}

Fig. 3.15: Time Slice of Specimen as of 2015
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CHAPTER 4

Implementation

This chapter discusses the implementations of operations we defined. Section 4.1 ex-

plains the flow of recursive function, Section 4.2 provides the technical information about

reducing overlapping timestamps, Section 4.3 outlines the architecture and algorithm of

TimeSnapshot, Section 4.4 describes the algorithm for VersionSnapshot, which follows the

same architecture as TimeSnapshot. Section 4.5 and 4.6 describes the algorithm implemen-

tation for TimeSlice and VersionSlice operations respectively.

4.1 Recursive Function

To create a snapshot or a slice from the JSON data, first we need to find the requested

item for which snapshot/slice needs to be created from the path expression. To address

this, we created a recursive function which creates a list of items from the input path

expression and deep dives into the JSON until that item is found. Once the item is found

it will act as new JSON data for later functions. This flow is common to all the operations,

except a small difference. For time related operations, overlapping of input timestamp is

checked and for version operations, coalescing is performed.

Sample Path Expressions using Dot notations:

1. specimen.timeSnapshot[2015-2015]

2. specimen.name.subname.versionSnapshot[3]

3. specimen.name.subname.versionSlice[1]

4. specimen.colloquial.timeSlice[2016-2018]

Expression. 2 as a list of items:

items = [’specimen’,’name’,’subname’] (4.1)

Function Call - get recursive items(items, JSON)
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{

"specimenItem": {

"nameItem":{

"subnameItem": {...}

}

}

}

Fig. 4.1: Initial JSON

{

"nameItem": {

"subnameItem": {...}

}

}

Fig. 4.2: JSON after 2nd recursive call

This function will recursively deep dive into specimen item until it finds subname item.

After each recursive call JSON is updated to the inner item which itself is a dictionary.

1st recursive call -

items = [’specimen’, ’name’,’subname’] (4.2)

2nd recursive call -

items = [’specimen’, ’name’, ’subname’] (4.3)

3rd recursive call -

items = [’specimen’,’name’, ’subname’] (4.4)

{

"subnameItem": {...}

}

Fig. 4.3: JSON after last recursive call
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Fig. 4.4: Timeline Example

4.2 Timestamp Reduction

Reducing the timestamps is a very crucial part of creating TimeSnapshot or Version

Snapshot. There can be multiple overlapping timestamps which need to be reduced to a

set of timestamps which can incorporate the proper timeline of snapshots. Figure 4.4 shows

three attributes with their timeline, i.e., life of the attribute’s value between the respective

years. The value of name is N1 from 2015-2018, colloquial and habitat have different

values between 2015-2018. Algorithm 2 defines the implementation.

4.3 Time Snapshot

A TimeSnapshot architecture has to transform the temporal JSON into an array of

snapshots on the basis of input time. These snapshots comprises of data represented in

key/value pairs for a particular point in time. To implement this operation, we broke it

down into a couple of functions where output from one function is consumed by another

function. The algorithm begins with a recursive function which deep dives into JSON and

retrieves the requested item, after which this new JSON is fed to a getTimestamps()

function which extracts all the item’s timestamps and outputs an array. Many of these

timestamps overlap, which are then reduced by a preprocess() function and a snapshot
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Algorithm 2: Timestamp Reduction Algorithm

Input: List T1 of Timestamps

Output: List T2 of Reduced timestamps

Procedure reduceTimestamps(Timestamps T1)

startT imes := [ ]

endT imes := [ ]

start := ’ ’

end := ’ ’

for t in T1 do

// Split the timestamp

start, end = t.split(”-”)

// Append to respective lists

startT imes.append(start)
endT imes.append(end)

end

smallestStart = min(startT imes)
maxEnd = max(endT imes)
while smallestStart <= maxEnd do

smallestend = min(endT imes)

Pop smallestend from endT imes

Push ” smallestStart + ’-’ + smallestend ” in T2

smallestStart = smallestend + 1

end
return T2
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skeleton is created with reduced timestamps. The last function, populateData() iterates

through the new JSON and the skeleton and populates the skeleton only if checkOverlap()

return True. This checkOverlap() is used to check if timestamps of items in the new JSON

and skeleton overlap. The architecture is represented by Figure 4.5.

4.4 Version Snapshot

A VersionSnapshot architecture has to transform the temporal JSON into an array of

snapshots on the basis of input version N. It follows the same architecture as TimeSnapshot.

The key difference in this operation is, while populating the skeleton we don’t use the

checkOverlap function to check for the overlapping timestamps between the skeleton and

new JSON produced by recursive function, rather we populate the skeleton till Nth version

of requested item by coalescing which makes sure there are no duplicate versions and return

the requested version from the array. The architecture is represented in Figure 4.5.

4.5 Time Slice

Time slice is a simple operation which takes a path notation of items and time as

an input. It is a recursive function which deep dives into JSON, until item is found. It

checks for the overlapping timestamps and return the item with its temporal attributes.

Algorithm 5 describes the implementation of this operation.

4.6 Version Slice

Version slice is similar to Time Slice in the way both extracts the slice of item

from JSON with its temporal attributes intact, the difference is, Version Slice does not

check for overlapping timestamps. Here we use coalescing to make sure duplicate versions

across items are counted as a single version. Coalescing is implemented by using a Flag

variable which marks a version once it has been extracted. Algorithm 6 describes the

implementation of this operation.
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Algorithm 3: Time Snapshot Algorithm

Input: List A of Items, Timestamp T

A consists of dot notation path to item for which Time Snapshot is created.
Last item is the final item.
T is used to populate data with overlapping timestamps.

Output: List O

O contains JSON objects of Time snapshots

Data: Parent JSON

Procedure TimeSnapshot(Array A, Timestamp T , Parent JSON)

newdata:= Null

data := Parent JSON

timeArray := [ ]

processedArray := [ ]

snapshotArray := [ ]

// Getting the last item of input array from data

for i←0 to len(data) do

if i+1 == len(A) then break

else

// Call function recursively
newdata← getItems(data, T,A)

end

// Extract timestamps from newdata which overlap with input timestamp T

for i← 0 to len(newdata) do

for k,v in newdata[i].iteritems() do

if k == ’timestamp’ and checkOverlap(v,T) is True then

timeArray.append(v)
end

end

// Preprocess timestamps and generate a snapshot skeleton

preprocessedArray ← preProcess(timeArray)

// Populate skeletons with relevant data

for i← 0 to len(preprocessedArray) do

for j ← 0 to len(newdata) do

if checkOverlap(i[’timestamp’], j[’timestamp’]) is True then

snapshotArray ← populateData(i[’data’],j[’data’])

end

end

return snapshotArray
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Fig. 4.5: Method Architecture
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Algorithm 4: Version Snapshot Algorithm

Input: List I of Items, Version Number N

I consists of dot notation path to item for which Version Snapshot is created.
Last item is the final item.
N is used to retrieve the Nth version of item (I[−1] from I).

Output: List O

O contains JSON objects of Time snapshots

Data: Parent JSON

Procedure VersionSnapshot(List I, Version N , Parent JSON P )

newdata:= Null

data := P

timeArray := [ ]

processedArray := [ ]

versionsArray := [ ]

// Getting the last item of input array from data

for i←0 to len(data) do

if i == len(I) then break
else
// Call function recursively
newdata← getItems(data, T, I)

end

// Extract timestamps from newdata

for i← 0 to len(newdata) do

for k,v in newdata[i].iteritems() do

if k == ’timestamp’ and v not in timeArray then timeArray.append(v)

end

end

// Preprocess timestamps and generate a snapshot skeleton

preprocessedArray ← preProcess(timeArray)

// Populate skeletons with relevant values

for i← 0 to len(preprocessedArray) do

for j ← 0 to len(newdata) do

if checkOverlap(i[’timestamp’], j[’timestamp’]) is True then
versionsArray ← populateData(i[’data’],j[’data’])

end

end
return versionsArray[N]
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Algorithm 5: Time Slice Algorithm

Input: List I of Items, Timestamp T

T is used to populate data with overlapping timestamps.
Last item is the final item.

Output: JSON object O

O contains JSON object or Time Slice

Data: Parent JSON

Procedure TimeSlice(List I, Timestamp T , Parent JSON P , i)

data := P

sliceArray := [ ]

sliceDict := {}
// Getting the last item of input array from data

for i←0 to len(data) do

if i+1 == len(I) then

if checkOverlap(data[i][’timestamp’], T) is True then

sliceArray.append(data[i][’data’])
end

else
// Call function recursively
TimeSlice(I, T, newdata, i+1)

end

end

// Create skeleton for timeslice and append slice

for i←0 to len(sliceArray) do

for j in sliceArray do

if checkOverlap(j[′timestamp′], T ) is True then
slice← j
t← j[′timestamp′]

end

end

end
sliceDict.update(slice)
sliceDict.update(t)
return sliceDict
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Algorithm 6: Version Slice Algorithm

Input: List I of Items, Version N

N is used to retrieve the Nth version of item (I[−1] from I).
Last item is the final item.

Output: JSON object O

O contains JSON object or Time Slice

Data: Parent JSON

Procedure VersionSlice(List I, Parent JSON P , i)

data := P

//To keep track of already added versions ( Coalescing ) Flag := {}
versionsArray := [ ]

sliceArray := [ ]

sliceDict := {}
// Getting the last item of input array from data

for i←0 to len(data) do

if i+ 1 == len(I) then

//Coalescing

if (data[i][’timestamp’]) not in Flag then
sliceArray.append(data[i][′data′])
true← Flag[(data[i][′timestamp′])]

end

else
// Call function recursively

VersionSlice(I, newdata[i], i+1)
end

end

// Create skeleton for versionslice and append slice

for i←0 to len(sliceArray) do

for j in sliceArray[i][versions] do

if j[’timestamp’]) not in Flag or Flag[j][’timestamp’]] is false then

versionsArray.append(j)
true← Flag[(j[′timestamp′])]

end

end

end

t← versionsArray[N][’timestamp’]

slice← versionsArray[N]

sliceDict.update(slice)
sliceDict.update(t)

return sliceDict
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CHAPTER 5

Evaluation

In this thesis we empirically evaluate the representational model. We perform several

experiments to measure the cost of creating the representational model from a sequence of

snapshot documents and to measure the cost of temporal operations, such as time snapshot.

5.1 Experimental Environment

We implemented our functions in Python 2.7. The implementation uses Python’s

inbuilt library for parsing JSON. To quantify the cost of primary functions like Time Snap-

shot, Version Snapshot, Time Slice & Version Slice we performed several experiments on

varying sizes and types of temporal data. The experiments were run on a MacBook Pro,

2.7GHz quad-core 8th-generation Intel Core i7 processor, 16GB of RAM. Each experiment

was performed in an isolated machine.

5.2 Experiment: Representational Model Creation

The first experiment measures the impact of increasing data size on time taken to create

the representational model. The experiment uses an online JSON generator to generate

snapshots, these time snapshots are then reversed by an auxiliary reverse function() to

form a temporal document which will be used to run our primary functions. There are

mainly two types of temporal document that we created, one where we change key-value

pairs for the outermost key (parent) which in turn creates different versions of that parent

as shown in Figure 5.1, and another where we change values of inner elements (child) which

creates different versions of those children nodes and only single version of parent as shown

in Figure 5.2. We show the creation cost for both types of temporal documents.
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{

"specimenItem": {

"timestamp": "2015-2017",

"specimenVersions": [{

"timestamp": "2015-2016",

"data": {

"specimen": {

"colloquialItem": {},

"nameItem": {}

}

}

},

{

"timestamp": "2016-2017",

"data": {

"specimen": {

"colloquialItem": {},

"nameItem": {},

"habitatItem": {}

}

}

}

]

}

}

Fig. 5.1: Temporal JSON with multiple versions of parent specimen
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{

"specimenItem": {

"timestamp": "2015-2017",

"specimenVersions": [{

"timestamp": "2015-2017",

"data": {

"specimen": {

"colloquialItem": {

"timestamp": "2015-2016",

"colloquialVersions": [{

"timestamp": "1201-1201",

"data": {

"colloquial": "accruex"

}

}, {

"timestamp": "2016-2017",

"data": {

"colloquial": "Hawkweed"

}

}]

},

"nameItem": {

"timestamp": "2015-2017",

"nameVersions": [{

"timestamp": "2015-2016",

"data": {

"name": "Ramos"

}

}, {

"timestamp": "2016-2017",

"data": {

"name": "Narrowleaf"

}

}]

}

}

}

}]

}

}

Fig. 5.2: Temporal JSON with multiple versions of children (colloquial and name)
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Fig. 5.3: Representational model creation time with parent version changes

5.2.1 Representational Model Creation as Parent Version Changes

The creation takes up to 30 seconds when new versions of parent are made as it leads to

higher size of document (up to 4Mb) depending on the number of key-value pairs. We change

up to 30 key-values of parent, with each new version of parent, all of subsequent children

values are copied into another version which leads to higher complexity while reversing the

snapshots. The results are plotted in Figure 5.3, which represents the cost of creation.

5.2.2 Representational Model Creation as Child Version Changes

The creation takes up to a few milliseconds when new versions of children are made

and leads to smaller document size (up to 2Mb) and less complex JSON, depending on the

number of key-value pairs. We change between 100 to 1000 key-values of children. The

results are plotted in Figure 5.4, which represents the cost of document creation.
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Fig. 5.4: Representational model creation time with child version changes
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5.3 Experiment: Time Snapshot

In this section, we study the cost of creating time snapshots with two kinds of experi-

ments: Cost with varying number of changes in key-value pairs (100 to 1000) and Cost with

varying size of the temporal document. The cost can vary on a number of factors such as

levels of nesting, deeper the nesting, the higher time it will take to get that item recursively.

There are two types of changes: change in key-values of parent and change in key-values of

children.

We describe number of children key-value pairs in terms of three sizes: small, medium

and large. Small documents have two key-value pairs, medium has ten key-value pairs and

large has 30 different key-value pairs of children. We perform changes between 100 to 1000

in the increments of 100.

5.3.1 Time Snapshot with New Children Versions

Here we change the values of children keys which in turn creates new versions of chil-

dren. e.g., If we perform 100 changes then 100 new versions of each children key will

be created. Figure 5.5 shows cost of creating time snapshots with respect to the number

of changes/versions in children. This is less expensive operation as new versions of only

children are created and there will only be one version of parent.

5.3.2 Time Snapshot with New Parent Versions

Here we change the values of parent which creates new versions of parent and also

values of children which creates new versions of children as well. e.g., If we perform 100

changes to parent values, then 100 new versions of it will be created and at the same time

we also change values of children, which leads in new versions of them as well. This is

comparatively costly operation. Figure 5.6 shows how cost varies with changes.

5.3.3 Time Snapshot Varying the Document Size

In this experiment we measure the time for time snapshot with respect to the document

size. We perform this experiment for two different types of files: one with multiple versions
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Fig. 5.5: Time snapshot with new version of children
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Fig. 5.6: Time snapshot with new version of parent
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Fig. 5.7: Time snapshot varying the document size and new child versions

of parent and another with multiple versions of both. We observed that the latter takes

more time as its size is almost double compared to former. The size for latter is up to 4Mb’s

(around 300,000 lines of JSON).

5.4 Experiment: Time Slice

In this section we study the cost of creating time slices (slice consists of temporal

information) with two kinds of experiments: Cost with varying number of changes in key-

value pairs(100 to 1000) and Cost with varying size of temporal document. There are two

types of changes: change in key-values of Parent and change in values of Children.

5.4.1 Time Slice with New Children Versions and Parent Versions

Time Slice is slightly faster with new versions of the parent as compared with new

versions of children. As this operation only needs to retrieve the slice of the document at

a point in time, it simply iterates through the JSON and checks for the overlap with input

timestamp. It does not need to go through all the child versions, if the parent timestamp

overlaps then only it will dig into its children versions. However, with changes in children
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Fig. 5.8: Time snapshot varying the document size and new versions of child and parent

versions, it has to go through all the child versions until it finds the overlap. The cost

also depends upon the input timestamp itself, as a slice with an earlier timestamp with be

retrieved faster than a later one. The performance is shown by Figures 5.9 and 5.10.

5.5 Experiment: Version Snapshot

In this section we study the cost of creating Version-Snapshots with two kinds of

experiments: Cost with varying number of changes in key-value pairs (100 to 1000) and

Cost with varying size of temporal document. There are two types of changes: change in

key-values of parent and change in key-values of children.

We describe number of children key-value pairs in terms of three sizes: small, medium

and large. Small documents have two key-value pairs, medium has ten key-value pairs and

large has 30 different key-value pairs of children. We perform changes between 100 to 1000

in the increments of 100.
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Fig. 5.9: Time slice with new versions of children
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Fig. 5.10: Time slice with new versions of parent

Fig. 5.11: Time slice with varying document size and new versions of child
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Fig. 5.12: Time slice with varying document size and new versions of parent

5.5.1 Version Snapshot with New Children Versions

Here we change the values of children keys which in turn creates new versions of chil-

dren. e.g., If we perform 100 changes then 100 new versions of each children key will be

created. Figure 5.13 shows cost of creating version snapshots with respect to number of

changes/versions in children. This is less expensive operation as new versions of only chil-

dren are created and there will only be one version of parent. Version Snapshot’s run time

depends on factors like levels of nesting and number of versions the requested item has.

Grabbing Nth version will be straightforward and would require no coalescing.

5.5.2 Version Snapshot with New Parent Versions

Here we change the values of parent which creates new versions of parent and also

values of children which creates new versions of children as well. e.g., If we perform 100

changes to parent values, then 100 new versions of it will be created and at the same time

we also change values of children, which leads in new versions of them as well. This is

comparatively costly operation as all the versions of children will be copied in next versions

of parent, which results in higher coalescing time. Figure 5.14 shows how cost varies with

changes.
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Fig. 5.13: Version snapshot with new versions of children
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Fig. 5.14: Version snapshot with new versions of parent



51

Fig. 5.15: Time with new versions of children

5.5.3 Version Snapshot Varying the Document Size

In this experiment we measure the time with respect to the document size. We perform

this experiment for two different types of files: one with multiple versions of parent and

another with multiple versions of both. We observed that the latter takes more time as its

size is almost double compared to former. The size for latter is upto 4Mb’s (around 300,000

lines of JSON.

5.6 Experiment: Version Slice

In this section we study the cost of creating version slices with two kinds of experiments:

Cost with varying number of changes in key-value pairs (100 to 1000) and cost with varying

size of temporal document. There are two types of changes: change in key-values of parent

and change in values of children.

5.6.1 Version Slice with New Children Versions and Parent Versions

Similar to Version snapshot, Version slice works slightly faster with changes in

children version because of the coalescing. When parent version changes, same versions of



Fig. 5.16: Time with new versions of parent and children

children are copied across newer parent versions, which results in duplication, which adds

up the coalescing time. The performance is shown by Figure 5.17 and Figure 5.18.
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Fig. 5.17: Version slice with new versions of children
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Fig. 5.18: Version slice with new versions of parent

Fig. 5.19: Version slice with varying document size and new versions of child
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Fig. 5.20: Version slice with varying document size and new versions of parent
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CHAPTER 6

Conclusions and Future Work

JavaScript Object Notation (JSON) is a format for representing data. In this thesis we

show how to capture the history of changes to a JSON document. Capturing the history

is important in many applications, where not only the current version of a document is

required, but all the previous versions. Conceptually the history can be thought of as a

sequence of non-temporal JSON documents, one for each instant of time. Each document

in the sequence is called a snapshot. Since changes to a document are few and infrequent,

the sequence of snapshots largely duplicates a document across many time instants, so the

snapshot model is (wildly) inefficient in terms of space needed to represent the history

and time taken to navigate within it. A more efficient representation can be achieved by

“gluing” the snapshots together to form a temporal model. Data that remains unchanged

across snapshots is represented only once in a temporal model. But we show that the

temporal model is not a JSON document, and it is important to represent a history as

JSON to ensure compatibility with web services and scripting languages that use JSON. So

we describe a representational model that captures the information in a temporal model.

We implement the representational model in Python and extensively experiment with the

model.

This thesis makes the following contributions

• We adapt the representational model for temporal XML developed by Currrim et.

al [22] to JSON.

• We describe operations for the representation model for temporal JSON, namely, time

snapshot, version snapshot, time slice, and version slice, and we give algorithms for

implementing the operations.
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• We implement temporal JSON in Python and extensively evaluate the implementation

with experiments that empirically measure the cost of the temporal operations on the

representational model.

Future work consists more functions which could be implemented, like delta(), which

gets the difference between two documents, whether it be two snapshots or temporal doc-

uments, others being next() & previous() functionality which can used to retrieve next

and previous versions of current version.

Finally, future work considers an alternative, representational model to the item-based

model presented previously. The primary drawback of the item-based model is that simple

path expressions devolve to loops over versions of items. The alternative model utilizes the

idea that versions of data should be pushed to values, i.e., in a tree-based model of data,

to the leaves of the tree, when possible.

An alternative representational model is shown in Figure 6.1. The model is similar to

the temporal model, but explicitly represents versions of values in an array.

Considering the alternative representational model, let’s consider the following opera-

tions.

TimeSlice -

specimen.name.timeslice[2015]

timeslice(specimen.data.name, 2015)

specimen.timeslice[2015]

timeslice(specimen, 2015)

If we convert specimen to timestamp and list,

interior nodes have just one object in list.

VersionSlice -

specimen.name.versionslice[2]

versionslice(specimen.data.name, 2) just slice metadata
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{

"specimen": {

"versions": [

["name", "colloquial"],

["name", "colloquial", "habitat"]

],

"timestamps": ["2015", "2017"],

"types": ["object", "object"],

"data": {

"name": {

"versions": ["Hieracium umbellatum"],

"timestamps": ["2015"],

"types": ["string"]

},

"colloquial": {

"versions": ["Canadian Hawkweed", "Canadian Hawkweed, Narrowleaf Hawkweed"],

"timestamp": ["2015", "2017"],

"types": ["string", "string"]

},

"habitat": {

"versions": ["2", "3"],

"timestamp": ["2015", "2017"],

"types": ["list", "list"],

"data": {

"1": ["rocky shoreline"],

"2": ["conifer forest"],

"3": ["sand dune"]

}

},

"taxaAuthority": {

"author": "Barkworth"

}

}

}

}

Fig. 6.1: Hieracium umbellatum is related to Narrowleaf Hawkweed, as of 2018
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specimen.version[2]

versionslice(specimen, 2) Must do a "deep dive" on specimen

TimeSnapshot -

specimen.name.timesnapshot[2015]

snapshot(specimen.data.name, 2015)

specimen.timesnapshot[2015]

snapshot(specimen, 2015) Must do a "deep dive" on specimen

The value of doing it this way is that other kinds of metadata can be supported.
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[25] M. H. Böhlen, “Temporal coalescing,” in Encyclopedia of Database Systems, Second

Edition, 2018. [Online]. Available: https://doi.org/10.1007/978-1-4614-8265-9\ 388

[26] C. S. Jensen and R. T. Snodgrass, “Temporal element,” in Encyclopedia of

Database Systems, Second Edition, 2018. [Online]. Available: https://doi.org/10.1007/

978-1-4614-8265-9\ 1419


