26 research outputs found

    Synthesis and testing of reversible Toffoli circuits

    Get PDF
    xii, 82 leaves : ill. ; 29 cmRecently, researchers have been interested in reversible computing because of its ability to dissipate nearly zero heat and because of its applications in quantum computing and low power VLSI design. Synthesis and testing are two important areas of reversible logic. The thesis first presents an approach for the synthesis of reversible circuits from the exclusive- OR sum-of-products (ESOP) representation of functions, which makes better use of shared functionality among multiple outputs, resulting in up to 75% minimization of quantum cost compared to the previous approach. This thesis also investigates the previous work on constructing the online testable circuits and points out some design issues. A simple approach for online fault detection is proposed for a particular type of ESOP-based reversible circuit, which is also extended for any type of Toffoli circuits. The proposed online testable designs not only address the problems of the previous designs but also achieve significant improvements of up to 78% and 99% in terms of quantum cost and garbage outputs, respectively

    Reliability and Security Assessment of Modern Embedded Devices

    Get PDF
    L'abstract Ăš presente nell'allegato / the abstract is in the attachmen

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends

    Veröffentlichungen und VortrĂ€ge 2009 der Mitglieder der FakultĂ€t fĂŒr Informatik

    Get PDF

    MOCAST 2021

    Get PDF
    The 10th International Conference on Modern Circuit and System Technologies on Electronics and Communications (MOCAST 2021) will take place in Thessaloniki, Greece, from July 5th to July 7th, 2021. The MOCAST technical program includes all aspects of circuit and system technologies, from modeling to design, verification, implementation, and application. This Special Issue presents extended versions of top-ranking papers in the conference. The topics of MOCAST include:Analog/RF and mixed signal circuits;Digital circuits and systems design;Nonlinear circuits and systems;Device and circuit modeling;High-performance embedded systems;Systems and applications;Sensors and systems;Machine learning and AI applications;Communication; Network systems;Power management;Imagers, MEMS, medical, and displays;Radiation front ends (nuclear and space application);Education in circuits, systems, and communications

    Runtime Management of Multiprocessor Systems for Fault Tolerance, Energy Efficiency and Load Balancing

    Get PDF
    Efficiency of modern multiprocessor systems is hurt by unpredictable events: aging causes permanent faults that disable components; application spawnings and terminations taking place at arbitrary times, affect energy proportionality, causing energy waste; load imbalances reduce resource utilization, penalizing performance. This thesis demonstrates how runtime management can mitigate the negative effects of unpredictable events, making decisions guided by a combination of static information known in advance and parameters that only become known at runtime. We propose techniques for three different objectives: graceful degradation of aging-prone systems; energy efficiency of heterogeneous adaptive systems; and load balancing by means of work stealing. Managing aging-prone systems for graceful efficiency degradation, is based on a high-level system description that encapsulates hardware reconfigurability and workload flexibility and allows to quantify system efficiency and use it as an objective function. Different custom heuristics, as well as simulated annealing and a genetic algorithm are proposed to optimize this objective function as a response to component failures. Custom heuristics are one to two orders of magnitude faster, provide better efficiency for the first 20% of system lifetime and are less than 13% worse than a genetic algorithm at the end of this lifetime. Custom heuristics occasionally fail to satisfy reconfiguration cost constraints. As all algorithms\u27 execution time scales well with respect to system size, a genetic algorithm can be used as backup in these cases. Managing heterogeneous multiprocessors capable of Dynamic Voltage and Frequency Scaling is based on a model that accurately predicts performance and power: performance is predicted by combining static, application-specific profiling information and dynamic, runtime performance monitoring data; power is predicted using the aforementioned performance estimations and a set of platform-specific, static parameters, determined only once and used for every application mix. Three runtime heuristics are proposed, that make use of this model to perform partial search of the configuration space, evaluating a small set of configurations and selecting the best one. When best-effort performance is adequate, the proposed approach achieves 3% higher energy efficiency compared to the powersave governor and 2x better compared to the interactive and ondemand governors. When individual applications\u27 performance requirements are considered, the proposed approach is able to satisfy them, giving away 18% of system\u27s energy efficiency compared to the powersave, which however misses the performance targets by 23%; at the same time, the proposed approach maintains an efficiency advantage of about 55% compared to the other governors, which also satisfy the requirements. Lastly, to improve load balancing of multiprocessors, a partial and approximate view of the current load distribution among system cores is proposed, which consists of lightweight data structures and is maintained by each core through cheap operations. A runtime algorithm is developed, using this view whenever a core becomes idle, to perform victim core selection for work stealing, also considering system topology and memory hierarchy. Among 12 diverse imbalanced workloads, the proposed approach achieves better performance than random, hierarchical and local stealing for six workloads. Furthermore, it is at most 8% slower among the other six workloads, while competing strategies incur a penalty of at least 89% on some workload

    Non-invasive Techniques Towards Recovering Highly Secure Unclonable Cryptographic Keys and Detecting Counterfeit Memory Chips

    Get PDF
    Due to the ubiquitous presence of memory components in all electronic computing systems, memory-based signatures are considered low-cost alternatives to generate unique device identifiers (IDs) and cryptographic keys. On the one hand, this unique device ID can potentially be used to identify major types of device counterfeitings such as remarked, overproduced, and cloned. On the other hand, memory-based cryptographic keys are commercially used in many cryptographic applications such as securing software IP, encrypting key vault, anchoring device root of trust, and device authentication for could services. As memory components generate this signature in runtime rather than storing them in memory, an attacker cannot clone/copy the signature and reuse them in malicious activity. However, to ensure the desired level of security, signatures generated from two different memory chips should be completely random and uncorrelated from each other. Traditionally, memory-based signatures are considered unique and uncorrelated due to the random variation in the manufacturing process. Unfortunately, in previous studies, many deterministic components of the manufacturing process, such as memory architecture, layout, systematic process variation, device package, are ignored. This dissertation shows that these deterministic factors can significantly correlate two memory signatures if those two memory chips share the same manufacturing resources (i.e., manufacturing facility, specification set, design file, etc.). We demonstrate that this signature correlation can be used to detect major counterfeit types in a non-invasive and low-cost manner. Furthermore, we use this signature correlation as side-channel information to attack memory-based cryptographic keys. We validate our contribution by collecting data from several commercially available off-the-shelf (COTS) memory chips/modules and considering different usage-case scenarios

    Fault modelling and accelerated simulation of integrated circuits manufacturing defects under process variation

    No full text
    As silicon manufacturing process scales to and beyond the 65-nm node, process variation can no longer be ignored. The impact of process variation on integrated circuit performance and power has received significant research input. Variation-aware test, on the other hand, is a relatively new research area that is currently receiving attention worldwide.Research has shown that test without considering process variation may lead to loss of test quality. Fault modelling and simulation serve as a backbone of manufacturing test. This thesis is concerned with developing efficient fault modelling techniques and simulation methodologies that take into account the effect of process variation on manufacturing defects with particular emphasis on resistive bridges and resistive opens.The first contribution of this thesis addresses the problem of long computation time required to generate logic fault of resistive bridges under process variation by developing a fast and accurate modelling technique to model logic fault behaviour of resistive bridges.The new technique is implemented by employing two efficient voltage calculation algorithms to calculate the logic threshold voltage of driven gates and critical resistance of a fault-site to enable the computation of bridge logic faults without using SPICE. Simulation results show that the technique is fast (on average 53 times faster) and accurate (worst case is 2.64% error) when compared with HSPICE. The second contribution analyses the complexity of delay fault simulation of resistive bridges to reduce the computation time of delay fault when considering process variation. An accelerated delay fault simulation methodology of resistive bridges is developed by employing a three-step strategy to speed up the calculation of transient gate output voltage which is needed to accurately compute delay faults. Simulation results show that the methodology is on average 17.4 times faster, with 5.2% error in accuracy, when compared with HSPICE. The final contribution presents an accelerated simulation methodology of resistive opens to address the problem of long simulation time of delay fault when considering process variation. The methodology is implemented by using two efficient algorithms to accelerate the computation of transient gate output voltage and timing critical resistance of an open fault-site. Simulation results show that the methodology is on average up to 52 times faster than HSPICE, with 4.2% error in accuracy

    Air Force Institute of Technology Research Report 2019

    Get PDF
    This Research Report presents the FY19 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document
    corecore