
University of Lethbridge Research Repository

OPUS http://opus.uleth.ca

Theses Arts and Science, Faculty of

2012

Synthesis and testing of reversible

Toffoli circuits

Nayeem, Noor Muhammed

Lethbridge, Alta. : University of Lethbridge, Dept. of Mathematics and Computer Science, c2012

http://hdl.handle.net/10133/3309

Downloaded from University of Lethbridge Research Repository, OPUS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS: Open Uleth Scholarship - University of Lethbridge Research Repository

https://core.ac.uk/display/185287792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SYNTHESIS AND TESTING OF REVERSIBLE TOFFOLI CIRCUITS

NOOR MUHAMMED NAYEEM
Bachelor of Science, University of Dhaka, 2008

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

© Noor Muhammed Nayeem, 2012

To my beloved parents

iii

Abstract

Recently, researchers have been interested in reversible computing because of its ability to

dissipate nearly zero heat and because of its applications in quantum computing and low

power VLSI design. Synthesis and testing are two important areas of reversible logic. The

thesis first presents an approach for the synthesis of reversible circuits from the exclusive-

OR sum-of-products (ESOP) representation of functions, which makes better use of shared

functionality among multiple outputs, resulting in up to 75% minimization of quantum cost

compared to the previous approach. This thesis also investigates the previous work on con-

structing the online testable circuits and points out some design issues. A simple approach

for online fault detection is proposed for a particular type of ESOP-based reversible circuit,

which is also extended for any type of Toffoli circuits. The proposed online testable designs

not only address the problems of the previous designs but also achieve significant improve-

ments of up to 78% and 99% in terms of quantum cost and garbage outputs, respectively.

iv

Acknowledgments

I owe a great debt of gratitude to my supervisor Dr. Jacqueline E. Rice for her continuous

support, inspiration and guidance throughout my M.Sc. program. I owe sincere thanks to

my committee members, Professor Shelly Wismath and Dr. Kevin Grant. I am grateful to

them for taking the time to give me detailed comments on an earlier draft of this thesis,

which helped to improve the thesis.

I would like to thank Professor Guan Zhijin, Dr. Ding Weiping, and Dr. Hang Yueqin of

Nantong University, China for their suggestions. I would also like to thank Professor Ger-

hard W. Dueck at the University of New Brunswick, Canada for providing me the shared

cube synthesis tool. Special thanks to Navid Farazmand of Northeastern University, USA

for explaining me the simulation results of the dual rail coding approach. Also thanks to

Md. Raqibur Rahman for his discussions on ternary logic.

Finally, I would like to thank my parents, sister and brother for their encouragement

and support.

v

Contents

Approval/Signature Page ii

Dedication iii

Abstract iv

Acknowledgments v

Table of Contents vi

List of Acronyms ix

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Goals of the Thesis . 2
1.2 Organization of the Thesis . 2

2 Background 4
2.1 Logic Function . 4
2.2 Reversible Logic . 4
2.3 Reversible Gates . 6

2.3.1 Toffoli Gates . 6
2.3.2 Fredkin Gates . 8

2.4 Reversible Circuit . 9
2.5 Cost Metrics . 9

2.5.1 Gate Count . 9
2.5.2 Garbage Output . 10
2.5.3 Quantum Cost . 11

2.6 Synthesis Approaches of Reversible Logic 13
2.6.1 Transformation-based Synthesis 13
2.6.2 PPRM-based Synthesis . 14
2.6.3 ESOP-based Synthesis . 14
2.6.4 Decision Diagram-based Synthesis 15

2.7 Fault Models . 15
2.7.1 Stuck-at Fault Model . 16
2.7.2 Bit Fault Model . 16
2.7.3 Missing, Repeated and Reduced Gate Fault Models 17
2.7.4 Crosspoint Fault Model . 18

vi

3 ESOP-based Synthesis 19
3.1 Basic Approach . 20
3.2 Optimization by Adding Not Gates . 21
3.3 Cube Ordering Heuristics . 23

3.3.1 Alpha-beta Cost Metric . 25
3.3.2 Autocorrelation Cost Metric . 26

3.4 Optimization by Using Negative-control Toffoli gates 28
3.5 Shared Cube Synthesis . 29
3.6 Summary . 32

4 Improved ESOP-based Synthesis 33
4.1 Utilization of Shared Functionality . 33
4.2 Our Approach . 35
4.3 Experimental Results and Discussions . 41
4.4 Summary . 43

5 Testing of Reversible Circuits 45
5.1 Offline Testing . 45

5.1.1 Testing of Stuck-at Faults . 46
5.1.2 Testing of Missing Gate, Repeated Gate, and Reduced Gate Faults . 47

5.2 Online Testing . 47
5.2.1 Testable Circuit Design Using R1, R2, and R Gates 47
5.2.2 Testable Circuit Design Using Testable Reversible Cells (TRCs) . . 50
5.2.3 Testable Circuit Design Using Online Testable Gates (OTGs) 53
5.2.4 Dual Rail Coding Approach . 54
5.2.5 Testable Circuit Design with Duplication of Gates 55

5.3 Summary . 56

6 Optimized Approaches for Online Fault Detection 57
6.1 Testing of ESOP-based Circuits . 57

6.1.1 Construction of a Testable Circuit from the ESOP-based Circuit . . 58
6.1.2 Analysis . 59
6.1.3 Experimental Results . 64
6.1.4 Advantages of the Proposed Design 65

6.2 Testing of Toffoli Circuits . 67
6.2.1 Construction of a Testable Circuit from the Toffoli Circuit 67
6.2.2 Analysis . 68
6.2.3 Experimental Results . 71
6.2.4 Comparisons with Our First Proposed Approach 72

6.3 Coverage of Fault Models . 74
6.4 Summary . 74

vii

7 Conclusion 75
7.1 Contributions . 75
7.2 Future Work . 76

Bibliography 78

viii

List of Acronyms

BDD — Binary decision diagram

DFT — Design-for-test

DRG — Deduced reversible gate

ESOP — Exclusive-OR sum-of-products

ETG — Extended Toffoli gate

EXOR — Exclusive-OR

EXNOR — Exclusive-NOR

ILP — Integer linear program

M-S — Muthukrishnan-Stroud

MVL — Multiple-valued logic

OTG — Online testable gate

PPRM — Positive polarity Reed-Muller

TB — Testable block

TC — Test cell

TRC — Testable reversible cell

ix

List of Tables

2.1 Truth table of an arbitrary reversible function. 5
2.2 Truth table of an AND gate. 5
2.3 Truth table of the 3-bit Toffoli gate. 7
2.4 Truth table of the 3-bit Fredkin gate. 8
2.5 Costs of n-bit Toffoli gates. 12

3.1 Cost calculation of input variables for the cube-list in Figure 3.4(a). 26

4.1 Experimental results. 42

6.1 Experimental results. 66
6.2 Comparison of different online testable approaches. 73
6.3 Improvements achieved by our approach. 73
6.4 Overhead calculation of the testable design over the non-testable design. . . 73
6.5 Coverage of fault models. 74

x

List of Figures

2.1 (a) A NOT gate, (b) A CNOT gate, (c) an n-bit Toffoli gate, (d) a 3-bit
negative-control Toffoli gate, and (e) an (n+1)-bit ETG. 7

2.2 A Toffoli circuit. 9
2.3 Garbage output in a reversible circuit. 10
2.4 A stuck-at fault. 16
2.5 (a) Before and (b) after the occurrence of a missing gate fault. 17
2.6 (a) Before and (b) after the occurrence of a repeated gate fault. 17
2.7 (a) Before and (b) after the occurrence of a disappearance fault. 18
2.8 (a) Before and (b) after the occurrence of an appearance fault. 18

3.1 An ESOP cube-list. 19
3.2 (a) An ESOP cube-list and (b) a circuit generated by basic approach. 22
3.3 a) An ESOP cube-list and (b) a circuit generated by basic approach with

line optimization. 24
3.4 (a) Initial ESOP cube-list, (b) list 1 containing positive polarity and don’t

care value of x3, (c) list 2 containing negative polarity of x3, and (d) final
reordered cube-list. 26

3.5 (a) Initial ESOP cube-list, (b) list 1 containing positive polarity and don’t
care value of x1, (c) list 2 containing negative polarity of x1, and (d) final
reordered cube-list. 28

3.6 (a) An ESOP cube-list and (b) a circuit using negative-control Toffoli gates. 29
3.7 (a) An ESOP cube-list, and circuits generated (b) by basic approach with

line optimization and (c) by shared cube synthesis. 31

4.1 (a) An example cube-list, (b) a Toffoli cascade generated by the approach
in [46, 47], and (c) an improved Toffoli cascade. 34

4.2 (a) An initial cube-list, (b) a Toffoli cascade generated by the approach
in [46, 47], and (c) an improved Toffoli cascade. 35

4.3 Cube-list and its sub-lists. 38
4.4 Improved shared cube synthesis process. 40
4.5 (a) An example cube-list, (b) a Toffoli cascade generated by the approach

in [46, 47], and (c) a Toffoli cascade generated by our proposed approach. . 44

5.1 (a) R1 gate, (b) R2 gate, and (c) R gate. 48
5.2 (a) Construction of a testable block (TB), and (b) its block diagram. 48
5.3 A two-pair two-rail checker circuit. 49
5.4 Online testable circuit for f = ab+ c, according to the design in [54, 53]. . 50
5.5 (a) G gate and (b) DRG(G). 50
5.6 (a) Construction of a testable reversible cell TRC(G), and (b) its block dia-

gram. 51
5.7 Test cell (TC). 52

xi

5.8 (a) A Toffoli circuit for f = ab⊕a⊕ c, and (b) the corresponding testable
circuit according to the design in [21, 22]. 52

5.9 Online testable gate (OTG). 53
5.10 (a) Construction of a testable block, and (b) its block diagram. 53
5.11 Online testable circuit for g = ab⊕ c, according to the design in [52]. . . . 54
5.12 (a) A Toffoli gate t1 and (b) its corresponding testable circuit. 55

6.1 (a) An ESOP-based circuit, (b) Online testable reversible circuit. 59
6.2 Fault propagation in multiple lines. 60
6.3 A single fault on input line I2. 64
6.4 A single fault on output line I5. 65
6.5 (a) A Toffoli circuit and (b) an online testable circuit. 68
6.6 Fault detection in testable circuit. 71

7.1 A template for Toffoli gates with only positive controls [33]. 76
7.2 Two templates for Toffoli gates with positive and negative controls. 76

xii

Chapter 1

Introduction

Traditional logic computation is irreversible since the outputs do not have enough informa-

tion to reconstruct the inputs. In logic calculation, if there are p inputs and q outputs such

that p > q, then at least p−q bits of information are lost [55]. As an example, a logic gate

with two inputs and one output destroys at least one bit of information during computation.

Landauer’s principle [20] states that each bit of information that is disregarded results in

dissipation of heat, regardless of underlying technology. The amount of dissipated heat is at

least kT (ln 2) joules for every bit of lost information, where k is the Boltzmann’s constant

and T is the absolute temperature. At room temperature, this amount becomes 2.9×10−21

joules.

According to [24], the problem of heat dissipation arises from (1) technological devi-

ation from ideality of switches and materials and (2) Landauer’s principle. Current tech-

nologies have addressed the first part of the problem by reducing heat loss. However,

information loss in irreversible computation, which is the second part of the problem, will

cause a considerable amount of heat generation in the near future due to increasing density

of circuits. As an example [32], packing densities in excess of 1017 logic devices in a cubic

centimeter cause devices to dissipate at least kT (ln 2), which result in more than 3,000,000

watts while operating at room temperature at a frequency of 10 gigahertz.

Reversible logic is being considered as an alternative to traditional irreversible logic

since reversible computing does not erase or lose any information. As a result, reversible

logic has a theoretical potential to dissipate no energy. According to Frank [10], reversible

logic can recover a fraction of energy that can reach up to 100%. As there is no limit in

reducing the heat dissipation in reversible logic, the amount of dissipated heat will become

very close to zero with the development of hardware.

1

Reversible logic is a vital part of quantum computing since quantum computation is re-

versible, and the physical reality of quantum logic can be illustrated by reversible logic [1].

Interested readers can refer to [41] for a detailed discussion of quantum computing. Re-

versible computing is also useful for other technologies including low power CMOS de-

sign [3], optical computing [43], nanotechnology [31], and bioinformatics.

1.1 Goals of the Thesis

Reversible logic uses a different set of reversible gates rather than traditional AND or OR

gates to realize circuits. Moreover, fan-outs and loops are prohibited in reversible circuits.

These cause the synthesis of reversible logic to be different from that of traditional irre-

versible logic, making synthesis a challenging area of research. One goal of this thesis is

to present an optimized reversible logic synthesis approach for functions, especially large

ones, given in the form of exclusive-OR sum-of-products (ESOP).

Testing is important for circuit design. This thesis aims to thoroughly examine the prior

work on online testable approaches and presents new online testable reversible designs

which are efficient in different cost metrics and deal with the problems encountered in the

prior work.

1.2 Organization of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 introduces the reader to the world of reversible logic. The basics of reversible

gates and cost metrics used for evaluating reversible circuits are covered. This chapter

also provides an overview of various synthesis approaches and fault models for reversible

circuits.

2

Chapter 3 begins with the representation of ESOP functions and then focuses on a

particular type of synthesis which uses this representation. Algorithms and examples are

given so that readers will gain a clear knowledge of ESOP-based synthesis.

In Chapter 4, we first provide the motivational examples for improving the ESOP-based

synthesis. We then propose an optimized approach, followed by an example to illustrate

the approach step-by-step. Experimental results are also tabulated to show the superiority

of this approach. This chapter has been published in [37] and [39].

Starting in Chapter 5, the focus of the thesis turns to testing of reversible logic. For

offline testing, the covered topics include test set generation and design-for-test (DFT)

methods. A major part of this chapter is devoted to online testing. We look at different

approaches in detail for designing testable circuits and also analyze the issues related to

these designs with suitable examples. Part of this chapter has been published in [38].

In Chapter 6, we present in detail two approaches for constructing online testable re-

versible circuits. Analyses of the presented approaches along with proofs are provided.

Experimental results for a number of benchmarks are compared to the previously reported

approaches. This chapter has been published in [40] and [38].

Chapter 7 concludes the thesis by highlighting the major contributions of this thesis and

describing the further research directions in the areas of both synthesis and testing.

3

Chapter 2

Background

2.1 Logic Function

Let A = {0,1} be a set of binary or Boolean logic values. A logic function is simply

a function of the form f : Ap → Aq for two natural numbers p and q. Such a function

can be expressed in terms of logical operations which are AND, OR, NOT, NAND, NOR,

exclusive-OR (EXOR), and exclusive-NOR (EXNOR) operations. A logic gate implements

a logical operation. In traditional irreversible logic, AND, OR, NOT, NAND, NOR, EXOR,

and EXNOR gates are used as standard gates. Among all the logic gates, only NAND and

NOR gates are universal since NAND gates alone (or alternatively NOR gates alone) can

be used to implement any logic function. A circuit, which is an electronic representation

of a function, is made from these gates by interconnecting the outputs of some gates to

the inputs of others. Logic synthesis is the process of transforming a logic function into

a circuit design in terms of gates. The resultant circuit is called a realization of the given

function.

2.2 Reversible Logic

A function is reversible if it is bijective (i.e., one-to-one and onto) [49]. In other words,

a reversible function has the same number of inputs as outputs (i.e., p = q), and there is

a one-to-one mapping between its input and output vectors. A reversible gate realizes a

reversible function.

An example of a truth table for a particular reversible function with three inputs (k1, k2,

and k3) and three outputs (o1, o2, and o3) is given in Table 2.1. The number of input vari-

4

ables and the number of output variables are the same. From the truth table, it can be seen

that for any two input vectors, the corresponding output vectors are different. Similarly, for

any two output vectors, the corresponding input vectors are different.

Table 2.1: Truth table of an arbitrary reversible function.
k1 k2 k3 o1 o2 o3
0 0 0 0 0 1
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 1 0
1 0 0 1 0 1
1 0 1 1 1 1
1 1 0 1 0 0
1 1 1 1 1 0

In contrast, the AND gate (see truth table in Table 2.2) is not reversible for the following

two reasons:

• it has two input variables but only one output variable, and

• for three different input vectors, the output vectors are the same.

If the output is 1, its input vector is [1,1] which can be uniquely identified. However, if

the output is 0, unique identification of its input vector is not possible since there are three

possible input vectors - [0,0], [0,1], and [1,0]. Other traditional logic gates such as OR,

NAND, NOR, and EXOR are also not reversible. The only exception is the NOT gate

which is reversible.

Table 2.2: Truth table of an AND gate.
Inputs Output
0 0 0
0 1 0
1 0 0
1 1 1

5

2.3 Reversible Gates

A different set of reversible logic gates is used to build reversible circuits, since traditional

logic gates other than the NOT gate are not applicable in reversible logic. The two most

popular reversible gates are the Toffoli gates and the Fredkin gates.

2.3.1 Toffoli Gates

An n-bit Toffoli gate is a reversible logic gate that has n inputs and n outputs and that

maps the input vector [k1,k2, . . . ,kn] to the output vector [o1,o2, . . . ,on], where o j = k j for

j = 1,2, . . . ,n− 1 and on = k1k2 · · ·kn−1⊕ kn. Here, the symbol ⊕ denotes the EXOR

operation. The first n−1 bits are known as controls, and the last (nth) bit is the target. This

gate passes the input values at controls directly to the corresponding outputs without any

change and toggles the target bit if and only if all input values at controls are 1.

The NOT gate is a special case of a Toffoli gate with n = 1 and no controls. The 2-bit

(that is, n = 2) Toffoli gate is also known as the CNOT gate or Feynman gate. A NOT

gate, a CNOT gate and an n-bit Toffoli gate are shown in Figure 2.1(a), Figure 2.1(b) and

Figure 2.1(c).

A negative-control Toffoli gate maps the input vector [k1,k2, . . . ,kn] to the output vector

[o1,o2, . . . ,on], where o j = k j for j = 1,2, . . . ,n− 1, on = k1k2 · · ·kn−1 ⊕ kn; here k1 is

called a negative control. This gate may have one or more negative controls; in that case,

the target bit is toggled if all positive controls have the value 1 and all negative controls

have the value 0. A 3-bit Toffoli gate with a single negative control in its first input is

shown in Figure 2.1(d).

The extended Toffoli gate (ETG) is a multi-target Toffoli gate proposed in [6]. In this

thesis, we make use of an (n+ 1)-bit ETG with two target outputs on and on+1 as shown

in Figure 2.1(e). This gate has the input vector [k1,k2, . . . ,kn,kn+1] and the output vec-

6

tor [o1,o2, . . . ,on,on+1], where o j = k j for j = 1,2, . . . ,n− 1, on = k1k2 · · ·kn−1⊕ kn, and

on+1 = k1k2 · · ·kn−1⊕kn+1. The first n−1 bits are controls and the last two bits are targets.

Like a negative-control Toffoli gate, an ETG may have negative controls.

k1 o1=k1

(a)

k1
k2

o1=k1
o2=k1 k2

(b)

k1
k2
k3

kn-1
kn

o1=k1

on=k1k2k3...kn-1 kn

o2=k2
o3=k3

on-1=kn-1

(c)

k1
k2
k3

o1=k1
o2=k2
o3=k1k2 k3

(d)

k1

k2

k3

kn-1

kn

kn+1

o1=k1

on=k1k2k3...kn-1 kn

o2=k2

o3=k3

on-1=kn-1

on+1=k1k2k3...kn-1 kn+1

(e)

Figure 2.1: (a) A NOT gate, (b) A CNOT gate, (c) an n-bit Toffoli gate, (d) a 3-bit negative-
control Toffoli gate, and (e) an (n+1)-bit ETG.

Table 2.3: Truth table of the 3-bit Toffoli gate.
k1 k2 k3 o1 o2 o3
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

The n-bit (n > 2) Toffoli gates including the negative-control Toffoli gates and ETGs

are universal. For example, a 3-bit Toffoli gate has the mapping from [k1,k2,k3] to [o1 =

k1,o2 = k2,o3 = k1k2⊕ k3]. Table 2.3 shows the truth table of this gate. When k3 = 1, we

7

get (k1k2) which is the NAND operation of two inputs k1 and k2. Since the NAND gate is

universal and the 3-bit Toffoli gate can work like a NAND gate, it is also universal.

2.3.2 Fredkin Gates

An n-bit Fredkin gate is a reversible logic gate that has n inputs and n outputs and that

maps the input vector [k1,k2, . . . ,kn] to the output vector [o1,o2, . . . ,on], where o j = k j for

j = 1,2, . . . ,n−2, on−1 = (k1k2 · · ·kn−2)kn−1+k1k2 · · ·kn−2kn, and on = (k1k2 · · ·kn−2)kn+

k1k2 · · ·kn−2kn−1. In other words, the first n− 2 input values are passed directly to the

corresponding outputs without any change, and the last two inputs are swapped if and only

if all the first n−2 inputs are 1. The 2-bit (that is, n = 2) Fredkin gate is also known as the

swap gate.

Like the Toffoli gates, the Fredkin gates with n > 2 are also universal. A 3-bit Fredkin

gate has the input vector [k1,k2,k3] and the output vector [o1 = k1,o2 = k1k2 + k1k3,o3 =

k1k3 + k1k2]. Its truth table is given in Table 2.4. By setting k3 = 1, the OR operation of

two inputs k1 and k2 can be realized from o2.

Table 2.4: Truth table of the 3-bit Fredkin gate.
k1 k2 k3 o1 o2 o3
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

8

2.4 Reversible Circuit

A reversible circuit consists of only reversible gates which are interconnected without fan-

out and feedback [49]. The fan-out refers to the maximum number of inputs that can be

driven from one output of a gate. In a reversible circuit, the fan-out of a gate is at most

one. If a reversible circuit is built using only Toffoli gates including NOT gates, CNOT

gates and negative-control Toffoli gates, it is known as a Toffoli circuit. Figure 2.2 shows

a Toffoli circuit where the three outputs of the 3-bit Toffoli gate are connected to the first

three inputs of the 4-bit Toffoli gate. This circuit computes f = ab(ab⊕ c)⊕d. It is noted

that each of the three outputs of the first gate is connected to only one of the inputs of the

second gate. Thus the first gate has a fan-out of 1.

a
b
c
d f = ab(ab c) d

Figure 2.2: A Toffoli circuit.

2.5 Cost Metrics

A given function can be synthesized by several ways (see Section 2.6), resulting in different

reversible circuits. This section outlines three cost metrics which are used to evaluate and

compare different circuits realizing the same function.

2.5.1 Gate Count

Gate count is the simplest way to compare and evaluate different reversible circuits. It

refers to the number of gates required to implement the circuit. It simply counts gates but

9

does not take into account the complexity of the gates. As a result, it can usefully compare

different circuits only if the functionality (type) of the gates and the number of bits in the

gates used in circuits are similar [36]. For example, consider two circuits where the first

circuit consists of three 2-bit Toffoli gates and the second circuit consists of two 10-bit

Toffoli gates. According to this measure, the second circuit is better. However, a 10-bit

Toffoli gate is more complex than a 2-bit Toffoli gate. Since gates have different numbers

of bits, this simple measure fails to provide meaningful information. Similarly, it cannot

accurately evaluate circuits if one circuit contains only Toffoli gates and the other circuit

contains both Toffoli and Fredkin gates.

2.5.2 Garbage Output

In reversible circuits, some outputs are required to maintain the reversibility property but

do not behave as final results, nor are they used for further calculations. Such outputs

are called garbage outputs. For example, a CNOT gate can be used to realize an EXOR

operation as shown in Figure 2.3. The second output is o2 = k1⊕ k2, whereas the first

output o1 = k1 is a garbage output. Thus a circuit for generating an EXOR function with a

CNOT gate produces a garbage output.

k1

k2

o1=k1 (garbage output)
o2=k1 k2

Figure 2.3: Garbage output in a reversible circuit.

Garbage outputs increase the number of lines1 in a circuit and hence increase the width

of the circuit. For some circuits, however, it is impossible to remove all the garbage outputs.

It is more important to reduce the garbage outputs than the number of gates [26, 53]. Thus

1We refer to bits in reversible circuits as lines in this thesis. The correct term in quantum computing is
qubits.

10

a challenging task in designing a reversible circuit is to minimize the number of required

garbage outputs.

2.5.3 Quantum Cost

The quantum cost is a very popular measure to compare reversible circuits. According

to Maslov and Dueck [26], the quantum cost of a gate is defined as the number of basic

quantum operations needed to realize the gate. Any reversible gate can be decomposed into

basic quantum gates. The number of basic quantum gates is the quantum cost.

The quantum cost calculation of an n-bit Toffoli gate is presented in [4], and improved

in [25] by adding CNOT gates, and further improved in [23] by applying templates [30].

The quantum costs of the NOT gate, CNOT (2-bit Toffoli) gate, and 3-bit Toffoli gate are 1,

1, and 5, respectively. The number of bits in a Toffoli gate increases the quantum cost. For

example, a 4-bit Toffoli gate has a cost of 13, whereas a 6-bit Toffoli gate has a cost of up

to 61 [23]. If the number of lines in a circuit is greater than the number of bits in the Toffoli

gate, then the extra (garbage) lines can help reduce the cost of the gate. For example, the

cost of a 6-bit Toffoli gate is 52 if one garbage line is used, but is reduced to 38 if three

garbage lines are used [23].

The costs of an n-bit Toffoli gate and an n-bit negative-control Toffoli gate with at least

one positive control are exactly the same [2]. However, for an n-bit negative-control Toffoli

gate with all negative controls, an extra cost of 2 is required if either zero garbage lines are

used [2] or (n−3) garbage lines are used [28, 2]. An additional cost of 4 is required if only

one garbage line is used [28, 2].

The quantum costs for the Toffoli gates are given in Table 2.5. The first column in-

dicates the number of bits in the Toffoli gates. The second column shows the number

of garbage lines used to realize the gates. The third and fourth columns give the quantum

11

costs for Toffoli gates with all positive and all negative controls, respectively. The first three

columns are extracted from [23], while the last column is obtained based on the analysis

given in [28, 2].

Table 2.5: Costs of n-bit Toffoli gates.
Number Quantum Cost
of bits Garbage with all positive with all negative

n controls controls
1 0 1∗ 1∗

2 0 1 3
3 0 5 6
4 0 13 15
5 0 29 31
5 2 26 28
6 0 61 63
6 1 52 56
6 3 38 40
7 0 125 127
7 1 80 84
7 4 50 52
8 0 253 255
8 1 100 104
8 5 62 64
9 0 509 511
9 1 128 132
9 6 74 76
10 0 1021 1023
10 1 152 156
10 7 86 88

n > 10 0 2n−3 2n−1
n > 10 1 24n−88 24n−84
n > 10 n−3 12n−34 12n−32
∗ 1-bit Toffoli gate (NOT gate) has no control.

The cost of an (n+1)-bit ETG is two plus the cost of an n-bit Toffoli gate, since it can

be simulated by an n-bit Toffoli gate and two CNOTs. Similarly, an (n+ 1)-bit negative-

control ETG has the cost of two plus the cost of an n-bit negative-control Toffoli gate. As

given in [23], the cost of an n-bit Fredkin gate is computed as the cost of an n-bit Toffoli

gate plus two.

12

We have discussed the quantum costs of different Toffoli and Fredkin gates. To calcu-

late the quantum cost of a reversible circuit, we sum the quantum costs of the gates used

in the circuit. As described in [36], comparisons in terms of gate count are not meaning-

ful if the reversible gates used in circuits have different functionalities and/or numbers of

bits. The quantum cost is a good cost metric in this regard since it counts the number of

elementary (quantum) gates required for the circuit.

2.6 Synthesis Approaches of Reversible Logic

There are a number of different approaches for synthesis of reversible logic circuits, in-

cluding the transformation-based approach [33], the use of positive polarity Reed-Muller

expressions (PPRM) [11], the use of ESOP expressions [9, 45], and the decision diagram-

based approach [57].

2.6.1 Transformation-based Synthesis

The transformation-based approach proposed in [33] involves examination of a truth table

of a given reversible function, and identifies transformations that can be applied to the

output side of the truth table to match the input and output patterns. The application of

these transformations then can be translated into a cascade of gates; if the transformations

are restricted to only those corresponding to Toffoli gates, then the resulting cascade will

similarly consist only of Toffoli gates.

An improvement of the above approach is the bi-directional approach [33] which ap-

plies transformations both at the input side and output side of the truth table, resulting in a

smaller number of gates in the circuit.

13

The circuits generated by the above two approaches are not optimal. The template

matching technique [33] is thus applied to further optimize the circuits. A template consists

of two sequences of gates where both sequences produce identical outputs, but the second

sequence has smaller gate count and/or quantum cost than the first one. This technique

looks for a match in the circuit for the first sequence of the template. If a match is found,

the first sequence is replaced with the second one in the circuit. A library of templates is

available in [33].

2.6.2 PPRM-based Synthesis

Gupta et al. [11] proposed a reversible logic synthesis approach which uses a PPRM repre-

sentation of a function. This approach generates a search tree with the root node containing

the PPRM expansions of all output variables. Common factors among the PPRM expan-

sions of multiple outputs are identified. Each factor is then substituted into the PPRM

expansions to create a new node with modified expansions. The new node is discarded if

the substitution fails to reduce the number of terms in the expansions. Heuristics and a

priority queue are used to process the tree efficiently. The substitutions that lead to the best

solution are transformed into Toffoli gates.

2.6.3 ESOP-based Synthesis

An ESOP is a sum-of-products format in which the traditional OR operator combining the

product terms is replaced with an EXOR operator. For example, a function f = xy+ yz

in the SOP form can be rewritten as f = xy⊕ xyz which is in ESOP form. Tools such

as EXORCISM [35] can be used to generate an ESOP expression representing the given

function.

14

In ESOP-based synthesis, ESOP terms are transformed into Toffoli gates. A basic

synthesis approach was introduced in [9] and has been since improved upon in a number of

works including [45, 47, 46]. Since our work is related to this particular type of synthesis,

we review a number of ESOP-based approaches in detail in Chapter 3.

2.6.4 Decision Diagram-based Synthesis

Wille and Drechsler [57] proposed a synthesis of Toffoli circuits from functions specified

in binary decision diagrams (BDDs). A BDD of the given function is built using a tool such

as CUDD [50]. Each node in the BDD is transformed into a cascade of Toffoli gates. Note

that shared nodes in the BDD cause fan-outs in the resulting circuit, which are not allowed

in reversible logic. To avoid fan-outs, additional lines are introduced to the circuit.

The approaches that we have described in this section generate Toffoli circuits. There

are other approaches in the literature such as [27] and [7] that incorporate Fredkin gates in

the circuits.

2.7 Fault Models

A fault is a physical defect in a system [19]. In other words, a system has a fault if there

is a physical difference between the correct system and the current system [15]. Part of the

work in this thesis focuses on identifying faults in reversible circuits, and thus we briefly

address fault models in this section. A fault model simplifies the analysis and complexity

of testing by reducing the number of defects that have to be considered. Depending on the

number of faults in a circuit, fault models can be categorized as single fault models and

multiple faults models. The single fault model considers only one fault in a circuit whereas

multiple faults model deals with several faults.

15

2.7.1 Stuck-at Fault Model

The stuck-at fault model is a very common fault model in traditional irreversible circuits.

According to Lala [19], a stuck-at fault in a logic gate causes one of its inputs or outputs to

be stuck either at logic value 0 (stuck-at-0) or at logic value 1 (stuck-at-1), irrespective of

the inputs of the circuit. For example, consider a reversible circuit consisting of two Toffoli

gates as shown in Figure 2.4. A stuck-at-1 fault in the first output of the first gate causes o1

to have the value one, independent of its input values.

i1
i2
i3
i4

o1=1
o2
o3
o4

stuck-at-1

Figure 2.4: A stuck-at fault.

2.7.2 Bit Fault Model

The bit fault model has been considered in various articles such as [54, 53, 21, 22]. In this

model, a fault in a gate changes the behavior of its outputs. A single bit fault is reflected to

exactly one output of a gate, changing the correct value of the output to a faulty value. A

stuck-at fault sets the output of a gate to either 0 or 1, whereas a bit fault flips the output of

a gate (from 0 to 1 or vice versa). Unlike the stuck-at fault model, this model depends on

the input values.

16

2.7.3 Missing, Repeated and Reduced Gate Fault Models

For reversible logic, Hayes et al. [12] proposed three new fault models: missing gate,

repeated gate, and reduced gate fault models. A brief discussion is given below.

Missing gate fault model In the missing gate fault model, a gate has completely disap-

peared from a circuit. Thus this gate is replaced by simple wire connections. For

example, the first gate in the circuit shown in Figure 2.5(a) is removed due to the

missing gate fault, resulting in the circuit shown in Figure 2.5(b).

(a) (b)

Figure 2.5: (a) Before and (b) after the occurrence of a missing gate fault.

Repeated gate fault model A repeated gate fault occurs if a gate is duplicated in a circuit.

For example, the first gate in the circuit given in Figure 2.6(a) is duplicated in the

circuit shown in Figure 2.6(b). Thus the latter circuit has two copies of that gate.

(a) (b)

Figure 2.6: (a) Before and (b) after the occurrence of a repeated gate fault.

Reduced gate fault model In the reduced gate fault model, the output of a gate computes a

partial function. For example, assume the correct output of a gate is o = k1k2k3⊕k4,

where k1, k2, k3, and k4 are inputs. A reduced gate fault may cause the gate to

compute o = k2k3⊕ k4 instead, which is incorrect.

17

2.7.4 Crosspoint Fault Model

In [59], Zhong and Muzio proposed the crosspoint fault model for Toffoli gates. A cross-

point fault occurs if the existing controls of a Toffoli gate do not work properly or if extra

control points change the behavior of a Toffoli gate. Such faults can be classified as disap-

pearance faults or appearance faults.

Disappearance fault A disappearance fault removes one or more control points from a

Toffoli gate and consequently, reduces the number of bits in the gate. For example,

consider the 4-bit Toffoli gate in Figure 2.7(a). A disappearance fault in the control

point, connected to the second line, changes the size of the Toffoli gate from 4-bit to

3-bit as shown in Figure 2.7(b). Note that the disappearance fault in a Toffoli gate is

the same as the reduced gate fault [59].

(a) (b)

Figure 2.7: (a) Before and (b) after the occurrence of a disappearance fault.

Appearance fault An appearance fault introduces one or more additional control points

to a Toffoli gate, increasing the number of bits in the gate. For example, consider the

3-bit Toffoli gate in Figure 2.8(a). Addition of one extra control in the second line

due to an appearance fault results in a 4-bit Toffoli gate as shown in Figure 2.8(b).

(a) (b)

Figure 2.8: (a) Before and (b) after the occurrence of an appearance fault.

18

Chapter 3

ESOP-based Synthesis

In an ESOP representation of an irreversible or reversible function, two or more product

terms are EXORed together. A function in the ESOP form is commonly written as a list of

cubes, known as a cube-list. A cube represents a term and has the form x1x2 . . .xp f1 f2 . . . fq,

where each xk for k ∈ {1,2, . . . , p} is an input variable and each f j for j ∈ {1,2, . . . ,q} is

an output variable. p and q are the number of input and output variables of the function.

We have xk ∈ {1,0,−} and f j ∈ {1,0}. Let us assume that in any cube, 1 denotes

positive polarity, 0 denotes negative polarity, and − denotes the don’t care value of the

input variable xk. If f j = 1, then the output variable f j contains this cube (term); other-

wise f j does not contain the cube. A cube is called a shared cube if at least two output

variables contain the cube. For example, given an ESOP function f1 = x1x2x3⊕ x3x4 and

f2 = x1x2x3⊕ x4, a cube-list is written as shown in Figure 3.1. Since the term x1x2x3 is

shared by two output variables f1 and f2, the corresponding cube 111- 11 is a shared

cube, as shown in the first cube of cube-list in Figure 3.1. Note that although we have four

terms in the function, we have a total of three cubes since one cube is a shared cube.

1 1 1 - 1 1
- - 1 1 1 0
- - - 1 0 1

x1x2x3x4 f1f2

Figure 3.1: An ESOP cube-list.

The ESOP-based reversible logic synthesis works with the ESOP representation of a

function and synthesizes a reversible circuit by transforming the ESOP terms into a cascade

of Toffoli gates. This synthesis is of interest because of the easy transformation of ESOP

terms into a Toffoli network, as well as the ability to handle functions with large numbers

of inputs. This chapter describes several different approaches for ESOP-based synthesis.

19

3.1 Basic Approach

Fazel et al. [9] proposed a basic ESOP-based reversible logic synthesis approach which

works with the ESOP representation of a function and uses only Toffoli gates to implement

the circuit. This approach requires two input lines corresponding to positive and negative

polarities of each input variable xk, and one output line (initialized by 0) for each output

variable f j. Thus the circuit initially has an empty cascade with 2p+q lines. A Toffoli gate

is cascaded for each cube of each output. In other words, for each output variable where

f j = 1, each cube is mapped into a Toffoli gate where the controls of the gate are the input

lines and the target is the output line f j. If xk has the positive polarity in the cube, then the

control is connected to the input line xk. If xk has the negative polarity, then the control is

connected to the input line xk. Thus this approach transforms the cube-list into a cascade

of Toffoli gates. The algorithm is described below.

Algorithm 1: Basic ESOP-based synthesis approach [9]

Input: cube_list of a logic function

Output: gate_list, A cascade of Toffoli gates

Method

1. gate_list = NIL

2. for each x ∈ {input_variables}

3. add_line (x)

4. add_line (x)

5. for each f ∈ {output_variables}

6. add_line (f)

7. for each cube ∈ cube_list

8. control_list = NIL

9. for each x ∈ {input_variables}

20

10. if (x in cube is 1)

11. control_list.add(get_line(x))

12. else if (x in cube is 0)

13. control_list.add(get_line(x))

14. for each f ∈ {output_variables}

15. if f in cube is 1

16. target = get_line(f)

17. gate = new Toffoli_gate(control_list, target)

18. gate_list.add(gate)

19. return gate_list

Example 3.1.1. Consider an ESOP cube-list of four cubes with four inputs (x1,x2,x3,x4)

and two outputs (f1, f2) as shown in Figure 3.2(a). The circuit generated by the basic

ESOP-based approach is shown in Figure 3.2(b), which requires eight lines for input vari-

ables and two lines for output variables. For the first cube, two Toffoli gates are generated

for two outputs. Then one Toffoli gate is generated for each of the last two cubes.

3.2 Optimization by Adding Not Gates

The basic approach always requires 2p+ q lines, where p is the number of inputs and q

is number of outputs. However, all the negated lines (lines corresponding to the negative

polarity of input variables x1,x2, . . . ,xp) are not utilized in all cases, and it is easy to get a

negated line by inserting a NOT gate when necessary [9]. Thus the basic approach can be

optimized by removing the negated lines, which considerably reduces the number of lines

to p+q but adds some NOT gates.

The basic approach with line optimization [9] is outlined in Algorithm 2 which is very

similar to Algorithm 1. It also generates a Toffoli gate for each cube of each output where

21

0 1 1 0 1 1
1 - 1 1 0 1
- - 1 1 1 0

x1x2x3x4 f1f2

(a)

x3
x3
x4
x4

f1
f2

0
0

x1
x2
x2

x1

(b)

Figure 3.2: (a) An ESOP cube-list and (b) a circuit generated by basic approach.

f j = 1. The only difference is that one input line is used as a positive line and a negative

line. Thus if the polarity of the input variable and the polarity of the corresponding line do

not match, a NOT gate is added on the input line before inserting the Toffoli gate.

Algorithm 2: Basic ESOP-based synthesis approach [9] with line optimization

Input: cube_list of a logic function

Output: gate_list, A cascade of Toffoli gates

Method

1. gate_list = NIL

2. for each x ∈ {input_variables}

3. add_line(x)

4. for each f ∈ {output_variables}

5. add_line(f)

22

6. for each cube ∈ cube_list

7. control_list = NIL

8. for each x ∈ {input_variables}

9. if x in cube is 1 or 0

10. control_list.add(get_line(x))

11. if polarity of x in cube 6= polarity of get_line(x)

12. gate = new NOT_gate(get_line(x))

13. gate_list.add(gate)

14. for each f ∈ {output_variables}

15. if f in cube is 1

16. target = get_line(f)

17. gate = new Toffoli_gate(control_list, target)

18. gate_list.add(gate)

19. return gate_list

Example 3.2.1. Consider the cube-list used in Example 3.1.1, which is also shown in

Figure 3.3(a). The circuit generated by the basic approach with line optimization requires

four NOT gates and four Toffoli gates as shown in Figure 3.3(b). The number of lines in

this circuit is 6, compared to 10 lines in the circuit shown in Figure 3.2(b).

3.3 Cube Ordering Heuristics

The line optimization approach increases the number of gates due to the insertion of NOT

gates. However, reordering of cubes in the cube-list can help reduce the number of NOT

gates. To find the optimal reordering of cubes, the computation complexity is O(n!), where

n is the number of cubes in the cube-list. A large circuit can contain hundreds of cubes;

thus it is infeasible to apply a brute force approach.

23

0 1 1 0 1 1
1 - 1 1 0 1
- - 1 1 1 0

x1x2x3x4 f1f2

(a)

x1
x2
x3
x4

f1
f2

0
0

(b)

Figure 3.3: a) An ESOP cube-list and (b) a circuit generated by basic approach with line
optimization.

In order to reorder the cubes, two heuristics using the alpha-beta cost metric [9] and

autocorrelation coefficient based cost metric [45] were proposed. Both approaches follow

the divide-and-conquer paradigm. The three steps are as follows.

• Divide: The input variable with the lowest cost metric is determined. Let x be such

an input variable. The cube-list is divided into two lists based on the variable x. The

first list consists of cubes which contain the positive polarity and the don’t care value

of x. The remaining cubes (i.e. cubes containing the negative polarity of x) are in the

second list.

• Conquer: The two lists are ordered recursively.

• Combine: The two ordered lists are recombined to generate the final ordered list.

The two cost metrics are described in the following two subsections. Once the cube-list is

ordered, the circuit can be realized using the basic ESOP-based approach with line opti-

mization as described in the previous section.

24

3.3.1 Alpha-beta Cost Metric

For the alpha-beta cost metric [9], the cost of each input variable x is calculated using

Equation 3.1. An input variable has a lower cost if it is balanced in terms of its positive

and negative forms and appears frequently in the cube-list. The coefficient α controls the

variable frequency term, and β controls the balanced variable term.

costx =
α

n

∑
i=1
|wi|

+β

∣∣∣∣∣ n

∑
i=1

wi

∣∣∣∣∣ (3.1)

where x is the input variable,

wi =

1 if x in cubei is 1

−1 if x in cubei is 0

0 if x in cubei is −

cubei is the ith cube in the cube-list,

n is the number of cubes in the cube-list, and

α and β are two constants such that α+β = 1.

Example 3.3.1. Consider an arbitrary cube-list of five cubes (C1,C2,C3,C4,C5) with four

input variables (x1,x2,x3,x4) and one output variable (f) as shown in Figure 3.4(a). We

first calculate the cost of input variables x1, x2, x3 and x4. The values of the variable x1

are 0, −, 0, − and 1 in cubes C1, C2, C3, C4, and C5, respectively. Thus w1 =−1, w2 = 0,

w3 =−1, w4 = 0, and w5 = 1 for variable x1. If we assume α is 0.25 and β is 0.75 then the

cost of x1 is costx1 = 0.25/3+ 0.75× 1 = 0.83. The cost calculation of input variables is

given in Table 3.1. Since x3 has the lowest cost, the cube-list is split into two lists based on

this variable as shown in Figure 3.4(b)-(c). The first list consists of C3, C4, and C5 as these

25

cubes contain the positive value and don’t care value of x3, and the second list comprises

the remainder of the cubes, i.e. C1 and C2. Costs are recalculated in each new list which is

further split according to the new costs. The final reordered list is given in Figure 3.4(d).

C1:0 - 0 - 1
C2:- 1 0 1 1
C3:0 0 1 - 1
C4:- 1 1 0 1
C5:1 - 1 1 1

fx1x2x3x4

(a)

C3:0 0 1 - 1
C4:- 1 1 0 1
C5:1 - 1 1 1

fx1x2x3x4

(b)

C1:0 - 0 - 1
C2:- 1 0 1 1

fx1x2x3x4

(c)

C5:1 - 1 1 1
C4:- 1 1 0 1
C3:0 0 1 - 1
C2:- 1 0 1 1
C1:0 - 0 - 1

fx1x2x3x4

(d)

Figure 3.4: (a) Initial ESOP cube-list, (b) list 1 containing positive polarity and don’t care
value of x3, (c) list 2 containing negative polarity of x3, and (d) final reordered cube-list.

Table 3.1: Cost calculation of input variables for the cube-list in Figure 3.4(a).

Input variable x
5

∑
i=1
|wi|

∣∣∣∣∣ 5

∑
i=1

wi

∣∣∣∣∣ α β costx

x1 3 1

0.25 0.75

0.83
x2 3 1 0.83
x3 5 1 0.80
x4 3 1 0.83

3.3.2 Autocorrelation Cost Metric

For the autocorrelation coefficient method [45], the cost metric is the autocorrelation co-

efficient of the input variable. The autocorrelation coefficient of a function f is defined as

26

follows [16]:

B(τ) =
2p−1

∑
v=0

f (v)× f (v⊕ τ) (3.2)

where p is the number of input variables and

τ is the value for which the coefficient value is calculated

The value of τ can range from 0 to 2p−1. If τ = 0, then there is no shift in the function

as it is compared to itself with no changes. Since only the first order coefficients were

used in [45], the number of ones in the binary value of τ is one. The coefficient value of

a variable indicates the dependency of a function on that variable. For example, assume a

variable ordering of x1x2x3x4. The calculation of B(1000) estimates the dependency of a

given function f on x1. The lower the coefficient, the more dependent the function is on that

particular variable. The following example describes how to calculate the autocorrelation

coefficients of input variables and use them to reorder the cubes.

Example 3.3.2. Consider the cube-list used in Example 3.3.1, which is also shown in

Figure 3.5(a). The autocorrelation coefficient of input variable x1 is calculated as follows.

B(1000) = [f (0000)× f (0000⊕1000)]+ [f (0001)× f (0001⊕1000)]+ . . .

+[f (1111)× f (1111⊕1000)]

= [1×0]+ [1×0]+ [1×0]+ [1×1]+ [1×0]+ [1×1]+ [1×1]

+ [0×1]+ [0×1]+ [0×1]+ [0×1]+ [1×1]+ [0×1]+ [1×1]

+ [1×1]+ [1×0]

= 6

27

Similarly, we calculate the autocorrelation coefficients of x2, x3, and x4, which are 8, 8,

and 8 respectively. Since the coefficient value of x1 is the lowest, the cube-list is split into

two lists based on this variable as shown in Figure 3.5(b)-(c). The first list consists of C2,

C4, and C5 as these cubes contain the positive value and the don’t care value of x1, and the

second list contains C1 and C3. Autocorrelation coefficients are recalculated in each new

list which is further split according to the new values. The final reordered list is given in

Figure 3.5(d).

C1:0 - 0 - 1
C2:- 1 0 1 1
C3:0 0 1 - 1
C4:- 1 1 0 1
C5:1 - 1 1 1

fx1x2x3x4

(a)

C2:- 1 0 1 1
C4:- 1 1 0 1
C5:1 - 1 1 1

fx1x2x3x4

(b)

C1:0 - 0 - 1
C3:0 0 1 - 1

fx1x2x3x4

(c)

C5:1 - 1 1 1
C4:- 1 1 0 1
C2:- 1 0 1 1
C1:0 - 0 - 1
C3:0 0 1 - 1

fx1x2x3x4

(d)

Figure 3.5: (a) Initial ESOP cube-list, (b) list 1 containing positive polarity and don’t care
value of x1, (c) list 2 containing negative polarity of x1, and (d) final reordered cube-list.

3.4 Optimization by Using Negative-control Toffoli gates

The negative-control Toffoli gate was proposed by Maslov and Miller [29] and was later

used in [28, 2] including ESOP-based circuits [48, 46]. As described in Section 2.3.1, this

gate has positive and negative controls. The use of this gate removes the NOT gates from

the ESOP-based circuits; thus gate count and quantum cost are also reduced. The synthesis

28

approach is very similar to the basic approach [9] with line optimization (see Section 3.2).

A Toffoli gate is generated for each cube of each output where f j = 1. If xk has the positive

polarity in the cube, the positive control of the Toffoli gate is connected to the input line

xk. If xk has the negative polarity in the cube, the negative control of the Toffoli gate is

connected to line xk. Thus the NOT gate is not required for cubes except for the one cube

with xk =−, ∀k ∈ {1,2, . . . , p}. For that particular cube, a NOT gate is added on the output

line f j if f j = 1, for j ∈ {1,2, . . . ,q} in the cube.

Example 3.4.1. Consider the cube-list used in Example 3.1.1, which is also shown in

Figure 3.6(a). A circuit which is built using Toffoli gates with positive and negative controls

is shown in Figure 3.6(b). This circuit does not require any NOT gate, compared to the

circuit in Figure 3.3(b) which requires four NOT gates.

0 1 1 0 1 1
1 - 1 1 0 1
- - 1 1 1 0

x1x2x3x4 f1f2

(a)

x1
x2
x3
x4

f1
f2

0
0

(b)

Figure 3.6: (a) An ESOP cube-list and (b) a circuit using negative-control Toffoli gates.

3.5 Shared Cube Synthesis

Approaches described in the previous sections produce similar Toffoli gates with identical

controls but different targets when cubes are shared by two or more outputs. Shared cube

synthesis [47, 46] improves the quality of the circuit by generating one Toffoli gate for each

of such shared cubes and transferring the cubes to other outputs through CNOT gates. The

29

algorithm works as follows.

All pairs of outputs are examined to find a pair which has the largest number of shared

cubes. One Toffoli gate is generated for each of these shared cubes, and the target line is

the empty output line, i.e. the line which has not been used by the control or target part of

any Toffoli gate if it exists. If both output lines are not empty, then one of the outputs is

chosen arbitrarily as the target line. In the latter case, one CNOT gate needs to be added

first to remove the impact of gates that exist on the line. In both cases, one CNOT gate is

also added at the end to transform the shared functionality to other output. After that these

two outputs are removed from the cube-list. The same process is repeated for other pairs of

shared cubes. Finally, one Toffoli gate is added for each cube which is not shared by any

other output. The algorithm is given below.

Algorithm 3: Shared-cube synthesis approach [46]

Input: cube_list of a logic function

Output: circuit, A cascade of Toffoli gates

Method

1. circuit = An empty cascade with p+q lines [p and q denote

the number of input and output variables, respectively]

2. while there are still shared cubes in cube-list

3. (i, j) = a pair of outputs with the maximum number of

shared cubes

4. if there are gates on both lines of i and j

5. add a CNOT gate to the circuit to remove the impact

of other gates

6. add gates of shared cubes of (i, j) to circuit

7. add a CNOT gate to the circuit to transform the

shared functionality to other output

30

8. remove shared cubes of (i, j) from the cube-list

9. for each remaining cube in cube-list do

10. add a gate to circuit

11. remove the cube from cube-list

12. return circuit

Example 3.5.1. Consider a cube-list of four cubes with three input variables (x1,x2,x3) and

two output variables (f1, f2) as shown in Figure 3.7(a). A circuit generated by the basic

approach with line optimization is given in Figure 3.7(b). As can be seen from the cube-

list, both outputs share the first three cubes. Thus the shared cube synthesis produces three

Toffoli gates with target line on f1 and one CNOT gate to share these gates with f2. At

the end, one Toffoli gate is added for the last cube. The cascade is shown in Figure 3.7(c),

which reduces the gate count by 2 and quantum cost by 14, compared to the circuit in

Figure 3.7(b).

C1:1 1 - 1 1
C2:- 1 1 1 1
C3:1 - 1 1 1
C4:- - 1 1 0

x1x2x3 f1f2

(a)

x1
x2
x3

f1
f20

0

(b)

x1
x2
x3

f1
f20

0

(c)

Figure 3.7: (a) An ESOP cube-list, and circuits generated (b) by basic approach with line
optimization and (c) by shared cube synthesis.

31

3.6 Summary

In this chapter, we have discussed a number of approaches to realize reversible circuits

from the ESOP representation of a function. Shared cube synthesis reduces the quantum

cost significantly since many large Toffoli gates are replaced by CNOT gates; thus it out-

performs both the alpha-beta method and autocorrelation method.

32

Chapter 4

Improved ESOP-based Synthesis

In the last chapter, we discussed the shared cube synthesis [46, 47], a special type of ESOP-

based approach. This chapter presents an improved shared cube synthesis that forms the

contribution of this thesis to the area of reversible logic synthesis. Section 4.1 addresses the

limitation of the previous work [46, 47] on utilizing the shared functionality when cubes

are shared by more than two outputs. We present an optimized approach in Section 4.2,

which overcomes the limitation by ensuring that the implementation of each cube in the

cube-list requires exactly one Toffoli gate. Note that some CNOTs are also required to pass

the shared functionality to other outputs. Experimental results are presented in Section 4.3.

4.1 Utilization of Shared Functionality

Shared cube synthesis works with multi-output functions if the ESOP terms (cubes) are

shared by more than one output. For instance, given a multi-output function, f1 = x1x2⊕

x3x4 and f2 = x1x2x3, shared cube synthesis cannot improve the circuit as there is no shared

term between f1 and f2. The existing shared cube synthesis [46, 47] discussed in Sec-

tion 3.5 takes the best advantage of shared functionality if the ESOP terms are shared by

only two outputs. However, if the shared terms exist in more than two outputs, transfor-

mation of each term may require more than one Toffoli gate, which is inefficient. The

following two examples show that the existing approach can be further optimized. The

optimized shared cube synthesis presented in this chapter produces one Toffoli gate for a

cube and hence has the the potential of minimizing the gate count as well as quantum cost.

Example 4.1.1. Given a cube-list of the 3-input, 3-output function shown in Figure 4.1(a),

a Toffoli cascade generated by the existing shared cube synthesis [46, 47] is shown in

33

Figure 4.1(b). This cascade requires two Toffoli gates for each of the three cubes. An

equivalent Toffoli cascade depicted in Figure 4.1(c) generates one Toffoli gate for each

cube, and hence minimizes the gate count by 4. Moreover, the quantum cost is reduced

from 66 to 34.

1 1 1 1 1 1
1 0 1 1 1 1
- 0 1 1 1 1

x1x2x3 f1f2f3

(a)

x1

0 f1

x2
x3

0
0

f2
f3

(b)

x1
x2
x3
0 f1

f2
f3

0
0

(c)

Figure 4.1: (a) An example cube-list, (b) a Toffoli cascade generated by the approach
in [46, 47], and (c) an improved Toffoli cascade.

Example 4.1.2. Consider the cube-list given in Figure 4.2(a). The existing shared cube

synthesis [46, 47] generates a Toffoli cascade containing three Toffoli gates for the first

cube and two Toffoli gates for the second cube, a total of 8 gates as shown in Figure 4.2(b).

However, an efficient synthesis optimizes the Toffoli cascade as shown in Figure 4.2(c).

The quantum cost of this cascade is 27, in contrast to the former approach which costs 56.

This example also shows an efficient way to make use of the shared functionality even if

the cubes are not shared by all the outputs.

34

1 1 - 1 1 1 1 1 1
1 – 1 - 1 0 1 1 1
- 1 - 1 1 0 1 0 0

x1x2x3x4 f1f2f3f4f5

(a)

x1
x2
x3

0

f1
f2
f3

0
0

x4
0
0

f4
f5

(b)

x1
x2
x3

0

f1
f2
f3

0

0

x4
0
0

f4
f5

(c)

Figure 4.2: (a) An initial cube-list, (b) a Toffoli cascade generated by the approach in [46,
47], and (c) an improved Toffoli cascade.

4.2 Our Approach

Like other ESOP-based approaches, our proposed approach also works with the ESOP

cube-list of a function. This approach optimizes the synthesis by generating exactly one

Toffoli gate for one cube and by minimizing the CNOT gates required to transform the

Toffoli gates to other output lines in the circuit. Minimization of CNOTs is performed by

grouping together the Toffoli gates before passing these to other outputs via CNOTs. If the

output line is not empty and a CNOT gate is required to remove the effect of other gates on

that line before doing the transformation, we apply a technique to find a redundant CNOT

gate before inserting a new one. A more detailed explanation of this approach with an

example is given below.

In a cube-list, there can be some cubes which are not shared by multiple outputs. If

the number of 1s in the output part of a cube is one, then only one output contains this

cube and no other output shares it. This cube, called an ungrouped cube, will be dealt with

35

individually. Our proposed approach consists of the following two phases:

• Phase 1 Generation of sub-lists

• Phase 2 Transformation of sub-lists into gate-lists

Phase 1 Generation of sub-lists: This phase takes the original cube-list as its input and

generates sub-lists as follows:

Step 1: Move ungrouped cubes from the cube-list into the ungrouped-list.

Step 2: Repeat Step 3 and Step 4 until the cube-list is empty. Initialize the value of k

with a 1 and increase its value by 1 after each iteration.

Step 3: Select a cube from the modified cube-list which is shared by the largest number

of outputs, i.e. has the maximum number of 1s in its output part. This cube and every other

cube with an identical output part are moved to the sub-listk.

Step 4: Select a cube from the cube-list which has the maximum number of 1s in its

output part. This cube must have 0s at the output positions at which the cubes in sub-listk

have 0s. In other words, the outputs that share this cube must also share all the cubes in

sub-listk. Afterwards this cube along with the cubes having identical output parts is moved

from the cube-list to sub-listk. This step continues until no such cube exists in the cube-list.

Phase 2 Transformation of sub-lists into gate-lists: In this phase, the sub-lists generated

by phase 1 are transformed into a cascade of Toffoli gates. An empty circuit with p input

lines and q output lines is created, where p is the number of input variables and q is the

number of output variables in the given ESOP cube-list.

Step 1: For each sub-listk, do Step 2 - Step 6.

Step 2: An output line f is selected as the Toffoli target line if the corresponding output

contains all cubes in the sub-listk. If multiple such lines are found, choose one line arbi-

trarily that has not yet been used as a control or target of any Toffoli gate. If all such lines

are occupied by other gates, choose the same line targeted in the last iteration, or any line

arbitrarily.

36

Step 3: The gate-listk is initially empty. For each of the cubes in sub-listk perform

Step 4 and Step 5 which add gates to the gate-listk.

Step 4: Add a Toffoli gate that has a target on output line f. The controls of this Toffoli

gate are the input lines for which the input part of the corresponding cube contains zeros

and ones. If the input part contains at least one zero, use a negative-control Toffoli gate.

If this cube is the last cube in sub-listk that the output g (g 6= f) contains, then for each g,

insert a CNOT gate from the output line f to output line g to transfer the Toffoli gates.

Step 5: If the line f has already hosted gates before the beginning of Step 2, insertion

of CNOTs in Step 4 transfers those gates to other output lines as well. To remove this

unwanted effect, also insert CNOTs at the beginning of gate-listk. Note that insertion of

this gate may cancel out another CNOT in the circuit. If so, remove both of these gates.

Step 6: Append the gate-listk at the end of circuit.

Step 7: Generate one Toffoli gate for each cube in the ungrouped-list and append the

gate at the end of circuit.

Example 4.2.1. An ESOP cube-list of six cubes with four input variables (x1, x2, x3, and

x4) and five output variables (f1, f2, f3, f4, and f5) is shown in Figure 4.3(a). The cubes are

labeled C1 to C6. Among all the cubes only C1 is ungrouped since the number of 1s in its

output portion is 1 and so it is therefore separated from the cube-list. The resultant lists are

shown in Figure 4.3(b). Now in the modified cube-list, C3 has the highest number of 1s in

its output part. Thus it is moved to the sub-list1. Note that C3 is not shared by f5. Now from

the remaining cubes (C2, C4, C5, and C6), a cube is selected whose output portion contains

the highest number of 1s and which is not shared by output f5 since f5 does not contain C3.

Although C2, C4, C5, and C6 have the same number of 1s in their output parts, C4 and C6 are

not allowed to move in this iteration since they are shared by f5. Between the cubes C2 and

C5, suppose that C2 has been selected. C2 along with C5 is moved to the end of sub-list1

since the output patterns of these two cubes are identical. There are no other cubes which

37

can be moved to sub-list1. Figure 4.3(c) shows the cubes in sub-list1 and cube-list.

C1:1 0 – 0 0 0 0 1 0
C2:1 1 - - 1 1 1 0 0
C3:1 1 1 - 1 1 1 1 0
C4:1 0 0 1 0 1 0 1 1
C5:1 - 1 1 1 1 1 0 0
C6:1 - 0 - 1 0 1 0 1

Cube-list

x1x2x3x4 f1f2f3f4f5

(a) An initial cube-list.

C2:1 1 - - 1 1 1 0 0
C3:1 1 1 - 1 1 1 1 0
C4:1 0 0 1 0 1 0 1 1
C5:1 - 1 1 1 1 1 0 0
C6:1 - 0 - 1 0 1 0 1

Current Cube-list

x1x2x3x4 f1f2f3f4f5

C1:1 0 - 0 0 0 0 1 0
Ungrouped-list

x1x2x3x4 f1f2f3f4f5

(b) Separation of ungrouped cubes
from the cube-list.

C4:1 0 0 1 0 1 0 1 1
C6:1 - 0 - 1 0 1 0 1

Current Cube-list

x1x2x3x4 f1f2f3f4f5

C3:1 1 1 - 1 1 1 1 0
C2:1 1 - - 1 1 1 0 0
C5:1 - 1 1 1 1 1 0 0

Sub-list1

x1x2x3x4 f1f2f3f4f5

(c) Generation of sub-list1.

C6:1 - 0 - 1 0 1 0 1
Current Cube-list

x1x2x3x4 f1f2f3f4f5

C4:1 0 0 1 0 1 0 1 1
Sub-list2

x1x2x3x4 f1f2f3f4f5

(d) Generation of sub-list2.

C6:1 - 0 - 1 0 1 0 1
Sub-list3

x1x2x3x4 f1f2f3f4f5

(e) Generation of sub-list3.

Figure 4.3: Cube-list and its sub-lists.

Now the current cube-list consists of C4 and C6. Both cubes have the same number of

output ones. Consider that C4 is chosen and moved to sub-list2. We see that f1 contains C6

but not C4. As a result, C6 is not allowed to make a group with C4. Figure 4.3(d) shows

the sub-list2. Now only one cube C6 is remaining in the cube-list; thus in the next iteration

moving this cube to sub-list3 completes the phase 1. The sub-list3 is shown in Figure 4.3(e).

38

In phase 2, we transform the three sub-lists and ungrouped-list into a cascade of Toffoli

gates. We first consider the sub-list1 as shown in Figure 4.3(c). Outputs f1, f2, and f3

have all the cubes in this list. Moreover, there are no gates on any of these output lines.

Consequently, any of these lines can be used as a target line. Let f1 be chosen as the target

line. A Toffoli gate for C3 targeting at f1 is generated. Since f4 does not share any cube

other than C3 in sub-list1, one CNOT is required to transfer C3 from f1 to f4. Next two

Toffoli gates are generated for C2 and C5. Again, to transfer all the gates from f1 to f2 and

f3, two CNOTs are added. The Toffoli cascade for sub-list1 is shown in Figure 4.4(a).

The sub-list2, shown in Figure 4.3(d), has just one cube C4 which is shared by f2, f4,

and f5. From Figure 4.4(a) we see that lines f2 and f4 are already occupied by other gates.

Since the line f5 is empty, this is chosen as the target line for sub-list2. One negative-control

Toffoli gate is added for C4, which is transferred to f2 and f4 via CNOTs. Gates generated

for this list are appended at the end of the cascade in Figure 4.4(a), which results in the

circuit as shown in Figure 4.4(b).

Next we consider the sub-list3 in Figure 4.3(e), which contains one cube C6. Outputs f1,

f3, and f5 share C6, and the corresponding output lines are not empty (see Figure 4.4(b)).

Let the target line be f1. Since f1 has gates on it, in order to eliminate the effect of these

unexpected gates while transferring C6 to f3 and f5, two more CNOTs are needed before

generating the Toffoli gate for C6. However, adding a new CNOT from f1 to f3 will cancel

out the previously inserted CNOT (from f1 to f3) in the circuit shown in Figure 4.4(b).

Therefore, this CNOT is removed rather than adding a new one (from f1 to f3). However

a CNOT from f1 to f5 is required. Afterwards one negative-control Toffoli gate for C6 and

two CNOTs for sharing with f3 and f5 are added as shown in Figure 4.4(c). Finally, the

ungrouped cube C1 shown in Figure 4.3(b) is transformed directly into a negative-control

Toffoli gate. The final cascade is shown in Figure 4.4(d).

39

x1
x2
x3
x4

0

f10

0
0
0

f2
f3
f4
f5

(a) A circuit equivalent to sub-list1.

x1
x2
x3
x4

0

f10

0
0
0

f2
f3
f4
f5

(b) Appending the circuit for sub-list2 to the circuit of Fig-
ure 4.4(a).

x1
x2
x3
x4

0

f10

0
0
0

f2
f3
f4
f5

(c) Appending the circuit for sub-list3 to the circuit of Figure 4.4(b).

x1
x2
x3
x4

0

f10

0
0
0

f2
f3
f4
f5

(d) A circuit equivalent to the cube-list in Figure 4.3(a).

Figure 4.4: Improved shared cube synthesis process.

40

4.3 Experimental Results and Discussions

Our proposed approach and the existing approach to shared cube synthesis discussed in [47,

46] have been developed in Java. The existing approach first reported in [47] does not use

the negative-control Toffoli gates; however, the usage of these gates was later suggested

in [46] and [48]. Since our approach uses the Toffoli gates including negative-control

Toffoli gates, for fair comparison, the negative-control Toffoli gates have also been incor-

porated to the circuits generated by the existing approach. The tool EXORCISM-4 [35] is

used to generate the ESOP cube-lists for the benchmark circuits. The implemented pro-

grams have been run on a 2.4GHz Intel core 2 duo based system with 4GB RAM for 38

benchmark circuits collected from [58]. The execution time is negligible for both programs,

and the results of this experiment are compared in Table 4.1.

In Table 4.1 GC and QC stand for gate count and quantum cost, respectively. In the first

column, the name of the function is given. Columns two-three and four-five show the gate

count and quantum cost of the circuits generated by the existing approach and the proposed

approach, respectively. The last two columns indicate the improvements in percentage of

the proposed approach over the previous one. Negative values indicate that the previous

approach is better than the proposed one for that benchmark.

It can be seen from the Table 4.1 that the proposed approach reduces the quantum cost

for all functions except two functions 9symml and cordic. Circuits apex4, bw, ex5p, and

seq are improved by more than 70% in terms of quantum cost. Moreover, a significant

improvement is noticed for the functions cm42a, dc1, ham7, hwb8, in0, inc, misex1, pdc,

and urf3. It is noted that improvements for 9symml and cordic are 0%. This is due to the

fact that the function 9symml contains only one output; thus there is no shared functionality.

For the function cordic, both approaches synthesize similar circuits due to only two outputs

in the function, resulting in 0% improvement.

41

Table 4.1: Experimental results.

Circuit
Previous Approach Our Approach Improvement %

GC QC GC QC GC QC
5xp1 57 901 58 786 -1.75 12.76
9symml 52 10943 52 10943 0 0
alu4 474 43265 454 41127 4.22 4.94
apex4 2988 134330 5622 35840 -88.15 73.32
apex5 593 39245 601 33830 -1.35 13.8
apla 60 2345 72 1683 -20 28.23
bw 194 2379 287 637 -47.94 73.22
cordic 777 187620 777 187620 0 0
C7552 64 1023 89 399 -39.06 61
clip 87 4908 78 3824 10.34 22.09
cm42a 32 266 42 161 -31.25 39.47
cu 25 864 28 781 -12 9.61
dc1 30 213 31 127 -3.33 40.38
dc2 51 1341 51 1084 0 19.16
decod 64 1023 89 399 -39.06 61
dist 110 5079 94 3700 14.55 27.15
dk17 34 1075 34 1014 0 5.67
ex1010 1487 105579 1675 52788 -12.64 50
ex5p 428 13875 646 3547 -50.93 74.44
f2 15 175 14 112 6.67 36
f51m 332 28835 327 28382 1.51 1.57
frg2 1435 127447 1389 112008 3.21 12.11
ham7 28 108 37 67 -32.14 37.96
hwb8 462 14431 480 8195 -3.9 43.21
in0 207 13156 245 7949 -18.36 39.58
inc 62 1425 75 892 -20.97 37.4
misex1 31 586 42 332 -35.48 43.34
misex3c 849 72735 822 49720 3.18 31.64
misex3 848 73867 854 49076 -0.71 33.56
mlp4 82 2744 80 2496 2.44 9.04
pdc 542 55887 649 30962 -19.74 44.6
root 52 2436 48 1811 7.69 25.66
sao2 42 5116 41 3767 2.38 26.37
seq 1189 139826 1287 33991 -8.24 75.69
sqr6 56 708 54 583 3.57 17.66
urf3 1464 89053 1501 53157 -2.53 40.31
wim 21 177 23 139 -9.52 21.47
z4ml 33 492 34 489 -3.03 0.61

42

While our approach is far better in terms of quantum cost, the opposite trend is found in

the improvement column of gate count in Table 4.1. In our approach, 23 out of 38 circuits

require more gates, and an increase of nearly 88% is noticed for apex4, which is the worst

case. Since the number of bits in Toffoli gates used in the two approaches are different,

we cannot expect an accurate measurement from the gate count comparisons as described

in 2.5.1. Nevertheless, we have investigated to find the reason. Since our approach utilizes

the shared functionality much better than the previous approach, many large Toffoli gates

are replaced by CNOT gates. However, this replacement requires some extra CNOT gates

to transfer the gates to other lines and to remove the impact of other gates when the output

lines are not empty. This is clarified in Example 4.3.1.

The number of garbage outputs is another cost metric often used for evaluation of re-

versible circuits; however we note that both approaches perform exactly the same in this

regard.

Example 4.3.1. Given a cube-list in Figure 4.5(a), circuits generated by the existing shared

cube synthesis approach and our proposed approach are shown in Figure 4.5(b) and Fig-

ure 4.5(c), respectively. The former approach requires five Toffoli gates and two CNOT

gates, whereas the latter approach reduces one Toffoli gate but adds three extra CNOT

gates which are labeled as c1, c2, and c3. CNOT gates c1 and c2 are added to transfer the

first Toffoli gate in Figure 4.5(c) to lines f2 and f4. Again, c3 is added since line f2 is not

empty when the last Toffoli gate is required to transfer from f2 to f4. The latter approach

reduces the quantum cost from 51 to 41.

4.4 Summary

In this chapter, we have proposed an improved shared cube synthesis approach which in-

corporates an efficient way to group the cubes even though some cubes are not shared by

43

1 1 - 1 1 1 1 1
1 – 1 - 1 0 1 0
- 1 1 - 1 0 1 0
1 – 1 1 0 1 0 1

x1x2x3x4 f1f2f3f4

(a)

x1

0 f1

x2
x3

0
0

f2
f3

x4

0 f4

(b)

x1

0 f1

x2
x3

0
0

f2
f3

x4

0 f4
c1 c2 c3

(c)

Figure 4.5: (a) An example cube-list, (b) a Toffoli cascade generated by the approach
in [46, 47], and (c) a Toffoli cascade generated by our proposed approach.

all outputs, resulting in better transformation of cubes into gates. A technique to eliminate

redundant CNOT gates has also been added to the synthesis approach to reduce the number

of CNOT gates. Like other ESOP-based approaches, this approach is also fast and able to

synthesize very large functions. Experimental results show that our approach can reduce

the quantum cost up to 75%, as compared to the approach in [46, 47]. We note, however,

that we do not have similar improvements when considering the gate count; further exami-

nation of this phenomenon suggests that this is due to the reduced complexity of gates that

our method trends toward, as compared to the more complex gates used by the previous

method.

44

Chapter 5

Testing of Reversible Circuits

Testing is required to ensure quality, availability, and reliability of a circuit or device. Ac-

cording to [56], testing can be performed online or offline, or a combination of both. Online

testing is carried out when the system does its normal operation. In other words, testing

and normal operation are performed simultaneously; therefore, faults are detected in real

time. Offline testing is performed while the system is not in its normal operation. Since

the whole system or a part of the system is taken to run the test, offline testing is usually

performed when the load is low. In most cases, once a fault is detected by an online testing,

the offline testing is applied to localize the fault in the system, reducing the repair time.

Offline testing is also used for verifying the repaired part of the system before the whole

system is made available for normal operation. In this chapter, we describe the approaches

currently available for offline and online testing of reversible circuits.

5.1 Offline Testing

In offline testing, input vectors that are applied to the circuit for testing are referred to as test

vectors. A set of all such vectors is called a test set. A test set is complete if it can detect all

faults for a particular fault model. Literature on offline testing of reversible logic includes

test set generation and DFT methods. We briefly summarize these works for various fault

models in the following two subsections.

45

5.1.1 Testing of Stuck-at Faults

According to Patel et al. [42], two important features of reversibility - controllability and

observability - simplify the testing of reversible logic compared to traditional irreversible

logic. It has been proved that any complete test set for the single stuck-at fault model is also

complete for the multiple stuck-at faults model. However, finding a minimum complete

test set is an NP-hard problem [51]. In [42], the problem of generating a minimal test set

was mapped into an integer linear program (ILP) with binary decision variables. The ILP

can generate minimal test sets for small circuits; however, for large circuits, it becomes

infeasible due to complexity. Thus, a heuristic approach was proposed which partitions the

large circuit into smaller circuits and applies the ILP formulation on these smaller circuits.

Chakraborty [5] showed that a circuit consisting of only n-bit Toffoli gates (n > 2) has

a complete test set containing s test vectors for detecting multiple stuck-at faults, where

s is the number of lines in the circuit. This result can be extended for all Toffoli circuits

with n > 0 by realizing NOT gates and CNOT gates from 3-bit Toffoli gates. In addition, a

method was also proposed which modifies the circuit by introducing an extra line to reduce

the number of test vectors in a complete test set to 3.

Ibrahim et al. [13] proposed a DFT method which adds up to two extra lines to the

Toffoli circuit and replaces some Toffoli gates by larger ones with additional controls con-

nected to extra lines. The complete test for the modified circuit under the multiple stuck-at

faults model consists of only 2 test vectors, which is minimal.

46

5.1.2 Testing of Missing Gate, Repeated Gate, and Reduced

Gate Faults

Hayes et al. [12] showed that unlike the stuck-at fault model, a complete test set that detects

all single missing gate faults in a Toffoli circuit cannot detect all multiple missing gate

faults. A maximum of N/2 test vectors are required to test all single missing gate faults,

where N is the number of gates in the Toffoli circuit. A DFT method described in [12] adds

one extra line and several CNOT gates to make the circuit testable for all missing gate faults

using a single test vector. Rahaman et al. [44] proposed another DFT technique which uses

one extra line and duplication of Toffoli gates such that the resulting circuit can detect all

single missing gate faults, repeated gate faults, and reduced gate faults using a test set of

s+1 vectors, where s is the number of lines in the given circuit.

5.2 Online Testing

This section discusses a number of different approaches to generate online testable re-

versible circuits and explores the issues regarding their designs on fault detection.

5.2.1 Testable Circuit Design Using R1, R2, and R Gates

Vasudevan et al. [54, 53] proposed a design methodology for constructing online testable

reversible circuits. Three new reversible gates R1, R2 and R were introduced as shown in

Figure 5.1. The R1 gate is used to realize NAND, OR, EXOR, and EXNOR operations by

setting different values on inputs. This gate has a parity output at q. The gate R2 passes

the inputs through to the outputs, with a parity output again being computed at s, and in

order to construct a testable block (TB), the gates R1 and R2 are cascaded by connecting

47

the first three outputs of R1 to the first three inputs of R2, creating a TB with two parity

outputs that can be compared to determine whether a single bit fault has occurred or not.

Figure 5.2 shows the construction of a TB and its block diagram. The TBs are then used to

realize the reversible circuit.

R1b

p
c

a
v = b c ab bc
w = a b c

u = a c

q = p c ab bc

(a)

R2
e

r
f

d
y = e
z = f

x = d

s = r d e f

(b)

Rb
c

a
m= a
n = ab c

l = a b

(c)

Figure 5.1: (a) R1 gate, (b) R2 gate, and (c) R gate.

R1b

p
c

a

q

R2

r

y
z

x

s

(a)

TB
b

p
c

a
y
z

x

q
r s

(b)

Figure 5.2: (a) Construction of a testable block (TB), and (b) its block diagram.

Since each TB generates two parity outputs, a two-pair two-rail checker circuit is also

required to test the parities of two TBs. Let (q1,s1) and (q2,s2) be the parities of two TBs.

The checker circuit takes these two pairs of parities as inputs and produces two outputs

(e1,e2) as follows.

e1 = q1s2 + s1q2

e2 = q1q2 + s1s2

48

This checker circuit is built using eight R gates, and a block diagram is shown in Figure 5.3.

If a circuit contains more than two TBs, a cascade of checker circuits is required.

Checker
circuit

q1
s1
q2
s2

e1

e2

Figure 5.3: A two-pair two-rail checker circuit.

An online testable circuit for the function f = ab+c is implemented in Figure 5.4. The

first TB realizes ab which is then fed along with input c to the second TB, producing the

output f = abc = ab+ c. The two parity outputs of each TB are connected to the checker

circuit. By examining the outputs of checker circuit, the circuit can detect a fault.

Analysis

Our investigation reveals that this approach cannot detect all single bit faults. If a fault

occurs between two TBs, the circuit cannot detect it. Note that TBs generate parities which

are tested by checker circuits; thus a fault in TBs is detected. Occurrence of any fault

outside the TBs is left undetected. For example, in the circuit given in Figure 5.4, if a fault

occurs at the first input of the second TB, the circuit is unable to detect it. As a result, this

approach can detect some single bit faults, more specifically faults that occur in TBs, but

cannot detect all faults.

49

TB
b
1

a

TB
c

ab

0
1

1
0
1

ab c = ab+c

Checker
circuit

e1

e2

Figure 5.4: Online testable circuit for f = ab+ c, according to the design in [54, 53].

5.2.2 Testable Circuit Design Using Testable Reversible Cells

(TRCs)

Mahammad et al. [21, 22] proposed an extension of the previous approach (Section 5.2.1),

which can easily construct an online testable circuit from a given circuit. The conversion

involves two steps as follows. The first step transforms each n× n reversible gate G used

in the circuit into an (n+ 1)× (n+ 1) deduced reversible gate DRG(G). Given the input

vector [k1,k2, . . . ,kn] and the output vector [o1,o2, . . . ,on] of an n× n gate G as shown

in Figure 5.5(a), an extra input piG and the corresponding output poG are added to con-

struct an (n+1)× (n+1) DRG(G) as shown in Figure 5.5(b), which maps the input vector

[k1,k2, . . . ,kn, piG] to the output vector [o1,o2, . . . ,on, poG] where poG = o1⊕o2⊕ . . .⊕on⊕

piG.

G

k1
k2

kn

o1
o2

on

(a)

DRG
(G)

k1
k2

kn

o1
o2

on
piG poG

(b)

Figure 5.5: (a) G gate and (b) DRG(G).

The second step constructs a testable reversible cell (TRC) of G, denoted by TRC(G).

Consider another n× n gate X which has the same input and output vectors. In other

50

words, inputs of X pass through to the outputs without any change. Like the previous step,

DRG(X) is constructed by adding an input piX and the corresponding output poX . DRG(G)

and DRG(X) are cascaded by connecting the first n outputs of DRG(G) to the first n inputs

of DRG(X) in order to form an (n+2)× (n+2) TRC(G) with two parity outputs poG and

poX as shown in Figure 5.6. Given piG = piX , poG and poX are complementary only if

TRC(G) is faulty.

DRG
(G)

k1
k2

kn
piG poG

DRG
(X)

o1
o2

on
piX poX

(a)

TRC

k1
k2

kn

o1
o2

on
piG poG
piX poX

(b)

Figure 5.6: (a) Construction of a testable reversible cell TRC(G), and (b) its block diagram.

Afterwards, each gate in the circuit is replaced by its TRC. Assume there are m TRCs

in the circuit. Let poG j and poX j be the parity outputs of the jth TRC. To test all the parity

outputs, a (2m+1)× (2m+1) test cell (TC) is formed. The first 2m inputs of TC are the

parity outputs which pass through to the outputs. The last input is e which is set to 0 or

1, and the corresponding output is T = ((poG1⊕ poX1)+ (poG2⊕ poX2)+ . . .+(poGm⊕

poXm))⊕ e. The block diagram of TC is given in Figure 5.7. According to the design, if

a single bit fault occurs in the circuit then T becomes 1, provided e = 0. The conversion

procedure is illustrated by the following example.

Consider a reversible circuit which computes f = ab⊕a⊕ c and is realized by a 3-bit

Toffoli gate and a 2-bit Toffoli gate as shown in Figure 5.8(a). The 3-bit Toffoli gate and

2-bit Toffoli gate are replaced by a 5×5 TRC and 4×4 TRC. The parity outputs of these

two TRCs are connected to a 5×5 TC to form a testable circuit as shown in Figure 5.8(b).

51

TC

e

poG1
poX1

T

poGm
poXm

poG1
poX1

poGm
poXm

Figure 5.7: Test cell (TC).

b
c

a

f = ab a c

(a)

5x5
TRC

b
c

a
4x4
TRC

f = ab a c

TC

e T

poG1

poX1

poG2

poX2

(b)

Figure 5.8: (a) A Toffoli circuit for f = ab⊕a⊕c, and (b) the corresponding testable circuit
according to the design in [21, 22].

Analysis

We point out that the design flaw that we described in the previous approach also exists in

this design. For example, any fault between the connections of two TRCs in Figure 5.8(b)

is undetectable. Thus this approach fails to detect a fault between two TRCs. Mahammad

et al. [21] claimed that

The resultant testable circuit can detect online any single-bit errors . . .

We have already showed that this approach cannot detect all single-bit errors. In [22],

Mahammad and Veezhinathan asserted that

This paper has also proposed a methodology that automatically converts any

circuit into an online testable reversible circuit with theoretically proved mini-

mum garbage.

52

In Chapter 6, we propose optimized approaches that can minimize the garbage, to an extent

which is significantly smaller than their theoretically proved minimum garbage.

5.2.3 Testable Circuit Design Using Online Testable Gates

(OTGs)

Thapliyal and Vinod [52] proposed an approach similar to the one described in Section 5.2.1.

A new 4×4 reversible gate, online testable gate (OTG) introduced in their work has a par-

ity output at q as shown in Figure 5.9. The R2 gate (see Figure 5.1(b)) is combined with the

OTG as shown in Figure 5.10 to design a block with online testability feature. Two parity

outputs s and q of this testable block are compared to check whether the block is faulty

or not. In [54, 53] (see Section 5.2.1), the two-pair two-rail checker circuit was designed

using eight R gates, whereas Thapliyal and Vinod [52] designed the checker circuit using

four 3-bit Toffoli gates and two 3-bit Fredkin gates.

OTGb

p
c

a
v = a b

q = a b c

u = a

w= (a b)c (ab p)

Figure 5.9: Online testable gate (OTG).

R2
e

r
f

d

s

OTG

p

v
w

u

q

(a)

Block

p q
r s

e
f

d
v
w

u

(b)

Figure 5.10: (a) Construction of a testable block, and (b) its block diagram.

53

As an example, this approach is applied to implement a testable circuit for the function

g = ab⊕c, as shown in Figure 5.11. The first block realizes ab which is then fed along with

input c to the second block, producing the output g = ab⊕c. The checker circuit compares

the parity outputs of two blocks and detects a fault if any.

Block
b
0

a

Block
c

ab

1
0

0
1
0

ab c

Checker
circuit

e1

e2

Figure 5.11: Online testable circuit for g = ab⊕ c, according to the design in [52].

Analysis

Like the previous two approaches, this approach also fails to detect a fault that occurs

between two blocks. In our example circuit (see Figure 5.11), if a fault occurs between the

connections of two blocks, it is not detectable.

5.2.4 Dual Rail Coding Approach

The dual rail coding approach proposed by Farazmand et al. [8] uses a set of 4×4 dual rail

reversible gates for online fault detection. Each dual rail gate has two pairs of inputs, and

two inputs of each pair are given in dual rail form, i.e., the two inputs are the complement

of each other (either 01 or 10). If the outputs appear in dual rail form, then there is no error.

However, a non-dual rail form (either 11 or 00) represents a single fault. These dual rail

gates are cascaded to generate the testable circuit. A fault in the circuit propagates to the

end of the circuit. Thus the fault is detected by checking the outputs of the circuit. As a

result, no checker circuit is required to test the intermediate gates.

54

5.2.5 Testable Circuit Design with Duplication of Gates

Kole et al. [18] proposed a technique that can detect online any single missing gate faults

in a circuit consisting of only Toffoli gates. This technique requires one extra line T which

is tested to detect the fault. For each n-bit Toffoli gate in the circuit, three extra Toffoli

gates (two CNOT gates and another n-bit Toffoli gate) are embedded to construct a testable

circuit. Figure 5.12 shows how a Toffoli gate t1 is surrounded by three Toffoli gates c1, c2,

and t2 to make it testable. According to the design, if the initial value and the final value of

the line T are the same, then no gate is missing; otherwise the absence of a gate is assumed.

t1

i1
i2
i3
i4

(a)

t2 c1 t1 c2

i1
i2
i3
i4
T

(b)

Figure 5.12: (a) A Toffoli gate t1 and (b) its corresponding testable circuit.

Analysis

The testable circuit implemented in this way requires four times as many gates as the non-

testable design requires. The complexity of this technique in terms of quantum cost is

2g+ 2q, where g and q are the gate count and quantum cost of the non-testable design,

respectively. Thus the quantum cost of this design is more than twice the cost of the non-

testable design.

55

5.3 Summary

This chapter has outlined the existing offline testing methods for a number of fault models.

We have reviewed several approaches of online testing and discussed their design issues

and limitations on detecting faults.

56

Chapter 6

Optimized Approaches for Online Fault Detection

This chapter describes new work that forms the contributions of this thesis to the area of

reversible logic testing. In Section 6.1, we present a simple way to convert an ESOP-based

reversible circuit into an online testable circuit which is able to detect online any single

bit faults. Section 6.2 extends this approach for any type of Toffoli circuits. Appropriate

lemmas are also given to prove that both approaches can detect online any single bit faults

in the circuit. Experimental results are also reported in each section to compare the designs

of our proposed approaches to that of previously reported approaches.

6.1 Testing of ESOP-based Circuits

The basic ESOP-based approach [9] with line optimization (Section 3.2), cube ordering

heuristics (Section 3.3) using the alpha-beta cost metric [9] and the autocorrelation co-

efficient based cost metric [45], and optimization by using negative-control Toffoli gates

(Section 3.4) all generate circuits which have separate input and output lines. A common

structure of this type of circuit is that controls of the Toffoli gates are connected only to

input lines and targets are connected only to output lines. A similar structure is kept when

the given ESOP-circuit is converted into a testable circuit, allowing an easy detection of

single bit faults in the resulting circuit.

Although the previous work on shared cube synthesis [47, 46] described in Section 3.5

and the improved shared cube synthesis which we proposed in Chapter 4 both fall into the

category of ESOP-based approaches, the generated circuits do not have the aforementioned

structure. In this section, we restrict our approach for online testability to circuits with that

structure.

57

6.1.1 Construction of a Testable Circuit from the ESOP-

based Circuit

Given an ESOP function with p inputs and q outputs, consider a reversible circuit which

realizes this function and has the structure mentioned earlier. Thus the circuit has p input

lines and q output lines. To convert such circuit into an online testable circuit, we need to

add some NOT gates, CNOT gates and a parity line L which is initialized with a 0. The

procedure is as follows.

Every n-bit Toffoli gate in the given circuit is replaced by an (n+ 1)-bit ETG. The

connections of the first n bits of the ETG remain the same as that of n-bit Toffoli gate. The

last, i.e. (n+1st) bit of the ETG is connected to L. The NOT gates in the given circuit are

also kept. For each NOT gate in the input and output lines, one extra NOT gate is added on

L. In total m extra NOT gates are required in this step, where m is number of NOT gates in

the given circuit. Afterwards, the CNOT gates are inserted from all the output lines to the

L line, requiring q more gates. In order to test the input lines, we add CNOT gates from

each of the input lines to L before and after the whole circuit. This step requires 2p CNOT

gates. Now in the resulting circuit, if a single fault occurs in any of the input lines, output

lines or even in L, the value of L will be changed to 1. If no fault occurs, L will remain 0.

It is important to note that this technique can also be applied for the ESOP-based circuit

consisting of negative-control Toffoli gates. This process of converting a circuit can be best

described by an example:

Example 6.1.1. For a given 4-input (I1, I2, I3, I4), 2-output (I5, I6) ESOP-based circuit

shown in Figure 6.1(a), the corresponding online testable circuit generated by the pro-

posed technique is shown in Figure 6.1(b). We can see that Toffoli gates (t1, t2, t3, and t4)

are replaced by ETGs (e1, e2, e3, and e4). CNOT gates c1 through c10 are added to test the

input and output lines.

58

I1
I2
I3
I4
0

0

I5
I6

t1 t2 t3 t4

(a)

I1
I2
I3

0

I4
0

0

I5
I6
L

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10e1 e2 e3 e4

(b)

Figure 6.1: (a) An ESOP-based circuit, (b) Online testable reversible circuit.

6.1.2 Analysis

A fault in a target bit of an ETG certainly affects the gate as it changes the corresponding

target output. However, a fault in a control bit affects the ETG, only if it causes the tar-

get outputs to have the faulty values. For instance, given that all controls of an ETG are

positive, a fault in a control bit has an effect on target outputs if all fault-free control bits

have the value 1. A single fault in a control bit propagates to target lines if the fault affects

the gate. Thus a fault can cause multiple faults. In our proposed design, since controls of

the ETGs and CNOTs are connected to input lines, faults on input lines can propagate to

output lines and L by target outputs. However, faults on output lines or L cannot cause any

input lines to be faulty since no controls of ETGs are connected to output lines or L. Our

proposed approach can detect any single bit fault even though it causes several faults. The

following example shows the propagation of a single fault from an input line to multiple

output lines.

59

Example 6.1.2. Consider a circuit consisting of two ETGs as shown in Figure 6.2. This

circuit has two input lines (I1 and I2), two output lines (I3 and I4), and a parity line L. The

initial values of I1, I2, I3, I4, and L are 0, 1, 0, 1, and 0, respectively. Assume a fault occurs

on I1 just before the first ETG; thus the value of I1 changes to 1. For the faulty lines, values

are given in the form [fault-free value/faulty value]. The fault on I1 affects the first ETG

and propagates to I3 and L by the target outputs of this gate. As a result, two extra lines I3

and L become faulty. The fault on I1 also affects the second ETG. This causes I4 to have

the faulty value and fixes the value of L. Therefore, after the second ETG, lines I1, I3 and

I4 are faulty.

I2
I3
I4
L

0/1

0/1

0/1
1/0
0/0

1
0
1
0

1

1

I1 0
0/1 0/1

Figure 6.2: Fault propagation in multiple lines.

Lemma 6.1.1 proves that both targets of an ETG calculate the same function regardless

of the occurrence of the fault. In this lemma, we consider all controls of the ETG to be

positive. A similar lemma can be proved if some or all controls are negative. Lemma 6.1.2

proves the correctness of our technique. Two examples are also given to illustrate the

propagation of a fault and the detection of such fault in the circuit.

Lemma 6.1.1. Consider an (n+1)-bit ETG which maps the input vector [k1,k2, . . . ,kn−1,

kn,kn+1] to the output vector [o1,o2, . . . ,on−1,on,on+1], where o j = k j (for j = 1,2, . . . ,

n−1), on = f ⊕ kn, on+1 = f ⊕ kn+1, and f = k1k2 · · ·kn−1.

a) If faults occur in controls of the ETG and affect the gate, then both on and on+1 compute

f ; otherwise both outputs compute f .

b) If faults occur in targets of the ETG, then both on and on+1 compute f .

60

c) If faults occur in targets and controls which affect the ETG, then both on and on+1

compute f ; otherwise both outputs compute f . �

Proof. a) Consider faults in ki,k j, . . . ,kl such that {i, j, . . . , l} ⊆ {1,2, . . . ,n− 1}. These

faults affect the calculation of function f if the following two conditions hold.

i) km = 1, ∀m ∈ {1,2, . . . ,n−1}−{i, j, . . . , l}, and

ii) ki = k j = . . .= kl = 0 or ki = k j = . . .= kl = 1.

If both conditions are true, then the faults have impact on on and on+1 since both outputs

compute f . Thus on = f ⊕ kn and on+1 = f ⊕ kn+1. If at least one of the conditions is

false, then the faults do not affect the calculation of f . Thus according to the definition,

on = f ⊕ kn and on+1 = f ⊕ kn+1.

Therefore, if the faults have an effect, then on and on+1 compute f ; otherwise these

outputs compute f .

b) We consider three cases, depending on whether one of the targets is faulty or both targets

are faulty.

Case 1. Assume a fault occurs in kn. This fault does not propagate to on+1 since on+1

is independent of kn; thus on+1 = f ⊕ kn+1. However, due to the fault, on = f ⊕ kn.

Case 2. Assume a fault occurs in kn+1. The proof is similar to Case 1. We get on =

f ⊕ kn and on+1 = f ⊕ kn+1.

Case 3. Consider that faults occur in both kn and kn+1. Due to these faults, on = f ⊕ kn

and on+1 = f ⊕ kn+1.

Hence, for any of the cases, both on and on+1 compute f .

c) We consider two cases, depending on whether faults in controls affect the gate or not.

61

Case 1. First consider that faults in controls affect the gate. From (a), we can write

on = f ⊕ kn and on+1 = f ⊕ kn+1.

Assume that faults also occur in both targets. According to (b), we can rewrite the

outputs as follows: on = f ⊕ kn and on+1 = f ⊕ kn+1. Thus both outputs compute f .

Similarly, we can reach the same conclusion if a fault occurs in any of the targets.

Case 2. For the case that faults in controls have no effect on the gate, the proof is similar

to (b).

Lemma 6.1.2. If any single fault occurs on any line, the value of L changes to 1 and the

fault is detected. �

Proof. Consider an online testable circuit generated by the proposed technique which has

N ETGs, p input lines, q output lines, and a parity line L. Let G= {g1,g2, . . . ,gN} be the set

of ETGs used in the circuit, and let I1, I2, . . . , Ip be the input lines and Ip+1, Ip+2, . . . , Ip+q

be the output lines. Let the initial values of lines I1, I2, . . . , Ip be i1, i2, . . . , ip. All output

lines and L are initialized by 0. Given an (n+ 1)-bit ETG g ∈ G and the input vector

[k1,k2, . . . ,kn−1,kn,kn+1], the output vector is [k1,k2, . . . ,kn−1, f g⊕ kn, f g⊕ kn+1], where

f g = k1k2 · · ·kn−1, and n can be at most p+ 1. In order to prove this lemma, consider the

following three cases:

Case 1. Assume that a single fault occurs on any input line, say Iz (for z = 1,2, . . . , p),

which affects a set of gates, X = {x1,x2, . . . ,xu} ⊆ G. Consider another set of gates, Y =

{y1,y2, . . . ,yv} which is not affected by the fault. We have G = X ∪Y , and X or Y can be

empty.

As described before, the last two outputs of a gate g ∈ G compute the same function

f g. A gate yr in Y computes f yr, for r = 1,2, . . . ,v. However, from Lemma 6.1.1 (a), due

to the fault, each gate xs in X computes f xs, for s = 1,2, . . . ,u.

62

After the last gate in G, the line Iz has the faulty value iz, and L becomes i1⊕ i2⊕

. . .⊕ iz⊕ . . .⊕ ip⊕ f y1⊕ f y2⊕ . . .⊕ f yv⊕ f x1⊕ f x2⊕ . . .⊕ f xu. When all output lines are

EXORed to L at the end, L becomes

i1⊕ i2⊕ . . .⊕ iz⊕ . . .⊕ ip⊕ f y1⊕ f y2⊕ . . .⊕ f yv⊕ f x1⊕ f x2⊕ . . .⊕ f xu⊕ f y1⊕ f y2⊕

. . .⊕ f yv⊕ f x1⊕ f x2⊕ . . .⊕ f xu

= i1⊕ i2⊕ . . .⊕ iz⊕ . . .⊕ ip

Finally, when all input lines are EXORed to L, the fault on Iz is propagated to L, and L

becomes

i1⊕ i2⊕ . . .⊕ iz⊕ . . .⊕ ip⊕ i1⊕ i2⊕ . . .⊕ iz⊕ . . .⊕ ip

= iz⊕ iz = 1.

Since at the end, the line L contains 1, the circuit can detect the fault.

Case 2. Now consider that a single fault occurs on an output line Ip+z at any point,

where z = 1,2, . . . ,q.

Let W = {w1,w2, . . . ,wl} ⊆G be the set of gates with target bits connected on line Ip+z

before the occurrence of the fault. Let X = {x1,x2, . . . ,xu} ⊆ G be the set of gates with

target bits connected on line Ip+z after the occurrence of the fault. Consider another set of

gates, Y = {y1,y2, . . . ,yv} such that Y = G −(W ∪X).

From Lemma 6.1.1 (b), each gate xs in X computes f xs, for s = 1,2, . . . ,u. According

to the definition, each gate yr in Y computes f yr, for r = 1,2, . . . ,v and each gate wt in W

computes f wt , for t = 1,2, . . . , l.

The fault on Ip+z propagates to the end of the line. At the end, the value of Ip+z is

f w1⊕ f w2⊕ . . .⊕ f wl⊕ f x1⊕ f x2⊕ . . .⊕ f xu⊕1. As a result, when all output and input

lines are EXORed to L at the end, the faulty value of Ip+z appears at L. Thus L becomes

i1⊕ i2⊕ . . .⊕ ip⊕ f w1⊕ f w2⊕ . . .⊕ f wl ⊕ f x1⊕ f x2⊕ . . .⊕ f xu⊕ f y1⊕ f y2⊕ . . .⊕

f yv⊕ i1⊕ i2⊕ . . .⊕ ip⊕ f w1⊕ f w2⊕ . . .⊕ f wl⊕ f x1⊕ f x2⊕ . . .⊕ f xu⊕ f y1⊕ f y2⊕ . . .⊕

f yv⊕1 = 1

63

Case 3. A fault can also occur on L. This causes L to have the value 1.

Hence, for any of these cases, the circuit detects the fault.

Example 6.1.3. For a given online testable circuit with four input lines (I1, I2, I3, I4) and

two output lines (I5, I6) as shown in Figure 6.3, consider a single fault on input line I2 just

before the first ETG. For the faulty lines, output values are given in the form [fault-free

value/faulty value] after each gate. For other lines, only the fault free values are shown. As

can be seen from the figure, the fault on I2 causes another fault on output line I5. However,

the fault is detectable since the value of L changes to 1. This example illustrates that the

circuit is able to detect a fault even though it propagates to multiple lines.

I1
I2
I3

0

I4
0

0

I5
I6
L

1

1

1

1

1/0

1/0

0

1

1

1/0

1

0/1

0/1

0

1

1

1/0

1

1 0 1 0

0

0

1

1

1/0

1

1/0

0/1

1

1

1/1

0/1

1

0/0

1

1/1 0/1 1/0 0/1

0/1

1

1

1

1/0

1

Figure 6.3: A single fault on input line I2.

Example 6.1.4. For a given online testable circuit with four input lines (I1, I2, I3, I4) and

two output lines (I5, I6) as shown in Figure 6.4, consider a single fault on output line I5

between the first and second ETGs. Notice that the fault propagates to the end of I5. Due

to the fault, L becomes 1 and hence the fault is detected.

6.1.3 Experimental Results

A number of benchmark circuits collected from [58] have been implemented using our pro-

posed approach and the earlier reported approaches [54, 53, 8, 21, 22]. Table 6.1 compares

64

I1
I2
I3

0

I4
0

0

I5
I6
L

1

1

1

1

1

1/0

0

1

1

1

1

0

0/1

0

1

1

1

1

1

1/0

0

1

1

1

1 0 1 0

0

0

1

1

1

1

0

1/0

1

1

1/0

1/0

1

0/1

1

1/0 0/1 1/0 0/1

1/0

1

1

1

1

1

Figure 6.4: A single fault on output line I5.

these approaches in terms of quantum cost and garbage outputs. In the table, columns QC

and GO represent the quantum cost and the number of garbage outputs, respectively.

It can be seen from the table that our approach achieves a huge reduction in quantum

cost and garbage outputs for every circuit. Our design produces 21.1 garbage outputs on

average, whereas the best reported approach [21, 22] requires 799.9 (see Table 6.1). The

average minimization of garbage amount is 99%, 98%, and 97% with respect to [54, 53],

[8], and [21, 22], respectively.

We compute the improvement in quantum cost to be on average 50% (over [54, 53]),

58% (over [8]), and 22% (over [21, 22]).

6.1.4 Advantages of the Proposed Design

The proposed online testable reversible design has several advantages over the existing

designs described in Section 5.2.

• The approaches in [54, 53, 8] make use of new gates such as R1 gate, R2 gate, R gate,

and dual rail gates. These approaches require new synthesis techniques to implement

the testable circuits since no existing synthesis techniques work with these new gates.

In contrast, our proposed approach is rather simple since it works on top of the ESOP-

based circuit.

65

Table 6.1: Experimental results.

Circuit
Approach in [54, 53] Approach in [8] Approach in [21, 22] Our approach

QC GO QC GO QC GO QC GO
9symml 25598 5952 32220 532 12262 139 11065 9
apex5 195061 45362 213843 3518 69596 1557 53947 117
apla 17815 4142 20574 334 5457 185 3978 10
bw 19019 4422 25140 386 8757 620 4994 5
cm82a 2163 502 2823 50 370 45 176 5
con1 1647 382 1929 38 307 30 184 7
cu 5560 1292 6234 110 1834 82 1327 14
dk17 10376 2412 11478 186 2463 95 1791 10
ex2 1733 402 2241 42 267 23 171 5
ex5p 84852 19732 98898 1540 38740 1518 26970 8
f51m 128927 29982 164889 2670 42590 937 33165 14
frg2 218109 50722 247332 4048 264020 5073 205969 143
max46 15321 3562 19314 326 5585 114 4627 9
misex3 141354 32872 174732 2816 151363 2987 117215 14
rd73 16482 3832 20583 342 1862 140 1064 7
sqn 11236 2612 14256 240 3025 122 2209 7
sqrt8 5689 1322 7086 122 1056 76 657 8
sym9 24652 5732 31890 528 12262 139 11065 9
table3 223054 51872 265566 4294 112361 2019 87880 14
z4ml 3883 902 5070 88 1114 97 607 7
Average 57626.55 13400.5 68304.9 1110.5 36764.55 799.9 28453.05 21.1

66

• Unlike [54, 53, 21, 22], our design does not need any checker circuits. Though the

approach in [8] does not need intermediate checker circuits, it does require a checker

circuit for testing the final outputs.

• One important feature of our design is that gates added for testing a circuit do not

produce any new garbage. Garbage outputs of our design come from the ESOP-based

circuit, which are negligible when compared to previous work.

6.2 Testing of Toffoli Circuits

A Toffoli circuit consists of only Toffoli gates including NOTs, CNOTs and negative-

control Toffoli gates. The Toffoli circuits have no distinguished input or output lines;

thus we use the term line in this section. The target and controls of a Toffoli gate can

be connected to any line in the circuit. In Section 6.1, we have proposed an approach for

constructing online testable reversible circuits from a certain type of ESOP-based circuits.

In this section, we extend this approach so that it works for any type of Toffoli circuits.

6.2.1 Construction of a Testable Circuit from the Toffoli Cir-

cuit

Consider a Toffoli circuit consisting of p lines; in order to make such a circuit online

testable, a parity line L is added, which is initialized with a 0. The detailed procedure is

given below.

The procedure inserts CNOT gates from all lines to L at the beginning of the circuit. It

then replaces every n-bit Toffoli gate by an (n+1)-bit ETG. The connections of the first n

bits of the ETG are kept the same as that of n-bit Toffoli gate. The last bit of the ETG is

67

connected to L. All NOT gates found on the lines are retained. If the number of NOT gates

in the circuit is an odd number, an extra NOT gate is added at the end of line L; otherwise,

no extra NOT gate is added. Finally, CNOT gates are added at the end from all lines to L.

This approach requires a total of 2p extra CNOT gates and at most one extra NOT gate

to construct an online testable circuit. In the testable circuit, if a single fault occurs in any

line (including L), the value of L changes from 0 to 1. If no fault occurs, L remains 0.

Thus by checking a single bit L at the end of the circuit, the fault is detected. Note that this

procedure also works for any circuit consisting of negative-control Toffoli gates.

Example 6.2.1. Consider a Toffoli circuit given in Figure 6.5(a) which has five lines

(I1, I2, . . . , I5) and four Toffoli gates (t1, t2, t3, and t4). For constructing an online testable cir-

cuit, we add a parity line L as well as replace t1, t2, t3, and t4 by ETGs e1, e2, e3, and e4. We

also insert five CNOT gates c1 through c5 at the beginning and five CNOT gates c6 through

c10 at the end of circuit. The resultant online testable circuit is shown in Figure 6.5(b).

I1
I2
I3
I4
I5

t1 t2 t3 t4

(a)

I1
I2
I3
I4
I5
L

c1 c2 c3 c4 c6 c7 c8 c9 c10e1 e2 e3 e4c5

(b)

Figure 6.5: (a) A Toffoli circuit and (b) an online testable circuit.

6.2.2 Analysis

As described in Section 6.1.2, a single fault can generate multiple faults. In a testable

circuit, a fault on a line (except parity line L) can cause other lines including L to be faulty.

It is important to note that a fault on L cannot propagate to other lines since controls of the

68

CNOTs and ETGs are not connected to L. Lemma 6.2.1 proves that the proposed approach

detects any single fault even if it propagates to other lines, causing multiple faults.

Lemma 6.2.1. If any single fault occurs on any line, the circuit is able to detect it. �

Proof. Consider an online testable circuit generated by the proposed technique which has

N ETGs, p lines (I1, I2, . . . , Ip), and a parity line L. Let G = {g1,g2, . . . ,gN} be the set

of ETGs used in the circuit. Let the initial values of lines I1, I2, . . . , Ip be i1, i2, . . . , ip.

The line L is initialized with a 0. Given an (n+ 1)-bit ETG g ∈ G and the input vector

[k1,k2, . . . ,kn−1,kn,kn+1], the output vector is [k1,k2, . . . ,kn−1, f g⊕ kn, f g⊕ kn+1], where

f g = k1k2 · · ·kn−1, and n can be at most p. In order to prove this lemma, consider the

following two cases.

Case 1. Assume that a single fault occurs on a line Id (for d = 1,2, . . . , p) and propagates

to multiple lines.

Let W = {w1,w2, . . . ,wq} ⊆ G be the set of gates that are not affected by the faults.

Let X = {x1,x2, . . . ,xr} ⊆ G be the set of gates such that faults occur only on controls

and affect the gates.

Let Y = {y1,y2, . . . ,ys} ⊆ G be the set of gates with faults only on targets.

Let Z = {z1,z2, . . . ,zt} ⊆ G be the set of gates such that faults occur on targets and

controls which affect the gates.

We have G = W ∪X ∪Y ∪Z, and W , X , Y or Z can be empty. According to the def-

inition of the ETG, two targets of a gate g ∈ G compute the same function f g. Simi-

larly, a gate w j ∈W computes f w j for j = 1,2, . . . ,q. A gate xl ∈ X computes f xl for

l = 1,2, . . . ,r according to Lemma 6.1.1(a). A gate yu ∈ Y computes f yu for u = 1,2, . . . ,s

according to Lemma 6.1.1(b). A gate zv ∈ Z computes f zv for v = 1,2, . . . , t according to

Lemma 6.1.1(c).

At the beginning of the circuit, all Im lines, for m = 1,2, . . . , p are EXORed to L. Thus

the value of L, just before the first gate in G, is i1⊕ i2⊕ . . .⊕ id⊕ . . .⊕ ip. After the last gate

69

in G, the value of L becomes i1⊕ i2⊕ . . .⊕ id⊕ . . .⊕ ip⊕ f w1⊕ f w2⊕ . . .⊕ f wq⊕ f x1⊕

f x2⊕ . . .⊕ f xr⊕ f y1⊕ f y2⊕ . . .⊕ f ys⊕ f z1⊕ f z2⊕ . . .⊕ f zt .

At the end, when all Im lines, for m = 1,2, . . . , p are EXORed to L again, the faulty

value of Id (which is id) propagates to L and hence L becomes

i1⊕ i2⊕ . . .⊕ id ⊕ . . .⊕ ip⊕ f w1⊕ f w2⊕ . . .⊕ f wq⊕ f x1⊕ f x2⊕ . . .⊕ f xr ⊕ f y1⊕

f y2⊕ . . .⊕ f ys⊕ f z1⊕ f z2⊕ . . .⊕ f zt ⊕ i1⊕ i2⊕ . . .⊕ id ⊕ . . .⊕ ip⊕ f w1⊕ f w2⊕ . . .⊕

f wq⊕ f x1⊕ f x2⊕ . . .⊕ f xr⊕ f y1⊕ f y2⊕ . . .⊕ f ys⊕ f z1⊕ f z2⊕ . . .⊕ f zt

= id⊕ id = 1.

Since at the end, the line L contains 1, the fault is detected.

Case 2. A fault can also occur on L. This fault does not propagate to other lines since

there is no ETG or CNOT with a control bit connected to L. The fault causes L to have the

value 1 since it was initialized with a 0. Hence, the circuit detects the fault.

Example 6.2.2. Consider an online testable circuit given in Figure 6.6. In the circuit, ETGs

are labeled as e1, e2, e3, and e4. The initial values of lines I1, I2, I3, I4, and I5 are i1, i2,

i3, i4, and i5. The parity line L is initialized with a 0. Assume that ETGs e1, e2, e3, and e4

compute f1, f2, f3, and f4 when the circuit is fault free. Before the first ETG e1, the value

of L is i1⊕ i2⊕ i3⊕ i4⊕ i5. Let, l = i1⊕ i2⊕ i3⊕ i4⊕ i5.

The ETG e1 computes f1 = i1i2. Thus after this gate, the values of I3 and L are i3⊕ f1

and l⊕ f1. Assume a fault occurs on I2 between e1 and e2, which changes the value of I2

from i2 to i2. This fault affects e2; thus e2 computes f 2 = i2. Note that the fault-free values

of I3 and L, after the gate e2, are i3⊕ f1⊕ f2 and l⊕ f1⊕ f2, respectively. However, due to

the fault, the values are i3⊕ f1⊕ f 2 and l⊕ f1⊕ f 2. Thus two targets of e2 cause the lines

I3 and L to have the faulty values.

Now consider the ETG e3. One of the controls connected to I2 and target connected

to L are faulty. Let, i4 be 0. Thus the fault on I2 does not affect e3 since other fault-free

control bit, connected to I4, has the value 0. The fault on L does not have any impact on

70

calculating the function f3 = i2i4 = i2×0 = 0. After this gate, the value of I5 is i5⊕ f3, and

the value of L is l⊕ f1⊕ f 2⊕ f3.

The ETG e4 has the control on I3 and targets on I2 and L, which are faulty. Assume that

other fault-free control bit, connected to I1, has the value 1. Thus the fault on I3 affects e4

in calculating f4. As a result, e4 computes f 4 = i1(i3⊕ f1⊕ f 2). After the operation of this

gate, the value on I2 is i2⊕ f 4, and the value on L is l⊕ f1⊕ f 2⊕ f3⊕ f 4.

At the end, when I1, I2, I3, I4, and I5 are EXORed to L again, the value of L becomes

l⊕ f1⊕ f 2⊕ f3⊕ f 4⊕ i1⊕ i2⊕ f 4⊕ i3⊕ f1⊕ f 2⊕ i4⊕ i5⊕ f3

= l⊕ i1⊕ i2⊕ i3⊕ i4⊕ i5

= i1⊕ i2⊕ i3⊕ i4⊕ i5⊕ i1⊕ i2⊕ i3⊕ i4⊕ i5 = 1.

Since L is 1, the circuit detects the fault.

i1
i2
i3
i4
i5
0

c1 c2 c3 c4 c6 c7 c8 c9 c10e1 e2 e3 e4c5

i3 f1

l f1

i2

i3 f1 f2

l f1 f2

i5 f3

l f1 f2 f3l

i2 f4

l f1 f2 f3 f4

I1
I2
I3
I4
I5
L 1

Figure 6.6: Fault detection in testable circuit.

6.2.3 Experimental Results

We have conducted our experiments for 20 benchmark circuits collected from [58]. We

have first generated the Toffoli circuits using our improved ESOP-based synthesis as de-

scribed in Section 4.2 and then applied our approach to make the circuits online testable. In

Table 6.2 , we compare the testable circuits generated by our approach to that of previously

reported approaches [54, 53, 8, 21, 22] in terms of quantum cost and garbage outputs. Note

that QC and GO columns in the table represent the quantum cost and the number of garbage

71

outputs, respectively. Our approach shows significant results in reducing the quantum cost

and garbage outputs for all circuits.

Table 6.3 summarizes the improvements achieved by our approach. Quantum costs are

decreased by 74.72%, 78.68%, and 26.30% on average, as compared to [54, 53], [8], and

[21, 22], respectively. Reductions of garbage outputs range from 96.89% to 99.84% in

average, compared to the previous approaches.

The percentages of overheads in quantum cost and garbage outputs for integrating the

online testability feature are given in Table 6.4. The quantum cost overhead for our ap-

proach is only 4.21% on average, compared to 312.28% for the approach in [54, 53],

388.67% for the approach in [8], and 41.40% for the approach in [21, 22]. It is inter-

esting to note that our approach has absolutely no overhead in terms of garbage outputs

since the testability feature does not produce any extra garbage. However, existing ap-

proaches produce extremely large number of garbage outputs; thus the average overheads

are 63409.48%, 5163.03%, and 3113.74% for the approaches in [54, 53], [8], and [21, 22],

respectively.

6.2.4 Comparisons with Our First Proposed Approach

This approach is an extended version of our first approach that we have presented in Sec-

tion 6.1. Thus it inherits the advantages of the first approach, such as easy construction

of a testable circuit, no checker circuit, and no extra garbage outputs. Our first proposed

approach is limited only to reversible circuits generated by a particular synthesis approach.

On the other hand, in this approach, there is no restriction on how the initial circuit is gen-

erated, just that the circuit be designed only from Toffoli gates. As indicated in Section 2.6,

there are a number of approaches that can be used to generate such a circuit. Thus the re-

sults shown in Table 6.2 can be further improved by applying our approach on top of such

optimized Toffoli circuits.

72

Table 6.2: Comparison of different online testable approaches.

Circuit
Approach in [54, 53] Approach in [8] Approach in [21, 22] Our approach

QC GO QC GO QC GO QC GO
9symml 25598 5952 32220 532 12262 139 11066 9
apex5 195061 45362 213843 3518 47847 1620 35354 117
apla 17815 4142 20574 334 2934 190 1859 10
bw 19019 4422 25140 386 4464 723 1249 5
cm82a 2163 502 2823 50 385 48 173 5
con1 1647 382 1929 38 307 30 184 7
cu 5560 1292 6234 110 1288 84 876 14
dk17 10376 2412 11478 186 1649 95 1113 10
ex2 1733 402 2241 42 267 23 171 5
ex5p 84852 19732 98898 1540 12484 1623 4918 8
f51m 128927 29982 164889 2670 37323 832 29072 14
frg2 218109 50722 247332 4048 150509 3616 115211 143
max46 15321 3562 19314 326 5585 114 4627 9
misex3 141354 32872 174732 2816 69153 2149 50826 14
rd73 16482 3832 20583 342 1617 115 959 7
sqn 11236 2612 14256 240 2053 100 1437 7
sqrt8 5689 1322 7086 122 835 63 530 8
sym9 24652 5732 31890 528 12262 139 11066 9
table3 223054 51872 265566 4294 31011 1767 20050 14
z4ml 3883 902 5070 88 1048 92 575 7
Average 57626.55 13400.5 68304.9 1110.5 19764.15 678.1 14565.8 21.1

Table 6.3: Improvements achieved by our approach.

Parameter
Existing approaches

Approach in Approach in Approach in
[54, 53] [8] [21, 22]

Achieved QC 74.72% 78.68% 26.30%
improvements GO 99.84% 98.10% 96.89%

Table 6.4: Overhead calculation of the testable design over the non-testable design.

Approach
Average overhead for testability feature

QC GO
Approach in [54, 53] 312.28% 63409.48%
Approach in [8] 388.67% 5163.03%
Approach in [21, 22] 41.40% 3113.74%
Our approach 4.21% 0%

73

6.3 Coverage of Fault Models

Like the approaches in [54, 53] and [21, 22], our proposed work considers the single bit

fault model. It is noted that the single bit fault model and single stuck-at fault model are

very similar with the exception that the stuck-at fault model is independent of the input

values. Moreover, the behavior of a stuck-at fault can be translated into that of a bit fault,

and vice versa. Consequently, a testable design which can detect bit faults can also detect

stuck-at faults. It is worth noting that lemmas which are provided to prove the correctness

of our approaches hold for both fault models.

As described in Sections 5.2.1, 5.2.2 and 5.2.3, previous approaches in [54, 53, 21, 22,

52] fail to detect all single bit faults; thus these approaches partially cover the bit fault and

stuck-at fault models. In contrast, our both approaches as well as the approach in [8] fully

cover two fault models. Table 6.5 summarizes this discussion.

Table 6.5: Coverage of fault models.
Approach Bit fault model Stuck-at fault model
Approach in [54, 53] Partial Partial
Approach in [21, 22] Partial Partial
Approach in [52] Partial Partial
Approach in [8] Yes Yes
Our Approaches Yes Yes

6.4 Summary

In this chapter, we have presented an approach for adding a testability feature to a particular

type of ESOP-based circuits and then extended it for any type of Toffoli circuits. In our

testable designs, the quantum cost overheads are very small, and in terms of garbage our

overheads are zero. These are startling results, as previous approaches in this area require a

significant increase in both of these measures. Unlike [54, 53, 21, 22, 52], our designs are

fully testable under the bit fault and stuck-at fault models.

74

Chapter 7

Conclusion

Section 7.1 summarizes the contributions of this thesis, and Section 7.2 discusses the op-

portunities for further investigation.

7.1 Contributions

The contributions of this thesis span synthesis and testing of reversible circuits. Our results

are summarized below.

Our first contribution, described in Chapter 4, is an improved ESOP-based reversible

logic synthesis approach which leverages situations where cubes are shared by multiple

outputs and ensures that the implementation of each cube requires just one Toffoli gate.

Thus this approach overcomes the limitation of the previous work [46, 47] on taking ad-

vantage of the shared functionality. Moreover, this approach removes redundant CNOT

gates, making it efficient in terms of quantum cost. This approach quickly synthesizes

circuits, even from large functions with more than 250 variables.

Our next contribution, described in Chapter 5, addresses the shortcomings of the pre-

viously reported approaches [54, 53, 21, 22, 52] on detecting faults in testable circuits.

Proposing two approaches in Chapter 6 for converting ESOP-based circuits and Toffoli cir-

cuits into online testable circuits are the key contributions of this thesis. It is noted that

lemmas are provided to prove the correctness of our fault detection approaches, solving

the problems of the previous approaches. The overheads of our testable designs over the

non-testable designs are really small in terms of quantum cost and absolutely zero in terms

of garbage output.

We expect that this thesis will have significant impacts on synthesizing large functions

as well as on testing reversible circuits online.

75

7.2 Future Work

This thesis opens up a number of possible research directions which are described below:

• The template matching technique, which only works for Toffoli circuits with all

positive controls, optimizes a circuit by reducing the gate count and/or quantum

cost. Our work on shared cube synthesis described in Chapter 4 and other work

in [2, 48, 46] make use of the negative-control Toffoli gates. We plan to explore new

templates tailored to the Toffoli circuits with positive and negative controls. The prior

work on template matching [33] can be a good starting point for creating new tem-

plates by replacing the positive controls with negative ones in all possible ways. As

an example, consider a template [33] with 6 positive controls as shown in Figure 7.1.

The total number of ways to replace the positive controls with negative controls is(6
1

)
+
(6

2

)
+ . . .+

(6
6

)
= 63. Two of them are shown in Figure 7.2.

b
c

a a
ab ac b
ab ac c

b
c

a a
ab ac b
ab ac c

Figure 7.1: A template for Toffoli gates with only positive controls [33].

b
c

a a
ac b
ac b c

b
c

a a
ac b
ac b c

(a) First template

b
c

a a
ac b
c

b
c

a a
ac b
c

(b) Second template

Figure 7.2: Two templates for Toffoli gates with positive and negative controls.

76

The first template (see Figure 7.2(a)) reduces the gate count by 1 and quantum cost

by 9. Similarly, the second template (see Figure 7.2(b)) reduces the gate count from

3 to 1 and the quantum cost from 15 to 5. Thus templates created in this way have

the potential to simplify the Toffoli circuits with positive and negative controls. This

approach appears to create many templates, and applying all such templates may

slow down the optimization process for large circuits. Thus finding an effective set

of templates through rigorous analysis is an important avenue for future research.

• Our proposed work on online testable designs deals with only two fault models. It

would be interesting to explore the relationship among different fault models for

detecting other faults.

• In this thesis, we have considered only the fault detection but not fault correction.

A challenging task is to add the fault correction feature to our testable designs. The

Hamming code technique is widely used to correct single bit faults, which is also

applicable in reversible logic [14]. Future work will consider this idea to recover

reversible circuits from faults.

• Throughout the thesis we have considered Boolean reversible logic which is binary

or two-valued logic. In contrast, multiple-valued logic (MVL) is a d-valued logic

system with d > 2. For a detailed description about MVL, please refer to [34]. If

d = 3, it is known as ternary logic. Our proposed work for constructing testable

circuits described in Chapter 6 can be extended for ternary logic. This future work

will involve transforming the ternary reversible gates [17] such as ternary Toffoli

gates and Muthukrishnan-Stroud (M-S) gates into testable gates which will then be

used to design online testable ternary circuits. Further investigation is required to

make this approach feasible for MVL.

77

Bibliography

[1] A. N. Al-Rabadi. Reversible Logic Synthesis: From Fundamentals to Quantum Com-
puting. Springer-Verlag, 2004.

[2] M. Arabzadeh, M. Saeedi, and M. Zamani. Rule-based optimization of reversible
circuits. In Proceedings of Asia and South Pacific Design Automation Conference
(ASPDAC), pages 849–854, 2010.

[3] W. C. Athas and L. J. Svensson. Reversible logic issues in adiabatic CMOS. In
Proceedings of Workshop on Physics and Computation(PhysComp), pages 111–118,
Dallas, TX, 1994.

[4] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for quantum com-
putation. Phys. Rev. A, 52(5):3457–3467, Nov 1995.

[5] A. Chakraborty. Synthesis of reversible circuits for testing with universal test set and
C-testability of reversible iterative logic arrays. In Proceedings of the 18th Interna-
tional Conference on VLSI Design, pages 249–254, 2005.

[6] J. Chen, X. Zhang, L. Wang, X. Wei, and W. Zhao. Extended Toffoli gate implemen-
tation with photons. In Proceedings of 9th International Conference on Solid-State
and Integrated-Circuit Technology (ICSICT), pages 575–578, China, 20-23 Oct 2008.

[7] J. Donald and N. K. Jha. Reversible logic synthesis with Fredkin and Peres gates.
ACM Journal on Emerging Technologies in Computing Systems (JETC), 4(1):2:1–
2:19, 2008.

[8] N. Farazmand, M. Zamani, and M. B. Tahoori. Online fault testing of reversible logic
using dual rail coding. In Proceedings of 16th IEEE International On-Line Testing
Symposium (IOLTS), pages 204–205, 5-7 July 2010.

[9] K. Fazel, M. Thornton, and J. E. Rice. ESOP-based Toffoli gate cascade generation.
In Proceedings of the IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing (PACRIM), pages 206–209, Victoria, BC, Canada, 22-24 Aug.
2007.

[10] M. P. Frank. Introduction to reversible computing: motivation, progress, and chal-
lenges. In Proceedings of the 2nd Conference on Computing Frontiers, pages 385–
390, Ischia, Italy, 4-6 May 2005.

[11] P. Gupta, A. Agrawal, and N. K. Jha. An algorithm for synthesis of reversible logic
circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 25(11):2317–2330, 2006.

78

[12] J. P. Hayes, I. Polian, and B. Becker. Testing for missing-gate faults in reversible
circuits. In Proceedings of the 13th Asian Test Symposium, pages 100–105, 2004.

[13] M. Ibrahim, A. R. Chowdhury, and H. M. H. Babu. Minimization of CTS of k-
CNOT circuits for SSF and MSF model. In Proceedings of the IEEE International
Symposium on Defect and Fault Tolerance of VLSI Systems, pages 290–298, Boston,
MA, 2008.

[14] R. K. James, T. K. Shahana, K. P. Jacob, and S. Sasi. Fault tolerant error coding
and detection using reversible gates. In Proceedings of IEEE Region 10 Conference -
TENCON, pages 1–4, Taipei, 2007. doi: 10.1109/TENCON.2007.4428776.

[15] N. K. Jha and S. Gupta. Testing of Digital Systems. Cambridge University Press,
2003.

[16] M. Karpovsky. Finite orthogonal series in the design of digital devices. John Wiley &
Sons, 1976.

[17] M. H. A. Khan and M. A. Perkowski. Quantum ternary parallel adder/subtractor with
partially-look-ahead carry. Journal of Systems Architecture, 53(7):453–464, 2007.

[18] D. K. Kole, H. Rahaman, and D. K. Das. Synthesis of online testable reversible circuit.
In Proceedings of 13th IEEE International Symposium on Design and Diagnostics of
Electronic Circuits and Systems (DDECS), pages 277–280, Vienna, 14-16 April 2010.

[19] P. K. Lala. An Introduction to Logic Circuit Testing. Morgan & Claypool, 2008.

[20] R. Landauer. Irreversibility and heat generation in the computing process. IBM Jour-
nal of Research and Development, 5:183–191, 1961.

[21] S. N. Mahammad, S. Hari, S. Shroff, and V. Kamakoti. Constructing online testable
circuits using reversible logic. In Proceedings of 10th IEEE International VLSI De-
sign and Test Symposium (VDAT), pages 373–383, Goa, India, August 2006.

[22] S. N. Mahammad and K. Veezhinathan. Constructing online testable circuits using re-
versible logic. IEEE Transactions on Instrumentation and Measurement, 59(1):101–
109, 2010.

[23] D. Maslov. Reversible logic synthesis benchmarks page.
http://www.cs.uvic.ca/˜dmaslov/.

[24] D. Maslov. Reversible logic synthesis. PhD thesis, University of New Brunswick,
2003.

[25] D. Maslov and G. W. Dueck. Improved quantum cost for
n-bit Toffoli gates. IEE Electronics Letters, 39(25):1790–
1791, 2003. Corrected and expanded version downloaded from
http://arxiv.org/PS_cache/quant-ph/pdf/0403/0403053v1.pdf.

79

[26] D. Maslov and G. W. Dueck. Reversible cascades with minimal garbage. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 23(11):1497–
1509, 2004.

[27] D. Maslov, G. W. Dueck, and D. M. Miller. Synthesis of Fredkin-Toffoli reversible
networks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
13(6):765–769, 2005.

[28] D. Maslov, G. W. Dueck, D. M. Miller, and C. Negrevergne. Quantum circuit sim-
plification and level compaction. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27(3):436–444, 2008.

[29] D. Maslov and D. M. Miller. Comparison of the cost metrics through investigation of
the relation between optimal NCV and optimal NCT three-qubit reversible circuits.
IET Computers & Digital Techniques, 1(2):98–104, 2007.

[30] D. Maslov, C. Young, D. M. Miller, and G. W. Dueck. Quantum circuit simplification
using templates. In Proceedings of the conference on Design, Automation and Test
in Europe (DATE), pages 1208–1213, Washington, DC, USA, 2005. IEEE Computer
Society.

[31] R. C. Merkle. Reversible electronic logic using switches. Nanotechnology, 4(1):21–
40, 1993.

[32] R. C. Merkle and K. E. Drexler. Helical logic. Nanotechnology, 7:325–339, 1996.

[33] D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based algorithm for
reversible logic synthesis. In Proceedings of the 40th annual Design Automation
Conference (DAC), pages 318–323, 2003.

[34] D. M. Miller and M. A. Thornton. Multiple Valued Logic: Concepts and Representa-
tions. Morgan & Claypool Publishers, 2007.

[35] A. Mishchenko and M. Perkowski. Fast heuristic minimization of exclusive sum-
of-products. In Proceedings of the 5th International Reed-Muller Workshop, pages
242–250, Starkville, Mississippi, August 2001.

[36] M. Mohammadi and M. Eshghi. On figures of merit in reversible and quantum logic
designs. Quantum Information Processing, 8:297–318, August 2009.

[37] N. M. Nayeem and J. E. Rice. Improved ESOP-based synthesis of reversible logic. In
Proceedings of the Reed Muller Workshop, Tuusula, Finland, 25-26 May 2011.

[38] N. M. Nayeem and J. E. Rice. Online fault detection in reversible logic. In Proceed-
ings of the IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT), Vancouver, Canada, October 2011.

80

[39] N. M. Nayeem and J. E. Rice. A shared-cube approach to ESOP-based synthesis of
reversible logic. Facta Universitatis Series: Electronics and Energetics, 24(3):385–
402, December 2011.

[40] N. M. Nayeem and J. E. Rice. A simple approach for designing online testable re-
versible circuits. In Proceedings of the IEEE Pacific Rim Conference on Communica-
tions, Computers and Signal Processing (PACRIM), Victoria, Canada, August 2011.

[41] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 2000.

[42] K. N. Patel, J. P. Hayes, and I. L. Markov. Fault testing for reversible circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
23(8):1220–1230, 2004.

[43] P. Picton. Optoelectronic, multivalued, conservative logic. International Journal of
Optical Computing, 2:19–29, 1991.

[44] H. Rahaman, D. K. Kole, D. K. Das, and B. B. Bhattacharya. On the detection of
missing-gate faults in reversible circuits by a universal test set. In Proceedings of the
21st International Conference on VLSI Design, pages 163–168, 2008.

[45] J. E. Rice and V. Suen. Using autocorrelation coefficient-based cost
functions in ESOP-based Toffoli gate cascade generation. In Proceed-
ings of 23rd Canadian Conference on Electrical and Computer Engineer-
ing (CCECE), Calgary, Canada, May 2010. downloaded Jun. 2010 from
http://www.cs.uleth.ca/˜rice/publications/CCECE2010.pdf.

[46] Y. Sanaee. Generating Toffoli networks from ESOP expressions. Master’s thesis,
University of New Brunswick, 2010.

[47] Y. Sanaee and G. W. Dueck. Generating toffoli networks from ESOP expressions.
In Proceedings of IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing (PACRIM), pages 715–719, Victoria, BC, Canada, 13-18 June
2009.

[48] Y. Sanaee and G. W. Dueck. ESOP-based Toffoli network generation with transfor-
mations. In Proceedings of 40th IEEE International Symposium on Multiple-Valued
Logic, pages 276–281, 2010.

[49] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes. Synthesis of reversible
logic circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 22(6):710–722, 2003.

[50] F. Somenzi. CUDD: CU Decision Diagram Package Release 2.3.1. University of
Colorado at Boulder, 2001.

81

[51] S. Tayu, S. Ito, and S. Ueno. On the fault testing for reversible circuits. In Proceedings
of the 18th international conference on Algorithms and computation, pages 812–821,
Berlin, Heidelberg, 2007. Springer-Verlag.

[52] H. Thapliyal and A. P. Vinod. Designing efficient online testable reversible adders
with new reversible gate. In Proceedings of IEEE International Symposium on Cir-
cuits and Systems (ISCAS), pages 1085–1088, New Orleans, LA, 27-30 May 2007.

[53] D. P. Vasudevan, P. K. Lala, D. Jia, and J. P. Parkerson. Reversible logic design
with online testability. IEEE Transactions on Instrumentation and Measurement,
55(2):406–414, 2006.

[54] D. P. Vasudevan, P. K. Lala, and J. P. Parkerson. Online testable reversible logic
circuit design using NAND blocks. In Proceedings of IEEE International Symposium
on Defect and Fault-Tolerance in VLSI Systems, pages 324–331, Los Alamitos, CA,
USA, 10-13 October 2004.

[55] A. De Vos. Reversible Computing: Fundamentals, Quantum Computing, and Appli-
cations. Wiley-VCH, 2010.

[56] L. Wang, C. Wu, and X. Wen, editors. VLSI Test Principles and Architectures: Design
for Testability. Morgan Kaufmann, 2006.

[57] R. Wille and R. Drechsler. BDD-based synthesis of reversible logic for large func-
tions. In Proceedings of the 46th Annual Design Automation Conference (DAC), pages
270–275, 2009.

[58] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib: An online
resource for reversible functions and reversible circuits. In Proceedings of 38th In-
ternational Symposium on Multiple Valued Logic, pages 220–225, 2008. RevLib is
available at http://www.revlib.org.

[59] J. Zhong and J. C. Muzio. Analyzing fault models for reversible logic circuits. In
Proceedings of IEEE Congress on Evolutionary Computation (CEC), pages 2422–
2427, Vancouver, BC, 2006.

82

