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Abstract
Efficiency of modern multiprocessor systems is hurt by unpredictable events: aging causes
permanent faults that disable components; application spawnings and terminations taking place
at arbitrary times, affect energy proportionality, causing energy waste; load imbalances reduce
resource utilization, penalizing performance. This thesis demonstrates how runtime management
can mitigate the negative effects of unpredictable events, making decisions guided by a combination
of static information known in advance and parameters that only become known at runtime. We
propose techniques for three different objectives: graceful degradation of aging-prone systems;
energy efficiency of heterogeneous adaptive systems; and load balancing by means of work
stealing. Managing aging-prone systems for graceful efficiency degradation, is based on a high-
level system description that encapsulates hardware reconfigurability and workload flexibility
and allows to quantify system efficiency and use it as an objective function. Different custom
heuristics, as well as simulated annealing and a genetic algorithm are proposed to optimize this
objective function as a response to component failures. Custom heuristics are one to two orders of
magnitude faster, provide better efficiency for the first 20% of system lifetime and are less than
13% worse than a genetic algorithm at the end of this lifetime. Custom heuristics occasionally
fail to satisfy reconfiguration cost constraints. As all algorithms’ execution time scales well with
respect to system size, a genetic algorithm can be used as backup in these cases. Managing
heterogeneous multiprocessors capable of Dynamic Voltage and Frequency Scaling is based on a
model that accurately predicts performance and power: performance is predicted by combining
static, application-specific profiling information and dynamic, runtime performance monitoring
data; power is predicted using the aforementioned performance estimations and a set of system-
specific, static parameters, determined only once and used for every application mix. Three
runtime heuristics are proposed, that make use of this model to perform partial search of the
configuration space, evaluating a small set of configurations and selecting the best one. When
best-effort performance is adequate, the proposed approach achieves 3% higher energy efficiency
compared to the powersave governor and 2× better compared to the interactive and ondemand
governors. When individual applications’ performance requirements are considered, the proposed
approach is able to satisfy them, giving away 18% of system’s energy efficiency compared to the
powersave, which however misses the performance targets by 23%; at the same time, the proposed
approach maintains an efficiency advantage of about 55% compared to the other governors, which
also satisfy the requirements. Lastly, to improve load balancing of multiprocessors, a partial and
approximate view of the current load distribution among system cores is proposed, which consists
of lightweight data structures and is maintained by each core through cheap operations. A runtime
algorithm is developed, using this view whenever a core becomes idle, to perform victim core
selection for work stealing, also considering system topology and memory hierarchy. Among 12
diverse imbalanced workloads, the proposed approach achieves better performance than random,
hierarchical and local stealing for six workloads. Furthermore, it is at most 8% slower among the
other six workloads, while competing strategies incur a penalty of at least 89% on some workload.

Keywords: Multiprocessors, Runtime Management, Adaptive Systems, Algorithms, Fault
Tolerance, Energy Efficiency, Performance, Load Balancing





List of Publications

Parts of the contributions presented in this thesis have also been published in the following
manuscripts, listed by chapter.

Chapter 2:

. Stavros Tzilis, Ioannis Sourdis, “A Runtime Manager for Gracefully Degrading SoCs”,
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), October, 2014, pp. 216-221.

. Alirad Malek, Stavros Tzilis, Danish Anis Khan, Ioannis Sourdis, Georgios Smaragdos,
Christos Strydis, “A probabilistic analysis of resilient reconfigurable designs”, International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
October, 2014, pp. 141-146.

. Georgios Smaragdos, Danish Anis Khan, Ioannis Sourdis, Christos Strydis, Alirad Malek,
Stavros Tzilis, “A Dependable Coarse-grain Reconfigurable Multicore Array”, in 21st
Reconfigurable Architectures Workshop (RAW), May, 2014, pp. 141-150.

. Dimitris Theodoropoulos, Dionisios Pnevmatikatos, Stavros Tzilis, Ioannis Sourdis, “The
DeSyRe Runtime support for Fault-tolerant Embedded MPSoCs”, 12th IEEE International
Symposium on Parallel and Distributed Processing with Applications (ISPA), August, 2014,
pp. 197-204.

. Alirad Malek, Stavros Tzilis, Danish Anis Khan, Ioannis Sourdis, Georgios Smaragdos,
Christos Strydis, “Reducing the performance overhead of resilient CMPs with substitutable
resources”, International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), October, 2015, pp. 191-196.

. Ioannis Sourdis, Danish Anis Khan, Alirad Malek, Stavros Tzilis, Georgios Smaragdos,
Christos Strydis, “Resilient chip multiprocessors with mixed-grained reconfigurability”,
IEEE Micro. January 2016; 36(1):35-45.

. Stavros Tzilis, Ioannis Sourdis, Vasileios Vasilikos, Dimitrios Rodopoulos, Dimitrios
Soudris, “Runtime Management of Adaptive MPSoCs for Graceful Degradation”,
Proceedings of the International Conference on Compilers, Architectures and Synthesis for
Embedded Systems (CASES), October, 2016, pp. 5:1-5:10.

vii



viii LIST OF PUBLICATIONS

Chapter 3:

. Stavros Tzilis, Pedro Trancoso, Ioannis Sourdis, “Energy-efficient Runtime Management
of Heterogeneous Multicores using Online Projection”, ACM Transactions on Architecture
and Code Optimization (TACO), December, 2018.

Chapter 4:

. Stavros Tzilis, Miquel Pericas, Pedro Trancoso, Ioannis Sourdis, “SWAS: Stealing
Work using Approximate System-load information”, 13th International Workshop on
Scheduling and Resource Management for Parallel and Distributed Systems (SRMPDS),
46th International Conference on Parallel Processing Workshops (ICPPW), August, 2017,
pp. 309-318.

The following papers are not directly related to this thesis:

. I. Sourdis, C. Strydis, A. Armato, C.-S. Bouganis, B. Falsafi, G. Gaydadjiev, S. Isaza, A.
Malek, R. Mariani, D.N. Pnevmatikatos, D.K Pradhan, G. Rauwerda, R. Seepers, R.K.
Shafik, K. Sunesen, D. Theodoropoulos, S. Tzilis, M. Vavouras, “DeSyRe: on-Demand
System Reliability”, in Elsevier Microprocessors and Microsystems, Special Issue on
European Projects in Embedded System Design, November, 2013.

. I. Sourdis, C. Strydis, A. Armato, C.S. Bouganis, B. Falsafi, G.N. Gaydadjiev, S. Isaza, A.
Malek, R. Mariani, D.K. Pradhan, G. Rauwerda, R.M. Seepers, R.A. Shafik, G. Smaragdos,
D. Theodoropoulos, S. Tzilis, M. Vavouras, S. Pagliarini, and D. Pnevmatikatos, “DeSyRe:
On-Demand Adaptive and Reconfigurable Fault-Tolerant SoCs ”, in 10th Int’l Symp. on
Applied Reconfigurable Computing (ARC), pp. 312-317, 2014.

. Alirad Malek, Ioannis Sourdis, Stavros Tzilis, Yifan He, Gerard Rauwerda, “RQNoC:
A Resilient Quality-of-Service Network-on-Chip with Service Redirection”, ACM
Transactions on Embedded Computing Systems (TECS), 15, no. 2 (2016): 28.



Acknowledgments

PhD is a challenging and lonely undertaking. And while -as you very well know is the
case if you have been close to me- it proved to be especially challenging for me, the
loneliness aspect was, to some degree, mitigated by the multitude of people who, although
could not share the burden per se, tirelessly stood by the sideline and encouraged me to
keep fighting.

I want to express my deepest gratitude to my supervisor, Ioannis Sourdis. It was
neither easy nor completely smooth, as we simultaneously started exploring uncharted
territory: it was my first time doing a PhD (it usually is) and his first time supervising a
PhD candidate from start to finish and, on top of this, his first time leading a research
project. Even when my progress was very slow, he didn’t flinch and doubled down
on me, putting his faith in the scenario that I would pick up speed and get the thing
done. Through this painstaking process we both grew a lot against our respective new
challenges. I would not have done it without your support.

I would like to extend a warm thanks to the co-supervisors that helped with parts of
the work: Pedro Trancoso and Miquel Pericás. Your valuable insights made it possible to
finish in a reasonable timeline. Also, I would like to thank Georgi Gaydadjiev, both for
contacting me at the right moment, as a result of which I am here today and for doing his
part in guiding me through the initial stages.

I am very grateful to the whole organization of Chalmers University of Technology
and in particular the Department of Computer Science and Engineering. The extra support
I received, enabling me to push through, is not to be taken for granted. I want you all to
know that it is greatly appreciated.

Next, I want to thank all my colleagues, among them several good friends. The people
with whom I had a nice discussion, who offered a warm greeting, who would take breaks
with me, in general everybody who made this work environment alive and pleasant. More
importantly, the ones with whom I shared after-work board games as well as the ones
who were there to pick me up when things looked the darkest. A special thanks, of course,
is reserved for the best office mates one could ever ask for, Alirad and Ahsen.

Dear friends in Gothenburg, you know who you are and how essential your presence
was. I will never forget a single thing you have done for me. You are one of the main
reasons that, looking back, the whole experience feels worthwhile.

My friends from before starting this endeavour, who reside all over the world: thank
you for being in the background, a solace in bad times, a source of happiness in good

ix



x ACKNOWLEDGMENTS

times and a reminder of a long road behind me whenever we had the rare chance to get
together. Also, a sincere apology to the ones of you from whom I drifted apart. I hope
we get together again really soon. Among you, a special thanks to Stefanos Katmadas,
possibly my only everyday contact, the guy that would be the first to know if something
extraordinary, good or bad, happened to me.

Mom Lena, dad Prokopis and sis Maria: I love you and hope you are happy. Happy
for me and happy in general.

This work has been partially funded by the European Union’s Framework Program 7
DeSyRe project (grant agreement 287611), the EMC2 project (grant agreement 621429),
the European Research Council (ERC) under the MECCA project (grant agreement
340328) and the Horizon 2020 Program ECOSCALE project (grant agreement 671632).

I would like to thank the Institute of Communication and Computer Systems (ICCS),
associated with the School of Electrical and Computer Engineering (ECE) of the National
Technical University of Athens (NTUA), Greece for enabling experimental verification
of parts of the work presented in this thesis, on the Single-Chip Cloud Computer (SCC).
The SCC was made available under aMaterial Transfer Agreement between ICCS/NTUA
and Intel Corporation (Amended April 23, 2013 - Principal Investigator: Dimitrios
Rodopoulos).

Many thanks to all administrative staff of the Computer Science and Engineering
Department for attending to my every need throughout the whole PhD.

Here’s to the best still to come! Cordially,

Stavros Tzilis
Göteborg, February 2019.



Contents

Abstract v

List of Publications vii

Acknowledgments ix

1 Introduction 1
1.1 Problem Statement: Unpredictable Events Penalize Efficiency . . . . . 2
1.2 Thesis Statement: Runtime Management can provide Efficient Responses

to Unpredictable Events . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Runtime Management for Graceful Degradation . . . . . . . . 3
1.3.2 Runtime Management for Energy Efficiency . . . . . . . . . . 5
1.3.3 Runtime Management for Load Balancing . . . . . . . . . . . . 7

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.1 Optimizing Fault Tolerant Multicores for Graceful Degradation 9
1.4.2 Optimizing Heterogeneous Multiprocessors for Energy Efficiency 10
1.4.3 Optimizing Multiprocessor Performance with Load Balancing . 10

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Runtime Support for Graceful Degradation 13
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Flexibility in Modern Multiptocessor Systems . . . . . . . . . . 15
2.1.2 Other Runtime Approaches for Graceful Degradation . . . . . . 17

2.2 Graceful Degradation Problem Formulation . . . . . . . . . . . . . . . 18
2.2.1 High Level System Description . . . . . . . . . . . . . . . . . 19
2.2.2 Solution Space and Objective Function . . . . . . . . . . . . . 21
2.2.3 System Reconfiguration Cost . . . . . . . . . . . . . . . . . . . 26

2.3 Proposed Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Heuristics for Independent Tasks . . . . . . . . . . . . . . . . . 28
2.3.2 Heuristic for DAG . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Adaptation of Existing Optimization Strategies . . . . . . . . . 31

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xi



xii CONTENTS

2.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 Fine-Tuning of SA and GA Algorithms . . . . . . . . . . . . . 40
2.4.3 Lifetime System Efficiency Evaluation . . . . . . . . . . . . . 42
2.4.4 Response Time . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Degradable Component Characterization . . . . . . . . . . . . . . . . . 46
2.5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.2 Characterizing Individual Microprocessors . . . . . . . . . . . 50
2.5.3 Obtaining a Fault Map . . . . . . . . . . . . . . . . . . . . . . 53
2.5.4 Obtaining a Configuration for the Array . . . . . . . . . . . . . 54
2.5.5 Characterizing the whole array . . . . . . . . . . . . . . . . . . 56
2.5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Runtime Management for Energy Efficiency 63
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Performance and Power Prediction . . . . . . . . . . . . . . . . . . . . 70

3.2.1 Application Profiling . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.2 Performance Prediction via online projection . . . . . . . . . . 75
3.2.3 Power Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 The Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.1 Heuristic 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.2 Heuristic 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.3 Heuristic 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3.4 Dealing with Performance Requirements . . . . . . . . . . . . 85

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4.1 Exhaustive Evaluation for Single Events . . . . . . . . . . . . . 87
3.4.2 Evaluation with Dynamic Scenarios . . . . . . . . . . . . . . . 90
3.4.3 Execution Time of the Heuristics . . . . . . . . . . . . . . . . . 94

3.5 Limitations and Alternatives . . . . . . . . . . . . . . . . . . . . . . . 95
3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 Runtime Management for Load Balancing 99
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3 System Load Aware Work Stealing . . . . . . . . . . . . . . . . . . . . 102

4.3.1 System View Data Structures . . . . . . . . . . . . . . . . . . . 103
4.3.2 Updating the System View . . . . . . . . . . . . . . . . . . . . 105
4.3.3 Work Stealing Decisions . . . . . . . . . . . . . . . . . . . . . 107

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4.1 The Experimental Platform . . . . . . . . . . . . . . . . . . . . 109
4.4.2 The GO:TAO runtime . . . . . . . . . . . . . . . . . . . . . . 109
4.4.3 Work stealing strategies . . . . . . . . . . . . . . . . . . . . . 110



CONTENTS xiii

4.4.4 Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.4.5 Experimental Parameters . . . . . . . . . . . . . . . . . . . . . 112

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.5.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 112
4.5.2 Successful Steals per Region . . . . . . . . . . . . . . . . . . . 118
4.5.3 Breakdown of Overheads . . . . . . . . . . . . . . . . . . . . . 121

4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Thesis Summary and Conclusions 123
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2.1 Runtime Management for Graceful Degradation . . . . . . . . 125
5.2.2 Runtime Management for Energy Efficiency . . . . . . . . . . 126
5.2.3 Runtime Management for Load Balancing . . . . . . . . . . . . 127

5.3 Proposed Research Directions . . . . . . . . . . . . . . . . . . . . . . 128



xiv CONTENTS



List of Figures

1.1 Conceptualization of Graceful Degradation. . . . . . . . . . . . . . . 4
1.2 Runtime management for heterogeneous multiprocessors. . . . . . . . 6
1.3 System load and locality aware work stealing. . . . . . . . . . . . . . 8

2.1 Runtime system aspect degradation. . . . . . . . . . . . . . . . . . . . 15
2.2 Reconfigurable pipelines. . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 An adaptive, gracefully degradable multiprocessor. . . . . . . . . . . . 19
2.4 The high-level model of a gracefully degradable system. . . . . . . . . 20
2.5 A valid system configuration of a faulty system . . . . . . . . . . . . . 23
2.6 The Graceful Degradation problem solution space, modeled as a tree. . 24
2.7 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8 Genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.9 Fault generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.10 Experimentation process flow . . . . . . . . . . . . . . . . . . . . . . 39
2.11 The DAG of the automotive use case. . . . . . . . . . . . . . . . . . . 40
2.12 Fine-tuning of SA and GA algorithms . . . . . . . . . . . . . . . . . . 41
2.13 System Efficiency results for the standalone tasks use case . . . . . . . 43
2.14 System Efficiency results for the DAG use case . . . . . . . . . . . . . 44
2.15 Detailed view of a reconfigurable processor array . . . . . . . . . . . 48
2.16 Permanent fault tolerance in reconfigurable processor arrays . . . . . . 49
2.17 Characterization of individual components . . . . . . . . . . . . . . . 52
2.18 Performance and energy efficiency of reconfigurable arrays of various

granularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 The ODROID XU3 hardware and our runtime. . . . . . . . . . . . . . 71
3.2 Online projection for performance prediction. . . . . . . . . . . . . . 72
3.3 Detailed performance prediction . . . . . . . . . . . . . . . . . . . . 77
3.4 Energy efficiency of various heuristics and governors . . . . . . . . . 93

4.1 System view data structures . . . . . . . . . . . . . . . . . . . . . . . 104
4.2 Idle and victim cores before and after a steal attempt . . . . . . . . . . 107
4.3 Execution time, balanced workload . . . . . . . . . . . . . . . . . . . 113
4.4 Execution time, jittery workload . . . . . . . . . . . . . . . . . . . . 114

xv



xvi LIST OF FIGURES

4.5 Execution time, uneven workload . . . . . . . . . . . . . . . . . . . . 114
4.6 Execution time, dynamic DAG workload . . . . . . . . . . . . . . . . 116
4.7 Execution time, stencil workload . . . . . . . . . . . . . . . . . . . . 117
4.8 Number of steals by victim core region . . . . . . . . . . . . . . . . . 120



List of Tables

2.1 Execution times of different GD algorithms. . . . . . . . . . . . . . . 46

3.1 Categorization of existing energy efficiency approaches . . . . . . . . 69
3.2 Applications used for power model calibration and for evaluation . . . 87
3.3 Exhaustive evaluation of the prediction model and heuristic . . . . . . 89
3.4 Application mixes used for energy efficiency evaluation . . . . . . . . 91
3.5 Execution time of heuristics . . . . . . . . . . . . . . . . . . . . . . . 94

4.1 Comparative performance of strategies for each workload . . . . . . . 119
4.2 Overheads of work stealing strategies . . . . . . . . . . . . . . . . . . 121

xvii



xviii LIST OF TABLES



1
Introduction

Advances in semiconductor technology have created unprecedented efficiency potential
for computing systems. As feature sizes shrink, more components can be packed on the
same chip and more computations can be performed per unit of time. However, utilizing
this potential involves numerous challenges. Failure rates become higher, disabling
components or whole systems relatively early in their lifetime [1]. The total power that
can be supplied to a chip is limited, forcing underutilization of resources [2]. Additionally,
without proper task distribution, workloads are often not able to make use of the available
parallelism, due to load imbalances [3].

A common characteristic of the above challenges is that they involve parameters the
values of which only become known at runtime, when the problem appears. For instance,
providing efficient fault tolerance requires knowledge of the type, location and time of
failures. Providing efficient power management and resource utilization requires, at any
given time, knowledge of the current workload requirements. This thesis aims to provide
runtime solutions for this type of challenges, suggesting strategies for responding to
unpredictable events, such as component failures and workload changes.

This introductory chapter provides an overview of the work presented in the thesis.
The remainder of this chapter is organized as follows: Sections 1.1 and 1.2 present the
problem statement and thesis statement respectively. Section 1.3 sets the main thesis
objectives. Section 1.4 summarizes the main contributions and finally, Section 1.5
provides an outline for the rest of this thesis.

1



2 CHAPTER 1. INTRODUCTION

1.1 Problem Statement: Unpredictable Events Penalize
Efficiency

Unpredictable events cause modern Multiprocessor Systems to lose efficiency, if not
properly dealt with. Some examples of such unpredictable events are:

• Component failures: Conventionally, a component failure would mean that the
whole system is disabled. A modern system with more components and elevated
failure rates [1], cannot afford such a naïve approach, thus fault isolation and
reconfiguration techniques are used to keep the system running. However, the
proper reconfiguration choice depends on factors such as the location, type and
time of failure, that only become known when the failure actually happens. This
unpredictability creates the need for a response at runtime.

• Application spawns/terminations: Many modern multiprocessors offer
flexibility by means of heterogeneity and Dynamic Voltage and Frequency Scaling
(DVFS). As a result, their performance, power and energy efficiency can be
dynamically managed. The optimal choices depend on the number, type and
requirements of the applications that constitute the workload. As individual
applications start and terminate at arbitrary times (e.g., on a hand-held portable
device), they create unpredictable events, requiring changes at runtime to maintain
system efficiency.

• Workload imbalances: The efficiency of a parallel system is highly dependent
on the degree of utilization of its resources. Workloads are often imbalanced by
nature, making it hard to utilize all available cores constantly. A core becoming
idle while other cores are overloaded is an event leading to resource waste, unless
the workload is (re)balanced dynamically.

Whichever the optimization objective of a system is (which can be generically called
system efficiency), events such as the ones described above can, if not dealt with, heavily
penalize it. As will be demonstrated throughout Chapters 2 to 4, the occurrence of any of
the above events creates optimization decisions, the decision space of which is too large
to be searched at runtime. In conclusion, we need sophisticated strategies to deal with
the dynamic changes happening on modern multiprocessors. The upcoming sections, 1.2
and 1.3 outline more specifically the desired qualities of such sophisticated strategies.

1.2 Thesis Statement: Runtime Management can
provide Efficient Responses to Unpredictable Events

In this thesis, we study the design of runtime managers that respond to unpredictable
events, aiming to optimize for a relevant metric. To design such managers, we combine
static information that is known in advance, with unpredictable information that only
becomes available at the time of an event. We aim to demonstrate that:



1.3. THESIS OBJECTIVES 3

Runtime management can produce fast responses to unpredictable events,
diminishing the negative impact of these events on system efficiency.

By “fast responses”, we mean that the time needed to decide on a reaction has to be short
compared to the intervals between events and also scalable regarding system parameters,
e.g. its asymptotic complexity should not be exponential with respect to system size. It
is important, for example, that a system is up and running again as quickly as possible
after a component failure. “System efficiency” is used at this point as a generic term,
representing the relevant optimization objective of a given system.

Ultimately, all runtime management techniques presented in this thesis aim to balance
decision quality (high system efficiency) and low overheads, such as response time. We
tackle this challenge in three different contexts:

• Fault-prone multiprocessors with reconfiguration capabilities that enable fault
isolation.

• Multiprocessors that enable energy efficiency management by means of
heterogeneity and DVFS.

• Parallel systems running imbalanced workloads, requiring dynamic load balancing.

The next section outlines the specific objectives associated with each of these three
contexts.

1.3 Thesis Objectives
In this section, we focus on each of the three different types of systems we have designed
runtime managers for and provide an overview of the goals of each runtime manager.

1.3.1 Runtime Management for Graceful Degradation
In the first part of this thesis (see Chapter 2) we study multiprocessor systems with
hardware reconfiguration capabilities that enable isolation of faulty components. The
main objective of this study is:

to design a runtime algorithm that reacts to failures of individual components and
decides on a new system configuration that provides graceful efficiency degradation with
low overheads.

To elaborate on the above statement, we consider systems built on multiple, possibly
heterogeneous, computational components (i.e. microprocessors), each of which suffers
permanent faults independently. When a permanent fault occurs, it is possible that the
affected component can continue to function in a degraded mode. Furthermore, some
of the components support multiple degraded modes, each of which entails different
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FT with GD

Figure 1.1: Conceptualization of the Graceful Degradation property. A conventional,
fault intolerant system (Non-FT) would stop working when a permanent fault appeared.
Fault tolerance (FT) sacrifices some fault-free efficiency, to keep the system running
in the presence of faults. Graceful Degradation (GD) allows sacrificing, at runtime,
additional efficiency, to tolerate even more faults.

penalties, creating interesting tradeoffs (e.g. degradation of either performance or energy
efficiency).

Upon the occurrence of a component failure event, our runtime manager has to
choose the appropriate configuration for the component on which the failure occurred
and possibly change the configuration of other system components as well. At the same
time, it has to be able to utilize possible flexibility of the workload, e.g., to decide
that non-essential tasks are not performed to assure the completion of essential tasks
on the remaining hardware resources. Lastly, it should choose the allocation of tasks
to components utilizing heterogeneity, which is either provided by having different
component types or imposed by the coexistence of fault-free and damaged components.

The concept of Graceful Degradation, as a special case of fault tolerance, is illustrated
in Figure 1.1. Graceful Degradation allows a system to dynamically trade efficiency to
tolerate faults and keep the system running in degraded states for as long as possible.

System efficiency in this context is defined by means of an objective function that the
runtime manager aims to maximize, considering performance, energy and functionality
(whether or not non-essential functions are being carried out). Alongside maximizing
efficiency, the runtime manager also has to minimize the time and energy overheads of
applying the decided changes to the system. Briefly, the main challenges tackled in this
part of the thesis are:
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• Develop a methodology for characterizing degradable hardware components, in
terms of performance and energy efficiency of their degraded configurations.

• Formally describe a system that has the property of graceful degradation, in
such a way that it is possible to systematically enumerate all possible system
configurations and to quantify its overall efficiency in terms of performance, energy
and functionality.

• Design algorithms that, triggered by a component failure event, quickly decide on
a series of changes to be applied on the system, aiming to minimize the resulting
efficiency loss as well as the overheads of applying the changes.

Related Work: There exists extensive research about enabling systems to degrade
gracefully. This is achieved either by isolating faulty substitutable units at core [4–
8], pipeline stage [9–11], or gate level [12] granularity, or by using alternative
implementations of the workload at the algorithm [13] or instruction [14–16] level.
When it comes to managing this potential, many researchers propose static, determined-
in-advance strategies, such as banking [17] or pooling [18] of redundant components, or
downgrading tasks from normal execution to software emulation or even to execution
on slower, fine-grain reconfigurable fabric [19]. Moving on to more dynamic, runtime
approaches, MAESTRO [20] utilizes microsensors to perform wearout-aware mapping of
tasks. Baldassari et al. expose knobs for plugging in user-defined reliability policies [21].
The outcome of some common policies with respect to system lifetime is comparatively
presented in [22]. The trade-off between tolerance of permanent and transient faults
on fail-operational systems has been also explored in [23]. Dynamic management for
reliability has also been combined with power awareness, in works that employ task
mapping to jointly optimize the two goals [24, 25].

Compared to previous work, we address the need for responding to failure scenarios
that cannot be predicted entirely at design time, allowing sequences of multiple
component failures, each of them being of different type and severity. Furthermore,
we expose and utilize both hardware and workload flexibility, according to what has been
demonstrated in literature: we allow individual components to degrade independently
and we introduce system functionality as a knob for graceful degradation decisions.

1.3.2 Runtime Management for Energy Efficiency
In the second part of the thesis (see Chapter 3), we study multiprocessor systems that
offer flexibility by means of heterogeneity and DVFS. The main objective of this study is:

to design a runtime manager that reacts to application spawns or terminations on a
heterogeneous, DVFS-capable multiprocessor and maximizes energy efficiency.

More specifically, the runtime manager has to take energy-efficient decisions, each
time a new application spawns for execution, as well as each time an application
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Figure 1.2: Runtime management for heterogeneous, DVFS-capable multiprocessors.
Triggered by an application spawn event and guided by online monitoring information,
the runtime manager decides application placements and cluster frequencies.

terminates. “Decisions” in this context include the choice of core that each application
will execute on (application placement/allocation) and the choice of frequency for each
independent cluster of cores (DVFS). For this work, the optimization objective is energy
efficiency, measured in Instructions per Second per Watt (IPS/Watt). At the same time,
individual applications might come with their own minimum performance requirements,
which have to be satisfied. Figure 1.2 shows the role of the runtime manager in such a
system.

To guide the aforementioned decisions, the runtime manager has to be able to predict
the outcome of each possible choice. In other words, it requires the ability to accurately
estimate applications’ performance and system power as a result of the chosen application
placements and cluster frequencies. Achieving this is especially challenging, considering
that the runtime manager has to govern a system in a dynamic and unpredictable scenario,
where multiple applications with different performance characteristics run concurrently,
competing for shared resources. Additionally, as the evaluation of all possible choices in
runtime is infeasible, the runtime manager needs to execute a low-complexity algorithm
that narrows down the search, by selecting a low number of candidate solutions for
evaluation.

The above challenges can be summarized in the following points:

• Design a prediction model able to accurately estimate applications’ performance
and system power, as a result of any possible combination of application placements
and cluster frequencies.

• Design an algorithm that is triggered by an application spawn or application
termination event and is able to choose the solution that maximizes energy
efficiency while satisfying performance requirements of individual applications.

Related Work: Runtime management for heterogeneous, DVFS-capable multiprocessors
is a very well researched topic. A number of works either explore the potential
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of using such platforms for energy efficiency optimization [26, 27], or utilize this
potential to optimize a specific narrow application domain, such as video games or
datacenters [28–30]. Both sets of works point to the conclusion that heterogeneous
architectures offer great potential for performance and energy efficiency, which is not
fully utilized due to the difficulty of choosing optimal configurations.

Works that propose approaches to utilize this potential, differ with respect to
various aspects. When it comes to energy-saving techniques, some works employ a
combination of selecting cluster frequencies with Dynamic Voltage and Frequency
Scaling (DVFS) and selecting which system components are active or inactive with
Dynamic Power Management (DPM), in order to optimize single applications for
standalone execution [31–35]. On the other hand, there exist works applicable to
dynamic, unpredictable scenarios of multiple applications running concurrently [36, 37].
Examining this more interesting scenario complicates the problem significantly, because,
among other reasons, it adds the decision of allocating applications to cores for execution.
Thus, the algorithms proposed by these works are at least quadratic in complexity,
resulting in the time needed for allocation decisions to explode as system size increases.

Approaches also differ with respect to the information utilized to make decisions.
Some choose to characterize applications offline [31] but do not propose a strategy to
keep this profiling stage feasible for arbitrarily large systems. Others are guided only
by online monitoring data, sacrificing the potential to make better decisions aided by
profiling [33, 36, 37]. Alongside the offline and/or online performance measurements,
almost all approaches use a prediction model. Some models involve application-specific
parameters, resulting to the need for retraining (either online or offline) every time the
application mix changes [32, 33]. Others are based on categorizing applications with
respect to criteria, such as compute intensiveness and memory boundedness, resulting to
a less sensitive but also less accurate prediction [37, 38].

Based on the above, we utilize both offline profiling and online monitoring data,
taking care to keep offline profiling feasible. We also develop a power model that only
needs to be calibrated once for a given platform. Thus, compared to previous work, we
perform predictions in an accurate, consistent and robust manner. Additionally, when it
comes to runtime decision making, we propose algorithms with lower complexity. As a
result, the response time of our runtime manager to events is both short and scalable with
respect to system size.

1.3.3 Runtime Management for Load Balancing

In the third and final part of this thesis (see Chapter 4) we study multi- and many-core
systems running parallel workloads, the performance of which can suffer from poor load
balance. The main objective of this work is:

to design a runtime strategy that dynamically performs load balancing, to maximize
overall performance.
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Figure 1.3: System load and locality aware work stealing. Lack of system load awareness
results to wasted steal attempts. Not preferring local over remote steals can destroy data
locality.

The event that needs to be responded to in this case, is a core becoming idle, that
is, having no tasks available to process while other cores still have work. This situation
reduces the utilized parallelism (ideally all cores should execute tasks in parallel) and, as
such, reduces overall performance, prolonging execution time. In order to dynamically
balance the workload and maximize utilization, the technique of Work Stealing has been
proposed, that is, allowing idle cores to execute the work that was originally assigned to
currently busy cores [39]. For Work Stealing to provide performance benefits, two factors
have to be addressed: the core chosen to steal work from should currently be one of the
system’s most loaded cores and the overhead of migrating the task and its working set to
the idle core should be as low as possible. Both of these factors’ impact on performance
is shown in Figure 1.3.

Thus, in the event of a core becoming idle, our strategy needs to guide work stealing
decisions considering the above factors. The main challenge we face is that of efficiently
selecting a busy core for stealing work from. Indeed, as system sizes increase, the cost of
naïvely probing other cores randomly until work is found, increases as well. Thus, an
efficient strategy needs to acquire this information in a cheap manner, so that the work
stealing routines do not penalize the performance of the actual application. Subsequently,
based on this information, work should be stolen in such a way that an imbalanced
workload will benefit, while a balanced workload will not be penalized due to task
migration overheads. In summary, in Chapter 4, we tackle the following challenges:

• Devise a strategy for each core in a multiprocessor, to acquire information about
the current distribution of workload in the system.

• Use the above information to guide work stealing decisions whenever a core idle
event happens, in a way that improves the performance of imbalanced workloads
and does not hurt the performance of balanced ones.

Related Work: Work stealing has been a popular technique for dynamic load
balancing [39] and as such, it is implemented in different ways in existing literature.
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Random target selection [40] can yield statistical performance gains on average, but
has inconsistent results and can even penalize performance by destroying data locality.
Restricting target selection to neighbouring cores [41] diminishes this effect, but cannot
deal with system-wide load imbalances. However, there exist more sophisticated versions
of hierarchical stealing [42, 43], that have inspired us to incorporate this element in
our work. Some approaches use compile-time hints to preserve locality [44–47]. This
is beneficial for performance, but makes the strategy application-dependent. Making
more educated target core choices can be achieved by consulting the current system load
distribution, but we found this to entail unacceptable overheads, an observation made by
other researchers as well [48]. We develop a technique that is aware of locality, hierarchy
and system load information. Our main focus is on making the latter feasible through a
lightweight implementation: an approximate view of the current system load, maintained
and enriched during the necessary load querying step.

1.4 Contributions
According to the objectives outlined in Section 1.3, this section summarizes the main
contributions of each part of the thesis. Section 1.4.1 focuses on optimizations for graceful
degradation, Section 1.4.2 on optimizations for energy efficiency and Section 1.4.3 on
load balancing.

1.4.1 Optimizing Fault Tolerant Multicores for Graceful Degrada-
tion

In Chapter 2, we present our approach to managing fault tolerant, reconfigurable
multiprocessor systems in the presence of successive permanent faults that disable parts
of the system. Our goal is to allow efficiency to degrade as gracefully as possible with
each fault, at the same time minimizing the one-time overheads of reconfiguration. Our
contributions can be summarized as follows:

We come up with a formal description of a system that consists of heterogeneous,
reconfigurable, fault-tolerant components running flexible workloads. We express
each component and task as a set of mutually exclusive alternatives and annotate
each component and task alternative with attributes that describe its contribution to
overall system performance, energy consumption and functionality. Subsequently,
we design algorithms that are triggered by a component failure event and choose
one of the mutually exclusive options for each component and task, as well as
an allocation of tasks to components. The algorithms are based on the concepts
of incremental changes, i.e. determining a series of small changes that need
to be performed on the system, instead of finding a solution from scratch;
and of precomputed partial solutions, i.e. a set of static, offline-determined
guidelines for coarse-grain, common failure scenarios. Our algorithms are able to
produce a solution one to two orders of magnitude faster than known optimization
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algorithms, such as simulated annealing and genetic. Furthermore, the solutions
they produce keep system efficiency close the one achieved by an exhaustive,
optimal solver. Lastly, we develop a methodology for characterizing degradable
hardware components in terms of performance and energy efficiency, when
transitioning from a fault-free status to a degraded configuration because of a
fault. As such, we demonstrate that annotating said components as mentioned
above is feasible.

1.4.2 Optimizing Heterogeneous Multiprocessors for Energy Effi-
ciency

In Chapter 3 we study the runtime management of heterogeneous, DVFS-capable
multiprocessor systems. Focusing on a dynamic scenario of multiple concurrently
executing applications, we aim to select appropriate application-to-core placements and
cluster frequencies, so as to maximize energy efficiency while satisfying individual
applications’ performance requirements. Our main contributions for this part of the thesis
are the following:

We develop a model capable of predicting all running applications’ performance
and power, for every possible decision to be taken whenever an application
spawn or application termination event takes place. The model uses compact,
static, application-specific offline profiling information and projects them to the
dynamic, application mix-dependent current status of the system, measured by
online performance monitors. Additionally, a separate linear model uses these
performance predictions together with static, system-specific power parameters,
to predict system power. On top of the predictions, we develop three different
runtime heuristics, that use the above model to evaluate a small subset of candidate
solutions and select the one that maximizes energy efficiency while satisfying
performance requirements. We achieve a fast response time that is also scalable
with respect to the growing system size, i.e. the total number of cores in the
system. This is made possible by aggressively limiting the search space at runtime,
evaluating only a fraction of the available choices.

1.4.3 Optimizing Multiprocessor Performance with Load Balanc-
ing

In Chapter 4, we study load balancing by means of work stealing, to optimize the
performance of parallel workloads on multicores. We aim to minimize the overheads of
finding a suitable core to steal work from (i.e. a busy core) and of migrating the work to
an idle core. The main contributions of this work are the following:

We introduce a lightweight method to construct an approximate system load view.
This is a compact, cheap to maintain structure, kept by every core of the system.
It contains information about which cores and/or system regions are most likely
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to be currently busy. The system view is constructed and maintained in a manner
integrated with work stealing attempts. Subsequently, we propose a work stealing
algorithm that utilizes the aforementioned system view to select a target core for
stealing work from, whenever a core becomes idle. The selection is guided by
the perceived current workload distribution, but is also hierarchical, prioritizing
steals that do not require migration of the task’s working set from a remote cache.
We have evaluated our approach for a variety of workloads and found that, for
workloads with different kinds of imbalance, it outperforms other alternatives,
such as random or hierarchical work stealing, while also not penalizing a balanced
workload.

1.5 Thesis Outline
The remainder of this thesis is organized as follows:

In Chapter 2, our work on graceful degradation for fault-tolerant multiprocessors
is presented. We begin by providing a formal, high level description of a gracefully
degradable system, based on mutually exclusive options for system components and
workload tasks, each option annotated with performance, energy and functionality
attributes. Subsequently, we use this description to sketch the system configuration
space and as a result determine that an optimal, exhaustive search approach is not feasible
at runtime, especially considering the ever-increasing number of components in a system.
Thus, we continue by presenting our runtime approach, a set of custom heuristics capable
of finding a configuration close to the optimal one, in time that is one to two orders
of magnitude lower than other optimization algorithms, such as simulated annealing
and genetic. We also develop versions of the latter two algorithms, both as alternatives
and as comparison points for our custom heuristics. We evaluate all algorithms by
comparing them to an optimal solver, both through simulations and through actual runs
on a real machine. Lastly, before concluding the chapter, we present a methodology of
characterizing degradable hardware components in terms of performance and energy
efficiency. This methodology produces the necessary annotations to the high level system
description, showcasing the applicability of our overall strategy. The work on runtime
management for graceful degradation has been presented in [49] and [50]. Respectively,
the principles of our component characterization methodology have been presented in [51]
and augmented by advances on reconfigurable processor arrays presented in [52–54].
The methodology itself has been used for the evaluation of the approach proposed in [55].

In Chapter 3, a runtime manager for heterogeneous, DVFS-capable multiprocessors
is presented. We start the presentation proposing a scalable profiling strategy, with which
performance characteristics of individual applications can be determined offline, with a
sequence of standalone runs. The number of runs in the sequence is linear with respect to
the number of cores in the system. Next, we describe our technique of online projection,
used to adapt the compact, static, application-specific offline profiling information to the
dynamic, application mix-dependent current status of the system, measured by online
performance monitors. This adaptation enables performance prediction for independent,
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concurrently executing applications. Subsequently, we present our power model, that uses
these performance predictions, together with platform-specific, offline-estimated power
parameters, to predict system power. We go on to propose three different low-complexity
heuristics that partially search the solution space whenever an application spawns or
terminates, using the prediction model to select the application placements and cluster
frequencies that maximize energy efficiency while satisfying performance requirements
of individual applications. Lastly, we evaluate our proposed approach, both through
exhaustive experiments for specific events and through a plethora of dynamic scenarios.
The proposed approach has been presented in [56].

In Chapter 4, a strategy for load balancing, using work stealing based on approximate
system-load information is presented. In the first part of the chapter, we describe the
approximate system load view, a lightweight structure maintained by all cores of the
system and containing information pointing to the busiest system cores or regions.
Subsequently, we present the integrated process of enriching the system view while using
it to guide work stealing attempts. The proposed work stealing approach is then compared
to existing techniques such as random and hierarchical work stealing, using a wide variety
of workloads, including a perfectly-balanced workload that should not be penalized
by work stealing, a workload described by a dynamically generated Directed Acyclic
Graph (DAG) making it inherently imbalanced and a stencil workload which creates load
imbalance due to its multiple task dependencies. The study that makes up Chapter 4 has
also been presented in [57].

Lastly, Chapter 5 concludes the thesis mentioning the main takeaway points. It
provides a summary of the previous chapters, a more detailed and (where applicable)
quantitative description of thesis contributions and a discussion of interesting potential
future research directions.



2
Runtime Support for Graceful

Degradation

The shrinking of transistor dimensions comes with increased performance potential, but
also with challenges for utilizing it efficiently. One of the greatest such challenges is
reliability. Conventional testing of chips becomes more costly and complex as transistor
counts increase, while component variability makes it harder to assume consistent
behavior of components and forces conservative clocking. In addition to the above
phenomena, there is also an increase of wearout (aging) effects [1]. This is especially
important, as conventionally chips are tested just after fabrication and the possibility of
aging effects renders the results of this type of testing insufficient for the chip lifetime as
a whole. Such aging effects can result to system failure at an unpredictable time. As a
result, the prospect of reliable systems built on unreliable components is now a design
alternative, if not a necessity.

On the other side of reliability challenges, we find performance potential. Part of
this potential can be sacrificed for mitigating reliability hazards, through error detection
and correction, online testing for defects and aging effects and, as demonstrated in this
chapter, life-long system-level management for dealing with faults. This management can
take advantage of adaptive hardware and software properties of modern multiprocessor
systems, such as: (i) reconfigurable components [9, 55, 58, 59] for isolating permanent
faults to ensure graceful performance and energy degradation and (ii) flexible workloads
facilitating graceful degradation of functionality when system components fail; examples
of flexible workloads are found in mixed criticality systems [60] as well as in approximate
computing [61].

13
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Graceful Degradation (GD) is, the transition to a lower state of some system aspect(s)
as a response to the occurrence of an event that prohibits the manifestation of full fledged
system behavior [62]. In the context of adaptive multiprocessors, the aforementioned
event is a permanent fault caused by aging, limiting the set of working hardware
components on the chip. As explained in Chapter 1, the unpredictability of the time, type
and location of these faults, creates the need to make GD-related decisions at runtime,
after each such event. When it comes to the system aspects that can be degraded, we
identify three of them, which we touched upon in the previous paragraph: reconfigurable
hardware allows fault isolation and replacement of faulty parts, resulting to performance
and energy efficiency degradation, while workload flexibility allows for functionality
degradation. The impact of subsequent faults on various system aspects, gradually leading
to system failure, is illustrated in Figure 2.1. Simply put, runtime system management
for GD aims to minimize the negative impact of unpredictable permanent faults, both to
prolong system lifetime and maximize system efficiency during this lifetime.

The purpose of the work presented in this chapter is to provide means for fast and
effective runtime system management for GD. In particular, the runtime manager has to
decide on the configuration of hardware components, the version of a flexible workload
and the mapping of this workload to the hardware components. We call the set of these
three elements a system configuration. The decision for a new system configuration
has to be as quick as possible, keep all degradable aspects within acceptable limits and
maximize an objective function that expresses overall system efficiency. Alongside the
above objectives of runtime management, this chapter also introduces a methodology
for characterizing hardware components in terms of performance and energy efficiency,
providing required inputs to the runtime manager. To summarize, this chapter makes the
following contributions:

• A formal description of the problem of GD of adaptive multiprocessors, leading
to an objective function expressing overall system efficiency under successive
permanent faults.

• Multiple runtime algorithms, triggered by a component failure event and aiming
to quickly find a new system configuration that maximizes the aforementioned
objective function and minimizes the one-time overheads of applying the new
configuration.

• Comparative evaluation of the above algorithms in terms of solution quality and
execution time.

• A methodology to characterize degradable hardware components in terms of
performance and energy efficiency, producing the necessary information to the
runtime GD manager.

The rest of this chapter is organized as follows: Section 2.1 summarizes related work,
showcasing means to expose degradable aspects to the runtime manager; in Section 2.2
we formulate GD as an optimization problem; Section 2.3 presents our algorithms for
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Figure 2.1: Runtime system aspect degradation. Each event (permanent fault) causes one
or more system aspects to degrade. Any system aspect being reduced to an unacceptable
value results in system failure.

tackling the problem; in Section 2.4 the experimental setup is described and quantitative
evaluation of the different algorithms takes place; Section 2.5 contains our degradable
component characterization methodology, leading to a design space exploration with
regards to reconfiguration granularity; finally, Section 2.6 summarizes and concludes the
chapter.

2.1 Related Work
This section reviews related work that motivates the study presented in this chapter.
Section 2.1.1 showcases how modern systems have flexibility that can be used to
mitigate the effect of permanent faults. We identify certain degradable aspects that
are exposed by this flexibility, thus making runtime management for GD an attractive
choice. Subsequently, Section 2.1.2 summarizes some other runtime strategies that, just
like our approach, make use of this potential.

2.1.1 Flexibility in Modern Multiptocessor Systems
There exist multiple strategies and paradigms that allow manipulation of either the
hardware or the workload of a system, to allow this system to keep working despite
multiple permanent faults, by degrading one or more aspects.

Manipulating hardware is done via reconfiguration. A relevant, well researched topic
is this of reconfigurable pipelines [9–11, 55]. In this paradigm, a processor array consists
of processors with interchangeable and interconnected pipeline stages. Upon failure of
some of these pipeline stages, the fault-free stages of different processors are connected
to form new, working ones, as illustrated in Figure 2.2. These processors are less efficient
than the original ones, in terms of both performance and energy, as they have to use
interconnection logic and their parts are further apart. Consequently, we can claim that
hardware reconfiguration exposes the degradable aspects of performance and energy
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Figure 2.2: The concept of reconfigurable pipelines. An array of four microprocessors
(A, B, C and D), divided into pipeline stages with interconnections between them. If
some of the stages are faulty (denoted by a red X), the rest can be connected to form
working processors (red and blue sets on the right).

efficiency, for tolerating permanent faults. In order to make educated decisions on such
arrays, it is important that the performance and energy efficiency degradation of a faulty
array, compared to a fault-free one, can be predicted, something that we demonstrate in
Section 2.5.

The aforementioned interchangeable processor parts are generically called
substitutable units and can be of various granularities: whole cores [4–8], pipeline
stages [9–11], functional units (e.g. ALUs) [17, 18, 63, 64], even logic gates [12].
Fine-grain reconfigurable fabric (similar to FPGA logic) has also been suggested for
implementing slower and more power-hungry versions of faulty functional units [65].
The choice of granularity exposes an interesting tradeoff, as finer granularities provide
more flexibility, but at the same time require more complex decisions and have higher
implementation overheads.

System workload can also be manipulated in ways that mirror hardware
reconfiguration. There also exists a granularity spectrum for workload-driven GD. The
coarser-grain methods involve dropping a subset of the workload tasks [7, 8, 66], in
particular taking advantage of the concept of mixed criticality, i.e., a workload consisting
of both essential and optional computations [60]. In the middle of the granularity
spectrum, we find methods based on multiple diverse implementations of the same task.
Alternative implementations might use a different set of hardware resources to allow
adaptation when components fail [13], or might produce results of reduced precision as
per the paradigm of approximate computing [61]. Workloads can also be manipulated
at the fine-grain instruction level, using the method of alternative microcode [14–16].
In this case, instructions that would normally be executed on faulty components are
substituted by less efficient instruction sequences, that can be executed on components
that are still working. For instance, a multiplication can be performed as a sequence of
shifts and additions, if the multiplier is faulty.

Much like hardware reconfiguration, alternative microcode exposes the degradable
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aspects of performance and energy efficiency: the alternative instruction sequence
performs the same computation, but in more time and using more energy. However, other
kinds of workload manipulation (diverse implementations and task dropping) expose a
new degradable aspect, which we subsequently call functionality. The term functionality
degradation refers to a faulty system delivering, in some way, fewer results than its
fault-free counterpart. This is implemented either by dropping less important tasks, or
choosing a less precise (approximate) version.

In summary, the work presented in this chapter considers three degradable
aspects: performance, energy efficiency and functionality, exposed both via hardware
reconfiguration and flexible workloads.

2.1.2 Other Runtime Approaches for Graceful Degradation

Several published studies address problems related to the one tackled in this chapter. This
section mentions the most relevant ones and clarifies our contributions in comparison.

Transistor aging has motivated the study of lifetime extension of aging-prone
multiprocessors. Component aging is strongly correlated to the utilization of said
component. Thus, techniques for load distribution among system components have
been proposed, with the goal of extending system lifetime, e.g. [20–22]. Researchers
compare the effect of balancing the workload against stressing some components more
than others, possibly according to their varying susceptibility to wearout. As important
as this research is, it tends to overlook modern multiprocessors’ adaptability, in the form
of hardware reconfigurability [9, 58, 59] and workload flexibility [60, 61], both of which
can be instrumental to extracting more efficiency, as they expose degradable aspects (see
Section 2.1.1). Furthermore, our work focuses more on decision making for minimizing
the impact of permanent faults, rather than avoiding the faults. Another work focusing
on the same objective utilizes both fine-grain hardware reconfiguration and software
emulation to compensate for the failure of dedicated hardware components [19, 67].
Despite considering GD from a different perspective, all works mentioned in this
paragraph recognize the importance of studying the cumulative effect of multiple
successive faults taking place throughout the system’s lifetime - a central aspect of
our study as well.

Other researchers study task (re)mapping strategies as a reaction to permanent faults,
with the objective of maintaining acceptable system functionality [68, 69]. This research
direction is also significant, and highlights the importance of minimizing the impact
of faults. However, our view is that in adaptive systems, task (re)mapping is just one
of the knobs that can be used for GD and, as such, it is sub-optimal to view it as a
standalone problem. More specifically, a component may not be restricted to either being
fully functional or failed: it can be functioning in a degraded mode using hardware
reconfigurability, being able to carry out a subset of the tasks it originally could -
complicating the problem of (re)mapping. Additionally, under multiple successive
faults, system management should be free to choose to drop non-essential tasks or
transition to lighter/approximate task versions (functionality degradation) rather than
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just remapping them on other components. Furthermore, although the importance of
considering successive component failures is stated, the aforementioned works do not
evaluate their proposed methods for fault sequences longer than two faults.

Another important challenge of shrinking transistor dimensions, is balancing lifetime,
performance and resilience to transient faults. Having system cores working in Triple or
Double Modular Redundancy (TMR or DMR) helps against transient faults, but keeps
multiple components busy executing the same workload (penalizing performance) and
burdens them (penalizing lifetime). These tradeoffs are studied in [23], stressing the
concept of fail-operational systems - that is, keeping the system working under successive
permanent faults as we do. We do not consider transient faults in this study, however
our system model can support alternative task versions that are reliable but entail a
performance penalty, (e.g. using DMR or TMR). In that case, the runtime management
would have to also be evaluated for the degradable aspect of resilience to transient faults
alongside its performance, functionality and energy efficiency.

Reliability and fault tolerance of adaptable multiprocessors have also been studied
in combination with other optimization goals, mainly power efficiency. As an example,
Bolchini et al. [25] have proposed a runtime manager that is able to choose the most
energy-efficient placement for an application on a heterogeneous multicore, at the same
time prioritizing components that have aged the least, in order to also extend the system
lifetime considering transistor aging.

In summary, the work presented in this chapter provides means of efficient runtime
management for GD. The manager has to react to a sequence of multiple subsequent
faults, every time providing a new system configuration with minimal overheads. The
new system configuration should utilize both hardware and workload flexibility and
maximize system efficiency considering the effect of three separate degradable aspects -
performance, energy efficiency and functionality. Lastly, in the latter part of the chapter,
we demonstrate that our assumption of knowing the performance and energy efficiency
of degraded versions of the system hardware is reasonable, by presenting a methodology
for such characterization.

2.2 Graceful Degradation Problem Formulation

This Section contains our formulation of GD as an optimization problem. In
Subsection 2.2.1 we describe a high-level model of a heterogeneous multiprocessor
that consists of reconfigurable hardware components and runs a flexible workload.
Subsection 2.2.2 outlines the solution space constructed from the system description
and defines the objective function that the runtime GD manager has to optimize. Lastly,
Subsection 2.2.3 contains expressions for the one-time reconfiguration overheads that the
GD manager needs to minimize.
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Figure 2.3: An adaptive heterogeneous multiprocessor, which incorporates system
management for graceful degradation.

2.2.1 High Level System Description
This study considers an adaptive heterogeneous multiprocessor system such as the one
of Figure 2.3. It consists of a reliable administrator core (runtime manager) which is
in charge of the runtime system and manages a set of heterogeneous worker cores (e.g,
big, high-performance cores and little, power efficient cores), on which the workload
runs. The worker cores are considered unreliable, but degradable: permanent faults do
not render them completely unusable, but can be worked around by means of hardware
reconfiguration. The workload running on the worker cores is a collection of essential
tasks and optional features, both of which can have multiple versions, e.g. supporting
different levels of precision. The above characteristics allow for an overall adaptive
system. A good example of this paradigm is the DeSyRe SoC [55, 70].

At this point we state some assumptions which help us focus on the problem at hand:

• A fault detection and, if needed, data recovery mechanism is present.

• No faults happen on the reliable administrator core.

• Reliability of the interconnect is an orthogonal consideration (see, e.g., [71]).

Our high-level description of the system’s adaptive properties is illustrated in
Figure 2.4. Each hardware component is called Cji , where i is the component index
and j is the component type (e.g. big or little core). Each of these components is
represented by one row at the left side and supports multiple configurations, each denoted
by a capitalized letter next to the component type, j. One configuration corresponds to
the component’s fault-free version (the leftmost circle of each row labelled CjAi ), one
to its failed (useless) version (the rightmost circle labelled CjFi ) and one or more for
degraded modes, meaning that at least one permanent fault exists on the component
but reconfiguration has successfully isolated it. Note that the status of each component
(fault-free, degraded or failed) renders some configurations meaningless or impossible:
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Figure 2.4: The high-level system model for a gracefully degrading multiprocessor, on
which the problem formulation is based.

a fault-free component will generally work in its original, fault-free configuration; a
degraded component has to work in one of its degraded modes; for a failed component,
only the rightmost configuration can be chosen, rendering it unusable.

Similarly, each workload task is called Ti, i being the task index. Each of these tasks
is represented by a row at the right side of the figure and also has multiple versions: One
normal/full version (the leftmost circle of each row, labelled TAi ), one or more alternative
versions (e.g., lightweight or approximate) and possibly, one void version (labelled T ∅i ))
corresponding to dropping a non-essential task.

The center part of Figure 2.4 illustrates the possible mappings of tasks to hardware
components, essentially listing the set of task versions that each component is capable
of executing. These depend on the current component configurations and chosen task
versions.

Note that the presented system model is generic with respect to the origin of
components’ and tasks’ different versions. As such, it can describe different kinds
of adaptive systems. For instance, to describe a multiprocessor capable of independent
DVFS per cluster [72], we can define one component version (on the left side of
Figure 2.4) for each voltage/frequency configuration of each core. If the aforementioned
system runs an application with different approximation levels or tasks of mixed criticality,
we can define task versions appropriately (at the right side of Figure 2.4). We propose a
generic manner to express such adaptability and to guide the relevant runtime decisions.

Two different application models are considered in this study. The first is a collection
of independent tasks to be executed in any order. The second is a Directed Acyclic Graph
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(DAG) of tasks, expressing task dependencies. Our methods are applied on one use case
of each application model, described in Section 2.4.1.3.

Based on this system description, the job of a runtime manager is to choose one of
the possible options for each of the aforementioned system elements:

• one configuration for each component on the left,

• one version for each task on the right and

• a mapping of each task on exactly one component

The aggregate of these choices is henceforth collectively called system configuration, not
to be confused with the configuration of hardware components. Similarly, the process of
transitioning from one system configuration to another, is called system reconfiguration.
We also assume that this reconfiguration phase is reliable.

2.2.2 Solution Space and Objective Function

Given the high level system description of the previous subsection, the next step is to
sketch and explore the solution space, define a way to evaluate the quality of different
solutions (objective function) and assess the complexity of optimally solving the problem.

To describe the solution space, let us initially focus on the side of hardware
configuration. Still referring to Figure 2.4, a hardware configuration for the system
consists of a choice of exactly one option for each of the components. To enumerate
all possible system hardware configurations, we choose the notation HWn, where
n ∈ {0, 1, ..., N − 1} and N is the total number of possible hardware configurations.

To calculate the value ofN , we have to focus on each type of component (j) separately.
Consider that mult_Cj is the multitude of components of type j (i.e. how many of them
exist in the system) and conf_Cj is the number of possible configurations of each. Then
the total number of possible configurations for this subset of components total_conf(j),
is the number of combinations of choosing mult_Cj times among conf_Cj choices,
with repetition allowed and without considering order. This is given by the following
formula:

total_conf(j) =

(
mult_Cj + conf_Cj − 1

mult_Cj

)
=

(mult_Cj + conf_Cj − 1)!

mult_Cj ! ∗ (conf_Cj − 1)!

Given the number of possible configurations total_conf(j) for each group of components
with the same type j, the number of configurations for the whole system is their product:

N =

j∏
total_conf(j)
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As an example, for the system of Figure 2.4 which consists of four components of type
1 with four possible configurations and two components of type 2 with three possible
configurations, we have:

total_conf(1) =
(4 + 4− 1)!

4! ∗ (4− 1)!
=

7!

4! ∗ 3!
= 35,

total_conf(2) =
(2 + 3− 1)!

2! ∗ (3− 1)!
=

4!

2! ∗ 2!
= 6 and

N = total_conf(1) ∗ total_conf(2) = 35 ∗ 6 = 210

In particular, hardware configuration HW0 is {C1A
0 , C1A

1 , C1A
2 , C1A

3 , C2A
4 , C2A

5 }, while
HW209 is {C1F

0 , C1F
1 , C1F

2 , C1F
3 , C2F

4 , C2F
5 }. Note that, in the presence of faults, some

of these configurations are not eligible for selection.
Focusing next on the right side of Figure 2.4, we can enumerate the possible workloads

that can be selected for execution on the multiprocessor. Each system workload consists
of exactly one task version for each task Ti. This results in

M =

i∏
number_of_versions(Ti)

different workloads, indexed WLm where m ∈ {0,M − 1}. A particular
workload is a listing of the selected option for each of the tasks, e.g. WL0 =
{TA0 , TA1 , TA2 , TA3 , TA4 , TA5 , TA6 , TA7 }.

Lastly, let us enumerate and index the options for tasks-to-components mapping.
The amount of possible mappings cannot be determined statically, since it depends
on the currently selected hardware, HWn and workload WLm. Based on these,
mapping_options(Ti) can be determined for each task Ti and the possible mappings
calculated as

L(n,m) =
i∏
mapping_options(Ti)

L is upper bounded by κτ , with κ being the number of components and τ the number
of tasks. A particular mapping is called MAPl, l ∈ {0, 1, ..., L− 1} and is a list of the
components which execute each task, in task order, as such: {0, 0, 4, 3, 5, 1, 1, 2}.

A solution (S(n,m, l)) to the GD problem is essentially a system configuration and
as such it consists of all three elements, HWn, WLm and MAPl. As an example, for
the system snapshot of Figure 2.4, one possible configuration is shown in Figure 2.5
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Figure 2.5: A valid system configuration for the snapshot illustrated in Figure 2.4.

and consists of the following elements: {C1A
0 , C1B

1 , C1C
2 , C1F

3 , C2A
4 , C2B

5 } for the
hardware configuration, {TA0 , TB1 , T ∅2 , TD3 , TB4 , TC5 , T ∅6 , TD7 } for the workload and
{0, 4, 3, 2, 4, 1, 3, 5} for the task mapping.

Figure 2.6 depicts a representation of the solution space using a four-level tree, the
root level of which is an empty solution and the leaf nodes are complete solutions (system
configurations). Each of levels 2, 3 and 4 of the tree add one element to the solution: the
workload, hardware configuration and mapping respectively. Note that levels 2 and 3
can be interchanged, since these two elements do not pose any restriction to each other.
Mapping, on the other hand, has to be placed at the deeper level, since it is limited by
both other elements.

To assess the quality of each solution we consider the three degradable aspects
identified in Section 2.1.1:

• System Performance (P): how fast the particular configuration can execute one
iteration of the chosen workload.

• System Energy (E): how little energy is required to carry out one iteration of the
chosen workload.

• System Functionality (F): how much of the full functionality of the application
(including non-essential extra features) is being served.

To be able to quantify the above metrics, each task version has to come annotated
with a task functionality (f ) value. Task functionality f corresponds to the fraction of
the overall functionality this task version represents: normal versions score better than
lightweight (e.g. approximate) ones, while void versions score zero. Furthermore, each
combination of a component version with a task version is annotated with a task execution
time (t) value and a task energy (e) value. Task execution time (t) shows how long it
takes the component to complete the task, while task energy (e) shows how much energy
is required to do so. In Section 2.5 we propose one methodology to determine t and
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Figure 2.6: The solution space, modeled as a tree. Leaf nodes are solutions of the problem
(possible system configurations).

e values for tasks on degraded configurations of components. In general, profiling for
execution time and energy is also being separately researched, e.g. [73, 74].

Based on the above t, e and f annotations for all tasks, the three aspects, P, E and F
for the system can be quantified. The values for energy and functionality for the whole
system are obtained by summing up the values of the chosen task versions, while the
performance value is determined by the component that takes the longest to complete
its assigned workload. By considering the best and worst possible values for each
task’s t, e and f individual contributions, we can also define a range for each of the
aspects, P, E and F. As the three aspects are measured in different units, each of the three
ranges is subsequently normalized in the interval [0, 1], 1 representing the best possible
attainable for each aspect (highest performance, highest functionality, lowest energy).
The normalized values have no units and are thus comparable to each other. Eventually,
an objective function can be defined, which we name System Efficiency (SE): a weight is
assigned to each of the three aspects, the weights summing up to 1, and System Efficiency
is the sum of the three value-weight products. More precisely:

SE = w1 ∗ P + w2 ∗ F + w3 ∗ E (1)

{w1, w2, w3} ∈ [0, 1]

P, F,E ∈ [0, 1] (2)

w1 + w2 + w3 = 1 (3)
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The weights are determined by the priorities of each individual system, e.g. E is
more important when saving battery capacity is critical, while P is more important for
high-performance systems. (2) and (3) combined mean that the value of SE lies in [0, 1].
SE is the objective function we need in order to define GD of adaptive multiprocessors in
the presence of permanent faults, as an optimization problem. Given that the number of
possible solutions is finite, one of them maximizes the objective function and is, as such,
optimal in the specified context.

In addition to maximizing the objective function, a system configuration also has to
respect some minimum quality of service constraints. Referring to Figure 2.1, each of the
degradable aspects should remain above a certain value - inability to achieve this results
in a system failure. Also, all workload tasks that constitute essential functionality should
obviously be executed.

Before proceeding to the next subsection, it is useful at this point to quantify the size
of the solution space, in order to showcase the infeasibility of finding the optimal solution
at runtime. The amount of possible solutions (or leaf nodes in the tree of Figure 2.6), S,
is upper bounded as follows:

S ≤ N ∗M ∗ Lmax = N ∗M ∗ (κτ )

One can argue that the actual number of solutions is significantly lower than the above
upper limit, based on the following arguments:

• The number of possible hardware configurations for a given system status is lower
than N , especially when there are multiple faults on the chip - making certain
options invalid.

• The amount of possible mappings also depends on the choice of hardware and
workload and can be significantly lower than κτ .

• For the mapping element of the solution, there are options which are equivalent
by symmetry - if there exist identical components currently working at the same
configuration option.

However, the complexity of the problem is still exponential with respect to the number of
tasks, τ . Indeed, if µ is the minimum number of versions for one task over all tasks, it
holds that

M ≥ µτ , µ = min
i=0,...,τ−1

number_of_versions(Ti).

Thus, in the product N ∗M ∗ L, at least one factor increases exponentially with
respect to the size of the problem input, making exhaustive search impractical at runtime.

In this subsection we obtained an objective function for the problem of runtime GD
management. This objective function expresses the overall efficiency of the system in
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its new configuration. However, moving from one system configuration to another also
incurs some one-time overheads, which are analyzed in the next subsection.

2.2.3 System Reconfiguration Cost

When a component failure event triggers the runtime manager, the latter has to come
up with a new system configuration, adapting the system to the reduced set of hardware
resources, aiming to maximize System Efficiency. However, another factor that has to be
taken into account is the one-time cost of applying this new system configuration.

This cost comes in the form of time and energy required to modify the system
elements explained in Section 2.2.1. Each hardware component reconfiguration, task
migration and change of task version (possibly requiring the load of a different binary)
has an associated time (and energy) cost. These costs depend on characteristics of the
system, such as the interconnect and hardware reconfiguration granularity. Without loss
of generality, in this study we model them as follows:

To reconfigure a number of hardware components, a flat time cost ci needs to be paid
to initiate reconfiguration, plus some amount cj for each of the α affected components:

CHW = ci + α ∗ cj

To migrate a task from one hardware component to another, the cost Cmig is
proportional to the distance between the two components.

Cmig = ck ∗ dist(compa, compb)

The cost to migrate β tasks depends on the interconnect mechanism of the system. We
assume a worst-case value, which is the sum of all individual migration costs:

Cremap =

β∑
Cmig

Lastly, to change the version of a task, a flat time cost cl has to be paid. To change
versions of γ tasks, again we have to assume the worst case of them being executed on
the same hardware component, resulting to the total cost being the sum of the individual
costs:

CSW = γ ∗ cl

The total worst case time cost (assuming parallelization of different steps is not
possible) for system reconfiguration is thus:

C = CHW + Cremap + CSW

Similar models can be constructed for the energy cost. The costs ci, cj , ck, cl are
system-specific and entered to our experiments as constant parameters.
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We consider the reconfiguration cost as a constraint - that is, the runtime manager
should find a new system configuration which can be applied in at most Ct time. The
algorithms presented in Section 2.4 are evaluated with and without such a constraint.

2.3 Proposed Solutions
In this Section, the various algorithms implementing a runtime manager for GD are
presented and compared in terms of complexity. We have developed custom heuristics
for both application models described in Section 2.2.1 (standalone tasks and DAG), as
well as a simulated annealing and a genetic algorithm, tailored to the characteristics of
the particular problem.

All algorithms receive the following inputs:

• The list of n hardware components and their possible configurations.

• The list (or DAG) of m application tasks and their different versions.

• The possible mappings of tasks to components, and corresponding execution times
and energy costs.

• The current system status, that is the list of working hardware components and
their degradation levels.

All algorithms produce a new system configuration, consisting of three arrays of
integers:

• An n-sized array called HW , indicating the chosen configuration index of each
hardware component.

• An m-sized array called SW indicating the chosen version index for each task.

• An m-sized array called MAP indicating the hardware component index that each
task is mapped on.

All approaches are, to some extend, based on two key concepts:

• Incremental solutions: Instead of searching for a system configuration from
scratch, the current system state is taken into account, attempting to find what
to change in the current configuration. This limits the search to a fraction of the
solution space.

• Precomputation: As the kinds of events that can occur are known in advance,
partial precomputed solutions are created offline for common scenarios, such as
the complete failure of any number of components.

As in the following presentation we calculate the asymptotic complexity of our
algorithms in terms of the problem size, we repeat that the number of hardware
components in the system is κ and the number of tasks in the workload is τ .
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2.3.1 Heuristics for Independent Tasks
We developed three different heuristics for the simple application model. Two of them
(INCR-1 and INCR-2) attempt to form an incremental solution based on the current
system configuration, while the third (PREC) uses a list of precomputed workloads and
attempts to construct a system configuration using one of them.

The first incremental algorithm is shown in the pseudocode of Algorithm 1. It checks
for still working hardware configurations of the component on which the triggering event
(permanent fault) happened, Ce (line 1). For each of these, it cycles through the tasks that
Ce was executing before the event (line 4) and attempts to find a version that can still be
executed by the degraded component (lines 5-13). Note that at this step, for non-essential
tasks, there is the option of selecting their void version, T ∅j . If all these tasks can still be
accommodated on Ce (that is, Ce can still perform its duties to an acceptable degree), a
new system configuration is returned based on the above modifications (line 16).

To calculate the time complexity of INCR-1, we observe the boundaries of the three
for loops. The outer loop has a constant number of iterations - the problem size does not
matter for how many alternative configurations hardware components have. The same is
true about the inner loop - each task of the workload has a constant number of alternative
options. The middle loop iterates a maximum of τ times, one for each task currently
running on Ce. Thus, INCR-1 has time complexity of O(τ).

Algorithm 1: INCR-1
1: for each valid configuration Ci

e of Ce do
2: HW [e] = [i]
3: success = 1
4: for each task Tj mapped on Ce do
5: for each version Tk

j of Tj do
6: if Tk

j can be executed on Ci
e then

7: SW [j] = k
8: break
9: end if

10: end for
11: if no version Tk

j succeeded then
12: success = 0
13: end if
14: end for
15: if success = 1 then
16: Return resulting system configuration
17: end if
18: end for
19: Return algorithm failure

The difference of INCR-2 to INCR-1 is that it can map the tasks previously performed
by Ce on any component of the system. In other words, if Ce is not able to still perform
its duties to an acceptable level, INCR-1 will fail, whereas INCR-2 has a good chance of
success. INCR-2 is described by the pseudocode of Algorithm 2. The ability to remap
tasks on components different than Ce is described between lines 6 and 12. It can be
observed that the added flexibility comes at the cost of a fourth for loop which iterates a
maximum of κ times, resulting in time complexity of O(κ ∗ τ).
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Algorithm 2: INCR-2
1: for each valid configuration Ci

e of Ce do
2: HW [e] = [i]
3: success = 1
4: for each task Tj mapped on Ce do
5: for each version Tk

j of Tj do
6: for each HW component Cl do
7: if Tk

j can be executed on Cl then
8: SW [j] = k
9: MAP [j] = l

10: brake
11: end if
12: end for
13: if version Tk

j was mapped then
14: break
15: end if
16: end for
17: end for
18: if some task Tj was not mapped then
19: success = 0
20: end if
21: if success = 1 then
22: Return resulting system configuration
23: end if
24: end for
25: Return algorithm failure

Note that both algorithms operate on only a subset of the τ system tasks, so the τ
term of the O-notation is quite a pessimistic upper bound. Thus, their execution time in
practice is expected to scale somewhat better than that.

The third heuristic, PREC, makes use of the partial precomputed solutions. Each
such solution is a predefined workload, that is, a set of values for array SW of the
system configuration. For each system component that has failed completely (offering
only configuration CjFi as an option), some non-essential tasks are dropped and/or
some tasks are degraded to a more lightweight (e.g. approximate) version. The
precomputed workloads have been defined statically offline, to be suitable for a system
of a certain degree of degradation. Thus, the more components are still functional, the
more functionality the corresponding precomputed workload preserves. Coming to the
heuristic, which is described by the pseudocode of Algorithm 3, it fetches a precomputed
workload (line 3) and attempts to map it on the working system components (lines 5-15).
If that fails, it repeats this procedure for an even lighter workload and continues as such
for a constant number of workloads, c (see loop boundary in line 2). c is a parameter
which affects execution time, but not its asymptotic complexity since it is constant.
The two inner for loops iterate for a maximum τ and κ times respectively, resulting to
asymptotic complexity of O(κ ∗ τ).

Looking back at the three heuristics, it can be observed that INCR-1 is very often
unsuccessful in finding an acceptable system configuration. Indeed, in case the triggering
event has disabled component Ce completely and one of the tasks running on it is an
essential one, INCR-1 cannot remap it on a different component. On the other hand,
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Algorithm 3: PREC
1: i = overall system degradation level
2: for j = i to (i+ c) do
3: fetch precomputed workload j
4: success = 1
5: for precomputed version T l

k task Tk do
6: SW [k] = l
7: for each HW component Cr do
8: if T l

k can be executed on Cr then
9: SW [k] = l

10: MAP [k] = r
11: else
12: success = 0
13: end if
14: end for
15: end for
16: if success = 1 then
17: Return resulting system configuration
18: end if
19: end for
20: Return algorithm failure

PREC is the most conservative and pessimistic of the three heuristics, as it works with a
version of the workload that is tailored to the degraded status of the hardware. Motivated
by the above analysis and by indicative results of the three heuristics, we have decided to
use INCR-1 and PREC executing one after the other, as one strategy. Thus, if the fastest
algorithm fails, it is backed up by the most conservative one. The complexity of this
combined algorithm INCR-1 + PREC is still O(κ ∗ τ).

2.3.2 Heuristic for DAG
In case the application tasks have dependencies, the simple application model does not
suffice. Practical heuristics for this case have to take into account task dependencies
as they are described by a DAG. Furthermore, communication costs for transferring
the output of a parent task to a child task have to be considered when evaluating the
performance of any system configuration.

The heuristic we have developed for this application model (DAG-GD) is comprised
of two parts:

• A greedy mapping algorithm (see pseudocode of Algorithm 4) which maps each
task of a taskset on the first component it finds for which the critical path of the
DAG is not extended. Between lines 8 and 25, the algorithm estimates the critical
path of a partial mapping, ignoring interference between different paths, to keep the
algorithm complexity low. Of course, such interference affects system performance
and is taken into account during evaluation.

• An iterative wrapper (see pseudocode of Algorithm 5), which modifies the hardware
components’ configuration (line 3) and workload (lines 5-9) before calling the
greedy mapping (line 10).
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Algorithm 4: GREEDY MAPPING
1: Input: A set of tasks, (T )
2: tasks are ordered by index
3: tasks in the longest paths of the DAG have lower index
4: The set of system components, C
5: components are ordered by current load
6: less loaded components have lower index
7: for version T j

i of each task Ti in (T ) do
8: if Ti belongs to critical path AND is not the origin then
9: Let k be the index of a parent task of Ti

10: if T j
i can be executed on component with indexMAP [k] then

11: MAP [i] = k
12: else
13: for each HW component Cl do
14: if T j

i can be executed on Cl then
15: MAP [i] = l
16: end if
17: end for
18: end if
19: else
20: for each HW component Cl starting from least busy do
21: if T j

i can be executed on Cl then
22: MAP [i] = l
23: end if
24: end for
25: end if
26: Update path lengths with possible communication costs
27: Update load of component with indexMAP [i]
28: end for

The principles of incremental solutions and precomputation are also applied in this
case. The iterative wrapper attempts different configurations for the component Ce on
which the triggering event took place and assembles the workload consulting the partial
precomputed solutions for the degradation level of the system, similarly to the PREC
heuristic. Furthermore, the greedy mapping operates only on the tasks of component Ce,
much like algorithms INCR-1 and INCR-2.

Concerning time complexity, the two loops of DAG-GD have been constructed with
constant boundaries. As for the greedy mapping, it consists of two loops which will
iterate a maximum of τ and κ times respectively, resulting to a complexity of O(κ ∗ τ).
Upper bounds for both loops are quite conservative.

2.3.3 Adaptation of Existing Optimization Strategies

Alongside our custom heuristics, we decided to adapt existing optimization strategies
to our problem. In the following subsections we will talk about a simulated annealing
algorithm [75] and a genetic algorithm [76]. In both descriptions we will mostly focus on
our contribution, that is, the algorithms’ adaptation to the problem of runtime management
for GD.
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Algorithm 5: DAG-GD
1: i = overall system degradation level
2: for each valid configuration Ci

e of Ce do
3: HW [e] = [i]
4: for j = i to (i+ c) do
5: fetch precomputed workload j
6: for precomputed version T l

k task Tk do
7: Add T l

k to taskset (T )
8: SW [k] = l
9: end for

10: Call GREEDY MAPPING with taskset (T )
11: if Resulting configuration is valid then
12: Return resulting system configuration
13: end if
14: end for
15: end for
16: Return algorithm failure

2.3.3.1 Simulated Annealing

Simulated annealing (SA) is a probabilistic heuristic for optimization problems like
the one defined in this chapter [75]. Its name comes from annealing in metallurgy, a
technique involving heating and controlled cooling of a material to reduce its defects.
The notion of slow cooling is implemented in the simulated annealing algorithm as a
slow decrease in the probability of accepting solutions that are worse than the current
best. During the early steps of the algorithm the “system temperature" is high and there
is a good chance to accept a new candidate solution which scores lower than the current
one, to facilitate escaping relatively low local maxima and widen the part of the solution
space that is actually explored. As the “system temperature" drops, this probability is
reduced.

The following steps were taken to adapt SA to our problem:

• Initial solution formulation: The solution from which the search starts is based
on the precomputed partial solution for the particular scenario, as described in
Section 2.3.1. This results in a good chance that the initial solution will be valid.
This is not absolutely required, but it speeds up the convergence process, because
forming new solutions is somewhat incremental (see next point), thus it takes time
to move from an invalid solution to a good one.

• Candidate solution formulation: The next candidate solution is formed in three
steps: First, for components that have alternative configurations in the same
degradation level (that is, not fault-free or entirely failed components), there
is a probability to change to the alternative configuration. Second, two tasks of the
workload are chosen at random and the next available version is chosen for each of
them. Third, these two tasks are remapped, on a random suitable component.

• Candidate solution acceptance: A candidate solution with better quality than the
current one is always accepted. A worse solution has a chance to be accepted,
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Figure 2.7: Simulated annealing: The function of temperature over time (linear decrease)
and its effect on the elements of the solution that can be changed. Note that, as mentioned
in the text, hardware configuration and workload selection are locked after a certain
number of iterations. Also, when temperature reaches zero, so does the probability of
accepting a solution worse than the current one.

depending on the current “system temperature" and how lower the quality of the
new solution is. “System temperature" decreases in a linear manner and reaches
zero before the end. Thus, during the last iterations, there is zero probability to
accept a worse solution, to allow the algorithm to climb whichever local maximum
it has approached until then.

• Additional effects of temperature: During the first steps, all three elements of
the solution are open for modification. After half of the steps have been completed,
the hardware configuration currently selected is locked in place and the first step
of forming a new solution is removed. During the last 20% of the steps, the
same happens with workload selection, so the last steps modify only the task
mapping. We have thus made use of the temperature concept to better tailor SA to
the particular problem.

When all steps are completed, the algorithm returns the best solution it has visited
during the run - which is not necessarily the current solution at the end of the run. The
effect of “system temperature” on the algorithm process is illustrated in Figure 2.7.
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Figure 2.8: Genetic algorithm: the process of obtaining generation 1 (through crossover
and selection) from the initial population (generation 0) is illustrated. For each solution
Si_j, i is the solution index while j is the generation index.

2.3.3.2 Genetic Algorithm

A genetic algorithm (GA) is a search heuristic that mimics the process of natural
selection [76]. It functions by keeping a population of solutions, which it modifies
by combining two or more existing members into new ones. In principle, worst solutions
are discarded in favor of better ones, so that the best ones make it to the end. The upkeep
of a population is the main disadvantage of the GA compared to all other algorithms we
have described: While our heuristics and SA keep a few solutions stored at any given
moment (the current one, a temporary one and, in the case of SA, the best solution so
far), the GA is based on constantly having a population of solutions stored. On the other
hand, it is also expected to produce better results.

When adapting the method of GA to our problem, the biggest challenge we faced
was the fact that randomly combining parts of different solutions has a low probability
of producing a valid offspring (e.g., random remapping of a task can result in illegal
mappings). To mitigate this effect, operations which are constrained to produce valid
solutions can be defined, with the caveat that they have to perform time-costly checks
and are thus slower. As a result of this, we had to choose between a non-checking
approach that produces some valid solutions by maintaining a large population and a
more guided approach that produces fewer, but valid solutions with slower operations.
After experimenting with both options, we opted for smaller population, fewer iterations
(called generations in a GA) and slower, guided operations. In particular:
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• Initial population: We define the initial population in such a way that most of
its members are valid solutions. The hardware configuration is determined by
selecting a valid option at random for each component. For half of the members
the workload is determined based on the partial precomputed solution used also in
the previous algorithms (henceforth called pessimistic half). For the second half, a
random workload is selected (henceforth called optimistic half). Each member is
annotated with the half it belongs to, to be used during crossover (see below). The
mapping part happens by selecting a random legal mapping for each task. The time
invested in shaping a strong and diverse initial population pays off in the long run.
The initial population is considered “generation 0”. A sample initial population of
six solutions is shown on the leftmost part of Figure 2.8. Note that each solution
on the figure is named Si_j, where i is the solution index, while j is the generation
index. Thus, the initial population consists of solutions S1_0 to S6_0.

• Crossover: During the first generation crossover, solutions are paired up. Three
groups of pairs are formed: one with both members of each pair belonging to the
pessimistic half (group 1), one with both belonging to the optimistic half (group
3) and one mixed (group 2). The pairs of each group are then crossed over in
different ways. For instance, pairs of group 2 and 3 cross their workloads, which
wouldn’t make sense for group 1, since all its members have the same workload.
All crossover functions are guided to have a good chance of producing valid
solutions as offsprings. In any case, each pair of solutions produces two new ones.
Figure 2.8 shows how, after crossover, solutions S7_0 to S12_0 are formed. Note
that for the small sample population in the figure, there is only one pair of solutions
in each group, which is not the case in the real implementation.

• Selection: After each pair of solutions produces two new ones, the two best
solutions are chosen between parents and offsprings, to be parents in the next
generation. This is a type of tournament selection and we choose to use it to keep
the pairs fixed until the end of the algorithm run (unless a mutation takes place - see
next point), in order to apply the suitable crossover function to them. Additionally,
it saves time compared to selecting the top 50% of the whole population, which
would require sorting all solutions in terms of quality. Returning to Figure 2.8, the
selection step reduces the population back to six solutions, by selecting the two
best (not grayed out) from each group of four. Note that the result of selection,
solutions S1_1 to S6_1, is the population of generation 1.

• Mutation: The choices we made for crossover and selection, reduce the entropy
of the population a lot - making it possible to become stale. To balance this, we
defined three mutation functions: The first causes members of group 1 to have their
(otherwise fixed) workload randomly changed to inject some diversity. The second
randomly changes the hardware configuration of a random solutions. The third
swaps the places of two random members of the population before crossover, to
stir up the static pairings.
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When the predefined number of generations is produced, the best out of all alive
solutions is selected and returned by the algorithm.

2.4 Evaluation

This section presents the experimental results we obtained by simulating our runtime
manager on a desktop computer and emulating it on a real multicore machine, the
Intel SCC [77]. We evaluate all our algorithms versus an optimal solver, by measuring
the System Efficiency (SE) achieved by them as multiple faults occur on the system
successively, as well as their average response time for generating a new system
configuration after each event.

Subsection 2.4.1 describes our experimental setup, outlining how we performed the
experiments, how we injected permanent faults throughout the system’s lifetime and how
we built our workloads. Subsection 2.4.2 explains how we fine-tuned our implementations
of SA and GA. Subsection 2.4.3 presents the results of each algorithm with respect to
System Efficiency throughout the system’s lifetime. Lastly, Subsection 2.4.4 compares the
algorithms with respect to their execution time, with an increasing problem size (number
of components and tasks).

2.4.1 Experimental Setup

To set up our simulations, we consider a heterogeneous system such as the one shown in
Figure 2.3, with four cores, two of which are little, power efficient cores (e.g. RISC) and
two of them faster, big processors. Referring to the objective function (see Section 2.2.2),
we set the weights to w1 = 0.4, w2 = 0.2 and w3 = 0.4.

2.4.1.1 The Intel SCC as an Emulation Platform

To strengthen the evaluation of our GD manager, we looked for a platform with as many
of the characteristics of the system illustrated in Figure 2.3 as possible. We found the
Intel Single Chip Cloud Computer [77] to be a good choice. First of all, it consists
of a number of identical worker cores, divided into six power domains. The platform
supports independent frequency scaling for each of the six domains, enabling performance
degradation. On top of that, the worker cores are controlled by a host PC, which can play
the role of the reliable runtime manager of Figure 2.3.

Although the SCC helps us recreate many important properties, it misses the
characteristic of heterogeneity. For this reason, we are forced to emulate it by “naming”
each core as, e.g. little or big, and using different frequencies for the two kinds, to
emulate performance heterogeneity. According to its kind, each core runs an appropriate
version of the tasks, each version annotated differently to reflect the core characteristics.
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2.4.1.2 Event Generation

As already mentioned, for this study, “events” are essentially permanent faults, taking
place during the system’s lifetime. Based on that, the event generator has to provide
a series of permanent faults, each of them annotated with a time stamp and a location
(denoting the hardware component on which the fault appeared). Each fault is further
annotated with a severity level. Up to this point, we have assumed that faults are
isolated using hardware reconfiguration. There are permanent faults, however, that are
inconveniently placed (e.g. on single points of failure), making it impossible to salvage
any part of the component. The event generator takes this possibility into account as well.

We based our approach on traditional reliability analysis [78], according to which, the
reliability R and probability of failure F of a component as functions of time, have the
failure rate λ as a parameter, which is for now assumed constant. Intuitively, we would
like the probability of a component failing within a small interval ∆t to be equal to λ ·∆t.
Relaxing the assumption of constant λ, we can generalize and arrive to the following:

P (fault in ∆t) =

∫ t+∆t

t

λ(S) dS

Observe that if λ(t) is constant, the above is reduced to λ · ∆t, which was our initial
intention.

According to traditional reliability analysis, the reliability R(t) of a hardware
component has the following form, which is the cumulative distribution function of
an exponential distribution with parameter λ.

R(t) = e−λt

The probability of failure up to any moment in time F (t) can be accumulated accordingly:

F (t) = 1−R(t) = 1− e−λt (4)

For this work, we need to predict both faults that cause complete failure of a
component and faults that cause it to degrade and perform simulations with sequences of
multiple faults. Thus, we define for each component of the system multipleR(t) functions,
being evaluated concurrently. Each one of them decides that a fault has occurred, when
the non-decreasing function of t,

∫ t
0
λ(S) dS reaches a random, exponentially distributed

threshold E.
The aforementioned threshold E is constructed as follows: Equation (4) expresses

the probability that a generator determines the occurrence of the corresponding fault on
some moment up to and including time t. By solving for t, we get the inverse of F :

F−1(y) = − ln(1− y)/λ (5)

and using inverse transform sampling as explained in [79], we can generate exponentially
distributed numbers. More specifically, by plugging a uniformly distributed number
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Figure 2.9: Fault generation visualization for two different functions for λ(t): constant
λ (left) and λ following a step function (right). The integral of λ(t) determines the
climbing rate, while the exponentially distributed threshold E introduces the necessary
randomness. When the integral function catches up to the threshold, an event is generated
(timestamps t1 and t2 for each of the two cases respectively).

y ∈ [0, 1) in − ln(1 − y), which is (5) without the impact of λ, we get exponentially
distributed number E, which will be used as a threshold in the fault prediction.

The climbing of
∫ t

0
λ(S) dS towards the limit E is illustrated in Figure 2.9. Two

different versions of λ(t) are drawn, constant (λ1) and a step function (λ2). The figure
demonstrates how the magnitude and behavior in time of λ(t) determines the rate of the
climb towards E, while E introduces the necessary randomness. The timestamps t1 and
t2 are the moments of fault occurrence for each of the two cases.

Being able to deal with any function λ(t), makes our event generator generic: We can
use it to generate fault sequences under any kind of assumptions. The rates of various
effects depend on a variety of factors, both internal to the system (e.g. workload of
components) and external (e.g. ambient temperature or radiation). These factors can
easily be plugged in our tool as parameters of λ(t), as needed for future experiments.

We used the event generator to define two different fault scenarios:

• A “baseline” scenario. According to this, on every component there exist four
fault generators (corresponding to four potential faults). Three of these represent
partial failures that can be isolated with reconfiguration and have a constant fault
rate of λ1 = 2.55 faults in the expected total lifetime. The fourth generator injects
a critical fault with a rate λ2 = 1.7 severe faults in the same time.

• A “weak component” scenario, in which one random system component has 2.5
times the above rates.

We set the expected lifetime to 1000 days. Thus, the above fault rates projected to
one day are λ1d = 0.00255 and λ2d = 0.0017 faults/day. Based on these scenarios,
the event generator predicts what faults will occur on the system during this period of
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Figure 2.10: Process followed by simulations and emulations: in simulations, System
Efficiency (SE) results are obtained by evaluating the objective function based on profiling
data, while during SCC emulations, measured performance is considered instead.

1000 days and generates a list. Multiple such lists are generated for each scenario, each
corresponding to a different sequence of faults, each of which is random but based on
the same defined fault rates. These “fault lists” are then used during simulations and
SCC emulations, to trigger the runtime GD manager, which in turn has to produce a new
system configuration, as shown in Figure 2.10. Between events, System Efficiency is
evaluated, either completely based on profiling data for each task’s execution time and
energy (simulations) or by measuring the actual execution times of tasks on the SCC
(emulations).

The SE function in time for a single simulation or emulation is thus a step function,
as each event causes a SE degradation. Between successive events, SE is stable. The
SE-in-time results we present here are the averages over of a number of such experiments:
each algorithm is evaluated through 400 simulations and 30 SCC emulations for each
fault scenario. Any system that fails is considered to have an efficiency of 0 until the
end of its expected lifetime. For fairness, we use the same 400 (or 30) fault lists for all
algorithms.

2.4.1.3 Workloads

On the workload side, we need to have workload flexibility as our description dictates.
We construct one flexible use case for each of the two application models.

For the simple application model, without task dependencies, we base our use case
on Mibench benchmarks [80], three from the automotive suite (basicmath, bitcount, qsort
- all considered essential tasks) augmented with four more benchmarks from the network,
consumer and telecommunication suites - which represent the optional features delivered
by the system (Susan, GSM, Dijkstra, Audio Decoder).
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Figure 2.11: The DAG of the automotive use case.

For the case of an application described by a DAG, we use a mock-up of a real-
world example, a typical automotive application from the Powertrain domain, developed
according to the AUTOSAR specification [81]. It is an embedded system consisting of
sensors and actuators, tasked with controlling the gearbox of a vehicle. Some of the
tasks (the ones in the leftmost DAG of Figure 2.11) are, according to ISO26262 [82]
considered safety relevant, and failure of any one transitions the system to a safe state,
resulting, for our intents and purposes, to a system failure. Specifically, the top node
of the DAG runs system diagnostics. In the middle level, from left to right, tasks are
responsible for: performing closed loop control of the hydraulic actuator; controlling the
Brushless DC motor (BLDC); using sensor data to calculate axis speed; and determining
the drive strategy (gear selections) based on driver input. The bottom node integrates the
above, performing safety analysis and reacting to errors. The rest of the tasks (belonging
to the rightmost DAG) are part of the application layer which is not safety relevant and
are tasked with logging system data. Specifically, the top node checks the status of the
transceiver and memory. The left and right middle nodes measure relevant system data
and acquire relevant messages respectively. Lastly, the bottom node updates the log file
in the flash memory. Inability of the system to perform these tasks results to degraded
functionality.

2.4.2 Fine-Tuning of SA and GA Algorithms
In Section 2.3.3 we presented our implementations of the SA and GA algorithms. At
this point we present some indicative results of these algorithms for different sets of
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parameters and justify the choice of version for each of them, to be used in the subsequent
experiments.

Simulated Annealing: We have implemented SA with and without a convergence
criterion. A convergence criterion means that SA will terminate if, within a window of
iterations, it does not improve its result by a significant value. The size of the window
as well as the expected improvement are parameters. This early termination cuts down
on execution time, sacrificing a chance to find a more efficient solution in the remaining
iterations. At the top part of Figure 2.12, we observe that this efficiency penalty is less
than 2% of the system efficiency scale, thus we choose the convergence criterion version
for the subsequent experiments. However, no version is strictly better and the decision
depends on the combination of optimization goals.
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Figure 2.12: Fine-tuning of SA (top) and GA (bottom) algorithms.

Genetic Algorithm: The genetic algorithm on the other hand, operates on a population
of predefined size for a sequence of generations. The lower part of Figure 2.12 illustrates
part of our exploration for fine-tuning these parameters. We call the genetic algorithm
versions GA_X_Y, where X is the population size and Y the number of generations. We
observe that, close to the end of the simulation, GA_24_4 trails behind GA_48_6 by less
than 2.5% of the System Efficiency scale, whereas GA_18_3 trails GA_24_4 by more
than 4% of the same scale. We choose to use GA_24_4 for the subsequent experiments,
again noting that no version is strictly better, as scaling down the algorithm has execution
time and memory utilization benefits, while scaling it up provides more efficient system
configurations.
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2.4.3 Lifetime System Efficiency Evaluation

After settling with one version of each algorithm, we go on to compare them in terms of
achieved System Efficiency (SE), using the experimental setup described in Section 2.4.1.
For this evaluation, we use the “baseline” and “weak component” fault scenarios described
in Section 2.4.1.2 and run the experiments without and with system reconfiguration cost
constraint, as this was defined in Section 2.2.3. For the simple application model we
compare the following algorithms: INCR-1 followed by PREC (INCR-1 + PREC),
INCR-2, SA with convergence criterion (SA convergence) and GA_24_4. For the
application described by a DAG, we compare the following algorithms: DAG-GD, SA
with convergence criterion (SA convergence), and GA_24_4.

Results for SE over time for the simple use case are illustrated in the plots of
Figure 2.13. The topmost solid line of each plot indicates the SE achieved by a runtime
manager which always chooses the optimal configuration. Colored solid lines show the
SE of the various algorithms. The left-side plots illustrate simulation results, while the
right-side plots show SCC emulation results. Note that each line consists of 1000 data
points (one for each day). We stress one point every 200 days with a different symbol for
each algorithm, merely to make visual comparison easier. Also note that SCC emulation
results show more abrupt changes (occasionally resembling step functions) because of the
much lower number of total experiments, whereas for simulation results, the increased
number of experiments smoothens the lines.

We observe that, when reconfiguration cost constraints are not considered, the custom
heuristics keep up quite well with the more complex algorithms. Specifically, in the
baseline scenario, both INCR1+PREC and INCR2 deliver higher efficiency than SA
convergence and GA_24_4 for the first 20% to 30% of the total expected lifetime and are
only 8% (INCR2) and 13% (INCR1+PREC) worse than GA_24_4 and on par with SA
convergence near the end of the lifetime. The early advantage is due to the incremental
nature of the solutions produced by the custom heuristics, resulting to linear degradation
in the early stages, while the other algorithms show a small dip in efficiency and only
after this they start to degrade linearly. In the weak component scenario, this advantage
is less apparent, as the weak component often produces an early critical failure, thus the
early advantage in the simulations lasts only for the first 10% of the expected lifetime
and the disadvantage compared to GA_24_4 near the end grows to 20% and 26% for the
two custom heuristics. However, the custom heuristics improve substantially in the SCC
experiments of this scenario, as INCR1+PREC remains better for the first 55% of the
lifetime and is on par with the more complex algorithms near the end.

When introducing a reconfiguration cost constraint, the custom heuristics show
comparatively worse results. The early advantage period is now shorter (between 5% and
20% of the total lifetime) and, near the end of the experiment, they lag behind GA_24_4
by 34% to 44% (INCR2) and 60% to 80% (INCR1+PREC). The deterministic nature
of the custom heuristics makes it harder to satisfy the constraint, contrary to the other
algorithms that are allowed to try a higher number of random solutions and, during the
process, discard invalid ones. As non-satisfaction of the constraint leads to system failure,
this penalizes custom heuristics’ efficiency heavily.



2.4. EVALUATION 43

0.9

Optimal INCR-1 + PREC INCR-2 SA convergence GA_24_4

Days( 1 → 1000 )

0 100 200 300 400 500 600 700 800 900 1000

S
y
s
te

m
 E

ff
ic

ie
n

c
y

0.5

0.6

0.7

0.8

0.9

(a) Baseline, no constraint, simulations
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(b) Baseline, no constraint, SCC runs
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(c) Baseline, constraint, simulations
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(d) Baseline, constraint, SCC runs

Days( 1 → 1000 )

0 100 200 300 400 500 600 700 800 900 1000

S
y
s
te

m
 E

ff
ic

ie
n

c
y

0.4

0.5

0.6

0.7

0.8

0.9

(e) Weak comp., no constraint, simulations
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(f) Weak comp., no constraint, SCC runs
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(g) Weak comp., constraint, simulations
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(h) Weak comp., constraint, SCC runs

Figure 2.13: System Efficiency in time for the use case of standalone tasks, both fault
scenarios, without and with reconfiguration cost constraint. The black line at the top of
each plot is the optimal SE. For each scenario, simulation results are shown on the left
plot and SCC results on the right.
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(a) Baseline, no constraint, simulations
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(b) Baseline, no constraint, SCC runs
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(c) Baseline, constraint, simulations
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(d) Baseline, constraint, SCC runs
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(e) Weak comp., no constraint, simulations
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(f) Weak comp., no constraint, SCC runs
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(g) Weak comp., constraint, simulations
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(h) Weak comp., constraint, SCC runs

Figure 2.14: System Efficiency in time for the DAG use case, both fault scenarios, without
and with reconfiguration cost constraint. The black line at the top of each plot is the
optimal SE. For each scenario, simulation results are shown on the left plot and SCC
results on the right.
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Lastly, comparing to the optimal manager, we observe that, even at the end of the
expected lifetime, at least one algorithm (usually GA_24_4) delivers average system
efficiency less than 15% worse than the optimal. This is the widest margin observed
throughout the whole expected lifetime. In most cases the best algorithm stays within a
margin of 10% from the optimal until the end.

The same results for the DAG application are shown in Figure 2.14. In this use case,
we observe that the custom heuristic, DAG-GD does better in both fault scenarios when
there is no reconfiguration constraint. It stays ahead of SA convergence and GA_24_4
for 55 to 100% of the total lifetime, and is 7% better to 2% worse at the end. When a
constraint is enforced, DAG-GD is punished less than the simple case custom heuristics,
INCR1+PREC and INCR2. It still remains better for the first 25% to 60% of the total
expected lifetime and only shows a sharp decrease of efficiency during the second half of
the experiments, resulting to a final efficiency only 6% to 30% worse than SA convergence
and GA_24_4.

Furthermore, for the DAG use case, the best algorithm always stays within a 10%
efficiency margin compared to the optimal. The largest discrepancy we can observe is for
the simulations of both the baseline and weak component scenario with a constraint, for
which the best algorithm is 9% worse than the optimal, close to the end of the experiments.
Lastly, for this use case, GA_24_4 is not as much better than SA convergence as it was
in the simple use case. In six of the eight plots we see the two algorithms performing
similarly, and GA_24_4 is visibly better only for the baseline scenario without constraint.

2.4.4 Response Time

In this Section we present results about the response time of each algorithm, for the
system which we used for our experiments, as well as systems consisting of 2, 4 and 8
times more components as well as tasks, to observe how this response time scales with
the problem size. Response time is important for applications that need to be back up and
running as soon as possible in the event of a component failure. This observation also
stresses the importance of a system reconfiguration cost constraint, as was used in half of
our experiments: The sum of the algorithm response time, plus the system reconfiguration
time is equal to the time the system will remain offline because of a component failure
event.

Execution times for all algorithms and for both use cases are given in Table 2.1.
In each subsequent column, we multiply both numbers of system components (κ) and
application tasks (τ ) by two, resulting to a four times larger problem size. For this
experiment, we mainly care about how execution times of different algorithms compare
to each other and how they scale with respect to the input size. Thus, execution time is
measured on the machine most conveniently available to us - one logical core of an Intel
i7-2600 processor of an office PC, clocked at 3.4 GHz. All execution times are expressed
in µsecs. Lastly, the table also lists some versions of SA and GA that were rejected in
fine-tuning, to give a better perspective of the execution time - solution quality tradeoff.

We observe that most algorithm response times roughly agree with their asymptotic
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Table 2.1: Execution time (in µsecs) on a typical office PC for different algorithms and
problem sizes, expressed in number of components (κ) and tasks (τ ).

Individual Tasks Use Case

Problem Size: κ = 4
τ = 7

κ = 8
τ = 14

κ = 16
τ = 28

κ = 32
τ = 56

INCR1 + PREC 1.8 2.2 12.2 12.4
INCR2 1.6 2.1 18.8 22.5

SA fixed 60.8 119.1 165.4 208.5
SA convergence 22.7 36.1 51.6 81.0

GA_48_6 128.3 210.2 348.2 597.8
GA_24_4 59.0 91.1 165.0 306.1

DAG Use Case

Problem Size: κ = 4
τ = 9

κ = 8
τ = 18

κ = 4
τ = 36

κ = 32
τ = 72

DAG_GD 3.5 6.7 21.4 29.1

SA fixed 73.7 142.2 222.1 280.9
SA convergence 27.3 49.7 73.7 91.6

GA_48_6 159.3 312.3 463.8 720.9
GA_24_4 77.3 146.9 219.2 332.0

complexity. One might have expected the response time of a O(κ ∗ τ) algorithm to
increase by a factor of 4 when both κ and τ double, but we have already mentioned that
the loop boundaries which determine the complexity are quite pessimistic. Specifically,
for a problem size increase of 64 times (that is, comparing the first and fourth column
of the table), the execution time of the three heuristics grows by a factor of 6.9 (INCR1
+ PREC), 14 (INCR2) and 8.3 (DAG-GD). Thus, they can be used on arbitrarily large
systems, without concerns about their execution time.

Furthermore, despite the fact that execution time of Simulated Annealing and Genetic
Algorithm grows at a relatively slower pace, these algorithms are noticeably slower for
all problem sizes. SA_convergence is one order of magnitude slower for the smallest
problem size and 3 to 7 times slower for the largest problem size, compared to custom
heuristics. Respectively, GA_24_4 is 22 to 37 times slower than custom heuristics for a
small size and remains 11 to 25 times slower for the largest size. However, the difficulty
of custom heuristics to satisfy reconfiguration cost constraints hints at the idea to use
a combination of algorithms to achieve both low average response time and constraint
satisfaction. A custom heuristic can be used first and, in case it fails to find a valid
configuration, it can be backed up by SA or GA.

2.5 Degradable Component Characterization

So far in this chapter we have assumed the existence of degradable hardware components.
Furthermore, we have claimed that it is possible to characterize these components with
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respect to their performance and energy efficiency degradation, whenever reconfiguration
is used to isolate a permanent fault. This characterization produces the necessary
annotations that are part of the high-level system description provided in Section 2.2. In
this section, we present one methodology to perform such characterization, focusing on a
popular paradigm of fault-tolerant components: reconfigurable arrays of microprocessors
consisting of Substitutable Units (SUs) [9, 11, 52, 55, 59].

Subsection 2.5.1 that follows, contains some necessary background on how these
reconfigurable processor arrays work and a brief description of the steps we take for their
characterization.

2.5.1 Background

One strategy which has been very popular in recent years is reconfigurable processor
arrays [52] [10] [11] [9]. It seems that pipeline stage granularity is currently considered a
promising choice in combined terms of permanent fault tolerance and related overheads.
However, as was demonstrated in [55], the ideal SU granularity can be systematically
determined based on the overheads imposed by reconfigurability.

The concept of reconfigurable processor arrays is illustrated in Figures 2.15 and 2.16.
In a nutshell, the array consists of a number of components (e.g. microprocessors),
all of which work normally in the fault-free case. Each component is comprised of
smaller parts called Substitutable Units (SUs). As Figure 2.15 shows in detail, there are
interconnections between SUs, which can be configured using switches. As Figure 2.16
shows, this reconfigurability can be used to connect SUs coming from different faulty
components, to form new fault-free components. Optionally, the array can be augmented
with FGPA-like, fine-grain reconfigurable fabric, providing more flexibility: any type
of SU can be instantiated on this fabric, allowing the formation of more components in
the case that many SUs of the same type become faulty. As an example, for the array of
Figure 2.16 three components can be salvaged using the fine-grain fabric, but only two
without it. This flexibility comes at a significant area cost.

Referring to the visual representation of Figure 2.16, the components are also called
rows and the sets of identical SUs are also called columns of the array. Furthermore,
modifying connections between SUs is henceforth called coarse-grain reconfiguration.
When the fine-grain fabric is also used, the respective term is mixed-grain reconfiguration.

In both means of reconfiguration, connecting SUs of different rows creates longer
connections, penalizing the formed components in terms of performance. We have
explored two options for this penalty to be expressed: longer connections resulting to
significantly lower clock frequency and registers between the array columns resulting
to extra cycles. Intermediate solutions have also been explored, like registers on every
second row. In this thesis, we focus on the case of registers between columns on every
row, as illustrated in Figure 2.15. We call these registers bubble stages (or simply extra
stages), since each elongates the pipeline it belongs to by one stage that does not perform
any actual computation. Clearly, having:
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Figure 2.15: A reconfigurable processor array of two components with extra fine-grain
fabric. Note the reconfigurable switches between columns, used to implement the
connections between SUs and the registers used to avoid long wires that would incur
clock frequency overheads.

• non-uniform interconnect delays,

• microprocessors of variable pipeline depth and

• the option to use the slower fine-grain reconfigurable fabric

results in performance and energy efficiency degradation, that is dependent on the array
configuration. This fact stresses the need for characterization of the various components
that can be formed, as well as the array as a whole.

The characterization process consists of four distinct steps. First we run a series
of benchmarks on individual components made of SUs in the array and measure their
performance and energy efficiency degradation, with respect to a non-reconfigurable
component (Section 2.5.2). Second, we need a systematic way to obtain the status (also
called fault map) of the array, in terms of which SUs are faulty and which ones still work,
for any given scenario (Section 2.5.3). Third, we obtain, for each given fault map, an
efficient configuration of the array, telling us how many components are formed and
the type of each component (Section 2.5.4). Fourth, we combine the performance and



2.5. DEGRADABLE COMPONENT CHARACTERIZATION 49

Faulty SU

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

Instantiation of 
an ”A ”unit

                            

(b)

(c) (d)

(a)

Fine-Grain Reconfigurable Fabric

A1 B1 C1 D1

B2 C2

B3 C3 D3

A4 B4 C4 D4

Component

Substitutable
Unit (SU)

D2

A3

A2

Figure 2.16: Illustration of permanent fault tolerance in reconfigurable processor arrays.
An array with four components of four SUs each and fine-grain fabric (a). A status of the
same array (with some faulty SUs) without fine-grain fabric (b) and a valid configuration
given this status, producing two working components (c). If there is fine-grain fabric, the
same status can produce a configuration of three working components by instantiating an
extra SU of type “A” in it (d).
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energy efficiency characteristics of each component, to characterize the array as a whole
(Section 2.5.5). Section 2.5.6 contains some indicative characterization results for our
implementation [52, 55], in the form of design space exploration for every combination
of reconfiguration granularity and fault density.

2.5.2 Characterizing Individual Microprocessors
As explained in Section 2.5.1, a component which is result of reconfiguration is generally
less efficient than a component of the fault-free array, which in turn is less efficient than
a non-reconfigurable component. This degradation appears in the following ways:

• To make the processor array reconfigurable, we have to pay a flat performance,
area and power penalty per component. All of these are due to the extra hardware
required: Registers and switches between array columns, bypass buffers and
instruction-flow registers for architectural consistency and extra wiring to connect
all the above. The (optional) inclusion of fine-grain reconfigurable fabric incurs an
additional area penalty for providing the extra flexibility. Given these flat overheads,
the following points will focus on comparing a component in the fault-free state of
the array with one that results from reconfiguration after the appearance of faults.

• In terms of performance (measured in Instructions per Second - IPS), any
configuration other than the fault-free is slower than the latter. For coarse-grain
reconfigured components, this performance penalty depends on the number of
bubble stages in the component. For components making use of the fine-grain
reconfigurable fabric, on the other hand, the performance penalty can be considered
flat with respect to the bubble stages and only depends on which SU is instantiated
on the fine-grain fabric, since the fine-grain part is much slower and limits the
component performance severely - thus making the use of the extra registers
pointless.

• In terms of power dissipation (measured in Watts), coarse-grain reconfiguration
activates auxiliary components on the chip (switches and registers between SUs),
thus making a reconfigured component more power-hungry. In the case of mixed-
grain reconfigured components, power dissipation is drastically reduced by the
major reduction of the clock frequency, sometimes resulting in a component
less power hungry than the baseline one. This however does not mean that the
component can be as efficient as a fault-free one (see below).

• The above two factors can be combined in the metric of energy efficiency, which
expresses how much computation a component can perform with a given amount
of energy and is measured in IPS/Watt. In the case of coarse-grain reconfigured
components, the combined performance and power dissipation penalties guarantee
a reduction in energy efficiency. In the case of components making use of the
fine-grain fabric, what we gain in power dissipation is lost in performance (both
being effects of the lower clock frequency). However, the performance penalty
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is not redeemable, whereas the power gain is at least partially outweighed by
the power dissipation of the fine-grain fabric, resulting in a less energy-efficient
component overall in this case as well.

In order to be able to obtain performance, power and energy efficiency results for
the whole array and perform the design space exploration presented in Section 2.5.6, we
need to characterize the following kinds of individual components:

• A baseline, non-fault-tolerant component. That would be the processor we use to
build the array, but without any reconfiguration capabilities.

• A reconfigurable, but fault-free component. In other words, one formed only by
SUs of the same row in the reconfigurable array.

• Coarse-grain reconfigured components with various numbers of bubble stages,
corresponding to the various processors that can appear on a faulty array.

• Mixed-grain reconfigured components. Performance and energy efficiency
degradation depends on the type of the SU instantiated on the fine-grain fabric.

For a rapid processor implementation, a high-level description language (Lisa 2.0) was
used, through the Synopsys Processor and Compiler Designer tool. With this toolset, RTL
descriptions of our processors, as well as a simulator and a compiler were automatically
generated. Of course, this advantage of rapid implementation comes at the cost of a less
optimized RTL code, compared to a manually developed processor. Thus, the results
presented here should be considered pessimistic. Cadence Encounter RTL compiler was
used to synthesize our design at STM 65nm SP technology and to acquire measurements
of area, power, energy and timing. Additionally, for the mixed-grain array, the different
SUs were instantiated using a Xilinx Virtex-5 65nm FPGA substrate.

When using only CG parts, our adaptive processor maintains 90% of the baseline
frequency, dropping from 500 MHz to 450 MHz. Pipelines also using FG logic (denoted
as CG+FG) operate at 40% of the baseline speed (200 MHz), limited by the slowest FG
implementation of an SU. These clock frequencies were used to obtain performance and
power results.

For our evaluation we use a set of benchmarks taken from the EEMBC suite:
Autocorrelation, convolution, fixed-point bit allocation, viterbi decoder and core mark.
The results for the above benchmarks in terms of performance, power dissipation and
energy efficiency for the various kinds of components are shown in Figure 2.17. “Baseline”
refers to the non-reconfigurable component, while “CG N extra stages” is a coarse-grain
reconfigurable component that has N bubble stages. Thus, “CG 0 extra stages” is
the fault-free reconfigurable component. The last two columns represent mixed-grain
components, with the execution and decode stage instantiated on the fine-grain fabric
respectively. Based on the results illustrated in the graphs, we can make the following
observations:
Performance: The fault-free CG configuration maintains 86% of the baseline
performance and gradually drops to 73%, 63% and 43% when adding 2,5 and 15 bubble
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Figure 2.17: Characterization of various kinds of individual components using the
EEMBC benchmarks on an array of 6 rows and 4 columns. Performance (a), power
(b) and energy efficiency (c). All results are normalized to the value of the baseline
non-reconfigurable core.
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stages, respectively. Implementing a spare DC or EX in the FG logic maintains 39% and
26% of the original performance, respectively, due to the lower frequency. Note that the
missing numbers of bubbles between 0 and 15 follow the same trend.
Power: Our fault-free CG configuration consumes about 1.4 times more power than the
baseline. The power consumption increases to 1.5, 1.7 and 2 times when 2, 5 and 15
bubble stages are inserted, respectively. When using FG logic for the DC stage, power
drops to 83% of the baseline, due to the lower clock rate. In contrast, replacing the EX
stage incurs a power penalty of 50%.
Energy Efficiency: CG configurations maintain 62%, 49%, 37%, and 22% of the
baseline energy efficiency, for zero, 2, 5 and 15 extra stages, respectively. For a processor
that uses FG logic for its DC or EX stage, energy efficiency drops to 48% and 18%,
respectively.

2.5.3 Obtaining a Fault Map
The reason for having reconfigurability to begin with, is the potential existence of faults
on the chip. To evaluate any solution based on a reconfigurable array, we need to have
a systematic methodology of determining which SUs are faulty and which ones still
working. Our methodology starts from a fault density (faults/unit of area) and produces
a fault map for the array. Our fault injection methodology is based on the following
assumptions:

• The spatial distribution of faults on the chip is uniform random. This is a pessimistic
assumption, considering that faults which tend to appear in clusters would produce
more favorable fault distributions: if more faults appear on the same SU, fewer
SUs in total are faulty.

• The SUs in which each component is divided are of the same size.

As the starting point is the probability of failure of one transistor, obtaining the fault
map is approached in a probabilistic manner. Indeed, a defect density does not directly
imply how many (and which) SUs are functional or faulty. The relevant probabilistic
analysis has been thoroughly presented in [51]. For the methodology presented here, the
following paragraph summarizes the required knowledge.

As already mentioned, the input of our probabilistic model is the fault density. This
parameter is used in two ways: First, it is projected to the total area of the processor array,
which results in calculating an expected value for the total number of faults on it. This
expected value is the one visible on the “# of faults” axis in the three dimensional graphs
of Section 2.5.6. Secondly, the fault density is used to calculate the probability of any SU
to be faulty.

Allow us at this point to take one step back and focus on the possible reconfigurable
array statuses (fault maps). A status is a unique combination of fault-free and faulty
SUs. Supposing an array with R rows and C columns and excluding potential fine-grain
reconfigurable fabric, there are a total of R ∗ C SUs. Each SU has two possible statuses,
fault-free and faulty, resulting in A = 2R∗C possible statuses for the whole array.



54 CHAPTER 2. RUNTIME SUPPORT FOR GRACEFUL DEGRADATION

Returning to obtaining a fault map, we have already calculated the probability for an
SU to be faulty as a function of the fault density. Based on the assumption for uniform
random spatial fault distribution, the status of each SU is statistically independent from
the status of every other SU. This, combined with the same size assumption for SUs,
means that the probability of occurrence of a status (Pstatus) for the whole array can be
trivially computed as follows, based on the probability of one specific SU to be faulty (p),
and the number of faulty SUs in the particular status (Fstatus):

Pstatus = pFstatus ∗ (1− p)R∗C−Fstatus

Thus, at this point we know the probability of occurrence for each of the A different
array statuses (fault maps). To make use of this to evaluate the array, we need to also find
a proper configuration for the array based on each fault map. This process is described in
the next section.

It is worth noting that the analysis that follows is motivated by the need to explore
the design space defined by the possible degrees of granularity of a reconfigurable
array. As such, the results of Section 2.5.6 present performance and energy efficiency
for each combination of array granularity and fault density, based on the probabilistic
fault maps explained in this section. However, the methodology as a whole is directly
applicable to the problem of runtime management for GD. In fact, applying it in this
context is even simpler, as the fault map is provided, in a deterministic manner, by the
event generator described in Section 2.4.1.2. All other steps of the process (outlined in
Sections 2.5.2, 2.5.4 and 2.5.5, do not change.

2.5.4 Obtaining a Configuration for the Array

As has been stressed throughout this chapter, whenever reconfigurability is used to react
to the presence of permanent faults in a system, the problem is balancing the following
two desirable but contradicting qualities:

• Finding an efficient configuration and

• finding a configuration fast, so the system can resume normal operation as soon as
possible.

For the particular case of the reconfigurable processor array without fine-grain fabric,
this problem has been studied in depth by Vasilikos et al. in [58]. A number of different
algorithms were developed and evaluated in terms of execution time and accuracy
compared to the optimal, for various array sizes. Out of these, we selected a Greedy
algorithm for our evaluation, as its execution time is both very short and scalable (it is
very mildly affected by the size of the input array) and its accuracy is very close to much
slower algorithms, rarely dropping below 80% of the optimal solution, according to the
efficiency metrics defined in that paper.
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The algorithm is outlined in the pseudocode labelled Algorithm 6. It is based on
the concept of bottleneck column, meaning the column that has the minimum number
of fault-free SUs, among all columns of the array. The amount of fault-free SUs in the
bottleneck column is also the maximum amount of working components the algorithm
can produce for the particular status. The algorithms starts by finding the bottleneck
column and the amount of fault-free SUs in it (lines 7-13). Subsequently, it focuses on
each of these SUs and forms a working component with the following steps:

• It connects the SU of the bottleneck column with the closest available one of the
column to the right. It continues this process until it reaches the last (rightmost)
column of the array (lines 16-19).

• It returns to the SU of the bottleneck column and follows the same procedure to
the left, until reaching the first (leftmost) column (lines 20-23).

Algorithm 6: The greedy algorithm which produces a configuration for the coarse-
grain reconfigurable array

1: Greedy algorithm for coarse-grain arrays
2: Inputs:
3: Fault mapA. Array dimensionsR, C
4: Output:
5: ConfigurationX
6: //Find first (leftmost) bottleneck column
7: b← R
8: for j = 1 to C do
9: ifA[j].workingElements < b then

10: bottleneck ← j
11: b← A[j].workingElements
12: end if
13: end for
14: //“bottleneck” now has the index of the first bottleneck column
15: //Assign SUs to each processor
16: for j = bottleneck to (C − 1) do
17: //from bottleneck towards the end
18: X[i][j]← closestWorkingElement(A[j + 1])
19: end for
20: for j = bottleneck downto 2 do
21: //from bottleneck towards the beginning
22: X[i][j]← closestWorkingElement(A[j − 1])
23: end for
24: if X is a valid configuration then
25: returnX
26: else
27: return failure
28: end if

As [58] does not account for the existence of fine-grain reconfigurable fabric, we
have to modify the greedy algorithm for this case. The result is shown in Algorithm 7.
The modifications are summarized below:
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• In the beginning, it is decided whether the bottleneck column for the particular
array status is unique or not (lines 8-18). Note that using the fine-grain fabric
is beneficial only in the case of unique bottleneck column, as it can increase the
number of available SUs of this column by one. This would not help in case of
multiple bottleneck columns - adding an available SU to one of them would not
modify the minimum number of available SUs in any one column.

• In case the bottleneck column is unique, the fine-grain fabric is added as an extra
available SU to it, with the row index 1, as the fine-grain block is considered to
be row 1 of the array (lines 22-27). The algorithm then proceeds as in its original
version. It starts the component formation by the SU which is instantiated on the
fine-grain fabric, since it has the lowest row index from all available SUs of the
bottleneck column.

• In case the bottleneck column is not unique, the fine-grain fabric is ignored and the
algorithm continues as in the case of coarse-grain reconfigurability only.

Using the two versions of the greedy algorithm presented in this section, we can
obtain, for every possible status of the array, its configuration. This means we know, for
each status:

• The number of salvaged components.

• Whether or not there is a component that makes use of the fine-grain fabric and
which SU is instantiated on it.

• For the rest of the components, the number of bubble stages of each.

This is all the information we need to characterize the whole array for each possible
status, using the individual component characterization results of Section 2.5.2 and the
fault map obtained as explained in Section 2.5.3. In the next section we explain how this
last step is done.

2.5.5 Characterizing the whole array
Up to this point, we have presented our methodology for obtaining the following results:

• Characterization of each individual component, in terms of performance (in IPS)
and power dissipation (in Watt) based on number of bubble stages and possible use
of the fine-grain fabric (see Section 2.5.2).

• Enumeration of all possible array statuses and annotation of each status with a
probability of occurrence, based on the fault density (see Section 2.5.3).

• The number and type of components that can be formed by a fast algorithm for
each of the possible array statuses, both with or without fine-grain reconfigurable
fabric in the array (see Section 2.5.4).
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Algorithm 7: The greedy algorithm modified to also make use of the fine-grain
block

1: Greedy algorithm for mixed-grain arrays
2: Inputs:
3: Fault mapA. Array dimensionsR + 1, C
4: (row 1 is the fine-grain block, rows 2 toR + 1 correspond to the components)
5: Output:
6: ConfigurationX
7: //Find first (leftmost) bottleneck column and check if it is unique
8: b← R
9: u← 0

10: for j = 1 to C do
11: ifA[j].workingElements < b then
12: bottleneck ← j
13: b← A[j].workingElements
14: u← 1
15: else ifA[j].workingElements = b then
16: u← 0
17: end if
18: end for
19: //“bottleneck” now has the index of the first bottleneck column
20: //u is 1 if bottleneck column is unique
21: //Place the fine-grain block in the bottleneck column
22: if u = 1 then
23: for j = 1 to C do
24: A[1][j]← nonworkingElement
25: end for
26: A[1][bottleneck]← workingElement
27: end if
28: //Assign SUs to each processor
29: for j = bottleneck to C − 1 do
30: //from bottleneck towards the end
31: X[i][j]← closestWorkingElement(A[j + 1])
32: end for
33: for j = bottleneck downto 2 do
34: //from bottleneck towards the beginning
35: X[i][j]← closestWorkingElement(A[j − 1])
36: end for
37: if X is a valid configuration then
38: returnX
39: else
40: return failure
41: end if
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Based on the above, we can, for each array status and fault density, trivially calculate
the performance (in IPS) and power dissipation (in Watt) of the whole array, by means of
simple summation of the respective figures for the individual components. Subsequently,
using the probabilities of occurrence of each status as weights, we can calculate the
expected values (E) for the overall performance (E[Perf ]) and power (E[Power]) of
the array for a particular fault density, as means of weighted average of the respective
figures for each status. Lastly, the expected energy efficiency (E[Energy_eff ]) can be
trivially calculated as the product of performance divided by power:

Perfstatus =
∑

componenets

Perfcomponent

E[Perf ] =
∑

statuses

Pstatus ∗ Perfstatus

Powerstatus =
∑

components

Powercomponent

E[Power] =
∑

statuses

Pstatus ∗ Powerstatus

E[Energy_eff ] = E[Perf ]/E[Power]

These results are used to perform design space exploration as explained in the next
section.

2.5.6 Results
Throughout sections 2.5.2 to 2.5.5 we have established a methodology to obtain the
expected performance and energy efficiency of a reconfigurable processor array (with or
without fine-grain fabric) as a function of the defect density. In this section, we use this
result to perform design space exploration, aiming to determine the ideal granularity of
reconfiguration for each fault density.

Our design space is thus defined by the following parameters:

• The fault density, expressed as the expected number of faults on the whole array.
As mentioned in Section 2.5.3, a fault density implies an expected value for the
total number of faults on the array. This value is the “# of faults” shown on the Y
axis of the graphs of Figure 2.18.

• The granularity of the SU, expressed as a fraction of the whole component. Thus,
when dividing the component into C SUs, the granularity is 1/C. Granularity
occupies the X axis in the graphs of Figure 2.18. Note that granularity of 1 means
that the components making up the array are not reconfigurable and subsequently
fault intolerant. Thus, it does not even suffer the flat penalties for reconfiguration
that the components of the reconfigurable array do.
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Figure 2.18: Design space exploration of coarse-grain and mixed-grain reconfigurable
multiprocessor arrays of various granularities: performance (top) and energy-efficiency
(bottom) for different fault densities. All designs use area smaller or equal to 9 baseline
cores. Fault density is measured as the expected number of permanent faults on the area
of 9 baseline cores. Granularity is the fraction of a component that constitutes a SU.
Warm/cool colored planes correspond to coarse-/mixed-grain reconfigurable arrays.
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• The existence (or not) of fine-grain reconfigurable fabric. As previously explained,
this choice allows trading some extra flexibility with fault-free case efficiency.
On the graphs of Figure 2.18, the warm/cool colored planes correspond to arrays
without/with fine-grain fabric.

For all points of the design space (except for the ones with granularity 1), we take into
account the flat area overheads incurred by (coarse- and, whenever applicable, fine-grain)
reconfigurability. According to this, we calculate the number of components that fit in
a given area. Indicatively, in the area of nine baseline, non-reconfigurable processors,
we can fit eight reconfigurable ones of granularity 1/2 without fine-grain fabric and six
of the same granularity with fine-grain fabric. For each point of the design space, we
illustrate the following:

• The expected performance of the array in terms of IPS (top plot of Figure 2.18).

• The expected energy efficiency of the array in terms of IPS/Watt (bottom plot of
Figure 2.18).

Performance degradation when increasing the fault density is affected by two factors:

1. the number of components able to be formed

2. the fact that reconfigured components are slower than fault-free ones

The design space exploration presented above, produces the following conclusions
for different ranges of the fault density:
Low fault densities (0-4 faults): As long as the array is fault free, the non-reconfigurable
array with granularity CG(1) is obviously better, being 35% faster and 1.7 times more
energy efficient. This is also true for low fault densities of up to four faults. As there are
not many faults to isolate, the overheads incurred by reconfigurability stand out in this
case, not providing sufficient benefits to outweigh the penalties.
Medium fault densities (5-13 faults): In this range, the non-reconfigurable array
starts losing several components, making it beneficial to isolate faults with coarse-
grain reconfiguration. Indeed, the coarse-grain reconfigurable array with eight SUs per
component, CG( 1

8 ) has much more stable performance as number of faults increases
from 5 to 13, while CG(1) has a rapid performance degradation. Thus, CG( 1

8 ) catches
up and is better in this range. Additionally, CG( 1

8 ) offers better performance than any
mixed-grain alternative and 3% better energy efficiency than its mixed-grain equivalent,
CG+FG( 1

8 ). The best mixed-grain alternative for this range is CG+FG( 1
16 ), but it still

provides at least 10% lower performance and 3% lower energy efficiency than CG( 1
8 ).

High fault densities (13 or more faults): In this range of the fault density several SUs
of the array are faulty. A finer granularity means that every faulty SU corresponds to
a smaller loss of hardware resources. Thus, in this range, more SUs per component,
coupled with fine-grain fabric, yield better performance results. We observe that the
mixed-grain reconfigurable array with 16 SUs per component, CG+FG( 1

16 ) provides the
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highest and most stable performance, being around 8% faster than CG( 1
8 ). However, it

remains marginally less energy efficient than CG( 1
8 ).

In general, coarser granularities offer better performance for low fault densities, while
finer granularities provide better and more stable performance when the number of faults
increases. When it comes to energy efficiency, it has to be noted that for every fault
density, the best coarse-grain array is more energy efficient than the best mixed-grain
one, for a margin of up to 12%. Lastly, despite the rapid performance loss, the non-
reconfigurable array CG(0) remains roughly 1.7 times more energy efficient for the whole
spectrum of the fault density.

2.6 Chapter Summary
In this chapter, we present our techniques for utilizing, at runtime, the adaptability that is
present in modern multiprocessor systems, to minimize system efficiency degradation
each time a component failure event happens. The aforementioned adaptability comes
in the form of hardware reconfigurability as well as flexibility of the workload, that
can consist of tasks with different criticality levels, or alternative (e.g., lightweight)
implementations of each task.

We provide multiple implementations of a runtime manager for graceful degradation
of such adaptive multiprocessors: custom heuristics based on incremental and
precomputed solutions, as well as tailored implementations of known optimization
algorithms (simulated annealing and genetic algorithm). Our custom heuristics are found
to be at least one order of magnitude faster than SA and GA, and produce solutions of
comparable quality: making use of their ability to find an incremental solution, they
provide better efficiency for at least the first 20% of the expected total system lifetime,
while they are at most 13% worse towards the end of the lifetime, often staying on par
with SA and GA.

In some contexts, custom heuristics have difficulty satisfying reconfiguration cost
constraints. In these cases, the average efficiency they achieve is up to 80% worse than
SA and GA, because non-satisfaction of a constraint leads to system failure and a system
efficiency value of 0. However, in these cases, the cheap and fast custom heuristic can be
backed up by a slower but more consistent algorithm, such as SA and GA, to achieve
both low average response time and constraint satisfaction.

In all studied fault scenarios, our runtime manager was less than 15% worse in terms
of overall system efficiency compared to an optimal solver, and was even closer than
this for the most part of the system’s lifetime. Furthermore, the response time of all
algorithms scales in a slower than linear manner as the problem size increases, making
them suitable for systems of arbitrary size.

As the runtime manager assumes that hardware components are annotated with the
performance and energy efficiency degradation that comes with reconfiguration, we have
also presented a methodology to obtain these degradation values. The characterization
methodology focuses on a particular type of degradable component, processor arrays
with mixed-grain reconfigurability.
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By performing design space exploration we have determined the best reconfiguration
granularity for each fault density. We have found that for up to four faults in an area
of nine baseline cores, non-reconfigurable arrays (CG(1)) maintain their advantage, as
the overheads incurred by flexibility are higher than the associated benefits. However,
when the number of faults on the same area increases above four, the performance of a
non-reconfigurable array degrades rapidly, and a coarse-grain array with reconfiguration
granularity of eight substitutable units per component (CG( 1

8 )) becomes faster than CG(1)
by around 10%. When the fault density further increases to 13 or more faults on the same
area, the best design is even more flexible: a mixed-grain reconfigurable array with a
granularity of 16 substitutable units per component (CG+FG( 1

16 )) is 8% faster than and
as energy efficient as CG( 1

8 ).



3
Runtime Management for Energy

Efficiency

In the previous chapter we focused on heterogeneous, fault-prone, reconfigurable
multiprocessors running flexible workloads. The main objective was to minimize the
negative effects of permanent faults. In this chapter, we will shift the optimization
objective to energy efficiency. We still target heterogeneous systems, albeit limiting the
focus to single-ISA heterogeneity with Dynamic Voltage and Frequency Scaling (DVFS)
capability. The main challenge we choose to tackle is the unpredictably dynamic nature
of workloads. While in Chapter 2 the workload running on the system was flexible but
static (thus, its flexibility was a tool we could use for optimizing efficiency), in this
chapter we consider workloads consisting of multiple applications running concurrently,
competing for shared resources and having unpredictable spawn and termination times.
In this context, our runtime manager has to react to application spawn and application
termination events.

Heterogeneity and DVFS capability of modern multiprocessors offer flexibility, which
in turn provides knobs for trading performance for energy and vice versa, thereby
improving system efficiency. Commercial examples of such, single-ISA, architectures
include the Samsung Exynos [83] and Qualcomm Snapdragon [84] processors. They
employ multiple types of cores (power-efficient and high performance), and multiple
voltage-frequency pairs per cluster of cores. In this manner, they can potentially adapt to
the fluctuating system workload and its needs at runtime. Such runtime variations stem
from the number, type and performance requirements of the applications running at any
given time on the system. Adapting the system to these dynamic changes can balance
smooth application operation and performance with energy efficiency.

63
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In this context, choosing the optimal system configuration is often not straightforward.
Executing an application on a power-efficient core might prolong execution enough to
reduce energy efficiency, while choosing a high-performance core poses the opposite
risk - an increase of power consumption outweighing performance gains. DVFS adds
more complexity to this problem, as it is unclear how a high-performance core at a low
frequency and a power-efficient core at a high frequency compare in terms of energy
efficiency [85]. Interference between applications sharing system resources, i.e., levels of
the memory hierarchy, makes the runtime decision even harder. In conclusion, today’s
multiprocessors offer great potential for performance and energy efficiency, which is not
fully utilized due to the difficulty of choosing optimal configurations [26–28, 30].

In the past, the challenge of the system load being dynamic and unpredictable has
been answered in the following two ways. Some solutions make an one-off decision
whenever an event happens, such as an application spawning or termination. They predict
the impact of such events using offline application characterization coupled with existing
system monitoring information. Subsequently, they choose a new system configuration
aiming to maximize energy efficiency, requiring little to no corrective action until the next
event. However, predicting the performance of different applications running concurrently
and competing for shared resources, is extremely complex. This leads to other solutions
that avoid this challenge by following a trial and error approach. They begin with a
naïve, even random, placement of applications and subsequently use online monitoring
to gradually converge to a more energy-efficient system configuration, i.e., choice of
cluster frequencies and/or application placements [33, 37]. Such approaches may require
a long time to converge to a satisfactory configuration and may suffer from poor scaling
of response time when system size increases.

In the work presented in this chapter, elements of both above approaches are combined.
In response to an event (application spawning or termination), the space of possible
system configurations is partially searched, predicting the energy efficiency of different
options and selecting the best one. Subsequently, this decision can be revisited when
more accurate system monitoring information becomes available. However, our main
focus is on the initial prediction and decision step to minimize any need for subsequent
adjustments. Gradually adapting the system can be a slow and costly process, especially
when the initially selected configuration is inefficient. Thus, it is important that the first
response to an event is an efficient one.

The two main challenges of this approach are (i) creating a model which accurately
predicts performance and power for arbitrary candidate system configurations and (ii)
developing a fast and scalable decision algorithm, since it is not practical to evaluate
all possible configurations at runtime. In an attempt to face these challenges, this work
makes the following novel contributions:

• A model capable of estimating all running applications’ performance and power,
for every possible decision to be taken whenever an event (application spawning
or termination) happens. The model uses a combination of (i) online performance
monitoring, (ii) online projection of offline-acquired application performance
characteristics and (iii) static platform characterization parameters, to predict the
result of candidate decisions.
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• Three runtime heuristics that use the above model to choose a new system
configuration whenever an event happens. They select a small number of candidate
solutions to evaluate with the prediction model and make a decision that respects
all applications’ performance requirements while maximizing energy efficiency of
the system in terms of IPS/Watt.

The rest of the chapter is organized as follows: Section 3.1 summarizes related work,
positioning our novel contributions among existing literature. Section 3.2 describes
our prediction model, used at runtime to estimate performance and power of arbitrary
configurations. Section 3.3 presents our decision algorithms and analyzes them in terms of
complexity. Section 3.4 contains the experimental evaluation of our approach. Section 3.5
discusses some limitations and alternatives. Lastly, Section 3.6 summarizes the chapter
and states the main conclusions.

3.1 Related Work
There exists a substantial amount of research on energy-efficiency in heterogeneous
multiprocessor systems. We hereby attempt to identify the main features that differentiate
these works and point out our novelty with respect to these features. The most
representative works are categorized in Table 3.1.

An important categorization of existing works is with respect to the application
scenario they focus on. Some focus almost exclusively on single application scenarios [31,
33, 34], while others consider concurrent execution of multiple applications [37, 86].
A representative example of the latter group is SPARTA by Donyanavard et al. [37].
SPARTA proposes a task allocation strategy handling various mixes of single- or multi-
threaded applications, treating threads of the same application as separate tasks. As was
mentioned in the chapter’s introductory part, we specifically focus on the challenges
posed by this multiple application scenario. Nevertheless, tackling multiple, independent
applications is interesting, as it is closer to real-life use cases such as mobile devices.
Thus, we aim to maximize overall system IPS/Watt for concurrent execution. While we
don’t use multi-threaded versions, we allow multiple instances of the same application
to exist simultaneously. To further describe the targeted scenario, alongside the number
and type of applications, another important facet is the existence of requirements for
individual applications. On the currently trending cluster-based architectures, a single
application that needs to maintain a minimum level of performance can impact the energy
efficiency of a whole cluster, which is a significant part of the whole system. Thus, it is
important that the runtime manager does not raise the frequency higher than needed to
fulfill the performance requirement, as this typically results to lower energy efficiency.
Similarly to [29, 33, 37], we consider this aspect of runtime management important, thus
we equip our algorithms with the ability to satisfy individual applications’ requirements,
something that is not present in works such as [31, 32, 36].

Another important component is the combination of techniques utilized to extract
energy savings. The three main alternatives are the following:
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• Dynamic Voltage and Frequency Scaling (DVFS) [87], that focuses on selecting
cluster frequencies,

• Dynamic Power Management (DPM) [88], that allows for components that are not
currently used to be switched off and

• application placement (allocation) [89], that involves the decision of which type of
core every application will execute on.

Existing works utilize various mixes of the three techniques. Works with more focus
on single-application scenarios focus on DPM, seeking the optimal configuration of
active and inactive cores [31]. On top of this, some strategies decide the application
placement and predict the decision of the frequency governor without taking control
of the DVFS aspect [37, 38], while others also control voltage and frequency, but still
evaluate their approach for single applications [33–35]. In this work, we fully control
DVFS and application placements, while at the same time allowing the DPM governor to
turn off idle cores. Thus, our approach covers all three techniques of energy saving, as
the DPM decision is implicit given a specific placement of applications: cores that don’t
currently execute an application can be set to an idle state.

The central component of every strategy, is the set of information considered
for making decisions. In the context of energy efficiency runtime management for
heterogeneous multiprocessors, we identify three possible sources of information:

1. offline application profiling;

2. online, runtime performance monitoring;

3. predictions performed with a suitable model, each explained separately bellow.

1. Offline application profiling: Many approaches utilize application profiling data
obtained offline. For instance, DyPO by Gupta et al. [31], uses extensive offline
application profiling to create a library of possible system statuses with respect to
important metrics such as instructions retired, memory accesses and cache misses. For
each of these statuses, the optimal configuration is identified and stored. At runtime, the
system manager measures the same features online, in order to identify the library entry
that is the closest to the current status and apply the configuration that offline profiling
dictates to be the best. We agree that offline-acquired performance characteristics can
guide a decision at runtime and consider reasonable to use profiling to extract this
information. However, we identify and solve a scalability concern of such strategies: the
offline nature of profiling creates a misconception of unlimited available time, which is
not realistic. As an example, for a Samsung Exynos board with only four ARM A7 and
four ARM A15 cores, there are 4004 possible configurations. DyPO [31] tackles this
problem by selecting a representative subset of these configurations, but unfortunately
does not propose a scalable extension of this strategy to larger systems. Considering that
core count tends to increase and that an unpredictably high number of applications can
run on a system during its lifetime, we go one step further and propose a scalable strategy
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for choosing configurations for offline application characterization. Our strategy requires
a total amount of runs that is linear with respect to the number of cores. To further
ensure the scalability of this offline stage, we limit ourselves to standalone profiling of
each application, regardless of the various mixes that can appear at runtime. As will be
explained, the information acquired through profiling is adapted at runtime using our
online projection technique.

2. Online, runtime performance monitoring: Regardless of whether or not offline
profiling is used, most approaches rely on online performance monitoring, especially
works such as [37], that target dynamic multi-application scenarios, as we also do. Online
monitoring is essential for capturing varying performance characteristics of individual
applications. Such performance variations are caused by the dynamic nature of the
system workload: spawns and terminations of applications affect the contention for
shared resources, which in turn affects other applications’ performance. Taking compact,
static, application-specific offline profiling information (see previous point) and projecting
it to the dynamic, application mix-dependent status of the system, as it is measured by
online performance monitoring, is one of the core contributions of our work.

3. Predictions performed with a suitable model: Although most strategies involve
some kind of modelling of performance and power [90], there is an important distinction
in whether or not this model is used to perform explicit predictions, which in turn guide
the decisions. For instance, NORNIR proposed by De Sensi et al. [33] is a representative
example of a strategy utilizing explicit predictions. In NORNIR, a newly spawned
application, of which no prior knowledge is assumed, is first tried on a sequence of
different configurations in order to refine a prediction model during a calibration phase.
The refined model is subsequently used to choose a close-to-optimal configuration for
the steady phase. During this final configuration selection step, explicit routines predict
application performance and system power for various candidate configurations, and
the configuration with the highest predicted efficiency is selected. On the contrary, in
DyPO [31] the runtime decision for a system configuration is driven by identifying an
offline-profiled system status that is similar to the current runtime status. A configuration
that was efficient for the profiled status, is expected to also be efficient in the current
similar runtime situation, without explicit prediction of particular metrics for performance
or power. Furthermore, if we scrutinize approaches that use explicit prediction, we can
identify qualitative differences among their prediction models. The prediction model
of [37] is based on the lightweight but coarser-grain approach of simply categorizing
(binning) applications with respect to a number of compute- and memory-boundedness
criteria. In [32], the prediction model is workload-specific, requiring retraining every time
a new application mix appears. In NORNIR [33], as explained above, online calibration
(refinement) is performed instead of retraining, making it a more realistic solution for
dynamic, unpredictable scenarios. Unfortunately, the calibration phase has to attempt
an unbounded number of non-optimal configurations, thus it is still difficult to predict
its effect on the end-to-end efficiency. We achieve performance prediction by projecting
offline profiling data to the online-monitored current system status and power prediction
through characterization of the actual board, that produces a static, platform-specific
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power model involving no application-specific parameters. As such, our models perform
fine-grain performance and power prediction, without the need for retraining or runtime
refinement.

Lastly, existing works differ with respect to the strategy used to make runtime
decisions. Liu et al. [36] established that low-complexity heuristics can produce solutions
very close to the optimal, in time two to three orders of magnitude lower than optimal
solvers. However, their heuristic’s execution time scales quadratically with the number of
cores in the system, n. The allocator proposed in SPARTA [37] also includes an iterative
step, resulting in an execution time that explodes when going from a 32-core system to a
64- and 128-core system. On the other hand, Aaslaud et al. propose a linear-complexity
algorithm in [32]. Unfortunately, the fact that this heuristic is based on a model that needs
to be retrained for each application mix, is a major drawback for a runtime optimization
strategy, as it reduces its applicability when it comes to unpredictable, dynamically
changing scenarios. It is clear, however, that the complexity of the proposed heuristics
has to be carefully chosen, to trade well between solution quality and execution time. We
propose different heuristics with complexity of at most O(n ∗ log n).

Table 3.1 summarizes the most representative existing works with respect to the
aspects described above. The first column, “Mult. App.”, indicates whether or not
the proposed approach is evaluated for dynamic, unpredictable scenarios of multiple
concurrent applications, while the next column, “Perf. Req.” states whether or not it
considers performance requirements of individual applications. The next three columns
(“Energy-saving Techniques”) indicate which of the identified energy-saving knobs are
used. A parenthesized tick mark means that the technique is utilized but not explicitly
controlled. The next three columns (“Decision guided by”) indicate what kind of
information is used to guide runtime decisions. The last column, “Decision Strategy”
states if the approach uses heuristics or some other method to make decisions at runtime,
and the complexity of the heuristic where applicable.

In summary, the energy efficiency optimization approach we propose in this chapter:

• Finds a sweet spot for utilizing both offline profiling and online monitoring
information, keeping profiling scalable and confined to single applications, while
using monitoring and online projection to incorporate the dynamic, unpredictable
characteristics of the current application mix;

• Decouples performance and power prediction, performing the former as described
in the previous point, and the latter with a model trained only once for a specific
platform, since it involves only architecture-specific parameters;

• Targets a realistic scenario, as it considers concurrent execution of arbitrary
application mixes and takes care of individual applications’ performance
requirements.

The following two sections present the two main components of the proposed strategy:
Section 3.2 describes the method used to predict performance and power of different
candidate configurations, while Section 3.3 outlines our runtime algorithms that perform
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partial search of the configuration space to make decisions whenever an application
spawn or termination event happens.

3.2 Performance and Power Prediction
This section provides a detailed description of our model, used to predict the performance
and power impact of runtime decisions before applying them. Application performance
is predicted by projecting profiling information to the current system status. In turn, the
predicted performance is used as input to our power model.

Our approach revolves around different performance metrics, namely retired
instructions and accesses of all levels of the memory hierarchy, per unit of time. Thus,
on a system with two levels of cache, such as the ODROID XU3 [91] (see left part of
Figure 3.1, labelled “Hardware”), we are interested in the following metrics:

• Retired instructions per second (IPS)

• L1 data cache access per second (L1aps)

• LLC (L2) access per second (LLCaps)

• DRAM access per second (DRAMaps)

Predicting future values of these performance metrics is complicated by the
dynamically changing system status. We demonstrate this with a very simple motivating
example. We run the SP and CG benchmarks of the NAS suite [92], on a cluster of big
(A15) cores of an ODROID XU3 board, in two different setups at the same frequency:
first, standalone (one by one, on a core of the cluster) and then in parallel (on different
cores of the same cluster, but simultaneously). We observe that the performance of each
degrades by almost 20% when they execute in parallel, because of the competition for
shared resources (L2 cache and DRAM). In literature, this challenge is tackled by using
prediction models that involve parameters specific to each application mix [32]. This, in
turn, creates the need for retraining or refining the model, every time the application mix
changes.

To answer the above drawback, we introduce the technique of online projection of
profiling information. The core idea of projection is that performance characteristics
acquired by profiling a standalone application offline, can be combined with online
performance monitoring at runtime, to extrapolate the application’s behavior when it
runs concurrently with other applications. The offline profiling determines the individual
characteristics of each single application, while the online monitoring of the system’s
current status incorporates the effect of competition for shared resources, eliminating the
need for model retraining. More specifically, when profiling each application, we force it
to compete with other instances of itself for shared system resources, such as the LLC
and the DRAM. We vary the amount of competition and record how the application’s
performance varies as a result. At runtime, we use performance counters to obtain
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Figure 3.1: The ODROID XU3 hardware and our runtime.

awareness of the current level of competition for shared resources in the system. When
the profiled application spawns, we match the online measurement to the closest profiled
value and use it as a starting point to predict its performance in the current situation.

The above process is illustrated in Figure 3.2. It involves profiling an application in
several different configurations - how these are determined will be explained shortly. For
now, to keep this example simple, let us suppose that we only use two configurations:
2 and 4 instances of the application running in parallel, evenly divided between the big
(B) and little (L) cluster of an ODROID XU3, resulting to the initial states (1B, 1L) and
(2B, 2L), listed and marked with circles on the “DRAMaps initial” axis. We measure
total DRAM accesses per second (DRAMaps) for each of these scenarios. Then, for
each scenario, we spawn one extra instance on the big cluster and record the change
in the DRAMaps metric. We do the same for one extra instance on the little cluster.
These final states are marked with squares on the “DRAMaps final” axis, at the ends
of the “+1B” and “+1L” arrows. The upward-pointing arrows at the right side of the
picture represent the DRAMaps increment for each final state. At runtime, we monitor
the total amount of system DRAMaps online - marked with a horizontal dashed line
labelled “DRAMaps current”. When the specific application is spawned, we find the
initial state closest to the current DRAMaps value, in this example (2B, 2L) ¬. This
is called resembling state, since it is the one closest to the current system state with
respect to the particular performance metric. Then, if we want to place the application
on the big cluster, we follow the “+1B” line and retrieve the DRAMaps value of this
final state , which we call projected state since it represents the impact of the spawned
application on the system. To quantify the projection, we use the difference of DRAMaps
between projected and resembling state, which in this example is represented by the
solid upwards-pointing arrow ®. Adding this difference to “DRAMaps current”, gives
us the predicted value of DRAMaps (“DRAMaps predicted”) ¯, if we proceed with the
placement of the application on a big core.

Aside the competition for shared resources, application performance is also affected
by the operating frequency. To avoid profiling for every supported frequency, the
frequency effect on performance is considered by estimating a scaling factor for each
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Figure 3.2: Online projection for performance prediction. DRAM accesses per second
(DRAMaps) of an application have been profiled for various (B, L) core counts and
for their corresponding (+1B) and (+1L) configurations. At runtime, the current value
of total system DRAMaps is found to be closest to the (2B, 2L) profiled value ¬.
Assuming we want to predict DRAMaps for placing the application on a big core, we
retrieve the profiled value for the (+1B) configuration . The difference between the two
profiled values ® is added to the current DRAMaps, to get the predicted DRAMaps after
application placement ¯.

application. This factor depends on the compute- versus memory intensiveness of the
application and will be further explained in Section 3.2.1.2. Consequently, profiling
information is used to characterize each application in terms of compute- vs memory-
boundedness. At runtime, we use this information to predict the impact of frequency on
application performance. Our profiling strategy will be elaborated in Section 3.2.1 and
the resulting prediction routines will be described in Section 3.2.2.

On top of performance, we also need to be able to predict the impact of our decisions
on system power. For this purpose, we have calibrated a linear regression model which
estimates the power costs of the predicted performance metrics. This model only involves
platform-specific parameters which only have to be determined once for a given system.
Subsequently, the model can be used for any application mix. The power model is
described in Section 3.2.3.
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3.2.1 Application Profiling

As explained above, to guide the prediction of performance metrics under changing
circumstances, we perform offline application profiling. Since this has to be done
in advance, we cannot assume knowledge of the application mixes that will appear
at runtime, thus we restrict ourselves to standalone profiling of each one application,
contrary to works such as [32], which propose model training for each mix separately.
Furthermore, we note that the number of applications that can appear on a system during
its lifetime is unpredictable. Thus, it is important that offline profiling for each one
remains scalable with respect to system size, both in terms of time needed to complete
and in terms of memory required to store the results that are used at runtime.

3.2.1.1 Performance Profiling at a Set Frequency

To find out how an application performs under different levels of system workload
(knowledge that, as explained, guides online projection), we run multiple instances of
it concurrently, varying the number of these instances from one up to the total number
of cores in the system minus one. For each number of instances, we use three different
policies for placing them to cores:

1. use the biggest available core;

2. use the smallest available core;

3. use the type that currently has more available cores (resolving ties in favor of the
biggest).

For instance, when we run six instances on a system with four big and four little cores,
they are placed in the following ways by each of the three policies:

1. four big and two little cores;

2. two big and four little cores.

3. three big and three little cores.

The outcome of these runs is the set of initial states, i.e., the circles on the left side axis
of Figure 3.2 for each of the performance metrics used in our prediction.

Additionally, for each of the initial states, we perform one more run for each type
of core in the system, with one extra instance spawning on such a core, if possible. For
example, after running the initial state of three big and three little cores, we also profile
the following two states:

1. three big and four little cores (+1L);

2. four big and three little cores (+1B).
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These runs correspond to final states, i.e. the squares on the right side axis of Figure 3.2.
For each initial and final state we store the values of the four performance metrics.

The above application profiling process is performed at a single, intermediate
frequency (fc) of each cluster. We define fc to be 1.4GHz for the big cluster and 1.0GHz
for the little cluster. However, as described earlier in this section, the performance of
each application is also affected differently by frequency. It would be possible to repeat
the process in every frequency, but this would multiply both the time needed for profiling
and the size of the resulting performance characterization file by a factor equal to the
number of available frequency levels. Thus, we deal with the impact of frequency in an
orthogonal manner, explained in the following subsection.

3.2.1.2 Frequency Scaling

The effect of frequency on performance depends on the memory- or compute-
boundedness of the application. For an entirely compute-bound application, Instructions
per Cycle (IPC) are the same at every frequency, resulting to IPS scaling linearly. In
simpler terms, an entirely compute-bound routine that takes 1.0 seconds to complete at
500MHz, would take 0.5 seconds at 1.0GHz. For a more memory-bound application, the
effect of DVFS is diminished, meaning that IPC is lower at higher frequencies and the
effect on IPS is sub-linear. A memory-bound routine that takes 1.0 seconds to complete
at 500MHz, would take less than 1.0 but more than 0.5 seconds at 1.0GHz, as doubling
the frequency will only speed up computations, not memory accesses.

To trace the effect of frequency on each application, we run a single instance of
it on each core type, at every available frequency level and compute a scaling factor
(SF), which represents the average IPC degradation for a frequency increase of 100MHz.
Thus, in the general case, SF ≤ 1.0 and for an entirely compute-bound application,
SF = 1.0. We obtain one scaling factor for each core type. At runtime, the scaling of
IPC is converted to IPS. More specifically, the estimated performance IPSnew of an
application when changing the frequency from f1 to f2 is:

IPSnew = IPSold ∗ (f2/f1) ∗ SFα (3.1)

where f2/f1 is the speedup (or slowdown) of computational parts due to the frequency
change and SF a is the part of this speedup (or slowdown) that is mitigated by memory
accesses, with

α = (f2 − f1)/100MHz

being the number of 100MHz steps required to go from f1 to f2. Furthermore, for
standalone execution of an application, the rest of the performance metrics (L1aps,
LLCaps, DRAMaps) scale in the same manner as IPS, as the data access pattern remains
the same across different frequencies, thus the amount of instructions and memory
accesses is the same.



3.2. PERFORMANCE AND POWER PREDICTION 75

In summary, to profile one application on a generic board with n cores, l core types
and r frequency levels for each core type, we need the following runs:

• n ∗ 3 ∗ l runs for profiling at a set frequency, using 3 policies to create the initial
states and l extra runs for the final states, all of the above for each of the n core
counts.

• l ∗ r runs for frequency scaling profiling, as we run the application once for each
of the r available frequencies of each of the l core types.

The above defines a maximum of n ∗ 3 ∗ l + l ∗ r runs. While the number of system
cores n can be expected to increase in the future, the frequency levels r and the different
core types l are not expected to increase as radically. Thus, the asymptotic complexity of
our application profiling would be O(n), considering constant l and r. This is a loose
upper bound, as many of the configurations will occur more than once, but only have to
be profiled once. In other words there is overlap between the three placement policies
and between initial and final states. In total, on our available board of n = 8 cores, l = 2
core types and using r = 11 different frequency levels on each core type, the loose upper
bound is

8 ∗ 3 ∗ 2 + 2 ∗ 11 = 70

but because of overlap, we need to run each application in only 46 different configurations.
As an indicative comparison to existing approaches, the characterization methodology
proposed in [31], needs to run each application in 128 configurations on the same board
we use and if the same methodology were to be applied on larger systems unchanged, the
asymptotic complexity would be O((n/m)m), where m is the number of clusters in the
system.

In terms of memory requirements, our profiling file size for each application is
computed as follows: out of the 46 profiling runs, 24 are for performance profiling at a
set frequency. Each of these produces one entry for each of the four performance metrics
and for each core type. Each entry being 4 bytes, this results to 24 ∗ 4 ∗ 2 ∗ 4 = 768 bytes.
The other 22 runs are used to determine the two scaling factors (one for each core type),
which require and extra 2*4=8 bytes, for a total of 776. For a generic system, the number
of entries produced by profiling at a set frequency is proportional to the total number of
runs, resulting to the same asymptotic complexity for the required memory as for the
profiling time, that is O(n). Frequency profiling produces just l scaling factors, one for
each type of core, adding a constant factor to the memory requirements, not affecting
asymptotic complexity.

3.2.2 Performance Prediction via online projection
Our runtime manager makes decisions concerning the frequency level of each cluster and
the placement of the current workload on available cores. Thus, it needs to accurately
predict application performance as a result of the following two actions:
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1. Changing the frequency of a cluster;

2. Placing a newly-spawned application on a core.

To perform these predictions, the runtime manager combines application profiling data
with online performance measurements of the applications currently running, as shown
in Figure 3.1. At all times, the current values of the four performance metrics are known
for each application via online performance monitoring, thus also their aggregate values
for each cluster and the whole system. The following explains how predictions are
performed.

Changing frequency: One of the decisions that our runtime manager has to make,
is to determine cluster frequencies. To do so, it has to be able to predict applications’
performance at any candidate frequency. To this end, the runtime manager uses the
scaling factors of all running applications and Equation 3.1, to predict how the value of
each performance metric will change for each application. As explained in the previous
subsection, while Equation 3.1 refers to IPS, the four performance metrics are assumed
to scale identically, as the access pattern of any given application does not change.

To carry out the above process, the runtime manager needs to perform a constant
amount of calculations for each application running on the examined cluster. Assuming
that each core runs a maximum of one application, this results to an asymptotic complexity
of O(n/m), where m is the number of clusters, thus n/m is the number of cores per
cluster. In case future systems maintain a similar count of cores per cluster, this cost can
be considered constant.

Placing new application: When a new application spawns, the runtime has to choose
a cluster with an idle core for it to execute. To guide this decision, it requires the ability to
predict the effect of different placement options. This prediction is performed using our
projection technique. Below we outline the steps taken to predict all four performance
metrics, while Figure 3.3 illustrates the process for the DRAMaps metric specifically:

1. For each of the four performance metrics, the current value is determined,
consulting the latest online monitoring results ¬. These values, which are being
monitored at the current operating frequency fop, are then scaled to the performance
profiling frequency fc, using Equation 3.1 for each application currently running
.

2. For each of the four performance metrics, their profiled values corresponding to the
starting states are fetched. These values are stored sorted ®, to find, in logarithmic
time, the value closest to the current monitored value ¯. This is the value of the
resembling state, as it was defined in the opening part of Section 3.2 and Figure 3.2.
As such, it is the initial profiled state that is used for the actual projection °.

3. Next, the runtime looks for the appropriate profiled final state, that is, the final
state that corresponds to one extra instance of the profiled application on a core
of the same type as the candidate cluster. This is the projected state of Figure 3.2.
The difference between the values of the performance metric in the projected and
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Figure 3.3: Predicting performance of a newly-spawned application using online
projection. The current monitored value of DRAMaps at the operating frequency fop
¬ is scaled to the profiling frequency fc . The sorted profiled values for the new
application’s DRAMaps are fetched ® and the one closest to the current is spotted ¯ to
be used as the “resembling state” of the projection °. The resulting predicted DRAMaps
increment ± can be added to the system-wide aggregate ². The result is scaled back to
the current operating freq., fop ³.

resembling states ±, is the estimation for this performance metric, if the application
is placed on the candidate cluster. This is also how much the system-wide aggregate
value for this performance metric is expected to increase ².

4. Because this value is estimated with respect to the profiling frequency fc, it is
scaled back to the current cluster frequency, using Equation 3.1 ³.

The bottleneck of the projection process is finding the resembling value of each
metric among the O(n) sorted offline profiling values. The complexity of doing so is
O(log n).

Predictions involving multiple actions: Occasionally, the runtime manager has to
predict the impact of a decision involving multiple incremental steps of the two types
explained above (frequency scaling, application placement). To do so, it takes the
following steps:

1. It performs the required prediction for the first incremental step.

2. It updates the current system status with the predicted performance values in place
of the currently monitored ones.

3. It performs the required prediction for the next incremental step, based on the
updated system status. The process is repeated for each step.
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A good example of such a situation is the action of moving an application from one
core to another. This is approached by the runtime manager as an application termination
followed by a new application placement. The specific steps are as follows:

1. The system status is updated to reflect the fact that the application in question
will not execute on its current core anymore. More specifically, the values of the
application’s performance metrics are subtracted from the cluster- and system-wide
aggregates.

2. On this new system status, projection is performed as was described above, to
predict the application’s performance on the candidate new core.

Another example is placing a newly spawned application, at the same time increasing
the frequency of the chosen cluster (e.g., to satisfy a performance requirement of the new
application). In a similar manner as above, the following steps are taken:

1. Projection is performed to predict the performance metrics of the new application
for placement on the candidate cluster. The system status is updated by adding
the predicted performance metrics to the cluster- and system-wide aggregates, as
shown in Figure 3.3.

2. On this new system status, the frequency scaling routine is applied, to predict the
impact of increasing the cluster frequency on all applications, including the one
that just spawned and hasn’t yet started executing.

As a general rule, the runtime system always uses online monitored values, when
these exist. If such values are not available, predicted values are used instead.

Being able to predict the impact of various decisions on applications’ performance,
allows us to use these predictions to guide power estimation. This is explained in the
following section.

3.2.3 Power Prediction
Besides predicting performance, a reliable way to predict system power is needed as
well. Power prediction revolves around the same performance metrics, augmented with
characterization of a specific system to obtain energy costs for instructions and memory
accesses. Our model considers that the total power consumption of a cluster is its idle
power, incremented by the contributions of aggregate IPS and accesses to the levels of
the memory hierarchy, at a particular frequency. This is expressed by Equation 3.2, that
estimates the total power for one cluster, Pcl:

Pcl = Pidle(f) + γ ∗ IPS ∗ PI(f) + L1aps ∗ PL1(f)+

+LLCaps ∗ PLLC(f) +DRAMaps ∗ PDRAM (f)
(3.2)

In equation 3.2, Pidle(f) is the power cost of a cluster currently not executing any
application, at frequency f . IPS, L1aps, LLCaps and DRAMaps are the values for the
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performance metrics, either measured by online monitoring or predicted as explained in
Section 3.2.2. Furthermore, PI(f), PL1(f), PLLC(f) and PDRAM (f) are the energy
costs of one occurrence of each performance metric, i.e., one instruction executed, one
L1 access etc. The energy cost of one occurrence is equal to the power cost of one
occurrence per second. As the performance metrics are measured in occurrences per
second, each product corresponds to the power cost incurred by one performance metric,
e.g. L1aps ∗ PL1(f) represents the total power cost of all L1 accesses at frequency f .
Instructions are treated slightly differently, because the energy costs of different types
of instructions can vary significantly, e.g. as demonstrated by Vasilakis et al. a floating
point division on a big.LITTLE system has 4 to 8 times higher energy cost than an integer
multiplication [85]. The γ factor in the instructions term characterizes the instruction
mix of an application and covers this variability. An application instruction mix and
consequently its γ factor is assumed to be constant and is determined offline for each
application separately.

Characterizing a specific system in terms of power consumption consists of estimating
all unknown values of Equation 3.2. To do so, we use the INA231 energy sensors of our
available board [93], to measure total system power at specified intervals. Although there
are finer-grain sensors on the board (i.e. power per cluster), we consider the limitation to
total system power important, as more recent boards such as the ODROID XU4, often
come without on-chip energy sensors, because of cost concerns. Measuring total system
power is less dependent on the existence of such sensors, as it can be performed with
alternative techniques, such as a sensor connected to the power outlet [94].

The easiest to determine unknown value is Pidle. To do so, we measure the power
dissipation of the system while it executes no applications. The idle power value of
each cluster can be estimated by fixing the frequencies of all other clusters to the lowest
physically possible value, and varying the frequency of the examined cluster in steps of
100MHz. This is how we determine the values of Pidle on our available board, for each
cluster and each frequency level.

To determine the values of the coefficients PI(f), PL1(f), PLLC(f) and PDRAM (f),
we perform linear regression using measured data obtained from a mix of synthetic and
NAS benchmarks [92], covering a diverse set of situations (compute- and memory-bound,
integer and floating point arithmetic). As this is a step that needs to be performed only
once, for a given platform, we repeat the process for each frequency of each cluster. The
output of this stage is the “Platform Characterization" file in Figure 3.1, consisting of 5
floating point numbers (20 bytes) for each frequency of each cluster type.

As the training of this model only estimates platform-specific coefficients, it can be
used with any application mix without re-training. Equation 3.2 can be used at runtime
combined with performance prediction, to estimate the power impact of various actions
(application placement, frequency scaling) or events (application termination).

The ability to predict performance and power theoretically allows our runtime
manager to find the optimal configuration in terms of energy efficiency, for every
occurring event. The next section describes our runtime heuristics, that make use of
this model to perform partial search of the configuration space and produce a new
configuration in acceptable time.
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3.3 The Heuristics
The prediction model described in Section 3.2 allows our runtime manager to have an
estimation for the impact of possible decisions on power and performance. Still, it is
infeasible to evaluate every possible choice at runtime, in order to apply the best one -
especially if core count of systems continues to grow as expected. This section describes
the runtime heuristics we have developed to shorten this search.

The organization of our system is shown in Figure 3.1. The currently selected heuristic
is triggered by an event, that is a new application spawning or a running application
termination. The heuristic selects a small number of candidate solutions to evaluate,
by estimating their efficiency using the prediction model. As explained in detail in
Section 3.2, the model combines platform characterization and application profiling
information obtained offline, with runtime performance measurements obtained from the
system online, to estimate the performance and power outcome of changing a cluster’s
frequency and of placing a new application. Thus, all presented algorithms have available
the following two routines:

• frequency_predict(c, f ): Predicts the outcome of setting the frequency of cluster c
to f .

• placement_predict(a, i): Predicts the outcome of placing application a on core i.

To predict the efficiency of a new configuration, the runtime manager has to define a
sequence of steps of the above two types that lead from the current system configuration,
to the new one.

As analyzed in Section 3.2.2, these routines have a time cost of O(n/m) and
O(log n), respectively. In the following analysis, we consider the number of available
frequency levels per cluster, r, and the number of different core types, l, as constants
with respect to the total core count n.

We propose three different heuristics. They differ in the manner in which they choose
candidate solutions to evaluate. A more flexible algorithm can search a larger part of
the solution space and thus has a higher probability to find a more efficient solution. On
the other hand, its execution time is longer, and it is possible that it scales worse than a
simpler one when the system size increases.

The next three sections describe the three heuristics, followed by some notes about
all of them in Section 3.3.4.

3.3.1 Heuristic 1
The first heuristic we propose is the simplest and less flexible of the three. It is described
by the pseudocode of Algorithm 1. The algorithm starts by cycling through the system
clusters (line 6). For each cluster, it checks whether or not there is an available core (line
8). If so, it predicts the efficiency of the system if the application is placed on this free
core (line 9). The cluster that yields the best predicted efficiency and the first available
core in this cluster are chosen.
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Algorithm 0: Choose frequency
1: choose_frequency( )
2: INPUTS: Cluster index i, indexed list of available frequencies f1 to fr .
3: // f1 is the highest frequency, fr the lowest.
4: OUTPUT: Selected frequency, freq_best.
5: int high = 1, low = r, freq_best;
6: float eff_high, eff_low, eff_best;
7: for j = 1 to log(r) do
8: eff_high = frequency_predict(cluster i, frequency fhigh);
9: eff_low = frequency_predict(cluster i, frequency flow);

10: if eff_high > eff_low then
11: eff_best = eff_high;
12: freq_best = fhigh;
13: low = low - (low - high)/2;
14: else
15: eff_best = eff_low;
16: freq_best = flow;
17: high = high + (low - high)/2;
18: end if
19: end for
20: return freq_best;

Algorithm 1: Heuristic 1
1: INPUTS: Newly-spawned application appnew .
2: OUTPUTS: A core index for placement of the application and a frequency for the core’s cluster
3: //deciding core placement for the application
4: float eff_best = 0, eff_temp;
5: int placement_core = -1, placement_cluster = -1;
6: for i = 1 to m do
7: //m is the number of clusters in the system
8: if there is a core j available in cluster i then
9: eff_temp = placement_predict(application appnew , core j);

10: if eff_temp > eff_best then
11: eff_best = eff_temp;
12: placement_cluster = i;
13: placement_core = j;
14: end if
15: end if
16: end for
17: //deciding frequency of the placement cluster
18: int freq_best;
19: freq_best = choose_frequency(placement_cluster);
20: return(placement_core, freq_best);
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Subsequently, the system status is updated with the performance estimations and the
algorithm goes on to select a frequency for the chosen cluster. To do so, it calls routine
choose_frequency(), shown in Algorithm 0. This routine performs a logarithmic number
of steps (line 7). In each step, it predicts system efficiency in two extreme frequency
levels, “high” and “low” (lines 8-9). The “high” and “low” frequency boundaries are
initially set to the highest and lowest available frequency respectively. After predicting
their efficiency, the algorithm readjusts the value of either “high” or “low”, depending
on which one produced the best efficiency prediction (line 13 or 17). In this manner,
it narrows downs the candidate frequency range to half the size in each step, until one
frequency is chosen.

The process of choosing a cluster consists of m steps, each of which performs
projection, which costs log n time. The process of choosing a frequency consists of
a constant number of calls to frequency_predict(), thus costs n/m time. The resulting
asymptotic complexity is O(m ∗ log n+ n/m). The scaling of the number of clusters m
defines which of the two terms of this sum is dominant. If the number of cores per cluster
of bigger systems is the same as today’s systems (e.g., four cores per cluster),m will scale
linearly with n, making n/m constant and the complexity of Heuristic 1 O(m ∗ log n).
In the other extreme case, the number of clusters m will remain constant and the number
of cores per cluster n/m will scale linearly with n, resulting to a complexity of O(n).

Note that the pseudocode describes the way Heuristic 1 deals with a new application
spawning. All heuristics are also called whenever an application finishes execution. In
this case, the part that determines the placement of the new application is skipped (i.e.,
lines 5-16 of Heuristic 1).

3.3.2 Heuristic 2

The second heuristic, described in Algorithm 2, is similar to the first, with the extra
feature of estimating the impact of the newly-spawned application on the performance
of other applications already executing on the chosen cluster. As applications share
common resources in the system, i.e., the memory hierarchy, the performance of already
running applications will be affected by the placement of a new one, thus re-estimating
said performance is expected to yield more accurate results. This additional feature
can be spotted in lines 9 to 11. Here, the algorithm cycles through all cores of the
currently examined cluster. For each core that executes an application, it performs a
projection to predict its performance in the new, more contested state and overwrites
current monitoring data of these applications with the predicted values. Otherwise, just
like Heuristic 1, this algorithm chooses the cluster and core with the highest predicted
system efficiency and then chooses a frequency for this cluster. Just like Heuristic 1, if the
calling event was an application termination, lines 4-18, corresponding to the placement
decision, are skipped. Heuristic 2 performs m sets of up to n/m projections, resulting to
a time cost of O(n ∗ log n).
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Algorithm 2: Heuristic 2
1: INPUTS: Newly-spawned application appnew .
2: OUTPUTS: A core index for placement of the application and a frequency for the core’s cluster
3: //deciding core placement for the application
4: float eff_best = 0, eff_temp;
5: int placement_core = -1, placement_cluster = -1;
6: for i = 1 to m do
7: if there is a core j available in cluster i then
8: eff_temp = placement_predict(application appnew , core j);
9: for all cores k in cluster i except j do

10: eff_temp = placement_predict(application appk , core k);
11: end for
12: if eff_temp > eff_best then
13: eff_best = eff_temp;
14: placement_cluster = i;
15: placement_core = j;
16: end if
17: end if
18: end for
19: //deciding frequency of the placement cluster
20: int freq_best;
21: freq_best = choose_frequency(placement_cluster);
22: return(placement_core, freq_best);

3.3.3 Heuristic 3

The third heuristic, described by Algorithm 3, is the most complex of the three, as it is the
only able to take corrective action, by moving already placed applications between cores.
As such, it is the only heuristic that allows for revisiting and modifying previous runtime
decisions. Initial decisions are made using profiled application information. Revisiting
an initial decision allows the use of real, monitored performance data, in place of less
accurate predicted performance, about an application.

Heuristic 3 starts by choosing a placement for the new application in the same manner
as Heuristic 2 (lines 5-17). Subsequently, it chooses a currently running application to be
moved to a different core. To do so, it evaluates the efficiency of each running application,
based on its actual online monitored performance and its estimated power, calculated
with Equation 3.2 (lines 18-28). Next, it chooses a target core for this application on
a different cluster aiming to maximize efficiency (lines 29-43), again using the same,
projection-based method we use to select a cluster for a new application. Lastly, the best
frequencies are chosen, both for the placement cluster of the new application as well
as for the target cluster of the moved application (lines 55-59). Note that in case the
algorithm was called as a result of an application termination, only the new application
placement part is skipped (lines 5-17). Moving applications is still possible.

The three main for-loops of Heuristic 3 have an asymptotic complexity ofO(n∗log n),
O(n) and O(n ∗ log n), respectively. Thus, its overall complexity is O(n ∗ log n), but
in absolute terms it is expected to take longer than Heuristic 2, despite having the same
complexity.
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Algorithm 3: Heuristic 3
1: INPUTS: Newly-spawned application appnew .
2: OUTPUTS: A core index for placement of the application and a frequency for the chosen cluster. A

(source, target) pair for moving a running application from the source core to target core and a frequency
for the target cluster.

3: //deciding core placement for the new application
4: float eff_best = 0, eff_temp; int placement_core = -1, placement_cluster = -1;
5: for i = 1 to m do
6: if there is a core j available in cluster i then
7: eff_temp = placement_predict(application appnew , core j);
8: for all cores k in cluster i except j do
9: eff_temp = placement_predict(application appk , core k);

10: end for
11: if eff_temp > eff_best then
12: eff_best = eff_temp;
13: placement_cluster = i;
14: placement_core = j;
15: end if
16: end if
17: end for
18: //finding current least efficient application
19: float app_eff, worst_app_eff =∞; int source_core = -1;
20: for i = 1 to n do
21: if core i currently executes an application then
22: app_eff = estimate_app_efficiency(core i);
23: if core_eff < worst_core_eff then
24: worst_core_eff = core_eff;
25: source_core = i;
26: end if
27: end if
28: end for
29: //deciding core placement for the moved application
30: eff_best = 0, eff_temp; int targer_core = -1, target_cluster = -1;
31: for i = 1 to m except cluster of source_core do
32: if there is a core j available in cluster i then
33: eff_temp = placement_predict(application appsource_core, core j);
34: for all cores k in cluster i except j do
35: eff_temp = placement_predict(application appk , core k);
36: end for
37: if eff_temp > eff_best then
38: eff_best = eff_temp;
39: target_cluster = i;
40: target_core = j;
41: end if
42: end if
43: end for
44: //deciding frequency of the both affected clusters
45: int freq_best_1, freq_best_2;
46: freq_best_1 = choose_frequency(placement_cluster);
47: freq_best_2 = choose_frequency(target_cluster);
48: return(placement_core, freq_best_1, source_core, target_core, freq_best_2);
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3.3.4 Dealing with Performance Requirements

Concluding our heuristics’ description, we present some rules concerning specific cases,
mainly dealing with applications that have a performance requirement and require priority
treatment. The notes of this subsection do not change the complexity of any algorithms
and were left out of the initial description to reduce clutter.

First, any system configuration that does not respect performance requirements
of applications is considered invalid and cannot be chosen. This is implemented by
having the various routines return an efficiency value of 0 if the IPS prediction of an
application is below the required. To exemplify, in line 9 of Algorithm 1, the routine
placement_predict() is called, which involves predicting the IPS of application appnew.
If this predicted IPS is lower than the performance requirement of appnew, the routine
returns an efficiency value of 0, ruling out this placement option. Another example is
routine frequency_predict() in line 9 of Algorithm 0. If the low frequency does not satisfy
some application’s performance requirement, it is considered to have an efficiency of 0.
Note that the above means that an application not currently fulfilling its requirement is a
candidate to be moved to a bigger core by heuristic 3, as its estimated efficiency is also 0.

On a related note, all algorithms’ decisions are partially based on predictions,
which cannot be perfect. When performance requirements exist, this inaccuracy has to
be outweighed by a degree of pessimism in the decision. To achieve this, a slack
value is defined for each algorithm. Whenever the performance of an application
with a requirement is predicted, the algorithm attempts to fulfill a tighter requirement
IPS_tight, instead of the real one, IPS_min, such that:

IPS_tight = IPS_min ∗ (1 + slack)

The choice of slack values in our experiments was guided by the average and worst-case
inaccuracy of our performance model, presented in Section 3.4.1.

Furthermore, applications with a requirement are given priority over other applications
when it comes to core placements. When a constrained application is placed, all cores
executing a non-constrained application are considered potentially free (of course, an
actually free core on the same cluster is always preferred). Thus, checks such as line 8 of
Algorithm 1, take this into consideration. The application that is bumped out of a core in
this case is placed on the most similar available core.

Lastly, an application which cannot be placed because there is no available core in
the system, is put on hold until a core becomes available. In accordance with the rule
stated in the previous paragraph, this is not true if the application has a performance
requirement - in which case, a different application is paused.

3.4 Evaluation

In this section we present experimental results evaluating our energy efficiency
optimization approach. Our experiments were performed on an ODROID XU3 board [91],
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which is built around an Exynos 5422 Processor, consisting of a cluster of four “LITTLE”
Cortex-A7 cores and a cluster of four “big” Cortex-A15 cores. Each core has a private L1
data cache of 32KB, while L2 is shared per cluster and is 512KB for the little cluster and
2MB for the big. The two clusters share a 2GB LPDDR3 RAM main memory. The block
diagram of the Exynos chip is shown at the left part of Figure 3.1, labelled “Hardware”.
We have determined the frequency range of the little cluster to be between 500MHz
and 1.4GHz and that of the big cluster between 800MHz and 1.8GHz - both in steps
of 100MHz. We have observed that scaling the frequency below these points does not
reduce the voltage, offering diminishing power benefits. Other related works have limited
the frequency range similarly [37].

We have used two sets of applications in this work. The first consists of NAS [92] and
synthetic benchmarks listed in the top half of Table 3.2 and was used for calibrating the
power estimation model expressed by Equation 3.2. The second set consists of NAS [92]
benchmarks, the automotive MiBench suite [80] and miscellaneous benchmarks listed in
the bottom part of Table 3.2 and was used to evaluate our proposed approach. We tried to
have a balanced mix of compute-and memory-bound applications in both sets, to achieve
both a good model calibration and a fair evaluation. When it comes to choosing which
NAS benchmarks are part of our evaluation suite, we select the ones the execution time
of which is of the same order of magnitude as the rest of the benchmarks (typically less
than a minute on a big core), to keep experimentation time within practical boundaries
(around ten minutes per run).

The application spawning for the experiments described in Sections 3.4.1 and 3.4.2
is done with an event generator tool, based on the same mathematical foundation as
the one described in Section 2.4.1.2 of Chapter 2. In this case, the tool generates
exponentially distributed application spawn events based on the following parameters for
each application:

• A spawn rate, determining how often the application spawns. Multiple concurrent
instances of an application are allowed to exist, so we run multiple random
simulations of the exponential distribution in parallel, some of which will spawn
an event in the allotted time.

• A workload range that determines how long the application will run, defined
by a minimum and maximum number of iterations that have to complete before
terminating. For each spawn event, a value from this range is chosen in a uniform
random manner. The runtime manager is not aware of this number, as completion
times are supposed to be unpredictable.

• A probability of the application having a performance requirement, and a range
of possible performance requirements, expressed in IPS. The event generator first
decides whether or not the spawned application has a performance requirement
and if so, it chooses a performance value from the available range in a uniform
random manner.

The runtime manager runs on a little core, unless otherwise noted.
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Table 3.2: The applications used for calibration of the power prediction model (top) and
for evaluation (bottom).

Calibration Applications
FT - Class A (NAS) BT - Class A (NAS)
MG - Class A, 2 different phases (NAS) LU - Class A, 2 different phases (NAS)
EP - Class A (NAS)
FP arithmetic (synthetic) Integer arithmetic (synthetic)
Vector with random column multiplication (synthetic)

Evaluation Applications
CG - Class A (NAS) IS - Class A (NAS)
SP - Class A (NAS) Bitcount large (MiBench)
Basicmath large (MiBench) Qsort huge (MiBench)
Susan large, all parts (MiBench) NQueens_15 (Miscellaneous)
Linpack_2000 SP (Miscellaneous) Matmul_512 DP (Miscellaneous)
Whetstone DP (Miscellaneous)

3.4.1 Exhaustive Evaluation for Single Events
In this section we perform exhaustive evaluation of the prediction model and the heuristics,
by comparing to an oracle model and an exhaustive search algorithm, respectively. We
base this evaluation on nine representative application spawn events and examine in depth
our model’s and heuristic’s response to them. The nine events are created as follows:

1. With our event generation tool, we construct three starting states for the system,
corresponding to low (25%), medium (50%) and high (75%) core utilization.

2. We select three of the evaluation applications: Basicmath being completely
compute-bound, Matmul as the most memory-bound (we set the matrix size to a
high enough value to make it so) and IS as one of the intermediate applications in
terms of memory boundedness.

3. We spawn each of the three applications on each of the three starting system states,
thus creating nine distinct and diverse events.

For each event, we enumerate all possible configurations, in other words all
combinations of new application placement, frequency of little cluster and frequency of
big cluster. We use our model to predict performance, power and energy efficiency (in
terms of IPS/Watt) for each possible decision (system configuration). Then, we apply all
possible decisions one by one and measure the actual performance, power and efficiency.
The left part of Table 3.3, titled “Model Misprediction” shows, for each event, the average
inaccuracy of our model in predicting these three figures, across all possible decisions.

We observe that both parts of our model perform satisfactorily, as the average error
is always less than 10%. Performance prediction is more accurate (2.5% average error)
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than power (6.1% average error). In some cases performance and power mispredictions
add up, resulting to a higher efficiency error (e.g. event #1), while in other cases the
opposite happens (e.g. event #6). Furthermore, the performance of the compute-bound
application Basicmath is easier to predict (maximum average error 1.52%), as it does not
depend much on contention for shared resources, thus it is more straightforward to infer
from offline data. However, the performance misprediction for IS and Matmul, which are
harder to predict, is not much worse (maximum error 4.68%).

Subsequently, for each event, we compare the efficiency of the following four runtime
managers:

1. An exhaustive oracle predictor that uses the actual measurements to exhaustively
search and select the most efficient configuration. As it always makes the optimal
choice, this manager is used as a baseline.

2. Our prediction model, exhaustively evaluating all possible decisions and applying
the one it thinks best. Comparing this manager to its oracle counterpart (1.)
evaluates our prediction strategy, independent of the heuristics’ quality.

3. Heuristic 1 guided by an oracle predictor. Comparing this manager to its exhaustive
counterpart (1.) evaluates our basic heuristic independent of the quality of our
prediction model.

4. Heuristic 1 guided by our prediction model. Comparing this manager to (1.) which
is both oracle and exhaustive, evaluates our complete proposed approach.

The last two steps focus on only one heuristic, due to the complexity and duration of the
required exhaustive experiments. However, the efficiency of the rest of our heuristics is
comparatively evaluated in the next subsection. The right half of Table 3.3 shows the
efficiency loss of using managers (2.) (“Model + Exhaustive”), (3.) (“Oracle Model +
Heuristic”) and (4.) (“Model + Heuristic”), compared to the optimal exhaustive oracle
predictor (1.).

When it comes to accuracy of the final decision, we observe that the efficiency loss of
exhaustively evaluating all possible configurations with the model (Model + Exhaustive),
is 3%, which is lower than the average misprediction of the model (6%). This happens
because misprediction is usually uniform among different configurations (i.e. either
always optimistic or always pessimistic). Thus, despite the absolute error, the model
consistently captures the efficiency trend, resulting to a configuration very close to the
optimal one (same placement of the new application, very similar cluster frequencies).
The only exception is event #5. For all three IS scenarios, the placement decision (big or
little core) makes less than 10% difference in the final efficiency. Thus, in one case the
misprediction was enough for the model to choose the wrong core placement, resulting
to 8.0% energy efficiency loss compared to the optimal. Furthermore, when applying
Heuristic 1 guided by the oracle predictor, we get an average 2.5% energy efficiency
loss compared to the optimal, proving that the heuristic searches the correct part of the
solution space - the efficiency loss is due to small deviations from the optimal frequencies.
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This is only slightly increased to 3%, when we use the actual model in place of the
oracle, reinforcing our previous point of the model misprediction being absorbed when
comparing different candidate configurations.

3.4.2 Evaluation with Dynamic Scenarios

In this section we evaluate our approach as a whole, with an extensive set of unpredictable,
dynamic multi-application scenarios. We have combined the evaluation applications of
Table 3.2 into eight application mixes, summarized in Table 3.4. Mixes 1 to 3 consist of
applications coming from the same source (NAS, MiBench automotive and miscellaneous
benchmarks). Note that mix 2 is also used in similar experiments of [37]. Mixes 4 to 8
aim to create different combinations of compute- and memory-bound applications. We
have sorted all applications in order of decreasing scaling factor (SF) - the lower the SF,
the more memory-bound the application is. Based on this classification, we include the
most compute-intensive applications in mix 4, the most memory-bound ones in mix 5
and the intermediate ones in mix 6 (hence called “Uniform Balanced”). Mixes 7 and 8
are also balanced, but they include applications from both extremes, instead of just the
intermediate group.

For each of the eight mixes, we use our event generator to create 20 sequences of
application spawns in random, exponentially distributed moments in time. Among the
20 event sequences, we vary the applications’ spawn rates in such a way that the peak
system utilization is expected to be 25% in the first sequence, to 75% in the last. We
allow applications to spawn during the first two minutes of each run. Subsequently, we
carry on the run until all applications have terminated. We evaluate the efficiency of
the run in terms of average IPS/Watt, based on the total instructions executed across all
applications, the total time that the experiment took until all applications’ completion
and the average power during this time.

In the experiments of this section, we evaluate all three of our heuristics. On top of
this, we also evaluate an alternative version of Heuristic 3 (called “Alt. Heuristic 3”): in
this version, in addition to application spawns and terminations, the algorithm is also
called whenever a running application completes one iteration and updates its online
monitoring data. In this manner, we give Heuristic 3 the chance to take corrective action
in more regular intervals. We compare our heuristics both with each other and with
existing Linux governors, namely the powersave, interactive and ondemand governors,
as is common in related works [31, 32]. For all experiments, we keep the default idle
governor active, allowing it to put cores to idle states, when they do not execute an
application [95]. Generally speaking, the powersave governor is more energy-efficient, as
it chooses the lowest available frequency, which tends to be the most efficient, especially
in the range we have chosen to allow. On the other hand, for the same reason, the
powersave governor cannot fulfill performance requirements of applications, contrary to
both interactive and ondemand, that prefer higher frequencies. To provide a complete
and fair evaluation versus all available governors, we perform the following two separate
sets of experiments:
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Table 3.4: Application mixes used for energy efficiency evaluation of the proposed
heuristics.

Mix # Description Applications

1 NAS Benchmarks CG, IS, SP
2 MiBench Benchmarks Basicmath, Bitcount, Qsort, Susan
3 Miscellaneous Benchmarks Linpack, Matmul, Whetstone, NQueens
4 Compute-bound Basicmath, Bitcount, Whetstone, NQueens
5 Memory-bound Matmul, CG, SP
6 Uniform balanced Susan, Linpack, IS
7 Non-uniform balanced Basicmath, SP, Linpack, Susan
8 Non-uniform balanced Bitcount, CG, Linpack, IS

1. Ignoring the applications’ performance requirements. This set of experiments
evaluates our approach mainly versus the powersave governor, in the simpler
scenario in which performance considerations do not exist and the only goal is
maximizing energy efficiency (IPS/Watt).

2. Considering the applications’ performance requirements. To fulfill the
requirements, our algorithms have to choose, on average, higher frequencies than
in set (1). This usually entails an efficiency penalty, making it hard to compete
versus the powersave governor. This set of experiments aims to demonstrate how
our approach is able to fulfill the performance requirements, while at the same time
maintaining an efficiency advantage versus the governors that are able to achieve
this (interactive and ondemand).

The efficiency results for both sets are illustrated in Figure 3.4. The top plot (a)
shows results for set (1) and the bottom one (b) for set (2). For each application mix and
runtime manager, the efficiency shown is the mean across the 20 runs, after each run is
normalized to the value for the powersave governor. The bottom plot (b) also shows,
for each governor and heuristic, the average performance degradation with respect to
individual applications’ performance requirements.

We observe the following in Figure 3.4:
Comparison to governors: We observe that, without performance requirements, our
approach matches the efficiency of the powersave governor, being up to 3% better on
average (using Heuristic 3) and is twice as efficient compared to the other governors.
In this experiment without performance requirements, being on par with the powersave
governor is especially important. When performance requirements are introduced, our
approach can satisfy all of them, with Heuristic 3. Even Heuristic 1 satisfies almost all
requirements, resulting to an average degradation versus target performance requirement
of 0.24%. Dealing with requirements comes at an expense of 17% to 21% of energy
efficiency versus the powersave governor, which however does not fulfill requirements (it
is on average 23% off the performance target). Additionally, Heuristic 3 achieves 52%
and 58% better efficiency than the interactive and ondemand governor respectively, while
satisfying the same requirements.
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Comparison among the heuristics: The relative energy efficiency of the heuristics
depends on the scenario (application mix and presence or absence of performance
requirements). Without performance requirements, Heuristic 1 is better with mixes 2 and
4 that consist mostly of compute-intensive applications. Predictions for these applications
are more straightforward, as there is no contention in the levels of the memory hierarchy.
Thus, the simpler approach of Heuristic 1 is sufficient to detect an efficient configuration,
while heuristics 2 and 3 gain nothing by their detailed prediction and/or corrective
action capability. In fact, these extra steps are potential sources of misprediction, which
sometimes hurts decision efficiency. The opposite trend is observed for mixes 1 and 5,
consisting mostly of memory-bound applications. Performance of these applications
varies more with respect to the current system status, thus the deeper prediction scheme
of Heuristics 2 and 3 and the corrective action potential of Heuristic 3 benefit efficiency.
Balanced mixes (3, 6, 7 and 8) show the three heuristics achieving very similar results.
Still, Heuristic 3 is best in mixes 3 and 7 by 3.1% to 5.3% and is only 0.2% behind in
mix 6.

Introducing performance requirements also complicates predictions, as the runtime
manager has to raise the frequency enough to satisfy the requirement but not more, in
order not to penalize efficiency more than needed. As a result, Heuristic 1 is relatively
worse in some of the mixes (1 and 8), while it also misses more performance requirements
than the other heuristics. Its average efficiency is still as good as Heuristic 3, mainly
because of the outlier value it scores for mix 4. Heuristic 3 is best in 4 out of the 8 mixes,
while its ability for corrective action (prioritizing performance requirements when doing
so) results in all requirements being satisfied.

Comparing the original version of Heuristic 3 with its alternative version which is
invoked more frequently, we find that it does not benefit from increasing the chances for
corrective action. The reason is that, in our current implementation, application migrations
can only happen between two iterations of an application. If a migration is decided, the
iteration currently running, starts over on the new core. This generally penalizes Heuristic
3, but its importance is increased for the alternative version that performs more migrations.
Still, we occasionally notice the alternative version of Heuristic 3 performing the same
migrations as the original version, but sooner, resulting to incremental gains (mixes 5
and 7). As the original version eventually takes the same action, this benefit remains low.
However, in most mixes, especially mix 4, the alternative version migrates applications
more aggressively, penalizing overall efficiency because of the reason explained above.
Comparison to related works: Our results show improvement compared to related
works in different ways.

The most recent approach that evaluates dynamic multi-application scenarios [37],
unfortunately does not compare to the powersave governor. The most relevant comparison
to this work is versus an allocator aiming to maximize energy efficiency (MAX-EE),
which is described as “an optimal brute-force allocation for maximizing IPS/Watt”. It
has to be noted however, that this allocator occasionally achieves lower IPS/Watt than
others, meaning that it cannot be optimal with respect to the reported result. It is, of
course, possible that it is optimal in a short-term manner, with respect to individual
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Table 3.5: Execution time of the three proposed heuristics for various system and cluster
sizes.

#cores (n): 8 16 32 64 128
#clusters (m): 2 2 4 4 8 8 16 16 32

Heuristic 1
O(m ∗ log n)

Big, 800MHz 80us 104us 74us 113us 103us 146us 135us 193us 206us
Little, 500MHz 170us 240us 197us 281us 248us 338us 330us 436us 475us

Heuristic 2
O(n ∗ log n)

Big, 800 MHz 95us 144us 135us 170us 172us 241us 253us 383us 411us
Little, 500 MHz 215us 305us 297us 383us 386us 539us 550us 857us 887us

Heuristic 3
O(n ∗ log n)

Big, 800MHz 128us 202us 191us 241us 243us 347us 356us 567us 576us
Little, 500MHz 301us 409us 407us 547us 552us 761us 772us 1210us 1229us

decisions taken throughout a run - which does not guarantee optimal energy efficiency for
the whole run. Additionally, for this experiment, the various allocators being compared
are guided by an oracle predictor instead of the model proposed in the SPARTA paper.
Furthermore, although SPARTA is evaluated both through simulations and through runs
on an ODROID XU3 board, comparison with the MAX-EE allocator is only performed
in the former. Thus, on the simulated ODROID XU3, the SPARTA allocator achieves
around 3% worse energy efficiency than the brute-force MAX-EE allocator, while our
approach achieves 3% better than the powersave governor. Additionally, the execution
time of the SPARTA allocator [37] explodes when the system size exceeds 32 cores,
which, as will be shown in Section 3.4.3, is not true for our approach.

It is also important to compare with very recent works that focus on a slightly different
paradigm [31, 32], as they do not evaluate for dynamic, multi-application scenarios.
DyPO [31], which improves the results of [32], achieves 6% efficiency improvement
over the powersave governor, which is however allowed to select frequencies as low as
200MHz. On the contrary, we limit the powersave governor to a minimum frequency
of 500MHz and 800MHz for the little and big clusters, respectively, as for lower
frequencies voltage is not further reduced diminishing the power benefits. According
to our experiments, the powersave governor is at least 19% more energy efficient with
our setup. On this setup, our approach achieves 3% improvement versus the powersave
governor.

3.4.3 Execution Time of the Heuristics

In this section, we report our heuristics’ execution time and how this scales with respect
to system size. These results are summarized in Table 3.5. We have scaled the number of
cores in the system from 8 (the size of our available board) to 128. For sizes more than
eight cores, we measure execution time both for the cluster size of our available board
(four cores) and double this size (eight cores).

Comparing between the algorithms, the execution time of Heuristic 1 grows slower:
it takes 2.6 to 2.8 times more for a 128-core system than for an 8-core system, whereas
for heuristics 2 and 3 this factors are 4.1 to 4.3 and 4.1 to 4.5 respectively. Furthermore,
the execution time of Heuristic 1 grows faster for systems with more clusters of fewer
cores, than for systems with fewer clusters of more cores, which is expected due to its
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dependence on the number of clusters, m. Indeed, for 8-core clusters, Heuristic 1 takes
1.9 times longer on a 128-core system compared to a 16-core system, whereas for 4-core
clusters this factor is 2.8.

More importantly, all heuristics’ execution time scales sub-linearly with system size,
as it never doubles when doubling n. This shows that the theoretical upper bounds
discussed in Section 3.3 are pessimistic. This result proves that all algorithms can be
used on systems many times larger than the one we have experimented on, without
concerns about their response time, because of their ability to perform partial search of
the configuration space without sacrificing much efficiency. As an indication of how the
configuration space grows with respect to system size, we have measured the execution
time of a lightweight version of exhaustive search, which considers all options, but only
for the new application placement and for the frequency of the selected cluster. We found
the execution time of this algorithm to be at least double than our longest heuristic for
the smallest system size. More importantly, it grows much faster than our heuristics
when increasing the system size: when going from 8 to 128 cores, this limited exhaustive
algorithm takes at least 16 more times to execute, compared to the 2.6 to 4.5 factors
reported above for the heuristics. Furthermore, this limited exhaustive search, does not
even consider the full configuration space. To do so, it would have to also consider all
possible migrations of current applications, which would multiply execution time by a
factor growing exponentially with the system size.

3.5 Limitations and Alternatives
In this section we list some limitations and alternatives of the proposed approach, in order
to clarify the extent of our contributions.

As is evident by the presentation of our performance prediction strategy in Section 3.2,
it is assumed that applications appearing at runtime have been profiled offline. The results
of the offline profiling are used as a starting point for the projection-guided runtime
prediction. Our approach is indeed partly based on this offline step, thus we focus on
making it feasible, by imposing two constraints: (i) profiling of each application should
be standalone, regardless of the possible application mixes that can appear at runtime
and (ii) it should consist of a linear (with respect to the target system size) number of
runs. The above does not mean that our runtime manager is unable to handle unknown
applications, just not as accurately as profiled ones. If an application is unknown in the
most extreme sense (not even one profiling run on one core type was possible to carry
out offline), then at runtime it would initially have to be placed on an arbitrary core and
its online performance monitoring would subsequently have to be used for any future
decisions regarding this application, much like is done in [37].

A limitation, regarding mostly our experimental setup, is the assumption of at most
one thread per core. As the ODROID XU3 offers one set of performance counters per
core, it is challenging to monitor more than one threads running concurrently on the same
core and keep the measurements independent and consistent. However, regardless of the
current implementation, our approach in general is not limited in this respect. Allowing
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multiple threads per core would not change the complexity of the runtime heuristics, as
the least busy core of each cluster (with respect to its utilization) would still be preferred
for application placement. However, profiling would have to be extended, running each
application for up to c ∗ n instances, instead of n, c being a constant representing the
maximum number of threads per core expected in runtime situations. In this manner,
the contention between threads for processor cycles would also be considered, when
performing projection to predict IPS in this more challenging contention scenario. While
this would not change the complexity of profiling, it would prolong it by a factor of c.

Another factor we have not considered in this work is application phase changes.
While we deem this potentially beneficial to efficiency, we think that it is orthogonal as it
does not fundamentally change the approach: if a phase change detection mechanism
is in place, a phase change can be treated by our proposed approach, as a termination
of an application, and a simultaneous spawn of another, with different performance
characteristics. Additionally, each application phase (rather than each whole application)
should then be offline profiled and characterized, which strengthens the importance
of having a scalable profiling strategy. Phase change detection can be performed by
observing the online-monitored performance measurements and detecting significant
changes. DyPO [31] proposes a way to implement phase change detection.

Lastly, a limitation of our current implementation is the ability to migrate applications
only at specific times. Each application consists of a basic loop that iterates a number
of times decided by our event generator (see Section 3.4). Migrations can happen only
between iterations of this loop - if a migration is decided, the iteration currently running
has to start over on the new core. This actually punishes the efficiency of Heuristic 3 and
also minimizes the effectiveness of trying to migrate applications more often: calling
Heuristic 3 in regular intervals, instead of only spawns and terminations, achieves earlier
migration of some applications on a more efficient core, but the original version of the
heuristic eventually does the same. As our focus is on providing an efficient initial
response, the corrective action capabilities of Heuristic 3 are already sufficient to remedy
any bad decisions coming from model inaccuracy. The challenge of identifying the
optimal migration frequency has been studied in [96].

3.6 Chapter Summary
In this chapter we propose a runtime manager for single-ISA, heterogeneous, DVFS-
capable multiprocessor systems, aiming to improve energy efficiency. The manager uses
a prediction model to estimate performance and power for possible configurations and a
heuristic to choose candidate solutions.

Our prediction model estimates application performance using scalable profiling of
applications that can run on the system and projecting this information to the current
system status, as measured through online monitoring. Subsequently, it uses these
performance estimations to predict system power with an analytical model based only
on the specific platform’s characteristics. Through exhaustive evaluation, we found our
model to mispredict performance, power and energy efficiency by an average 2.5%, 6.1%
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and 6% respectively.
We have designed three alternative heuristics, the execution time of which grows

sublinearly with respect to the system size. Guided by an oracle model, our simpler
heuristic is able to select a configuration only 2.5% less efficient than a brute-force,
exhaustive approach.

Our approach as a whole (model and heuristics) is evaluated with a plethora of
dynamic, multi-application scenarios. Comparing to widely-used governors, when not
considering individual applications’ performance requirements, our solution is 3% more
energy efficient than the powersave governor and twice as energy efficient compared to
the interactive and ondemand governors. Our approach is able to support applications
with performance requirements at the cost of 18% lower energy efficiency versus the
powersave governor, which however misses the performance targets by 23%. Furthermore,
it maintains an efficiency advantage of 52% and 58% over the interactive and ondemand
governors, respectively, which can satisfy all requirements.
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4
Runtime Management for Load Balancing

4.1 Introduction

In both optimization problems we have tackled so far in this thesis, heterogeneity played
a pivotal role in providing flexibility: different kinds of cores create decisions both when
managing for graceful degradation, as a task can be moved to a slower core if the core
executing it fails, and when managing for energy efficiency, as different cores provide
different performance-power points. In this chapter, we shift the focus to homogeneous
systems of arbitrary size, topology and memory hierarchy. One very important challenge
when attempting to extract as much parallelism as possible out of these systems, is
balancing the workload among the available cores.

Indeed, as the number of cores in computer systems increases and memory hierarchies
deepen, exploiting the available performance potential becomes increasingly difficult. In
order to achieve high performance, a common trend is to decompose applications into
concurrent tasks, utilizing as many resources as possible. Programmers, compilers and
run-time systems try to distribute these tasks evenly to the machine resources to keep the
system’s load balanced. Nevertheless, at run-time, workload imbalances occur due to
unexpected fluctuations in execution time of tasks, synchronization events, system events
triggering interrupts or the execution of daemons in the background. More importantly,
certain workloads are by nature severely imbalanced and/or spawn new tasks dynamically,
possibly in an unpredictable manner. Therefore, in order to dynamically balance the
load in the system and maximize its utilization, researchers have proposed techniques for
idle cores to execute the work that was originally assigned to currently busy cores. This
technique is known as Work Stealing [39].

99
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In Work Stealing, tasks are migrated between cores, to improve system utilization,
but at the same time various side-effects are introduced. We identify two key factors that
may affect performance:

1. the selection of a busy core to steal from (which we henceforth call victim core)
and

2. the overhead of migrating a task and its working set to a new core.

In particular, local load imbalances are better mitigated by stealing between close
neighbors, to preserve data locality and minimize migration-related overheads. Thus,
certain techniques attempt to limit migrations only to neighboring cores [41]. However,
system-wide imbalances require more drastic workload re-distribution. An efficient
Work Stealing technique is expected to improve performance in all of the above diverse
scenarios, while not penalizing it when the workload is already balanced.

For the selection of a busy victim core, it is possible to use simple techniques such
as random work stealing [40], which is agnostic of both system load and topology
information. Although on average random work stealing can benefit performance, its
statistical nature means that it tends to produce inconsistent benefits among runs. A more
educated guess for the selection of the victim can be performed by consulting system
load information. This can improve the ratio of successful steals and increase efficiency.
However, we have found that the cost of obtaining system load information may be too
high, as the information has to be broadcast through the system using the same resources
as the application. The same argument has also been made by other researchers, who
like we do in this chapter, propose load balancing techniques that try to infer the current
system load from partial information, such as [48].

In this chapter we propose a technique in which each core lazily gathers partial
information about the system load distribution, as feedback from the cores queried during
steal attempts. This information corresponds to a subset of the system cores, providing
an incomplete and approximate view of the system load distribution. The information
is stored locally in each core, therefore not introducing any bottleneck for the rest of
the system. This approximate view is then used by the core, when it becomes idle, to
guide the selection of the next steal victims. In addition, the steal attempts are performed
considering the topology and memory hierarchy, thus favoring neighboring cores as
potential victims, reducing migration cost.

The proposed technique, which we refer to as SWAS (Stealing Work using
Approximate System-load information), is implemented on the GO:TAO task-based
runtime system [97] and evaluated on a 48-core machine. In order to test the effectiveness
of the work stealing technique, workloads representing different scenarios were used. In
particular, we test workloads which are balanced, affected by jitter or imbalanced, as well
as workloads with random and dynamic task creation. A good work stealing strategy
is able to improve the performance of workloads with diverse kinds of load imbalance,
while not penalizing the balanced ones.

The main contributions of the work presented in this chapter are the following:
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• Introduction of a novel lightweight method to construct an approximate system
load view by integrating load querying with work stealing attempts.

• A work stealing algorithm that, upon the occurrence of a core idle event, performs
hierarchical victim selection guided by the aforementioned approximate system
load view.

• Implementation of the proposed technique in the GO:TAO framework and
evaluation on a real 48-core machine.

The rest of the chapter is organized as follows: In Section 4.2 we discuss other work
stealing techniques and discuss their limitations with respect to SWAS. In Section 4.3
we present SWAS. In Section 4.4 we describe our experimental setup and in Section 4.5
we present the evaluation of our strategy and compare it with other approaches. Finally,
Section 4.6 summarizes and concludes the chapter.

4.2 Related Work
As a fundamental technique for load balancing, work stealing has been the subject
of numerous studies. Researchers have explored distinct approaches to increasing the
efficiency of work stealing, by improving the decisions about which task to steal and
from which victim core. We identify four different categories of work stealing strategies:
locality-aware, hierarchy-aware, system load aware, and user defined.

Yoo et al. quantified the potential benefits of oracular locality-guided stealing [44].
Their work focuses on unstructured parallelism, i.e. parallel loops that do not have any
explicit information on locality. Their analysis indicates that, on a 32-core architecture,
perfect-knowledge locality-aware work stealing may potentially improve performance up
to 2.4× compared to random work stealing.

A large body of research focuses on extracting static information, mainly about
locality. The usefulness of compile-time locality hints is explored by Guo et al. [41]
and Acar et al. [45]. Chen et al. [46, 47] propose a profiling method that partitions
application DAGs corresponding to fully strict computations with leaf-only computation
into cache-friendly subtrees at runtime. The task stealer is then extended to choose
cache-friendly tasks for intra-socket stealing and other tasks for inter-socket stealing.
Drebes et al. [98] proposed a more general approach that removes the restriction of
iterative and leaf-only fully-strict computations but requires the programming model to
be extended with information on task dependencies. To handle locality, their approach
implements a hierarchical work stealer in which a set of stealing attempts is done at one
level of the memory hierarchy before starting to look for work in nodes belonging to
the next level of the memory hierarchy. It has to be noted that these approaches require
knowledge and compile-time manipulation of the applications that can run on a system.

One piece of information that is relevant in any kind of strategy is that of the
underlying system hierarchy. System hierarchy affects the stealing overhead by
determining the cost of migrating working sets among cores. In CRS [42] a steal
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request is sent to a remote system region and, while this request is in flight, local stealing
is attempted. HotSLAW [43] augments the locality-aware strategy proposed in [41] with
support for arbitrary hierarchies. Note that both locality- and hierarchy-aware strategies
tend to be state-agnostic, meaning that no knowledge about the load of other cores or
regions of the system is assumed when making a work stealing decision. As such, these
approaches focus on reducing the overhead that comes from communication between
cores and from coherence maintenance when a steal disrupts data locality.

For system load aware work stealing strategies, the challenge is balancing the accuracy
of such information against the cost to obtain it. In Match-making [99] dedicated
“matchmaker” cores collect requests for help from busy cores. Cores which become idle
can visit the matchmakers to find pointers to work that can be stolen. This technique
adds a considerable overhead due to dedicating part of the available system resources
(both computation and communication) entirely to improving work stealing decisions.
A different approach in system load estimation is to use already available information
as input to a heuristic. As an example, Tzannes et al. [48] propose the inspection of a
core’s own queue, to estimate the overall state of the system: an empty local queue points
to the existence of “hungry” workers who are stealing tasks. Thereby, communication
overheads are avoided, at the expense of using only local information to guess system
load distribution.

An alternative approach is to adapt to application characteristics via user-defined
policies. Nakashima et al. [100] develop an API that allows the user to attach a custom
work stealing algorithm. Their approach requires full knowledge of the work stealing
interface. A simpler, but also more constrained option is to provide configuration
parameters that allow tuning the work stealing algorithm as recently suggested by
Wimmer et al. [101]. These approaches may achieve better results than others mentioned
above but they require an increased effort by the programmer.

In this chapter we propose a technique that is aware of the locality, hierarchy,
and system load information. Our work extends previous approaches by combining
knowledge of system load with system hierarchy information. Furthermore we
demonstrate that an approximate and incomplete system load view is enough to reap
the benefits of guided stealing and we propose a lightweight method to construct and
maintain it.

4.3 System Load Aware Work Stealing
In this section we describe SWAS, the proposed work stealing strategy. In general terms,
a work stealing strategy determines the way in which an idle core decides which other
core of the system (victim core) to attempt to steal work from.

SWAS is based on approximate information about system load distribution. Each core
has an incomplete view of this distribution, allowing it to guess which cores are busy and,
as such, good victim core candidates. This partial knowledge is henceforth called system
view. Every core has its own system view, stored in compact data structures and obtained
through lightweight operations, that add negligible performance overheads and do not
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burden system communication. Section 4.3.1 describes the system view, and lists all
information that it contains. Subsequently, Section 4.3.2 explains how each core updates
and maintains its system view. Lastly, Section 4.3.3 demonstrates how the information
stored in the system view are used by an idle core to guide its selection of victim core.

SWAS comes in two different variants, which differ in what information a core uses
to update its system view. In the first variant, a core updates its system view based only
on information about the load of cores it visits during steal attempts. In the second variant
cores are in addition allowed to occasionally consult each other’s system views, to update
their own. In the description that follows, whenever a step is different among the two
variants, this fact is highlighted.

4.3.1 System View Data Structures
SWAS is built on the notion of a system view. In this section, we present the structures
used by each core to store this view. Note that every core in the system keeps its own
system view.

To clarify our description, we use a running example based on the hardware platform
shown in Figure 4.1. This system consists of four multiprocessor chips of 12 cores each,
resulting in a total of 48 cores (with IDs 0 to 47). Inside each chip, the 12 cores are
divided into two NUMA nodes of six cores each. The cores of each NUMA node share a
L3 cache. This lowest level of hierarchy defined by the NUMA nodes, is henceforth also
called a neighborhood of cores. Thus, a neighborhood is the widest subsystem within
which work stealing incurs minimal overheads. The system of Figure 4.1 consists of
eight such neighborhoods, numbered 0 to 7. Without loss of generality, we focus our
example on the system view of core 7 of this example system.

4.3.1.1 Bit Vectors

The system view is kept in a vector of N two-bit entries, where N is the number of cores
in the system. Each entry of this vector (henceforth called bit vector) is indicative of the
current load of one system core, which can be one of the three values: Not busy, Don’t
know and Busy. In Figure 4.1, the example system has N = 48 cores, thus core 7 keeps
48 two-bit entries, shown at the top of the figure. All entries in the vector are initialized
to the Don’t know value.

4.3.1.2 Regions and Busy Estimators

Each core also keeps a number of static lists corresponding to levels of hierarchy of the
system. Each of these lists contains the IDs of cores which incur similar overheads for
stealing work from. Hence, the first list contains the IDs of the core’s neighbors, while
the last list contains the IDs of cores that do not share any level of hierarchy with the local
core, except the entire system. Each such list defines a system region. The higher the
region index, the further away the cores of this region are, meaning that the overheads for
stealing work from them are higher. The neighborhood of the core is thus called Region-1
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(henceforth R1) and subsequent regions, if applicable are R2 up to Rmax, where max is
the number of levels in the physical system hierarchy.

The example system of Figure 4.1 has three levels of hierarchy: the eight
neighborhoods, the four multiprocessor chips and the whole system. Thus, for core
7, the following three regions are defined, in accordance to the previous paragraph:

• Region R1, consisting of cores 6, 8, 9, 10 and 11 which reside in the same
neighborhood as core 7.

• Region R2, consisting of cores 0 to 5 with which core 7 shares a chip, but not a
neighborhood.

• Region R3, consisting of all other cores (12 to 47), residing in a different chip than
core 7. These cores are the furthest from core 7, thus it is expected that stealing
from them incurs the highest overheads.

System hierarchy is specified in a configuration file that is made available to all cores at
boot time. Based on this, each core defines the regions from its point of view.

For each region list, the core also keeps a non-negative variable, called a Region Busy
Estimator (in this example, est1, est2 and est3 are the estimator variables that core 7
keeps for its regions R1, R2 and R3 respectively). These variables store an estimate of
how loaded each region currently is, and are calculated by the contents of the bit vector
as follows:

estk =
1

|Rk|
∑
iεRk

Load(i) (4.1)

Load(i), in turn, has the value 0, 0.5 or 1, when the bit vector entry for core i is Not
busy, Don’t know or Busy respectively. Thus, all estimators lie in the range [0, 1] and
direct comparisons between them are meaningful. Therefore est1 > est2 implies that
region R1 is currently busier, on average, than region R2.

4.3.2 Updating the System View

In SWAS, updating and using one core’s system view are interdependent: the system
view is used to select a victim core for stealing work from, while the result of the steal
attempt is used in turn to update the system view. Despite this interdependence, updating
and using the system view are different processes. This section describes the process of
updating the system view in SWAS, while the next (Section 4.3.3) focuses on how the
system view is used to select a victim core.

Note that we focus the following description on updating the bit vectors. Any update
to the bit vectors will cause the region estimator variables to be modified accordingly, as
described in Section 4.3.1.
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4.3.2.1 Updating Own System View

The cheapest way to update a core’s system view is with information inferred directly by
the core itself. In SWAS this happens during steal attempts.

Specifically, whenever an idle core accesses a victim core’s queue, it updates its own
system view based on the result of the steal attempt. This update also considers the
system hierarchy as follows: When the victim core belongs to the idle core’s region R1,
only the bit vector entry corresponding to the victim core is updated, whereas if it belongs
to a region of higher index (thus, more remote than R1), all entries corresponding to the
victim core’s neighborhood are updated.

Continuing our running example, suppose that core 7 in Figure 4.1, attempts to steal
work from core 11 but does not find any. Since core 11 belongs to R1, core 7 will update
entry 11 in its bit vector, to the value Not busy, reflecting the lack of work to be stolen
from core 11. In contrast, if core 7 attempts to steal work from core 37 and succeeds, it
will update entries 36 to 41 of its own system view to the value Busy; this update reflects
the success of the steal attempt (i.e. presence of work to be stolen), at the same time
speculating the presence of work in the entire neighborhood of the victim core, as it
belongs to a remote region.

4.3.2.2 Using Other Cores’ System Views

In the second SWAS variant, cores are also allowed to consult other cores’ system views,
in order to enrich their own.

Obtaining information in this manner happens whenever an idle core performs an
unsuccessful steal attempt. At this time, the idle core reads the victim core’s system
view. Any entry which has the value Don’t know in the idle core’s bit vector, is set to
the value of the victim core’s bit vector. As such, some Don’t know values of the idle
core’s system view are changed to a meaningful value (Busy or Not busy). This happens
only on unsuccessful steal attempts, to increase the chances of success of the next steal
attempt. When opting to also do this in the case of successful attempts, we observed
a considerable performance penalty. It was thus concluded that on a successful steal
attempt, it is more important that the idle core gets back to work as soon as possible,
rather than spend time to enrich its system view.

4.3.2.3 Information Staleness

Information that currently is stored in a core’s system view can be out-of-date if not
renewed. In SWAS, we consider this staleness issue as follows: Each core keeps track of
windows of time during program execution. These windows are not of a fixed duration,
but are defined relative to the successful steal attempts performed by the core: a parameter
m is defined, and whenever m successful steal attempts are made, one time window has
elapsed. For each entry of the bit vector, an extra “update” bit is kept, which is reset at the
beginning of the time window. Whenever a bit vector entry is updated the corresponding
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Figure 4.2: The idle core and victim core (and their queues) before (a) and after (b) a
successful (top) or unsuccessful (bottom) steal attempt in SWAS. Core 7 becomes idle Ê
and uses its current system view Ë to choose a victim core to steal work from. It chooses
core i (top) or j (bottom) and checks its queue Ì. If there is work to steal, one task is
taken to be executed on core 7 Í. Regardless of the steal attempt outcome, the system
view of core 7 is updated to reflect said outcome Î. In case of an unsuccessful steal, if
consulting other cores’ system views is allowed, this also takes place at this time Ï.

“update” bit is set. Any entries that have not been updated during an entire window, are
set back to the value Don’t know when the window ends.

4.3.3 Work Stealing Decisions
The decision making process, which is the same in both SWAS variants, is outlined in
the pseudo-code of Algorithm 1. The integrated process of stealing work and updating
system views is shown in Figure 4.2. The top half shows a successful steal and the bottom
half an unsuccessful one. Part (a) on the left shows the idle and victim cores before the
steal attempt and part (b) on the right shows the same cores after the attempt. We will
use numbers Ê to Ï in the following description to refer to the individual steps.

When a core executes no workload and has no new tasks in its queue Ê, this signifies
a core idle event for this core, thus it will attempt to steal work from a victim core. To
choose a victim core, the idle core uses its system view Ë. First, it chooses a target region
by comparing the Region Busy Estimators (lines 1 to 7 of Algorithm 1). In the general
case, the steal attempt will be directed to the system region with the highest estimator,
subject to the following constraints:

• Ties are resolved in favor of the region with the lowest index, that is, the set of cores
that are closer to the idle core. This condition strengthens the impact of system
hierarchy on the victim core selection process. If different regions are similarly
loaded, the closest one should be chosen. Furthermore, during initialization, all bit
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Algorithm 1: Choosing the Victim Core
1: //choosing target region
2: if all esti ≤ threshold then
3: Choose regionRmax

4: else
5: Choose region with higher estimator variable
6: Break ties in favor of lower-indexed region
7: end if
8: //Creating random draw between cores of the selected region
9: int tickets = 0

10: for Each core l in the selected region do
11: Read bit vector entry for this core
12: if entry is Busy then
13: Add two tickets in draw for core l
14: tickets + = 2
15: else
16: if entry is Don’t know then
17: Add one ticket in draw for core l
18: tickets + = 1
19: end if
20: end if
21: end for
22: //choose random ticket from draw
23: select (random numbermod tickets)
24: //(if no tickets in draw, select random core from regionRmax)
25: return core corresponding to selected ticket as victim

vector entries are set to Don’t know, resulting to all estimators being initialized to
the same value (0.5 according to Equation 4.1). Thus, tie resolution is important,
because it determines the initial direction the system takes.

• There is an exception to the comparison rule: if all estimators are below a certain
threshold, the region with the highest index (region Rmax, corresponding to the
set of remote cores) is chosen. This choice is motivated as follows: low estimators
imply sparsity of workload across all regions. The priority that is otherwise given
to the closest region, together with the fact that remote regions are larger and less
uniform, means that the idle core’s system view contains less complete information
about region Rmax than other regions. Thus, in these cases of a sparsely loaded
system, remote steals are attempted in an effort to find a busy neighborhood which
has not been visited recently. The threshold value was tuned for our experimental
platform and set to the same value for all experiments presented in Section 4.5.

After a choice of region is made using the region busy estimators, the bit vector is
used to select a particular core. To this end, the idle core creates a random draw between
cores of the selected region, as follows (lines 8 to 21 of Algorithm 1):

• Each core marked as Busy in the bit vector is entered in the draw twice. Thereby,
Busy cores have a higher chance to be selected, because they are more likely to
provide a successful steal.

• Each core marked as Don’t know in the bit vector is entered in the draw once. Such
cores have a lower chance to provide a successful steal, but trying them enriches
the system view of the idle core.
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• Cores marked as Not busy in the bit vector do not enter the draw. These cores
probably can not provide a successful steal, and there is no need to learn something
about them at this point. Note that Not busy entries will return to the Don’t know
value, when this information becomes stale, else a Not busy value could never
change.

The draw is performed and the winner becomes the steal victim (lines 23-25). In the
very rare case that no tickets are entered in the draw, a random core from region Rmax is
selected.

The idle core then checks the queue of the selected victim core for work to be stolen
Ì and in case such exists, it steals one task to execute Í. Regardless of the steal attempt
result, the idle core also updates its system view accordingly Î. Finally, if the SWAS
variant used allows consulting other cores’ system views, this also takes place at this
time, in case of an unsuccessful steal Ï.

This concludes our description of SWAS. The evaluation of the resulting
implementation is presented in Section 4.5. Before this, Section 4.4 describes the
components of our experimental setup, namely the machine and the runtime on which
experiments are run, the work stealing strategies we use as comparison points and the
various workloads for which we evaluate SWAS.

4.4 Experimental Setup
In this section we outline our experimental setup, consisting of the following five elements:
The experimental platform (Section 4.4.1), the GO:TAO runtime system (Section 4.4.2),
the baseline work stealing strategies we implemented for comparison (Section 4.4.3), the
representative workloads used to evaluate all strategies (Section 4.4.4) and some relevant
experimental parameters (Section 4.4.5).

4.4.1 The Experimental Platform
The experimental platform we use is a Dell PowerEdge R815 server consisting of four
AMD Opteron 6348, each with two NUMA nodes and six cores per NUMA node, for a
total of 8 NUMA nodes and 48 cores. Each NUMA node contains a three-level cache
hierarchy. The upper level consists of 16KB L1 data cache, one per core. A pair of cores
shares an 2MB L2 cache. Finally, the six cores in a NUMA node share a 8MB L3 cache,
of which 2MB store the HT Assist Probe Filter and 6MB are usable by applications. The
total system therefore provides 48MB of L2 cache and 48MB of L3 cache to applications.
The test system runs Ubuntu Linux 14.04. All applications have been compiled using
GCC v4.8 with optimization level -O3.

4.4.2 The GO:TAO runtime
The execution environment used in our experiments is GO:TAO, a DAG-based runtime
implementation targeting high parallelism, good locality and low overheads [97]. The
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basic unit of execution in GO:TAO is moldable tasks that can make use of multiple
cores. This moldability allows the GO:TAO runtime to match hardware resources with
software requirements. This feature improves cache effectiveness and can also be used to
utilize idle cores [102] and to deal with composability of parallel runtimes [103]. When
restricted to single-core tasks, GO:TAO is representative of other task-based runtimes,
such as Cilk [104], TBB [105] or OMPSs [106]. Hence, the performance of SWAS can
be directly extrapolated to such runtimes.

To support moldable tasks, GO:TAO extends the task abstraction with a task group,
a set of resources (number of cores, caches) and an embedded scheduler. The resulting
Task Assembly Object (TAO) is itself a parallel computation over a set of cores. This
feature can be exploited by SWAS: whenever a TAO is mapped on a set of cores, these
cores obtain implicitly the information of which other cores are busy executing the same
TAO, thus enriching their system view.

To evaluate SWAS comprehensively and fairly, we conduct two sets of experiments:

• Single-core TAOs: In this configuration, GO:TAO is equivalent to traditional task-
based runtimes (Cilk, TBB, etc.). We call this set of experiments Standard-RT.
Their purpose is to showcase the performance of SWAS in a conventional setting.

• Parallel TAOs: In this configuration, GO:TAO assigns multiple cores to individual
TAOs by matching the cache and core requirements of the TAO. We call this set of
experiments TAO-RT. Their purpose is to highlight the added benefit SWAS can
provide in the context of hierarchical runtimes.

4.4.3 Work stealing strategies
We have implemented different baseline work stealing strategies, that address the distinct
relevant factors, as presented in Section 4.3:

No Work Stealing (NoWS). In this strategy the tasks are executed where they are
initially assigned for execution.

Random Work Stealing (WS_Rnd). In this strategy idle cores attempt to steal work
from any core in the system using a random selection algorithm [40].

Local Work Stealing (WS_Loc). In this strategy idle cores attempt to steal work
only from cores belonging to the same closest memory hierarchy domain, i.e., as described
in Section 4.3, the cores belonging to the R1 set. Core selection within R1 is random.
This strategy focuses on preserving data locality, like the approaches presented in [41]
and [45].

Hierarchical Work Stealing (WS_Hie). In this strategy idle cores first attempt to
steal work from the cores belonging to the closest memory hierarchy domain (cores in the
R1 set). If this attempt fails, then they attempt the next regions in order. Core selection
within a region is random. This strategy benefits from knowledge of system hierarchy,
like the ones presented in [42] and [43].

Work Stealing using Global system view (WS_Global). In this strategy, one
global system view is shared by all cores, updated by all cores and used for all stealing
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decisions. This system view is not protected by locks, so when updated by multiple cores
there might be some inconsistencies. This strategy aims to demonstrate the effect of
keeping information which is more complete than SWAS, at the cost of extra coherence
maintenance overhead and increased memory traffic.

SWAS based on Attempts only (SWAS_Att). This is the SWAS variant in which
cores update their system view based only on steal attempt outcomes.

SWAS based also on Other cores’ system views (SWAS_Others). This is the
SWAS variant in which cores are allowed to consult other cores’ system views on an
unsuccessful steal attempt.

4.4.4 Workloads

We evaluate all strategies on a range of workloads, which constitute a good representation
of some real-life scenarios. We deem that a work stealing strategy should be safe to use
on a system which expects workloads with different balance characteristics and improve
performance when load balancing is needed, while not hurting it during the rest of the
time.

Balanced Workload: We use a perfectly partitioned Sort based on a reduction
pattern with Quicksort tasks in the first level and Mergesort calls in the lower levels. The
Quicksort tasks are distributed uniformly among all system cores, to achieve perfect load
balance and minimize communication. The balanced Sort is an example of a program the
performance of which can be hurt by work stealing. An efficient work stealing algorithm
should avoid this.

Workload with Jitter: In this scenario, although the application itself is balanced, a
system event triggers an interfering task such as a background daemon or the processing
of an interrupt on one of the cores. We used the same implementation of Sort as above
and inserted the jitter as a large, unstealable task on one of the system cores. The size of
this unstealable task was determined to be roughly 50% of the baseline execution time of
the balanced version. This application aims to demonstrate how different strategies are
able to absorb local transient fluctuations of the workload.

Unevenly Distributed Workload: In this case, the Sort application is used and the
Quicksort tasks in the upper level are distributed unevenly on the system cores. More
specifically, the whole workload is assigned to one half of the system, making the other
half initially idle. This can happen, for example, if the input data set is located on a subset
of the available nodes. In this case, strategies are evaluated for their ability to detect and
remedy the uneven placement of tasks.

Imbalanced Workload with Dynamic DAG: The Unbalanced Tree Search (UTS)
is a synthetic benchmark that constructs a geometric tree such that each node has a
probability to spawn a number of children nodes. We use two different flavors: each node
having a 5% probability to spawn 20 child nodes (UTS_5_20) and each node having 33%
probability to spawn 3 child nodes (UTS_33_3). As the nodes of the tree are created
in a manner that is both imbalanced and statistical (thus unpredictable), UTS is a very
interesting workload for evaluating dynamic load balancing strategies.
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Stencil Computation Workload: We use a heat diffusion stencil application, which
is initially perfectly partitioned among all system cores. Stencil computations have
complex task dependencies, since each task in the DAG has multiple parent tasks. Due
to this, a parent task that completes slightly later than others, can spawn multiple tasks
on the core it executes, while other cores remain idle. We use two different flavors:
200 iterations on a 3072x3072 matrix (HEAT_3072) and 500 iterations on a 1536x1536
matrix (HEAT_1536).

4.4.5 Experimental Parameters
For all flavors of the Sort application, we use three different sizes of the input array, 225,
226 and 227 elements. We use the same task graph for all three input sizes, thus varying
the size of the data set of each task. Also, for UTS workloads, we modified the execution
time of each task in the same manner, by setting the “compute granularity” parameter
of the benchmark to the values 1, 2 and 4. For each combination of workload and work
stealing strategy, we execute 100 runs and calculate mean execution time and standard
deviation. The results of this process are presented in Section 4.5.

4.5 Experimental Results
In this section we present the results of the experimental evaluation of SWAS. We
begin with performance results of all strategies over all workloads for both runtimes
(Section 4.5.1). Subsequently, we offer some additional insight, by presenting the
number of successful steals of each strategy broken down by region of the victim
(Section 4.5.2), as well as a breakdown of indicative time overheads of the different
strategies (Section 4.5.3).

4.5.1 Performance Evaluation
The performance results of all implemented work stealing strategies on all tested
workloads for both runtimes, are measured in terms of execution time normalized to the
baseline. For each workload and runtime, we visualize normalized performance of each
strategy as vertical blue bars and the standard deviation as error margins at the top of the
blue bars.

4.5.1.1 Balanced Workload

An evenly partitioned static workload with data locality-aware placement, such as the
case of the balanced Sort, does not benefit from work stealing. Thus, we are mainly
interested in not penalizing performance compared to execution without work stealing.
For this purpose, the performance results shown in Figure 4.3 are normalized to NoWS,
as opposed to all other workloads, for which they are normalized to random work stealing
(WS_Rnd).
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Figure 4.3: Execution time normalized to no work stealing (NoWS) and its standard
deviation for different strategies in the balanced workload case, on the Standard- and
TAO-RT.

Performance results for this workload are shown in Figure 4.3. The relative
performance of strategies is similar among the two runtimes. Random stealing (WS_Rnd)
incurs the largest penalty (85.6% for Standard-RT and 37.4% for TAO-RT). Additionally,
it has the largest standard deviation between runs, making it both inefficient and
inconsistent. WS_Hie has the second largest penalties (14.9% and 12.2%). WS_Global
entails a penalty of 8.5% on the Standard-RT and 3.6% on TAO-RT. SWAS_Others’
penalties are also relatively low, 3.8% and 7.6%. WS_Loc is the most conservative of all
baseline strategies, since it does not disrupt data locality. As such, it entails a low penalty
of 0.9% to 1.8%. SWAS_Att has the lowest penalties of all strategies (0.3% and 1.4%).

4.5.1.2 Workload with Jitter

For this as well as all subsequent workloads, we evaluate the performance of strategies
compared to the random work stealing (WS_Rnd) baseline. Results for this workload are
plotted in Figure 4.4.

This workload simulates a transient, local imbalance, which is best resolved by local
steals. As a result, WS_Loc yields the largest improvement over WS_Rnd (35.7% and
29% on the two runtimes). Also, WS_Rnd has similar impact on performance as it did
on the balanced workload (NoWS is 26%-30% faster), since it disrupts locality all over
the system. Both SWAS variants are very close to WS_Loc, providing improvements of
26.4% to 34.1%
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(a) Jitter, Standard-RT
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(b) Jitter, TAO-RT

Figure 4.4: Execution time normalized to random work stealing (WS_Rnd) for the
balanced workload with jitter.
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(a) Uneven, Standard-RT
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(b) Uneven, TAO-RT

Figure 4.5: Execution time normalized to random work stealing (WS_Rnd) for the
unevenly distributed workload.
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4.5.1.3 Unevenly Distributed Workload

In this case, the balanced application workload is distributed on half of the system cores.
The purpose of work stealing strategies is to let the idle half share the workload as
efficiently as possible. Results for the uneven workload are shown in Figure 4.5.

We observe that on the standard-RT, WS_Rnd still hurts performance, as the disruption
of locality it entails is more important than the workload balancing. NoWS is thus 42%
more efficient. Furthermore, WS_Loc has, as expected, similar performance to NoWS, as
remote steals are not allowed, so the uneven workload cannot be distributed to the whole
system. SWAS_Att also yields 41% improvement. The best strategies are WS_Global
and SWAS_Others (45% and 47% improvement respectively).

Results are different on TAO-RT. GO:TAO’s cache-aware management of resources
reduces cache misses and makes execution less sensitive to data locality [97]. Therefore,
WS_Rnd now does not penalize performance as much: NoWS and WS_Loc are now only
4% better. Furthermore, the remaining four strategies are faster than NoWS: WS_Hie and
SWAS_Att yield around 15%, while WS_Global and SWAS_Others are the best with
around 20%.

4.5.1.4 Imbalanced Workload with Dynamic DAG

The case of UTS is important, both because it is heavily imbalanced by design and
because its tasks are spawned at runtime, making a dynamic load balancing strategy
necessary. Most subtrees of the dynamically constructed tree terminate very quickly,
with only a low percentage of them going very deep, overloading the respective system
cores. As can be observed in Figure 4.6, when work stealing is disabled, execution time
is 18 to 22 times longer. Local stealing suffers from the same problem to a lesser degree,
resulting in 7.0 - 7.9 times longer execution time than WS_Rnd.

Furthermore, making the system view global penalizes performance significantly,
resulting in an execution time 1.9-2.7 times longer than WS_Rnd, on account of the
increased memory traffic and the overhead of coherence maintenance for the global
system view. This was verified by scaling up the task granularity: doubling the task size
reduces the penalty of WS_Global by 25%. The finer the task granularity is, the more
frequent the steal attempts become. Constant updates of the global system view by all
cores result to the observed performance penalty. This effect becomes weaker as the tasks
become coarser and system view updates are sparser.

Comparing the rest of the strategies, we observe that on the Standard-RT they all
achieve identical performance. On the TAO-RT, however, the two SWAS variants are
significantly better, achieving 12.2% and 11.1% performance improvement over WS_Rnd
for UTS_5_20 and even more than that (18.5% and 17.2%) for UTS_33_3.

4.5.1.5 Stencil Computation Workload

The heat diffusion stencil computation suffers from unbalancing at runtime, because of
the complex nearest-neighbor dependencies in its DAG. The slowest system regions tend
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(a) UTS_5_20, Standard-RT

22.0 7.9 2.6 

0

0.2

0.4

0.6

0.8

1

1.2

N
o

W
S

W
S_

R
n

d

W
S_

Lo
c

W
S_

H
ie

W
S_

G
lo

b
al

SW
A

S_
A

tt

SW
A

S_
O

th
er

s

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 

(b) UTS_5_20, TAO-RT
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(c) UTS_33_3, Standard-RT
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(d) UTS_33_3, TAO-RT

Figure 4.6: Execution time normalized to random work stealing (WS_Rnd) for both
variations of the DAG-based workload (UTS).
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(a) HEAT_3072, standard-RT

1.4 1.4 

0

0.2

0.4

0.6

0.8

1

1.2

N
o

W
S

W
S_

R
n

d

W
S_

Lo
c

W
S_

H
ie

W
S_

G
lo

b
al

SW
A

S_
A

tt

SW
A

S_
O

th
er

s

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e
 

(b) HEAT_3072, TAO-RT
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(c) HEAT_1536, standard-RT
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(d) HEAT_1536, TAO-RT

Figure 4.7: Execution time normalized to random work stealing (WS_Rnd) for both
variations of the heat distribution stencil workload.
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to pull tasks from neighboring regions from one iteration to the next, an effect that can
be observed on Figure 4.7 as a slowdown of 2.5 - 2.7 times on Standard-RT and 15% to
40% on TAO-RT, compared to WS_Rnd. WS_Loc does only slightly better than that.

On the Standard-RT, WS_Hie gains 12.5% - 13.6%, but SWAS variants and
WS_Global produce the highest benefits (18.3% - 21.9% for WS_Global and 10.4%
- 24.8% for SWAS). On the TAO-RT, the SWAS variants do even better than other
strategies (29.0%-34.4% improvement over WS_Rnd), while WS_Global only gains
up to 25.5%. Furthermore, SWAS performance results also have much lower standard
deviation than WS_Rnd and WS_Hie, meaning that its benefits are more consistent
between runs.

To sum up all presented performance results, Table 4.1 indicates the best strategy for
each workload and lists the performance penalties of every other strategy compared to
the best. It can be observed that the two SWAS variants and WS_Hie are the only ones
that never punish performance severely. Of these strategies, SWAS variants are often the
best and otherwise very close to the best. Specifically, SWAS_Att is the best strategy
for two workloads and has a maximum penalty of 11.5% and SWAS_Others is the best
strategy for four workloads and its maximum penalty is 8.3%, with most of its relative
penalties below 4%. This result demonstrates that SWAS is the best option for a machine
without in advance knowledge of its workload.

4.5.2 Successful Steals per Region

The various work stealing strategies differ in the total number of successful steals they
perform, as well as the distribution of selected victims. Figure 4.8 illustrates total
successful steals for all strategies, categorized by region of the victim core, for the
UTS_5_20 and HEAT_1536 workloads, on both Standard-RT and TAO-RT.

For UTS, we observe that local steals are in general much more common. This
happens because every task has a chance of spawning 20 children tasks on the same core,
creating local imbalances. However, the spawned children have, in turn, a probability to
spawn even more work. If the potential task-spawners are not re-distributed, system-wide
imbalances occur. This explains why WS_Loc has both the worst performance and
the fewest steals. For the same reason, the strategies that perform better all perform a
significant number of remote steals. This results to more neighborhoods of the system
being active, which in turn triggers more total local steals. WS_Rnd is special in that
it performs many more remote steals than local ones. In fact, the distribution of steals
among the three regions, directly follows the distribution of cores, as a result of the
random victim core selection. As UTS is compute-intensive and has a small working
set, WS_Rnd is not severely punished for ignoring system hierarchy and application data
locality - being on par with SWAS on the standard RT and 14% worse on the TAO-RT.
Note that the vertical axis scales on parts (a) and (b) of Figure 4.8 are very different,
thus we compare only the relative trends among different strategies, not the total steals
among the two runtimes. The higher number of steals on TAO-RT is related to the small
task granularity in UTS. Distributing tasks across cores, as done in TAO-RT, results in
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(a) UTS_5_20, standard-RT
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(b) UTS_5_20, TAO-RT
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(c) HEAT_1536, standard-RT
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(d) HEAT_1536, TAO-RT

Figure 4.8: Number of steals by region of the victim core for UTS_5_20 (a and b) and
HEAT_1536 (c and d).
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Table 4.2: Average overheads of work stealing strategies per steal attempt in µsec.
NoWS WS_Rnd WS_Loc WS_Hie WS_Global SWAS_Att SWAS_Others

Victim selection N/A 0.11 0.16 0.25 3.67 0.38 0.40
System view update N/A N/A N/A N/A 2.74 0.18 0.21
Other system view con-
sultation (after failed
steal attempts only)

N/A N/A N/A N/A N/A N/A 0.88

Stale information reset
(occasional)

N/A N/A N/A N/A N/A 0.71 1.58

Total: N/A 0.11 0.16 0.25 6.41 1.27 3.07

non-negligible scheduling overheads. As execution time increases, tasks spend more time
waiting in the work queues, which increases their probability to be stolen.

For the heat diffusion stencil workload, steals from Region-3 cores dominate all
strategies (except WS_Loc which cannot perform such steals). In this case, the slowest
cores tend to spawn more tasks for themselves, because of the multiple output (i.e., nearest
neighbor) task dependencies. Thus, from one iteration to the next, some neighborhoods
absorb workload from around them. To mitigate this effect, remote steals are needed.
Lacking system load information, WS_Hie always tries to steal locally first, resulting
in fewer remote steals, whereas the two SWAS variants perform almost 100% remote
steals. This is the reason that SWAS performs equally (on the standard-RT) or better (on
the TAO-RT) than hierarchical work stealing, even though the total number of successful
steals it achieves is lower.

4.5.3 Breakdown of Overheads

All work stealing strategies share some common overheads: the cost of querying the
victim core for work, and in case of a successful steal, the cost of migrating the task and
moving any associated data.

On top of the above, the strategies we have evaluated have different additional
overheads associated with victim selection and possible maintenance of a system view.
These overheads, per one steal attempt, are summarized in Table 4.2.

We observe that the performance gains of SWAS_Att are a consequence of the very
low extra cost of making much more educated decisions than baseline strategies. The
added overhead of the complex victim selection process and system view update is at
most 3.07 µsec per attempt, including the process of resetting stale entries in the bit
vectors, which happens only occasionally. Overheads of SWAS_Others are slightly
higher, because the system view cannot be kept strictly private (occasionally other cores
need to access it).

The global nature of the system view in WS_Global is the reason that victim selection
and system view update are much slower in this case (3.67 and 2.74 µsec on average
per attempt). Note that this overhead is expected to increase with system size, making
WS_Global not scalable.
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4.6 Chapter Summary
Work stealing strategies are expected to efficiently redistribute an imbalanced workload
on systems with increasing amount of cores and deepening memory hierarchies and
topologies. Furthermore, the workloads that can run on a system during different periods
are often not known in advance. They can be either balanced or imbalanced, with static
or dynamically generated task graphs, or any combination of the above. Additionally,
they are, in all cases, prone to additional unbalancing due to external interference (jitter)
or sub-optimal data and task co-location.

In this chapter we present a novel work stealing strategy to face the above challenges.
The approximate information stored in the system view, which is used to guide stealing
decisions, is maintained by each core using already necessary operations such as steal
attempts and stored in compact data structures, enhancing the efficiency of victim core
selection for a very low time cost.

By prioritizing efficient steals within a core’s neighborhood, SWAS can mitigate
local imbalances. At the same time, using the approximate system views, it can also
detect system-wide imbalances and visit remote regions when needed. This combination
allows it to achieve up to 18.5% improvement compared to a random stealing baseline
for a workload with imbalanced, dynamically generated DAG and up to 34.4% for a
stencil computation with nearest neighbor dependencies. Equally importantly, it does not
penalize balanced workload performance and deals as well as baseline strategies with
transient local imbalances (jitter) and sub-optimal data-task co-location. This combination
of results, allows use of SWAS without a priori knowledge of a multiprocessor system’s
workload.



5
Thesis Summary and Conclusions

In this thesis we have suggested that runtime management can improve multicore systems’
efficiency, by limiting the negative effects of unpredictable events. To support this claim,
we have presented studies for three distinct optimization objectives: graceful degradation,
energy efficiency and performance - the latter coming as a result of load balancing. For
optimizing each of the above objectives, we detect existing flexibility and expose it to
a runtime manager, which in turn exploits it to improve system efficiency. While this
flexibility provides optimization potential, it also complicates the relevant decisions. Thus
we show, in each study, that absolute optimality is not feasible at runtime, as a result
of (i) the size of the solution space and (ii) the unavailability of complete and precise
information with respect to critical parameters of the optimization.

This chapter summarizes and concludes the thesis. Section 5.1 provides a summary
of chapters 2, 3 and 4, that contain the three studies. Section 5.2 outlines the main
contributions of each study. Lastly, Section 5.3 proposes some possible extensions to the
presented work.

5.1 Summary
The first study, which is presented in Chapter 2, is on graceful degradation of fault-prone
multicores with adaptability coming from reconfigurable hardware, heterogeneity and
workload flexibility. We start Chapter 2 by detecting the aforementioned adaptability,
suggesting a high level model for such an adaptive system and, based on this, define its
configuration space. We go on to quantify system efficiency, based on the performance,
energy and functionality of the system in a given configuration. Subsequently, we propose
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different algorithms that react to component failure events, attempting to optimize system
efficiency: custom heuristics based on incremental and precomputed solutions, as well
as simulated annealing and a genetic algorithm. We compare the different algorithms in
terms of solution quality and execution time, through both simulations and emulations on
the Intel Single-Chip Cloud machine [77], with two different workloads (with and without
task dependencies). We conclude the chapter with a methodology for characterizing
degradable hardware components, in terms of performance and energy efficiency of their
degraded configurations. The characterization process provides our high level adaptive
system model with annotations required by the runtime manager. Additionally, it also
allows design space exploration of mixed-grain reconfigurable processor arrays with
respect to the reconfiguration granularity and the fault density.

Chapter 3 contains our study on runtime optimizations for energy efficiency. We
focus on single-ISA heterogeneous systems that offer adaptability in the form of different
kinds of cores (faster or more power efficient) as well as Dynamic Voltage and Frequency
Scaling (DVFS). We utilize this adaptability, to react to application spawn and application
termination events, with the purpose of maximizing energy efficiency in terms of
IPS/Watt. We first describe our prediction model, that the runtime manager uses to
evaluate potential configurations before applying them, in order to select the best one.
The model predicts applications’ performance based on profiling information of each
standalone application, as well as a method to project this information to the dynamic,
multi-application current state of the system. Additionally, it predicts system power using
a linear power model based on the predicted performance numbers, together with a set of
static, platform-specific parameters. We go on to propose three different heuristics that
use the prediction model to perform partial search of the configuration space and choose
the best configuration as a response to every event. Subsequently, the three algorithms
are evaluated, both exhaustively for a small number of representative events and through
a large number of dynamic, unpredictable, multi-application scenarios. We compare our
algorithms to the powersave, interactive and ondemand governors and also explore the
scaling of their execution time with respect to the number of cores in the system.

Lastly, in Chapter 4 we study load balancing by means of Work Stealing, with the
objective of optimizing performance. In this case, we perform runtime management
in a distributed manner, as each core becoming idle has to choose a victim core to
steal work from, with incomplete and approximate information of the current workload
distribution over the system resources. We begin the description of our approach by
defining the system view: a hierarchical structure that every core maintains, denoting
which other cores or regions of the system are more likely to be loaded with work to be
stolen. Subsequently, we outline the process the core follows when it becomes idle, to
select a victim core to steal work from, using the system view, while also enriching the
information in it. Our approach is evaluated with diverse workloads: perfectly balanced,
jittery, unevenly distributed, dynamically generated imbalanced DAGs and a stencil
application with complex nearest-neighbor dependencies. We compare the performance
of our approach with existing techniques: random, hierarchical and local work stealing,
as well as stealing guided by complete system load information. We conclude the chapter
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by laying out the time overheads incurred by each strategy.
The following section summarizes the contributions of this thesis for the three

aforementioned parts.

5.2 Contributions
This thesis studies three different runtime optimization problems. This section
summarizes the main contributions and findings of each study.

5.2.1 Runtime Management for Graceful Degradation
The first part of the thesis deals with runtime management of adaptable systems for
graceful degradation. The main contributions of this study are the following:

• Formulating adaptive systems’ graceful degradation as an optimization
problem.
We proposed a high level model of an adaptive multicore, based on mutually
exclusive versions of its hardware components and its workload tasks. The versions
are annotated with performance, energy and functionality numbers that allow us to
quantify system efficiency and use it as an objective function for our optimization
algorithms.

• Proposing alternative algorithms for optimizing system efficiency, utilizing
incremental and partial precomputed solutions.
We proposed multiple runtime algorithms that are triggered by component failure
events and choose a new system configuration optimizing system efficiency. We
developed custom fast heuristics, as well as versions of simulated annealing and
genetic algorithm, that are tailored to the particular optimization problem.

• Characterizing degradable hardware components.
We developed a methodology for characterizing, in terms of performance and
energy efficiency, the degraded versions of hardware components that facilitate
fault isolation by means of reconfiguration. This process produces the necessary
annotations our high level system description needs. Additionally, for the case of
processor arrays with mixed-grain reconfiguration, it resulted to a design space
exploration dictating the optimal reconfiguration granularity for any given fault
density.

Our results show that the custom heuristics are one to two orders of magnitude
faster than simulated annealing and genetic algorithm, while maintaining similar system
efficiency in case the reconfiguration cost is unconstrained. Specifically, they provide
better efficiency for at least the first 20% of system lifetime and are at most 13% worse
towards the end, compared to simulated annealing and genetic algorithm. Performing
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the same evaluation under reconfiguration cost constraints, the custom heuristics are
often found unable to satisfy them. As custom heuristics are much faster, we propose a
combination of algorithms for this constrained case: run a fast heuristic first and back
it up with a slower genetic algorithm if it fails. The above strategy is also backed up
by another finding: our best algorithm always provides efficiency less than 15% worse,
compared to an exhaustive, optimal solver.

Focusing on the design space exploration for mixed-grain reconfigurable processor
arrays, we make the following observations for different fault densities: Non-
reconfigurable arrays offer more cumulative performance for fault densities of up to
four faults in the area of nine non-reconfigurable processors. For higher densities (five
or more faults in the same area) a coarse-grain array with reconfiguration granularity of
eight substitutable units per processor offers 10% better performance. Lastly, for even
higher densities of at least 13 faults in the same area, a mixed-grain reconfigurable array
with granularity of 16 substitutable units per processor is found to be 8% faster than other
design points.

5.2.2 Runtime Management for Energy Efficiency
In the second part of the thesis, we focus on designing a runtime manager for
optimizing energy efficiency on heterogeneous, DVFS-capable multiprocessors. The
main contributions of this part are the following.

• Predicting performance with scalable profiling and runtime projection.

We proposed a feasible and accurate performance prediction strategy. We built
the strategy on two components: First, a scalable process for profiling individual
applications and extracting their performance characteristics with a number of runs
linear with respect to the system size. Second, a runtime operation, that projects
the offline-acquired, static, application-specific measurements to the dynamic,
multi-application status of the system, monitored online.

• Predicting power with a model that does not require retraining.

We calibrated a power prediction model that uses as inputs the performance
predictions produced as described in the previous point, and a set of static, system-
specific power parameters. As application-specific parameters are not involved, the
model can be used for any application mix without offline or online retraining.

• Developing heuristics for runtime management.

We developed three different runtime heuristics that use the aforementioned models
and online monitoring, to decide application placements and cluster frequencies
whenever an application spawn or application termination event happens. The
heuristics perform limited search of the configuration space and choose the
configuration that is expected to maximize energy efficiency while satisfying
performance requirements of individual applications.
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Through exhaustive evaluation of a small number of representative events, our
prediction model is found to mispredict performance, power and energy efficiency by an
average 2.5%, 6.1% and 6% respectively. Our approach as a whole (model and heuristics)
is evaluated with a plethora of dynamic, multi-application scenarios. Without considering
performance requirements of individual applications, it proves to be 3% more energy
efficient than the powersave governor and twice as energy efficient compared to the
interactive and ondemand governors. Our approach is also able to support performance
requirements of individual applications, at the cost of 18% lower energy efficiency
versus the powersave governor, which however misses the performance targets by 23%.
Furthermore, our approach maintains an efficiency advantage of 52% and 58% over the
governors that satisfy said requirements (interactive and ondemand respectively). Lastly,
exploring our heuristics’ execution time scaling with respect to system size, we find that
they can be used on systems many times bigger than the one used for the experiments: all
algorithms’ execution time grows in a slower-than linear manner and is at most 1.23msec
on a system of 128 cores.

5.2.3 Runtime Management for Load Balancing
The third part of the thesis is dedicated to optimizing Work Stealing decisions, with the
goal of achieving dynamic load balancing and in this manner improve the performance
of multiprocessors. The main contributions of this part are as follows:

• Obtaining system load information with negligible overheads.
We introduced a novel, lightweight method to construct an approximate system
load view. By integrating load querying with steal attempts, we allow individual
cores to have incomplete information about which system cores or regions are
likely to be loaded and, as such, good targets for stealing work from.

• Proposing a work stealing algorithm.
We developed an algorithm that performs victim core selection whenever a core
becomes idle. The algorithm uses the aforementioned approximate system load
view and also considers memory hierarchy and system topology, to increase the
probability of a beneficial steal.

• Evaluating for diverse workloads.
We evaluated our strategy using workloads featuring different characteristics with
respect to load balancing: balanced, jittery and unevenly distributed workloads,
dynamically generated DAGs, and a workload with complex task dependencies
that create imbalance.

Our experimental evaluation shows that our proposed strategy achieves good all-
around performance for all examined workloads. Among the 12 unbalanced workloads
we examine, we achieve better performance than random, hierarchical and local work
stealing for six of them, being at most 8.3% slower among the rest. However, the
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alternative strategies that achieve better performance in one or more of the remaining
six cases, incur a penalty of at least 89% to some other workload. Furthermore, our
strategy incurs negligible overheads (1.4%) compared to no work stealing, when used on
a perfectly balanced workload, as opposed to at least 37% and 12% penalty respectively
for random and hierarchical stealing. The last two points prove that our proposed work
stealing approach can be used safely on a multiprocessor, without a priori knowledge of
the types of workloads that it will run.

5.3 Proposed Research Directions
In this thesis we showed how runtime management can help multicore systems maintain
their efficiency when unpredictable events happen. In this final section we propose, for
each of the three individual studies, the most interesting, in our opinion, direction towards
further improving it:

Runtime Management for Graceful Degradation: Our runtime algorithms for graceful
degradation of adaptive multicores focus on maximizing system efficiency for its current
status, i.e., the set of permanent faults that have happened on it so far. However, it
would be interesting to make more long-term decisions for a combined lifetime-efficiency
metric, considering aging effects and how our decisions affect them. This work would
require augmenting our event generator (see Section 2.4.1.2) to work online and estimate
the effect of the current workload mapping on the wearout of components. Then, our
algorithms, instead of just optimizing for system efficiency at the present time, would
have to also consider how each configuration would burden the system components
in the future: a configuration that is very efficient on the current system status, might
affect the aging of some healthy hardware components so seriously that faults appear
on them in the future, resulting to an abrupt efficiency loss. The algorithms should then
be aware of specifications and requirements, such as minimum required system lifetime,
minimum efficiency, etc. Such an extension would combine the contributions of our work
with works that focus mostly on lifetime extension without considering all sources of
flexibility that we do, such as [20–22].

Runtime Management for Energy Efficiency: One aspect that is not considered in the
current implementation of our strategy is that applications can change their behaviour
in time, when they transition between different phases. If a mechanism to detect these
phase changes is implemented, each application phase can be treated independently, as
a separate entity in the runtime. More specifically, each phase would, in this case, be
profiled separately, to extract its particular characteristics when it comes to resource
requirements. Then, in runtime, whenever the application transitions to a different
phase, it would be evaluated anew, possibly resulting to different mapping and frequency
decisions, adapting to the characteristics of each phase. Furthermore, this would allow
the runtime manager to deal with multithreaded applications efficiently. Multithreaded
applications consist of phases that can benefit in varying degrees from parallelism:
sequential phases should be mapped on a single processor, while parallelizable phases
can benefit from being mapped on multiple processors. Thus, when dealing with
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multithreaded applications, a phase detection mechanism would allow the runtime
manager to make more interesting decisions, considering the potential parallelization
benefit as well as the current availability of idle processors in the system, to optimize
efficiency. Phase detection has been implemented in works such as [31].

Runtime Management for Load Balancing: In the experimental evaluation of our
work stealing strategy, we have observed that WS_Global: Work stealing using global
system view produces some interesting results (see Sections 4.4.3 and 4.5.1). Although
there are workloads for which it incurs unacceptable performance penalties (being up
to 2.7 times slower than the baseline), there are also workloads for which it is up to
9.6% better than our proposed approach. In fact, WS_Global is punished severely by
finer task granularities, resulting to more dense steal attempts in time and making a
bottleneck of the global system view. We expect these penalties to become worse for
systems bigger than the 48 core system we used in these experiments. However, this
trend suggests that our proposed approach could benefit from a more strongly hierarchical
implementation. Within neighborhoods of cores, one version of the system view could
be kept, similar to the global one but confined to a small part of the system. Thus, local
steals can benefit from the complete information, while at the same time avoiding the
creation of a bottleneck for the whole system. Then, the precision and detail of the system
view information could get gradually lower, as we move to more remote regions. Lastly,
different neighborhoods could occasionally share, with each other, their more complete
knowledge of the local region, possibly dedicating a chunk of the time of one core per
neighborhood to this purpose. The above has to be approached by means of design space
exploration, considering the system size, the depth of the system’s hierarchy and the task
granularity, to find optimal design points for each combination of the above.

The directions proposed in this section are an indicative, non-exhaustive list of
interesting topics. All three studies can benefit by deeper investigation.
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