
17 July 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Reliability and Security Assessment of Modern Embedded Devices / Ruospo, Annachiara. - (2022 Jul 05), pp. 1-193.
Original

Reliability and Security Assessment of Modern Embedded Devices

Publisher:

Published
DOI:

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2969934 since: 2022-07-08T13:19:47Z

Politecnico di Torino

Doctoral Dissertation

Doctoral Program in Computer and Control Engineering (34thcycle)

Reliability and Security Assessment
of Modern Embedded Devices

By

Annachiara Ruospo

Supervisor:
Prof. Ernesto Sanchez

Doctoral Examination Committee:
Prof. Letícia Maria Bolzani Poehls, IDS RWTH Aachen University, Germany
Prof. Alberto Bosio, École Centrale De Lyon, INSA Lyon, CNRS, INL, France
Prof. Giorgio Di Natale , Referee, Université Grenoble-Alpes, TIMA, CNRS, France
Prof. Luca Sterpone, Politecnico di Torino, DAUIN, Italy
Prof. Haralampos Stratigopoulos, Referee, Sorbonne Université, CNRS, LIP6,
France

Politecnico di Torino

2022

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Annachiara Ruospo
2022

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

Dedico tutto questo alla mia famiglia, da sempre e per sempre al mio fianco.

Acknowledgements

And I would like to acknowledge all the people who have shared this journey with
me, providing me with incessant support and help, in different forms.

Firstly, I would like to thank my tutor, Prof. Ernesto Sanchez, for guiding me,
advising me, helping me over the years of my Ph.D. I will be forever grateful to you
for giving me this opportunity. It has been a journey not only professional, but of
life. Thank you. I would like to thank Prof. Matteo Sonza Reorda for giving me his
trust, in every situation, and for always being attentive to my professional growth. I
would also sincerely like to thank Prof. Alberto Bosio for his constant support, for
giving me interesting opportunities, and for introducing me to this stimulating and
exciting research world.

Then, I would like to acknowledge all the professors in CAD & Reliability Group,
and my colleagues for encouraging me to conduct my research in an enjoyable
environment. A special thank goes to Professors Paolo Bernardi, Luca Sterpone, and
Giovanni Squillero for our very interesting collaborations. Then, to Davide Piumatti,
Andrea Floridia, Aleksa Damljanovick, Esteban Rodriguez, and Riccardo Cantoro
for sharing with me my best and worst moments, and to all my current colleagues
in LAB3+7. Thanks, Gabriele Gavarini for entering our exciting "TheNNReliable"
team, thank you for your very valid support and for sharing with me the last important
moments of my Ph.D. Next, I would like to thank Professor Luigi Dilillo, Lucas
Matana Luza, and Marcello Traiola for our very interesting path together.

Last but not least, special thanks go to my lovely family, to Kevin, and to my
friends for their constant and warm presence and, most importantly, for the energy
they give me and encourage me every day. My family with unmeasurable love have
always protected, supported, and encouraged me. Without them, none of this would
have been possible. Thank you dad, mom, Ilaria, grandpa. Thank you, Kevin, for
being exactly as you are. Thank you for sharing this journey with me.

v

To conclude, I would like to thank all the people I have met over these long years,
who in different ways and intensities have given me the courage to achieve this goal.

Abstract

The complexity of modern embedded systems has increased rapidly over the past
few decades. The integration of many various technologies as well as the adoption of
more sophisticated algorithms pose significant challenges in ensuring the robustness
and the reliability of these systems. Indeed, together with the shrinking of technology
nodes, even more systems leverage artificial intelligence based algorithms to cope
with their ever-growing computing requirements. In this light, worthy of note is the
emerging trend toward the adoption of brain-inspired artificial models, i.e., Artificial
Neural Networks, in different fields, like automotive, robotic, avionic, etc. If from
one side this results to be a very interesting solution, given their outstanding and
near-human computational capabilities; from the other side this could be dangerous
from the safety point of view. Actually, outsourcing important decisions to them
(like deciding whether the car should stop to let a pedestrian pass), can be threatening
for the following reason. As a matter of fact, being predictive model, they are not
100% accurate: even in fault-free scenarios, they can provide a wrong answer. Then,
despite their very interesting capabilities which are appealing for both industry and
academic, it is necessary to deeply investigate the reliability and the behaviours of
those systems in faulty scenarios, especially because it has been demonstrated that
with the shrinking of the technology, emerging devices are more prone to physical
defects.

This manuscript is organized in two parts. The primary focus of this Ph.D. thesis
is on artificial intelligence-based systems and on the assessment and the improvement
of their reliability. This topic has been addressed comprehensively at very different
abstraction levels and from different perspectives. Firstly, a characterization of the
existing fault models is provided together with the identification of the possible
vulnerabilities in ANN-based systems. Then, a key contribution of these research
activities is the proposals of different fault injection tools and methodologies to
easy and support the reliability assessment process. Specifically, this is done at

vii

different levels: by addressing only the ANN model, or by considering the entire
system entailing both the ANN software running on a target hardware system.
The advantages and disadvantages of the different categories are detailed in the
manuscript. At this level, the principal novelties are the identification of the critical
bits in different data type representations, the establishment of critical neurons
depending on the importance of a neuron as a class- and as a network-dependent
entity; trade-offs analysis on data type representations based on two aspects, i.e., the
memory footprint of the application and their reliability. In the end, relying on these
analysis and results, strategies to mitigate the effect of faults have been proposed.
The first proposed technique aims at redistributing neuronal computations on an
AI-based SoC by leveraging integer linear programming. The second mitigation
technique is an on-line testing solution based on the adoption of Software Test
Libraries coexisting with the requirements of ANN algorithms.

Together with the reliability assessment of neural networks, this Ph.D. thesis
covers also a further important topic: the hardware security of modern embedded
systems. The complexity of emerging hardware systems led the industry to pursue
new development processes: to build a SoC, a recent trend is to rely on third-party
IP blocks to keep the cost low and to meet the deadlines. This outsourcing poses
increasing concerns regarding the security of modern embedded devices. As an
example, these IP blocks might come with malicious circuitry intentionally added
by adversaries, namely Hardware Trojans. They are hidden inside the design and
become active under certain rare conditions (such as input sequences). Otherwise,
they can be always active since the power on of their host device. Their malicious
functionalities can vary from leaking secret information, degrading the circuit’s
performance, creating backdoors for attackers, and many others. In the literature,
new advances and progress have been done in this field, especially in proposing
specific detection methodologies to discover hidden Trojans inside a given design.
However, the existing gap lies in the HT benchmarks used to validate state-of-the-art
methodologies. Indeed, they are obsolete and very simple, unable to represent the
complexity of current designs and architectures. For example, they are injected on
small 8-bit 8051 microprocessors, or simple cryptographic circuits. In this context,
one of the main contributions of this Ph.D. thesis is the release of a set of Hardware
Trojans benchmarks at the Register Transfer Level for an open-source pipelined
RISC core. They have been designed by following the guidelines for creating hard-
to-detect Trojans. Furthermore, the second contribution in this field is a pre-silicon

viii

detection methodology for detecting RTL Hardware Trojans. This is build on a deep
learning analysis of the dynamic and static properties extracted from the design RTL
model. Experimental results show that the proposed technique is highly accurate in
highlighting suspicious code sections. By carefully inspecting them, it is possible to
unfold all the hardware trojans.

Contents

List of Figures xiii

List of Tables xvi

Introduction 1

I Artificial Neural Networks Reliability 6

1 Background and Related Works 8

1.1 Fault Models in ANNs . 8

1.1.1 Fault Propagation . 12

1.2 Related Works . 13

1.2.1 Fault Injection Tools and Frameworks 13

1.2.2 Advantages and Disadvantages of Fault Injection Method-
ologies . 19

1.2.3 Related Studies on ANN Weights and Neurons 22

1.2.4 Related Studies on Mitigation Strategies 25

1.2.5 Software Test Library . 26

2 Main Contributions 28

3 Reliability Assessment at the Software Level 32

x Contents

3.1 Static Parameters in Artificial Neural Networks 33

3.1.1 Full Precision ANN Weights 34

3.1.1.1 Proposed Approach 34

3.1.1.2 Experimental Results 37

3.1.2 Reduced Precision ANN Weights 42

3.1.2.1 Proposed Approach 43

3.1.2.2 Experimental Results 48

3.2 Dynamic Parameters in Artificial Neural Networks 62

3.2.1 Proposed Approach . 63

3.2.2 Experimental Results . 67

3.3 Chapter Summary . 76

4 Reliability Assessment at the Architectural Level 79

4.1 Proposed Approach . 79

4.2 Experimental Results . 82

4.3 Chapter Summary . 85

5 Reliability Assessment at the Physical Level 86

5.1 Proposed Approach . 86

5.1.1 Radiation Experiments . 88

5.1.1.1 DUT Characterization 88

5.1.1.2 Radiation Tests on CNNs 89

5.1.2 Software Emulator . 92

5.2 Experimental Results . 94

5.2.1 Radiation Tests Results . 94

5.2.2 Software Emulator Results 96

5.3 Chapter Summary . 104

Contents xi

6 Mitigation Strategies 106

6.1 Neurons Redistributions on AI-oriented MPSoCs 106

6.1.1 Proposed Approach . 108

6.1.1.1 Integer Linear Programming based Methodology . 109

6.1.2 Experimental Results . 111

6.2 Software Test Libraries for ANNs 116

6.2.1 Proposed Approach . 117

6.2.2 Experimental Results . 120

6.3 Chapter Summary . 126

II Security of modern devices 128

7 Background and Related Works 130

8 Main Contributions 134

9 Hardware Trojans 135

9.1 Proposed Benchmarks . 135

9.1.1 Experimental Analysis and Implementation 137

9.2 Pre-silicon Detection methodology 141

9.2.1 Proposed Methodology . 141

9.2.1.1 Control Flow Graph Extraction 143

9.2.1.2 Data Formatting 145

9.2.1.3 Classification 146

9.2.2 Experimental Results . 147

9.3 Chapter Summary . 153

10 Conclusions and Achievements 156

xii Contents

10.1 Future Directions . 158

Bibliography 162

List of Figures

1.1 The fundamental concepts of fault, error, and failure applied to an
ANN-based system. 10

1.2 Fault Propagation in a full system [1]. 12

1.3 Schematic of Fault Injection approaches for Deep Neural Networks. 14

1.4 Comparing different Fault Injection Techniques. The x-axis re-
ports the specific level: 1-Low, 2-Medium-Low, 3-Medium, 4-High-
Medium, 5-High, 6-Very High. 20

2.1 Fault injection approaches for assessing the reliability of ANNs
and ANN-based systems at different abstraction levels. In each
situation, the lightning bolt icon illustrates where errors or faults can
be introduced. 29

3.1 Single Precision IEEE 754 Floating-Point Standard 34

3.2 LeNet Masked Faults . 38

3.3 LeNet Safe Observed Faults . 38

3.4 LeNet Unsafe Observed Faults . 39

3.5 Example of YOLO Predictions. 40

3.6 Tiny YOLO Masked Faults . 41

3.7 Tiny YOLO Unsafe Observed Faults 41

3.8 YOLO Workload #4. 42

3.9 Custom Data Type. 43

xiv List of Figures

3.10 On-line Weights Conversions. 44

3.11 Fault Injection Scenario [2]. 46

3.12 Critical Bits . 49

3.13 LeNet-5 pre-trained weights distribution. 49

3.14 YOLO pre-trained weights distribution 55

3.15 Basic Scheme for a neuronal computation. 63

3.16 The critical neuron identification process: a practical example with
the MNIST dataset. 66

3.17 MNIST LeNet: software fault injection campaigns on random and
critical neurons. 70

3.18 SVHN ConvNet: software fault injection campaigns on random and
critical neurons. 71

3.19 CIFAR-10 All-CNN: Software fault injection campaigns on random
and critical neurons. 72

3.20 Network-oriented Analysis with a growing t percentage of critical
neurons from the CoA. 74

3.21 Showing the robustness of the proposed approach based on the
contribution of the CoA and the NoA (blue lines). Its effectiveness
is compared against [3] (green line) and our proposed methodology
without the contribution of the class-oriented analysis (red line). . . 75

3.22 Intersection between the critical neuron ranking obtained using the
test set and the rankings obtained using subsets of the validation set.
The figure shows how, for ResNet-32, the intersection remains stable
for different values of pNeu. 78

4.1 Exploiting the pipeline technique to reduce the DNN simulation time. 81

4.2 Proposed Pipelined Multi-Level Fault Injector Tool 81

5.1 Diagram of the Proposed Approach. 87

5.2 Top-level diagram of the system. The DUT is highlighted. 91

List of Figures xv

5.3 A diagram of the proposed emulator. 93

5.4 Accuracy variation based on the increase of the E-SER with SBUs
or stuck-at faults for the three CNNs. 98

5.5 Number of injected stuck-at faults for each single BE for each CNN
application (y-axis on the left). Average accuracy value for each
single BE affecting a run at a random time (y-axis on the right). . . . 99

5.6 The incidence of the most critical BEs on CNNs weights and biases. 101

5.7 Multiple block errors affecting the three CNNs under assessment. . 103

6.1 Neurons assignment in a AI-oriented SoC exploiting the SIMD
configuration. 108

6.2 Fault Detection Time . 118

6.3 CNN performance versus FDT . 125

6.4 Resnet-18 performance versus FDT 126

9.1 RTL Hardware Trojans benchmarks inserted in the mor1kx CPU. . . 138

9.2 Flow of the proposed methodology 142

9.3 ROC curves for 4 different kernels including different set of extracted
attributes (farther from the 45-diagonal, i.e., closer to the upper-left
corner, the better) . 150

9.4 Set of nodes belonging to Hardware Trojans as TP and FN 153

List of Tables

3.1 LeNet [4] . 36

3.2 Tiny YOLO [5] . 37

3.3 LeNet-5 Data Type Accuracy Loss [%] 50

3.4 LeNet-5 Fault List for Fault Injection Campaigns 50

3.5 LeNet-5 Fault Injection outcomes with respect to the Golden Stan-
dard version. 53

3.6 LeNet-5 Fault Injection outcomes with respect to the Golden Cus-
tom version. 54

3.7 YOLO Data Type Accuracy Loss [%] 55

3.8 YOLO Fault List for Fault Injection Campaigns 56

3.9 YOLO Fault Injection outcomes with respect to the Golden Stan-
dard version. 58

3.10 YOLO Fault Injection outcomes with respect to the Golden Custom
version. 61

3.11 ANN Benchmarks . 68

4.1 Pipelined Fault Injector timing details. 83

4.2 A comparison between the performances of the sequential fault
injector wrt the pipelined. 83

4.3 Fault Injection Results . 84

4.4 Sequential Framework vs Pipelined Multi-Level Framework 85

List of Tables xvii

5.1 Estimated event rate for both test scenarios. 92

5.2 Summary of the runs that return a faulty accuracy at the end of the
radiation tests on CNNs. 95

5.3 Details of SBUs and stuck-at bits injection for the Float 32, Int 16,
Int 8 CNNs with an increasing E-SER: 1x, 25x, 50x, 75x, 100x . . . 97

5.4 BE Injection Details . 99

5.5 Details of block error injections for the CNNs Float 32, Int 16, Int 8
with an increasing E-SER: 1x, 25x, 50x, 75x, 100x 103

6.1 Figures of variance when the chunks of neurons are assigned follow-
ing a static scheduling. 113

6.2 Figures of variance when the chunks of neurons are assigned follow-
ing the proposed ILP and Variance-based optimal scheduling. 113

6.3 RTL Fault Injection Results. 116

6.4 CNN timing details . 121

6.5 Software Test Library Details . 122

6.6 RI5CY stuck at faults details and test coverage 123

7.1 RTL Hardware Trojan benchmarks available on Trust-Hub [6, 7]. . . 132

9.1 Hardware Trojan Benchmarks Description 136

9.2 Synthesis Results . 141

9.3 Experimental results of the four SVM classifiers 149

9.4 Experimental results of the Neural Network 152

9.5 Meaning of the confusion matrix in context of HT detection 153

Introduction

Nowadays, safety and security assessments for modern embedded systems are
challenging tasks. Indeed, they have become increasingly complex and sophisticated
due to the ever-growing computing requirements and capabilities. As a matter of fact,
the growing complexity of emerging computing systems has called for enhanced
computing paradigms. Among all the existing possibilities, Artificial Intelligence
(AI)-based solutions and, specifically, brain-inspired computing models, have gained
large interest in the industry and academia for their outstanding and near-human
computational capabilities. Inspired by the human brain where billions of neurons
process information in parallel [8], researchers have developed artificial models,
named Artificial Neural Networks (ANNs) which mimic the functioning of the human
brain [9]. The neural network history has its roots in 1943 with the seminar paper
by Warren S. McCulloch and Walter Pitts [10]. For the first time, they described a
formal neuron with capabilities similar to that of a Turing machine, and created a
machine able to implement logical reasoning. The idea of exploring logic in terms
of manifestations of a mental process forms the basis for the artificial intelligence
world. From that historical time on, a large amount of studies made progress in
improving the theory behind brain-inspired computations to build highly complex
artificial models. For their superior qualities, they represent now one of the most
used solutions for addressing complex computational problems.

AI-based systems surround our daily life, and, among other countless applica-
tions, they power our virtual assistants, transcribe our voice messages, recognize
people in our phone, or, in our car. Moreover, they have found successful applications
in several safety-critical domains, like automotive, robotic, avionic. Their adoption
in human environments raises many concerns. For these reasons, assessing their
reliability has become a crucial requirement, and, due to their complexity, there is
a growing need to develop even more sophisticated methodologies to accomplish

2 Introduction

this scope. It is also worth adding that neural networks are notorious for producing
inaccurate inference results. They are not 100% accurate due to their nature as
predictive models, which provides an essential aspect that must be considered when
addressing the reliability of these systems. Adoption in road cars, for example, may
lead to the violation of functional safety requirements (e.g., ISO 26262 [11]). As a
consequence, recently, the research community has become even more interested in
determining aspects such as the reliability and trustworthiness of AI-based systems.

It is worth saying that, ANNs are traditionally considered intrinsically fault-
tolerant and tightly robust, being brain-inspired models. Indeed, our brain is known as
the best information processing system, with its 10 billion nerve cells (i.e., biological
neurons) and about 10,000 synapses for each connection starting from a neuron.
Because of its plastic capacity to renew, repair, and reconfigure its neuronal activities,
it can withstand synapses or neuron errors while still operating correctly [12]. Clearly,
this fascinating plastic property can not be extended to artificial neurons, which
being mathematical models, are not capable of self-repairing from errors. On the
other hand, it is necessary to specify why it is claimed that they can be considered
inherently robust and fault-tolerant models. Firstly, they own a certain degree of
robustness because of their redundancy. In fact, such artificial models are composed
of more neurons than they really need. This property is known as over-provisioning
and constitutes a very key principle in neural networks fields [13]. Due to this
excessive neurons budget, it has been demonstrated that over-provisioning leads to
robustness [14]. In other words, this characteristic means that ANNs can accept
a finite number of neurons failing without affecting the computation’s outcome;
beyond that number, accuracy declines gradually [15]. The second reason behind the
claim of the intrinsic robustness is related to their distributed and parallel architecture.
In those systems, the unit of failure is one single neuron or synapse. Examples are
reported by IBM teams which recently presented neuromorphic implementations of
convolutional neural networks where neurons can fail independently [16].

Under these assumptions, i.e., (i) the over provisioning and (ii) the single neuron-
s/synapse as units of failures, artificial neural networks can be considered having an
intrinsic robustness and reliability.

However, in the real world this is not totally true, because they are not used as
pure mathematical models, but they are deployed on silicon. The first examples of
digital architectures devised for neural networks have been systolic array structures,

Introduction 3

very suitable to express their recurrence and parallelism [17, 18]. In that particular
architecture, an individual processing element implemented the function of an as-
sociated neuron while the weights were stored in a circular memory. For another
perspective, it means that a single physical fault affecting the hardware corrupted a
single neuronal computation. Therefore, the single neurons as unit of failure was
preserved in that case. Currently, neural networks are typically executed on high-
performance GPUs or optimized custom ASIC designs, where a single hardware unit
implements many neuronal computations. As a consequence, a single physical fault
affects many neurons, tearing down the theory of the intrinsic fault tolerance.

A growing number of AI-based systems are built on ASIC design implementa-
tions, especially those exploited on the Internet of Things (IoT) world and for the
edge computing (e.g., [19, 20]). The reason lies in their flexibility, which makes
them suitable for a wide range of applications requiring low-power and low-cost
resource-constrained embedded devices. On a final note, regardless the used archi-
tecture (e.g., GPUs, FPGAs, ASICs), new emerging devices at nanoscale dimensions
are more prone to manufacturing defects and transient faults [21]. In other words,
the probability that parts of the hardware fail due to the occurrence of physical faults
increases as the shrinking of semiconductor technologies continues.

In light of these considerations, it starts to be crucial to evaluate the reliability
of systems based on artificial neural networks and, generally, artificial intelligence
algorithms. This is further motivated by the following considerations:

• Being predictive models, they are not 100% accurate. Even in fault-free
scenarios, they can provide a wrong result.

• In many contexts and applications, they make choices for us.

• There is a growing push from the industry to deploy them on safety-critical
systems (e.g., self-driving cars).

Part I of the manuscript addresses this topic and describes the principal con-
tribution of my Ph.D. thesis in this field. The primary focus is on the reliability
assessment of artificial neural networks and AI-based hardware systems. First, an
in-depth investigation has been done to understand the main vulnerabilities of those
systems; then, tools and methodologies have been proposed to perform reliability
assessments, and then, mitigation solutions are proposed to improve their reliability.

4 Introduction

In this manuscript, a detailed background in the area is given in Chapter 1: the
principal vulnerabilities and fault models are addressed, and a specific section on
related works is provided. The novelties and the main contributions are illustrated
in Chapter 2. Next, Chapters 3, 4, and 5 detail the main research works that
have been done to assess the reliability of ANNs at very different abstraction levels:
respectively, at the software by considering only the neural network model, at the
hardware by presenting the architecture of a RTL fault injector, at the physical by
describing the architecture of a software emulator which is capable of injecting real
faults retrieved from radiation test campaigns. Finally, leveraging the outcomes
coming from the previously described assessment phase, mitigation strategies are
proposed in Chapter 6 to improve the reliability of ANNs running on hardware em-
bedded systems. An Integer Linear Programming (ILP)-based method is proposed
to redistribute neuronal computations on a resource-constrained AI-oriented ASIC
device to improve its reliability. Finally, the adoptions of Software Test Libraries
(STLs) for the on-line testing and their coexistence with the requirements of artificial
neural networks are investigated in a study.

ANNs Reliability is not the only issue covered in this manuscript. Part of the
research in these years focused also on the security of modern embedded devices. In
the last years, the growing complexity of modern devices and the fabrication costs
led the Integrated Circuit (IC) industry to pursue a new global business model. In
that regard, even more companies around the world are deeply involved in all phases
of the IC supply chain. The outsourcing of part of the process to untrusted third-party
entities raises growing concerns about the hardware security of the final products.
Particularly, Hardware Trojans (HTs) are gaining worldwide attention not only from
academia and industries, but also from government bodies [22]. Hardware Trojans
are malicious and intended alteration of a circuit, that endangers the trustworthiness
and the security of the hardware, leading to unwanted behaviour. As an example,
a HT may leak secret information, change the circuit functionality or degrade the
performance. In the literature, the vast majority of the existing detection techniques
are applied at gate-level [23][24]. However, a growing examples of HTs inserted at
the RTL are coming out, due to the flexibility for implementing various malicious
functions. Hence, more RTL HTs detection techniques are needed.

Part II of the manuscript deals with this issue: the security of modern embedded
systems. Chapter 7 provides background knowledge in the field together with an
accurate analysis of state-of-the-art research works. Chapter 8 introduces the main

Introduction 5

novelties in the field. Then, in Chapter 9, the two main contributions in this topic are
described: first, the description of newly released RTL Hardware Trojan benchmarks
for pipelined RISC microprocessor cores. Second, a machine learning-based strategy
to detect RTL Hardware Trojans at the pre-silicon phase of the supply chain. The
analysis is based on dynamic and static properties extracted from the RTL model of
the design under assessment.

To conclude, Chapter 10 includes a summary of this research, together with
useful information on future research directions and recommendations.

Part I

Artificial Neural Networks Reliability

Chapter 1

Background and Related Works

The origin of Artificial Neural Networks (ANNs) dates back to 1943 with the work
published by W. Pitt and W. McCulloch [25], where the concept of a neuron as
a computing unit was formalized for the first time. They are computing models
composed of computing nodes, i.e., neurons, connected to one another through
communication links, i.e., synapses. The role of an ANN is essentially to mimic the
behaviour of a function. For this purpose, ANNs are first trained by observing the
function input-output correspondence. Then, they can reproduce the learned function
behaviour by propagating the computed values from the input neuron(s) to the output
neuron(s) [9]. The propagation is regulated by weights and biases parameters, which
are specific to each synapse and neuron, respectively. Neurons are arranged in layers,
at least one input layer, one intermediate (or hidden), and one output layer. An ANN
composed of more than three layers, i.e. an input layer, an output layer and multiple
hidden layers, is named a deep neural network.

The intent of this chapter is to provide the reader with basic definitions and
concepts in the field. Section 1.1 overviews the different fault models existing in
ANNs. In Section 1.2, related works in the topic are described.

1.1 Fault Models in ANNs

It is known that Artificial Neural Networks have built-in fault-tolerance properties
due to their distributed and parallel structure, as well as for their redundancy due
to over-provisioning [13]. However, the evaluation of their fault tolerance is not

1.1 Fault Models in ANNs 9

a trivial task because there are no common systematic methods or tools for the
assessment [21]. The intent of this section is to introduce and clarify basic definitions
related to fault types and fault models in ANNs and ANN-based systems.

Fault Injections (FIs) have long been acknowledged as appealing techniques
for assessing the dependability of systems under test among all available testing
approaches. Such procedure consists of introducing faults/errors into the system
under test and checking its behaviour in response to them. To address reliability
issues in ANNs, it is first necessary to clarify where faults can be injected and at
which abstraction level. Dealing with different abstraction levels, before delving into
the distinct reliability assessment approaches, it is worth reminding the fundamental
concepts of defect, fault, error, and failure [26]. A defect in an electronic system is
the difference between the intended design and the implemented hardware. Typical
defects are due to the process, the material, the age of the device, and the package.
The representation of a defect is a fault, an anomalous physical condition that may
lead to an error. An error is the exhibition of a fault in a system that might not
or might be propagated and, in this last case, give rise to failures. An example of
their application to the neural network field is reported in Figure 1.1, where the
two principal levels are illustrated: the architectural and the behavioural one. The
former includes the target hardware device, the latter the artificial neural network
application. If the injections are performed at the behavioural level, we can talk
about errors and failures, whereas if they address the physical abstraction level, also
referred to as architectural, we will refer to faults. For the system represented in
Figure 1.1, the defect is the short circuit to the ground, while the fault is the signal b
stuck-at logic 0.

In this light, reliability assessments in the neural network domain can focus on: (i)
the neural network model as a technology-independent software application, (ii) the
system comprising both the neural network model and the final hardware architecture
running it. In the first case (i), a designer might be interested in evaluating the
robustness of the neural network, regardless of the target device on which it will be
deployed. As a consequence, a fault injection process can target only the entities
belonging to the ANN model, i.e., neurons and synapses. According to [15], each
neuron must be considered as a single entity that can fail independently of the failure
of any other. This is also true for synapses. In line with the classification proposed
in [21], errors in artificial neural networks may occur in the following elements:

10 Background and Related Works

• Communication channels: The communication link between two neuron
cells can be broken due to faulty interconnections or noise.

• Synaptic weights: Weights represent the strength of the connection between
two neuron cells.

• Neuron body: It constitutes the core of the neuron cell and includes both the
summation and the activation function. An error affecting the neuron body
can be distinguished in two categories: crash and byzantine. In the first, the
neuron completely stops its activities and saturates to positive/negative values.
In the second, it transmits arbitrary values.

...

neuron

synapse

Fault

Error

Failure

Ar
ch
ite
ct
ur
al

Le
ve
l

Be
ha
vi
or
al

Le
ve
l

a
cb

Figure 1.1 The fundamental concepts of fault, error, and failure applied to an ANN-
based system.

Therefore, a FI campaign can mimic the occurrence of such error types. When
running the FI campaigns, all these sources of errors can be considered to assess the
ANN resilience. Other similar fault model classifications for ANNs are proposed by
Sequin and Clay in [27], Chandra and Singh in [28], and Bolt in [29]. Specifically,
in [29], the author presents a method for developing fault models at the abstract
level by taking into account several characteristics, such as the fault location and
the time of occurrence. In practice, having the high-level model of the ANN under
test, these errors can be injected in the following faulty locations: weights, biases,
communication links, and input or output neurons.

1.1 Fault Models in ANNs 11

As regards the second case (ii), a designer might be interested in evaluating the
robustness of the entire system before deploying a given ANN on a final device.
Therefore, together with the error types affecting the ANN software model, all the
physical faults affecting the hardware model should be taken into account. Faults
affecting electronic devices can be classified for their temporal characteristics as
permanent or transient. The former is stable with time and represents irreversible
physical damage. The latter is active only for a short period of time and arises
as a result of external disturbance or abnormal conditions or events (e.g., particle
strikes). Starting from this broad fault types classification, the following fault models
have been proposed over the years as abstractions of physical defects in electronics
devices:

1. Stuck-at: Individual elements of the electronic device are tied to a state. For
example, in a memory array, the bit can be stuck at a logical ‘1’ or ‘0’, and
regardless of the operation, the read result will be the same.

2. Bit-Flip: Individual memory elements of the electronic device had their logical
state changed. This change in the logical state can be recoverable by resetting
the value on the element.

The stuck-at fault is a very common fault model. Indeed, it has been shown that
many transistor and interconnection defects can be modelled with fair accuracy as
permanent defects at the logic level. On the other hand, a random bit-flip model can
represent the occurrence of transient faults, usually affecting registers or memory
regions. Transient faults (i.e., soft errors) may be caused by different sources of
interference phenomena such as electrical noise, electromagnetic interference and
impinging ionizing particles. However, it is fair to say that today these two fault
models are not able to cover the newer fault mechanisms of the deep-submicrometer
technologies: new fault models are needed to deal with delays, stuck-opens, open-
lines, bridgings, and transient pulses.

Nevertheless, it has been demonstrated that the stuck-at and bit-flip models allow
a good investigation of the fault tolerance also at behavioural level [21] and, for this
reason, they have been widely used for reliability studies. For instance, an error
affecting the communication channels of a neural network can be modelled as a
single or multiple stuck-at-0 or stuck-at-1 faults affecting one or more bits of the
channel. Similarly, an error in the synaptic weights can be represented with a stuck-at

12 Background and Related Works

fault (o bit-flip) impacting one or more bits of the weight parameter. For example,
if adopting a 32-bit floating-point representation, an error in a weight means that
one or more bits of the 32 can be faulty. The same reasoning can be applied for
representing a crash or byzantine neuron. A neuron can be considered dead if it is no
longer transmitting values: this error can be modelled with a stuck-at-0 at its output.
Contrarily, a Byzantine neuron can be modelled as a stuck-at-value.

Hardware
masking

Hardware independent

Hardware dependent

Virtual ISA

ISA

Software

Physical Faults

System Failure

Fa
ul

t p
ro

pa
ga

tio
n

µP

Registers

Caches

RAM

Software
masking

Figure 1.2 Fault Propagation in a full system [1].

1.1.1 Fault Propagation

So far, all the possible fault models existing in neural network based systems have
been detailed. Nevertheless, it is worthy of note to discuss how hardware faults can
be propagated in a system. The hardware system can be affected by faults due to
physical manufacturing defects. As shown in Figure 1.2, faults can propagate through
the various hardware structures that encompasses the entire system. However, it is
likely that they will be masked during the propagation, either at the technological or
at the architectural level [1]. When a hardware fault reaches the software layer, it
might damage data, instructions, or control flow. These errors can cause incorrect
program execution, resulting in erroneous results, or they might block the application
from running, resulting in unexpected termination or application hangs. At the same
time, the software stack can hide mistakes, avoiding failures at the output of the
application. These phenomena are both inherently crucial for system reliability

1.2 Related Works 13

and a difficult challenge for engineers who must verify the safety of their systems.
Additionally, it must be said that the scenario illustrated in Figure 1.2 is valid for
every kind of application. It has been pointed out for an interesting reason: apart
from the above-described system (hardware or software) masking ability, neural
network applications possess an intrinsic masking ability, by their own. It is therefore
very interesting to understand how these properties coexist and combine.

1.2 Related Works

In the literature, several research studies have been done in this field. As stated, the
research community has been even more interested in understanding the reliability
of artificial neural networks and systems based on them. This section first cover
the principal fault injection techniques and tools proposed at very different levels,
and discusses their main advantages and disadvantages (Sections 1.2.1 and 1.2.2).
Next, it presents related works in the literature: techniques to study the resilience
of weights and neurons in neural networks are presented in Section 1.2.3, and to
improve their robustness in Section 1.2.4. Finally, an overview of the Sofware Test
Libraries (STLs) is given in Section 1.2.5.

1.2.1 Fault Injection Tools and Frameworks

In [30], we propose a preliminary classification for classifying the state-of-the-art FI
methodologies for the assessment of ANNs reliability. Depending on the abstraction
level, they can be ranked in the following way.

• Simulation-based: The injection process is carried out without relying on
the physical device finally running the ANN. Moreover, depending on the
abstraction level, they can be further ranked.

– Software Level: The injections are performed on a high-level model of
the ANN, not considering any details of the actual hardware architecture.

– Hardware Level: The injections are performed on a more accurate
model of the ANN that simulates the target hardware architecture. This
can be described at the register transfer level (RTL) or gate level, for
example.

14 Background and Related Works

• Platform-based: The measurements and the analyses are performed directly
on a physical device that emulates the final implementation of a design using
FPGAs or on physical platforms running the ANN under assessment, e.g.,
CPUs and GPUs.

• Radiation-based: The reliability assessment is performed in the actual plat-
form running the ANN under assessment by means of external electromagnetic
interference, such as ionizing particle incidence through accelerated radiation
test campaigns.

A schematic illustration is given in Figure 1.3.

Figure 1.3 Schematic of Fault Injection approaches for Deep Neural Networks.

The great majority of published works in this topic consists in simulation-based
software-level methodologies: they are the most frequently used for having lower
costs, for being faster, more controllable, and easier to deploy. To investigate the
weaknesses of the neural network, and to be independent of any potential hardware
architecture, a Fault Injection (FI) framework is typically developed to inject errors
in a high-level model of the DNN under assessment. Two principal ones are publicly
available to run neural network applications: TensorFlow [31] and PyTorch [32].
They are open-source machine learning frameworks for DNN-based applications
that in the last years enjoyed enormous popularity among engineers and developers.
Clearly, these represent the most popular solutions, but many others are available
in the research community: N2D2 [33], Darknet [34], or even custom tools have
been created for the purpose. In [35], Chen et al. present TensorFI, a high-level
FI framework for DNN. It is a flexible tool that can be used to inject faults at the
TensorFlow graph level, particularly at the output of the TensorFlow operators. NN
models are represented as a sequence of operations (nodes) in TensorFlow, which

1.2 Related Works 15

are connected in a computational graph. It means that faults can be injected at the
TensorFlow graph level (in the high-level programming logic) by corrupting the
outputs of the most common operators (e.g., Add, Sub, Mul, ReLU, Conv2D). Since
TensorFlow does not expose the operators and most of the execution occurs "behind
the scenes", TensorFI is created by duplicating the original TensorFlow graph. Then,
at inference time, it is possible to choose between the golden operators and the faulty
ones. Only transient faults are injected in one of the following formats: by flipping a
single bit in one (or all) the data item(s) of the target operator; by shuffling one (or
all) the data item(s) of the target operator into random values; by changing the output
of the target operator into all zeros. A further TensorFlow-based software-level FI
framework is described in [36]. It is written in Python and, similarly to TensorFI,
it uses the TensorFlow graph to inject errors into the most common mathematical
operations Add, Sub, and Mul. Three types of errors are introduced at the output of
the faulty operator: a single bit-flip, a random value instead of the computed one, all
zeros. On the base of [35], an efficient fault injector for finding the safety-critical
bits in DNN-based application is proposed in [37], namely BinFI. The goal of the
framework is to identify the safety-critical bits that are most vulnerable to hardware
transient faults (soft errors) and protect them at low cost. Since the purpose is to
pinpoint all the safety-critical bits of the program to measure its overall resilience,
a random FI based on statistical sampling would not have covered all the cases,
and thus, was not suited for the scope. An exhaustive FI would have resulted in
substantial performance overheads. Indeed, depending on the number of bits in
the program, the time would have been directly proportional. Therefore, a binary
search FI approach (BinFI) was used by exploiting the monotonicity feature of the
functions used in ML applications, which is extremely useful to prune the FI space
and efficiently detect the safety-critical bits. The framework is built on the top of
TensorFI. To identify the critical bits of the DNN, faults are injected in the processor
datapath (pipeline registers and ALU) and propagates to the software level (the ML
application). Note that they consider faults that are not masked before reaching
the software layer (as described in Section 1.1.1, as masked faults do not affect the
execution of the application. It is assumed that the main memory, cache and register
file are protected by error correction code (ECC) or parity, and thus, not considered
as faulty locations. In line with prior works [35, 36] and studies on how hardware
faults lead to erroneous values (instruction-level errors in [38]), errors in BinFI are
injected directly into the output value of TensorFlow operators.

16 Background and Related Works

On the other side, based on PyTorch, Mahmoud et al. propose in [39] a runtime
perturbation tool for DNNs, named PyTorchFI. It allows performing FIs in weights
and/or neurons in convolutional operations. Perturbations in weights are performed
offline by modifying the weight tensor, while neuron values are modified during the
forward pass of a computational model by exploiting the hook functionality. Even
though PyTorchFI operates at the application level of DNNs, it can also model lower
level faults (such as register-level) by mapping them to single or multiple bit-flips in
single or multiple neurons. FI campaigns are performed to study the reliability of six
neural networks adopting an INT8 quantization: AlexNet, GoogleNet, ResNet-50,
ShuffleNet, SqueezeNet, VGG-19. Moreover, interestingly, they show that PytorchFI
runs at the native speed of silicon, as it requires no code instrumentation for error
modeling. The emulations on both CPUs and GPUs show that all the inferences
(with and without PyTorchFI) typically take less than 0.2 seconds.

Software methodologies are relevant for assessing the DNN resilience to errors
and, in particular, for characterizing the criticality of the layers and the various
DNN topologies. However, these analyses might not be complete to represent the
real behaviour when deployed on a physical hardware device. It is evident that
software-level simulations and theoretical analyses may lack the information of the
underlying hardware platform and are relatively less accurate [40]. As outlined in the
introduction, the choice of the hardware architecture hosting the DNN plays a key
role in the final reliability of the system. Therefore, it might be needed to study the
overall system resilience to faults before reaching the fabrication phase. Working at
the software level allows the injection of errors only on neural networks parameters
(such as synaptic weights, activations values) or on high-level programming logic
representing the basic operations of DNN models. On the other hand, simulations
at the hardware-level enable a wider spectrum of possibilities. The lower the
abstraction level, the higher the degree of freedom. For these reasons, it is required
to run the fault injections on a more accurate Hardware Description Level (HDL)
model of the target hardware architecture running the DNN. HDL models give the
opportunity to perform such studies comprehensively with accuracy and exactness
close to the real hardware. However, it is also worth saying that the lower the
abstraction level, the higher the simulation time.

A good compromise between a pure software approach and a pure hardware one
is presented in [41], where a software technique meets the precision and accuracy of
the hardware abstraction level. FIdelity [41] is a resilience analysis framework that

1.2 Related Works 17

has been developed to study the behaviour of hardware errors in DL accelerators.
The framework is able to model a class of hardware errors (transient) in software
with high fidelity, only leveraging on high-level design information obtained from
architectural descriptions. Indeed, using just the information coming from design
plans, block diagrams, architectural descriptions, and estimated values, FIdelity
is able to generate accurate software fault models without the need to access the
RTL description or the presence of a RTL description at all. Note that RTL is not
likely to be available during the early phases of the design process. By defining
a Reuse Factor Analysis, they are able to obtain the set of faulty output neurons,
i.e., output neurons that are affected by a specific hardware fault. According to
the hardware-level faults derived from the architectural analysis, random bit-flips
are injected at specific input values, weights, output neurons of the DNN under
assessment. To demonstrate that FIdelity software fault models are accurate, the
authors use NVDLA [42], an open-source accelerator provided by NVIDIA. RTL
injections are performed to compare the software fault models generated using the
Reuse Factor Analysis with the information obtained from the RTL simulations.
FIdelity is built on TensorFlow, and the DNN models used for its validation are:
Inception, ResNet-50, and MobileNet which are trained on ImageNet and Cifar-10;
Transformer trained on IWSLT14, a dataset containing about 160K sentence pairs,
english-german and german-english; YOLO, trained on COCO dataset. Interestingly,
this paper also analyses the effects of the quantization to 16- and 8-bit integers
(INT16-INT8) as well as the half-precision floating-point (16-bit FP), thanks to the
TensorFlow support for playing with reduced-precision data representations.

Driven by analogous motivation of [41], Li et al. [43] propose a framework
for studying the propagation of transient faults (i.e., soft errors) in DNN-based
systems. The study addressed the reliability of DNN accelerators, in particular a
recently proposed one, Eyeriss [44]. Due to the lack of the RTL implementation,
they modified an open-source DNN simulator framework, Tiny-CNN, to map each
line of code in the simulator to the corresponding hardware component of the DNN
accelerators under assessment. In this way, they are able to randomly inject faults
into the data-path of accelerators and into the buffers of the Eyeriss DNN accelerator.
The error propagation behaviours are classified according to the structure of the
neural networks, the data types, the position of layers, and the types of layers. Four
DNNs are investigated: AlexNet, CaffeNet, NiN, and ConvNet.

18 Background and Related Works

Salami et al. in [40] present a simulation-based hardware-level FI framework
for performing an in-depth vulnerability analysis of a hardware accelerator de-
scribed at the RTL. The assessment is performed by considering both the application-
level specifications (the DNN weights, inputs, and the intermediate values) and the
architectural-level ones (the specific data representation and the amount of compu-
tational resources, i.e., the PEs). In this paper, they propose an HLS approach to
characterize the effects of both permanent and transient faults. Faults are injected
during the inference cycles on a sub-set of registers: those that are in charge to store
the neural network parameters, i.e., the weights, input values, and intermediate ones.
To assess the sensitivity of the neural network layers, permanent and transient faults
are also placed in the layer registers (individually). Also, the activation values are
studied, particularly in two state-of-the-art activation functions: positive saturating
linear and logarithmic sigmoid. So far, a similarity could be found with the injections
made at the software level. However, having the HDL model running the DNN under
assessment, Salami et al. performed also architectural-level analyses. First, they
played with the architecture of the accelerator to study how the amount of processing
elements can impact the fault propagation behaviour. FIs are performed for different
numbers of PEs, i.e., 64, 256, 1024, revealing a direct proportionality between the
number of PEs and the reliability of the accelerator against permanent and transient
faults. Second, they studied the sensitivity of sign, digit, and fraction sections of the
FxP data representation.

Next, some reliability assessment methodologies are performed by running FIs
directly on an emulation platform. In [45], the authors present Ares, a framework
for quantifying the resilience of DNNs. It enables the DNNs execution directly on
the GPUs and targets permanent faults occurring in the memory, which is the unit
hosting the weights. At the application level, errors are injected in the weights, the
activations and the hidden states through bit-flips. Particularly, they are injected at
construction time (static) and evaluation time (dynamic). The former are injected
off-line, before the inference is executed. The latter are injected during the inference
phase, introducing a minimum performance overhead. Ares is built on the top
of Keras [46], which takes high-level DNN descriptions specified in Python and
executes them using either Theano [47] or TensorFlow back ends.

Concerning the emulation on FPGAs, several tools for the reliability assessment
of DNNs have been introduced. De Sio et al. proposed FireNN [48]: an emulation
platform for evaluating the reliability of DNNs. The methodology exploits the

1.2 Related Works 19

reconfigurability of FPGAs to mimic faults affecting the hardware running DNNs
(e.g., stuck-at faults, delays, conflicting connections, and others). Particularly, the
framework emulates the effects of single event upsets with random bit-flip injections
in the configuration memory of the programmable logic of Zynq All Programmable
SoC, running specific layers of the targeted DNN. The FI framework combines
software and hardware levels through the extension of PyTorch and PyNQ[49]
frameworks and exploits Vivado HLS to develop a custom IP core for performing
convolutional operations. In the paper, the evaluation is performed on the fifth
convolutional layer of the AlexNet network.

The radiation-based FI category relies on the exposure of the system to an
accelerated radiation source, e.g., atmospheric-like neutrons. Being radiation a
source of perturbations in electronics devices, in the literature, several radiation-
based approaches have been proposed. For example, in [50], the authors evaluated
the impact of neutron-induced SEUs on a CNN (LeNet-5) implemented with three
different levels of approximation on the data representation. In this study, the target
hardware is the memory device that hosts the network parameters and input images.
A similar approach is presented in [51], where a 2- and 3-D Flash memory storing
the weights of an ANN is exposed to X-ray irradiation. Also, in [52], three different
NVIDIA GPU architectures are exposed to a neutron beam targeting the study of error
propagation in computing resources. Finally, targeting an FPGA-based architecture,
Libano et al. in [53] analyse the SEUs influence on three versions of a MNIST CNN
implemented in an SRAM-based FPGA. Most of the works that assess the reliability
of ANN applications via radiation-based approaches use atmospheric-like neutrons
as a radiation source. However, as mentioned above, for a specific environment,
specific radiation sources like protons, heavy-ions, electrons, among others, should
be considered.

1.2.2 Advantages and Disadvantages of Fault Injection Method-
ologies

We introduce three different metrics for presenting the trade-offs between the state-
of-the-art fault injection approaches:

• Costs: It refers to the costs needed to carry out the reliability assessment,
including both resources and time.

20 Background and Related Works

Figure 1.4 Comparing different Fault Injection Techniques. The x-axis reports the
specific level: 1-Low, 2-Medium-Low, 3-Medium, 4-High-Medium, 5-High, 6-Very
High.

• Precision: It means how much the FI procedure is close to reality, and the
obtained results are accurate and realistic.

• Fault Injection Time: The amount of time that the injection process takes to
complete a single injection cycle.

In Figure 1.4, we assign a specific level to these metrics and grade them as Low
(1), Medium-Low (2), Medium (3), High-Medium (4), High (5), and Very High (6).
As for the costs, because simulation-based approaches do not need the development
and purchase of specific electronic devices to conduct the assessments, they are
the most cost-effective. Moreover, when the HDL model is available, the costs
are low and, anyhow, reduced compared to other FI techniques. When working
with platform-based techniques, economic costs increase since they rely on the
purchase and usage of specific validation or emulation devices (e.g., GPUs, CPUs,
and FPGAs). A further benefit is also due to the fact that (i) they can be utilized again
once the FI campaigns are completed, and (ii) they can be parallelized to increase
the performance. The radiation-based procedures are the most expensive ones for
three principal reasons: access to an irradiation facility, hardware setup development,
and the low possibility of reusing the irradiated devices.

The precision with which the four FI procedures provide findings varies and is
dependent on how well these approaches simulate the incidence of realistic system

1.2 Related Works 21

faults and how near they are to real. Radiation-based FI techniques achieve the
maximum level of precision, as radiation-induced faults directly impact the silicon
implementation of the device under test. This enables the DNN model to be accu-
rately characterized. On the other hand, simulation-based hardware-level FIs have
a good level of precision. Due to the adoption of the HDL model (either RTL or
gate-level), their injection procedure can be considered close to the actual silicon
implementation. For this reason, they are credited with a medium-high precision
level. Contrarily, platform-based and simulation-based software-level FIs both have
a low-medium precision level for the following reasons. The incidence of realistic
hardware faults is mimicked using sophisticated software fault models, where errors
are injected at the software or algorithmic level. Specifically, when a DNN model is
written in C or C++, it can be compiled and executed directly on a physical hardware
device; hence, the injected software errors can be close to the faults they attempt
to reproduce. In higher-level programming languages or tools, such as Python,
PyTorch, and TensorFlow, FI frameworks introducing errors at the algorithmic level
are exposed to a more elaborate compilation chain. Consequently, the lower the pro-
gramming language level adopted for the DNN application, the higher the precision.
One of the advantages of conducting simulation-based reliability assessments at the
software level is the possibility of characterizing the vulnerability of neural networks
independently of the target hardware device and, in particular, driving analyses on
layers, data types, weights, and network’s parameters.

However, when a more thorough reliability evaluation is necessary, the injection
campaigns should additionally encompass the target hardware that will ultimately
execute the DNN under test, clearly when the device’s HDL model, whether RTL or
gate-level, is provided. In this second scenario (such as in [30, 40]), hardware-level
FIs can achieve better accuracy of the results, closer to the silicon implementation.

In a recent paper [54], we propose using realistic fault models (retrieved from
radiation test campaigns) to inject at the software level in a CNN application, with
the aim of enhancing the precision level of simulation-based FIs at the software level.
The methodology is presented in Chapter 5.

Regarding the last metric (i.e., the fault injection time), it is worth considering
that it is very difficult to exactly compare the time required to run a single FI among
the existing fault injection approaches. Indeed, many variables are involved and

22 Background and Related Works

responsible for determining the fault injection time, such as the parallelization of the
experiments, the adopted tools, the specific radiation source.

The problem associated with simulation-based FIs at the hardware level is that
HDL simulations are extremely time-consuming. Clearly, it depends on the com-
plexity of the neural networks under assessment and their HDL description. For
example, a small CNN with only seven layers can take about 25 minutes to run a
single inference [30]. Furthermore, existing commercial fault simulation tools are
not tuned and neither optimized to face the complexity of the state-of-the-art DNN
applications [55] (with billions of neuronal computations). This means that a FI at
the hardware level is accurate but very costly in terms of simulation time. Therefore,
reliability assessments at the hardware level typically consider only neural networks
of limited size: a 6-layer fully connected classifier in [40] and a 7-layer CNN in [30].
By contrast, simulation-based FIs at the software level are not concerned with this
non-negligible limitation. Actually, the neural network under consideration can
range from 2-layer neural networks to more complex and deep networks, such as
VGGNet and ResNet.

1.2.3 Related Studies on ANN Weights and Neurons

In [56, 57], the authors investigate the reliability of CNNs when 32-bit floating-
point values are used as data type for representing their weights. Results show
that the most significant bit of the exponent part (i.e., bit 30th) is the most critical
one. Interestingly, we found out the same result with our methodology, as described
in the next sections. In [52, 58], the authors evaluate the reliability of one CNN
executed on three different GPU architectures (Kepler, Maxwell, and Pascal). The
soft error injection has been done by exposing the GPUs running the CNN under
controlled neutron beams. A similar but wider approach is detailed in [59], where the
authors assess the reliability of a 54-layers DNN (NVIDIA DriveWorks) through FI
experiments and accelerated neutron beam testing for permanent and transient faults,
respectively. Faults are injected on the DNN weights and on the input images. All
inferences are executed on the Volta GPU and only target 32-bit floating-point values.
Moving forward, Li et al. present in [43] a different analysis. They characterize the
propagation of soft errors from the hardware to the application software of different
CNNs. The injections are performed by using a DNN simulator based on open-
source simulator framework, namely Tiny-CNN. Thanks to the flexibility of the

1.2 Related Works 23

simulator, it is possible to characterize each layer for a more precise analysis. In this
article, CNNs with six different data types are considered: 64-bit double precision
floating-point, 32-bit single precision floating-point, 16-bit half precision floating-
point, 32-bit fixed-point (with two different radix points), and 16-bit fixed-point.
Overall, they conclude that, the larger the dynamic value range of the network’s data
type, the higher the likelihood of having large deviations in values in the event of
faults leading to wrong predictions. Furthermore, a different framework is shown in
[45]: Ares, a light-weight DNN fault injection framework. The authors present an
empirical study on the resilience of three prominent types of DNNs (fully connected,
CNNs and Gated Recurrent Unit). In particular, they focus on two fixed-point data
types for each network: Q3,13 i.e, 3 integers and 13 fractional bits, and Q2,6. Their
experiments demonstrate that the optimized Q2,6 data type is 10x more fault-tolerant.
The reason lies in the fact that the unnecessary larger range of integer values increases
the chance of failure happening. It is worth noting that this result is in line with ours,
presented in Section 3.1.2. It is a common trend to explore fixed-point computations
for ultra-low power embedded systems with a limited power budget, e.g., [60].
Finally, in [40], the authors analyse the reliability of a DNN accelerator by following
a HLS approach. They characterize the effects of both permanent and transient
faults by exploiting a fault injector framework embedded into the RTL design of
the accelerator. Faults are injected during the inference cycle only on a subset of
registers: those that are in charge to store weights, input values, and intermediate
ones used throughout the inference job, without considering the effects of faults
in the other data-path units. As for the used data representation, they perform the
experiments by only adopting a 16-bits fixed-point low precision model, claiming a
negligible accuracy loss with respect to a full-precision data model. Additionally,
it is worth also mentioning the research contribution of [41] and [53], where the
authors investigate the reliability of convolutional neural networks by exploiting
both the 16-bit and 8-bit integer data representation. Then, moving towards an even
smaller data dimension, related works in [61] and [62] exploit reduced bit-widths.
The former uses 5-bit and 3-bit fixed-point data types and a binary representation.
The latter performs reliability assessment analysis on a binary neural network, where
only 1 bit is used to represent the parameters (weights and biases).

Understanding the importance of individual neurons is currently a relevant topic
to deal with the problem of complex DNN models running on resource-constrained
devices. Indeed, neural networks are both computationally and memory intensive,

24 Background and Related Works

making them difficult to deploy on embedded systems. Many researchers have
provided pruning techniques to remove either redundant neurons or connections
from over-parameterized neural network models. The first pruning algorithm was
proposed by LeCun in the 1990s [63], paving the way for several similar solutions.
In [64], a three-step method is described to cut redundant connections (i.e., weights)
by learning the important ones and retraining the remaining sparse network. Without
any loss of accuracy, they can reduce the number of connections by 9x and 13x. A
second paper provides an algorithm to remove neurons whose importance is below an
optimal threshold [65]. To understand if neurons or connections can be removed, it is
a common approach to use tuned thresholds or explore machine learning approaches
[66], albeit rarer. The importance of neurons in a neural network is also addressed
by Venkataramani et al. [67] to design energy-efficient hardware implementations
of large-scale neural networks. To characterize the importance and the resilience
of each neuron, the back propagation of error gradients is used to discover those
that impact output quality the least. Neurons that contribute the least to the global
error are more resilient and can be approximated with energy-efficient neurons. The
process implies that, for each input in the training set, the error at the output is
computed using forward propagation. Then, the errors are back propagated to the
outputs of individual neurons to get their average error contribution over all inputs
in the training set. Finally, the errors are ordered based on the magnitude of their
average error contribution. On this base, the same methodology is exploited by Liu
et al. in [68] to determine the fault tolerance capability of each neuron, albeit for a
different scope. This measure for the i-th neuron is computed with the derivative of
cost function E concerning output node yi. A low δ i corresponds to a more resilient
neuron, and vice versa.

δ i =
∂E
∂yi

(1.1)

Two principal problems may arise from the adoption of the two above-mentioned
techniques ([67, 68]). The first is related to computational costs: to compute the
average error contribution (the neuron measure of resilience), it is required to perform
both the forward propagation and back propagation for each instance of the training
set. Second, the derivative of the cost function implies that the golden output must be
available; in other words, the training set must be labelled. It means that the method
can be used only with supervised learning neural networks.

1.2 Related Works 25

A further contribution in this direction is given by Schorn et al. in [3] where
the authors propose a methodology to assign resilience values to individual neurons.
It is based on the deep Taylor decomposition of neural networks described in [69]
which computes the contribution of each neuron to the output function value of a
neural network. For each input, the Taylor decomposition and layerwise relevance
propagation (LRP) algorithm computes the value Ri,j for each neuron j belonging to
the layer i, as described in [3]. This rule is used with the intent of calculating the
average contribution of each neuron (with a score between 0 and 1) over a set of M
training images. In more details, based on the training set, the resilience score r of
each neuron yi,j is computed as follows:

ri,j =
M

∑
M−1
m=1 Ri,j(y0,m, tm)

(1.2)

Where t is the output label vector related to the input image y0. Similarly to
[67, 68], this methodology requires the output labels to be available, and thus, it
restricts the applicability of the technique to neural networks that are trained with a
supervised learning procedure. Also concerning the computational costs, the back
propagation phase must be repeated twice, first to compute the contribution of each
neuron to the output function value with the Taylor decomposition and LRP (Ri,j).
Next, to compute the contribution of each neuron to the output function value ri,j.

Although the above-mentioned problems can be considered of relative impor-
tance, the real problem is that all these approaches can be classified as network-
oriented: they do not consider the importance of neurons as entities linked to the
single output classes. As it will be described in Section 3.2, neurons that are critical
for individual output classes may take a low resilience value in network-oriented
approaches. The different per-class information flow made by a few class-specific
neurons with higher contribution is also addressed in [70] to reduce the size of
convolutional neural networks.

1.2.4 Related Studies on Mitigation Strategies

Shorn et al. in [71] propose a methodology to predict the error resilience of neurons
in DNNs and to map them in a reconfigurable neural network accelerator based
on their criticality. They propose a Neural Compute Engine made of two areas: a

26 Background and Related Works

safe one composed of protected hardware elements and a normal region composed
of unprotected hardware units. Neurons with the lowest resilience are assigned to
protected processing elements (PPEs), and their intermediate and final computation
results are given to protected local memory buffers or external memories. All other
computations and their results are assigned to regular PEs, which are less power
consuming and occupy less silicon area. PPEs are obtained by adding spatial or
temporal redundancy, along with ECC. To demonstrate the validity of their proposal,
they perform fault injections by exploiting the dropout fault model, in which a
fraction of neuron outputs is set to zero. By means of their methodology, they are
able to mitigate the effect of neuron crashes by keeping the accuracy degradation of
the network comparatively small. A similar work was recently proposed by Hanif et
al. in [72]. The authors described SalvageDNN, a fault-aware mapping methodology
that permutes neurons and weights in a neural network such that the least critical
weights are mapped to faulty PEs. In this way, they are bypassed by the Fault Aware
Pruning (FAP) without impacting the accuracy of the DNN.

To improve ANN reliability, [52] propose an Algorithm-Based Fault Tolerance
(ABFT) strategy to detect and correct single and multiple errors in matrix multi-
plication operations. The idea stems from the fact that the 67% of operations in
their systems are matrix multiplication related. The framework is thus modified to
call the ABFT-protected kernel at each matrix multiplication call. Experimental
results demonstrate that the proposed ABFT can detect and correct about 60% of
radiation-induced errors in Kepler GPUs and 50% in Pascal GPUs.

1.2.5 Software Test Library

The usage of Software Test Libraries (STLs) is a widely adopted solution for testing
microcontrollers to perform periodic on-line tests during the system mission [73].
A Software Test Library (STL) is a set of software procedures or test programs
executed by the processor core, and their main target is to test it, and eventually
the surrounding peripherals. This methodology was initially proposed by [74]. The
adoption of STLs for the on-line testing is a functional in-field self-test mechanism
where exclusively functional stimuli are applied. This differs from structural ones,
that often produce non-functional stimuli. Although being a functional test strategy,
the STL effectiveness is evaluated via fault simulation. Therefore, it is possible to
compute a fault coverage with respect to existing fault models (e.g., stuck-at faults).

1.2 Related Works 27

Additionally, when knowing the workload (mission software) of the system, the fault
coverage can be further increased removing the Safe Faults of the processor [75].
Safe faults do not cause any failure of the processor during its mission. However, it is
worth saying that these faults are totally dependent on the application. Contrarily to
hardware-based strategies, e.g., Logic BIST [76], Software Based Self Test (SBST)
approaches do not require additional hardware. However, they need space in memory
to be stored, and time for running, without ignoring the effort required for the
development [77].

As detailed in [78], the test programs (or self-test routines) composing the STLs
are developed following different approaches and can be distinguished in two main
categories: the boot-time and the run-time. Boot time tests are executed during the
boot operations before the mission application software is executed. These self-test
routines have full access to processor and system resources. Furthermore, they
do not have particular constraints on the execution time. On the other hand, the
run-time test programs are periodically executed while the system is fully on-line
with the mission application software already running. Unlike the boot-time self-test
programs, they are developed taking into account different restrictive constraints [79].
Such constraints are intended for avoiding any interference of the STL mechanism
with the mission software, as discussed in [79].

Chapter 2

Main Contributions

The main intent of this thesis is to investigate the reliability of modern embedded
systems and to find out solutions to improve their safety. The major effort was put
on those exploiting artificial intelligence and, specifically, predictive models such as
Artificial Neural Networks.

In this field, the principal contributions of this thesis are:

• The investigation of the principal vulnerabilities and fault models existing in
ANNs and AI-based devices.

• The proposal of reliability assessment methodologies and the release of specific
tools to assist the analysis at different abstraction levels.

• The proposal of mitigation strategies to improve the safety and the reliability
of AI-based devices.

Initially, in-depth studies have been carried out to understand their fault tolerance
and to classify the different sources of error of such predictive models. Based on that,
numerous fault injection campaigns have been performed at different abstraction
levels to cover specific scenarios and to broaden the spectrum of analysis. Indeed,
the robustness evaluation of ANN models and ANN-based systems can be pursued
for various purposes and at different levels: from a software abstraction layer to a
hardware-specific one, up to silicon measurements on Application-Specific Integrated
Circuits (ASIC), Field Programmable Gate Arrays (FPGA), and Graphics Processing
Units (GPUs) resorting to radiation campaigns. Clearly, depending on the adopted

29

methodology, parameters such as costs, precision, may considerably vary. As
illustrated in Figure 2.1, this thesis presents reliability assessments methodologies at
three levels of abstraction: at the software, at the hardware, and at the physical level.

HDL Model

RTL
Gate-Level

Simulation-based FI
at the software level

Physical-based FI

A
bs

tr
ac

tio
n

L
ev

el

Ph
ys

ic
al

 L
ev

el
Ar

ch
ite

ct
ur

al
 L

ev
el

Ap
pl

ic
at

io
n

Le
ve

l

Fault Injection Methodologies

Simulation-based FI at
the architectural level

Figure 2.1 Fault injection approaches for assessing the reliability of ANNs and
ANN-based systems at different abstraction levels. In each situation, the lightning
bolt icon illustrates where errors or faults can be introduced.

As for the first one, two principal approaches are proposed to carry out reliability
analysis on a neural network, without considering any hardware architecture running
the model. They both rely on the adoption of software fault injector tools, which
are able to simulate the occurrence of (i) hardware faults on weights/biases and (ii)
errors on neurons. Specifically, a comprehensive analysis on different data types (e.g.,
floating-point numbers versus fixed-point numbers) was performed with the aim of
finding out the best data type representations leading to the best trade-off between
reliability and memory footprint. Compared to the state-of-the-art analyses (detailed
in Section 1.2.3), a wider spectrum of floating- and fixed-point representations is
given (five typologies ranging from 32 bits up to 8 bits). Next, a technique to rank
neurons based on their criticality is presented. To the best of our knowledge, this is
the first time that the importance of the neuron as related to the single output class is
taken into account. In Chapter 3, the proposed approaches, the principal novelties
as well as the experimental results are presented. It is worth to underline that the
proposed technique differ from [72] in the way we assign criticality scores. While
Hanif et al. consider only the static parameters (i.e., weights, bias, filters), in our
work we consider also the contribution of the inputs (it is a dynamic approach).

30 Main Contributions

Though resilience studies on neural network models are relevant for charac-
terizing their major weaknesses and criticalities, they may not be comprehensive
enough to accurately replicate actual behaviour when installed on hardware. It is
recognized that simulations and theoretical investigations at the software level may
be missing information about the underlying hardware platform. Therefore, this
thesis proposes a reliability assessment technique at architectural level that considers
both the ANN model and the final hardware device. A multi-level pipelined fault
injector is proposed to run fault injection campaigns in simulation at the Register
Transfer Level (RTL). Despite the higher costs in terms of RTL simulation time
and computational resources, the advantage of conducting FIs at the architectural
level is the following. Contrarily to the application/software level where faults can
only be placed on the network weights, activators or input images, at a lower level,
i.e., hardware, fault injections can be done anywhere in the system. This leads to a
more faithful reliability assessment, where the designer could be able to co-shape
the hardware platform with the DNN application, to pursue a desired reliability
level. The novelty of the work is that, by mimicking the flow of the pipeline in
processor cores, the proposed tool can drastically reduce the fault injection time
by more than 60%. It will be detailed in Chapter 4. Finally, Chapter 5 presents
a reliability assessment methodology at the physical level. This work introduces
the architecture of a software emulator for reproducing the incidence of real faults
retrieved from radiation campaigns on CNN-based applications. From the physical
characterization of a DRAM memory (i.e., HyperRAM) under radiation tests, fault
models and failure rates are extracted and used to configure the software emulator.
The consistency between the actual radiation tests results and the software ones is
established by using three different CNNs with different data representations (i.e.,
32-bit floating point, 16-bit integer, 8-bit integer).

Based on the outcomes obtained through the different reliability assessment
analysis, in this thesis two mitigation strategies are proposed. Described in Chapter 6,
the first one builds on the above-mentioned study on critical neurons. An approach
to evenly distribute critical neurons among the available processing element (PE) of
a multiprocessor SoC (MPSoC) is described. It exploits Integer Linear Programming
(ILP) to find out the optimal scheduling solution which is able to distribute critical
elaborations (i.e., critical neurons) on the different computing resources (e.g., PEs).
The results provide evidence that the proposed ILP scheduling can mask the effects
of more faults and predict fewer wrong predictions. A reduction of 24.74% of

31

wrong predictions and an improvement of 97.80% and 59.53% of masked faults
was obtained. Compared to [71], the proposed mitigation technique do not require
additional hardware or spatial redundancy. The second work provides a comprehen-
sive analysis of the use and the integration of Software Test Libraries (STLs) for the
on-line testing of embedded systems running ANN-based applications. Specifically,
a fault detection technique based on the adoption of an STL that must coexists with
the requirements and the limitations of these resource-constrained microcontrollers
is illustrated.

The contribution of the thesis in this topic is not limited to the mentioned studies,
but they represent the most significant outcomes of my research activities. To
conclude, the most prominent contributions are going to be briefly presented in the
following chapters.

Chapter 3

Reliability Assessment at the Software
Level

Analysing the reliability of artificial neural networks requires, foremost, shedding
some light on two fundamental concepts. The main entities responsible for their
proper functioning are nodes (i.e., artificial neurons) and connections (i.e., synaptic
weights). Although highly interconnected, their role and their sensitivity differ within
the neural network. For their major difference, we can classify them in two main
categories:

• Static Entities: Weights and biases are fixed and do not depend on input
stimuli. After the training phase, they are treated as constant data (read-only
variables) and keep the value for all the inferences.

• Dynamic Entities: Neurons’ outputs vary according to the inputs. They are
considered as dynamic entities because their values depend on the current
input stimuli.

To evaluate the trustworthiness and the reliability of such predictive models, in
this thesis several studies have been done in both directions: first, a comprehensive
analysis on weights and static data is presented in Section 3.1, and then, a study on
critical neurons is outlined in Section 3.2.

3.1 Static Parameters in Artificial Neural Networks 33

3.1 Static Parameters in Artificial Neural Networks

Evaluating the sensitivity of ANN weights to the occurrence of hardware faults is
crucial for the following reasons. Recent studies have shown that hardware faults
due to silicon wear out and ageing effects, as well as those induced by an external
perturbation (i.e., in a harsh environment) can significantly impact the inference
leading to neural networks prediction failures [21, 59]. Moreover, when ANNs
are deployed on hardware devices, being read-only variables, weights and static
data are stored in memories, which are the highest contributor of soft errors in the
system [80–82]. Being constant data, weights are never rewritten in the memory, and
therefore, even for transient faults, once the fault is triggered, it behaves exactly like
a permanent one since the flipped memory cell is normally not rewritten.

It is true that memories can be protected with Error Correction Code (ECC), but
it also true that ECC comes at the cost of extra circuitry with power/performance
overheads that may be too costly for an embedded application. Additionally, since
the target applications are ANNs, it is claimed that they are intrinsic resilient to
faults, and thus it justifies the absence of an error correction mechanism. Moreover,
as the characterization based on radiation static/dynamic test shows [54], multiple
errors occur, and for that, ECC is simply not effective.

This means that the assessment of the reliability of neural networks starts from
the study of their static data, i.e., the weights and their data type representations.

A recent trend is to reduce the ANNs memory and energy footprint by leveraging
on the adoption of reduced bit-width data types. Indeed, one important limitation
about the usage of the newer version of ANNs is the memory required for storing the
static parameters (e.g., weights). Approximate Computing (AxC) is considered as a
good solution to deal with this complexity: by relaxing the need for fully precise or
completely deterministic operations, AxC substantially improves energy efficiency
and reduces the memory requirement. In the neural networks field, a common approx-
imation approach is to reduce the precision and data type of weights and activation’s
values. Indeed, neural networks lend themselves well to AxC methods, especially
with fixed-point arithmetic or low-precision floating-point implementations, which
expose large fine-grain parallelism. If from one hand this is a sound solution to
reduce the memory footprint of ANN-based applications, on the other hand, it might
jeopardize their reliability. Therefore, it is necessary to investigate if those optimized

34 Reliability Assessment at the Software Level

models are reliable enough to tolerate failures that propagate throughout the system.
In other words, it starts to be crucial to evaluate their behaviour in a faulty scenario to
determine if they can still be safely deployed on safety and mission-critical systems.

Two principal contributions are described in this section (3.1). First, the reliability
assessment of two convolutional neural networks (CNNs) is done by targeting
weights represented as 32-bit floating-point numbers. Next, the reliability of the same
CNNs is addressed when a reduced bit-width data representation (i.e., fixed-point)
is exploited to reduce the memory footprint and power consumption of the CNN
application. In both cases, a software-based methodology is proposed to perform
fault injection campaigns on weights and biases and evaluate their robustness against
hardware faults.

3.1.1 Full Precision ANN Weights

3.1.1.1 Proposed Approach

The first reliability assessment study was performed on neural networks whose
weights are represented with real numbers in a 32-bit floating point representation
(Figure 3.1). In this work [83], a fault injection methodology at the software level
is proposed to investigate the most sensible layers for which a safety mechanism
may be purposely devised. Fault injections are carried out at the software level,
with the aim of being totally independent of any potential architecture running the
targeted neural networks. Specifically, permanent faults (stuck-at-0 and stuck-at-1)
are randomly placed in weights according to the following proposed methodology.

Figure 3.1 Single Precision IEEE 754 Floating-Point Standard

The FI procedure is described in algorithm 3.1: once the training of the neural
network is completed, a golden run is performed to collect the golden results (i.e.,
golden_prediction), line 1 in 3.1. Then, the actual fault injection is done. The initial
step requires generating the list of faults, which consists in a list of faulty locations
(FLo) as described:

3.1 Static Parameters in Artificial Neural Networks 35

1 run_CNN (CNN, s t a n d a r d , g o l d e n _ p r e d i c t i o n _ s t d) ;
2 run_CNN (CNN, custom , g o l d e n _ p r e d i c t i o n _ c s t) ;
3 f o r (i =0 ; i < FLo . s i z e () ; i ++) {
4 i n j e c t _ F L o (FLo [i] , CNN) ;
5 run_CNN (CNN, custom , f a u l t y _ p r e d i c t i o n) ;
6 compare (f a u l t y _ p r e d i c t i o n , g o l d e n _ p r e d i c t i o n _ c s t) ;
7 compare (f a u l t y _ p r e d i c t i o n , g o l d e n _ p r e d i c t i o n _ s t d) ;
8 r e l e a s e _ F L o (FLo [i] , CNN) ;
9 }

Listing 3.1 Fault Injection Procedure (pseudo-code)

FLo =< Layer,Connection,Bit,Polarity > (3.1)

Layer corresponds to the CNN’s layer, Connection is the edge connecting one
node of the Layer (i.e., the weight), and Bit is one of the bits of the weight associated
to the Connection. Finally, Polarity can be ’0’ or ’1’ depending on the stuck-at fault.
In other words, the injections are performed by randomly selecting the faulty bit
among all bits of the connection weights. For any fault in the fault list (line 2 in 3.1),
a prediction run is carried out, and the results are collected (i.e., faulty_prediction).
In the end (line 5 in 3.1), the faulty_predictions are compared with the expected ones,
and the results logged for a later analysis.

More in details, the function compare of the algorithm (3.1) classifies the pre-
diction of the faulty CNN with respect to the golden one. Depending on the effect,
faults are classified as follows:

• Masked: No difference is observed from the faulty CNN and the golden one.

• Observed: A difference is observed from the faulty CNN and the golden one.
Depending on how much the results diverge, we further classify these as:

– Safe: the confidence score of the top ranked element varies by less than
+/-5% w.r.t. the golden one;

– Unsafe: the confidence score of the top ranked element varies by more
than +/-5% w.r.t. the golden one, or the top ranked element predicted by
the faulty CNN is different from that predicted by the golden one. As
already discussed in [43], this is the most critical observed fault;

36 Reliability Assessment at the Software Level

Table 3.1 LeNet [4]

Layer Type Weights Bit Width #Faults #Injections

0 Conv 2,400 32 153,600 9,039
1 Conv 51,200 32 3,276,800 9,576
2 FC 3,211,264 32 205,520,896 9,604
3 FC 10,240 32 655,360 9,465

Additionally, this work identifies the "Safe Faults Application Dependent"
(SFAD) accordingly to the ISO 26262 standard. SFAD faults can not produce
any failure in the operational mode and therefore can be removed from the fault list
[84]. Their identification is therefore crucial to focus the test efforts towards faults
leading to application failures, only. It can be simply computed as the union between
Masked and Safe-Observed fault, as shown in (3.2).

SFAD = Masked∪Sa f e_Observed_Fault (3.2)

The total number of injected faults have been computed by using the statistical
FI approach presented in [85]. In details, we resorted to the following formula:

f ault_in jections =
N

1+ e2 · N−1
t2·0.25

(3.3)

where N is the total number of faulty locations, e is the desired error margin (1%),
and t depends on the desired confidence level (t=2.58 corresponds to 99% confidence
level [85]). Equation 3.3 has a horizontal asymptotic value (N→ ∞), thus limiting
the number of fault injections necessary to achieve an evaluation with an error margin
of 1% and a confidence level of 99%. Running exhaustive fault injections would
be unfeasible due to the complexity and the number of faulty locations which can
dramatically explode.

In this work, two convolutional neural networks are used as case study: LeNet
and Tiny YOLO. The former is a classifier, probably the most popular convolutional
neural network developed for the image recognition of handwritten digits [4]. The
latter is a CNN developed for detecting objects in real time [5], up to 45 frames per
second.

3.1 Static Parameters in Artificial Neural Networks 37

Table 3.2 Tiny YOLO [5]

Layer Type Weights Bit Width #Faults #Injections

0 Conv 432 32 27,648 7,128
1 Conv 4,608 32 294,912 9,301
2 Conv 73,728 32 4,718,592 9,584
3 Conv 294,912 32 18,874,368 9,599
4 Conv 1,179,648 32 75,497,472 9,603
5 Conv 4,718,592 32 301,989,888 9,604
6 Conv 262,144 32 16,777,216 9,599
7 Conv 1,179,648 32 75,497,472 9,603
8 Conv 130,560 32 8,355,840 9,593
9 Conv 32,768 32 2,097,152 9,560
10 FC 884,736 32 56,623,104 9,602
11 FC 65,280 32 4,177,920 9,582

Details about the topologies of the CNNs as well as fault injection figures are
given in Tables 3.1 and 3.2. The first and the second columns report the number and
the type of the layers, i.e., Convolution (Conv) or Fully Connected (FC), respectively.
The 3rd column indicates the number of connecting weights. Next, column 5th

indicates the total number of possible faulty locations: it is given as the multiplication
between the number of connections (column "weights") and the bit width times two
(stuck-at-0 and stuck-at-1). As emerging, the overall number of faulty locations is
very high, reflected in a non-manageable fault injection campaign execution time.
To reduce the FI execution time, we randomly select a subset of faults by following
[85]. To obtain statistically significant results with an error margin of 1% and a
confidence level of 95%, an average of 9k FIs have been considered. The exact
numbers are given in the last column (#In jections) of Tables 3.1 and 3.2.

3.1.1.2 Experimental Results

The fault injection framework was build on the darknet open source DNN framework
[34] implemented in C language. The first neural network under assessment was
LeNet. For the analysis, pre-trained weights available from [34] have been used. For
the injection campaign, we randomly selected 37 validation images from the MNIST
database.

38 Reliability Assessment at the Software Level

Figure 3.2 LeNet Masked Faults

Figure 3.3 LeNet Safe Observed Faults

Figures 3.2, 3.3 and 3.4 illustrate the obtained results in terms of percentage
of Masked, Safe Observed and Unsafe Observed. For each chart, we differentiate
the injections per layer (from 0 to 3). As shown, the percentage of Masked faults
is higher for Layer2 and Layer3 (i.e., the fully connected ones), while the first two
layers show a lower percentage of Masked faults. A similar analysis can be done
for Unsafe Observed faults. Fully connected layers show the lowest percentage
of Unsafe Observed faults. This means that the less critical layers are the fully
connected ones (for the LeNet topology).

Concerning the Unsafe Observed faults (Figure 3.4), we would like to stress the
fact that their percentage is very low, varying from 0.4% up to 1.8%. Moreover,
when considering Layer0, the two drops of Unsafe Observed faults percentage
(corresponding to workload 17 and 23) only represent a difference of 1.4% meaning
that we can consider this variation as negligible. This means that we cannot notice a
particular dependency on the input workload. This result is quite interesting because
it is showing a different trend with respect to the effect of soft errors. Indeed,

3.1 Static Parameters in Artificial Neural Networks 39

Figure 3.4 LeNet Unsafe Observed Faults

convolutional layers (i.e., the first two layers for LeNet) are supposed to be the more
resilient to the presence of a fault, according to results shown in [43]. This is due
to the fact that their role is to extract the features from the source image, while the
full connected layers are supposed to be the less resilient because they classify the
features extracted by the first two levels. On the other hand, these results seem to
confirm the conclusion of [52] in which the authors claim this trend. However, in
[43] the result presented another trend: a slightly higher resilience was found for the
convolutional layer. This can be explained by two factors: first the fault model, here
we experimented permanent faults while in [43] the fault model was transient, and
the network topology.

The last experiment carried out on LeNet is the analysis of the most critical bits
of the weights. As previously mentioned, weights are represented as single-precision
binary floating-point format, as described by the IEEE 754 standard (Figure 3.1). It
turned out that all the Unsafe Observed faults have been due to faults affecting the 8
bits used for storing the exponent (i.e., from bit 30 down to bit 23). The sign and the
mantissa bits do not have significant impacts (i.e., they led either to Masked or Safe
Observed faults).

To perform FI campaigns with YOLO, the pre-trained weights available from
[34] have been used (yolov3-tiny.weights). The workloads have been downloaded
from the same repository and consist of seven different images. In this second
case study, the same fault classification was used, with only one exception. LeNet
classifies the input image as one precise digit. Therefore, only the highest score is
considered. Using YOLO, we may have more than one object that can be detected in

40 Reliability Assessment at the Software Level

(a) Golden Prediction (b) Safe Observed Faults

(c) Unsafe Observed Faults

Figure 3.5 Example of YOLO Predictions.

an image: for example, we may have several cars in a single picture. In line with
this, the definition of Unsafe Observed faults was updated as follows:

1. The number of detected objects is different from the golden and faulty predic-
tion;

2. The number of detected objects is equal, but the label associated with them
are different (i.e., wrong detection);

3. The location of the top ranked element varies by more than +/-5% with respect
to the golden one.

The other definitions (Masked Faults and Safe Observed Faults) stay the same.
For the sake of clarity, let us resort to an example, depicted in Figure 3.5.

In the case of Safe Observed faults (Figure 3.5b), the faulty YOLO is able to cor-
rectly detect the four objects, but their locations are slightly different (less than 5%)
with respect to the golden ones. The term location means the rectangle identifying
the object in the picture. Conversely, Figure 3.5c presents Unsafe Observed faults.

3.1 Static Parameters in Artificial Neural Networks 41

In this picture, YOLO only recognizes two objects (the bike and the car) and, overall,
we can say that the prediction is wrong.

Figures 3.6 and 3.7 report the obtained results in terms of percentage of Masked
and Unsafe Observed faults. Contrarily to the results obtained with Lenet, we do not
have a significant percentage of Safe Observed faults (i.e., the obtained percentage
was less than 0.05% on average). As it can be observed, we have a different
population of Masked faults compared to the LeNet one. First, the distribution of
Masked faults do not vary so much among the layers, except for the first one. As a
consequence, we can not claim that fully connected layers are the least critical, since
also most of the convolutional layers show a high percentage of Masked faults. On
the other hand, it is also interesting to note that depending on the workload (i.e., the
input image as plotted on the x-axis), the distribution of Masked faults significantly
changes, differently from Lenet.

Figure 3.6 Tiny YOLO Masked Faults

Figure 3.7 Tiny YOLO Unsafe Observed Faults

A final comment is related to the image number 4 for which we can notice a peak
of Unsafe Observed faults for all layers, but especially for the Layer0. As for LeNet,

42 Reliability Assessment at the Software Level

Figure 3.8 YOLO Workload #4.

Layer0 is the most sensible layer to the input workload. However, in this case, the
variation can not be neglected since an increase of 10% of Unsafe Observed faults
is observed. The prediction of the input workload number 4 is illustrated in Figure
3.8. As evident, instead of detecting the horses, the faulty YOLO detects one sheep.
For this specific image, probably for its graphic complexity, faults in Layer0 lead
to a great quantity of Unsafe Observed faults. This means that, depending on the
network topology, the input workload can play a significant role.

This outcome proves that it is not possible to generalize. Each CNN has to be
analysed in order to identify the most critical elements (e.g., layers). Despite the
difference between the achieved results with the two neural networks, the analysis
of the most critical bits for the YOLO weights confirms the theory: all the Unsafe
Observed faults are due to stuck-at faults affecting the 8 bits used for storing the
exponent (i.e., from bit 30 down to bit 23). The sign and the mantissa bits do not
have significant impacts (i.e., they led either to Masked or Safe Observed faults).

3.1.2 Reduced Precision ANN Weights

In Section 3.1.1, reliability studies are presented on neural networks exploiting a
32-bit floating-point data type to represent their parameters (weights and biases).
In this section, the reliability is investigated when reduced bit-width data types are
used to represent the parameters of neural networks, and therefore when compressed
DNN models are exploited to reduce the memory footprint of the application as well
as its power consumption.

3.1 Static Parameters in Artificial Neural Networks 43

3.1.2.1 Proposed Approach

The intent of this work [2] is to characterize the impact of permanent faults affecting
a CNN, when reduced bit-width data types are used for representing its parameters.
Therefore, different implementations of the same CNN architecture have been anal-
ysed through software FI campaigns. Two case studies are presented: the former
targets LeNet-5 [4], a well known classifier for handwritten digit recognition, the
latter focuses on YOLO [5], a DNN used for detecting objects in real time.

In the neural networks field, a common approximation approach is to reduce the
precision and data type of weights and activation’s values. In this research work, we
used custom floating-point and fixed-point representations with different precision
(i.e., bit-width) at the inference time. As detailed in Section 3.1.1, the darknet open
source framework [34] was used. Indeed, it supplies a very simple environment
where several configurations of DNNs, including CNNs, can be executed either to
perform training or inference jobs. In our work, we modified the darknet framework
to approximate the neural network under assessment and inject stuck-at faults at the
inference time. The darknet framework leverages on 32-bit floating-point data types,
only. To allow data type conversions, the darknet source code was modified. All the
conversions between the standard 32-bit floating-point and custom data type have
been carried out by integrating two open source libraries: the libfixmath library [86]
for managing fixed-point numbers and the FloatX library.

… …

0N-1 i

Figure 3.9 Custom Data Type.

Figure 3.9 depicts our custom data type. It is defined as follows:

• N: It determines the data bit-width;

• i: It determines the dynamics and the precision of the data type depending on
the data representation:

– Floating Point (FP): i is the mantissa width, N− 1− i is the exponent
width;

– Fixed Point (FxP): i is the fractional width, N−1− i is the integer width.

44 Reliability Assessment at the Software Level

Since the end-goal is to characterize fault effect propagation through the network
(speeding up computations and compacting the model size are out of the scope
of this work), we performed on-line conversions while maintaining all internal
operations in floating-point (Figure 3.10). The benefits coming from this approach
are two-fold: first, it is not necessary to change the framework structure every time
new experiments with a different data type have to be performed; second, it allows
changing the representation without retraining the DNN model for each data type,
exploiting the same set of trained parameters. In this way, the CNN reliability
assessment is quicker; it is possible to switch between experiments with different
numerical formats in a reasonable amount of time.

To evaluate the effectiveness of the method, a preliminary experiment was per-
formed to confirm that the online conversion does not introduce important accuracy
differences while providing execution time benefits. To this end, the data representa-
tion of the darknet framework was converted from 32-bit floating point to 32-bit fixed
point. In this way, all the operations were performed in the fixed-point arithmetic
domain by using the libfixmath library [86]. The inference of 70,000 images from the
MNIST database was performed with the LeNet-5 in both versions, i.e., the original
floating-point and the modified fixed-point. Specifically, the neural network was not
retrained. The experimental results showed that the average accuracy error of the
fixed-point version with respect to the floating-point one was of -0.01%, i.e., a slight
accuracy decrease. Moreover, while the execution time of the fixed-point version
experiment was 8,566 seconds, i.e., ≈ 0.122 seconds per image, the execution time
of the original floating-point version was 3,280 seconds, i.e., ≈ 0.047 seconds per
image. Therefore, the use of the darknet 32-bit floating-point framework with on-line
conversion allows us to run 2.6x faster experiments with respect to converting the
darknet data type, while not incurring in significant inference accuracy differences.

C FI C

x

f

Weight

Input

Conversion to
Custom Data

Conversion to
Standard Data

Fault
Injection

…

Figure 3.10 On-line Weights Conversions.

3.1 Static Parameters in Artificial Neural Networks 45

For the sake of completeness, we describe how the on-line conversion of a 32-bit
floating-point weight is applied before reaching a single neuron (Figure 3.10). The
applied scheme works in the following way:

1. The weight is converted from the standard 32-bit floating-point representation
to a given custom data type one.

2. The custom data type weight is corrupted according to a chosen fault list and
fault location, i.e., the fault is injected.

3. The custom data type weight is converted back to the standard 32-bit floating-
point representation in order to preserve the native implementation of the
framework. In such a way, the gained value reflects the same fixed-point
corrupted value, while still remaining a floating-point data.

4. The weight is multiplied by the input value.

5. The neuron performs the arithmetic computations.

Although all the operations are executed between 32-bit floating-point variables,
it should be outlined that the loss of precision caused by the first conversion is pre-
served. Indeed, when moving from the standard 32-bit floating-point representation
to a low-precision one (e.g., 16-bit fixed-point), we are witnessing a truncation error
effect. Then, converting back from a narrow range of value to a wider one, the
truncation error still remains.

Figure 3.11 illustrates the FI setup and configuration. First, the neural network
under assessment was trained with 32-bit floating-point data types: it is referred
to as Standard. Then, this model is approximated by using a custom data type
representation: the obtained DNN model is referred to as Custom. The outputs
of the inferences are stored (i.e., the GoldenStandard and the GoldenCustom),
and compared to determine the Accuracy Loss due to the approximation. The
FI campaign is carried out on the Custom CNN and the faulty inference outputs
are stored in the Faulty Custom log. The latter is then compared with the Golden
Custom and the Golden Standard to assess the resilience. The Custom CNN (i.e.,
approximated model) is intended to replace the Standard CNN in edge/resource-
limited devices. In this work, two different experiments have been conducted: first,
the reliability of the Custom CNN is assessed with respect to the Standard version.

46 Reliability Assessment at the Software Level

Standard
(32 bit Floating Point)

Custom
MNIST

DATA SET

Custom
Under Fault Injection

=?

Golden Std

Golden Custom

Faulty Custom

Accuracy
Loss

=?
Resilience
VS Custom

=?
Resilience

VS Std

Figure 3.11 Fault Injection Scenario [2].

Next, the custom-data-type CNN was trained, and the Faulty Custom was directly
compared with the Custom CNN itself.

The FI procedure follows exactly the same methodology described in 3.1, with a
minor change regarding the fault injection procedure. Faults are injected regardless
of their polarity (stuck-at-0 or stuck-at-1). Once the fault location is fixed, the target
bit is inverted (if ‘0’ it becomes a ‘1’ and vice-versa) as a bit-flip. In this way, we do
not distinguish between the singular effect of the two fault models while obtaining
great flexibility for the considerable amount of performed simulations. Additionally,
a slight difference is introduced in this work to fine tune the faulty predictions. We
consider two types of CNNs: (i) a classifier and (ii) an object detector. Concerning
the classifier, outputs of the faulty CNN are labelled as follows:

• Masked: No difference is observed between the faulty CNN and the golden
one.

• Observed: A difference is observed between the faulty CNN and the golden
one. Depending on how much the results diverge, we further classify these as:

– Good: The confidence score of the top-ranked is higher with respect
to the golden CNN. In other words, the faulty CNN provides a better
inference than the golden one;

3.1 Static Parameters in Artificial Neural Networks 47

– Accept: The confidence score of the top-ranked element is reduced by
less than 5% with respect to the golden CNN;

– Warning: The confidence score of the top-ranked element is reduced by
more than 5% with respect to the golden CNN;

– Critical: The top-1 prediction is different. In other words, the faulty
CNN makes a wrong inference.

From a safety assessment perspective, we consider three classes of faults (Critical,
Warning, and Accept) as events reducing the CNN safety. Indeed, whenever one
of those fault classes occurs, either the top-1 prediction is different (Critical) or
the top-1 prediction confidence level decreases (Warning, Accept). On the other
hand, the two fault classes Masked and Good either leave the safety of the CNN
unaltered (Masked) or even improve it (Good).

On the other hand, the effects of the injected faults on the object detector CNN
are classified differently. The CNN output is an image having bounding boxes
indicating the detection of the objects. To assess whether any two bounding boxes
overlap, we use the intersection over union (IoU) metric as defined in [59]. IoU is
the ratio of the intersection area over the union area of two bounding boxes. The
closer IoU is to 1, the higher overlap the two bounding boxes have. Thanks to the
IoU metric, we can redefine the faulty outcome as follows:

• Masked: No difference is observed between the faulty CNN and the golden
one.

• Observed: A difference is observed between the faulty CNN and the golden
one. By using the IoU calculated between the boxes of the golden CNN and
those of the faulty one, we further classify the observed outcomes as follows:

– Accept: The IoU is lower than 1 and higher than 0.95;

– Warning: The IoU is lower than 0.95 and higher than 0.9;

– Critical: The number of bounding boxes is different, or the label associ-
ated with the boxes does not match the good ones. In other words, the
faulty CNN identified the wrong objects. Moreover, if the IoU is lower
than 0.9, the fault is classified as critical, meaning that the faulty CNN
correctly identifies the objects, but it is not able to locate them precisely
enough.

48 Reliability Assessment at the Software Level

The Good outcome is not considered, since it does not make sense for object
detection tasks. It is worth noting that the fault classification used for the object
detector is more stringent than the one used for the classifier. Indeed, we consider
the object detection task more critical than the classification one. From a safety
assessment perspective, we consider faults falling in the Critical, Warning, and
Accept classes as events reducing the CNN safety. Conversely, Masked faults leave
the safety of the CNN unaltered.

3.1.2.2 Experimental Results

LeNet-5

The first case study targets LeNet-5, a well-known classifier for handwritten digit
recognition tasks introduced by Y. Lecun et al. in 1998. For the analysis, pre-trained
weights available in a 32-bit floating-point representation from [34] have been used.
For the injection campaign, a workload of 2,023 images was randomly selected from
the MNIST test/validation dataset.

In our preliminary work [87], different fixed-point data types have been analysed.
One of those was configured with N = 16 and i = 8, meaning that 8 bits were devoted
to represent the fractional part and 8 bits the integer one. Figures 3.12a and 3.12b
illustrate the criticality of each bit of the data type. As emerging, in the 32-bit
floating-point representation, only one bit (i.e., the bit 30th) is the main responsible
for the Critical Observed faulty behaviours: up to 95% of critical observed faulty
behaviours is due to a fault at bit 30th. On the other hand, in the 16-bit fixed-point
representation (with 8 bits for integers and 8 bits for the fractional part), the number
of bits responsible for the Critical Observed faulty behaviours is six. This means that
the custom CNN has a lower memory footprint of 50%, but it also shows a lower
resilience with respect to the standard CNN, since a higher number of faulty bits
may seriously affect the results of the inferences.

To carefully select the custom data representations, we analysed the LeNet-5’s
distribution of weights, which is shown in Figure 3.13, and evidences that all values
are in the range -0.6 to 0.6 with most of them around zero. Based on this, we deduced
that the data type does not need higher dynamics while a high precision is preferred.
Hence, we selected the custom data types reported in Table 3.3.

3.1 Static Parameters in Artificial Neural Networks 49

(a) Standard 32-bit Floating Point (b) Custom 16-bit Fixed Point

Figure 3.12 Critical Bits

Figure 3.13 LeNet-5 pre-trained weights distribution.

Two data types are used, the fixed and floating point (FxP and FP, respectively)
with different bit width. Moreover, we computed the accuracy loss of the CNN
resulting from the adoption of custom data type weights. As highlighted in Table
3.3, five different scenarios have been studied. The 2nd column of the Table reports
the data type used in each FI campaign, while the 3rd column reports the bit-width
of the weights. The 4th column shows the number of bits allocated to encode the
different parts of the number, i.e., sign, exponent, and fractional parts (to represent
floating-point numbers), and the integer and fractional part (for fixed-point data).
To compute the accuracy of the CNN in the different scenarios, the inference of the
images belonging to the validation set of the MNIST database (10,000 images) has
been run on LeNet-5, clearly without injecting any faults, i.e., in a golden scenario.
The results show that only when the bit width is reduced to 8, the neural network
exhibits some accuracy loss. In detail, for the network with weights encoded by
using 8-bit floating-point variables (scenario FP8), the accuracy loss is 0.02%, while
it is 0.04% when the weights were encoded by using 8-bit fixed-point variables
(scenario FxP8).

50 Reliability Assessment at the Software Level

Table 3.3 LeNet-5 Data Type Accuracy Loss [%]

Scenario Data type Bit-width Bit encoding [%] Accuracy Loss

FP32 floating-point 32 1 sign, 8 exponent, 23 fractional Ref.
FP16 floating-point 16 1 sign, 5 exponent, 10 fractional 0%
FP8 floating-point 8 1 sign, 4 exponent, 3 fractional 0.02%

FxP32 fixed-point 32 1 integer, 31 fractional 0%
FxP16 fixed-point 16 1 integer, 15 fractional 0%
FxP8 fixed-point 8 1 integer, 7 fractional 0.04%

Table 3.4 LeNet-5 Fault List for Fault Injection Campaigns

Layer L0 L2 L4 L6
Detail Convolutional Convolutional Fully Connected Fully Connected

Connections 2,400 51,200 3,211,264 10,240

Scenarios
FP32, FxP32

Bit-width 32 32 32 32
#Faults 76,800 1,638,400 102,760,448 327,680

#Injections 13,678 16,474 16,638 15,837

Scenarios
FP16, FxP16

Bit-width 16 16 16 16
#Faults 38,400 819,200 51,380,224 163,840

#Injections 11,610 16,310 16,636 15,107

Scenarios
FP8, FxP8

Bit-width 8 8 8 8
#Faults 19,200 409,600 25,690,112 8,1920

#Injections 8,915 15,991 16,630 13,831

Similarly to the reliability study discussed in Section 3.1, a statistically meaning-
ful subset of FIs was performed, according to the mathematical formula proposed
in [85], equation 3.3. Table 3.4 provides details about the FI setup, the configuration,
and the fault lists of each LeNet-5’s layer. The first two rows (labelled Layer and
Detail) present the target layers; the third one (Connections) specifies the quantity
of their connection weights. The number of possible faults is computed as the
multiplication between the connections number (Connections) and the weight size
(Bit-width). As the rows #Faults point out, the overall number of possible faults
is very high, and this reflects in a non-manageable FI campaign execution time.
Therefore, to reduce the execution time, a subset of faults is considered. To obtain
statistically significant results with an error margin of 1% and a confidence level of
99%, an average of 15.6k FIs have to be considered for the 32-bit scenarios (FP32
and FxP32), 15k for the 16-bit scenarios (FP16 and FxP16), and 13.8k for the 8-bit
scenarios (FP8 and FxP8). The exact numbers are given in the rows of Table 3.4
labelled #Injections, and they have been computed by using the approach presented

3.1 Static Parameters in Artificial Neural Networks 51

in [85].

We conducted two sets of experiments (see Figure 3.11). In the first one, we
evaluated the reliability by using as reference the Standard 32-bit floating-point
CNN. This is useful to approximate the CNN (i.e., to change its data type and/or
bit-width) after that it has been trained. In the second one, we assess the CNN
reliability by using as reference the Custom fault-free CNN. This is useful to directly
train the custom data-type/bit-width CNN. The safety of the different CNN versions
is evaluated. Therefore, faults in the classes Critical, Warning, and Accept are
considered as events reducing the CNN safety. The sum of these contributions is
represented by the symbol ‘<’ in Tables 3.5 and 3.6. Conversely, we consider the
faults in the classes Masked and Good as events, either leaving the safety of the CNN
unaltered or even improving it. The sum of these contributions is represented by
the symbol ‘≥’ in Tables 3.5 and 3.6. The comprehensive results of the first set of
experiments (i.e., having the Standard 32-bit floating-point CNN as a reference) are
shown in Table 3.5 where each row corresponds to one of the CNN variants (FP32,
FP16, FP8, FxP32, FxP16, FxP8 defined in Table 3.3). Each column corresponds
to a faulty behaviour class, as described above. First, we can note a different
resilience to faults depending on the data type: floating versus fixed. More in detail,
the safety decreasing effect is lower for the fixed-point than for the floating-
points, for a given bit-width. As an example, we may resort to scenarios FP32
and FxP32 (32-bit CNNs): the safety increasing (decreasing) effect varies from
69% (31%) of the floating-point version (scenario FP32) to 74% (26%) of the
fixed-point version (scenario FxP8). This corresponds to a difference of 5%. The
average difference between floating- and fixed-point versions with respect to safety
increasing/decreasing effect over the three variants (32, 16, and 8 bits) is 8.96% over
all the layers. This can be seen by comparing the scenarios FP32 with FxP32, FP16
with FxP16, and FP8 with FxP8, in terms of the average safety increase/decrease
effect variation (columns 8 and 9). Is it worth highlighting that, in general terms,
the safety decreasing effect is critical only in a few cases. The percentage of critical
faults is always lower than 3.42% for all the variants. In particular, fixed-point
variants have a very small percentage of critical faults, always lower than 0.46%.
Moreover, the contribution of Good faults to the safety increasing effect turns out to
be significant, especially for 16- and 8-bit versions. As an example, in the scenario

52 Reliability Assessment at the Software Level

FxP8 for the layer L0, we observed a safety increasing effect in 52.21% of the cases,
with a 52.18% of Good faults.

Furthermore, the bit-width plays an important role for the reliability: the lower
the bit-width, the lower the resilience. Therefore, a designer who wanted to use a
more efficient version of the CNN (reduced memory footprint) has to be aware that
it would be also less resilient with respect to the original CNN (FP32). However,
it is worth also remarking that using fixed-point data representation, instead of the
floating-point counterpart, provides the better results in terms of trade-off between
resilience and efficiency. This is reported in the last two columns of Table 3.5. For
instance, we may compare scenarios FP8 and FxP8 (8-bit CNNs) for layer L0: we
observed a safety loss with respect to FP32 of 37% in the floating-point version
(scenario FP8) and only of 16% in the fixed-point version (scenario FxP8). Therefore,
choosing the CNN in the scenario FxP8, namely 8-bit fixed-point (1 bit for integer
and 7 bits for fractional), allows the designer to compact the memory footprint by a
4x factor while reducing the safety only by 16%. Moreover, by looking more closely,
the occurrence of critical faults in scenario FxP8 even decreases from 1.32% of FP32
to 0.45%, while in scenario B it increases to 3.41%. Additionally, for scenario FxP32
(32-bit fixed-point CNN), it has been observed that the CNN achieves improved
safety with respect to the FP32 scenario, for the same memory footprint for layers
L0 and L2 (+5.34% and +1.43%, respectively). Thus, simply changing the CNN
data type to a fixed-point representation may improve its resilience for some layers.

Table 3.6 reports the complete results of the second set of experiments (i.e.,
having the Custom CNN as a reference). While in the first set we compared the FI
results of each scenario to the ones obtained with the fault-free 32-bit floating-point
CNN (FP32), in this set of experiments we compare the results of each scenario to
the results obtained with the corresponding fault-free custom CNN. This scenario
corresponds to directly training the custom-data-type CNN, so the reliability has to
be assessed with respect to the Custom CNN itself. For details, see Figure 3.11. Note
that the row related to the FP32 version is the same one in both experiment sets.

In general, the trends highlighted in the first set of experiments are observed also
in this scenario:

1. The safety is impacted by the bit-width reduction;

3.1 Static Parameters in Artificial Neural Networks 53

Table 3.5 LeNet-5 Fault Injection outcomes with respect to the Golden Standard
version.

Layer Data Observed Masked Safety Gain w.r.t. FP32
Critical Warning Accept Good < ≥ Safety∗ Memory

L0

FP32 1.32% 0.06% 29.96% 28.98% 39.68% 31.34% 68.66% - -
FP16 2.61% 0.12% 53.28% 41.27% 2.71% 56.01% 43.98% -24.67% 2X
FP8 3.41% 0.91% 64.13% 31.53% 0.02% 68.45% 31.55% -37.11% 4X

FxP32 0.03% 0.04% 25.93% 25.54% 48.47% 26.00% 74.01% +5.34% 0
FxP16 0.05% 0.08% 49.98% 46.94% 2.96% 50.11% 49.90% -18.77% 2X
FxP8 0.45% 0.60% 46.74% 52.18% 0.03% 47.79% 52.21% -16.45% 4X

L2

FP32 1.37% 0.02% 23.88% 23.39% 51.34% 25.27% 74.73% - -
FP16 2.59% 0.08% 55.00% 38.57% 3.76% 57.67% 42.33% -32.40% 2X
FP8 1.10% 0.91% 65.86% 32.10% 0.03% 67.87% 32.13% -42.60% 4X

FxP32 0.01% 0.01% 23.82% 23.62% 52.54% 23.84% 76.16% +1.43% 0
FxP16 0.03% 0.02% 49.87% 46.61% 3.47% 49.92% 50.08% -24.65% 2X
FxP8 0.42% 0.45% 46.57% 52.53% 0.03% 47.44% 52.56% -22.17% 4X

L4

FP32 0.71% 0.00% 3.85% 3.86% 91.57% 4.56% 95.44% - -
FP16 0.84% 0.13% 57.79% 36.12% 5.13% 58.75% 41.25% -54.19% 2X
FP8 0.49% 0.06% 66.69% 32.72% 0.04% 67.24% 32.76% -62.67% 4X

FxP32 0.00% 0.00% 10.99% 11.49% 77.52% 10.99% 89.01% -6.43% 0
FxP16 0.00% 0.00% 49.40% 45.59% 5.01% 49.40% 50.60% -44.84% 2X
FxP8 0.40% 0.36% 46.38% 52.82% 0.04% 47.14% 52.86% -42.58% 4X

L6

FP32 0.61% 0.01% 7.69% 8.14% 83.54% 8.32% 91.68% - -
FP16 1.19% 0.03% 56.34% 37.65% 4.78% 57.57% 42.43% -49.25% 2X
FP8 1.76% 0.40% 65.07% 32.74% 0.04% 67.22% 32.78% -58.91% 4X

FxP32 0.01% 0.04% 13.50% 14.11% 72.33% 13.55% 86.45% -5.24% 0
FxP16 0.03% 0.08% 49.15% 46.11% 4.63% 49.26% 50.74% -40.94% 2X
FxP8 0.44% 0.53% 46.28% 52.72% 0.04% 47.25% 52.75% -38.93% 4X

∗ Safety increasing effect difference between a given scenario and FP32

2. For fixed-point CNN versions, we observed a more graceful safety decrease
compared to floating-point ones.

Besides that, an interesting effect is the following: for floating-point custom vari-
ants (FP16 and FP8) the difference between the two sets of experiments (Tables 3.5
and 3.6) in terms of Safety gain with respect to FP32 is higher than for fixed-point
ones (FxP32, FxP16, and FxP8). For example, in layer L0, for variant FP8 (8-bit
floating-point) the Safety gain with respect to FP32 is -37.1% for the first set of
experiments (Table 3.5) and -19.9% for the second set of experiments (Table 3.6),
that is a 17.2% difference. Conversely, for variant FxP8 (8-bit fixed-point) the Safety
gain with respect to FP32 is -16.4% for the first set of experiments (Table 3.5) and
-17.9% for the second set of experiments (Table 3.6), which is a difference of 1.5%.
On average, the difference between the two sets of experiments for floating-point

54 Reliability Assessment at the Software Level

Table 3.6 LeNet-5 Fault Injection outcomes with respect to the Golden Custom
version.

Layer Data Observed Masked Safety Gain w.r.t. FP32
Critical Warning Accept Good < ≥ Safety∗ Memory

L0

FP32 1.32% 0.06% 29.96% 28.98% 39.68% 31.34% 68.66% -
FP16 2.61% 0.12% 42.10% 40.86% 14.30% 44.84% 55.16% -13.50% 2X
FP8 3.30% 0.88% 47.08% 44.67% 4.07% 51.26% 48.74% -19.91% 4X

FxP32 0.03% 0.04% 24.45% 23.81% 51.67% 24.51% 75.49% +6.83% 0
FxP16 0.05% 0.08% 41.96% 40.81% 17.10% 42.09% 57.91% -10.75% 2X
FxP8 0.11% 0.15% 49.03% 46.94% 3.76% 49.29% 50.71% -17.95% 4X

L2

FP32 1.37% 0.02% 23.88% 23.39% 51.34% 25.27% 74.73% -
FP16 2.59% 0.08% 35.66% 34.59% 27.07% 38.34% 61.66% -13.07% 2X
FP8 0.96% 0.89% 46.21% 43.17% 8.77% 48.06% 51.94% -22.79% 4X

FxP32 0.01% 0.01% 21.41% 20.93% 57.64% 21.43% 78.57% +3.84% 0
FxP16 0.03% 0.02% 38.70% 37.74% 23.52% 38.75% 61.25% -13.47% 2X
FxP8 0.06% 0.05% 47.94% 45.79% 6.17% 48.05% 51.95% -22.77% 4X

L4

FP32 0.71% 0.00% 3.85% 3.86% 91.57% 4.56% 95.44% -
FP16 0.84% 0.13% 6.21% 6.23% 86.59% 7.17% 92.83% -2.61% 2X
FP8 0.32% 0.06% 10.45% 10.11% 79.06% 10.83% 89.17% -6.26% 4X

FxP32 0.00% 0.00% 4.06% 4.02% 91.92% 4.06% 95.94% +0.50% 0
FxP16 0.00% 0.00% 7.83% 7.75% 84.42% 7.83% 92.17% -3.27% 2X
FxP8 0.01% 0.00% 10.67% 10.33% 78.99% 10.68% 89.32% -6.12% 4X

L6

FP32 0.61% 0.01% 7.69% 8.14% 83.54% 8.32% 91.68% -
FP16 1.19% 0.03% 11.47% 12.63% 74.67% 12.70% 87.30% -4.39% 2X
FP8 1.59% 0.39% 15.87% 17.10% 65.05% 17.85% 82.15% -9.53% 4X

FxP32 0.01% 0.04% 7.15% 7.27% 85.52% 7.21% 92.79% +1.11% 0
FxP16 0.03% 0.08% 13.48% 13.72% 72.69% 13.59% 86.41% -5.27% 2X
FxP8 0.05% 0.16% 17.25% 18.27% 64.27% 17.47% 82.53% -9.15% 4X

∗ Safety increasing effect difference between a given scenario and FP32

variants (FP16 and FP8) over all the layers is 33.72%, while for fixed-point custom
variants (FxP32, FxP16, and FxP8) is 14.81%. Practically, this means that a designer
who chose to approximate the original Standard FP32 CNN version by using a
custom floating-point variant without retraining it, would be exposed to higher safety
degradation than by using the fixed-point alternative with the same bit-width. When
a training is performed directly on the custom-data-type CNN, the safety degradation
difference between the floating-point variants and the fixed-point ones is smaller.
However, fixed-point ones still guarantee less critical fault occurrence, i.e., less than
0.12%. Finally, based on these outcomes, we believe that the CNN in FxP8 scenarios
provides the best results in terms of memory footprint reduction, i.e., 4X, with a
significant resilience, i.e. less than 0.45% critical faults.

3.1 Static Parameters in Artificial Neural Networks 55

Table 3.7 YOLO Data Type Accuracy Loss [%]

Scenario Data type Bit-width Bit encoding [%] Accuracy Loss

FP32 floating-point 32 1 sign, 8 exponent, 23 fractional Ref.
FP16 floating-point 16 1 sign, 5 exponent, 10 fractional 42% masked, 58% acceptable
FP8 floating-point 8 1 sign, 4 exponent, 3 fractional 28% warning, 72% critical

FxP32 fixed-point 32 3 integer, 29 fractional 100% masked
FxP16 fixed-point 16 3 integer, 13 fractional 42% masked, 58% acceptable
FxP8 fixed-point 8 3 integer, 5 fractional 100% critical

Masked: IoU=1; acceptable: 0.95<IoU<1; warning: 0.9≤IoU≤0.95; critical: IoU<0.9 or different objects recognized

YOLO

To carefully select the custom data representation, we first analysed the weight
distribution of YOLO. It is shown in Figure 3.14.

2 1 0 1 2
Weights value

100

101

102

103

104

105

106

107

Fr
eq

ue
nc

y

Weights histogram

Figure 3.14 YOLO pre-trained weights distribution

As evidenced, all values are in the range -2.35 to 2.36 with most of them around
zero. Thus, also for this CNN, the data type does not need higher dynamics while a
high precision is preferred. Therefore, we selected the custom data type reported in
Table 3.7.

Moreover, we computed the accuracy loss of the CNN resulting from the adoption
of custom data types. As highlighted in Table 3.7, five different scenarios have been
analysed. The second column of the table reports the data type used in each scenario,
while the third column reports the bit-width of the weights. The fourth column
shows the amount of bits allocated to encode the different parts of the number, i.e.,
sign, exponent, and fractional parts in the case of floating-point representations, and

56 Reliability Assessment at the Software Level

Table 3.8 YOLO Fault List for Fault Injection Campaigns

FP32 and FxP32 FP16 and FxP16 FP8 and FxP8
Bit-width=32 Bit-width=16 Bit-width=8

Layer Connections #Faults #Injections #Faults #Injections #Faults #Injections
L0 432 13,824 7,551 6,912 4,884 3,456 2,862
L2 4,608 147,456 14,954 73,728 13,577 36,864 11,466
L4 18,432 589,824 16,184 294,912 15,752 147,456 14,954
L6 73,728 2,359,296 16,524 1,179,648 16,410 589,824 16,184
L8 294,912 9,437,184 16,612 4,718,592 16,583 2,359,296 16,524
L10 1,179,648 37,748,736 16,634 18,874,368 16,626 9,437,184 16,612
L12 4,718,592 150,994,944 16,639 75,497,472 16,637 37,748,736 16,634
L13 262,144 8,388,608 16,608 4,194,304 16,575 2,097,152 16,510
L14 1,179,648 37,748,736 16,634 18,874,368 16,626 9,437,184 16,612
L15 130,560 4,177,920 16,575 2,088,960 16,509 1,044,480 16,380
L18 32,768 1,048,576 16,381 524,288 16,129 262,144 15,648
L21 884,736 28,311,552 16,631 14,155,776 16,621 7,077,888 16,602
L22 65,280 2,088,960 16,509 1,044,480 16,380 522,240 16,127

integer and fractional part in the case of fixed-point ones. To compute the accuracy
loss of the network in the different scenarios, the inference for 7 images has been
run on YOLO, clearly without injecting any faults, i.e., in a golden scenario. The
results are reported according to the classification described for the object detector.
The results show that for the FxP32 scenario there is no degradation, for the 16-bit
data types (both FP16 and FxP16) in 42% of the cases (3 images out of 7) there is
no degradation and for 58% of the cases (4 images out of 7) there is an acceptable
degradation (i.e., all objects are correctly recognized, and the IoU metric is between
0.95 and 1). Finally, when using the 8-bit floating-point data type (FP8), the CNN is
able to deliver usable results (i.e., classified as warning, 0.9≤IoU≤0.95) for 28% of
the inputs (2 images out of 7) and cannot produce correct outputs (critical) for the
rest (5 images out of 7). On the contrary, with the 8-bit fixed-point data type (FxP8),
the CNN is unable to provide the correct results at all, i.e., for all input images the
output was classified as critical.

As for LeNet-5, also for YOLO we consider only the layers performing arith-
metic computations involving trainable weights, i.e., the thirteen convolutional layers.
Table 3.8 provides details about the configuration as well as the fault list of each layer.
The first column (labelled Layer) reports the target layers; the second one (Connec-
tions) specifies the number of connection weights. The number of possible faults is
computed as the multiplication between the connections number (Connections) and
the weight size (Bit-width).

3.1 Static Parameters in Artificial Neural Networks 57

As the columns #Faults point out, the overall number of possible faults is very
high, and this reflects in a non-manageable FI campaign execution time. Similarly
to the experiments performed with LeNet-5, a subset of faults was selected. For
each layer, we injected the number of faults reported in the columns #Injections.
The number of faults was obtained by using the approach presented in [85], with
an error margin of 1% and a confidence level of 99%. On average, 15.7k faults
are injected in each layer for 32-bit scenarios (FP32 and FxP32), 15.3k for 16-bit
scenarios (FP16 and FxP16), and 14.8k for 8-bit scenarios (FP8 and FxP8). The
injections are performed by randomly selecting the faulty bit among all bits of the
connection weights.

In line with the LeNet-5 FI campaign, two sets of experiments are carried out.
First, we evaluated the reliability by using as a reference the Standard 32-bit floating-
point CNN, and then by using the Custom fault-free one. In the following, we define
faults belonging to the classes Critical, Warning, and Accept as events reducing the
CNN safety. The sum of these contributions is represented by the symbol ‘<’ in the
Tables. On the other hand, we consider the masked faults as events leaving the safety
of the CNN unaltered. Therefore, their contribution is represented by the symbol ‘=’
in Tables. Table 3.9 reports the results of the first set of FI campaigns.

While for LeNet-5 we figured out that the fixed-point versions of the CNN had a
higher average safety level (8.96%) with respect to the floating-point counterparts,
for YOLO the difference is not as significant. Indeed, for YOLO, the fixed-point
versions of the CNN have a slightly lower average safety level, i.e., -0.44%, with
respect to the floating-point versions. This is calculated for the 32- and 16-bit
versions, as the 8-bit fixed-point one always yields critical errors (see Table 3.7).
If we include also the 8-bit versions, the fixed-point versions have a lower average
safety level of -3.42% compared to the floating-point ones. This is probably due
to the different distribution of the pretrained weight values for the YOLO network
compared to LeNet-5 (compare Figure 3.14 with Figure 3.13). Indeed, for YOLO,
the need of more bits for the integer part of the weights reduced the representation
precision. Furthermore, it is worth highlighting that, in general terms, YOLO turns
out to be much less resilient than LeNet-5. Indeed, while for LeNet-5 the percentage
of critical faults is always lower than 3.42%, the YOLO network reaches up to
48.46% of critical faults (layer L0, FP8 scenario) and, as already mentioned, the
FxP8 version produces critical faults even in a fault-free scenario. This is probably
due to the much more stringent definition that we used for critical faults. Indeed,

58 Reliability Assessment at the Software Level

for LeNet-5 we classified a fault as critical only when the top-1 prediction was
wrong; conversely, for YOLO a fault is classified as critical also when an object
is correctly classified, but it is not located perfectly (IoU<0.9). Finally, as in the
LeNet-5 case, also for YOLO reducing the bit-width implies reducing the CNN
resilience. In Table 3.10, we report the results of the second set of FI campaigns,
where we compare the results of each scenario with the results obtained with the
corresponding fault-free custom CNN. First, it is immediately clear that, also for this
FI campaign, the CNN safety is impacted by the bit-width reduction. Second, also
in this case, YOLO exhibits high critical fault occurrence, i.e., up to 42.08% in the
layer L0 in FP8 scenario. Finally, for YOLO we notice the same phenomenon that
we observed for LeNet-5: for floating-point custom variants (FP16 and FP8), the
difference between the two sets of experiments (Tables 3.9 and 3.10) in terms of
Safety gain with respect to FP32 is higher than for fixed-point ones (FxP32, FxP16,
and FxP8). Indeed, on average, the difference for floating-point variants over all
the layers is 59.38%, while for fixed-point custom variants is 13.92%. As already
mentioned, this means that approximating the FP32 CNN version by using a custom
floating-point variant without retraining exposes to higher safety degradation than by
using the same bit-width fixed-point alternative.

Table 3.9 YOLO Fault Injection outcomes with respect to the Golden Standard
version.

Level Data
Observed

Masked
Safety Gain w.r.t. FP32

Critical Warning Accept < = Safety∗ Memory

L0

FP32 20.17% 0.66% 16.25% 62.92% 37.08% 62.92% - -
FP16 30.70% 1.04% 41.32% 26.95% 73.05% 26.95% -35.97% 2x
FP8 48.46% 49.88% 1.66% 0.00% 100.00% 0.00% -62.92% 4x

FxP32 13.35% 0.54% 12.43% 73.68% 26.32% 73.68% 10.76% 0
FxP16 27.23% 1.11% 44.52% 27.14% 72.86% 27.14% -35.78% 2x

L2

FP32 6.81% 0.10% 14.46% 78.63% 21.37% 78.63% - -
FP16 12.07% 0.17% 49.85% 37.91% 62.09% 37.91% -40.72% 2x
FP8 16.67% 78.65% 4.68% 0.00% 100.00% 0.00% -78.63% 4x

FxP32 7.40% 0.43% 12.22% 79.95% 20.05% 79.95% 1.33% 0
FxP16 14.38% 0.84% 51.95% 32.83% 67.17% 32.83% -45.80% 2x

L4

FP32 5.05% 0.05% 11.24% 83.66% 16.34% 83.66% - -
FP16 9.88% 0.10% 49.32% 40.70% 59.30% 40.70% -42.97% 2x
FP8 13.30% 82.95% 3.75% 0.00% 100.00% 0.00% -83.66% 4x

FxP32 6.32% 0.35% 11.86% 81.47% 18.53% 81.47% -2.19% 0

3.1 Static Parameters in Artificial Neural Networks 59

FxP16 12.45% 0.70% 52.81% 34.04% 65.96% 34.04% -49.62% 2x

L6

FP32 4.02% 0.01% 7.59% 88.37% 11.63% 88.37% - -
FP16 8.29% 0.04% 49.55% 42.13% 57.87% 42.13% -46.25% 2x
FP8 9.48% 88.49% 2.02% 0.00% 100.00% 0.00% -88.37% 4x

FxP32 4.49% 0.26% 11.04% 84.21% 15.79% 84.21% -4.17% 0
FxP16 8.82% 0.52% 53.75% 36.91% 63.09% 36.91% -51.47% 2x

L8

FP32 3.41% 0.01% 3.94% 92.65% 7.35% 92.65% - -
FP16 7.15% 0.02% 50.53% 42.30% 57.70% 42.30% -50.35% 2x
FP8 7.06% 91.51% 1.44% 0.00% 100.00% 0.00% -92.65% 4x

FxP32 2.84% 0.19% 9.22% 87.75% 12.25% 87.75% -4.90% 0
FxP16 5.49% 0.38% 54.32% 39.81% 60.19% 39.81% -52.84% 2x

L10

FP32 3.26% 0.00% 1.70% 95.04% 4.96% 95.04% - -
FP16 6.42% 0.02% 52.08% 41.49% 58.51% 41.49% -53.55% 2x
FP8 4.93% 94.16% 0.91% 0.00% 100.00% 0.00% -95.04% 4x

FxP32 1.67% 0.11% 6.85% 91.37% 8.63% 91.37% -3.67% 0
FxP16 3.14% 0.21% 54.33% 42.32% 57.68% 42.32% -52.72% 2x

L12

FP32 3.17% 0.00% 0.84% 95.98% 4.02% 95.98% - -
FP16 6.18% 0.07% 52.75% 41.00% 59.00% 41.00% -54.98% 2x
FP8 3.69% 95.54% 0.77% 0.00% 100.00% 0.00% -95.98% 4x

FxP32 0.76% 0.06% 5.34% 93.85% 6.15% 93.85% -2.13% 0
FxP16 1.39% 0.08% 54.87% 43.66% 56.34% 43.66% -52.32% 2x

L13

FP32 3.27% 0.01% 3.37% 93.36% 6.64% 93.36% - -
FP16 6.76% 0.04% 51.46% 41.74% 58.26% 41.74% -51.62% 2x
FP8 6.09% 92.80% 1.10% 0.00% 100.00% 0.00% -93.36% 4x

FxP32 1.86% 0.18% 9.08% 88.87% 11.13% 88.87% -4.49% 0
FxP16 3.61% 0.37% 55.13% 40.88% 59.12% 40.88% -52.47% 2x

L14

FP32 3.13% 0.01% 1.25% 95.61% 4.39% 95.61% - -
FP16 5.83% 0.07% 52.96% 41.13% 58.87% 41.13% -54.47% 2x
FP8 3.92% 96.08% 0.00% 0.00% 100.00% 0.00% -95.61% 4x

FxP32 1.03% 0.13% 5.96% 92.89% 7.11% 92.89% -2.72% 0
FxP16 2.05% 0.30% 54.55% 43.10% 56.90% 43.10% -52.50% 2x

L15

FP32 0.82% 0.01% 0.19% 98.97% 1.03% 98.97% - -
FP16 1.75% 0.04% 65.39% 32.82% 67.18% 32.82% -66.15% 2x
FP8 1.05% 98.95% 0.00% 0.00% 100.00% 0.00% -98.97% 4x

FxP32 0.34% 0.06% 0.36% 99.24% 0.76% 99.24% 0.26% 0
FxP16 0.57% 0.11% 56.69% 42.63% 57.37% 42.63% -56.35% 2x

L18

FP32 3.26% 0.02% 0.19% 96.53% 3.47% 96.53% - -
FP16 6.10% 0.04% 53.82% 40.04% 59.96% 40.04% -56.49% 2x
FP8 5.55% 92.84% 1.61% 0.00% 100.00% 0.00% -96.53% 4x

FxP32 0.98% 0.14% 0.89% 98.00% 2.00% 98.00% 1.48% 0
FxP16 2.04% 0.26% 57.61% 40.10% 59.90% 40.10% -56.43% 2x

L21

FP32 3.22% 0.00% 0.06% 96.72% 3.28% 96.72% - -

60 Reliability Assessment at the Software Level

FP16 5.61% 0.02% 53.96% 40.41% 59.59% 40.41% -56.31% 2x
FP8 3.83% 94.51% 1.67% 0.00% 100.00% 0.00% -96.72% 4x

FxP32 0.37% 0.06% 0.56% 99.02% 0.98% 99.02% 2.29% 0
FxP16 0.63% 0.17% 57.73% 41.47% 58.53% 41.47% -55.25% 2x

L22

FP32 0.44% 0.00% 0.03% 99.52% 0.48% 99.52% - -
FP16 0.89% 0.00% 56.66% 42.45% 57.55% 42.45% -57.07% 2x
FP8 1.14% 98.83% 0.03% 0.00% 100.00% 0.00% -99.52% 4x

FxP32 0.14% 0.02% 0.04% 99.79% 0.21% 99.79% 0.27% 0
FxP16 0.29% 0.02% 57.05% 42.63% 57.37% 42.63% -56.89% 2x

∗ Safety increasing effect difference between a given scenario and FP32

3.1 Static Parameters in Artificial Neural Networks 61

Table 3.10 YOLO Fault Injection outcomes with respect to the Golden Custom
version.

Level Data
Observed

Masked
Safety Gain w.r.t. FP32

Critical Warning Accept < = Safety∗ Memory

L0

FP32 20.17% 0.66% 16.25% 62.92% 37.08% 62.92% - -
FP16 30.70% 1.03% 28.10% 40.16% 59.84% 40.16% -22.76% 2x
FP8 42.08% 5.63% 37.02% 15.27% 84.73% 15.27% -47.64% 4x

FxP32 13.35% 0.54% 12.43% 73.68% 26.32% 73.68% 10.76% 0
FxP16 27.23% 1.13% 23.50% 48.14% 51.86% 48.14% -14.78% 2x

L2

FP32 6.81% 0.10% 14.46% 78.63% 21.37% 78.63% - -
FP16 12.07% 0.18% 23.04% 64.71% 35.29% 64.71% -13.92% 2x
FP8 14.19% 2.64% 38.61% 44.55% 55.45% 44.55% -34.07% 4x

FxP32 7.40% 0.43% 12.22% 79.95% 20.05% 79.95% 1.33% 0
FxP16 14.39% 0.84% 23.60% 61.16% 38.84% 61.16% -17.46% 2x

L4

FP32 5.05% 0.05% 11.24% 83.66% 16.34% 83.66% - -
FP16 9.88% 0.10% 18.29% 71.73% 28.27% 71.73% -11.94% 2x
FP8 11.84% 1.70% 30.70% 55.76% 44.24% 55.76% -27.90% 4x

FxP32 6.32% 0.35% 11.86% 81.47% 18.53% 81.47% -2.19% 0
FxP16 12.45% 0.70% 22.51% 64.34% 35.66% 64.34% -19.33% 2x

L6

FP32 4.02% 0.01% 7.59% 88.37% 11.63% 88.37% - -
FP16 8.29% 0.04% 13.34% 78.33% 21.67% 78.33% -10.04% 2x
FP8 8.37% 1.25% 22.66% 67.72% 32.28% 67.72% -20.65% 4x

FxP32 4.49% 0.26% 11.04% 84.21% 15.79% 84.21% -4.17% 0
FxP16 8.82% 0.53% 20.99% 69.66% 30.34% 69.66% -18.72% 2x

L8

FP32 3.41% 0.01% 3.94% 92.65% 7.35% 92.65% - -
FP16 7.15% 0.02% 7.80% 85.03% 14.97% 85.03% -7.61% 2x
FP8 6.22% 1.04% 16.41% 76.33% 23.67% 76.33% -16.31% 4x

FxP32 2.84% 0.19% 9.22% 87.75% 12.25% 87.75% -4.90% 0
FxP16 5.49% 0.38% 17.48% 76.65% 23.35% 76.65% -16.00% 2x

L10

FP32 3.26% 0.00% 1.70% 95.04% 4.96% 95.04% - -
FP16 6.42% 0.02% 3.89% 89.67% 10.33% 89.67% -5.36% 2x
FP8 4.42% 0.52% 10.04% 85.01% 14.99% 85.01% -10.03% 4x

FxP32 1.67% 0.11% 6.85% 91.37% 8.63% 91.37% -3.67% 0
FxP16 3.14% 0.21% 12.41% 84.23% 15.77% 84.23% -10.81% 2x

L12

FP32 3.17% 0.00% 0.84% 95.98% 4.02% 95.98% - -
FP16 6.18% 0.07% 2.20% 91.55% 8.45% 91.55% -4.44% 2x
FP8 3.44% 0.23% 7.94% 88.39% 11.61% 88.39% -7.59% 4x

FxP32 0.76% 0.06% 5.34% 93.85% 6.15% 93.85% -2.13% 0
FxP16 1.39% 0.08% 9.90% 88.63% 11.37% 88.63% -7.35% 2x

L13

FP32 3.27% 0.01% 3.37% 93.36% 6.64% 93.36% - -
FP16 6.76% 0.04% 6.42% 86.78% 13.22% 86.78% -6.58% 2x

62 Reliability Assessment at the Software Level

FP8 5.20% 1.18% 14.59% 79.03% 20.97% 79.03% -14.33% 4x
FxP32 1.86% 0.18% 9.08% 88.87% 11.13% 88.87% -4.49% 0
FxP16 3.61% 0.37% 16.92% 79.09% 20.91% 79.09% -14.27% 2x

L14

FP32 3.13% 0.01% 1.25% 95.61% 4.39% 95.61% - -
FP16 5.83% 0.07% 2.66% 91.43% 8.57% 91.43% -4.18% 2x
FP8 3.60% 0.25% 4.60% 91.54% 8.46% 91.54% -4.06% 4x

FxP32 1.03% 0.13% 5.96% 92.89% 7.11% 92.89% -2.72% 0
FxP16 2.05% 0.30% 11.29% 86.35% 13.65% 86.35% -9.25% 2x

L15

FP32 0.82% 0.01% 0.19% 98.97% 1.03% 98.97% - -
FP16 1.75% 0.04% 0.34% 97.87% 2.13% 97.87% -1.10% 2x
FP8 0.92% 0.17% 0.46% 98.45% 1.55% 98.45% -0.53% 4x

FxP32 0.34% 0.06% 0.36% 99.24% 0.76% 99.24% 0.26% 0
FxP16 0.57% 0.12% 0.57% 98.74% 1.26% 98.74% -0.23% 2x

L18

FP32 3.26% 0.02% 0.19% 96.53% 3.47% 96.53% - -
FP16 6.10% 0.04% 0.38% 93.48% 6.52% 93.48% -3.05% 2x
FP8 5.22% 0.86% 10.56% 83.35% 16.65% 83.35% -13.18% 4x

FxP32 0.98% 0.14% 0.89% 98.00% 2.00% 98.00% 1.48% 0
FxP16 2.04% 0.26% 2.01% 95.70% 4.30% 95.70% -0.83% 2x

L21

FP32 3.22% 0.00% 0.06% 96.72% 3.28% 96.72% - -
FP16 5.61% 0.02% 0.14% 94.23% 5.77% 94.23% -2.50% 2x
FP8 3.62% 0.48% 9.10% 86.80% 13.20% 86.80% -9.92% 4x

FxP32 0.37% 0.06% 0.56% 99.02% 0.98% 99.02% 2.29% 0
FxP16 0.63% 0.17% 1.19% 98.00% 2.00% 98.00% 1.28% 2x

L22

FP32 0.44% 0.00% 0.03% 99.52% 0.48% 99.52% - -
FP16 0.89% 0.00% 0.04% 99.07% 0.93% 99.07% -0.45% 2x
FP8 1.13% 0.06% 0.21% 98.61% 1.39% 98.61% -0.91% 4x

FxP32 0.14% 0.02% 0.04% 99.79% 0.21% 99.79% 0.27% 0
FxP16 0.29% 0.02% 0.10% 99.59% 0.41% 99.59% 0.07% 2x

∗ Safety increasing effect difference between a given scenario and FP32

3.2 Dynamic Parameters in Artificial Neural Networks

Artificial neurons in artificial neural networks can be considered as dynamic parame-
ters because their values depend not only on connecting weights and biases, but also
on input stimuli. A graphic illustration of an artificial neuron is given in 3.15.

It is worth underlying that individual network parts differ in their error resilience
[67]. Particularly, neurons exhibit different fault tolerance and resilience levels.

3.2 Dynamic Parameters in Artificial Neural Networks 63

Figure 3.15 Basic Scheme for a neuronal computation.

Some of them strongly contribute to the output classification of the neural network,
and their failures have a greater influence on the degradation of the final predictions.
If a neuron contributes more to the final prediction, it is considered as critical or
important; otherwise, it is considered as resilient or redundant. An error in critical
neurons may significantly compromise the accuracy of the final neural network
prediction. From another perspective, determining the most critical neurons of a
neural network means identifying all those neurons carrying more information than
others.

3.2.1 Proposed Approach

The investigation of ANNs as mathematical models induced the following observa-
tion: the output of a neuron is nothing but the result of a summation. Based on the
above insight, we demonstrate that critical neurons are those producing at their output
the highest absolute values during the inferences. Moreover, our theoretical-based
criticality analysis is founded on a further key observation. According to behavioural
theories in Neuroscience [88], brain memories occur when specific groups of neu-
rons are reactivated. Based on precise stimuli, neurons become active in a particular
pattern of neuronal activity. It means that if our brain thinks of a sky or a meadow,
different ensembles of neurons become active. By transferring this concept to the
world of artificial neural networks, in a multi-output neural network, the contribution
of a single neuron can be seen in two ways. One is meant for guaranteeing the correct
prediction of the single output class, the other is meant for guaranteeing the correct
predictions of the entire multi-output neural network. In other words, imagine you
have a 2-output neural network classifying apples and pears pictures, there will be
neurons that are more significant for the class apple and others for the class pear; at

64 Reliability Assessment at the Software Level

the same time, all the neurons guarantee the overall correct predictions. To this end,
in [89] we propose a methodology to assign resilience scores to individual neurons.
It builds on three steps:

1. Class-oriented Analysis (CoA): For each single output class, the most impor-
tant neurons are extracted with Algorithm 1 and sorted in descending order
based on their criticality. This sorting is saved on a final list, named score map
which is created for each output class.

2. Network-oriented Analysis (NoA): The process is repeated for the entire
neural network (without distinguishing between output classes) and a single
score map is obtained.

3. Final Network-oriented Score-Map: The network-oriented score map is
updated based on the outcomes of the class-oriented analysis.

These three phases are carefully described in the following.

In the first class-oriented analysis, we consider the importance of a neuron related
to each single output class. In particular, it is worth specifying that we refer to the
neuron as: each pixel in the output feature maps of a convolutional layer, each
node in the pooling (min, max, average) or fully connected layers. Typically, batch
normalization and activation functions (e.g., rectified linear unit, sigmoid, Gaussian)
are not considered as independent layers, and thus, they do not come with additional
neurons. In Algorithm 1, scores are assigned to neurons considering both static
and dynamic parameters of the ANN: by catching the neuron’s output (y), both the
weights (static parameters) and the inputs (dynamic parameters) are taken. At the
beginning, an initial score equal to zero is assigned to each neuron (line 6). Thereby,
for each output class of the neural network (line 7), a new score map is created (line
8). For each instance in the training dataset related to the specific output class, a
forward propagation cycle is performed (line 10). In the meantime, a score is given to
each neuron (lines 13-15), by averaging the absolute output values produced during
all the inferences (line 20). The score gets updated at every inference iteration. At
the end of the process, each class keeps its own score map, where every neuron
holds a score value (line 22). The highest absolute scores are relative to the most
critical neurons for that given class. In more detail, the score map is represented
as a list sorting the neurons from the highest to the lowest value. It is worth noting

3.2 Dynamic Parameters in Artificial Neural Networks 65

Algorithm 1: Assignment of resilience scores to individual neurons.
1 N ← Total neurons;
2 C← Output classes;
3 Ii, i∈[0,C]← Inputs for a specific class;
4 scorek, k∈[0,N]← Score assigned to a neuron;
5 yk, k∈[0,N]← Output value of a neuron;
6 scorek, k∈[0,N]← 0;
7 for each output class of the network c∈[0,C] do
8 new()
9 for each instance in the training dataset i, i∈[0,Ic] do

10 inference()
11 for each neuron k, k∈[0,N] do
12 if i = = 0 then
13 scorek← | yk |
14 else
15 scorek← scorek + | yk |
16 end
17 end
18 end
19 for each neuron k, k∈[0,N] do
20 scorek← scorek/IC
21 end
22 save()
23 end

that the output is sampled for every neuron after the eventual batch normalization or
activation function. Starting from the classes’ score maps, it is possible to extract a
subset (t) of critical neurons in the form className_critical_t. The subset parameter
(t) determines the amount of neurons that will be considered as critical, and it is not a
fixed value. Defining that number means tuning the reliability of a neural compuring
system: in other words, the larger the size, the larger the set of neurons that will be
considered critical.

Next, in the network-oriented analysis (NoA) phase, we build a final score map
where neurons are sorted based on the magnitude of their average contribution
over the training set, without differentiating between the output classes. It is worth
pointing out that both the score maps resulting from the NoA and the one from the
CoA contain all the neurons of the neural network: only their values change, and
consequently the ordering. To this end, Algorithm 1 is run again: line 7 is removed

66 Reliability Assessment at the Software Level

Figure 3.16 The critical neuron identification process: a practical example with the
MNIST dataset.

and line 9 is modified so that the inputs are picked up from the entire training dataset.
Then, since it might happen that neurons that were found to be critical for individual
classes take on a low value in the NoA, the outcome of this score map is updated
considering the score maps resulting from the CoA. All neurons assuming a higher
value in the class-oriented score map (given a subset parameter t) are overwritten.
The set of critical neurons to take into account for the final network-oriented score
map is computed by doing the union without repetitions of all the classes’ score
maps (C), as follows:

critical_t←
C⋃

i=1

ci_critical_t (3.4)

As an example, the whole process is illustrated in Figure 3.16 for a generic neural
network trained on MNIST. First, a percentage of critical neurons is selected (t)
from the class-oriented score maps. Among these neurons, all those having a lower
value in the network-oriented score map are overwritten with the highest value in the
classes, i.e., the red squares. Whereas, neurons such as Neuron 27 in Class 0 having a
value lower in the t% of the CoA are not updated in the final score map. Interestingly,
Neuron 653 in Class 9 assumes the lowest value in the network-oriented score map
and, being part of the t%, is updated. In the end, as depicted on the right side of the
Figure 3.16, the final updated network-oriented score map is produced, where the
per-class criticality is considered with a t factor. The larger t is, the more neurons

3.2 Dynamic Parameters in Artificial Neural Networks 67

are considered critical and therefore strengthened in the final network-oriented score
map.

In the literature, similar approaches have been developed to identify the net-
work’s critical neurons. As stated before, they are based only on a network-oriented
analysis [67, 68, 3]. In this paper, we demonstrate that our methodology gets the
analysis stronger in terms of reliability. Although this approach is applied to a ANN
performing image classification, it can also be extended to other tasks.

3.2.2 Experimental Results

To experimentally prove the effectiveness of the proposed methodology, we used
three different CNNs trained on three representative and popular datasets: MNIST
[90], SVHN [91], and CIFAR-10 [92]. The MNIST dataset is used to recognize
handwritten digits and consists of a training set of 60,000 28x28 gray-scale images,
and a test set of 10,000 examples. The Street View House Numbers (SVHN) is
a real-world image dataset obtained from house numbers in Google Street View
images. It contains more than 600,000 digit images: 73,257 digits are used for
training, 26,032 digits for testing, and additional ones as extra training data. SVHN
comes in two formats: the original and 32x32 cropped. We used the latter. CIFAR-10
dataset is an object recognition dataset made of 60,000 32x32 colour images: 50,000
training images and 10,000 test images [92]. We implemented three CNNs using
PyTorch [93] on a Linux server equipped with a dual Intel Xeon CPU E5-2680 v3
and 256 GB of RAM. PyTorch is a fast and flexible framework widely used by both
industry and academia for deep learning and machine learning based applications.
The first neural network is a custom version of LeNet-5 and is composed of 7 layers
(i.e., 3 convolutional, each one followed by max pooling and the last fully connected)
with an input size of 28x28x1. After each convolutional layer, the Rectified Linear
(ReLU) activation function is used. It was trained and tested on MNIST dataset,
reaching a 99.31% of accuracy over the MNIST test set. Next, we implemented a
second neural network following the ConvNet [94] model. It was trained and tested
over SVHN dataset, classifying correctly the 92.01% of test images. It consists of
2 convolutional layers, each one followed by LP-pooling and normalization layers
(also known as 2-stages or multistage features). They are fed to a 2-layer classifier
(fully connected layers). The last CNN was built with the All-CNN configuration
[95], an architecture that consists solely of convolutional layers ([95] demonstrates

68 Reliability Assessment at the Software Level

Table 3.11 ANN Benchmarks

CNN Model Dataset Application Accuracy Total Neurons

Custom LeNet-5 MNIST Image Classification 99.31 48,650
ConvNet SVHN Object Recognition 92.01 185,374
All-CNN CIFAR-10 Object Recognition 90.57 361,046

that max-pooling can simply be replaced by a convolutional layer with increased
stride without loss in accuracy). The architecture is made of 9 convolutional layers.
We exploited the CIFAR-10 dataset for this last CNN. The final accuracy was equal
to 90.57% over the test set. Further details, such as the total amount of neurons, are
provided in Table 3.11.

To profile the criticality of the three CNNs, Algorithm 1 was executed to assign
resilience scores to individual neurons. As stated before, the MNIST, SVHN, and
CIFAR-10 training datasets were used to assign the resilience scores. In contrast,
their test datasets were used for the fault injections experiments (both at the software
and the RTL level).

Class-oriented Analysis

Initially, each training dataset was divided into subclasses, i.e., the number of outputs
(in our case study, we had 10 outputs for all the three exploited neural networks, but
the same reasoning applies to a different number of output classes). Each subclass
contained only the images representing the selected output class. Hence, the proposed
algorithm was executed to obtain the 10 final score maps for each CNN. Each of them
ordered the total neurons from the one activated with the highest average value to the
one with the lowest (from the most critical to the least one), for that particular output
class. Next, we performed software FI campaigns (i) to shed light on the importance
of the class-oriented analysis, and (ii) to show that individual output classes hold
different robustness levels with respect to errors. This certainly depends on the
training phase and structure of the dataset that is used to train the network (typically,
in the training set, the training images are not evenly distributed among the output
classes). We exploited the dropout probability fault model (p-dropout), in which a
fraction of neurons outputs is set to zero, and thus, their contribution is cancelled.
The same fixed amount of neuron outputs (p) was set to zero in two scenarios and,
after the injection, the resulting accuracy of each CNN was measured by running

3.2 Dynamic Parameters in Artificial Neural Networks 69

the total test set of images (which was different from the training set used to gather
the resilience scores). For each output class, in the first scenario (Random), neurons
were randomly chosen from the class score map. In the second (Critical), the same
amount of neurons was neatly selected always starting from the top of the class score
map, i.e., always starting from the most critical neurons. As for the Random scenario,
since we rely on a random choice of neurons to kill, the experiments were repeated
1,000 times (every time picking up different p random neurons) and we report in
Figures 3.17-3.18-3.19 the average percentage obtained through the experiments.
The experiments were conducted for each output class of the targeted CNNs and,
particularly, they were replicated for growing p-percentages. Experimental results
for the three FI campaigns are reported in Figures 3.17-3.18-3.19. The scenario
(Fault-free) is the golden accuracy of the class and, as for the Random and Critical,
it was computed by running only the inferences of the images belonging to the given
output class. It is evident that random injections do not affect, or only to a negligible
extent (when p gets bigger), the behaviour of the neural network. Indeed, in all cases
the accuracy fluctuates around the Fault-free one, apart from the third case (p=5 %)
where it slightly decreases. This confirms the theory under which neural networks
are equipped with more neurons than they really need [13]. In fact, up to a certain
point, they can get enough of some neurons and still work correctly. By contrast,
this trend is not confirmed in the Critical scenario: the accuracy of the output classes
remarkably drops when killing the p highest neurons.

Concerning MNIST LeNet (Figure 3.17), for p=0.1 % the maximum percentage
variation from the Fault-free accuracy to scenario Critical is equal to 6.13 % and
corresponds to the last class (digit 9). Then, when killing p=0.5 % critical neurons,
the highest percentage variation drastically increases, reaching the 44.33 % for the
second class (digit 1), where the CNN accuracy drops from the Fault-free 99.33 %
to 54.54 %.

The situation worsens with p=1 % for all the classes except for digits 5 and 7,
where the accuracy keeps close to 60%. In the last scenario, when dropping the
p=1.5 % of critical neurons from the classes, the correct predictions become 0 or
close to it. As illustrated in the graph, it turns out that for the LeNet trained on
MNIST dataset, the most robust class corresponds to the digit 5, while the least
robusts are digit 1 and digit 4.

70 Reliability Assessment at the Software Level

(a) p = 0.1% (b) p = 0.5%

(c) p = 1% (d) p = 1.5%

Figure 3.17 MNIST LeNet: software fault injection campaigns on random and critical
neurons. A fixed percentage p of neurons is dropped.

The outcome of the software fault injection for the SVHN network (ConvNet) is
shown in Figure 3.18. When crashing p=0.1 % Critical neurons the CNN accuracy
decreases until reaching a maximum percentage variation of 7.3% (digit 9). With the
increase of the dropped critical neurons p=0.5 % we observe a considerable drop
in accuracy, with a maximum of 61.9% of variation percentage again for digit 9.
The correct functionality of the neural network worsens considerably for p=1 %
until it reaches zero in almost all classes for p=1.5 %. Overall, the most robust
class turns out to be the third one, i.e., digit 2. In fact, despite the dropped neurons,
it is able to keep an accuracy close to 80% with the highest 927 neurons dropped
(p=0.5 %). On the other hand, the least resilient class is the last one (digit 9). In fact,
it is significantly sensitive to removed neurons (starting from p=0.1 %).

With respect to LeNet (MNIST) and ConvNet (SVHN), All-CNN (CIFAR-10)
demonstrates greater sensitivity. As shown in Figure 3.19, since from p=0.1 %
we can observe a greater reduction in accuracy (the maximum drop in accuracy is
for Class "Horse" and corresponds to 16.2% from the Fault-free value). Also, for

3.2 Dynamic Parameters in Artificial Neural Networks 71

(a) p = 0.1% (b) p = 0.5%

(c) p = 1% (d) p = 1.5%

Figure 3.18 SVHN ConvNet: software fault injection campaigns on random and critical
neurons. A fixed percentage p of neurons is dropped.

p=0.5 %, all the classes’ accuracy keeps under the 60%, with the maximum variation
percentage from the golden accuracy equal to 69.82% for the Class "Horse". When
the dropped neurons become p=1 % from each class (meaning about 1,854 neurons
over the total 185,374), the accuracy of the classes drops below 20 %, except for the
Class "Car" with the 21.4 %. The experimental results indicate that the most robust
class is the class "Car" while the least resilient one is the class "Horse".

Overall, data from Figures 3.17-3.18-3.19 suggest similar conclusions and the
different per-class resilience is confirmed in the three targeted CNNs. It is clear that
the p-percentage refers to different neural networks of different sizes: the CIFAR-10
network contains almost 7.5x and 4x times the amount of neurons than MNIST and
SVHN networks, respectively. It means that the former starts misbehaving with about
361 neurons crashed (p=0.1 %), while the other two (with the same percentage) with
about 49 and 185, respectively. Finally, these outcomes experimentally demonstrate
the initial assumption stating that there are neurons playing a key role, and therefore,
defined critical for the output classes.

72 Reliability Assessment at the Software Level

(a) p = 0.1% (b) p = 0.5%

(c) p = 1% (d) p = 1.5%

Figure 3.19 CIFAR-10 All-CNN: software fault injection campaigns on random and critical
neurons. A fixed percentage p of neurons is dropped.

The reader should note that, to avoid confusion, we used the p parameter to
indicate the amount of neurons dropped from the individual classes, and the t
parameter to represent the set of critical neurons in the network-oriented score map.
They are both percentages working on the score maps, but the first is used in the
class-oriented analysis and is used to drop, the second in the network-oriented and
serves as a parameter to indicate the reliability level of the system.

Network-oriented Analysis

So far, we have performed software fault injection campaigns to demonstrate that
each output class owns a set of neurons that are more important than others for
correctly predicting their images. If this is taken into account when ranking the
network’s neurons based on their criticality, we experimentally demonstrate that the
reliability analysis becomes more accurate. In this phase, we computed the neurons’
resilience scores without differentiating among the output classes. Hence, the entire

3.2 Dynamic Parameters in Artificial Neural Networks 73

MNIST, SVHN, and CIFAR-10 training datasets were used to collect the neurons’
scores. We obtained a network-oriented score map for each CNN (LeNet, ConvNet,
All-CNN). For the sake of clarity, these lists did not consider the contribution of the
classes yet.

Final Network-oriented Score Map

After the CoA and NoA, a final network-oriented score map was obtained based
on the analysis of the class-oriented approach and given the t parameter. This t
value represents the amount of neurons taken from the classes score maps (always
from starting from the top positions). By applying (3.4), i.e., the union (without
repetition) operation, we removed duplicate neurons by keeping the highest values
assumed among the classes rankings. Therefore, with each t value, we computed
the percentage of neurons with the equation (3.4) in the CoA: their value will be
compared with that obtained in the initial NoA. Then, for each neuron in the set
(3.4), if its value was higher than that in the NoA, its value was updated in the final
score map; otherwise, the highest from the NoA was kept.

Next, to study the influence of the CoA on the NoA with a growing t percentage,
we performed a further study on the three CNNs. The first experiment is shown
in Figure 3.20a and targets LeNet (MNIST). The x-axis represents the increasing
t percentage, whereas the y-axis shows the corresponding percentage of neurons
over the total. The red line outlines the percentage of critical neurons calculated
with (3.4) after the CoA, for the corresponding t value. The blue line illustrates
the percentage of neurons that are updated in the final network-oriented score map
due to their higher criticality value. As it turns out, the lower the t percentage, the
higher the percentage of neurons in the set (3.4) whose value is updated in the final
network-oriented score map. For example, when t=5 % in LeNet (MNIST), the
union without repetition (3.4) includes 6,291 critical neurons (red point), meaning
the 12 % of the total 48,650 neurons. A total of 6,212 neurons (blue point) over
6,291 (red point) are overwritten with the values obtained from the CoA (3.4). In
other words, the 98.74 % of neurons has a different level of criticality when moving
from the class-oriented to the network-oriented methodology. For higher t values,
this percentage reduces, reaching 45% for t=80 %.

Furthermore, as illustrated in Figures 3.20b and 3.20c, the same analysis is
reproduced for ConvNet (SVHN) and All-CNN (CIFAR-10). Similarly to what

74 Reliability Assessment at the Software Level

(a) LeNet (MNIST) (b) ConvNet (SVHN)

(c) All-CNN (CIFAR-10)

Figure 3.20 Network-oriented Analysis with a growing t percentage of critical
neurons from the CoA.

discussed for LeNet, the lower the set of critical neurons in (3.4) (determined by the t
percentage and showed as a red line), the higher the percentage of neurons in this set
that will be updated in the final network-oriented score map (blue line). Overall, we
can say that even with the highest t=80 %, the number of neurons having a criticality
higher in the CoA it is approximately half of the total neurons and, as experimentally
demonstrated, depends also on the size of the neural network. Specifically, when
t=80 % we updated 45.57%, 55.64%, 69.04% of neurons (respectively for LeNet,
ConvNet, and All-CNN) in the final network-oriented score map. A further obser-
vation related also to the size of the targeted neural networks is the initial set of
critical neurons for t=5 %. The smaller the network size, the higher the probability of
having replicated neurons. In other words, when t=5 % the union without repetition
yields the following figures: 12.93%, 19.18%, and 35.93% for LeNet, ConvNet, and
All-CNN, respectively.

3.2 Dynamic Parameters in Artificial Neural Networks 75

(a) LeNet (MNIST) (b) ConvNet (SVHN)

(c) All-CNN (CIFAR-10)

Figure 3.21 Showing the robustness of the proposed approach based on the contri-
bution of the CoA and the NoA (blue lines). Its effectiveness is compared against
[3] (green line) and our proposed methodology without the contribution of the class-
oriented analysis (red line).

Finally, to demonstrate how the proposed profiling methodology behaves with
respect to a state-of-the-art network-oriented methodology proposed in [3], we
present a further analysis. As stated, the final network-oriented score map contains
the neurons of the network ordered based on their criticality, reinforced by a t
percentage with the CoA. We carried out software FI campaigns for the three CNNs.
Specifically, a fixed percentage of critical neurons was set to 0 in three scenarios: the
proposed (CoA + NoA), the proposed without the CoA, the Taylor-based [3]. Then,
the accuracy of the neural network over the entire test set was computed. Specifically,
we removed a 2 %, 5 %, 10 %, 20 %, 50 %, 70 % of critical neurons from the
respective ordered network-oriented lists. For the purpose, two different network-
oriented score maps were created following our proposed approach, each one with a
growing set of critical neurons (t=10 %, t=20 %). The aim was to demonstrate that

76 Reliability Assessment at the Software Level

with a growing t we obtained a more robust network-oriented score map. Figure 3.21
shows the results of our FI simulations with the dropout model for the MNIST,
SVHN, and CIFAR-10 CNNs. As it turns out, the accuracy that the CNN under
assessment achieves is always lower when removing the same percentage of critical
neurons from our network-oriented score map. It means that: first, the ordering of
the critical neurons greatly affects the reliability of the system; second, our final
score map holds (in the highest positions) neurons that are really critical not only to
the entire neural network, but also to individual output classes.

3.3 Chapter Summary

In summary, the chapter proposes software-level methodologies to assess the relia-
bility of neural networks by considering the contribution and the vulnerabilities of
static (i.e., weights) and dynamic (i.e., neurons) units. As described, weights in
neural networks can be considered as static parameters because their values, after
they have been properly trained, are fixed and constant. On the other hand, the
values of neurons depend on both weights and input stimuli, and therefore, can be
regarded as dynamic entities. Specific techniques have been proposed to evaluate the
resilience of neural networks when their static parameters are represented as (i) 32-bit
floating point numbers, (ii) fixed-point numbers of different bit width. Trade-offs
between reliability and memory footprint in ANN-based applications are discussed
in the chapter and, interestingly, results about the most critical bits in floating- and
fixed-point representations are presented. When it comes to floating-point weights,
results provide evidence that the most critical bits are those used to represent the
exponent part (specifically, the most significant bit): faulty bits in that place could
cause the value to explode and easily propagate through the neural network. On the
other hand, critical bits in fixed-point numbers include all bits of the integer part.
This leads to the following observation: although fixed-point weights with a reduced
bit-width representation allow compressing the DNN model by reducing its memory
footprint, the likelihood of having faults in critical bits increases (more faulty bits
lead to critical behaviours). These are interesting achievements because, on the basis
of these outcomes, a designer may develop a suitable mitigation technique which
mainly targets the more noticeable criticalities.

3.3 Chapter Summary 77

Concerning the dynamic parameters, i.e., neurons, a methodology is proposed
to identify the most critical neurons of a neural network. It is experimentally
demonstrated that not all neurons play the same role in the final classification task.
It is known that neural networks are furnished with more neurons than needed, but,
which neurons can get rid of is the focus of the class-oriented analysis. On the heels
of this study, we presented a technique to identify the most critical neurons in a neural
network and sort them according to their criticality. Compared to the state-of-the-art
works, our scope is not to compress the network by removing unimportant neurons or
connections. Rather, our scope is to find where the most important neurons are and to
profile the application criticality. Most importantly, contrary to pruning approaches,
the methodology presented in this work does not require additional learning steps or
the adoption of a threshold, which are computationally expensive. The method bases
on two levels of analysis: first, the neuron is viewed as an element of each output
class (class-oriented analysis); second, the same is interpreted as belonging to the
entire neural network (network-oriented analysis). The method can be efficiently
applied to neural networks with any layers and any typologies. The experimental
results show that our final sorting is more effective than those based only on a
network-oriented analysis, since we also consider the criticality of class-specific
neurons. To the best of our knowledge, this is the first time that the importance of
the neuron as related to the single output class is taken into account.

It is worth to highlight that, in [89], the entire training set was used to assign
resilience values to individual neurons. In a recent study, we experimentally prove
that even a reduced number of validation set instances are useful to define the most
critical neurons. To measure how good rankings obtained with a subset of the
validation set are, we measure their intersection with the ordering computed using
all the images from the test set. Particularly, in Fig. 3.22, we report the intersection
for differently sized subsets of the validation set for ResNet-32, a deep convolutional
neural network. It is clear that, just by using 20% of the validation set images, it is
possible to obtain a neuron ordering that is similar to the one obtained using the test
set, independently of the considered percentage (namely pNeu). It follows that the
approach proposed in [89] requires fewer images than initially suggested to produce
a meaningful neuron ranking.

Future work will extend this analysis to deeper ANNs and different datasets. The
reader should note that the adoption of MNIST, SVHN and CIFAR-10 datasets in
[89] was consistent with the considered low-power and resource-constrained ASIC

78 Reliability Assessment at the Software Level

Figure 3.22 Intersection between the critical neuron ranking obtained using the test
set and the rankings obtained using subsets of the validation set. The figure shows
how, for ResNet-32, the intersection remains stable for different values of pNeu.

world. In the future, we will exploit deeper ANNs and more complex datasets
moving the target to GPUs and high-performance architectures, or ad-hoc Hardware
Neural Network chips. Moreover, in the future, we will address also other fault
models such as transient errors.

Chapter 4

Reliability Assessment at the
Architectural Level

4.1 Proposed Approach

ANN reliability is commonly assessed by performing FI campaigns. However, due to
the excessive time required to run a single inference at Hardware Description Level
(HDL), fault injections are typically performed at the software level by targeting
only the neural network model. This is crucial to get an overall assessment of
neural network behaviour in faulty situations, however, it is also well known that
the hardware architecture employed has a significant impact on the overall system’s
dependability [21, 96]. Indeed, devices are getting more prone to physical errors as
the shrinking of semiconductor technologies continues, and the probability that some
computing elements fail increases as well. Therefore, even thought researchers claim
that neural networks are potentially able to absorb some degrees of vulnerability
due to their natural resilience properties, it is essential to evaluate the resilience of
the entire system, especially in safety-critical domains, where it might be needful
to assess the robustness of a system during the design phase, before the fabrication
process. It is therefore needed to move from pure software approaches to lower-level
ones. Nevertheless, the big issue when working in simulation at RTL or, even worse,
gate level, is the time required to run single inference phases. As an example, a
state of the art neural network, i.e., ResNet-32, counts on about 68 million of MAC
operations to do a single inference cycle: a value that, in simulation, becomes easily

80 Reliability Assessment at the Architectural Level

unfeasible. To understand the neural network behaviour in presence of a fault, a fault
must be injected at low level (e.g., RTL), and then the inference has to be performed.
This process is very time-consuming, even though using commercial fault simulation
tools [55].

To fill this gap, this work proposes a methodology to drastically reduce simulation
and fault injection time when running DNNs at RTL [97]. It presents the architecture
of a multi-level fault injector that, by reproducing the flow of a pipelined process, is
capable of handling many inferences in parallel. As a matter of fact, layers in a neural
network process the information in a sequence of steps: when a layer has completed
its elaboration, it produces an output that becomes the input for the subsequent layer,
and so on. The main idea has been to take advantage of idle times and to allow the
DNN layers to work in parallel on different inputs.

As illustrated in Figure 4.1a, the key principle of this research is that each layer
in a DNN may function as a pipeline stage, allowing them to elaborate on several
inputs simultaneously. It means that the instruction-level parallelism of a CPU
pipeline scenario, becomes an image-level parallelism (Figure 4.1b). To enable this
parallelism, the architecture of the proposed fault injector, highlighted in Figure 4.2,
consists of three vertically stacked levels (from the bottom):

1. The lower abstraction level;

2. The application level;

3. The synchronization level.

The bottom level includes the hardware model of the platform running the DNN
under assessment, either at the RTL or gate level representation, and the Fault
Injection Unit (FIU). The physical device is not physically available, but the design
is provided as HDL. Note that the target hardware may be an embedded device, a
GPU, a ASIC, for which the reliability evaluation is needed. The FIU is the unit in
charge of introducing faults in the RTL device.

On top of the lower level, there is the application one, where the DNN application
runs. It can be implemented in a high-level language (e.g., C or Python). At this
level, the framework allows splitting the inference in several stand-alone blocks
corresponding to the layers of the neural network. Each layer must communicate
with the lower and the upper level and, to this end, the input and the output neurons

4.1 Proposed Approach 81

(a) The Pipeline concept applied to Neural Net-
works

(b) Image-Level Parallelism

Figure 4.1 Exploiting the pipeline technique to reduce the DNN simulation time.

Figure 4.2 Proposed Pipelined Multi-Level Fault Injector Tool

are extracted for each layer. At the lower level, layers are simulated as individual
application processes. By coordinating the running of the distinct stand-alone layer
simulations, this architecture allows the higher level to obtain control over the
inference.

The purpose of the synchronization level is to coordinate the activity of the
DNN layers and, overall, advance the inference process. In this level, the following
units are included: the database holding the DNN test set, and the Fault Classifier
Unit (FCU). The latter evaluates the impact of the injected fault on the network by
observing, at the application level, the strobe point (i.e., the results of the inferences).
The synchronization mechanism is illustrated in Figure 4.2 with a red arrow linking
the hardware low level with the output of L1.

To work at full capacity, the proposed fault injector requires an initial Set-Up
Time (Tsetup) which is computed by multiplying the amount of layers or stages (x)
by the simulation time of the “slowest“ one (Tmax), i.e., the most computational-
intensive (Equation 4.1). As an example, in Figure 4.1b, x is equal to 4 and Tmax

corresponds to the HDL simulation time of Layer1. Once the Tsetup is done, the

82 Reliability Assessment at the Architectural Level

pipeline works at full capacity and the tool is able to provide an inference result every
Tmax. This time is much slower than the sequential time Tsequential. Therefore, as
described in Equation 4.2, the time required to run a pipelined fault injection (Tpipe)
with y input images is computed by adding the initial Tsetup with the inferences
of the (y-1) images. Without resorting to the proposed pipelined framework, the
simulation time (Tno_pipe) is computed as described in Equation 4.3.

Tsetup = x∗Tmax (4.1)

Tpipe = Tsetup +(y−1)∗Tmax (4.2)

Tno_pipe = y∗Tsequential (4.3)

4.2 Experimental Results

To prove the effectiveness of the proposed fault injector, a system including an
open-source Parallel Ultra-Low-Power (PULP) hardware platform [98] running a
CNN used for image classification has been exploited. The selected hardware device
includes a cluster of 8 RISC-V cores together with a classic microcontroller for
communication and security purposes. Moreover, it includes a Hardware Convolution
Engine (HWCE) for running DNN-based applications. The CNN running on it
has been trained on CIFAR-10 and the code relies on the PULP-NN open-source
library [99]. PULP-NN incorporates a full set of kernels and utilities to support
the inference of quantized neural networks (8,4,2 and 1-bit) on a RISC-V based
processor.

Using a commercial HDL simulator program from Mentor Graphics, the time of
a single inference simulation at RTL has been calculated given the mentioned CNN
operating on PULP. It corresponds to 25 minutes (Tsequential). Next, for each single
layer the simulation times have been extracted: the most computational-intensive
layer establishes the speed of the proposed tool (i.e., the throughput of the pipeline).
In our case study, it turns out to be Layer0 (CV1) and Tmax=∼10 minutes, as shown
in Table 4.1. The pipelined multi-level fault injector was built based on these per-
layer analysis. More in details, the last four layers (MP2, CV3, MP3, FC) have been
joined in a single pipeline stage to reduce the Tsetup and to optimize the throughput of
the pipeline. Hence, the pipelined fault injector framework is made up of 4 layers and

4.2 Experimental Results 83

Table 4.1 Pipelined Fault Injector timing details.

Neural Network Fault Injector Framework

Layer Name Sim Time
(min:sec) Layer Name Sim Time

(min:sec)

Layer 0 CV1 10:11 Layer 0 CV1 10:11
Layer 1 MP1 4:00 Layer 1 MP1 4:00
Layer 2 CV2 9:39 Layer 2 CV2 9:39
Layer 3 MP2 1:19 Layer 3 MIX 8:04
Layer 4 CV3 4:23
Layer 5 MP3 1:07
Layer 6 FC 1:38

its Tsetup=∼40 min. After Tsetup, every Tmax=∼10 minutes, the framework provides
the results of an inference, working at full capacity.

Table 4.2 A comparison between the performances of the sequential fault injector
wrt the pipelined.

Layers (x) Images (y) Tno_pipe Tpipe Time Reduction

4 100 ∼42 h ∼17 h 60%

The synchronization level buffers and synchronizes the results of the other
layers if they finish their calculation before Tmax. Therefore, to demonstrate the
performances and the gains in terms of simulation time, a comparison is made
between a full sequential single fault injection with a pipelined one. The experimental
results are shown in Table 4.2. As can be seen, a significant time reduction is
achieved; the proposed methodology reduces sequential fault injection timings by
60%. Clearly, such an advantage comes at a cost in terms of memory use. The RAM
memory usage goes, on average, from 2.1 up to 4.7 GB for running y inferences
with the sequential fault injector. On the contrary, the pipelined uses from 8.4 up to
18 GB for the same set of y images, although for a shorter time.

Next, to validate the proposed tool, a total of 10,000 RTL injections campaigns
have been executed by injecting permanent faults (i.e., stuck-at faults) on the PULP
platform running the targeted CNN. A total of 100 permanent faults have been
placed both on CPUs and randomly distributed over the multi-core system (SYS).
Specifically, for each fault, the inference of 100 images from CIFAR-10 dataset have
been run.

84 Reliability Assessment at the Architectural Level

Table 4.3 Fault Injection Results

Detected [%] Masked [%]SDC-1 SDC-10 SDC-20 Hang Crash

CPU 2.06 8.12 9.84 21.82 38.14 20.02
SYS 3.96 2.02 5.96 14.02 26.16 47.88

Then, faults have been classified depending on their effect and according to the
ranking proposed in [43]. A fault is Detected whether one of the following situations
occur:

• SDC-1: A Silent Data Corruption (SDC) failure is a deviation of the network
output from the golden network result, leading to a misprediction. Hence, the
fault causes the image to be wrongly classified.

• SDC-10%: The faulty network correctly predicts the result but assigns a
confidence score which varies by more than +/-10% of its fault-free execution.

• SDC-20%: The faulty network correctly predicts the result but assigns a
confidence score which varies by more than +/-20% of its fault-free execution.

• Hang: The fault causes the system to hang and the HDL simulation never
finishes.

• Crash: It is the opposite situation of the previous one. The HDL simulation
immediately stops as a consequence of the fault.

To deal with the Hang category, i.e., faults producing an infinite loop, the framework
has been equipped with a Timeout. If the framework, after Tsetup, does not yield
any inference results, the fault is classified as detected by system hanging. On the
other hand, a fault is Undetected and classified as Masked whether the network
prediction does not belong to any of the previous described classification and the
output results are equal to the fault-free execution ones. Experimental results are
shown in Table 4.3.

Furthermore, the pipelined multi-level fault injector, as outlined in Table 4.4,
allows for a 78% drop in fault simulation time. This gain exceeds the one you would
obtain if applying Equation 4.2 (it has been computed, and it corresponds to ∼1,716
h). This improvement is due to all the faults belonging to the Hang and Crash
categories, that, once discovered at the beginning of the pipeline process, avoid the

4.3 Chapter Summary 85

Table 4.4 Sequential Framework vs Pipelined Multi-Level Framework

Sequential Framework
Total

Injections Tsequential [min] y Duration [h]

10,000 25 100 ∼ 4,166

Pipelined Multi-Level
Framework

Total
Injections

Tmax
[min]

Tsetup
[min] x y Duration [h]

10,000 10 40 4 100 ∼ 881

fault simulation of the entire image set for that fault. It is important to underline that
this mechanism has not been implemented in the sequential framework.

4.3 Chapter Summary

In summary, a pipelined multi-level methodology for analysing the resilience of
DNNs operating on a target device is presented in this research. It came from the need
to supplement pure software techniques with lower-level approaches that encompass
the hardware description of the target platform as well. Indeed, software-based
injection approaches can only target a restricted number of elements such as weights,
biases, and input images. A hardware-level approach broadens the range of options
for evaluating DNN-based system reliability. At the same time, it is known that the
lower the abstraction level, the higher the simulation time. To address this issue, this
research presents the architecture of a fault injector that is able to drastically reduce
the simulation time at RTL by mimicking the flow of a pipelined process. Thanks to
this, it was experimentally demonstrated that the inference time reduces by about
78% in our case study.

Future research will focus on enhancing the capability of the pipelined multi-level
framework to handle other types of fault models, such as transient faults or Multiple
Bit Upsets (MBUs). Second, by adopting a multiprocess environment, for example,
further decreasing HDL simulation time.

Chapter 5

Reliability Assessment at the Physical
Level

5.1 Proposed Approach

Recent studies have demonstrated that hardware faults induced by external per-
turbations (i.e., in a harsh environment) can significantly jeopardize the correct
functionalities of neural networks, leading to CNNs prediction failures [100, 50]. It
starts to be crucial to guarantee a high reliability level of CNN-based systems, due to
their widespread use in various fields (e.g., automotive, robotic, avionic).

Fault Injections (FIs) have long been known as appealing methods for assessing
the reliability of systems under test among all available testing approaches. They
can be carried out at very different abstraction levels: in simulation (at the software
or architectural level), or physically by means of radiation tests. Above all, it is
worth mentioning their principal characteristics, along width their main advantages
and disadvantages. Radiation-based FIs expose the system implementation to the
same external conditions with respect to the in-field application, and therefore
they guarantee a precise reliability assessment. However, they are expensive in
terms of hardware resources, facility access and exposure time. On the contrary,
software-based FIs modify the behaviour of the software to simulate hardware fault
occurrences. The cost is lower compared to physical-based FIs, because they do
not require purchasing specific electronic devices to run the tests, with a higher

5.1 Proposed Approach 87

Physical-based FI Software-based FI

Radiation Experiment #1
DUT Characterization

Creation of the
Software Emulator

Radiation Experiment #2
Radiation FIs on
CNN parameters

Emulation FIs on
CNN parameters

Extraction of
Fault Models and

Event Rate

==

Insertion of
Real Fault Models

CNN Application

Effectiveness
Emulator

Established

Figure 5.1 Diagram of the Proposed Approach.

degree of controllability1 and observability2. However, the precision assessment of a
software-based fault injection strictly depends on the adopted fault models.

This work [54] presents a reliability assessment methodology which is able to
achieve a reliability assessment precision close to radiation test experiments with
the flexibility of a software-based fault injector and related costs. It describes the
architecture of a software emulator which is configured to inject real faults retrieved
from radiation tests on neural networks. Since the occurrence of such faults is
independent of the running application, the designed emulator can reproduce their
incidence and access their effects on CNN applications with high fidelity. A diagram
of the proposed flow is shown in Figure 5.1.

From the device characterization of a DUT in realistic environmental conditions
(through an accelerated neutron beam), event rates and fault models are extracted.
These are used to feed a software emulator capable of introducing such faults on the
parameters of CNNs (i.e., weights and biases). In parallel, radiation FIs are conducted
by targeting the DUT storing the CNN parameters, to establish the effectiveness of
the methodology. The results evidence the correlation between the physical-based

1The ability to control where and when a fault is injected.
2The ability to identify internal events within the system circuit (not only primary output).

88 Reliability Assessment at the Physical Level

FIs and software-based ones. The proposed methodology will be detailed in the
following sections.

5.1.1 Radiation Experiments

The radiation tests have been conducted in the United Kingdom at the Rutherford
Appleton Laboratories, where an atmospheric-like neutron spectrum is delivered in
the ChipIr beamline at the second target station of the ISIS neutron source. We can
split the radiation experiments in two different phases: the DUT characterization
and the radiation tests on the targeted CNNs. They are detailed in the following
subsections.

5.1.1.1 DUT Characterization

The DUT is the S27KS0642GABHI020, a 64 Mib HyperRAM self-refresh DRAM
manufactured by Cypress Semiconductor. In [50], this memory device was character-
ized under an atmospheric-like neutron beam, by performing static and dynamic tests.
The former apply known patterns, and after radiation exposure, a readback operation
is performed to collect radiation-induced faults. The latter is done by means of
known memory tests algorithms like March C-, Dynamic Stress, Dynamic Classic,
and mMats+. In the end, three different fault types were identified: Single Bit Upsets
(SBUs), Stuck-at Bits, and Block Errors (BE). Among these, the most worrying
is the block error event due to its extension. Block errors affect different regions
of the memory and can derive by a temporary malfunction of the sense amplifier
or register that serves a column of the affected memory addresses. Four different
patterns have been identified, with intermittent word errors in vertical and horizontal
sequential addresses, affecting up to 2,048 addresses with the vertical pattern and
1,024 addresses with the horizontal pattern. Given the results of static and dynamic
tests, it was possible to (i) evaluate the memory sensitivity to the mentioned faults,
(ii) compute the event cross-section (σ), and (iii) compute the Soft-Error Rate (SER).
Regarding the event cross-section (σ), it is important to distinguish between the
cell-related (SBUs and stuck-at bits) and device-related (BEs) faults. In the first case,
it is computed as:

5.1 Proposed Approach 89

σbit =
N

F×M
(5.1)

where N is the number of events, F is the cumulative fluence in particles/cm2, and
M is the number of bits [101].

On the contrary, since BEs are related to the control logic of the device, the
cross-section is defined as:

σdevice =
N
F

(5.2)

where the memory size is removed from the equation, and the cross-section is
device-based.

Finally, the Soft-Error Rate (SER) for SBUs and stuck-at bits is defined as:

SERFIT/Mb = σbit× (1,024×1,024)×109×φ (5.3)

where 1,024×1,024 (bits) is the Mb coefficient, 109 is the Failures in Time (FIT)
definition, and φ (13 particles/cm2/h) is the neutron energies’ (> 10 MeV) flux at
New York (sea level) outdoors for a mean solar activity. Concerning the SER for
BEs, the Mb coefficient is removed from the equation, and it becomes:

SERFIT = σdevice×109×φ (5.4)

5.1.1.2 Radiation Tests on CNNs

Radiation tests on CNNs applications have been performed to validate the effec-
tiveness of the software emulator. To this end, the same CNNs architectures have
been selected for the assessment and the same portion of data has been corrupted
in both procedures. More in details, based on the same LeNet-5 architecture [4],
three different CNNs with different data types (32-bit Floating Point, 16-bit Integer,
8-bit Integer) have been used: Float 32, Int 16, and Int 8 CNNs. They have been
trained by using the open-source framework N2D2 [33] on MNIST dataset and,
on the test set (10,000 images), their accuracy was equal to 99.07%, 99.05%, and
99.05% respectively. Next, the same N2D2 framework was used to export the trained
networks as C code using the three different data representations. Concerning Int 16
and Int 8 CNNs, weights and biases are quantized after the training.

90 Reliability Assessment at the Physical Level

As shown in Figure 5.2, during the radiation tests, only the HyperRAM memory
was under an atmospheric-like neutron beam (our DUT). The system is a Xilinx Zynq-
7000 SoC with an ARM Cortex™A9 processor attached to a 28 nm Artix®7 FPGA.
Three external memories were used to deploy the CNN application on this embedded
device: two units of the MT41K128M16JT-125, which is a 2 Gb SDRAM DDR3L
from Micron Technologies, and the HyperRAM memory (our DUT). Furthermore,
to enhance the reliability of the system, the SoC configuration memory (CRAM) was
monitored by the commercial Xilinx scrubber, the Soft Error Mitigation (SEM) core,
which reports detected SBUs, and, when possible, corrects them [102].

The memory layout for an application is usually split in sections: the text sec-
tion that includes executable instructions; the data section includes constants and
statically allocated variables, heap includes dynamically allocated variables, and the
stack stores parameters for function calls, return addresses, and local variables. In
the previous research project [50], the same DUT (the HyperRAM) stored all data
related contents (i.e, data and heap). In this study, only the .rodata (read-only data
segment) section of the code was allocated into the HyperRAM memory (and so
under radiation) to restrict the source of errors. This section holds static constant
data and is mainly composed of CNN layers’ weights and biases. This section uses
approximately 505 kB in the Float 32 CNN, 273 kB in Int 16 CNN, and 154 kB in
Int 8 CNN. The choice of this setup enabled a higher capability analysis by restricting
the source of errors (only the DUT was exposed to the beam).

Henceforth, run is defined as the inference of a set of images (e.g., 2,000 or 1,000
images), beginning with image ’0’ and ending with the final image inside the dataset
or when the execution is terminated. This is due to the fact that certain runs did
not complete their execution due to a functional interruption that did not impact the
DUT (HyperRAM), but directly affect other components of the system. Only the
processed images within a run are taken into account in these cases. For the sake
of clarity, it is necessary to better specify the reasons behind the incomplete runs.
The radiation experiments were performed under an atmospheric-like neutron beam,
and the ionization in silicon was not directly generated by the neutron interaction
with the matter but through neutron-induced silicon recoils and/or nuclear reactions
byproducts. The created free charges of electron-hole pairs generated from the
neutron events might lead to single-event effects in the devices [103, 104]. For
example, the scattering of a neutron by collision with an atomic nucleus will lead
to a neutron scattering at an angle as well as the nucleus recoils [105]. In this case,

5.1 Proposed Approach 91

 Processing System

 Programmable Logic

Soft Error
Mitigation

IP

HyperRAM
Controller

AMBA Interconnect

64 Mib
HyperRAM

2 Gb
DDR3L2 Gb

DDR3L

DDR3L
Controller

MPCore
(ARM Cortex A9)UART

UART

Tx Rx

Tx Rx

Device Under Test

Figure 5.2 Top-level diagram of the system. The DUT is highlighted.

some scattered particles may hit not only the device under test, but also some other
electronic components of the system that are located in the irradiation room. Then,
considering that the execution time of the Float 32 version is higher when compared
to the other versions (Int 8 and Int 16), and adding it to the time needed to complete
the 2,000 inferences, the probability to have some particles hitting other parts of the
setup electronics increases within a run with these characteristics.

During the initial phase of the test, we target, for each CNN under test, the
inference of a total of 2,000 images per run. At the end of each run, a readback
operation of the content of the .rodata is done to identify possible SBUs, stuck-
at bits, and block errors. In a second phase, to cope with the above-mentioned
functional interruptions of the system due to single-event effects originated by free
charges of electron-hole pairs, the dataset was reduced to 1,000 images, to raise the
likelihood of having complete runs. The total number of inferences were 44,370 for
Float 32; 57,680 for Int 16, and 52,595 for Int 8. Experimental results are discussed
in Section 5.2.1.

To obtain the expected number of events within a run, based on the Soft-Error
Rate, we define the Execution Soft Error Rate (E-SER) as:

E−SER SBU | stuck-at = σbit×M× φ̄ × t (5.5)

where σbit is the calculated cross section for SBUs or stuck-at bits, M is the memory
size in bits used by the application (stored in the DUT), φ̄ is the average neutron flux
during the test campaigns, and t is the application execution time in seconds. The
same reasoning is applied to define the E-SER related to BEs. However, since the

92 Reliability Assessment at the Physical Level

Table 5.1 Estimated event rate for both test scenarios.

Test Scenario Dataset Size CNN version E-SER [events/run]
SBUs Stuck-at bits Block Errors

1 2,000
images

Float 32 1.53 0.79 0.59
Int 16 0.48 0.25 0.34
Int 8 0.17 0.08 0.21

2 1,000
images

Float 32 0.84 0.43 0.32
Int 16 0.24 0.12 0.17
Int 8 0.08 0.04 0.10

BEs are device related, the rate is defined as:

E−SER BE = σdevice× φ̄ × t (5.6)

From the E-SER definition, it is possible to calculate the expected event rate
based on the presented radiation tests. Table 5.1 provides the calculated values for
every CNN under study.

5.1.2 Software Emulator

From the device characterization of a DRAM memory, three types of faults have
been extracted (SBUs, stuck-at bits, and BEs) together with event rates. Since
their occurrence was independent of the running application, a software emulator
was designed to reproduce their incidence on CNN applications. It is illustrated in
Figure 5.3. To mimic the process of the radiation campaigns and the neutron flux, it
is structured with a multi-threading structure. Indeed, together with the main process,
it makes use of two threads: the inference (thread1) and the injector (thread2). Once
created, they run independently to fulfil their purposes. The task of the injector thread
is to introduce faults in memory locations, while the goal of the inference thread is
to run a given number of inferences (N). Threads can share the same resources, such
as memory locations, even if they exist as independent entities within a process. For
example, the CNN parameters (weights, biases, and images) are reachable by all
threads. Therefore, to avoid parallel read and write of shared data, a synchronization
method is used based on mutexes to guarantee safe communications. For the sake
of clarity, when thread2 wants to inject a memory fault (for example, a stuck-at 0
in a weight), it acquires the mutex, injects the fault, and then releases it. While the

5.1 Proposed Approach 93

mutex is being taken, thread1 is not authorized to read the shared memory, causing
the inference process to stall.

pthread_t	inference,	injector

network(img)

False

True

while	img<N

Number	of
stimuli	N

False

True

Number	of
errors	E

main()

pthread_create	injector

pthread_create	inference

pthread_join	inference

pthread_join	injector

while	errors<E

sleep(randtime)

mutex	lock

injection

mutex	unlock

thread	2

thread	1

return

SBUs

Stuck	at	bits

Block	Errors

configuration

Execution	Soft	Error	Rate
(E-SER)

Fault	Model

Figure 5.3 A diagram of the proposed emulator.

Furthermore, to get realistic injections and, above all, to emulate a neutron
flux, the injection frequency is not fixed: thread2 introduces faults with a random
frequency driven by the randtime variable. Until this time has elapsed, the injector
thread sleeps.

To work properly, the emulator is first configured to deal with a specific E-SER
and a specific fault model (i.e., SBUs, stuck-at bits, BE), as shown in Figure 5.3.

For SBUs and stuck-at bits the faulty locations are chosen randomly, and the
injection time is tuned according to the E-SER. On the other side, replicating block
errors necessitates the use of a particular parser. Indeed, a BE is injected into the

94 Reliability Assessment at the Physical Level

application parameters only if the virtual addresses of the software application match
with the physical addresses returned from the radiation test campaigns where the
targeted BE was found.

For the sake of clarity, at the end of the radiation test campaign, faults in the
HyperRAM memory are reported specifying, along with other information, the
physical address affected by the fault and the corresponding error data. Then,
knowing the virtual addresses of the CNN application, a parser was created and
included in the architecture of the emulator to deal with BEs injection: if there
is a match, BEs are injected in the corresponding memory addresses of the CNN
application. It can inject in both weights and biases, the same portion of data
allocated in the rodata memory section under radiation. Experimental results and
analysis are presented in Section 5.2.2.

5.2 Experimental Results

In this section, the experimental results are presented and the effectiveness of the
methodology is validated through accurate analysis and comparisons.

5.2.1 Radiation Tests Results

In this section, the principal results of the radiation tests on weights and biases of the
three CNNs (i.e., Float 32, Int 16, and Int 8) are presented. In the two test scenarios
(i.e., 2,000 images and 1,000 images from the MNIST dataset), the golden accuracy
of the CNNs was the same: 99.15% and 99.30%, respectively. From the total runs
under radiations, only the 57.96% were completed, and, among these, only the 6.37%
presented a difference in the final accuracy. To optimize the use of the beam time,
also incomplete runs were considered for the analyses: indeed, data related to each
inference are independent, so all the data coming up to the last non-failing inference
can be a good candidate for our purposes. In Table 5.2 a summary of the faulty runs
is given, by presenting the first image with a faulty inference and the final accuracy.
Note that all the runs with the Int 8 version returned the expected values, while data
in Table 5.2 show degradation in the Float 32 and Int 16 versions.

5.2 Experimental Results 95

Table 5.2 Summary of the runs that return a faulty accuracy at the end of the radiation
tests on CNNs.

Faulty
run

CNN
version

Dataset
size

First faulty
inference

[image no.]

Run
accuracy

[%]

Expected
accuracy

[%]

1 Int 16 2,000 1,345 99.10 99.15
2* Float 32 2,000 1,384 84.36 99.09
3 Int 16 2,000 583 99.10 99.15
4* Float 32 2,000 120 19.96 99.24
5* Float 32 1,000 720 98.91 99.24
6* Int 16 1,000 988 98.00 99.30
7 Int 16 1,000 102 99.20 99.30
8 Int 16 1,000 720 93.60 99.30
9 Float 32 1,000 673 70.40 99.30
10 Int 16 1,000 189 99.50 99.30
* Incomplete runs.

Very interesting, in one case radiation-induced faults lead to an increase in the
number of correct inferences (faulty run number 10, Table 5.2): the final accuracy
increased from 99.3% to 99.5%. This is a fascinating scenario that demonstrates how
CNN resilience evaluation differs from traditional applications. The point is that
CNNs are always an approximation of a function, in this case, a classifier. As a result,
a fault might cause the CNN to behave differently, not just from good to wrong
prediction (which is the majority of the time), but also from wrong to good prediction.
A further interesting outcome is observed in faulty run number 5: starting from image
720, the output vectors returned all the values as a floating-point exception (NaN,
“Not a Number”), leading to the invalidation of the top-1 scores. This example is
fascinating since it is not a conventional example of silent data corruption (that is, by
definition, non-detectable). Worthy of note is faulty run number 9, where, the output
vectors, starting from the first faulty inference, return always the same wrong value
for all subsequent inferences, having all the digit 3 as a result of the top-1 score.
Similar behaviour was observed for faulty runs number 2, 4, and 6. An additional
analysis is needed for faulty run number 7: the output vector had the correct top-1
score, but the output application returned a faulty inference, giving a digit ‘0’ instead
of ‘2’. This may be due to a register or a variable allocated in the external memory
(DDR3). The remaining faulty runs did not present particular behaviours and were
caused by SBUs, stuck-at bits, and BEs.

96 Reliability Assessment at the Physical Level

5.2.2 Software Emulator Results

Fault injections with the software emulator aim at reproducing the same scenarios
observed during the radiation test campaigns. Indeed, it can introduce faults in CNNs
parameters, and this reproduces the configuration of the radiation test where only the
.rodata section is under test. The fault injection procedure was guided by the E-SER
defined in Section 5.1.1.2 and whose values are reported in Table 5.1 (hereinafter
referred to as nominal E-SER, i.e., 1x). To investigate worst-case scenarios, those
values are tuned and amplified by 25 times (25x), up to 100 times (100x). This was
useful to evaluate the CNNs resilience when a growing number of SBUs, stuck-at
values, and BEs affect the CNN application.

SBUs and Stuck-at Bits: In the following, we will first focus on the results and the
analysis of the injections related to SBUs and stuck-at bits. From the implementation
point of view, SBUs are injected through bit-flips and remain active only during a
single run; stuck-at bits as a permanent ’0’ or ’1’ in the targeted fault location and
accumulate over the runs. Detailed figures of injected SBUs and stuck-at bits for
each CNN are given in Table 5.3. Considering Float 32 CNN, Columns 2 and 3
from Table 5.3 report the number of SBUs and stuck-at injected during each run.
On the other hand, Column 5 presents the total amount of stuck-at faults that have
been injected at the end of all runs, because they are accumulated over the runs.
For each E-SER value (Column 1), the experiment was reproduced 50 times (50
runs/E-SER) with SBUs or stuck-at bits corrupting random layers, fault locations
(weights or biases), and bit positions. The same reasoning is applied to the Int 16
and Int 8 CNNs. It is worth reminding that: a run is defined as the inference of a
set of 1,000 images from MNIST, second, a golden run over this set achieves the
99.30% accuracy for all the CNNs.

Concerning the nominal E-SER (i.e., the row 1x), since injecting a non-integer
number of faults during a run was not feasible, an approximation was done as
follows:

• CNN Float 32: For SBUs, one single random fault was injected during a single
run; for stuck-at bits, one single fault was injected every 2 runs.

• CNN Int 16: For SBUs, one single random fault was injected every 4 runs; for
stuck-at bits, one single fault was injected every 8 runs.

5.2 Experimental Results 97

Table 5.3 Details of SBUs and stuck-at bits injection for the Float 32, Int 16, Int 8
CNNs with an increasing E-SER: 1x, 25x, 50x, 75x, 100x

E-SER
Float 32 CNN Int 16 CNN Int 8 CNN

SBUs/run Stuck-at bits SBUs/run Stuck-at bits SBUs/run Stuck-at bits
Stuck-at/run Total Stuck-at/run Total Stuck-at/run Total

1x 0.84 0.43 25 0.24 0.12 6 0.08 0.04 2
25x 21 11 550 6 3 150 2 1 50
50x 42 21 1,050 12 6 300 4 2 100
75x 63 32 1,600 18 9 450 6 3 150

100x 84 43 2,150 24 12 600 8 4 200

• CNN Int 8: For SBUs, one single random fault was injected every 16 runs; for
stuck-at bits, one single fault was injected every 32 runs.

Figures 5.4a and 5.4b report the experimental results of the FI campaigns per-
formed with the proposed emulator. For the three CNNs under assessment, the
average value achieved during the 50 runs is represented, together with the minimum
and the maximum value (the small error bars). It is apparent that, the less resilient
CNN to the occurrence of SBUs or stuck-at bits is the Float 32: as the number of
faults increases, its average accuracy considerably reduces. This first outcome is
in line with the radiation test results, where, overall, Int 16 and Int 8 show higher
resilience. Focusing on the nominal E-SER (1x), data show that the final accuracy
for the three CNNs is not affected by stuck-at bits, staying at 99.30%. When it comes
to the Float 32 CNN, only one run over 50 presented a slight degradation (the final
accuracy was equal to 99.29%). A similar scenario was observed during the radiation
tests: only 1 complete run over 17 was faulty, despite the occurrence of SBUs or
stuck-at bit faults. On the contrary, the two integer CNNs (Int 16 and Int 8) keep
the golden accuracy (99.30%) over the 50 runs. Indeed, the accuracy degradation
that we observe during radiation tests for the Int 16 in Table 5.2 is related to the
occurrence of block errors.

Moreover, it is worth adding that the accuracy of the Float 32 CNN considerably
decreases as the E-SER increases. On the contrary, the resulting accuracy value
is slightly influenced by increasing the E-SER for Int 16 and Int 8: only with a
E-SER 100x a small degradation (respectively 1% and 2%) is noticed when they are
affected by stuck-at bits. Overall, it is evident that stuck-at bits are more critical than
SBUs, and this is reasonable, since they are permanent faults and therefore, once
they appear, they accumulate over the runs.

98 Reliability Assessment at the Physical Level

1x 25x 50x 75x 100x
E-SER

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Float 32 Int 16 Int 8

(a) SBUs

1x 25x 50x 75x 100x
E-SER

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Float 32 Int 16 Int 8

(b) Stuck-at bits

Figure 5.4 Accuracy variation based on the increase of the E-SER with SBUs or
stuck-at faults for the three CNNs.

A last interesting observation in the Float 32 CNN is associated to the scenarios
75x and 100x for stuck-at bits. Indeed, the 100x injects a greater number of stuck-
at bits and the average accuracy is higher than 75%. This outcome implies that
the choice of faulty bit locations (random in our experiments) is crucial in the
final accuracy measurement. With an in-depth analysis, it turned out that faults
affecting the exponent bits are the most critical, leading in many cases to NaN (“Not
a Number”) values, in line with the state-of-the-art knowledge [43, 83].

Block Errors: Radiation tests on the HyperRAM memory revealed the presence
of block errors, i.e., vertical or horizontal sequential addresses of faulty cells in
the memory. This is a known effect in the literature, and it is well documented
in [106]. A total of 37 BEs have been identified in our DUT at the end of the
readback operations. Knowing the virtual addresses of the CNNs application, and
their physical addresses on the board, it is possible to inject exactly the same faults
via software on the same piece of data. To this end, the software emulator is equipped
with a parser that looks for this correspondence. Contrary to SBUs and stuck-at bits,
where the faulty locations are randomly generated, for BEs faults are injected as
detailed by the fault lists retrieved from radiation tests’ reports. As a result of the
readback operation, a list of faulty addresses in memory is returned, as well as their
expected content and their respective faulty one. This log is converted in a fault
list that is used by the software emulator to inject stuck-at bits in the corresponding
virtual addresses of the CNN parameters.

For each CNN application, Table 5.4 reports the number of BEs matching the
addresses, the total faults that can be introduced into the CNN parameters, and

5.2 Experimental Results 99

the memory footprint of the given CNN application in the HyperRAM memory.
Moreover, in Figure 5.5 the following information are given:

• y-axis: The number of injected faults for each single BE. As emerging, their
incidence can also vary from many faults injected (e.g., BE29 with 972,960 in
the Float 32 CNN) up to few ones (e.g., BE1 and BE2 with only 8 faults in the
Int 8 CNN).

• x-axis: The impact in terms of accuracy of the specific BE on the targeted
CNN when it occurs during a run in a random time. The experiment has been
repeated 50 times: therefore, in the graph the average accuracy is depicted
with the minimum and the maximum value reached (the error bars).

Table 5.4 BE Injection Details

CNN
Application

Total
Injected BEs

Total
Injected Faults

Memory
Footprint (kB)

(.rodata)

Float 32 17 3,278,656 505.81
Int 16 11 1,714,007 273.17
Int 8 15 605,922 154.11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Block error

0
100

101

102

103

104

105

106

107

N
um

be
r

of
 in

je
ct

ed
 fa

ul
ts

Number of injected faults Float 32 Int 16 Int 8 Accuracy Float 32 Int 16 Int 8

0
10
20
30
40
50
60
70
80
90
100

Ac
cu

ra
cy

 (%
)

Figure 5.5 Number of injected stuck-at faults for each single BE for each CNN
application (y-axis on the left). Average accuracy value for each single BE affecting
a run at a random time (y-axis on the right).

Worthy of note in Figure 5.5 is the minimum value: it is calculated at time zero
(before running the 1,000 inferences). As shown, it leads an accuracy lower than
10% in ten cases (seven in Float 32 and three in Int 16). It is apparent that the
impact of the BE is dependent on the injection time. Because the overall accuracy is
determined by the outcome of 1,000 inferences, fault injection closer to the start of
the run will have a greater influence on the final accuracy, and vice versa.

100 Reliability Assessment at the Physical Level

Furthermore, by analysing the outcome of the software fault injections for each
single inference, it turned out that, in particular cases, once a BE is injected during a
run, the CNN starts predicting all the subsequent images wrongly. For this reason,
we define them as critical. This scenario was observed in the following injections:

• Float 32: BE5, BE15, BE18, BE27, BE29, BE30, BE37

• Int 16: BE5, BE15, BE23, BE29

• Int 8: BE5

The listed BEs critical for the Float 32 CNN inject stuck-at-1s in the exponent
part of the floating point representation, in one or many bits of the corrupted weights
and/or biases. This produces several floating point exceptions (Not a Number) that
propagate through the network and corrupt all the subsequent computations. This
was observed for the faulty run number 5 during the radiation test campaigns, as
detailed in Table 5.2. The BEs that in Float 32 produce a degradation in the final
accuracy (Figure 5.5) but are not included in the list of critical do not generate NaN
numbers. As an example, BE4 and BE23 inject stuck-at-0 values, and, after their
injection, the CNN is still able to yield some correct prediction. The leftovers do not
affect the final accuracy at all (staying at 99.30% despite the injection). This is due
to the following: they do not inject any faults into the Float 32 parameters, or they
inject stuck-at faults into the mantissa part of the floating-point values, which do
lead to a change in the final CNN prediction [83].

Concerning the Int 16, we can identify two scenarios: first, BE15 and BE23
inject respectively stuck-at-1s or stuck-at-0s in all bits of the matching weight/bias
addresses. After their injection, the output vectors of the subsequent images assumes
fixed values (all 0xffff for BE15 and all zeros for BE23). Second, BE5 and BE29
are also considered critical because fixed random values are observed in the output
vectors after their injection (contrarily to BE15 and BE23, we do not observe specific
patterns). Next, as shown in Figure 5.5, also the occurrence of BE4 degrades the
performances of the CNN, but, the CNN can still yield some correct predictions after
its injection.

The most crucial BE in the Int 8 application is BE5: when it is injected, the
network begins to generate incorrect results. The CNN’s output vectors, in particular,
take on random values once BE5 is injected. Overall, this CNN is extremely resistant

5.2 Experimental Results 101

CONV1
CONV2
CONV3FC

1
FC

2
BI

AS
ES

CONV1
CONV2
CONV3FC

1
FC

2
BI

AS
ES

CONV1
CONV2
CONV3FC

1
FC

2
BI

AS
ES

CONV1
CONV2
CONV3FC

1
FC

2
BI

AS
ES

CONV1
CONV2
CONV3FC

1
FC

2
BI

AS
ES

CONV1
CONV2
CONV3FC

1
FC

2
BI

AS
ES

CONV1
CONV2
CONV3FC

1
FC

2
BI

AS
ES

CONV1
CONV2
CONV3FC

1
FC

2
BI

AS
ES

0
10
20
30
40
50
60
70
80
90

100
C

or
ru

pt
ed

 C
N

N
 P

ar
am

et
er

s
(%

)
Float 32: Weights Float 32: Biases Int 16: Weights Int 16: Biases Int 8: Weights Int 8: Biases

BE5 BE15 BE29 BE5 BE15 BE23 BE29 BE5
Block Error

Figure 5.6 The incidence of the most critical BEs on CNNs weights and biases.

to BEs. Only BE23 and BE29 exhibit a modest average decline in the final accuracy
value, as seen in Figure 5.5. Despite the inserted stuck-at bits, the remaining BEs
had no effect on CNN performance.

While for Float 32 the origin behind the problem raised by the critical BEs (the
corruption of the exponent bits) was clear, for Int 16 and Int 8 it needed a further
investigation. Indeed, thanks to the emulator, it has been possible to analyse the
impact of BEs on CNN’s layers and parameters.

In Figure 5.6, the percentages of the corrupted weights or biases matching the
physical addresses of the BEs are illustrated for the most critical BEs, for every layer
and biases, for every CNN. The reader should note that the critical BEs affecting the
CNNs by less than 10% are not represented in the graph (i.e., BE18, BE27, BE30,
BE37 for Float 32).

The CNNs behaviour may be categorized into three categories based on the
inserted BE. As stated before, we define a BE as critical if once it occurs (during the
CNNs inferences), all the output vectors containing CNNs predictions may assume
the following values:

• Random Values: In all layers and biases, the percent of corrupted weights
or biases is less than 100%. As a result, the network continues to transmit
incorrect values that are still dependent on inputs (and vary accordingly).
This happens for BE5 in Int 8 and BE29 in Int 16. This particular scenario
was observed during radiation tests for the faulty run number 8 in Table 5.2:
starting from the image number 720, the report of the readback operation
shows the vector outputs returning all random values (i.e., wrong predictions).

• Fixed Random Values: The amount of corrupted weights or biases in one or
more layers is 100%. Two scenarios exist in this circumstance. First, if a BE

102 Reliability Assessment at the Physical Level

forces a stuck-at-0 in all layer’s weights (BE23 Int 16, CONV1) the network’s
output no longer depends on the inputs but just on the values taken by the
biases (corrupted at 60% with stuck-at-0s). Due to the occurrence of BE23,
only 0x0s are reported in all the subsequent output vectors. This result is
identical to the faulty run number 6 (Table 5.2) achieved during the Int 16
CNN’s radiation test. All 0x0s are reported in the radiation test’s log. The
second scenario is related to those BEs injecting stuck-at-1s in all weights of a
layer: in this case, the numbers become negative and they are filtered by the
rectified linear unit (ReLU), i.e., the activation function. The dependency on
the inputs is removed once more: the output vector will be constant for all
subsequent inferences and will only be dependent on the bias values of the final
layer. This scenario covers BE5 and BE15 in Int 16. Lastly, during radiation
tests, fixed random values are returned during run number 9 (Table 5.2) for the
Float 32 CNN.

• Saturated Values: Stuck-at-1s are placed in the exponent part of the floating
point representation, leading to NaN exceptions. This class covers all the
critical BEs for Float 32 CNN. The analysis of Figure 5.6 may guide to
different conclusions (e.g., if the occurrence of BE5 and BE29 in Float 32
may lead to fixed random values). This is not possible because of the faulty bit
positions and the NaN exceptions.

Interestingly, contrarily to what is claimed in the literature [45], these results
show a lower resilience values of biases against the occurrence of block errors. If a
great number of biases is affected by stuck-at faults, the accuracy of the network is
highly influenced, and their higher resilience with respect to weights is not confirmed
with block errors. The computations turn into unbiased values with the 100% of
corrupted biases (e.g., BE5 (Int 16) corrupts the 100% of total biases by injecting a
stuck-at-1 in the 36% of bits of the matching ones).

Generally, as illustrated in Figure 5.5, the final accuracy of the networks affected
by non-critical BEs can also increase: as observed during radiation tests for the
faulty run number 10, the final accuracy moderately increases (Table 5.2). Clearly, it
can also slightly decrease as a consequence of radiation-induced errors (faulty run
number 7, Table 5.2).

Until now, the effects of single injected BEs are discussed. A further experiment
was configured to inject multiple BEs during a run, by tuning and increasing the

5.2 Experimental Results 103

1x 25x 50x 75x 100x
E-SER

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Float 32 Int 16 Int 8

Figure 5.7 Multiple block errors affecting the three CNNs under assessment.

E-SER reported in Table 5.1 for the 1,000 images dataset. The purpose was to assess
worst-case scenarios: when a growing number of BEs corrupt the weights or biases
of a CNN. The results of the experiments are shown in Figure 5.7, and the details
about the E-SER parameters are reported in Table 5.5. As done for SBUs and stuck-at
bits, the nominal E-SER (1x) was increased up to 100 times (100x). As Figure 5.7
illustrates, the final accuracy of the CNNs can vary consistently depending on the
injection time, the BE sorting, and the number of injected BEs. This high variation is
highlighted by the error bars: the difference between the minimum and the maximum
values are non-negligible. Particularly, the minimum was always achieved when the
first injected BE belonged to the set of critical ones. To conclude, as shown in the
graph, as the E-SER increases, the final average accuracy reduces. Once again, as
a confirmation of the radiation tests results, the Int 16 and the Int 8 CNNs show a
greater resilience against the occurrence of block errors.

Table 5.5 Details of block error injections for the CNNs Float 32, Int 16, Int 8 with
an increasing E-SER: 1x, 25x, 50x, 75x, 100x

E-SER Total Runs CNN

Float 32 Int 16 Int 8

1x 50 0.32 0.17 0.1
25x 50 8 4 3
50x 50 16 9 5
75x 50 24 13 8
100x 50 32 17 10

104 Reliability Assessment at the Physical Level

5.3 Chapter Summary

This research work presents a methodology to perform fault injections on CNN
applications based on real data coming from radiation tests campaigns. It relies on
the adoption of a software emulator, which has been designed and developed to deal
with different types of radiation-induced faults, and with a configured frequency
of injection. First, a characterization phase was performed on a DRAM memory
and three types of faults have been identified: SBUs, stuck-at bits, and block errors.
Then, event rates have been extracted and used to set up the injection frequency
of the software emulator. It is, thus, capable of reproducing real scenarios and
injecting exactly the same faults (as for BEs) in CNN applications. The efficacy of
the proposed emulator was assessed by means of (i) radiation test campaigns on three
CNNs exploiting different data types, and (ii) software injections on the same CNNs’
portion of data that was under test during the radiation experiments (i.e., .rodata).

By comparing the outcomes of both experiments, it was shown that the software
emulator can reproduce the faulty behaviours observed during the radiation tests
for all three CNNs. As an example, the same output vectors are returned in both
radiation- and software-based FI campaigns, like NaN for Float 32 CNN, or all
zeros for Int 16 CNN. Moreover, for a more in-depth analysis, the causes of specific
behaviours have been investigated thanks to the adoption of the software emulator.
Indeed, it was used to get information that cannot be extracted from physical-based
fault injections, such as the impact of faults on CNN internal structures (e.g., layers,
channel or even kernel) or worst-case scenarios. Additionally, it is known that
radiations experiments are extremely costly. In this work, we show that a software
strategy could be complementary to physical testing and may allow optimizing
time and costs. In other words, we would like to underline that the aforementioned
evaluations can not be done only using physical-based FIs, and, at the same time,
pure software-based FIs may produce insignificant findings if the injected fault
models do not accurately match real-world hardware malfunctioning behaviour.

Finally, the following considerations are worth mentioning. There has been a
lot of research into the reliability of CNNs against transient and persistent faults
in the literature so far (e.g., SBUs and stuck-at bits). At the same time, it is worth
noting that the single-fault assumption is indeed not entirely accurate. Convolutional
neural networks, as many other computational-intensive applications, mainly suffer
the occurrence of multiple faults. Nevertheless, establishing an effective multiple

5.3 Chapter Summary 105

fault injection technique remains an open concern, and it is not a simple task: the
number of fault locations might rapidly grow. As a consequence, based on the results
of radiation testing, we feel that block errors injection may be regarded as a very
interesting attempt to conceal numerous defects.

In the future, the software emulator will be used and modified to assess the
reliability of applications different from convolutional neural networks or, deeper
and modern CNN models, having different memory sections.

Chapter 6

Mitigation Strategies

The intent of this section is to illustrate the mitigation strategies that have been
proposed to improve the reliability of AI-based systems. In the first part (Section 6.1),
a methodology to redistribute neuronal computations on a MPSoC is proposed. Next,
in Section 6.2, a study on the coexistence between Software Test Libraries (STLs)
and ANNs running on resource-constrained embedded devices is described. The
principal achievements of the two studies are discussed in both sections.

6.1 Neurons Redistributions on AI-oriented MPSoCs

Being compute-intensive applications, Artificial Neural Networks are typically exe-
cuted on programmable high-performance GPUs. Unfortunately, due to the signifi-
cant power consumption required for running an inference job, they are impractical
for applications demanding low-cost and, in particular, low-power devices, despite
their remarkable performance. For their flexibility, Application Specific Integrated
Circuits (ASIC) devices are gaining increasing interest for this class of applications,
especially those intended for the Internet of Things (IoT) and for the edge computing
paradigm, e.g., [19, 20].

To cope with the computational complexity of ANNs, ASICs destined to the
AI world require the parallelization of many computational units or processing
elements (PEs), which can correspond to an entire processor core (e.g., [98]), or a
subunit including only the multiplier, the accumulator and an on-chip memory for
weights storage. Data parallelism is achieved with the single-instruction multiple-

6.1 Neurons Redistributions on AI-oriented MPSoCs 107

data (SIMD) computing paradigm, where a single instruction is applied to multiple
data items. In other words, each PE elaborates the same instructions simultaneously
but on different data.

Clearly, the principal drawback of using ASIC devices for AI-based applications
is their limited storage capacity. Being resource-constrained systems, they can hold
a limited amount of data, approximately from a few kilobytes [98] up to, in the best
case, megabytes [107]. This implies that only bounded-sized ANNs can be deployed
on resource-constrained embedded devices. To reduce their memory footprint,
compression and quantization methodologies are proposed to move from a full
precision representation (i.e., floating-point), to optimized ANN models exploiting
reduced bit-width data types (i.e., fixed-point) [45, 87].

This work [89] focuses on AI-oriented multiprocessor SoCs (MPSoCs). They are
typically made of two distinct areas: a microcontroller unit that is used for keeping
the boot code, managing the peripherals and all the interconnections; and a cluster
of PEs that enables the SIMD computing paradigm. This cluster can also include
a dedicated hardware for accelerating the convolutional operations, which might
account for more than the 90% of operations [108].

The one-to-many paradigm is used to perform an inference process: one PE is
assigned the computation of many neurons. Additionally, to ease the inference phase
and to optimize memory accesses, always the same range of neurons is assigned to
each PE. It will be referred to as static scheduling. An example is provided in Figure
6.1, where neurons N={0,...,n} are distributed in an orderly fashion among all the
P={0,...,p} PEs: it is straightforward to identify which neurons a PE handles when
launching the inference of a L-layer neural network, where L={0,...,l}. Neurons are
split in definite chunks made of fixed groups of neurons assigned to a specific PE p
during the inference of each layer l. The number of chunks in each layer is always
equal or lower to the total number of PEs available in a given hardware device. The
number of critical neurons in each chunk is not allocated evenly throughout the P
computer resources. This might raise severe problems in terms of trustworthiness
and safety. Indeed, a physical fault affecting the hardware may negatively influence
the computation of numerous neurons at the behavioural level (software). If this
happens for critical neurons, the effects will be greatly emphasized, as analysed in
Chapter 3.2, leading to a significant drop in accuracy.

108 Mitigation Strategies

Cluster

L2 Memory

L1 Shared Memory

DMA

ROM

Pe
rip

he
ra

ls

PE
0

Logarithmic Interconnect

Shared Instruction Cache

HWCE

Main
Core

PE
1

PE
2

PE
3

PE
4

PE
5

PE
6

PE
7M
ic

ro
 D

M
A

Debug Debug

Lay
ers

W
C

H

Output
Prediction

Input

Chunk0
Chunk1
Chunk2
Chunk3
Chunk4
Chunk5
Chunk6
Chunk7

SchedulingL0

Chunk3 - PE3

Figure 6.1 Neurons assignment in a AI-oriented SoC exploiting the SIMD configura-
tion.

6.1.1 Proposed Approach

This research work introduces a technique for balancing the chunk assignment to
the P processing elements, lowering the risk that a physical fault on a PE may
compromise the right functionality of many critical neurons. This research presents
a scheduling strategy for allocating portions of neurons to the available PEs. The
trend of neurons cannot alter, since no retraining of the ANN is being considered.
The only method to avoid this is to redistribute their allocation among the available
PEs, so that the computation of the most critical neurons is not given to just one or a
subset of them.

The methodology described in 3.2 assigns a resilience score to each neuron in
the neural network: the higher the score, the higher the criticality. The variance
metric is used to measure the criticality of a group of neurons (i.e., chunks). Hence,
measuring the variance for each chunk of neurons means measuring the number
of critical neurons included in that chunk. Mathematically, it is computed as the
average of the squared differences from the mean µ . The variance of the chunkl,p can
be computed as described in (6.1), for each subset of neurons xi,i∈[1,N] assigned to a
PEp,p∈[1,P]. N represents the total number of neurons in the chunk, while xi is the
score assigned to the neuron by applying the methodology proposed in Section 3.2.

σ
2

l,p =

N

∑
i=1

(xi−µ)2

N
(6.1)

6.1 Neurons Redistributions on AI-oriented MPSoCs 109

The larger the variance, the higher the number of critical neurons that are enclosed
in that chunk. In contrast, a small variance value indicates that the chunk holds a few
critical neurons.

6.1.1.1 Integer Linear Programming based Methodology

To avoid that hardware faults insist on many critical neurons, the proposed approach
aims at redistributing chunks of neurons over the existing PEs. Based on Integer
Linear Programming (ILP), the method finds the optimal deterministic scheduling
solution to map ANN elaborations on the available hardware resources. It is inspired
by the existing scheduling techniques on parallel machines [109–111], where a set of
identical machines M={1,...,m} has to handle in parallel a set of jobs J={1,...,j}. Jobs
can be divided into multiple sections which are processed on several machines at the
same time: each job j∈J has weight wj and processing time ptj. In conformity with
this, the machines m∈M can be considered as the processing elements p∈P of our
hardware system and the jobs j∈J as the layers l∈L of our neural network. The terms
machines and processing elements as well as jobs and layers are equivalent, i.e.,
m=p and j=l from this point on. As a result, the problem appears to be extremely
comparable while modifying the criterion used to pick the optimum solution. Indeed,
based on the criteria that define the problem, an optimum scheduling solution can
be found by using integer linear programming. As an example, if the purpose is
to minimize the maximum completion time of machines, a scheduling provides a
solution for that scope by assigning those jobs j∈J to the machines m∈M. Though
our problem is very similar, our goal is not to reduce the maximum completion
time of machines, but to balance the number of critical neurons that each PE must
elaborate. Then, instead of considering the weights wj or the processing time ptj, the
criterion on which our scheduling is built is the variance σ2

j,m of the job’s sections
(i.e., the chunks), that measures their criticality (Equation 6.1). In other words, the
objective of the proposed method is to uniform the variance of the jobs over the
machines.

Using optimization solvers, it is possible to find an optimal and deterministic
solution to improve the reliability of the system. Our strategy formulates the problem
as an ILP problem that can be described using mathematical equations: an ILP
model is set up by specifying the decision variables, the objective function, and
the constraints, all of which were defined using the following equations. The best

110 Mitigation Strategies

solution is the one that reduces the difference between the cumulative variance of
the machines and the average variance.

Let us make the following definitions, assuming that 1 ≤ l ≤ L and 1 ≤ p ≤
P, where L is the total number of layers and P is the total number of available PEs.
Then, we need to introduce a third index 1 ≤ k ≤ K that refers to the order of the
chunks. Such parameter indicates also how many chunks you can get by distributing
the workload of layer l over the available PEs (if P is equal to 8, K will correspond
to 8). In a static scheduling, the index k is always equal to p: for instance, the chunk1

is always assigned to PE1. With the proposed ILP and variance-based mapping we
are going to change this order, and so we need to differentiate among p and k.

As decision variables, integer variables x(l,p)k are used to indicate whether the
chunk k of the layer l is assigned to the processing element p or not.

Specifically, x(l,p)k is a binary variable and is equal to:

x(l,p)k =

1 if chunk k of layer l is assigned to

processing element p;

0 otherwise.

(6.2)

The variance of the chunk k of the layer l is fixed (σ2
(l,p)k), regardless of the PE

to which it is associated. Hence, we can avoid the index p and only refer to as σ2
(l,k).

The objective function of our ILP problem is:

Minimize
K

∑
k=1

L

∑
l=1

P

∑
p=1

σ
2

(l,k) ∗ x(l,p)k (6.3)

This is subject to the following constraints:

• Each chunk k must be assigned to a single processing element p, multiple
assignments of sections of the same layer to a certain machine are not allowed:

P

∑
p=1

(x(l,p)k) = 1,∀l ∈ L,∀k ∈ K (6.4)

6.1 Neurons Redistributions on AI-oriented MPSoCs 111

• Each processing element p must compute the same amount of chunks k equal
to the total amount of layers L:

L

∑
l=1

K

∑
k=1

(x(l,p)k) = L,∀p ∈ P (6.5)

• Each processing element p in each layer l has to process a single chunk k:

K

∑
k=1

(x(l,p)k) = 1,∀l ∈ L,∀p ∈ P (6.6)

• The cumulative variance elaborated by every PE must be closed to the average
one:

K

∑
k=1

L

∑
l=1

(σ2
(l,k) ∗ x(l,p)k)∼

P

∑
p=1

σ
2

p
(TOT)

P
,∀l ∈ L (6.7)

• The cumulative variance of each layer must stay the same:

K

∑
k=1

P

∑
p=1

(σ2
(l,k) ∗ x(l,p)k) = σ

2
l
(TOT),∀l ∈ L (6.8)

6.1.2 Experimental Results

The targeted MPSoC is an open-source AI-oriented RISC-V device named GAP-8
[98]. As shown in Figure 6.1, it is made of two separate domains: the fabric controller
that handles the principal SoC functionalities, and a cluster of eight RISC-V cores
used for offloading highly computational-intensive SIMD operations. The RISC-V
cores in the cluster are identical and run the same binary code on different data
(SIMD configuration). In this work, they will be referred to as PEs. The fabric
controller includes a 512 kB of L2 memory and a ROM storing the primary boot
code. The cluster hosts a 128 kB of shared L1 memory: every PE can make access to
it. The transfers between L2 and L1 are managed by the DMA unit. At the beginning,
the DNN parameters (i.e., weights and biases) are stored in the L2 Memory; before
running every layer, the DMA moves the current layer’s data from L2 memory to the
cluster’s shared L1 memory.

112 Mitigation Strategies

The targeted DNN running on the above-described MPSoC is a CNN based on
the architecture of LeNet-5, trained and tested on MNIST [90], a dataset used to
recognize handwritten digits including a training set of 60,000 28x28 gray-scale
images, and a test set of 10,000 examples. It is a custom version of the original
LeNet-5 and is composed of 7 layers (i.e., 3 convolutional, each one followed by
max pooling and the last fully connected) with an input size of 28x28x1. After
each convolutional layer, the Rectified Linear Unit (ReLU) activation function is ex-
ploited. The CNN model running on the MPSoC has been created in C programming
language by exploiting the kernel functions of the open-source PULP-NN library
[112]. Since the RISC-V cores of the cluster do not have a hardware floating-point
unit, all computations are done in fixed-point arithmetic. Therefore, the neural
network’s parameters were quantized to 8-bit signed integers. The accuracy of the
new quantized network was computed by running the MNIST test set, and it slightly
decreased, moving from the 99.31% of accuracy to the 97.64 %.

Considering this system including the mentioned DNN and the MPSoC, a com-
plete CNN inference cycle (a single prediction) takes 276,529 clock cycles (15,772
ms at 18 MHz).

The reliability improvements of the proposed ILP scheduling are demonstrated
by comparing two different approaches:

• Static Scheduling: The same range of neurons gets always assigned to the
same PE, as shown in Figure 6.1.

• Proposed ILP-based Scheduling: Chunks of neurons are assigned to PEs
depending on their criticality with the aim of distributing them among the
different hardware resources.

First, in a static scheduling the number of critical neurons for each PEs is
measured with the variance equation, and is reported in Table 6.1. In more details,
we rely on the methodology described in Chapter 3.2 to assign resilience scores to
individual neurons. Based on that, we determine the criticality of each chunk by
computing the variance metric (Equation 6.1). It is worth to underline that to comply
with the ILP methodology, numbers have been converted to integers.

Scheduling statically DNN inferences on a MPSoC means that the first chunk
of the first layer is assigned to the first PE0, the second chunk to the second (PE1),

6.1 Neurons Redistributions on AI-oriented MPSoCs 113

Chunks Variance - Static Scheduling

Layer Neurons PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7

L0 32,768 12 10 8 6 5 5 6 4
L1 8,192 31 11 12 11 21 10 18 5
L2 4,096 18 15 17 9 13 8 11 9
L3 1,024 19 7 3 2 5 6 2 3
L4 2,048 1 3 3 4 4 4 4 4
L5 512 1 1 2 2 1 1 2 2
L6 10 1 1 1 1 1 1 1 1

Total 48,650 83 48 46 35 50 35 44 28

Table 6.1 Figures of variance when the chunks of neurons are assigned following a
static scheduling.

Chunks Variance - Proposed optimal scheduling

Layer Neurons PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7

L0 32,768 8 6 6 4 5 5 12 10
L1 8,192 21 5 10 31 18 12 11 11
L2 4,096 9 9 15 8 13 17 11 18
L3 1,024 3 19 7 2 5 6 3 2
L4 2,048 4 4 3 1 3 4 4 4
L5 512 1 2 1 1 1 2 2 2
L6 10 1 1 1 1 1 1 1 1

Total 48,650 47 46 43 48 46 47 44 48

Table 6.2 Figures of variance when the chunks of neurons are assigned following the
proposed ILP and Variance-based optimal scheduling.

and so on. The targeted MPSoC is equipped with 8 PEs: therefore, the workload of
each layer is split in 8 chunks of neurons and statically assigned to the 8 PEs of the
cluster. For each layer, the total number of neurons is provided in the second column
of Table 6.1: each chunk is composed of that number divided by the available PEs.
This can not be extended to the last fully connected layer, since there is not a precise
division during the inference: having the neurons all connected between them, every
PE elaborates all neurons. From the third to the last columns, the variance numbers
are provided for each chunk of the layer. Overall, it is evident that the highest
quantity of critical neurons is processed by PE0: the sum of the variances is equal to
83, the highest. On the other side, PE7 is the one with the least critical load: the sum
of the variances is the lowest among the PEs and is equal to 28.

The proposed approach is used to uniform the distribution of critical neurons
among the different hardware resources (8 PEs in our case study). An ILP model

114 Mitigation Strategies

was developed by applying the Equations (6.2)-(6.8), and by taking as inputs the
numbers shown in Table 6.1. Given our targeted system, the constants were tuned:
P=8 and L=6. To find the optimal solution, the ILP engine was set up with all
the equations and constraints, in format acceptable for the solver. An open-source
optimizer, i.e., OpenSolver [113], was used, and the optimization engine was CBC
(COIN-OR Branch-and-Cut). The optimizer returned as outcome the scheduling
reported in Table 6.2. As shown, the optimizer arranges the chunks in such a way
that the cumulative variance attributed to each PE over the inference cycle is equally
distributed. Better solutions are not consistent with the integer constraints, crucial
to comply with (6.4) and (6.6). As a result, the kernel of the PULP-NN library was
modified to match the ILP solver’s optimal scheduling order. As previously stated,
the allocation of chunks to different PEs has no impact on the final classification
results.

It must be underlined that numbers of variance for each chunk are fixed, regard-
less the PEs they are assigned to. Moreover, the row L6 in Table 6.1 was excluded
from the ILP formulation: it was referred to the last fully connected layer for which
the chunk assignment does not make sense for topological reasons.

The efficacy of the two different scheduling (Table 6.1 and Table 6.2) are com-
pared by means of fault injection (FI) campaigns at the architectural level (RTL).
The same set of permanent faults (stuck-at-0 or stuck-at-1) was injected into the
RTL design of the PULP platform in two scenarios: first, when the CNN application
was compiled by following a static scheduling, then, when it was compiled with the
proposed ILP-based optimal one.

To run FIs at the RTL, a specific FI framework was developed based on a
commercial simulator from Mentor Graphics. It must be said that FIs at the RTL
are computationally intensive and extremely time-consuming. To run a complete
inference cycle, it took about 25 minutes. Therefore, massive FI campaigns were
out of our computational possibilities. To speed up the simulation, the pipelined
fault injector presented in Chapter 4 was used. In this way, it was possible to get an
inference result about every 10 minutes. As described before, the pipeline concept
applied to neural networks was used to parallelize the inference cycles.

Permanent faults have been injected, one at a time, into the 8 RISC-V cores
belonging to the cluster domain of the GAP architecture. As specified, the inference
process is completely performed by the cluster’s cores (PEs) in a SIMD configuration.

6.1 Neurons Redistributions on AI-oriented MPSoCs 115

The main core sitting in the fabric controller domain is only in charge of turning on the
cluster, so assessing its reliability is out of the scope of this paper. Specifically, stuck-
at faults have been injected on the inputs and outputs of the Flip-Flops composing
the registers. It is known that when working at the architectural level, the injection
locations are limited to some data-path units, micro-architectural units such as
registers or memories.

In line with the ranking proposed in [43], faults have been classified depending
on their effects. Additionally, we add a component-level metric which is typically
more connected to the hardware but, as suggested in [114], can be interestingly
applied to classification problems: the Mean Squared Error (MSE) of the output
vector.

Therefore, a fault is detected in the following cases:

• SDC-1: A Silent Data Corruption (SDC) failure is a deviation of the network
output from the golden result, leading to a wrong prediction. Hence, the fault
causes the image to be wrongly classified.

• Masked with MSE>0: The network correctly predicts the result, but the MSE
of the faulty output vector is different from zero. It means that the top score is
correct, but the fault causes a variation in the outputs compared to the fault-free
execution.

• Hang: The fault causes the system to hang and the HDL simulation never
finishes.

In the remaining cases, the fault is said to be Masked with MSE = 0.

In total, 164,000 RTL injections have been performed. The same group of 2,050
stuck-at-faults have been injected in the cluster area of the GAP-8 RTL design;
specifically, the PEs’ register file. FI campaigns were performed in the following
way: a sample of 40 images was randomly selected from the MNIST test set. Then,
a stuck-at-fault was injected into one of the PEs and the inference of the selected 40
images was performed by compiling the kernel functions of the CNN application
with a static scheduling (a total of 82,000 inferences). Then, by keeping the same
stuck-at-fault, the inferences of the same images were executed by compiling the
application’s kernel with the proposed scheduling (a total of 82,000 inferences).
Concerning the simulation time, the 164,000 injections took about 41 days thanks to

116 Mitigation Strategies

the parallelization of the environment and the usage of the pipelined FI framework.
The reader should note that for faults producing a simulation hang (i.e., 71,840 and
65,040 images in Table 6.3), a timer was used to avoid useless inferences of the full
set of images.

The data in Table 6.3 demonstrate the capability of the proposed ILP and variance-
based scheduling in improving the reliability of the system. As shown, it is able to
reduce by 24.74 % the neural network incorrect predictions (SDC-1 %). Moreover,
as expected, the amount of correct predictions with MSE greater than zero (Masked,
MSE >0) increased by 97.80 %. In other words, the new scheduling is able to
reduce the risk of wrong predictions, by creating evidence of faults in the output
vector (MSE >0) but keeping the prediction correct. A third good point concerns the
last row of the table (Masked, MSE = 0): the suggested scheduling improves the
masking ability of the neural network by 59.53 %.

To conclude, we computed the impact of the proposed ILP-based scheduling at
run-time in terms of simulation time and memory footprint. Compared to a traditional
scheduling, the adoption of the new ILP scheduling leads to an increase of 3.2% in
simulation time for a single inference cycle and 0.6% in memory occupation, due to
the additional code included to modify the chunks’ assignment. However, despite
this small increase, the results demonstrate the improvement in the reliability of the
target neural computing system, which starts to be crucial in safety-critical areas.

Table 6.3 RTL Fault Injection Results.

Fault Injection
Results

Static Scheduling Proposed Scheduling [%] VariationImages [%] Images [%]

SDC-1 1,338 1.63 1,007 1.23 -24.74
Hang 71,840 87.61 65,040 79.32 -9.47
Masked, MSE >0 4,910 5.99 9,712 11.84 +97.80
Masked, MSE = 0 3,912 4.77 6,241 7.61 +59.53
Total 82,000 100 82,000 100

6.2 Software Test Libraries for ANNs

Artificial Neural Network based applications currently play a key role in everyday life.
They are used as decision-making models in several areas such as banking operations,

6.2 Software Test Libraries for ANNs 117

self-driving cars, robotics. As a consequence, assessing their reliability is becoming
of a paramount importance. In the literature, several fault mitigation techniques
have been proposed to adequately protect (passive fault tolerance) [115, 116], or
correct (active fault tolerance) [21, 117] the system running neural networks based
applications in presence of faults. On the other side, detecting in field the occurrence
of faults has not yet been properly explored for ANN-based applications, expect
from a preliminary study [118].

Among the different fault detection techniques used in field, the usage of Soft-
ware Test Libraries (STLs) is a widely adopted solution for testing microcontrollers
to perform periodic on-line tests during the system mission [73]. A background
in the area is given in Section 1.2.5. In this work, the stuck-at fault model [26] is
considered, a widely used fault model for digital integrated circuits and processors.

6.2.1 Proposed Approach

This research work provides a comprehensive analysis of the use and the integration
of STLs for the on-line test of embedded systems running ANN-based applications
[119]. A recent trend is to exploit low-power, low-cost, and resource constrained
hardware devices, especially for the Internet-of-Things (IoT) field and for the edge
computing paradigm. As described in Section 6.1, AI-based microcontrollers are
typically designed with two main domains: the main domain with a main core
used to handle the peripherals and manage the interconnections, and a cluster of
processing elements (e.g., MAC units or entire processor cores) used for speeding
up the arithmetic operations.

The paper presents a fault detection technique based on the adoption of an
STL that must coexists with the requirements and the limitations of such resource-
constrained microcontrollers.

The relevance of incorporating in-field testing methodologies stems from the fact
that, unlike general applications, ANN-based applications are computationally costly,
requiring millions of arithmetic operations in a single inference cycle. Furthermore,
because these predictive models can make decisions, proving their accuracy in the
field is becoming an important requirement for safety standards. A set of possible
scenarios where the on-line execution of test programs is interleaved with the ANN-
based application is described. For each of them, the impact introduced by the STL

118 Mitigation Strategies

Figure 6.2 Fault Detection Time

execution on the performance of an ANN inference time is evaluated; in addition,
the Fault Detection Time (FDT) of the STL is also considered. When monitoring for
the incidence of faults during run-time, two primary characteristics must be taken
into account, regardless of the self-test safety technique used.

The first is the availability of the system, which is related to the system’s perfor-
mance. All system functions (interrupts reaction, application software, and others)
are delayed when the in-field self-test mechanism is enabled.

The second one is the Fault Detection Time, defined as the time the self-test
mechanism takes to detect a detectable fault in the worst-case scenario from the
time it occurs. In practice, it may be thought of as the time it takes to indicate
whether the system is fault-free, assuming that all problems are equally likely (with
a given confidence level expressed by the fault coverage). A graphic illustration
is provided in Figure 6.2. As evident, the parameters availability and FDT are
mutually exclusive: the higher the required system availability, the lesser the time
window available for the self-test. It’s worth mentioning that the parameters are
heavily influenced by two factors: the application’s real-time limitations, and the
application’s safety requirements (the higher the criticality of a failure, the more
often the system must be tested).

The proposed study applies to AI-based microcontrollers, and, depending on
whether the adoption of a software test library may degrade or not the ANN’s perfor-
mances, identifies six possible scenarios. In the following, they are distinguished in
two principal categories:

6.2 Software Test Libraries for ANNs 119

1. STL execution without ANN performance penalty.

Three cases that have no effect on performance are detailed in this paragraph as
they are carried out during the ANN’s idle intervals. Clearly, because the aim
is to optimize system availability without affecting the ANN’s performance,
executing the full run-time STL at a single idle moment is impossible. Because
the STL is made up of a series of separate self-test programs, this is simple
to accomplish. The run-time programs are made to be the least intrusive as
possible. As a result, their duration is limited in order to fit inside the idle
times.

• A1: Ram Data Transfer.

The scheduling of the self-test programs is done during the data transfer
between the main memory and the innermost level of cluster data RAM
memory. A Direct Memory Access (DMA) unit is usually assigned the
transfer. The PEs are idle at this period as the responsibility is offloaded
to the DMA.

• A2: Group-based Round robin Self-test during low intensive computation
layers.

It might happen that during the inference process, some PEs are not
employed for the computation, and they can be used for the self-test.
In contrast to A1, the technique concentrates on just evaluating a few
PEs. Obviously, an efficient and complicated scheduler based on the
round-robin paradigm is required for this technique. The scheduler must
be able to calculate the non-parallelizable layers of the ANN application
using several PEs.

• A3: A1 combined with A2.

The last class in this category combines A1 and A2 by exploiting the idle
times during the RAM data transfer for running test programs on all PEs.
Moreover, it executes self-test programs on unused PEs.

2. STL execution with ANN performance penalty

In this category, the execution of self-test programs negatively impact the ANN
performances while improving the FDT.

• B1: PE-level Round Robin Self-test execution.

120 Mitigation Strategies

While one PE is performing the self-test, the others share the task that
would have been given to the PE who is being tested. This invariably
causes a delay in the execution of inference. However, this approach is
inaccurate since the FDT is drastically lowered only for single PEs, and
the FDT must refer to the entire cluster.

• B2: Parallel Self-test at the end of the inference.

The prior technique is ineffective in terms of FDT reduction and has a
negative impact on ANN performance. A preferable option would be
to do the self-test at the conclusion of each inference. In practice, the
system examines the state of the PEs in the cluster before initiating the
next inference. It is worth mentioning that the self-test is run in parallel
on all the PEs that are active.

• B3: Combining idle times with interlayer execution.

The last method entails interlayer execution and idle times during RAM
data transfer. In reality, the self-test is launched simultaneously on all
PEs during their idle intervals. As a result, since the aim is to lower the
FDT, the best is to complete the run-time STL in one inference or fewer.
As a result, extra test sessions are scheduled at the conclusion of each
layer.

6.2.2 Experimental Results

Experiments are carried out on two different neural computing systems: a 7-layer
CNN running on GAP-8 [98], and ResNet-18 running on HERO. As for the first
AI-based microcontroller (i.e., GAP8), it is made of two separate domains: the main
area with a main core and a cluster of 8 processing elements (i.e., cores). All the
9 cores are identical RISC-V cores (named ri5cy) and feature a 4 stage in-order
single-issue pipeline and support the RV32IMC instruction set plus extensions to
boost performance for digital signal processing. The main domain includes 512 kB
of L2 memory, while the cluster cores can access a shared 128 kB of L1 memory.
When GAP-8 runs CNN-based applications, computational-intensive operations
are offloaded to the cluster together with, if desired, the accelerator engine. All
the MPSoC cores execute the same binary following the SIMD paradigm, with
the aim of maximizing the power efficiency and increasing the instruction-level

6.2 Software Test Libraries for ANNs 121

Table 6.4 CNN timing details

CNN Operations Clock Cycle Cores Active

L2-L1 mem transfer 756 Fabric Controller
Convolutional (layer 1) 116,193 Cluster’s Cores 0 - 7
ReLU 2,281 Cluster’s Cores 0 - 7
Max Pooling (layer 2) 9,245 Cluster’s Cores 0 - 7
L2-L1 mem transfer 1,162 Fabric Controller
Convolutional (layer 3) 100,532 Cluster’s Cores 0 - 7
ReLU 1,316 Cluster’s Cores 0 - 7
Max Pooling (layer 4) 4,564 Cluster’s Cores 0 - 7
L2-L1 mem transfer 1,171 Fabric Controller
Convolutional (layer 5) 24,111 Cluster’s Cores 0 - 7
ReLU 1,264 Cluster’s Cores 0 - 7
Max Pooling (layer 6) 2,718 Cluster’s Cores 0 - 7
L2-L1 mem transfer 801 Fabric Controller
Fully Connected (layer 7) 10,418 Cluster’s Cores 0 - 4

parallelism. A complete inference cycle (a single prediction) takes 276,529 clock
cycles (15,772 ms, 18 MHz). At the beginning, all the network data are stored in
the 512 kB L2 Memory in the main domain. Layer by layer, they are transferred
to the 128 kB cluster’s memory by the DMA controller. Interestingly, this transfer
may be considered a downtime for the network inference, and therefore it could
be exploited for implementing safety mechanisms (e.g., on-line self tests). For the
sake of completeness, in Table 6.4 we report the precise timing in terms of clock
cycles for each inference step. In Column 3, the active cores are highlighted. The
CNN under assessment is made of 7 stacked layers, varying from convolutional,
max pooling and fully connected. It has been trained and tested on the CIFAR-10
database, a dataset consisting of 60,000 32x32 coloured images grouped in 10 output
classes. All the convolutional layers are followed by the ReLU activation function.

As a second case study, a different neural network was considered, i.e., ResNet-
18 running on the HERO [120], a heterogeneous SoC that integrates a multi-cluster
of RISC-V PEs. It is made of 4 replicas of the RISC-V cluster; each of them is
equipped with 8 cores for a total of 32 PEs. A ResNet-18 inference requires about
850 ms (with the HERO microcontroller operating at 18 MHz), including also the
DMA cycles used to load the parameters into the memory of each layer. Consistently,
the inference process is the similar to the one described for the previous CNN; the
main difference is that this DNN is done on a multi-cluster system and the workload
is shared between the active clusters.

122 Mitigation Strategies

The STL was developed for the in-field test of the RISC-V cores of the microcon-
trollers (the ri5cy cores). It comprises a total of 29 test programs, 21 intended for the
execution at run-time. For each of them, Table 6.5 reports the test program duration
(in terms of clock cycles), the stack frame size, and the code memory occupation.
On the whole, the entire STL takes 60,155 clock cycles and occupies 17.7 kB of
memory. Considering only the run-time tests (the one that will be interleaved with
the ANN inference), the duration corresponds to 11,736 clock cycles while the
memory occupation is around 5.8 kB.

Table 6.5 Software Test Library Details

Test Program Duration [cc] Stack Frame
Size [Byte]

Test Program
Size [Byte]

Test
Classification

Mull 1 584 24 258 Run-time
Mull 2 587 24 258 Run-time
Mull 3 581 24 258 Run-time
Mull 4 583 24 258 Run-time
Div 1 585 24 258 Run-time
Div 2 582 24 264 Run-time
Div 3 587 24 264 Run-time
Shifter 454 24 264 Run-time
Logical 458 24 210 Run-time
Adder 1 553 24 220 Run-time
Adder 2 561 24 242 Run-time
Adder 3 586 24 242 Run-time
Mull dotp 1 588 24 242 Run-time
Mull dotp 2 581 24 384 Run-time
Mull dotp 3 588 24 384 Run-time
Mull dotp 4 586 24 384 Run-time
General ALU 1 489 24 384 Run-time
General ALU 1 524 24 180 Run-time
Vectorial ALU 1 558 24 180 Run-time
Vectorial ALU 2 574 24 358 Run-time
Vectorial ALU 3 549 24 358 Run-time
Register block 1 5,291 52 986 Boot-time
Register block 2 5,843 52 1,121 Boot-time
Load Store 2,912 52 1,658 Boot-time
Decode 9,584 76 2,226 Boot-time
Exception 8,796 76 1,156 Boot-time
Hardware loop 6,891 76 1,522 Boot-time
Branch control 4,978 76 1,187 Boot-time
Prefetch 4,122 76 2,284 Boot-time
TOTAL 60,155 17.7 kB
TOTAL (run-time) 11,736 5.8 kB

6.2 Software Test Libraries for ANNs 123

Table 6.6 RI5CY stuck at faults details and test coverage

Unit #faults before
ASSFC

#faults
after ASSFC

FC [%] boot-time
& run-time

FC [%]
run-time

cs_registers_i 29,657 25,350 84.05 26.57
ex_stage_i 69,214 68,151 97.96 95.73
id_stage_i 66,348 63,237 85.42 67.26
if_stage_i 18,618 15,145 86.57 65.23
load_store_unit 5,774 5,365 85.47 44.35
RI5CY_pmp_unit 77,784 425 91.51 88.87
glue logic 1,093 985 77.69 76.51

TOTAL 268,488 178,658 90.08 71.59

The number of stuck-at faults that could affect the RISC-V core is provided in
the 2nd column of Table 6.6 and corresponds to 268,488. The faults are grouped
according to the functional unit they belong to. These figures refer to a synthesis
performed with the 45nm NangateOpenCell Library. Additionally, given the work-
load, 89,830 safe faults were identified and safely removed from the fault list. Such
faults were found according to the Autonomous Systems Safe Faults Classification
Process (ASSFC) described in [118]. As it can be seen from Table 6.6 (3rd col-
umn), a significant number of safe faults are identified in the memory protection
unit (RI5CY_pmp_unit), which is normally used by the operating system. Since the
target application does not make use of it, such unit is unused. Given this, the STL
Test Coverage considers exclusively the remaining 178,658 faults (considered as
unsafe). It is worth to underline that the gate-level descriptions of all the considered
processor cores within the system are equal (they underwent the same synthesis
process). Hence, the Fault Coverage (FC) reached by the STL is valid for all the
RISC-V cores. The FC is provided in Table 6.6. In particular, Column 4th reports
the cumulative test coverage achieved by both boot-time and run-time tests, equal
to 90.08%. Contrarily, when considering exclusively the run-time tests, the test
coverage drops to 71.59% (5th Column).

To study the feasibility of using an STL to on-line test an embedded system
oriented to execute AI-based applications, a commercial simulator was used to derive
the CNN execution time and FDT. For the experiments, the cluster was operating at
18 MHz and the instruction caches were enabled for the entire duration (including
the self-test program execution). In the A1 scenario, it is possible to derive a test
window of 3,886 clock cycles for each inference due to the DMA. As the run-time

124 Mitigation Strategies

STL lasts 11,736 clock cycles, the FDT is equal to three full inferences plus some
few additional clock cycles of the following inference. In other words, once every
four inferences, the run-time self-test diagnostic can provide an answer concerning
the integrity of all eight cluster cores. Instead, in the A2 scenario, the cores not
interested in the computation of a CNN layer are exploited. Table 6.4 shows that five
of the eight cores are involved in the computation of the last fully connected layer.
The remaining three can run the STL in a test window of 10,418 clock cycles. Given
the duration of the run-time STL, two full inferences are required. It is worth noting
that after these two inferences, only three cores were tested. For achieving the target
fault coverage on the entire cluster, six full inferences (and consequently also the
FDT) are required. Clearly, every two inferences, the last fully connected layer must
be scheduled on those cores that have been fully tested during the last test session.
In this way, every two inferences, three new cores are available to be tested. The
scenario A3 combines the two previous scenarios by exploiting all possible IDLE
times. With this policy, it is possible to execute an entire self-test on three cores
per inference. Therefore, from the FDT point of view, within three inferences each
core has been tested at least once without any performance loss. In scenario B1, a
core is excluded from the ANN calculation and executes the STL exclusively. The
remaining seven cores run the ANN application, including the work of the excluded
core. Specifically, with the cluster clock running at 18 MHz, the inference time
increases from 15.772ms to 18.231ms. However, this reasoning is flaw as the FDT
(equal to the duration of the run-time STL, 11,736 clock cycles) is greatly reduced
exclusively for one core. Indeed, as the FDT must refer to the entire cluster and
the core are interleaved at the end of the inference, the FDT is actually eight full
inferences. In the B2 scenario, the overall performance of the CNN is reduced but
the FDT of the STL is improved. If a detectable fault (i.e., a fault covered by the
run-time STL) is occurring at the beginning of an inference, then the system would
react after an amount of time equal to one full inference plus the time for executing
the run-time STL. When completing the first inference, the next one can start after
the cluster completes the self-test only. It is worth underlining that since the STL
is scheduled after the CNN, the CNN still completes the computation in time. The
last loss-of-performance scenario is a combination of A1 and B2 methods. The aim
of this approach is to execute all the test programs in a single inference to reduce
the FDT. At the same time, we want to reduce the ANN’s loss of performance by
exploiting the DMA data transfer. Test programs not executed during DMA are

6.2 Software Test Libraries for ANNs 125

Figure 6.3 CNN performance versus FDT

scheduled in different test windows arranged between the layers’ computation. As
said before, the test window available during the DMA operation is of 3,886 clock
cycles. Since the run-time STL lasts 11,736 clock cycles, the remaining 7,852 clock
cycles have to be allocated in seven test windows of 1,122 clock cycles each. As a
consequence, the CNN requires 7,852 additional clock cycles to complete.

The obtained results are plotted on a bi-dimensional Cartesian space in Figure 6.3,
where the x-axis represents the FDT (expressed in ms), and the y-axis the CNN
execution times (still in ms). Each point represents one of the six possible scenarios.
Since approaches A1-3 do not alter the CNN execution time, they ideally lie on a
straight line parallel to the x-axis. When the CNN performance is paramount, any of
these implementations would be in principle appropriate for including also an STL
as safety mechanism. However, when considering also the safety of the application,
A3 represents the Pareto optimal solution with respect to the FDT. Indeed, it is the
closest implementation to the y-axis. This means that when considering the CNN
performances, A3 is the optimal solution with respect to the FDT. As a matter of
facts, there is not any other point below it with the same CNN performances. When
considering the safety of the application as the most important parameter, B3 is the
Pareto optimal solution with respect to the CNN execution times. Indeed, B3 worsens
the CNN performance of 2.71% while B2 of 4.83%. However, it is worth noting
that B3 also has a better FDT with respect to any other point. Since A3 and B3 are
Pareto optimal points, they represent the frontier for the considered implementations.
Finally, it is interesting to observe that even though B1 is probably the most intuitive
and immediate implementation, it is undoubtedly not beneficial for any of the
considered parameters. Indeed, it is dominated by any other implementation under
any circumstance.

126 Mitigation Strategies

Figure 6.4 Resnet-18 performance versus FDT

Regarding the second case study, all the above-described analyses have been
replicated on ResNet-18 running on HERO. Experimental results with the six dif-
ferent scenarios are illustrated in Figure 6.4. In the A1 scenario, the entire STL is
performed during DMA cycles in a single CNN inference; similarly, in scenarios A3
and B3, all the STL is performed in a single inference exploiting the DMA activity
time. Instead, the A2 scenario needs three inferences to execute all the STL. The
A2 scenario exploits three PEs not used during the last fully connected layer of the
ResNet-18. The B1 scenario has a significant impact on the performance of the
system, as depicted in Figure 6.4. Finally, the B2 scenario, in which the STL is
performed after each inference, introduces a minimal effect on the CNN performance.
The B2 scenario performances are very similar to that of scenario A1.

To conclude, it is worth underlying that such scenarios do not represent exhaus-
tively all the possible existing cases. They have been selected since they provide
useful insights on the potentiality of software test libraries as reliability mechanism
for ANN-based applications. Future work aims at exploring different architectures,
e.g., GPUs, as well as deepen all the not-yet examined scenarios. To conclude, the
experimental results demonstrate that the optimal scenario matches with B3 for both
the targeted CNNs.

6.3 Chapter Summary

To summarize, this chapter describes two methodologies proposed to either improve
the masking ability of neural networks by redistributing neuronal computations in
the available PEs, and detect on-line the occurrence of faults. The first technique

6.3 Chapter Summary 127

experimentally proves that, without recurring to retraining or redundancy schemes, it
is possible to mitigate the effects of hardware faults by redistributing the neural com-
putations. Indeed, conventional mitigation techniques that are based on redundancy
do not fit well with the compute-intensive nature of neural networks, introducing
huge overheads. Clearly, this comes at the cost of a minor increase in simulation
time. To the authors’ knowledge, this is the first time that an ILP solver is used to
find out an optimal scheduling for artificial neural networks. In the literature, ANNs
are used as they are for solving multiple or real-time task scheduling problems [121].
A reliability-aware scheduling on heterogeneous multicore processors is proposed
in [122] for general applications. While our approach is tailored to ANN-based
applications on embedded systems and is performed at compile-time, in [122] the
scheduling is done dynamically and applies to multithreaded workloads.

The second approach presents an in-depth analysis on the coexistence of software
test libraries and neural networks. Particularly, two main scenarios are illustrated:
the on-line execution of the STL with and without ANN performance penalty. Ex-
perimental results show that, by exploiting the application’s idle times, it is possible
to reduce the fault detection time without greatly impacting the neural network
performance.

In the future, the feasibility of the ILP-based scheduling methodology will be
studied to schedule neuronal computations on different architectures, such as GPUs.
Moreover, the coexistence of STLs with deep neural networks will be investigated to
reduce even more the fault detection time.

Part II

Security of modern devices

Chapter 7

Background and Related Works

Hardware-based vulnerabilities are becoming a serious threat in the Integrated
Circuit (IC) industry. Current SoC designs are comprised of many Intellectual
Properties (IP) blocks coming from third-party vendors. These can maliciously
insert additional hardware, commonly known as Hardware Trojans (HTs), aiming
at degrading performance, altering functionality or even leaking secret information.
Moreover, they can lower the device reliability by changing physical parameters.
Specific measures need to be taken for detecting, avoiding, and mitigating potential
threats. Since the security needs are driven by the evolving types of attacks, i.e., new
adversary models, types, and the intended use of the device, there is no solution that is
able to provide complete protection. A common stance both in academia and industry
is that the best approach is a set of flexible, technologically-driven solutions that are
to be applied during the whole life-cycle of the device: development, deployment
and operation.

Understanding the SoC supply chain is the first necessary step for delineating
the possible attack scenarios. In [22], the authors provide an interesting overview of
the SoC development flow and all the entities involved. They identify three main
phases: the Intellectual Property (IP) Development, the SoC Integration and the
Foundry. The first one involves all the IPs providers. An SoC is typically comprised
of more than one IP unit. To reduce research and development costs, some of them
are built in-house, others bought from third-party IP vendors. Once all the IPs are
available, they are joined to build an SoC. This phase is known as SoC Integration.
Both SoC designers and IP providers rely on EDA tools for facilitating the design

131

process. At this point, all the side structures are already integrated into the SoC,
for example, Design-For-Testability modules, Debug Units, and Built-In Self-Test
blocks are typically entrusted to third-party specialized vendors. Once the SoC post-
layout phase is done, it is sent to the foundry for the IC fabrication. The fabrication
process is usually the most costly stage of the flow, thus is usually granted to external
foundries. A malicious actor present in any stage can insert an HT at various levels
of abstraction. The key issue lies in understanding which of these entities are trusted
and which are not. Once it has been established, a threat model can be drawn. In
[22, 7], the authors provide a comprehensive list of adversarial models showing
exactly when, where, and how a Trojan can be placed into an IC. The field of
hardware security given the practically unlimited number and type of the attacks
is quite vast. [123] systematizes the classification of threat models, state-of-the-art
defences, and evaluation metrics for important hardware-based attacks.

Hardware Trojans (HTs) are defined as malicious and intended alteration of a
circuit that endanger the trustworthiness and the security of the hardware, leading
to unexpected behaviours. In the research community, a great effort has been spent
on classifying them according to factors such as their insertion phase, the activation
mechanisms, the location, and the effects. The authors in [7, 6] provide a broad
description of HTs as well as a wide category of benchmarks.

A typical HT (trigger activated) is composed of a trigger and a payload circuit.
The trigger usually monitors specific signals or series of events under some internal
or external conditions. When the trigger condition is met, it informs the payload
circuit, which executes the malicious function. The trigger is usually hidden under
rare conditions, so the HT is dormant for most of the time and the payload inactive.
In that case, the circuit acts as a Trojan-free circuit. If the activation does not depend
on the trigger circuit, the Trojan belongs to another category, denoted as always-on.
Such Trojan gets activated as soon as its host design is powered-on. Both of them
are silent and accurately hidden into the design to avoid all the pre- and post-silicon
verification, validation and testing mechanisms. However, their effect could seriously
compromise the correct functionality of the target device, and therefore it is of
a paramount importance to develop accurate strategies to detect them as soon as
possible.

Regarding the state-of-the-art Hardware Trojans detection techniques, much of
the research focuses on discovering the first class of Trojans: the triggered-type [124–

132 Background and Related Works

Table 7.1 RTL Hardware Trojan benchmarks available on Trust-Hub [6, 7].

Design Class AES b19 BasicRSA MC8051 memctrl PIC RS-232 wb_conmax TOTAL

Number 21 3 4 7 1 4 10 2 52

126]. Most of these works try to trigger malicious logic by exploiting formal methods
such as theorem proving and equivalence checking. Clearly, both the effort and the
time required for implementing formal techniques grow as the complexity of the
target device increases. Concerning always-on Hardware Trojans, existing techniques
mainly rely on side-channel analyses. A design hosting an always-on Trojan does
not change its functionalities, producing apparently the correct outputs. Therefore,
it is hard to detect them without observing side-channel parameters. Indeed, an
infected design evidences a change of physical characteristics, in the form of power,
delay or current. Techniques addressing this class of Trojans, [127–129], usually
depend on a Trojan free golden reference model that is not always available. The
second main drawback is that side-channel analyses are carried out after fabrication.
A pre-silicon verification and validation methodology is suggested in [130], but from
a formal perspective. They demonstrate the use of theorem proving methods for
providing high-level protection of IP cores, as well as the use of symbolic algebra in
equivalence checking.

During the last years, huge effort has been invested not only in developing
detection methodologies, but also in designing benchmark circuits to favour the
advancements in research. Indeed, the research community has received a strong
drive to adopt open benchmarks for validating their detection techniques. In this
light, many HT models have been proposed [131, 132]. However, the growing
complexity of modern devices as well as more mature and elaborate detection
methodologies call for more complex benchmark circuits. As mentioned, some
authors in their studies proposed different HT taxonomies based on the insertion
phase, location, abstraction level, activation mechanism, effects, etc. However, it is
complicated to create a HT model given the whole spectrum of constantly evolving
attacks and adversaries that are gaining access to more and more phases of the IC
development.

A common trend is to use benchmarks released from the Trust-Hub platform1

[6, 7]. Considering HTs at RTL, only 8 typologies of benchmarks are currently

1https://trust-hub.org/benchmarks/chip-level-trojan

https://trust-hub.org/benchmarks/chip-level-trojan

133

available in Trust-Hub (Table 7.1), and none of them is applied to a pipelined
processor similar to the ones used in the real life, as for example the ones in the
automotive applications. This is even more concerning, given a higher flexibility for
implementing different kinds of malicious functions at RTL. The available HTs are
injected on a small 8-bit 8051 microprocessor, and a detection technique has already
been proposed in [133]. Hence, even the state-of-the-art HT detection techniques
are validated on obsolete benchmarks that do not reflect the true complexity of
the modern embedded devices. As stated in [132], in order to further support the
development of appropriate detection methods, the design and implementation of
practical HTs needs to be considered.

Chapter 8

Main Contributions

To address this problem, the main contributions addressed in this chapter are two-
fold:

• To present the release of RTL Hardware Trojan Benchmarks targeting a
pipelined RISC microprocessor core. The developed HT Benchmarks are
publicly available for the research community1. Their design follows the
guidelines for creating a hard-to-detect Trojan, presented in [134]. This is
covered in Section 9.1.

• To propose a novel technique for detecting HTs in a pipelined microprocessor
design at the RTL. This methodology combines both static and dynamic prop-
erties of the RTL design for building a comprehensive detection methodology
at the pre-silicon stage, resorting to robust machine learning algorithms. This
is presented in Section 9.2.

1https://github.com/ale-dam/HT-uP

https://github.com/ale-dam/HT-uP

Chapter 9

Hardware Trojans

9.1 Proposed Benchmarks

The proposed benchmarks are IP-level Hardware Trojans conceived for a pipelined
CPU. Such Trojans are implanted into an individual IP core of the SoC and can
affect only the specific IP in which they are embedded [135]. The benchmarks
comply with the taxonomy and the classification scheme outlined in [22, 6, 7].
Furthermore, the following attributes are outlined for each benchmark: abstraction
level, insertion phase, location, activation mechanism, trigger, payload, effect. For
the sake of completeness, the insertion phase of the HTs is the Design phase, while
the abstraction level is the Register-Transfer level for all the introduced benchmarks.
Concerning the effects, the benchmarks might prove to be disastrous or introduce
minor damage. Three different categories have been identified:

1. Degrade Performance (DP): The availability of the system under attack might
not be affected, remaining fully operational. However, the HT might damage
the performance of an IC and, in a worst-case, cause it to fail.

2. Denial Of Service (DoS): The HT when activated stops all the activities of
the system.

3. Change the Functionality (CF): The HT alters the functionalities of the
system, causing it to perform malicious, unauthorized operations. The CF
might also lead to a DP or DoS.

136 Hardware Trojans

Table 9.1 Hardware Trojan Benchmarks Description
.

Name Location Trigger Payload Cat

OR1K-T100 Decode Unit Sequence of instructions
Periodically forcing

signal values DP

OR1K-T200 Control Unit
Counters monitoring

read accesses
to SPRs

Entering the
supervisor mode DoS

OR1K-T300 PIC Unit1
Counters for mask
and status register

write access

Disabling
external interrupts CF

OR1K-T400 Control Unit
Three counters for

monitoring instructions Disabling control flag bit CF

OR1K-T500 Decode Unit
A specific sequence

of instructions
Introducing "bubbles" to

stall the pipeline DP

OR1K-T600 Data Cache
Counters monitoring Data

Cache Final State
Machine (FSM) transitions

Invalidating dcache
content DP

OR1K-T700 Load & Store Unit
Instruction type,

order and number Exception on the data bus DoS

OR1K-T800 Instr. Cache
Counters monitoring Instr.

Cache FSM transitions
Invalidating icache

content DoS

Regarding the trigger part in the introduced HT benchmarks, they can be grouped
into two main categories. The first one is represented by a sequence of events that,
when triggered, enable the payload. Such events can be related to different signals
in the model, for instance an exact sequence of instructions, or a set of consecutive
values observed on a given bus. There are different possibilities for implementing
it; however, two main parts can be identified: a set of conditions that activate or
deactivate a targeted flag, and the second one for registering that flag with some
auxiliary combinational or sequential logic. Given the complexity of the condition,
this type of trigger may be difficult to activate, and therefore may escape the standard
verification approaches. The second category of triggers is used to create and check
sub-conditions. Once all of them are satisfied, the payload is activated. They can
be implemented by monitoring different CPU resources, for example, by observing
certain values on the bus, the order and/or the number of certain instructions, the
read/write access to the registers, or tracking the value of control signals between
different stages of the pipeline. Sub-conditions may also check the state of counters
in charge of monitoring different activities in the CPU. The implemented counters

9.1 Proposed Benchmarks 137

may be the part of a separate process observing the aforementioned activities or be
hidden, for instance, in an already existing state machine. In fact, this type of trigger
gives the possibility to create a wide-range of complex conditions. A HT would
generally be expected to be as much controllable as possible from the attacker’s
perspective. However, working with a microcontroller, i.e., a SoC that integrates
additional components such as peripherals, memories, etc., renders such access more
difficult. Given that all the benchmarks are developed for a processor core, and that
there are no mechanisms relying on the user input, i.e., component output, such as
switches, keyboards or keywords/phrases in the input data stream to activate a Trojan,
all the proposed hardware trojans are considered internally triggered. Moreover, they
are activated either depending on the time-based events or on the instructions that
are being executed. Table 9.1 reports all the essential details related to the newly
developed benchmarks: their name, location, trigger and payload brief description
and their category.

9.1.1 Experimental Analysis and Implementation

The proposed RTL Hardware Trojans are implemented in the mor1kx CPU, whose
architecture and HTs’ respective faulty location being depicted in Figure 9.1. The
mor1kx is an open-source core provided by the OpenRISC community2; it is a
configurable 32/64-bit load and store RISC architecture, written in Verilog Hardware
Description Language (HDL). Due to the high design flexibility, it is possible to
customize the CPU by choosing the best trade-off between area and performance.
The version selected in this work (Cappuccino) has a pipeline with 4 stages, supports
delay slot and is tightly coupled with the caches. It also integrates a Programmable
Interrupt Controller (PIC), a Tick Timer (TT) and Debug units. In this work, HTs
are injected in the original HDL design, one at a time, by directly modifying the
RTL code. On top of eight primary HT designs, detailed in Table 9.1, we performed
modifications concerning the complexity of trigger conditions and coding style
to expand our benchmark library and to obtain additional 20 HT designs. In the
following, the principal 8 designs are discussed and detailed.

Trojan T100: This Trojan is located in the Decode Unit of the CPU. An if-then-else
nested structure controls the opcode value originating from the decode unit. Each

2https://github.com/openrisc/mor1kx

https://github.com/openrisc/mor1kx

138 Hardware Trojans

time an instruction gets decoded, if the sequence is correct, a counter is incremented;
if the sequence is interrupted, the counter is reset. The sequence of instructions is
ORI-ADDI-AND-ORI-SUB-XOR-AND-XORI-ADD-OR. Once the counter reaches
a predefined value, the payload gets activated. In this case, the pipeline is stalled
indefinitely, thus, disrupting the service.

Trojan T200: This implementation is located in the control unit of the processor.
Eleven counters in the newly added process monitor read and write access of special
purpose registers (CPUCFGR, EPCR0, SR, DCCR, PCCR0, PCMR0, PMR, PICMR,
PICSR, TTMR, TTCR). With each access, a corresponding counter is incremented.
When all the counters reach predefined values, a trigger is activated. The payload
in this case is integrated into the existing code by adding a single OR condition
to go from user to supervisor mode. Such behaviour is typical when an exception
occurs. The effect is interrupts and timer exceptions being disabled, as well as Data
and Instruction MMU. Additionally, a device that is in the supervisor mode enables
access to some sensitive registers.

Trojan T300: This HT is located in the programmable interrupt controller. Two
counters are inserted to count write accesses to picmr (PIC mask) and picsr (PIC
status) special-purpose supervisor-level registers. Once the trigger part is activated,
and there are no pending interrupts, the payload gets activated to perform its role
by masking all maskable interrupts, which may result in disastrous consequences in
safety-critical systems. Reset needs to be performed to unmask such interrupts and
disable the HT.

Trojan T400: Malicious trigger-part of this HT consists of three counters, counting
the number of 3 instructions in the control stage (e.g., rfe – return from exception,
mfspr – move from special purpose register, mtspr – move to special purpose register).

Figure 9.1 RTL Hardware Trojans benchmarks inserted in the mor1kx CPU.

9.1 Proposed Benchmarks 139

The payload is activated when all three counters count up to a defined value. Once
activated, the malicious function is designed to prevent the first succeeding setting
of the compare-conditional branch flag by adding a simple condition in the assign
statement. However, the effect can be severe, given that often a processor when
dealing with some instructions uses exactly this flag to calculate the address or/and
choose the operand, which may disrupt the desired flow and cause serious problems
depending on the application. Once the request for setting the flag arrives, the HT
performs its malicious function and gets deactivated. Additionally, a reset signal
resets the counters and deactivates the Trojan.

Trojan T500: In the decode unit, this Trojan is implanted to monitor consecutive
instructions. Once the sequence of instructions corresponds to the sequence of a
fixed number of predefined instructions, a trigger is activated. The difference with
respect to some others HTs introduced in this work is that this HT introduces two
processes for registering the activation signal and producing a pulse. In that manner,
the payload gets activated periodically. The payload is added to the condition to form
the decode_bubble_o signal and insert periodically a bubble into the pipeline. The
effect is no change in functionality of the processor. However, due to the introduced
stalls, it becomes slower and degrades the performance.

Trojan T600: This HT is inserted into the data cache module. The trigger part
consists of three counters inserted in the state machine. The Cache FSM has five
states: IDLE, WRITE, READ, REFILL, INVALIDATE. The counters have been
inserted to count the transitions between the states: IDLE to INVALIDATE, READ
to REFILL, WRITE to READ. Once all the three counters reach certain values, cache
invalidation is forced.

Trojan T700: This HT is located in the load-store unit. Trigger part consists of nested
if-else examining the sequence of consecutive multiple load i.e., store operations
with three different types of access: byte (8), half-word (16) and word (32). Once the
complex condition gets satisfied, a pulse signal is generated to activate the payload.
The payload is integrated into the process dealing with the data bus exceptions. In
this regard, once the payload becomes active, it will execute its malicious function
by simulating a data bus exception and stepping into the exception routine. As a
result, the processor proceeds to the next instruction in the pipeline, skipping the
current one at the moment when the exception occurred. Such event may definitely
disrupt the normal operation of the processor.

140 Hardware Trojans

Trojan T800: This HT is implanted into the instruction cache unit. Its trigger part
is incorporated within the FSM with counters by following FSM state transitions.
Once all the counters get set to predefined values, a payload is activated: the internal
hit signal is tied to zero, therefore, every time a request is sent, the instruction cache
reports a miss, i.e., not found in cache memory. Consequently, a refill operation is
performed, thus significantly slowing down the performance of the CPU.

To demonstrate the feasibility of the proposed modifications, we synthesized all
of our 8 HT designs, including the original one, with a 65 nm industrial technology.
Successively, we collected reports regarding area, power and frequency. The results
are shown in Table 9.2, and demonstrate that the trojan insertions are negligible in
terms of area and power overhead. The relative area difference is below 9.8×10−4,
while the total power relative difference is below 7.6×10−4. Moreover, we have
confirmed that the critical path in the design does not change by introducing the
proposed modifications.

Starting from the structure of these original eight HTs, we derived 20 additional
benchmarks by mainly modifying the trigger part (complexity of trigger conditions,
changing the comparison values, and changing them structurally). For instance, if
the trigger looks for a specific sequence of instructions, this has been shortened or
extended. Additional wire signals for controlling the conditions are introduced, and
the position and number of counters is changed together with comparison values.
Furthermore, if the trigger sequence was hosted in a single RTL process, it has been
split up to use two or more processes, clearly maintaining the same sequence. For
example, Trojan T200, originally uses the value of 11 counters to control the trigger
condition. A modified version of this Trojan uses 14 counters for its activation. Their
values are incremented within two separate processes (10 + 4). The aforementioned
changes are especially useful for evading detection by some methodologies that rely
on one particular coding style. On the whole, the benchmark set finally contains a
total of 28 Hardware Trojans.

Functional testing is quite unlikely to detect malicious circuitry based on instruc-
tion or access sequences, as the input space is too large. The number of instructions
in the 32-bit version of the processor is 96 (including custom ones). Therefore, the
probability of activating Trojan T100 is 10×10−20 an order of magnitude. Moreover,
functional verification/testing is statistically useless trying to detect HTs observing
multiple counter values. It is not only because of the large number of conditions, but

9.2 Pre-silicon Detection methodology 141

Table 9.2 Synthesis Results

Design
Size

δArea[%]
Power mW

Total δPower[%]
Ports Nets Cells Comb. Seq. Area Intern. Switch. Leak.

Orig. 9,679 931,538 924,619 601,116 323,252 4,777,062.18 - 257.62 4.93 69.42 331.99 -

T100 9,679 931,567 924,648 601,145 323,252 4,777,100.66 0.1×10−2 257.62 4.93 69.42 331.99 −1.81×10−4

T200 9,679 932,716 925,797 602,038 323,508 4,781,729.10 9.8×10−2 257.82 4.94 69.48 332.24 7.60×10−2

T300 9,679 931,899 924,980 601,412 323,317 4,778,437.10 2.9×10−2 257.67 4.93 69.44 332.06 2.03×10−2

T400 9,679 932,033 925,114 601,515 323,348 4,779,015.82 4.1×10−2 257.70 4.93 69.45 332.09 3.07×10−2

T500 9,679 931,793 924,874 601,333 323,290 4,777,998.70 2.0×10−2 257.65 4.93 69.43 332.03 1.35×10−2

T600 9,679 932,056 925,137 601,535 323,351 4,779,066.78 4.2×10−2 257.69 4.93 69.43 332.06 2.11×10−2

T700 9,679 931,787 924,867 601,330 323,286 4,777,932.66 1.8×10−2 257.65 4.93 69.43 332.03 1.16×10−2

T800 9,697 932,052 925,043 601,441 323,351 4,779,032.98 4.1×10−2 257.70 4.94 69.45 332.09 3.18×10−2

also given the large comparison values and limited time required to run the simula-
tions. All the listed HTs can get excited and are not completely dormant/silent in
terms of activity. Nevertheless, the probability of activating the payload is extremely
low without the knowledge of the structure of the malicious circuit inserted by the
attacker.

9.2 Pre-silicon Detection methodology

9.2.1 Proposed Methodology

The proposed methodology relies on a supervised learning scheme. It is necessary to
underline that, apart from [136], most ML-based techniques are applied at the gate-
level. However, more and more examples of Hardware Trojans inserted at the RTL
are available, due to the flexibility for implementing various malicious functions.
Hence, there is a pressing need for more RTL detection techniques. To fill the
above-mentioned gaps, this paper presents a ML-based methodology for detecting
triggered-type Hardware Trojans. It combines a dynamic approach with a static
analysis of the RTL model. Indeed, if a static approach analyses the structure of the
model by looking for a similarity with the structure of a Trojan, a dynamic method
considers the true activity of the circuit. For this reason, the proposed work picks up
the best of the two methods to cover a greater set of HTs and, thus, generalize the
detection approach.

The proposed flow is shown in Figure 9.2. The input of the framework is the
design that is about to be processed; it is the behavioural RTL model description. The
output is a report indicating suspicious parts in the design, i.e., the code fragments

142 Hardware Trojans

Figure 9.2 Flow of the proposed methodology

that should be checked more thoroughly for malicious HTs insertion. The RTL
design is processed in order to extract both dynamic and static information. While
the dynamic is derived from observing the model behaviour under different stimuli,
the static is obtained without any code execution and is related to the structure
and control/data dependency in the code. The data extracted from the RTL model
are embedded in CFGs. Static/Dynamic data are used as attributes to create input
samples out of node sets for the classification task. At the end, a ML-based binary
classification is used for distinguishing between input samples originating from the
CFGs. The proposed approach is based on the following steps:

1. Control Flow Graph Extraction:

(a) Static Attributes

(b) Assign DataFlow Map

(c) Dynamic Attributes

2. Data Formatting

3. Classification

In the following subsections, each of the steps is detailed.

9.2 Pre-silicon Detection methodology 143

9.2.1.1 Control Flow Graph Extraction

At the initial stage, the RTL design is represented in the form of a CFG, which
incorporates key properties of the design: the static, dynamic, and dataflow map. A
CFG is a directed graph G = (V,E, in,out), where V is a set of vertices (nodes) and
E set of edges. For each process P in the RTL design D, a CFG G can be extracted.
A node v ∈V of the graph G can be:

• a single non-blocking statement – allow scheduling assignments without block-
ing the procedural flow;

• a conditional statement/loop (IF-ELSE, CASE, FOR, WHILE).

E is a finite subset of V ×V ; e is an edge between the nodes v1, v2 if and only if
v2 can be executed after v1 in the process P. in and out are the first and the last node
in a CFG, respectively, used to mark entering the process and leaving the process.
Then, each node in the CFG holds an attribute list, which will be created as described
in the following.

Static Attributes: The static attributes have been extracted from the RTL design
by parsing the source code files. Given the complexity of modern designs, this task
requires an automated tool that provides as an output an abstract syntax tree (AST).
AST is a convenient hierarchical tree-like representation of the abstract syntactic
structure of source code. Then, syntax trees generated by the parser are traversed
to perform the extraction of the CFGs in accordance with the definition that was
previously introduced. It is worth noting that each of the source files may contain
more than one process, which are all elaborated sequentially. The algorithm extracts
the list of input signals, registers, wires, output signals, and parameters. A CFG node
is identified by its unique name and a unique line number that get assigned inside the
processes while creating nodes and attaching them to the corresponding graph. Since
one node can represent either a conditional statement, i.e., a loop, or a non-blocking
statement, it is possible to extract static properties from such constructs. These
include the number of input signals, the number of output signals, the number of
logic operators, relational and equality operators, arithmetic operators, and numbers
(constants). Additionally, each node has its depth in the CFG (level - the number of
edges in the path from the root to the node).

144 Hardware Trojans

Assign DataFlow Map: To deal with the combinational logic (e.g., the assign
statements in Verilog), the proposed flow introduces an auxiliary structure. Creating
an Assign DataFlow Map allows the information outside the (sequential) processes to
be captured and incorporated later into the CFGs. The left part of the assign statement
is used as a key to identify an item in such structure, while the corresponding value
is in a form of a list. Its first element is an array of properties that coincide with the
ones for the statements inside the process (static attributes). The second one is a
list of used signals, either inputs (input), registers of integers (reg, integer) or other
wires (wire). The map is searched recursively for all of its key elements, summing
up the attributes for a corresponding signal list. It stops when there are no more
wire signals, i.e., if the remaining ones are a register, integer, input or output. While
creating the CFGs and extracting their nodes’ static attributes, the influence that a
signal (in the Assign DataFlow Map) has on a statement inside the process is taken
into account by adding its attributes from the corresponding value in the map entry.

Dynamic Attributes: Logic simulations of the design under assessment are per-
formed to collect code coverage reports, based on standard metrics such as statement
and toggle coverage. The idea is to gather information from a set of programs that
thoroughly exercise the design under analysis. It is essential to outline that such
set of programs may have been written either as a part of pre-silicon or post-silicon
verification, validation, or even manufacturing tests etc., targeting different parts
and different features of the system. For every instance in the design, the uncovered
sequential statements belonging to a process are listed with their line number, source
code, and type (if and case conditional structures, for and while loops together with
non-blocking assign statements). The second type of reports focuses on toggle activ-
ity of the signals that are being used outside sequential processes as inputs/outputs,
to model combinational logic in assign statements. For each and every program in
the library, a statement-coverage report is generated, while only one merged report
for all runs regarding the signal toggling. Hence, two additional fields have been
created in the attribute list for such purpose: one for execution probability and one
for signal toggling activity. Regarding the former, a category is decided for each
node (statement) based on the number of executions, i.e., how many times it was
covered. This technique is an important tool for preparing numerical data for ML
and is referred to as unsupervised discretization [137]. It consists of transforming
data from continuous to discrete, using, e.g., equally wide intervals. Typical use case

9.2 Pre-silicon Detection methodology 145

is having many unique values to model effectively. In Eq. 9.1 that shows the range
for deciding a category, nexec is a number of times a statement has been covered
out of M runs. N is the number of intermediate categories, set to 5. Consequently,
apart from the two extreme categories never (N) and always (A), there are other five:
almost never (XS), rarely (S), sometimes (M), often (L), and almost always (XL).

i
M
N
≤ cat(nexec)< (i+1)

M
N
, i ∈ {0,1,2, · · · ,N} (9.1)

As for the latter, toggle reports from all the runs are merged into a unique report,
showing if a wire signal has toggled in at least one run, fully or partially (rise and
fall). The algorithm embeds such information into a node belonging to a process
statement in the following manner: wire signals are listed in such statement, if any,
otherwise score 0 is set; based on their total number t and the number of those that
toggled d a ratio R = d

t is calculated; R falls into one of the ranges, 0, (0, 1
4], (

1
4 ,

2
4],

(2
4 ,

3
4], (

3
4 ,1), 1, and gets assigned a value from 6 to 1.

9.2.1.2 Data Formatting

By capturing the structural and functional dependency between the nodes in a CFG,
the context and neighbourhood information is brought into the predictions. To do
so, a node with its closest neighbours is selected to form a set, i.e., to obtain an
input sample. Clearly, such sets may vary in size, given the bound that is chosen for
grouping the nodes. It is desirable not to be too generic neither too specific, since
this action will have an impact on the learning capabilities. For this reason, we have
considered a set of 4 nodes. Therefore, each node that has at least one parent and at
least one child is processed. For nodes with more than one parent P and more than
two children C, all the possible combinations are extracted P ·

(C
2

)
. A child having

no siblings is included in the selection two times. For all the CFGs, the algorithm
implementing a set of above-mentioned rules extracts a set S of node selections
ti = (pi,ni,c1i,c2i). Subsequently, by expanding its nodes with their incorporated
attributes, gets transformed into tai = (a(pi)[],a(ni)[],a(c1i)[],a(c2i)[]). For the
training, such input data have to be labelled relying on the set of Trojan Benchmarks
introduced in [138]. If a central node ni for which we select its environment belongs
to the malicious insertion then, the set of 4 nodes is marked as positive. Otherwise,
it is marked as negative, i.e., non-suspicious.

146 Hardware Trojans

9.2.1.3 Classification

Once the data have been extracted, the problem may be tackled as a pure Machine
Learning classification problem. The learning phase, i.e., the training process, re-
lies on the features obtained from the data formatting. Here, we apply different
paradigms to perform the classification and confront their performance in the follow-
ing subsections. The first one is using SVM algorithm, while the second is based on
a fully connected feed-forward neural network.

Support Vector Machine: SVM algorithm is used with different kernels to choose
the one that fits best for the problem in question. Often, the differences in the scales
across input variables may affect the training process and therefore the final result. A
model might become unstable, meaning that it would suffer from poor performance
in both learning and validation/test phases as a result of high sensitivity to input
data and higher generalization error. Therefore, using pre-processing techniques
such as scaling or normalizing input data is preferred when working with many ML
algorithms. Normalization is a scaling of the data from the original range so that
all values are within the new range between 0 and 1. It can be performed on each
individual data sample (row-wise) or across data features (column-wise). Standard-
ization, on the other hand, includes transforming data to change its distribution of
values: the mean of the observed values becomes 0 and the standard deviation 1. For
this particular purpose, we perform scaling across the features: X =

X−µ

σ
.

Feedforward Neural Network: Given the number of attributes, the number of
inputs for a fully connected feed-forward neural network is set to 60, after expanding
some features with one-hot-encoding. Following the common experience of ML
experts, having too many layers when dealing with a limited number of training data
(an order of magnitude of 1,000 samples) may result in underfitting. Furthermore, the
number of NN inputs is a limiting factor when defining the number of nodes in layers.
Given the previous consideration as well as an empirical analysis, the following
topology has been adopted: (64, tanh), (32, tanh), (32, relu), (2, sigmoid). For the
sake of clarity, the first number indicates the number of neurons that constitutes the
fully-connected layer, while the second parameter specifies the activation function,
e.g., hyperbolic tangent, rectified linear unit, sigmoid. For a fixed topology, tuning
training parameters may significantly enhance the NN learning capabilities. Hence,

9.2 Pre-silicon Detection methodology 147

K-fold cross-validation method is employed to find the best optimizer and select
optimal parameters such as batch and number of epochs. One of the challenges faced
in ML is memorizing the input samples, especially when having a small training
dataset. However, the NNs have shown to be more resilient to those problems. In
any case, to reduce the generalization error, i.e., to prevent overfitting, a Gaussian
noise is added to the input. In this way, the training process is made more robust.

9.2.2 Experimental Results

The selected platform is AutoSoC [139], an open-source SoC benchmark suite,
conceived to serve the needs for standardization and benchmarking in the automotive
area.

For every HT benchmark, the following experimental procedure was exploited:

1. Parsing of the design model using a set of Python tools and an in-house
developed tool to generate CFGs;

2. Performing the logic simulation and report generation using state-of-the-art
commercial tools; then, adding the information originating from the coverage
and toggle reports to the CFGs;

3. Node extraction: a selection of nodes with their neighbourhood is made
(parents and children) to create textual files whose rows contain the attributes
for each of the four nodes. For the training process such data have to be
labelled manually; repeating items, if any, are eliminated.

The whole setup has been developed to perform logic simulation and generate
reports in Linux environment on a server equipped with a dual Intel Xeon CPU
E5-2680 v3 and 256 GB of RAM. The process itself is managed by a set of bash
scripts taking care of design elaboration, design simulation, calculating the coverage
and merging the reports.

Given the fact that for the training, RTL designs with different type and im-
plementation of HTs have to be simulated multiple times, the time required for
obtaining the reports can become significant. To speed up the execution time, a
multiprocess environment has been developed. To this end, a library of test programs
for mor1kx CPU has been simulated on all the 28 RTL trojan models. The test

148 Hardware Trojans

program library includes 46 programs for a total of 64 kB. Launching a set of 46
programs, simulations on one design in this configuration requires 22 minutes on
average. By merging the contribution of each single program, the entire test program
library achieves 85% of statement and toggle coverage on the golden design model.
It is worth underlying that the test program library is not able to activate the HTs,
being coherent with the assumption that HTs hide under rare trigger conditions.

In our approach, the tool for performing the task of parsing is Pyverilog [140].
It is a Python-based hardware design processing toolkit for Verilog HDL. The tool
relies on Icarus,3, an open-source tool for performing the preprocessing. It flattens
the hierarchy by implementing the include and define directives, producing the
equivalent output related to such directives. Successively, Pyverilog reads the source
code and generates Abstract Syntax Tree (AST) in the form of Python nested class
objects. The parser is built upon PLY4 which is used as a parser generator (compiler-
compiler). PLY is a Python implementation of the Lex-Yacc lexical analyzer.

The first set of experiments is intended to utilize SVM as a model to perform
classification of code sections given in the form of attributes belonging to the family
of nodes. Common practice when working with supervised learning and data classifi-
cation is to split the data set into three exclusive sets: training set, validation set, and
test set. However, by partitioning the available data into three sets, we drastically
reduce the number of samples used for the learning phase. Consequently, such action
might have a negative impact on the model’s performance. Furthermore, the results
can depend on a particular random choice when choosing/creating training and
validation sets. A solution to this issue is using k-fold cross-validation. It consists in
splitting the training set into k smaller sets. The following procedure is followed for
each of the k “folds”: a model is trained using k−1 folds as input data for the train-
ing; the resulting model is validated on the remaining part of the data (i.e., it is used
as a test set to compute a performance measure). Training/validation data and test
data contain, respectively, 80% and 20% of the complete data set. The average recall,
precision, accuracy and F1-score [141] were calculated on cross-validation sets with
10 folds for each of the four classifiers and reported in the first four columns of
Table 9.3. Subsequently, the model was trained on the whole training data set (80%),
with a particular model configuration. Next, we examined the models’ strength by

3http://iverilog.icarus.com/
4http://www.dabeaz.com/ply/

 http://iverilog.icarus.com/
http://www.dabeaz.com/ply/

9.2 Pre-silicon Detection methodology 149

Table 9.3 Experimental results of the four SVM classifiers
.

Cross-Validation 10− f old Training [80%] Test [20%]

Kernel Rec. Prec. Acc. F1-sc. Rec. Prec. Rec. Prec. Acc. F1-sc.
TN FP
FN TP

Linear 0.79 0.60 0.87 0.69 0.80 0.64 0.81 0.61 0.87 0.70
314 42
15 66

Polynomial 0.49 0.90 0.90 0.63 0.57 0.97 0.64 0.95 0.93 0.76
353 3
29 52

RBF 0.82 0.81 0.93 0.82 0.88 0.90 0.91 0.87 0.96 0.87 345 11
7 74

Sigmoid 0.67 0.42 0.77 0.52 0.68 0.4 0.64 0.41 0.76 0.5
280 76
28 53

applying test data that had not been used previously, i.e., the remaining 20% of the
initial complete set.

Receiver Operating Characteristic (ROC) curve is a graphical plot showing the
influence of the threshold margin on the performance of the binary classifier system;
it gives a trade-off between sensitivity (true positive rate) and specificity (1 - false
positive rate). Classifiers with corresponding ROC curves closer to the top-left
corner indicate a better performance. On the other hand, the closer the curve comes
to the 45-degree diagonal of the ROC space, which is used as a baseline for the
random classifier, the less powerful the classifier becomes. Four Receiver Operating
Characteristic (ROC) curves for linear, polynomial, rbf and sigmoid kernels are given
in Figure 9.3. They provide enough information to analyse the predictive power of a
classifier and find the optimal threshold. Based on the aforementioned analysis, the
threshold was set to 0.19. Moreover, the RBF kernel was chosen as the best one in
terms of performance when compared to the others. This claim can be supported by
observing the numerical values in Table 9.3, where we report recall and precision
on the training set, and successively, recall, precision, accuracy and F1-score on
the test set, together with the corresponding confusion matrix. Additionally, here
we decided to split the attributes extracted from the set of nodes and examine their
partial influence on the performance of the classifiers. As shown in the Figure 9.3, we
performed training using exclusively static attributes (stat), then dynamic attributes
(dyn) and finally, latter and former combined (stat+dyn). All the classifiers clearly
underperformed when relying only on the dynamic attributes. In case of the classifier

150 Hardware Trojans

(a) ROC curve for linear kernel (b) ROC curve for polynomial kernel

(c) ROC curve for rbf (gaussian) kernel (d) ROC curve for sigmoid kernel

Figure 9.3 ROC curves for 4 different kernels including different set of extracted
attributes (farther from the 45-diagonal, i.e., closer to the upper-left corner, the better)

with the RBF kernel, using the complete set of attributes instead of static attributes
only resulted in improved classification power; in particular, 0.91 instead of 0.88 for
recall, 0.87 instead of 0.8 for precision, 0.96 instead of 0.94 for accuracy and 0.87
instead of 0.84 for F1-score.

The second set of experiments is related to training the NN and evaluating its
performance. For selecting its parameters during the training process, exhaustive
experiments were run using LazyGrid5, an open-source package that eases hyperpa-
rameters tuning and compares different machine-learning models. To evaluate its
effectiveness, eight different experiments have been conducted, one for each group
of Hardware Trojan. To determine how the NN will generalize for an independent
data set, we used cross validation technique. In other words, the NN has been trained

5https://github.com/glubbdubdrib/lazygrid

https://github.com/glubbdubdrib/lazygrid

9.2 Pre-silicon Detection methodology 151

on a set completely independent of the test one. The results show that even though
the NN learns only on a category of Trojans, it is able to discover different types as
well.

In Table 9.4, we report, for each training data set, the results obtained by evaluat-
ing the learning capabilities of the NN on the corresponding test sets. For a subset of
benchmarks Tk∗ that is used later for test, we first train the NN on the whole set of all
benchmarks (

⋃
T) excluding that one particular subset Tk and benchmarks derived

from modifying it (Tk∗). Confusion matrix terminology is used to present training
and test performance given the predicted and expected classes for binary classifica-
tion. The number of CFGs in a design (a set) is equal to the number of processes it
contains. Finally, a false positive rate (FP

FP+T N) is given in the penultimate column of
the table.

Elements of the confusion matrix in context of HT detection are given in Table
9.5, with their corresponding explanation and the effect from the user’s point of
view. The number of FPs (a non-trojan detected as trojan) should ideally be 0, i.e., in
practice it should be kept as low as possible, together with the FNs. However, the
obtained numbers (FP and FN) are still significantly low, given the total number of
samples that have been evaluated (∼1.5k).

It is essential to outline that, first, the number of FPs remains significantly lower
than the number of TNs, while being comparable to TPs. Therefore, checking all
samples marked as positive (TPs + FPs), does not represent a huge effort. Secondly,
even though there are FNs, it does not mean some parts of malicious code escape
the final analysis and remain undetected. As it can be seen from Figure 9.4, a set of
nodes marked in orange belongs to the HT (inserted malicious code), while those in
blue are not. Those nodes covered in red polygon are detected as malicious, therefore
enter in TP category, while those in blue polygon are left undetected, belonging
to the FN. By revealing one, others can be examined and by tracing back all TPs,
a verification engineer is able to completely discover all the maliciously inserted
code. As a conclusion, we can confirm that all the Trojans in the test set have been
discovered.

152 Hardware Trojans

Table 9.4 Experimental results of the Neural Network

.

Training
Dataset
∪T\

Training performance Test
Dataset
(nCFG)

Test performance FP
rate
[%]

Det.

TP TN FN FP TP TN FN FP

T1∗ 260 1781 42 8

T1(183) 23 1493 7 1 1.1 ✓
T11(183) 18 1493 6 1 1.1 ✓
T12(183) 27 1493 9 1 1.1 ✓
T13(184) 24 1493 7 1 1.1 ✓
T14(185) 23 1493 8 1 1.1 ✓

T2∗ 308 1764 13 14
T2(182) 19 1490 15 5 0.1 ✓
T21(183) 24 1491 16 6 0.1 ✓
T22(182) 19 1493 11 5 0.1 ✓

T3∗ 358 1769 22 11
T3(182) 8 1487 1 10 0.3 ✓
T31(183) 6 1489 2 10 0.3 ✓
T32(184) 5 1490 7 12 0.3 ✓

T4∗ 346 1770 25 16

T4(182) 5 1485 9 10 0.3 ✓
T41(182) 4 1487 10 10 0.3 ✓
T42(182) 40 1494 11 10 0.3 ✓
T43(183) 3 1487 11 10 0.3 ✓

T5∗ 305 1770 16 13

T5(184) 35 1487 7 8 1.4 ✓
T51(184) 28 1489 6 8 1.8 ✓
T52(184) 35 1491 8 13 1.8 ✓
T53(185) 38 1489 7 8 1.8 ✓

T6∗ 343 1641 30 9
T6(181) 7 1489 9 5 1.2 ✓
T61(181) 9 1492 5 5 1.1 ✓
T62(181) 9 1486 15 5 1.3 ✓

T7∗ 358 1781 32 7
T7(183) 23 1494 2 3 1.0 ✓
T71(183) 21 1496 2 1 1.0 ✓
T72(184) 29 1496 4 1 1.1 ✓

T8∗ 340 1656 34 5
T8(181) 8 1490 13 2 0.4 ✓
T81(181) 10 1493 8 2 0.4 ✓
T82(181) 10 1493 8 7 0.5 ✓

9.3 Chapter Summary 153

Table 9.5 Meaning of the confusion matrix in context of HT detection

Classification Explanation
True positive (TP) Trojan code correctly recognized as malicious
True negative (TN) Circuit code correctly considered safe
False positive (FP) Safe circuit code believed to be malicious (i.e., a false alarm)
False negative (FN) Malicious code that escaped detection (i.e., a major error)

Figure 9.4 Set of nodes belonging to Hardware Trojans as TP and FN

9.3 Chapter Summary

Two principal contributions are presented in this chapter: the introduction of a set of
HT benchmarks at RTL, and a machine learning-based detection technique at the
pre-silicon stage. Specifically, we proposed a set of HTs for a pipelined processor
core. The proposed HTs have been injected in different parts of the processor design.
They differ in the trigger and payload. The synthesis reports show the negligible
impact that the introduced modifications have on area, power and frequency. We
advocate that the set of benchmarks could be extremely useful for validating dynamic
HT detection methodologies, since the core is open-source, and they are publicly
available. The proposed set of HTs are easily modifiable and allow creating even
more complex set of trigger conditions, while the space for inserting payloads is
quite vast and allows executing different type of malicious functions. Although most
of the detection techniques work at the gate level, shifting their detection to the gate
level would result in increased design and verification costs.

Therefore, in the next work we present an efficient method for detecting such
Trojans at the RTL, based on both static and dynamic analyses of the circuit. Specifi-
cally, we have addressed the problem of detecting RTL Hardware Trojans resorting
to ML-based techniques in a pipelined CPU. A mixed approach consisting of static
and dynamic model analysis is described, where robust machine learning algorithms

154 Hardware Trojans

are used to perform classification. Experimental results prove the efficacy of the
technique: no HT was left undetected, showing that this technique could be used
with similar complex industrial designs, in an automatized manner, reducing both
effort and time. The in-house tool was built and integrated into the whole flow: it
is adjustable for other commercial tools that can simulate the design and generate
a code coverage report. Additional items and rules can be introduced for feature
extraction, as well as different CFG node environments to create the classification
input. The final flow includes logic simulation, CFG extraction and annotation, and
input formatting. The final result of the evaluation is the list of suspicious locations
in the code. By out-of-sample testing, it is shown that the method using the artificial
neural network is capable of identifying all the benchmarks embedded in a complex
design, aggravating the detection process. Additionally, we evaluated the perfor-
mance of four different SVM classifiers. The one using RBF kernel was shown to
generalize very well. Comparing two models in terms of performance, SVM RBF
kernel is more successful in discovering the set of nodes that is marked as malicious,
and also takes less time to train. Nevertheless, both approaches in the end detect
each Hardware Trojan as an entity, following the discussion that a set of nodes might
represent only one section of a Trojan. The relatively small amount of training data
might be responsible for a poorer performance of the neural network. It should be
acknowledged that there are certain limitations to this approach. Since it is both static
and dynamic, it requires input data for the simulation, either high-level software code,
e.g., C code, or directly on the hardware side, e.g., an RTL testbench. Nowadays, in
the industrial practice of chip design and development, writing such (verification)
programs can start early in the life-cycle, which makes it suitable for this application.
Trojans evolve in structure and their location is unpredictable. A lot of effort is
being invested into their classification and development. Since the supervised type
of learning is used to train both SVM and artificial neural networks, it is uncertain
how their classification performance will change with new types of HTs. However,
such new malicious insertions may be included into the training set. Moreover, it
is important to specify that the proposed approach cannot be directly applied at the
post-silicon level because it relies on the availability of the RTL design to extract
static and dynamic properties. Typically, at the post-silicon level, the availability of
the RTL model description is not guaranteed. Another limitation is the number of
false positives. As it has been discussed, false positives at the output of the classifier
mean that a part of the benchmark has not been identified as malicious. This does

9.3 Chapter Summary 155

not mean that the whole Trojan escaped detection: it implies that some additional
manual effort is required to decide. The efficiency of the approach nevertheless
remains high, given the size and complexity of modern designs.

Future works will be focused on examining and extending the set of properties
used for the analysis, and validating the approach further with some other Hardware
Trojans.

Chapter 10

Conclusions and Achievements

This PhD thesis addresses the problem of ensuring and improving the reliability and
the security of modern embedded systems. It is organized in two main parts. The
first one is intended to describe and present all the work that has been done in the
artificial neural networks reliability field. As stated, the ever-increasing complexity
of modern devices has called for enhanced computing paradigms, and artificial
intelligence algorithms currently represent the best answer to cope with this problem.
Artificial Neural Networks for their outstanding computational capabilities are today
appealing models in different fields and areas: from automotive, avionic, to robotic.
Since many of these are considered safety-critical areas, ensuring their reliability has
become of paramount importance.

On the other side, the complexity of modern embedded devices has also raised
security concerns. Indeed, current SoC designs are made of many IP blocks coming
from third-party vendors. This outsourcing may affect the trustworthiness of these
devices. External IPs can come with additional malicious circuits aiming at leaking
secret information or altering the normal functionality. Therefore, the main effort in
these years was put in these two directions.

In the field of artificial neural networks reliability, the principal contributions of
this thesis are the following. First, the investigation of the principal vulnerabilities
and fault models existing in ANNs and AI-based devices (Chapter 1). Based on that,
the proposal of reliability assessment methodologies and the release of specific tools
to assist the analysis at different abstraction levels. Chapters 3, 4, and 5 describe the
methodologies that have been provided to carry out specific reliability assessments

157

at different abstraction levels (by considering only the neural network model, or
the system including the hardware device and the architectural description). In
more details, the following methodologies and frameworks have been proposed:
a fault injection framework at the software level to inject errors on ANN weights
and biases; a multi-level pipelined FI framework at the architectural level (RTL)
able to drastically reduce the fault injection time in simulation; a multi-threading
emulator at the software level able to inject faults based on the occurrence of real
faults retrieved from test radiation campaigns. All these tools have enabled us to
conduct a wide-ranging reliability assessment of AI-based systems. Specifically, they
are the bases for allowing us to draw guidelines to make these systems more reliable.
As an example, thanks to the several fault injections analysis on the bit width and
the data type representation used for storing the ANN parameters, it was possible
to identify the best trade-offs between reliability and memory footprint. Next, in
Chapter 6, the proposed mitigation strategies developed to improve the safety and the
reliability of AI-based devices are given. A reliability-oriented methodology based
on an ILP optimizer to schedule ANN elaborations on ASIC MPSoCs is released.

A very big problem today remains the impossibility of generalizing: each neural
network must be analysed separately, and, worse, every little changes in the model
(such as updating ANN weights) could change the assessment. For this reason,
the major impact of my Ph.D. I feel may be regarded as an opening push toward
generalization and the definition of guidelines, due to the wide-ranging analysis and
proposals that have been done. Furthermore, additionally to the reliability assessment
methodologies, mitigation proposals have been made.

In the security field (Part II in this manuscript), two main contributions are
described. First, an overview of existing works in the literature as well as background
knowledge are given in Chapter 7. Then, in Chapter 9, Hardware Trojan (HT)
benchmarks for pipelined processors are proposed. In the state of the art, very
few HT benchmarks are available at the RTL, and none of them is applied to
pipelined processors: the previously available Hardware Trojans were injected on a
small 8-bit 8051 microprocessors, which do not reflect the true complexity of the
modern embedded devices. To fill this gap, we released a total of 28 Hardware
Trojans Benchmarks targeting a pipelined RISC microprocessor core, and they are
available on GitHub. Finally, in Chapter 9.2, a detection technique has been proposed:
unlike common approaches, the proposed one combines both static and dynamic

158 Conclusions and Achievements

properties for building a comprehensive detection methodology at the pre-silicon
stage, resorting to robust machine learning algorithms.

10.1 Future Directions

The aforementioned achievements of this thesis open the way for further investiga-
tions in the fields. They allow deepening and extending the research work to address
related topics. One of the main effort was put in classifying and identifying the
vulnerabilities and weaknesses in artificial neural networks based systems: this study
can be used to improve and propose ad-hoc techniques to raise their safety. It is
important to highlight that the research conducted in recent years has always viewed
the problem with a top-down view, always trying to consider the entire hardware
software system. In fact, when it comes to safety, it is difficult to untie the two
entities (ANN model and hardware device), which have different vulnerabilities and
together can mitigate the effect of faults but also amplify it. The presented research
shows that neural networks, although they are mimics of the human brain, cannot
be considered inherently robust. Their resilience must be evaluated, preferably in
conjunction with the hardware device finally running it.

The ongoing research, which has not been included in this manuscript, follows
specific directions. One of them starts from the analysis of critical neurons and related
concepts with the idea of exploring the connections between group of neurons, and
explain the per-class information flow. Indeed, one of the main problem today
remains the impossibility of explaining the behaviour of such predictive models:
to comply with safety standards it is crucial to understand the reasons behind their
choices, and to move beyond the black box view of neural networks.

In the security field, the ongoing research focuses on the proposal of more
sophisticated detection methodologies, aiming at facing the ever-growing complexity
of modern embedded devices.

To conclude, it is worth saying that there is still work to be done, and hopefully
my work and my results would provide both means and motivation for further
research on these directions.

Acronyms

AI Artificial Intelligence.

ALU Arithmetic Logic Unit.

ANN Artificial Neural Network.

ASIC Application Specific Integrated Circuits.

ASSFC Autonomous Systems Safe Faults Classification.

AxC Approximate Computing.

BE Block Error.

CF Change the Functionality.

CFG Control Flow Graph.

CNN Convolutional Neural Network.

CoA Class Oriented Analysis.

CPU Central Processing Unit.

DL Deep Learning.

DMA Direct Memory Access.

DNN Deep Neural Network.

DoS Denial of Service.

DP Degrade Performance.

160 Acronyms

DRAM Dynamic Random Access Memory.

DUT Design Under Test.

E-SER Execution Soft Error Rate.

ECC Error Correction Code.

FC Fault Coverage.

FDT Fault Detection Time.

FI Fault Injection.

FP Floating Point.

FPGA Field Programmable Gate Array.

FSM Final State Machine.

FxP Fixed Point.

GPU Graphics Processing Unit.

HDL Hardware Description Level.

HERO Open Heterogeneous Research Platform.

HLS High Level Synthesis.

HT Hardware Trojan.

IC Integrated Circuit.

ILP Integer Linear Programming.

IoT Internet of Things.

IoU Intersection Over Union.

IP Intellectual Property.

MAC Multiply and ACcumulate.

Acronyms 161

ML Machine Learning.

MPSoC Multiprocessor System-on-a-Chip.

MSE Mean Squared Error.

NaN Not a Number.

NN Neural Network.

NoA Network Oriented Analysis.

PE Processing Element.

PIC Programmable Interrupt Controller.

ReLU Rectified Linear Unit.

RISC Reduced Instruction Set Computer.

ROC Receiver Operating Characteristic.

RTL Register Transfer Level.

SBST Software Based Self Test.

SBU Single Bit Upset.

SDC Silent Data Corruption.

SEU Single Event Upset.

SFAD Safe Faults Application Dependent.

SIMD Single Instruction Multiple Data.

SoC System-on-a-Chip.

STL Software Test Library.

SVM Support Vector Machine.

TT Tick Timer.

Bibliography

[1] M. Kooli, F. Kaddachi, G. Di Natale, and A. Bosio. Cache- and register-aware
system reliability evaluation based on data lifetime analysis. In 2016 IEEE
34th VLSI Test Symposium (VTS), pages 1–6, April 2016.

[2] Annachiara Ruospo, Ernesto Sanchez, Marcello Traiola, Ian O’Connor, and
Alberto Bosio. Investigating data representation for efficient and reliable con-
volutional neural networks. Microprocessors and Microsystems, 86:104318,
2021.

[3] Christoph Schorn, Andre Guntoro, and Gerd Ascheid. Accurate neuron re-
silience prediction for a flexible reliability management in neural network
accelerators. In 2018 Design, Automation Test in Europe Conference Exhibi-
tion (DATE), pages 979–984, 2018.

[4] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, Nov 1998. doi: 10.1109/5.726791.

[5] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali
Farhadi. You only look once: Unified, real-time object detection. CoRR,
abs/1506.02640, 2015.

[6] H. Salmani, M. Tehranipoor, and R. Karri. On design vulnerability anal-
ysis and trust benchmarks development. In 2013 IEEE 31st International
Conference on Computer Design (ICCD), pages 471–474, 2013.

[7] Bicky Shakya, Tony He, Hassan Salmani, Domenic Forte, Swarup Bhunia,
and Mark Tehranipoor. Benchmarking of hardware trojans and maliciously
affected circuits. Journal of Hardware and Systems Security, 1, 04 2017.

[8] Ito Takuya et al. Constructing neural network models from brain data re-
veals representational transformations linked to adaptive behavior. Nature
Communications, 13, 2022.

[9] Charu C. Aggarwal. Neural Networks and Deep Learning. Springer, Cham,
2018.

[10] W. Pitts W.S. McCulloch. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.

https://doi.org/10.1109/5.726791

Bibliography 163

[11] ISO. Road vehicles – Functional safety, 2011.

[12] Terry Sejnowski and Toby Delbruck. The language of the brain. Howard
Hughes Medical Institute United States, October 2012.

[13] Steve Lawrence, C. Giles, and Ah Tsoi. What size neural network gives
optimal generalization? convergence properties of backpropagation. Tech-
nical Report UMIACS-TR-96-22 and CS-TR-3617, Institute for Advanced
Computer Studies, Univ. of Maryland, 1996.

[14] Simon S. Haykin. Neural networks and learning machines. Pearson Education,
third edition, 2009.

[15] El Mahdi El Mhamdi and Rachid Guerraoui. When neurons fail. In 2017
IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 1028–1037, Orlando, FL, USA, 2017. IEEE.

[16] Steven K. Esser, Paul A. Merolla, John V. Arthur, Andrew S. Cassidy, Rathi-
nakumar Appuswamy, Alexander Andreopoulos, David J. Berg, Jeffrey L.
McKinstry, Timothy Melano, Davis R. Barch, Carmelo di Nolfo, Pallab Datta,
Arnon Amir, Brian Taba, Myron D. Flickner, and Dharmendra S. Modha.
Convolutional networks for fast, energy-efficient neuromorphic computing.
CoRR, abs/1603.08270, 2016.

[17] Kung and Hwang. Parallel architectures for artificial neural nets. In IEEE
1988 International Conference on Neural Networks, pages 165–172 vol.2,
1988.

[18] U. Ramacher, J. Beichter, N. Bruls, and E. Sicheneder. Architecture and
vlsi design of a vlsi neural signal processor. In 1993 IEEE International
Symposium on Circuits and Systems, pages 1975–1978 vol.3, 1993.

[19] Danilo Cappellone, Stefano Di Mascio, Gianluca Furano, Alessandra
Menicucci, and Marco Ottavi. On-board satellite telemetry forecasting with
rnn on risc-v based multicore processor. In 2020 IEEE International Sym-
posium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), pages 1–6, 2020.

[20] Gianmarco Cerutti, Renzo Andri, Lukas Cavigelli, Elisabetta Farella, Michele
Magno, and Luca Benini. Sound event detection with binary neural networks
on tightly power-constrained iot devices. In Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design, ISLPED
’20, page 19–24, New York, NY, USA, 2020. Association for Computing
Machinery.

[21] Cesar Torres-Huitzil and Bernard Girau. Fault and error tolerance in neural
networks: A review. IEEE Access, 5:17322–17341, Aug. 2017.

[22] K. Xiao et al. Hardware trojans: Lessons learned after one decade of research.
ACM Trans. Des. Autom. Electron. Syst., 22(1), May 2016.

164 Bibliography

[23] K. Hasegawa, M. Yanagisawa, and N. Togawa. Trojan-feature extraction
at gate-level netlists and its application to hardware-trojan detection using
random forest classifier. In 2017 IEEE International Symposium on Circuits
and Systems (ISCAS), pages 1–4, 2017.

[24] P. Zhao and Q. Liu. Density-based clustering method for hardware trojan
detection based on gate-level structural features. In 2019 Asian Hardware
Oriented Security and Trust Symposium (AsianHOST), pages 1–4, 2019.

[25] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas imma-
nent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–
133, Dec. 1943.

[26] M. Bushnell and Vishwani Agrawal. "Essentials of Electronic Testing for
Digital, Memory and Mixed-Signal VLSI Circuits,". Frontiers in Electronic
Testing. Springer, Boston, MA, USA, 2013.

[27] Carlo H. Sequin and R. D. Clay. Fault tolerance in artificial neural networks.
In 1990 IJCNN International Joint Conference on Neural Networks, pages
703–708 vol.1, San Diego, CA, USA, 1990. IEEE.

[28] Pravin Chandra and Yogesh Singh. Fault tolerance of feedforward artificial
neural networks- a framework of study. In Proceedings of the International
Joint Conference on Neural Networks, 2003., volume 1, pages 489–494,
Portland, OR, USA, 2003. IEEE.

[29] G. Bolt. Fault models for artificial neural networks. In Proceedings of the
1991 IEEE International Joint Conference on Neural Networks, volume 2,
pages 1373–1378, Singapore, Singapore, 1991. IEEE.

[30] Annachiara Ruospo, Angelo Balaara, Alberto Bosio, and Ernesto Sanchez.
A pipelined multi-level fault injector for deep neural networks. In 2020
IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), pages 1–6, Frascati, Italy, 2020. IEEE.

[31] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.
Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, OSDI’16, page 265–283,
USA, 2016. ACM, USENIX Association.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin
Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance

Bibliography 165

deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019.

[33] CEA-LIST. N2D2. [Online]. Available: https://github.com/CEA-LIST/N2D2.

[34] Joseph Redmon. Darknet: Open source neural networks in c. http://pjreddie.
com/darknet/, 2013–2016.

[35] Zitao Chen, Niranjhana Narayanan, Bo Fang, Guanpeng Li, Karthik Pattabira-
man, and Nathan DeBardeleben. Tensorfi: A flexible fault injection framework
for tensorflow applications. In 2020 IEEE 31st International Symposium on
Software Reliability Engineering (ISSRE), pages 426–435, Coimbra, Portugal,
Oct. 2020. IEEE.

[36] Michael Beyer, Andrey Morozov, Kai Ding, Sheng Ding, and Klaus Janschek.
Quantification of the impact of random hardware faults on safety-critical AI
applications: CNN-based traffic sign recognition case study. In 2019 IEEE
International Symposium on Software Reliability Engineering Workshops
(ISSREW), pages 118–119, Oct., 2019. IEEE.

[37] Zitao Chen, Guanpeng Li, Karthik Pattabiraman, and Nathan DeBardeleben.
Binfi: An efficient fault injector for safety-critical machine learning systems.
In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1 – 23, New York, NY, USA,
2019. ACM.

[38] Guanpeng Li, Karthik Pattabiraman, Siva Kumar Sastry Hari, Michael Sulli-
van, and Timothy Tsai. Modeling soft-error propagation in programs. In 2018
48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 27–38, Luxembourg City, Luxembourg, 2018. IEEE.

[39] Abdulrahman Mahmoud, Neeraj Aggarwal, Alex Nobbe, Jose Ro-
drigo Sanchez Vicarte, Sarita V. Adve, Christopher W. Fletcher, Iuri Frosio,
and Siva Kumar Sastry Hari. PyTorchFI: A runtime perturbation tool for
DNNs. In 2020 50th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks Workshops (DSN-W), pages 25–31, Valencia,
Spain, 2020. IEEE.

[40] Behzad Salami, Osman S. Unsal, and Adrian Cristal Kestelman. On the
resilience of RTL NN accelerators: Fault characterization and mitigation.
In 2018 30th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), pages 322–329, Lyon, France, 2018.
IEEE.

[41] Yi He, Prasanna Balaprakash, and Yanjing Li. Fidelity: Efficient resilience
analysis framework for deep learning accelerators. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
270–281, Athens, Greece, 2020. IEEE.

[42] nvidia. Nvdla, 2021.

https://github.com/CEA-LIST/N2D2
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

166 Bibliography

[43] Guanpeng Li et al. Understanding error propagation in deep learning neural
network (DNN) accelerators and applications. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1–12, Nov. 2017. doi: 10.1145/3126908.3126964.

[44] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks. In Proceedings of
the 43rd International Symposium on Computer Architecture, page 367–379,
Seoul, South Korea, 2016. IEEE.

[45] Brandon Reagen et al. Ares: A framework for quantifying the resilience of
deep neural networks. In Proceedings of the 55th Annual Design Automation
Conference, pages 1–6, San Francisco, California, USA, 2018. Association
for Computing Machinery.

[46] François Chollet et al. Keras, 2015.

[47] James Bergstra, O. Breuleux, Frederic Bastien, Pascal Lamblin, Razvan
Pascanu, G. Desjardins, David Warde-Farley, and Y. Bengio. Theano: a
CPU and GPU math expression compiler. In Stéfan van der Walt and Jarrod
Millman, editors, Proceedings of the 9th Python in Science Conference, pages
18–24, Austin, Texas, USA, 2010. SciPy.

[48] Corrado De Sio, Sarah Azimi, and Luca Sterpone. An emulation platform for
evaluating the reliability of deep neural networks. In 2020 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), pages 1–4, Frascati, Italy, 2020. IEEE.

[49] Chen Chen, Jun Xia, Wenmin Yang, Kang Li, and Zhilei Chai. A pynq-
compliant online platform for zynq-based dnn developers. In Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, page 185, Seaside, CA, USA, 2019. ACM.

[50] Lucas Matana Luza, Daniel Söderström, Georgios Tsiligiannis, Helmut Puch-
ner, Carlo Cazzaniga, Ernesto Sanchez, Alberto Bosio, and Luigi Dilillo.
Investigating the impact of radiation-induced soft errors on the reliability of
approximate computing systems. In 2020 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
pages 1–6, 2020.

[51] Md Mehedi Hasan, Md Raquibuzzaman, Indranil Chatterjee, and Biswajit
Ray. Radiation tolerance of 3-d nand flash based neuromorphic computing
system. In 2020 IEEE International Reliability Physics Symposium (IRPS),
pages 1–4, Dallas, TX, USA, 2020. IEEE.

[52] Fernando Fernandes dos Santos, Lucas Draghetti, Lucas Weigel, Luigi Carro,
Philippe Navaux, and Paolo Rech. Evaluation and mitigation of soft-errors
in neural network-based object detection in three gpu architectures. pages
169–176, 2017.

https://doi.org/10.1145/3126908.3126964

Bibliography 167

[53] F. Libano, P. Rech, B. Neuman, J. Leavitt, M. Wirthlin, and J. Brunhaver.
How reduced data precision and degree of parallelism impact the reliability
of convolutional neural networks on fpgas. IEEE Transactions on Nuclear
Science, 68(5):865–872, 2021.

[54] Lucas Matanaluza, Annachiara Ruospo, Daniel Soderstrom, Carlo Cazzaniga,
Maria Kastriotou, Ernesto Sanchez, Alberto Bosio, and Luigi Dilillo. Emulat-
ing the effects of radiation-induced soft-errors for the reliability assessment
of neural networks. IEEE Transactions on Emerging Topics in Computing,
pages 1–1, 2021.

[55] A. Floridia, E. Sanchez, and M. Sonza Reorda. Fault grading techniques of
software test libraries for safety-critical applications. IEEE Access, 7:63578–
63587, 2019.

[56] Mohamed A. Neggaz, Ihsen Alouani, Smail Niar, and Fadi Kurdahi. Are
CNNs reliable enough for critical applications? an exploratory study. IEEE
Design & Test, 37(2):76–83, April 2020.

[57] Mohamed A. Neggaz, Ihsen Alouani, Pablo R. Lorenzo, and Smail Niar. A
reliability study on CNNs for critical embedded systems. In 2018 IEEE 36th
International Conference on Computer Design (ICCD). IEEE, October 2018.

[58] Younis Ibrahim, Haibin Wang, Junyang Liu, Jinghe Wei, Li Chen, Paolo
Rech, Khalid Adam, and Gang Guo. Soft errors in DNN accelerators: A
comprehensive review. Microelectronics Reliability, 115:113969, December
2020.

[59] A. Lotfi, S. Hukerikar, K. Balasubramanian, P. Racunas, N. Saxena, R. Bram-
ley, and Y. Huang. Resiliency of automotive object detection networks on gpu
architectures. In 2019 IEEE International Test Conference (ITC), pages 1–9,
2019.

[60] Daniele Palossi, Antonio Loquercio, Francesco Conti, Eric Flamand, Davide
Scaramuzza, and Luca Benini. A 64mw dnn-based visual navigation engine
for autonomous nano-drones. IEEE Internet of Things Journal, page 1–1,
2019.

[61] Majid Sabbagh, Cheng Gongye, Yunsi Fei, and Yanzhi Wang. Evaluating fault
resiliency of compressed deep neural networks. In 2019 IEEE International
Conference on Embedded Software and Systems (ICESS), pages 1–7, Las
Vegas, NV, USA, 2019. IEEE.

[62] Boyang Du, Sarah Azimi, Corrado de Sio, Ludovica Bozzoli, and Luca
Sterpone. On the reliability of convolutional neural network implementation
on SRAM-based FPGA. In 2019 IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pages 1–6,
Noordwijk, Netherlands, 2019. IEEE.

168 Bibliography

[63] Yann Le Cun, John S. Denker, and Sara A. Solla. Optimal Brain Damage,
page 598–605. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1990.

[64] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights
and connections for efficient neural networks. In Proceedings of the 28th
International Conference on Neural Information Processing Systems - Volume
1, NIPS’15, page 1135–1143, Cambridge, MA, USA, 2015. MIT Press.

[65] Jianjun Wang, Leshan Liu, and Ximeng Pan. Pruning algorithm of convo-
lutional neural network based on optimal threshold. In Proceedings of the
2020 5th International Conference on Mathematics and Artificial Intelligence,
ICMAI 2020, page 50–54, 2020.

[66] K. Lee, H. Kim, H. Lee, and D. Shin. Flexible group-level pruning of deep
neural networks for on-device machine learning. In 2020 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 79–84, 2020.

[67] Swagath Venkataramani, Ashish Ranjan, Kaushik Roy, and Anand Raghu-
nathan. Axnn: Energy-efficient neuromorphic systems using approximate
computing. In 2014 IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED), pages 27–32, 2014.

[68] Shubo Liu, Xu Wang, Jing Wang, Xin Fu, Xingyao Zhang, Lan Gao, Weigong
Zhang, and Tao Li. Enabling energy-efficient and reliable neural network via
neuron-level voltage scaling. In 2019 IEEE 25th International Conference on
Parallel and Distributed Systems (ICPADS), pages 410–413, 2019.

[69] Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech
Samek, and Klaus-Robert Müller. Explaining nonlinear classification de-
cisions with deep taylor decomposition. Pattern Recognition, 65:211–222,
2017.

[70] Fuxun Yu, Zhuwei Qin, and Xiang Chen. Distilling critical paths in convolu-
tional neural networks. CoRR, abs/1811.02643, 2018.

[71] Christoph Schorn, Andre Guntoro, and Gerd Ascheid. Accurate neuron re-
silience prediction for a flexible reliability management in neural network
accelerators. In 2018 Design, Automation Test in Europe Conference Exhibi-
tion (DATE), pages 979–984, 2018.

[72] Muhammad Hanif and Muhammad Shafique. Salvagednn: salvaging deep
neural network accelerators with permanent faults through saliency-driven
fault-aware mapping. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 378:20190164, 02 2020.

[73] Paolo Bernardi, Riccardo Cantoro, Sergio De Luca, Ernesto Sánchez, and
Alessandro Sansonetti. Development flow for on-line core self-test of auto-
motive microcontrollers. IEEE Transactions on Computers, 65(3):744–754,
2016.

Bibliography 169

[74] Thatte and Abraham. Test generation for microprocessors. IEEE Transactions
on Computers, C-29(6):429–441, 1980.

[75] C. Gursoy, M. Jenihhin, A. S. Oyeniran, D. Piumatti, J. Raik, M. Sonza
Reorda, and R. Ubar. New categories of safe faults in a processor-based
embedded system. In 2019 IEEE 22nd International Symposium on Design
and Diagnostics of Electronic Circuits Systems (DDECS), pages 1–4, 2019.

[76] Xiaoqing Wen and Hsin-Po Wang. A flexible logic bist scheme and its
application to soc designs. In Proceedings 10th Asian Test Symposium, pages
463–, 2001.

[77] D. Piumatti, Ernesto Sanchez, P. Bernardi, R. Martorana, and M.A. Pernice.
An efficient strategy for the development of software test libraries for an
automotive microcontroller family. Microelectronics Reliability, 115:113962,
12 2020.

[78] Mihalis Psarakis, Dimitris Gizopoulos, Ernesto Sanchez, and Matteo
Sonza Reorda. Microprocessor software-based self-testing. IEEE Design Test
of Computers, 27(3):4–19, 2010.

[79] P. Bernardi, R. Cantoro, A. Floridia, D. Piumatti, C. Pogonea, A. Ruospo,
E. Sanchez, S. De Luca, and A. Sansonetti. Non-intrusive self-test library for
automotive critical applications: Constraints and solutions. In 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 920–923,
2019.

[80] M. Peña-Fernandez, A. Lindoso, L. Entrena, and M. Garcia-Valderas. The use
of microprocessor trace infrastructures for radiation-induced fault diagnosis.
IEEE Transactions on Nuclear Science, 67(1):126–134, 2020.

[81] Stefan E. Damkjar, Ian R. Mann, and Duncan G. Elliott. Proton beam testing of
seu sensitivity of m430fr5989srgcrep, efm32gg11b820f2048, at32uc3c0512c,
and m2s010 microcontrollers in low-earth orbit. In 2020 IEEE Radiation
Effects Data Workshop (in conjunction with 2020 NSREC), pages 1–5, 2020.

[82] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu. Revisiting mem-
ory errors in large-scale production data centers: Analysis and modeling of
new trends from the field. In 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pages 415–426, 2015.

[83] Alberto Bosio, Paolo Bernardi, Annachiara Ruospo, and Ernesto Sanchez. A
reliability analysis of a deep neural network. In 2019 IEEE Latin American
Test Symposium (LATS), pages 1–6, 2019.

[84] Riccardo Cantoro, Andrea Firrincieli, Davide Piumatti, Marco Restifo,
Ernesto Sánchez, and Matteo Sonza Reorda. About on-line functionally
untestable fault identification in microprocessor cores for safety-critical appli-
cations. 2018 IEEE 19th Latin-American Test Symposium (LATS), pages 1–6,
2018.

170 Bibliography

[85] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. Statistical fault
injection: Quantified error and confidence. In 2009 Design, Automation Test
in Europe Conference Exhibition, pages 502–506, April 2009.

[86] [Online]. Libfixmath library. https://github.com/Petteri-Aimonen/libfixmath,
2020.

[87] A. Ruospo, A. Bosio, A. Ianne, and E. Sanchez. Evaluating convolutional
neural networks reliability depending on their data representation. In 2020
23rd Euromicro Conference on Digital System Design (DSD), pages 672–679,
2020.

[88] Larry R. Squire. Memory systems of the brain: A brief history and current
perspective. Neurobiology of Learning and Memory, 82(3):171–177, 2004.
Multiple Memory Systems.

[89] Annachiara Ruospo and Ernesto Sanchez. On the reliability assessment of
artificial neural networks running on ai-oriented mpsocs. Applied Sciences,
11(14), 2021.

[90] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[91] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and
Andrew Y. Ng. Reading digits in natural images with unsupervised feature
learning. In NIPS Workshop on Deep Learning and Unsupervised Feature
Learning 2011, 2011.

[92] Alex Krizhevsky. Learning multiple layers of features from tiny images.
University of Toronto, 05 2012.

[93] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates,
Inc., 2019.

[94] Pierre Sermanet, Soumith Chintala, and Yann LeCun. Convolutional neural
networks applied to house numbers digit classification. In Proceedings of
the 21st International Conference on Pattern Recognition (ICPR2012), pages
3288–3291, 2012.

[95] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin
Riedmiller. Striving for simplicity: The all convolutional net, 2015.

https://github.com/Petteri-Aimonen/libfixmath

Bibliography 171

[96] Vincenzo Piuri. Analysis of fault tolerance in artificial neural networks.
Journal of Parallel and Distributed Computing, 61(1):18 – 48, Jan. 2001.

[97] Annachiara Ruospo, Angelo Balaara, Alberto Bosio, and Ernesto Sanchez.
A pipelined multi-level fault injector for deep neural networks. In 2020
IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), pages 1–6, 2020.

[98] E. Flamand et al. Gap-8: A risc-v soc for ai at the edge of the iot. In 2018 IEEE
29th International Conference on Application-specific Systems, Architectures
and Processors (ASAP), pages 1–4, 2018.

[99] Angelo Garofalo, Giuseppe Tagliavini, Francesco Conti, Davide Rossi, and
Luca Benini. Xpulpnn: Accelerating quantized neural networks on risc-v
processors through isa extensions. In Proceedings of the 23rd Conference on
Design, Automation and Test in Europe, DATE ’20, page 186–191, San Jose,
CA, USA, 2020. EDA Consortium.

[100] Fernando Fernandes dos Santos, Pedro Foletto Pimenta, Caio Lunardi, Lu-
cas Draghetti, Luigi Carro, David Kaeli, and Paolo Rech. Analyzing and
increasing the reliability of convolutional neural networks on gpus. IEEE
Transactions on Reliability, 68(2):663–677, 2019.

[101] Edward Petersen. Single Event Effects in Aerospace. John Wiley & Sons,
Hoboken, NJ, USA, 2011. doi: 10.1002/9781118084328.

[102] PG036 - Soft Error Mitigation Controller v4.1 Product Guide, 2018. [Online].
Available: https://www.xilinx.com/support/documentation/ip_documentation/
sem/v4_1/pg036_sem.pdf.

[103] R.C. Baumann. Soft errors in advanced semiconductor devices-part i: the three
radiation sources. IEEE Transactions on Device and Materials Reliability,
1(1):17–22, 2001.

[104] J.L. Leray. Effects of atmospheric neutrons on devices, at sea level and in
avionics embedded systems. Microelectronics Reliability, 47(9):1827–1835,
2007. 18th European Symposium on Reliability of Electron Devices, Failure
Physics and Analysis.

[105] MICHAEL F. L’ANNUNZIATA. 1 - nuclear radiation, its interaction with
matter and radioisotope decay. In Michael F. L’Annunziata, editor, Handbook
of Radioactivity Analysis (Second Edition), pages 1–121. Academic Press,
San Diego, second edition edition, 2003.

[106] Lucas Matana Luza et al. Effects of thermal neutron irradiation on a Self-
Refresh DRAM. In IEEE 15th International Conference on Design & Tech-
nology of Integrated Systems in Nanoscale Era, pages 1–6, Apr. 2020. doi:
10.1109/DTIS48698.2020.9080918.

https://doi.org/10.1002/9781118084328
https://www.xilinx.com/support/documentation/ip_documentation/sem/v4_1/pg036_sem.pdf
https://www.xilinx.com/support/documentation/ip_documentation/sem/v4_1/pg036_sem.pdf
https://doi.org/10.1109/DTIS48698.2020.9080918

172 Bibliography

[107] Giuseppe Desoli, Nitin Chawla, Thomas Boesch, Surinder-pal Singh, Elio
Guidetti, Fabio De Ambroggi, Tommaso Majo, Paolo Zambotti, Manuj Ay-
odhyawasi, Harvinder Singh, and Nalin Aggarwal. 14.1 a 2.9tops/w deep
convolutional neural network soc in fd-soi 28nm for intelligent embedded
systems. In 2017 IEEE International Solid-State Circuits Conference (ISSCC),
pages 238–239, 2017.

[108] Giuseppe Desoli, Nitin Chawla, Thomas Boesch, Surinder-pal Singh, Elio
Guidetti, Fabio De Ambroggi, Tommaso Majo, Paolo Zambotti, Manuj Ay-
odhyawasi, Harvinder Singh, and Nalin Aggarwal. 14.1 a 2.9tops/w deep
convolutional neural network soc in fd-soi 28nm for intelligent embedded
systems. In 2017 IEEE International Solid-State Circuits Conference (ISSCC),
pages 238–239, 2017.

[109] Jun-Ho Lee and Hoon Jang. Uniform parallel machine scheduling with dedi-
cated machines, job splitting and setup resources. Sustainability, 11(24):7137,
Dec 2019.

[110] D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines
on-line. In [1991] Proceedings 32nd Annual Symposium of Foundations of
Computer Science, pages 131–140, 1991.

[111] Thomas Bosman, Dario Frascaria, Neil Olver, Renx00E9; Sitters, and Leen
Stougie. Fixed-order scheduling on parallel machines. In Viswanath Na-
garajan and Andrea Lodi, editors, Integer Programming and Combinatorial
Optimization, Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
pages 88–100, Germany, 2019. Springer Verlag. 20th International Confer-
ence on Integer Programming and Combinatorial Optimization, IPCO 2019 ;
Conference date: 22-05-2019 Through 24-05-2019.

[112] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini. Pulp-nn: A comput-
ing library for quantized neural network inference at the edge on risc-v based
parallel ultra low power clusters. In 2019 26th IEEE International Conference
on Electronics, Circuits and Systems (ICECS), pages 33–36, 2019.

[113] Www Org, Andrew Mason, and Iain Dunning. Opensolver: Open source opti-
misation for excel. Proceedings of the Annual Conference of the Operations
Research Society of New Zealand, 01 2010.

[114] P. Chandra and Y. Singh. Fault tolerance of feedforward artificial neural
networks- a framework of study. In Proceedings of the International Joint
Conference on Neural Networks, 2003., volume 1, pages 489–494 vol.1, 2003.

[115] M.D. Emmerson and R.I. Damper. Determining and improving the fault
tolerance of multilayer perceptrons in a pattern-recognition application. IEEE
Transactions on Neural Networks, 4(5):788–793, 1993.

Bibliography 173

[116] C.H. Sequin and R.D. Clay. Fault tolerance in artificial neural networks.
In 1990 IJCNN International Joint Conference on Neural Networks, pages
703–708 vol.1, 1990.

[117] C. Khunasaraphan, K. Vanapipat, and C. Lursinsap. Weight shifting tech-
niques for self-recovery neural networks. IEEE Transactions on Neural
Networks, 5(4):651–658, 1994.

[118] Annachiara Ruospo, Riccardo Cantoro, Ernesto Sanchez, Pasquale Davide
Schiavone, Angelo Garofalo, and Luca Benini. On-line testing for autonomous
systems driven by risc-v processor design verification. In 2019 IEEE Interna-
tional Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), pages 1–6, 2019.

[119] A. Ruospo, D. Piumatti, A. Floridia, and E. Sanchez. A suitability analysis
of software based testing strategies for the on-line testing of artificial neural
networks applications in embedded devices. In 2021 IEEE 27th International
Symposium on On-Line Testing and Robust System Design (IOLTS), pages
1–6, 2021.

[120] Andreas Kurth, Alessandro Capotondi, Pirmin Vogel, Luca Benini, and An-
drea Marongiu. Hero: An open-source research platform for hw/sw ex-
ploration of heterogeneous manycore systems. In Proceedings of the 2nd
Workshop on AutotuniNg and ADaptivity AppRoaches for Energy Efficient
HPC Systems, ANDARE ’18, New York, NY, USA, 2018. Association for
Computing Machinery.

[121] Zhen-Ping Lo and Behnam. Bavarian. Multiple job scheduling with artificial
neural networks. Computers Electrical Engineering, 19(2):87 – 101, 1993.

[122] A. Naithani, S. Eyerman, and L. Eeckhout. Optimizing soft error reliability
through scheduling on heterogeneous multicore processors. IEEE Transac-
tions on Computers, 67(6):830–846, 2018.

[123] Masoud Rostami, Farinaz Koushanfar, and Ramesh Karri. A primer on
hardware security: Models, methods, and metrics. Proceedings of the IEEE,
102(8):1283–1295, 2014.

[124] A. Ahmed, F. Farahmandi, Y. Iskander, and P. Mishra. Scalable hardware
trojan activation by interleaving concrete simulation and symbolic execution.
In 2018 IEEE International Test Conference (ITC), pages 1–10, Oct 2018.

[125] S. Yao et al. Fastrust: Feature analysis for third-party ip trust verification. In
2015 IEEE International Test Conference (ITC), pages 1–10, Oct 2015.

[126] Y. Wang, T. Han, X. Han, and P. Liu. Ensemble-learning-based hardware
trojans detection method by detecting the trigger nets. In 2019 IEEE In-
ternational Symposium on Circuits and Systems (ISCAS), pages 1–5, May
2019.

174 Bibliography

[127] S. Narasimhan et al. Hardware trojan detection by multiple-parameter side-
channel analysis. IEEE Transactions on Computers, 62(11):2183–2195, Nov
2013.

[128] Y. Liu, K. Huang, and Y. Makris. Hardware trojan detection through
golden chip-free statistical side-channel fingerprinting. In 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, June
2014.

[129] D. Ismari, J. Plusquellic, C. Lamech, S. Bhunia, and F. Saqib. On detecting
delay anomalies introduced by hardware trojans. In 2016 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), pages 1–7, Nov
2016.

[130] Xiaolong Guo, R. G. Dutta, Yier Jin, F. Farahmandi, and P. Mishra. Pre-
silicon security verification and validation: A formal perspective. In 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6,
June 2015.

[131] Samuel King et al. Designing and implementing malicious hardware. In Pro-
ceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emergent
Threats, LEET’08, 01 2008.

[132] Y. Jin, N. Kupp, and Y. Makris. Experiences in hardware trojan design and
implementation. In 2009 IEEE International Workshop on Hardware-Oriented
Security and Trust, pages 50–57, 2009.

[133] M. Hicks et al. Overcoming an untrusted computing base: Detecting and
removing malicious hardware automatically. In 2010 IEEE Symposium on
Security and Privacy, pages 159–172, 2010.

[134] Jie Zhang and Qiang Xu. On hardware trojan design and implementation at
register-transfer level. In 2013 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), 2013.

[135] Rana Elnaggar and Krishnendu Chakrabarty. Machine learning for hardware
security: Opportunities and risks. Journal of Electronic Testing, 2018.

[136] F. Demrozi, R. Zucchelli, and G. Pravadelli. Exploiting sub-graph isomor-
phism and probabilistic neural networks for the detection of hardware trojans
at rtl. In 2017 IEEE International High Level Design Validation and Test
Workshop (HLDVT), pages 67–73, 2017.

[137] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and un-
supervised discretization of continuous features. In Armand Prieditis and
Stuart Russell, editors, Machine Learning Proceedings 1995, pages 194–202.
Morgan Kaufmann, San Francisco (CA), 1995.

Bibliography 175

[138] A. Damljanovic, A. Ruospo, E. Sanchez, and G. Squillero. A Benchmark
Suite of RT-level Hardware Trojans for Pipelined Microprocessor Cores. 24th
International Symposium on Design and Diagnostics of Electronic Circuits
and Systems (DDECS) (to be published), 2021.

[139] Felipe Silva et al. Special session: Autosoc - a suite of open-source automotive
soc benchmarks. In 2020 IEEE 38th VLSI Test Symposium (VTS), pages 1–9,
04 2020.

[140] Shinya Takamaeda-Yamazaki. Pyverilog: A python-based hardware design
processing toolkit for verilog hdl. In Applied Reconfigurable Computing,
2015.

[141] Aurélien Géron. Hands-on Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems.
O’Reilly Media, aug 2019.

176 Bibliography

