76 research outputs found

    Visualization and Geo-Mapping of Philippine Fire Incidents

    Get PDF
    A fire incident is one of the most catastrophic calamity bringing injuries, loss of properties, and casualties. In the Philippines, a rapid increase in fire incidents was recorded from 2013 to 2016. In this paper, we explore the importance of data visualization and analysis in extracting useful information that might help in planning and decision-making. This study used the 2012–2016 Philippine Nationwide Fire Incident Statistics data provided by the Bureau of Fire Protection through Open Data Philippines. Data cleaning and reprocessing were conducted to develop a dynamic system known as FireStatPH using Flask. Different data visualization techniques such as choropleth map were also used in the study to represent each dataset. FireStatPH can easily identify the cities and municipalities with high fire incidents, injuries, deaths, and damages. It also provides fast statistics based on fire incident data. The system contributes to the planning and decision-making process in eschewing fire incidents in the Philippines

    A framework to maximise the communicative power of knowledge visualisations

    Get PDF
    Knowledge visualisation, in the field of information systems, is both a process and a product, informed by the closely aligned fields of information visualisation and knowledg management. Knowledge visualisation has untapped potential within the purview of knowledge communication. Even so, knowledge visualisations are infrequently deployed due to a lack of evidence-based guidance. To improve this situation, we carried out a systematic literature review to derive a number of “lenses” that can be used to reveal the essential perspectives to feed into the visualisation production process.We propose a conceptual framework which incorporates these lenses to guide producers of knowledge visualisations. This framework uses the different lenses to reveal critical perspectives that need to be considered during the design process. We conclude by demonstrating how this framework could be used to produce an effective knowledge visualisation

    All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run

    Get PDF
    We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32–4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant events have been found by either the unmodeled search or the cosmic string search. We thus present the search sensitivities for a variety of signal waveforms and report upper limits on the source rate density as a function of the characteristic frequency of the signal. These upper limits are a factor of 3 lower than the first observing run, with a 50% detection probability for gravitational-wave emissions with energies of ∼10^(−9)  M⊙c^2 at 153 Hz. For the search dedicated to cosmic string cusps we consider several loop distribution models, and present updated constraints from the same search done in the first observing run

    Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data

    Get PDF
    According to general relativity a perturbed black hole will settle to a stationary configuration by the emission of gravitational radiation. Such a perturbation will occur, for example, in the coalescence of a black hole binary, following their inspiral and subsequent merger. At late times the waveform is a superposition of quasi-normal modes, which we refer to as the ringdown. The dominant mode is expected to be the fundamental mode, l=m=2. Since this is a well-known waveform, matched filtering can be implemented to search for this signal using LIGO data. We present a search for gravitational waves from black hole ringdowns in the fourth LIGO science run S4, during which LIGO was sensitive to the dominant mode of perturbed black holes with masses in the range of 10 Msun to 500 Msun, the regime of intermediate-mass black holes, to distances up to 300 Mpc. We present a search for gravitational waves from black hole ringdowns using data from S4. No gravitational wave candidates were found; we place a 90%-confidence upper limit on the rate of ringdowns from black holes with mass between 85 Msun and 390 Msun in the local universe, assuming a uniform distribution of sources, of 3.2 x 10^{-5} yr^{-1} Mpc^{-3} = 1.6 x 10^{-3}yr^{-1} L_{10}^{-1}, where L_{10} is 10^{10} times the solar blue-light luminosity.Comment: 8 pages, 6 figure

    Search for Gravitational Wave Ringdowns from Perturbed Black Holes In LIGO S4 Data

    Get PDF
    According to general relativity a perturbed black hole will settle to a stationary configuration by the emission of gravitational radiation. Such a perturbation will occur, for example, in the coalescence of a black hole binary, following their inspiral and subsequent merger. At late times the waveform is a superposition of quasinormal modes, which we refer to as the ringdown. The dominant mode is expected to be the fundamental mode, l=m=2. Since this is a well-known waveform, matched filtering can be implemented to search for this signal using LIGO data. We present a search for gravitational waves from black hole ringdowns in the fourth LIGO science run S4, during which LIGO was sensitive to the dominant mode of perturbed black holes with masses in the range of 10M□ to 500M□, the regime of intermediate-mass black holes, to distances up to 300□Mpc. We present a search for gravitational waves from black hole ringdowns using data from S4. No gravitational wave candidates were found; we place a 90%-confidence upper limit on the rate of ringdowns from black holes with mass between 85M□ and 390M□ in the local universe, assuming a uniform distribution of sources, of 3.2×10-5yr-1Mpc-3=1.6×10-3yr- 1L10-1,where L10 is 1010 times the solar blue-light luminosity

    Dynamic Choropleth Maps – Using Amalgamation to Increase Area Perceivability

    Get PDF
    corecore