11 research outputs found

    Barriers to the adoption of digital twin in the construction industry : a literature review

    Get PDF
    Digital twin (DT) has gained significant recognition among researchers due to its potential across industries. With the prime goal of solving numerous challenges confronting the construction industry (CI), DT in recent years has witnessed several applications in the CI. Hence, researchers have been advocating for DT adoption to tackle the challenges of the CI. Notwithstanding, a distinguishable set of barriers that oppose the adoption of DT in the CI has not been determined. Therefore, this paper identifies the barriers and incorporates them into a classified framework to enhance the roadmap for adopting DT in the CI. This research conducts an extensive review of the literature and analyses the barriers whilst integrating the science mapping technique. Using Scopus, ScienceDirect, and Web of Science databases, 154 related bibliographic records were identified and analysed using science mapping, while 40 carefully selected relevant publications were systematically reviewed. From the review, the top five barriers identified include low level of knowledge, low level of technology acceptance, lack of clear DT value propositions, project complexities, and static nature of building data. The results show that the UK, China, the USA, and Germany are the countries spearheading the DT adoption in the CI, while only a small number of institutions from Australia, the UK, Algeria, and Greece have established institutional collaborations for DT research. A conceptual framework was developed on the basis of 30 identified barriers to support the DT adoption roadmap. The main categories of the framework comprise stakeholder-oriented, industryrelated, construction-enterprise-related, and technology-related barriers. The identified barriers and the framework will guide and broaden the knowledge of DT, which is critical for successful adoption in the construction industry

    Distributed Tracing for Troubleshooting of Native Cloud Applications via Rule-Induction Systems

    Get PDF
    Diagnosing IT issues is a challenging problem for large-scale distributed cloud environments due to complex and non-deterministic interrelations between the system components. Modern monitoring tools rely on AI-empowered data analytics for detection, root cause analysis, and rapid resolution of performance degradation. However, the successful adoption of AI solutions is anchored on trust. System administrators will not unthinkingly follow the recommendations without sufficient interpretability of solutions. Explainable AI is gaining popularity by enabling improved confidence and trust in intelligent solutions. For many industrial applications, explainable models with moderate accuracy are preferable to highly precise black-box ones. This paper shows the benefits of rule-induction classification methods, particularly RIPPER, for the root cause analysis of performance degradations. RIPPER reveals the causes of problems in a set of rules system administrators can use in remediation processes. Native cloud applications are based on the microservices architecture to consume the benefits of distributed computing. Monitoring such applications can be accomplished via distributed tracing, which inspects the passage of requests through different microservices. We discuss the application of rule-learning approaches to trace traffic passing through a malfunctioning microservice for the explanations of the problem. Experiments performed on datasets from cloud environments proved the applicability of such approaches and unveiled the benefits

    Challenges and Opportunities in Applied System Innovation

    Get PDF
    This book introduces and provides solutions to a variety of problems faced by society, companies and individuals in a quickly changing and technology-dependent world. The wide acceptance of artificial intelligence, the upcoming fourth industrial revolution and newly designed 6G technologies are seen as the main enablers and game changers in this environment. The book considers these issues not only from a technological viewpoint but also on how society, labor and the economy are affected, leading to a circular economy that affects the way people design, function and deploy complex systems

    Advances in the Field of Electrical Machines and Drives

    Get PDF
    Electrical machines and drives dominate our everyday lives. This is due to their numerous applications in industry, power production, home appliances, and transportation systems such as electric and hybrid electric vehicles, ships, and aircrafts. Their development follows rapid advances in science, engineering, and technology. Researchers around the world are extensively investigating electrical machines and drives because of their reliability, efficiency, performance, and fault-tolerant structure. In particular, there is a focus on the importance of utilizing these new trends in technology for energy saving and reducing greenhouse gas emissions. This Special Issue will provide the platform for researchers to present their recent work on advances in the field of electrical machines and drives, including special machines and their applications; new materials, including the insulation of electrical machines; new trends in diagnostics and condition monitoring; power electronics, control schemes, and algorithms for electrical drives; new topologies; and innovative applications

    Blockchain and Random Subspace Learning-Based IDS for SDN-Enabled Industrial IoT Security

    Get PDF
    The industrial control systems are facing an increasing number of sophisticated cyber attacks that can have very dangerous consequences on humans and their environments. In order to deal with these issues, novel technologies and approaches should be adopted. In this paper, we focus on the security of commands in industrial IoT against forged commands and misrouting of commands. To this end, we propose a security architecture that integrates the Blockchain and the Software-defined network (SDN) technologies. The proposed security architecture is composed of: (a) an intrusion detection system, namely RSL-KNN, which combines the Random Subspace Learning (RSL) and K-Nearest Neighbor (KNN) to defend against the forged commands, which target the industrial control process, and (b) a Blockchain-based Integrity Checking System (BICS), which can prevent the misrouting attack, which tampers with the OpenFlow rules of the SDN-enabled industrial IoT systems. We test the proposed security solution on an Industrial Control System Cyber attack Dataset and on an experimental platform combining software-defined networking and blockchain technologies. The evaluation results demonstrate the effectiveness and efficiency of the proposed security solution

    WESSBAS: extraction of probabilistic workload specifications for load testing and performance prediction—a model-driven approach for session-based application systems

    Get PDF
    The specification of workloads is required in order to evaluate performance characteristics of application systems using load testing and model-based performance prediction. Defining workload specifications that represent the real workload as accurately as possible is one of the biggest challenges in both areas. To overcome this challenge, this paper presents an approach that aims to automate the extraction and transformation of workload specifications for load testing and model-based performance prediction of session-based application systems. The approach (WESSBAS) comprises three main components. First, a system- and tool-agnostic domain-specific language (DSL) allows the layered modeling of workload specifications of session-based systems. Second, instances of this DSL are automatically extracted from recorded session logs of production systems. Third, these instances are transformed into executable workload specifications of load generation tools and model-based performance evaluation tools. We present transformations to the common load testing tool Apache JMeter and to the Palladio Component Model. Our approach is evaluated using the industry-standard benchmark SPECjEnterprise2010 and the World Cup 1998 access logs. Workload-specific characteristics (e.g., session lengths and arrival rates) and performance characteristics (e.g., response times and CPU utilizations) show that the extracted workloads match the measured workloads with high accuracy

    Game Theory Models for the Verification of the Collective Behaviour of Autonomous Cars

    Get PDF
    The collective of autonomous cars is expected to generate almost optimal traffic. In this position paper we discuss the multi-agent models and the verification results of the collective behaviour of autonomous cars. We argue that non-cooperative autonomous adaptation cannot guarantee optimal behaviour. The conjecture is that intention aware adaptation with a constraint on simultaneous decision making has the potential to avoid unwanted behaviour. The online routing game model is expected to be the basis to formally prove this conjecture.Comment: In Proceedings FVAV 2017, arXiv:1709.0212

    Self-adaptive video encoder: comparison of multiple adaptation strategies made simple

    Get PDF
    This paper presents an adaptive video encoder that can be used to compare the behavior of different adaptation strategies using multiple actuators to steer the encoder towards a global goal, composed of multiple conflicting objectives. A video camera produces frames that the encoder manipulates with the objective of matching some space requirement to fit a given communication channel. A second objective is to maintain a given similarity index between the manipulated frames and the original ones. To achieve the goal, the software can change three parameters: the quality of the encoding, the noise reduction filter radius and the sharpening filter radius. In most cases, the objectives - small encoded size and high quality - conflict, since a larger frame would have a higher similarity index to its original counterpart. This makes the problem difficult from the control perspective and makes the case study appealing to compare different adaptation strategies
    corecore