404 research outputs found

    Wavenumber sampling strategies for 2.5-D frequency-domain seismic wave modelling in general anisotropic media

    Get PDF
    The computational efficiency of 2.5-D seismic wave modelling in the frequency domain depends largely on the wavenumber sampling strategy used. This involves determining the wavenumber range and the number of the sampling points, and overcoming the singularities in the wavenumber spectrum when taking the inverse Fourier transform to yield the frequency-domain wave solution. In this paper, we employ our newly developed Gaussian quadrature grid numerical modelling method and extensively investigate the wavenumber sampling strategies for 2.5-D frequency-domain seismic wave modelling in heterogeneous, anisotropic media. We show analytically and numerically that the various components of the Green's function tensor wavenumber-domain solutions have symmetric or antisymmetric properties and other characteristics, all of which can be fully used to construct effective and efficient sampling strategies for the inverse Fourier transform. We demonstrate two sampling schemes-called irregular and regular sampling strategies for the 2.5-D frequency-domain seismic wave modelling technique. The numerical results, which involve calibrations against analytic solutions, comparison of the different wavenumber sampling strategies and validation by means of 3-D numerical solutions, show that the two sampling strategies are both suitable for efficiently computing the 3-D frequency-domain wavefield in 2-D heterogeneous, anisotropic media. These strategies depend on the given frequency, elastic model parameters and maximum wavelength and the offset distance from the sourc

    An axisymmetric time-domain spectral-element method for full-wave simulations: Application to ocean acoustics

    Full text link
    The numerical simulation of acoustic waves in complex 3D media is a key topic in many branches of science, from exploration geophysics to non-destructive testing and medical imaging. With the drastic increase in computing capabilities this field has dramatically grown in the last twenty years. However many 3D computations, especially at high frequency and/or long range, are still far beyond current reach and force researchers to resort to approximations, for example by working in 2D (plane strain) or by using a paraxial approximation. This article presents and validates a numerical technique based on an axisymmetric formulation of a spectral finite-element method in the time domain for heterogeneous fluid-solid media. Taking advantage of axisymmetry enables the study of relevant 3D configurations at a very moderate computational cost. The axisymmetric spectral-element formulation is first introduced, and validation tests are then performed. A typical application of interest in ocean acoustics showing upslope propagation above a dipping viscoelastic ocean bottom is then presented. The method correctly models backscattered waves and explains the transmission losses discrepancies pointed out in Jensen et al. (2007). Finally, a realistic application to a double seamount problem is considered.Comment: Added a reference, and fixed a typo (cylindrical versus spherical

    Wave simulation in 2D heterogeneous transversely isotropic porous media with fractional attenuation: a Cartesian grid approach

    No full text
    International audienceA time-domain numerical modeling of transversely isotropic Biot poroelastic waves is proposed in two dimensions. The viscous dissipation occurring in the pores is described using the dynamic permeability model developed by Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency. In the time-domain, these coefficients introduce shifted fractional derivatives of order 1/21/2, involving a convolution product. Based on a diffusive representation, the convolution kernel is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations, resulting in the Biot-DA (diffusive approximation) model. The properties of both the Biot-JKD and the Biot-DA model are analyzed: hyperbolicity, decrease of energy, dispersion. To determine the coefficients of the diffusive approximation, two approaches are analyzed: Gaussian quadratures and optimization methods in the frequency range of interest. The nonlinear optimization is shown to be the better way of determination. A splitting strategy is then applied to approximate numerically the Biot-DA equations. The propagative part is discretized using a fourth-order ADER scheme on a Cartesian grid, whereas the diffusive part is solved exactly. An immersed interface method is implemented to take into account heterogeneous media on a Cartesian grid and to discretize the jump conditions at interfaces. Numerical experiments are presented. Comparisons with analytical solutions show the efficiency and the accuracy of the approach, and some numerical experiments are performed to investigate wave phenomena in complex media, such as multiple scattering across a set of random scatterers

    Wavenumber sampling strategies for 2.5-D frequency-domain seismic wave modelling in general anisotropic media

    Get PDF
    The computational efficiency of 2.5-D seismic wave modelling in the frequency domain depends largely on the wavenumber sampling strategy used. This involves determining the wavenumber range and the number of the sampling points, and overcoming the singularities in the wavenumber spectrum when taking the inverse Fourier transform to yield the frequency-domain wave solution. In this paper, we employ our newly developed Gaussian quadrature grid numerical modelling method and extensively investigate the wavenumber sampling strategies for 2.5-D frequency-domain seismic wave modelling in heterogeneous, anisotropic media. We show analytically and numerically that the various components of the Green's function tensor wavenumber-domain solutions have symmetric or antisymmetric properties and other characteristics, all of which can be fully used to construct effective and efficient sampling strategies for the inverse Fourier transform. We demonstrate two sampling schemes—called irregular and regular sampling strategies for the 2.5-D frequency-domain seismic wave modelling technique. The numerical results, which involve calibrations against analytic solutions, comparison of the different wavenumber sampling strategies and validation by means of 3-D numerical solutions, show that the two sampling strategies are both suitable for efficiently computing the 3-D frequency-domain wavefield in 2-D heterogeneous, anisotropic media. These strategies depend on the given frequency, elastic model parameters and maximum wavelength and the offset distance from the source.Bing Zhou, Stewart Greenhalgh and Mark Greenhalg

    Advanced BEM-based methodologies to identify and simulate wave fields in complex geostructures

    Get PDF
    To enhance the applicability of BEM for geomechanical modeling numerically optimized BEM models, hybrid FEM-BEM models, and parallel computation of seismic Full Waveform Inversion (FWI) in GPU are implemented. Inverse modeling of seismic wave propagation in inhomogeneous and heterogeneous half-plane is implemented in Boundary Element Method (BEM) using Particle Swarm Optimization (PSO). The Boundary Integral Equations (BIE) based on the fundamental solutions for homogeneous elastic isotropic continuum are modified by introducing mesh-dependent variables. The variables are optimized to obtain the site-specific impedance functions. The PSO-optimized BEM models have significantly improved the efficiency of BEM for seismic wave propagation in arbitrarily inhomogeneous and heterogeneous media. Similarly, a hybrid BEM-FEM approach is developed to evaluate the seismic response of a complex poroelastic soil region containing underground structures. The far-field semi-infinite geological region is modeled via BEM, while the near-field finite geological region is modeled via FEM. The BEM region is integrated into the global FEM system using an equivalent macro-finite-element. The model describes the entire wave path from the seismic source to the local site in a single hybrid model. Additionally, the computational efficiency of time domain FWI algorithm is enhanced by parallel computation in CPU and GPU

    2.5-D poroelastic wave modelling in double porosity media

    Get PDF
    To approximate seismic wave propagation in double porosity media, the 2.5-D governing equations of poroelastic waves are developed and numerically solved. The equations are obtained by taking a Fourier transform in the strike or medium-invariant direction over all of the field quantities in the 3-D governing equations. The new memory variables from the Zener model are suggested as a way to represent the sum of the convolution integrals for both the solid particle velocity and the macroscopic fluid flux in the governing equations. By application of the memory equations, the field quantities at every time step need not be stored. However, this approximation allows just two Zener relaxation times to represent the very complex double porosity and dual permeability attenuation mechanism, and thus reduce the difficulty. The 2.5-D governing equations are numerically solved by a time-splitting method for the non-stiff parts and an explicit fourth-order Runge-Kutta method for the time integration and a Fourier pseudospectral staggered-grid for handling the spatial derivative terms. The 2.5-D solution has the advantage of producing a 3-D wavefield (point source) for a 2-D model but is much more computationally efficient than the full 3-D solution. As an illustrative example, we firstly show the computed 2.5-D wavefields in a homogeneous single porosity model for which we reformulated an analytic solution. Results for a two-layer, water-saturated double porosity model and a laterally heterogeneous double porosity structure are also presente
    • …
    corecore