
Modeling and Simulation of Random Processes and
Fields in Civil Engineering and Engineering Mechanics

Brett A. Benowitz

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2013

c©2013

Brett A. Benowitz

All Rights Reserved

ABSTRACT

Modeling and Simulation of Random Processes and
Fields in Civil Engineering and Engineering Mechanics

Brett A. Benowitz

This thesis covers several topics within computational modeling and simulation of problems arising in Civil

Engineering and Applied Mechanics. There are two distinct parts. Part 1 covers work in modeling and

analyzing heterogeneous materials using the eXtended Finite Element Method (XFEM) with arbitrarily

shaped inclusions. A novel enrichment function, which can model arbitrarily shaped inclusions within the

framework of XFEM, is proposed. The internal boundary of an arbitrarily shaped inclusion is first discretized,

and a numerical enrichment function is constructed “on the fly” using spline interpolation. This thesis

considers a piecewise cubic spline, which is constructed from seven localized discrete boundary points. The

enrichment function is then determined by solving numerically a nonlinear equation, which determines the

distance from any point to the spline curve. Parametric convergence studies are carried out to show the

accuracy of this approach, compared to pointwise and linear segmentation of points, for the construction of

the enrichment function in the case of simple inclusions and arbitrarily shaped inclusions in linear elasticity.

Moreover, the viability of this approach is illustrated on a Neo-Hookean hyperelastic material with a hole

undergoing large deformation. In this case, the enrichment is able to adapt to the deformation and effectively

capture the correct response without remeshing.

Part 2 then moves on to research work in simulation of random processes and fields. Novel algorithms

for simulating random processes and fields such as earthquakes, wind fields, and properties of functionally

graded materials are discussed. Specifically, a methodology is presented to determine the Evolutionary

Spectrum (ES) for non-stationary processes from a prescribed or measured non-stationary Auto-Correlation

Function (ACF). Previously, the existence of such an inversion was unknown, let alone possible to compute

or estimate. The classic integral expression suggested by Priestley, providing the ACF from the ES, is not

invertible in a unique way so that the ES could be determined from a given ACF. However, the benefits of

an efficient inversion from ACF to ES are vast. Consider for example various problems involving simulation

of non-stationary processes or non-homogeneous fields, including non-stationary seismic ground motions as

well as non-homogeneous material properties such as those of functionally graded materials. In such cases,

it is sometimes more convenient to estimate the ACF from measured data, rather than the ES. However,

efficient simulation depends on knowing the ES. Even more important, simulation of non-Gaussian and non-

stationary processes depends on this inversion, when following a spectral representation based approach.

This work first examines the existence and uniqueness of such an inversion from the ACF to the ES under a

set of special conditions and assumptions (since such an inversion is clearly not unique in the most general

form). It then moves on to efficient methodologies of computing the inverse, including some established

optimization techniques, as well as proposing a novel methodology. Its application within the framework

of translation models for simulation of non-Gaussian, non-stationary processes is developed and discussed.

Numerical examples are provided demonstrating the capabilities of the methodology.

Additionally in Part 2, a methodology is presented for efficient and accurate simulation of wind velocities

along long span structures at a virtually infinite number of points. Currently, the standard approach is to

model wind velocities as a multivariate stochastic process, characterized by a Cross-Spectral Density Matrix

(CSDM). In other words, the wind velocities are modeled as discrete components of a vector process. To

simulate sample functions of the vector process, the Spectral Representation Method (SRM) is used. The

SRM involves a Cholesky decomposition of the CSDM. However, it is a well known issue that as the length of

the structure, and consequently the size of the vector process, increases, this Cholesky decomposition breaks

down (from the numerical point of view). To avoid this issue, current research efforts in the literature center

around approximate techniques to simplify the decomposition. Alternatively, this thesis proposes the use of

the frequency-wavenumber (F-K) spectrum to model the wind velocities as a stochastic “wave,” continuous

in both space and time. This allows the wind velocities to be modeled at a virtually infinite number of points

along the length of the structure. In this work, the relationship between the CSDM and the F-K spectrum

is first examined, as well as simulation techniques for both. The F-K spectrum for wind velocities is then

derived. Numerical examples are then carried out demonstrating that the simulated wave samples exhibit

the desired spectral and coherence characteristics. The efficiency of this method, specifically through the

use of the Fast Fourier Transform, is demonstrated.

Table of Contents

List of Figures v

List of Tables viii

1 Introduction & outline 1

1.1 Introduction . 1

1.2 Outline . 2

I Modeling heterogeneous fields 4

2 XFEM for modeling inclusions 5

2.1 Motivation & literature review . 5

2.2 Assumptions and governing equations . 7

2.2.1 Governing equations . 7

2.2.2 Strong and weak form . 9

2.3 Formulation of the eXtended Finite Element Method . 9

2.4 Enrichment functions . 11

2.4.1 Definitions . 11

2.4.2 Formulations for simple geometries . 11

3 Spline based enrichment formulation for arbitrary shapes 14

3.1 Cubic spline interpolation . 14

3.1.1 Definitions and formulation . 14

3.1.2 Parametric cubic splines . 15

3.1.3 Localized splines . 16

3.2 Calculation of signed distance function . 19

3.2.1 Determining the magnitude of the signed distance function 19

i

3.2.2 Determining the sign of the signed distance function 20

3.2.3 Level set function algorithm . 20

3.3 Enrichment function differentiation . 24

3.4 Numerical integration . 24

3.5 Convergence analysis . 25

3.5.1 Level set function convergence . 25

3.5.2 Differentiation convergence . 26

3.5.3 Classical XFEM comparison for circular inclusion . 27

3.5.4 FEM comparison for arbitrary inclusion . 29

3.6 Conclusions . 30

4 Non-linear XFEM formulation for finite deformations 31

4.1 Definitions and formulation . 31

4.2 Non-Linear XFEM example case study . 34

4.3 Conclusions . 40

II Simulating random procresses & fields 41

5 Simulation of stochastic processes & fields 42

5.1 Introduction . 42

5.2 Stationary, univariate, Gaussian stochastic processes . 43

5.3 Non-stationary, univariate, Gaussian stochastic processes . 45

5.3.1 Non-stationary processes . 45

5.3.2 Simulation of amplitude modulated non-stationary processes 47

5.3.3 Simulation of amplitude and frequency modulated non-stationary processes 48

5.4 Non-Guassian stochastic processes . 48

5.4.1 Stationary non-Gaussian stochastic processes . 48

5.4.2 Non-stationary non-Gaussian stochastic processes . 49

5.5 Multi-variate stochastic processes . 50

5.6 Multi-dimensional stochastic processes . 52

5.6.1 Multi-dimensional random fields . 52

5.6.2 Stochastic waves . 53

6 Determining Evolutionary Spectra from non-stationary Autocorrelation Functions 55

6.1 Introduction & motivation . 55

ii

6.2 Formulation of discrete optimization problem . 58

6.3 “Brute Force” Method (BFM) . 59

6.3.1 Description of algorithm . 59

6.3.2 BFM results . 61

6.4 “Multi-Grid” Method (MGM) . 66

6.4.1 Description of algorithm . 66

6.4.2 MGM results . 67

6.4.3 Efficiency comparison . 73

6.5 Preprocessing . 76

6.5.1 Definition of “Pseudo-Spectrum” . 76

6.5.2 Numerical examples . 76

7 Simulation of non-stationary and non-Gaussian stochastic processes 84

7.1 Introduction & motivation . 84

7.2 Review of methodologies for simulating stationary non-Gaussian processes 86

7.3 Proposed methodology for simulating non-stationary and non-Gaussian processes 89

7.4 Numerical examples . 92

7.4.1 Log-normal distribution . 92

7.4.2 Uniform distribution . 96

8 Simulation of wind velocities along long-span structures 101

8.1 Introduction & motivation . 101

8.2 Modeling wind as a stochastic wave . 103

8.2.1 Derivation of frequency-wavenumber (F-K) spectrum 103

8.2.2 Verification of F-K spectrum . 104

8.3 Simulation of wind velocities as a wave . 105

8.4 Numerical example . 107

8.4.1 Problem definition . 107

8.4.2 Results . 108

9 Conclusions 112

9.1 Main contributions . 112

9.1.1 Part I: Modeling heterogeneous fields . 112

9.1.2 Part II: Simulating random procresses & fields . 113

9.2 Future work . 113

iii

9.2.1 Part I: Modeling heterogeneous fields . 113

9.2.2 Part II: Simulating random procresses & fields . 114

Bibliography 115

A Closest point on spline curve derivation 124

B Quadrature for C0 continuous functions 126

B.1 Introduction . 126

B.2 Analytical reference solution . 127

B.3 Quadrature convergence . 128

C MATLAB codes for the Spectral Representation Method, and FFT implementations 129

C.1 Introduction . 129

C.2 Stationary processes . 129

C.2.1 MATLAB codes . 129

C.2.2 Efficiency comparison . 131

C.3 Non-stationary processes . 131

C.4 Stochastic waves . 132

C.4.1 MATLAB codes . 132

C.4.2 Efficiency comparison . 134

iv

List of Figures

2.1 FEM and XFEM meshes for heterogeneous materials . 6

2.2 Level set functions . 13

3.1 Subset orientation and scalar spline formulations . 16

3.2 Stability of scalar splines . 17

3.3 Stability of vectorized parametric splines . 17

3.4 Localized splines . 18

3.5 Point-in-polygon methods . 21

3.6 Determining the sign of the level set function . 22

3.7 Level set generation . 23

3.8 Integration techniques for enriched elements . 25

3.9 Problem geometry . 26

3.10 Convergence of level set function . 26

3.11 Convergence of enrichment derivatives . 27

3.12 Circle problem geometry and mesh . 28

3.13 Comparison to ‘classical’ XFEM formulation . 28

3.14 Mesh comparison to ‘classical’ XFEM formulation . 29

3.15 XFEM-FEM comparison for arbitrary inclusion . 30

4.1 Plate with hole geometry and loading conditions . 36

4.2 von Mises stresses for the plate of Figure 4.1(a) . 37

4.3 Plate with hole force-displacement . 38

4.4 Plate with hole in bending and pinching: Von Mises stresses on deformed configuration . . . 39

5.1 Stationary vs. non-stationary processes . 47

6.1 Loma-Prieta acceleration time history . 56

v

6.2 Sample Functionally Graded Material (FGM) . 56

6.3 Brute Force Method (BFM) algorithm . 60

6.4 BFM Iterations . 61

6.5 Clough-Penzien (CP) spectrum with amplitude and frequency modulation 62

6.6 Jennings, Housner, and Tsai modulating function . 62

6.7 BFM convergence . 65

6.8 BFM generated samples . 66

6.9 Multi-Grid Method (MGM) algorithm . 68

6.10 MGM iterations . 69

6.11 MGM convergence . 70

6.12 MGM generated samples . 71

6.13 Optimization comparison . 71

6.14 MATLAB peaks function . 72

6.15 MGM MATLAB peaks example results . 74

6.16 MGM MATLAB peaks example errors . 75

6.17 peaks MGM generated samples . 75

6.18 Pseudo-spectrum results for Kanai-Tajimi example . 77

6.19 Pseudo-spectrum generated samples . 78

6.20 MGM with pre-processing: Kanai-Tajimi . 79

6.21 Pseudo-spectrum results for Clough-Penzien example . 79

6.22 Pseudo-spectrum generated samples . 80

6.23 MGM with pre-processing: Clough-Penzien . 80

6.24 Pseudo-spectrum results for linear chirp example . 82

6.25 MGM with pre-processing: linear chirp . 82

6.26 MGM with pseudo-spectrum generated samples . 83

7.1 Stationary and non-Gaussian algorithm . 88

7.2 Proposed non-stationary and non-Gaussian algorithm . 90

7.3 Log-normal distribution . 93

7.4 Log-normal Kanai-Tajimi process: evolutionary spectra . 94

7.5 Log-normal Kanai-Tajimi convergence . 95

7.6 Log-normal correlation distortion . 96

7.7 Uniform distribution . 97

7.8 Uniform Kanai-Tajimi process: evolutionary spectra . 98

7.9 Uniform Kanai-Tajimi convergence . 99

vi

7.10 Uniform correlation distortion . 100

8.1 The Tacoma Narrows bridge . 102

8.2 Simulation of wind velocities as a wave . 106

8.3 Kaimal vs. estimate spectra . 109

8.4 Davenport vs. estimated coherence . 110

8.5 Generated sample realization of wind velocities modeled as a stochastic wave 111

B.1 Quadrature test problem geometry . 127

B.2 Quadrature convergence . 128

C.1 Efficiency comparison . 131

C.2 Efficiency comparison . 134

vii

List of Tables

6.1 BFM and MGM efficiency comparison . 73

viii

Acknowledgments

The work that this dissertation represents, both the studies within, and the career it culminates, would not

have been possible without many people. Firstly, I would like to thank my girlfriend, Sandy, for her steadfast

support during this process, for welcome distractions when needed, and for being a role model after finishing

law school and passing the bar. Being able to come home to you made this all a lot easier. Plus, I think the

entire department is thankful for your baked goods. I especially need to thank my parents, for their support

in every way imaginable, and for instilling a desire for, and value of, education from a very young age. My

father Marc, as much as I make fun of his dorkiness and Brooklyn accent, has always been, and will always

be, my biggest role model. Since I was three years old I knew I would get a Ph.D. from this very department.

My mother Nancy, as much as she makes fun of my dorkiness, I know that she has always been proud and

supporting of me. I also would like to thank my sister Jackie, and of course Penny, for always being there

when I needed family.

I, of course, also need to thank my advisors here at Columbia. Both Prof. George Deodatis and Prof.

Haim Waisman always had open doors when I needed guidance and advice - be it technical, professional,

or personal. I am eternally grateful for their assistance, support, and guidance. Prof. Raimondo Betti,

as my undergraduate advisor, played a pivotal role in helping to decide if, where, and when to pursue

my doctorate, and was always there for help along the way. I would also like to thank Kington Chan for

his technical support along the way, and always going above and beyond to help ensure we had the best

computational resources available. I am indebted to the entire faculty and staff of the Department of Civil

Engineering and Engineering Mechanics, which has been my home for the past seven years, and for the

department’s support through teaching and research fellowships. I would also like to thank Prof. Patricia

Culligan, and the National Science Foundation, for the life changing opportunities that were made available

to me through working with the NSF IGERT, and the Urban Ecology Studio. The ability to travel all over

the world, and work on interesting problems, was a unique and important element in my career.

Last, but certainly not least, I need to thank my friends and colleagues here at Columbia. Those that

were ahead of me, for their endless patience and support in helping me, and those that were along side me

from beginning until end. You guys made these years among the best of my life. Thanks for the lunch breaks,

the laughs, the trouble shooting, and the endless fun. I will inevitably forget some names, and for that I

ix

apologize, but I would like the specifically thank: Adrian, Arturo, Badri, Ben, Colin, Dan, Kirubel, Luc,

Luciana, Mady, Mahesh, Manolis, Matt, Mike Lackey, Mike Shields, Pablo, Packy, Po-Hua, Rafi, Rishee,

Suparno, Tyler, the rest of the CEEM students, and all of the IGERTs.

Thank you all.

x

To my parents, for teaching me to always ask “why?”

xi

CHAPTER 1. INTRODUCTION & OUTLINE 1

Chapter 1

Introduction & outline

1.1 Introduction

In this thesis, some contributions to the fields of modeling and simulating physical phenomena, with particular

applications within civil engineering and applied mechanics, are presented. Although, in general, the terms

“modeling” and “simulating” are often used interchangeably, in this work a distinction is made. The term

“modeling” will be used to denote a deterministic computational model of physical phenomena. On the other

hand, the term “simulation” will refer to the generation of sample functions of stochastic processes and fields.

These two areas divide the thesis into its separate parts. Part I discusses contributions in computational

modeling of solid mechanics problems involving weak discontinuities (i.e. heterogeneous materials), and Part

II discusses the simulation of stochastic processes and fields.

More specifically, Part I introduces a novel formulation for modeling heterogeneous materials with arbi-

trarily shaped inclusions or flaws within the eXtended Finite Element Method (XFEM). This method is then

applied to non-linear finite deformation problems in hyperelasticity. The method developed has applications

in new material design/optimization, uncertainty quantification, and flaw detection. Part II, then moves on

to the simulation of stochastic processes and fields. The first contribution discussed in this part is in the

simulation of non-stationary and non-Gaussian stochastic processes and fields. Then, a novel formulation

for simulating wind velocity fields along long-span structures is presented. A more detailed overview of both

of these parts is given in the outline below.

Both parts of this thesis, while rooted in the detailed theory and/or numerics, are concerned with practical

necessities in the field. Strong computer models, coupled with solid simulation, are necessary for strong

physical understanding of our engineered systems. Be they aircraft, bridges, skyscrapers, computer hardware,

mobile smart phones, or anything in between – computer models are invariably used in the physical design.

CHAPTER 1. INTRODUCTION & OUTLINE 2

Usually these analyses are deterministic, though increasingly probabilistic consideration is given to the design

of these systems. As an example, consider the critical infrastructure systems of a nation/society. The design

of these systems will generally be governed by extreme loads – storm winds, earthquakes, or other natural or

man-made hazards/catastrophes. The only thing that is known with any certainty about these loads a priori

is that they are highly uncertain. When consideration is given to climate change as well, the uncertainty

only grows. This is where the importance of probabilistic modeling in design lies. For truly resilient, and by

result, sustainable infrastructure, these highly uncertain conditions must be modeled and simulated in an

efficient, accurate, and robust manner during the design process.

1.2 Outline

This dissertation is organized into two distinct parts. Part I revolves around computational modeling of

heterogeneous fields. Chapter 2 introduces XFEM, and presents a brief review of XFEM for modeling

heterogeneous materials. Then, Chapter 3 develops the proposed formulation for arbitrary inclusions, as

well as reviews spline interpolation, which is the basis for the proposed method. Chapter 3 also examines

the convergence of the proposed method, in all stages of implementation - from the level set function to the

XFEM implementation for an arbitrary inclusion. Finally, Chapter 4 develops and examines an application

of this methodology to non-linear finite deformation problems.

Part II then moves on to discuss simulation of random processes and fields. First, in Chapter 5, existing

simulation techniques are reviewed. In particular, the Spectral Representation Method (SRM) is reviewed for

the simulation of various classes of random processes/fields, including stationary, non-stationary, Gaussian,

non-Gaussian, multi-variate, and multi-dimensional processes/fields (and combinations thereof). Chapter 6

then moves on to non-stationarity, and in particular the inversion of the Evolutionary Spectrum (ES) from a

prescribed or measured Auto-Correlation Function (ACF). The existence and uniqueness of this solution is

examined, and novel, efficient methodologies are presented for the inversion. This computation is important

for the simulation of non-stationary processes, and critical for the simulation of non-stationary and non-

Gaussian processes within the framework of the SRM. Following the developments presented in Chapter

6, Chapter 7 then develops a novel algorithm for simulating non-stationary and non-Gaussian stochastic

processes. In particular, the underlying Gaussian ES for a prescribed non-Gaussian process is found, for

use in a translation based simulation with the SRM. Finally, Chapter 8 proposes an innovative method for

simulating wind velocities along long-span bridges. In contrast to the current methodology of modeling

these velocities as discrete components of a stochastic vector process, they are modeled as a stochastic wave,

continuous in time and space. This method is more accurate, robust, and efficient than previous.

Chapter 9 concludes the thesis with a summary, and presents the major contributions of the work.

CHAPTER 1. INTRODUCTION & OUTLINE 3

Following this conclusion is the bibliography and appendices. In Appendix A, the derivation of the closest

point on a spline curve is presented. Appendix B presents a convergence study for numerical quadrature on

weakly discontinuous functions. Finally, some sample MATLAB codes for simulation of stochastic processes

are provided in Appendix C, as is a brief demonstration of the efficiency gains due to the use of the Fast

Fourier Transform (FFT).

4

Part I

Modeling heterogeneous fields

CHAPTER 2. XFEM FOR MODELING INCLUSIONS 5

Chapter 2

XFEM for modeling inclusions

2.1 Motivation & literature review

Multiphase materials are among, if not, the most prevalent materials on earth - from concrete to nano-fiber

reinforced polymers. Accurate modeling and simulation of these complex macro- and micro-structures is

non-trivial and computationally intensive. The eXtended Finite Element Method (XFEM) has proven to

be efficient in the modeling of multiphase materials. However, it has mainly been developed for inclusions

with somewhat simplified geometries — e.g. circular [1] and elliptical [2] internal boundaries. Sometimes

the inhomogeneities are, or can be approximated as, simple shapes such as circles or ellipses. However,

there are many materials (e.g. concrete) in which the inhomogeneities are arbitrarily shaped. Thus, it is of

great interest to model these materials efficiently and accurately for use in analysis and design. This thesis

discusses the numerical modeling of arbitrarily shaped inclusions within the framework of the XFEM.

XFEM was first introduced by Belytschko and co-workers [3, 4] for modeling crack growth. It possesses

a major advantage over the conventional Finite Element Method (FEM) in that it is mesh independent.

For crack growth, this is advantageous because there is no need for remeshing as the crack grows. For

inhomogeneous materials or voids this is also advantageous because there is no need to generate complicated

meshes that conform exactly to internal boundaries, as shown in Figure 2.1. XFEM was applied to such

problems of holes and inclusions by Sukumar et. al. [1]. Corrected enrichments were proposed by Moës et.

al. [5], and Fries and Belytschsko [6, 7], as well.

The methods proposed in [1] are easily applied to simple shapes, such as circles [1] and ellipses [2], where

an analytical expression for the necessary level set function (as will be described shortly) is readily available.

This work extends these methods to arbitrary shapes using a numerical algorithm, as opposed to the analyti-

cal expressions, which had been used previously for simple shapes. Through a discrete description of internal

CHAPTER 2. XFEM FOR MODELING INCLUSIONS 6

(a) FEM mesh (b) XFEM mesh

Figure 2.1: FEM and XFEM meshes for heterogeneous materials. The FEM mesh on the left is complicated

as it needs to conform to internal geometries. The XFEM mesh on the right, however, does not need to

conform to internal geometries, and is regular. The highlighted nodes have added enriched degrees of freedom

to account for this mesh independence.

boundaries, a numerical enrichment function is developed, which can handle these arbitrary internal geome-

tries. Numerical enrichment functions have been used previously: Waisman and Belytschko [8] proposed

a numerical updating scheme for the enrichment function, and Menk and Bordas [9] proposed a numerical

formulation for bi-material anisotropic fracture. Liu and Taciroglu [10, 11] used a spline based enrichment

function in an enriched Reproducing Kernal Particle Method for multi-phase piezoelectric materials. Other

noteworthy uses of numerical, or non-analytical, enrichment functions in the literature include: Chahine et.

al. [12] used the addition of an adaptive discretization for problems consisting of unknown crack tip displace-

ments; Aquino et. al. [13] proposed a proper orthogonal decomposition for developing enrichment functions

from observed or simulated data; and Abbas et. al. [14] employed a set of regularized Heaviside functions as

enrichments for problems with high gradients. However, this study is the first such application to problems

of inclusions and voids, including complex geometries, in XFEM. An alternative method is presented in [15],

in which a higher-order XFEM mesh is used to represent curved interfaces to a higher resolution.

One major application of the methods described in this thesis is in nonlinear finite deformation problems.

Consider, for example, a piece of rubber with a circular hole in the center, being stretched. As the piece of

rubber is deformed, the hole will deform as well. Thus, an algorithm that can handle the evolving shape of

the hole or inclusion is advantageous. Problems of interface tracking have been the focus of the Level Set

Method (LSM) and Fast Marching Method (FMM) [16–18]. The LSM and FMM were first introduced by

Osher and Sethian [16, 17] to model the propagation of interface boundaries. It has been coupled with XFEM

CHAPTER 2. XFEM FOR MODELING INCLUSIONS 7

(and other mesh independent formulations) for modeling crack propagation [19–21] and material interfaces

[1, 22–24]. In the LSM and FMM, the interface is modeled by the zero contour of a level set function that

is of one higher dimension. The interface is propagated forward through advection. However, for nonlinear

finite deformation problems, as considered in this work, use of the LSM is cumbersome. Instead, in this

work, the interface tracking will be handled by “re-initialization” at each incremental step of the analysis,

which will be discussed further in Chapter 4.

Another application of these methods would be in optimization problems dealing with inclusion geometry.

For example, detection and quantification of flaws in structures using XFEM and genetic algorithms (GA)

was shown in [25–27]. However, these studies only used simple, radially symmetric flaw shapes. The proposed

methods would not only work for arbitrary shapes accurately, but also, through the use of a few discrete

points and spline interpolation to describe internal boundaries, the proposed methodology can reduce the

number of parameters necessary to describe these shapes, which is of the highest importance in optimization.

Another application is in uncertainty quantification — e.g. in Monte-Carlo or collocation methods where

repeated solutions of different geometries are necessary. Therefore, the need to remesh at each realization

would be avoided through the use of XFEM, as shown in [2]. To summarize, a spline-based enrichment

function is capable of describing arbitrary shaped inclusions and holes and in addition adapt to new and

evolving shapes.

Part I of this thesis is organized as follows: In Chapter 2, the XFEM formulation for inclusions/holes in

a domain is briefly reviewed. Then, Chapter 3 develops the proposed formulation for arbitrary inclusions,

as well as reviews spline interpolations. Chapter 3 also examines the convergence of the proposed method,

in all stages of implementation - from the level set function to the XFEM implementation for an arbitrary

inclusion. Finally, Chapter 4 develops and examines an application of this methodology to non-linear finite

deformation problems.

2.2 Assumptions and governing equations

2.2.1 Governing equations

In this chapter, problems will assumed to be linear elastic. In Chapter 4, the formulation will be extended to

nonlinear problems. The development of the governing equations, including strong and weak forms, follows

the derivation in Fish & Belytschko [28]. To begin, four critical assumptions are made:

1. deformations are small;

2. the behavior of the material is linear;

3. dynamic effects are neglected;

CHAPTER 2. XFEM FOR MODELING INCLUSIONS 8

4. no gaps or overlaps occur during the deformation of the solid.

Detailed justification for these assumptions is beyond the scope of this work. Linear elasticity has been

generally accepted for over 300 years for appropriate problems. The assumption of small deformation is

acceptable because it will be constrained to be so. Linear material behavior is a safe assumption for most

common materials, especially at low deformations. As for the static analysis, this will be prescribed in the

problem definitions. Finally, the fourth assumption is valid as the material is not expected to fracture or

crack at the low loads considered.

There are three governing equations in linear elasticity. The first being the kinematic equation, which

relates strain to displacements:

ε =

εxx

εyy

γxy

 = ∇su = ∇s

 ux

uy

 (2.1)

where ε is the strain vector, u is the displacement vector, and ∇s is a symmetric gradient operator defined

as:

∇s =

∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

 (2.2)

The second governing equation is the equilibrium equation, which essentially requires the sum of the forces

acting on the system to be zero.

∇Ts σ + b = 0 (2.3)

In Eqn. (2.3), σ is the stress vector, σ = [σxx, σyy, σxy]
T

, and superscript [·]T denotes transpose. The final

governing equation is the constitutive equation, which gives the material law. This takes the form of:

σ = Dε (2.4)

where D is the 3 × 3 Hookean matrix dependent on the problem. For an isotropic material, the following

two expressions for D are used for plane stress and plane strain problems, respectively.

• Plan stress:

D =
E

1− ν2

1 ν 0

ν 1 0

0 0 (1−ν)
2

 (2.5)

• Plan strain:

D =
E

(1 + ν) (1− 2ν)

1− ν ν 0

ν 1− ν 0

0 0 (1−2ν)
2

 (2.6)

In Eqns. (2.5) and (2.6), E is the Young’s modulus, and ν is the Poission’s ratio for the material.

CHAPTER 2. XFEM FOR MODELING INCLUSIONS 9

2.2.2 Strong and weak form

Eqns. (2.1), (2.3), and (2.4) are combined, with the addition of boundary conditions, to write the strong

form of the problem as [28]:

(S) =

∇ · σ + b = 0 on Ω

σ = D∇su

σ · n = t on Γt

u = ū on Γu

(2.7)

where Ω is the domain, n is the normal vector to the boundary. The domain boundary Γ is made up of

Γ = Γt + Γu, the Neumann (traction) and Dirichlet (displacement) boundaries, respectively. The prescribed

traction on Γt is t, and the prescribed displacement on Γu is ū.

Once again, following the derivation in [28], multiplying by the weight functions, w and integrating by

parts yields the weak form:

Find u ∈ U such that∫
Ω

(∇sw)
T

D∇su dΩ =

∫
Γt

wT t̄ dΓ +

∫
Ω

wTb dΩ ∀w ∈ U0

where U =
{
u
∣∣ u ∈ H1,u = ū on Γu

}
U0 =

{
w
∣∣ w ∈ H1,w = 0 on Γu

}
(2.8)

where H1 ⊂ C0. Though, this subset possesses square integrable derivatives, so not all C0 functions are H1.

2.3 Formulation of the eXtended Finite Element Method

In this section, a brief review of XFEM for modeling inclusions and voids is presented. For further reading

on the subject the reader is encouraged to see [1, 4, 7, 29–32].

The XFEM extends the displacement field approximation of standard FEM by an ’enrichment’ function.

The displacement field then takes the form:

uh (x) =
∑
i

Ni (x) ui +
∑
j

Nj (x)ψ (x) aj (2.9)

where, Ni (x) are the standard FEM shape functions (in this work bi-linear shape functions will be used),

and ψ (x) is the enrichment function. The degrees of freedom (DOFs) are segregated into the physical nodal

displacement, standard FEM, DOFs ui, and the enriched DOFs aj . A shifted formulation is also possible,

such that the displacement field at each node is identical to the nodal displacements at the classical physical

DOFs. The displacement field is then approximated as:

uh (x) =
∑
i

Ni (x) ui +
∑
j

Nj (x) [ψ (x)− ψ (xj)] aj (2.10)

CHAPTER 2. XFEM FOR MODELING INCLUSIONS 10

where, ψ (xj) is the enrichment function evaluated at node-j. This shifted formulation is used in the numerical

examples presented in this thesis, in order to simplify comparisons between solutions.

The enrichment function and additional DOFs are chosen to be consistent with the physics of the prob-

lem. For problems involving inhomogeneous materials, such as those considered in this work, the solutions

should have continuous displacements, but discontinuous stresses at the material interface(s). Thus, the

enrichment function must possess a weak discontinuity over the interface, i.e., it should be a C0 function

with discontinuous first derivative. Enrichment functions are discussed briefly in the following sections, but

for a more complete discussion of enrichment functions and their requirements, or enrichment functions for

problems other than inhomogeneous materials, see [1, 4, 6, 7, 29–34].

The system of equations solved in XFEM looks quite similar to that of FEM. In the linear elastic case

the system of equations to solve is:

Kuxfem = f (2.11)

where K is the global stiffness matrix, uxfem is the displacement vector, consisting of both physical and

enriched DOFs such that:

uxfem =

 u

a

 (2.12)

and f is the force vector, as defined in FEM. The global matrices and vectors are constructed through an

assembly process, similar to FEM. The element stiffness matrix in XFEM formulation may be written as the

following block matrix [32]:

Ke
ij =

 Kuu
ij Kua

ij

Kau
ij Kaa

ij

 (2.13)

where u and a denote the classical and enriched degrees of freedom, respectively. In this form, the stiffness

matrix is constructed in the same way as in classical FEM [32]:

Krs
ij =

∫
Ωe

(Br
i)
T

DBs
j dΩ (r, s = u,a) (2.14)

where the B-matrix is the matrix of the shape function derivatives. The subcomponent Bu
i is therefore the

two columns associated with the nodal displacement DOFs, and is identical to the Bu
i matrix of classical

FEM. The B-matrix for the enriched degrees of freedom is defined as [32]:

Ba
i =

∂
∂x (Niψ) 0

0 ∂
∂y (Niψ)

∂
∂y (Niψ) ∂

∂x (Niψ)

 = (Bu
i)
T
ψ +

Ni

∂ψ
∂x 0

0 Ni
∂ψ
∂y

Ni
∂ψ
∂y Ni

∂ψ
∂x

 (2.15)

CHAPTER 2. XFEM FOR MODELING INCLUSIONS 11

2.4 Enrichment functions

2.4.1 Definitions

Sukumar et. al. [1] proposed the signed distance function obtained directly by the level set function, to

model arbitrary inclusions and holes. The signed distance function is defined at a point as the distance from

that point to the internal boundary. It is defined to be positive on the exterior of the inclusion/hole, and

negative on the interior, as shown in Figure 2.2(b) for the arbitrary “kidney” shaped inclusion of Figure

2.2(a). This function possesses two benefits. First, the absolute value of this function can be used as

the enrichment function in XFEM, to produce a weak discontinuity over the material boundary. Thus,

the enrichment function is given as ψ (x) = minxΓ |x− xΓ|, where xΓ denotes the internal boundary. The

enrichment function, for the same kidney shape, is shown in Figure 2.2(c), and its derivatives are shown in

Figures 2.2(d) and 2.2(e). The enrichment function shown in Figure 2.2(c) has a “ridge” along the inclusion,

which exhibits the weak discontinuity over the material interface boundary.

The signed distance function shown in Figure 2.2(b) is also used to determine which elements are to

be enriched. Let the signed distance function be f (x). By definition, f (x) has negative values for points

on the interior of the internal boundary, and positive values for exterior points. Thus, for a given element,

if fmax (x) × fmin (x) < 0, then the element and all of its nodes are to be enriched because this element

must cross the internal boundary (i.e. it has at least one positive, external, node and at least one negative,

internal, node).

Several modified versions of this enrichment function have been proposed to deal with certain limitations.

For instance, Moës et. al. [5], Fries [6] and Fries and Belytschsko [7] have each proposed enrichment functions

that address issues pertaining to blending elements. Well known issues in blending elements (elements that

“bridge” between enriched and non-enriched elements) have been found. These modified enrichments take

the signed distance function based enrichment, and modify it (in different ways, respectively) such that the

enrichment function vanishes away from the interface, and restricts its support region to enriched elements.

2.4.2 Formulations for simple geometries

For simple, radially symmetric shapes, the enrichment function and its derivatives can be formulated in a

closed form. The expressions for circular and elliptical inclusions will be given here for reference, since they

are later used in a comparative study with the proposed formulation. For details on their derivations see

their associated references.

For a circle of radius r centered at (xc, yc), the signed distance function at a point (x, y) is given as [1]:

f (x, y) =

√
(x− xc)2

+ (y − yc)2 − r (2.16)

CHAPTER 2. XFEM FOR MODELING INCLUSIONS 12

The derivatives of the enrichment function ψ = |f (x, y)| are given as [1]:

∂ψ

∂x
= sign (d− r) x− xc

d
(2.17a)

∂ψ

∂y
= sign (d− r) y − yc

d
(2.17b)

where d =

√
(x− xc)2

+ (y − yc)2
.

For an ellipse centered at (xc, yc), of major axis a, minor axis b, and major axis oriented at an angle θ

with the x-axis, an alternate level set function was proposed by Hiriyur et. al. [2]:

f (ξ, η) =

√
ξ2

a2
+
η2

b2
− 1 (2.18)

where (ξ, η) are the transformed coordinates ξ = (x− xc) cos θ + (y − yc) sin θ and η = − (x− xc) sin θ +

(y − yc) cos θ. Once again, the derivatives of the enrichment function ψ = |f (ξ, η)| is given as [2]:

∂ψ

∂x
= sign (f (ξ, η))

ξ
a2 cos θ − η

b2 sin θ√
ξ2

a2 + η2

b2

(2.19a)

∂ψ

∂y
= sign (f (ξ, η))

ξ
a2 sin θ + η

b2 cos θ√
ξ2

a2 + η2

b2

(2.19b)

While these expressions are useful, in practical applications it is often necessary to model arbitrarily

shaped inclusions. However, for a generic arbitrarily shaped inclusion there is no closed form expression for

the level set function. One possible solution is to approximate the shape, for instance, by linear segments.

However, for some shapes it may not capture well the boundary. Alternatively, in this chapter a spline-based

formulation that is shown to be quite accurate for arbitrary shapes is developed.

CHAPTER 2. XFEM FOR MODELING INCLUSIONS 13

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Domain geometry

(b) Signed distance function (c) Enrichment function

(d) dψ
dx

(e) dψ
dy

Figure 2.2: Level set functions

CHAPTER 3. SPLINE BASED ENRICHMENT FORMULATION FOR ARBITRARY SHAPES 14

Chapter 3

Spline based enrichment formulation

for arbitrary shapes

3.1 Cubic spline interpolation

3.1.1 Definitions and formulation

In order to model the arbitrary interfaces, it is assumed that in the most general case the interface is either

given, or can be described as, a set of discrete points:

xΓ =

(
xinc1 , yinc1

)(
xinc2 , yinc2

)
...(

xincndp, y
inc
ndp

)

(3.1)

where
(
xinc,yinc

)
are the x and y coordinates of the discrete points along the inclusion, and ndp is the

number of discrete points used to describe the inclusion.

Cubic splines are then used to interpolate the shape of the inclusion. It is well known that polynomial

interpolation for large ndp results in high errors; thus piecewise polynomial interpolation is often used [35].

Higher order splines or other formulations are viable options as well. One particular method for modeling

curves and curved surfaces that has gained recent attention are Non-Uniform Rational B-Splines (NURBS)

[36, 37]. NURBS would possess the added benefit of integration with CAD models widely used in practice.

Cubic splines are chosen (a) for their tried and tested accuracy as an interpolating polynomial, (b)

because only data values are required (as opposed to additional information on derivatives), and (c) because

they preserve continuity up to and including second derivatives (i.e. C2 continuous).

CHAPTER 3. SPLINE BASED ENRICHMENT FORMULATION FOR ARBITRARY SHAPES 15

Given data points (xi, yi), a cubic spline P (x) is constructed of piece-wise cubics si (x) of the form:

P (x) =

s1 (x) = a1 (x− x1)
3

+ b1 (x− x1)
2

+ c1 (x− x1) + d1 x1 ≤ x ≤ x2

...
...

si (x) = ai (x− xi)3
+ bi (x− xi)2

+ ci (x− xi) + di xi ≤ x ≤ xi+1

...
...

sn (x) = an (x− xn)
3

+ bn (x− xn)
2

+ cn (x− xn) + dn xn ≤ x ≤ xndp

(3.2)

where the si (x) must satisfy the following conditions [35]:

si (xi) = yi ∀ i = 1, 2, ..., n

si (xi+1) = yi+1 ∀ i = 1, 2, ..., n

dsi
dx

∣∣∣∣
x=xi+1

=
dsi+1

dx

∣∣∣∣
x=xi+1

∀ i = 1, 2, ..., n− 1 (3.3)

d2si
dx2

∣∣∣∣
x=xi+1

=
d2si+1

dx2

∣∣∣∣
x=xi+1

∀ i = 1, 2, ..., n− 1

For ndp data points, this yields n = ndp− 1 cubic functions, with 4n unknowns. The conditions in Eqn.

(3.3) give only 4n− 2 linear equations, and thus two additional conditions are necessary to solve for the 4n

unknowns. Typically, this is accomplished by a so-called natural spline with the second derivative set to zero

at the two boundaries, though many other configurations exist [35].

3.1.2 Parametric cubic splines

The above formulation works when the abscissae xi are distinct, and the curve is a well defined function, i.e.

for any xi there can be only one yi. By definition, however, the internal boundary around an inclusion is a

closed-loop, and thus is not a well defined function (even if the given xi happen to be unique). There are

two ways to address this issue:

• For a small, ordered and contiguous, subset of points
(
x̂inc, ŷinc

)
⊂
(
xinc,yinc

)
a localized spline

interpolation can be constructed. In this case, the localized spline will have to be chosen as either

y = P (x) or x = P (y), depending on the orientation of the subset
(
x̂inc, ŷinc

)
. For example, the three

points in Figure 3.1(a) depict a horizontally (y = P (x)) oriented subset, while Figure 3.1(b) depict a

vertically (x = P (y)) oriented subset.

• Alternatively, a parametric spline interpolation can be constructed such that [x, y] = P (t). This

formulation is “orientation-independent,” and can describe closed, self-intersecting, and virtually any

arbitrary curve.

CHAPTER 3. SPLINE BASED ENRICHMENT FORMULATION FOR ARBITRARY SHAPES 16

(a) Horizontally oriented subset of

points, approximated as y = P (x)

(b) Vertically oriented subset of points,

approximated as x = P (y)

Figure 3.1: Subset orientation and scalar spline formulations

Figure 3.2 and 3.3 show spline curves for the two formulations, respectively, for a circular shape with

varying number of discrete points. In these figures, the red dots show the discrete points used for interpola-

tions, the dashed red lines show straight-line interpolations between these points, and the solid blue curves

show the spline interpolations. As can be seen in Figure 3.2, the first approach is unstable and inaccurate

for small ndp. The second approach, however, is extremely stable and accurate, independent of ndp, as can

be seen in Figure 3.3. Thus this approach is adopted in this study. The parametric spline P (t) is defined

in the same way as Eqn. (3.2). However, now it is a vector-valued function of a parameter t comprising two

uncoupled cubics in x and y, i.e. the individual cubics si (x) in Eqn. (3.2) are now vector valued functions

si (t) of the form:

si (t) =

 x (t)

y (t)

 =

 axit
3 + bxit

2 + cxit+ dx

ayit
3 + byit

2 + cyit+ dyi

 (3.4)

For more information on the derivation, formulation, and implementation of splines, see [35, 38–40].

3.1.3 Localized splines

The formulation presented in this chapter uses a localized spline made up of 7 local points. As shown in

Figure 3.4, it is clear that 3- and 5-point splines (solid green and dash-dotted blue curves, respectively) do

not approximate the curve well enough, but that 7-point splines (red dashed curve) converge quite well.

This is especially true between nodes 4 and 6, which is the region that is of interest. If the closest discrete

point is node 5, then the actual closest point on the curve must lie between points 4 and 6. As the errors in

piece-wise cubic splines are greatest closest to its end points, the 7-point spline pushes this error far away

from the region-of-interest, and better approximates the curve at the center (near node 5).

CHAPTER 3. SPLINE BASED ENRICHMENT FORMULATION FOR ARBITRARY SHAPES 17

(a) 8 Points (b) 16 Points (c) 32 Points

Figure 3.2: Scalar spline formulation (e.g. y = P (x)). Red dots show the discrete points, red dashed

lines show staight-line interpolations between the discrete points, and the solid blue curves show the spline

interpolations using these discrete points.

(a) 8 Points (b) 16 Points (c) 32 Points

Figure 3.3: Vectorized parametric spline formulation (i.e. [x, y] = P (t)). Red dots show the discrete points,

red dashed lines show staight-line interpolations between the discrete points, and the solid blue curves show

the spline interpolations using these discrete points.

CHAPTER 3. SPLINE BASED ENRICHMENT FORMULATION FOR ARBITRARY SHAPES 18

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

1.2

2
3

4

5

6

7

8 9

Target Curve
Sample Points
7−point
5−point
3−point1

Figure 3.4: Localized splines approximating a target curve (black solid curve), centered on node 5: black

circles are the sample points used; solid green curve is a spline constructed from 3 points; dash-dot blue

line is constructed from 5 points; and dashed red curve is constructed from 7 points. The 7-point spline

approximates the curve much more closely, especially in the region-of-interest between nodes 4 and 6, with

errors closer to the boundaries at nodes 2 and 8.

CHAPTER 3. SPLINE BASED ENRICHMENT FORMULATION FOR ARBITRARY SHAPES 19

3.2 Calculation of signed distance function

There is only one part of XFEM that depends on the geometry of the problem, and that is the formulation of

the level set function. The level set function determines which nodes are enriched, and defines the enrichment

function (see section 2.4 for more details). Thus, to solve systems with arbitrarily shaped inclusions, it is

necessary to develop the signed distance function numerically as it is not available analytically. The absolute

value of this numerical function is then the enrichment function. Formulation of the signed distance function

(and consequently the enrichment function) can be broken into two separate tasks: first, the magnitude

must be determined, and second, the sign must be determined. These separate steps are first discussed

independently in the following subsections, and then the full algorithm is presented. The formulation and

calculation of the derivatives of the enrichment function are then presented in the following section.

3.2.1 Determining the magnitude of the signed distance function

The first step in computing the signed distance function is determining its magnitude. To do so, it is

necessary to determine the distance from a point (xp, yp) to the internal boundary modeled by the spline

curve xΓ = P (t). Finding the distance from a point to a curve is a well posed problem in differential calculus,

though a closed form solution does not always exist. The distance d from a point (xp, yp) to the spline curve

is calculated as:

d (t) =

√
(xp − xΓ (t))

2
+ (yp − yΓ (t))

2
(3.5)

where xΓ (t) and yΓ (t) are the x and y components of the spline curve of Eqn. (3.4). The closest point

corresponds to the value of t which minimizes d. The minimization of d results in the following polynomial

equation in t, whose solution gives the optimal value of t.

C1t
5 + C2t

4 + C3t
3 + C4t

2 + C5t+ C6 = 0 (3.6)

where:

C1 = 3a2
x + 3a2

y

C2 = 5ayby + 5bxax

C3 = 2b2x + 2b2y + 4aycy + 4cxax

C4 = −3ypay − 3axxp + 3bycy + 3bxcx + 3aydy + 3dxax (3.7)

C5 = −2ypby + c2y + 2bydy − 2xpbx + c2x + 2bxdx

C6 = −ypcy + cydy − xpcx + cxdx

where the ax, ay, bx, by, cx, cy, dx, and dy are the coefficients from the spline curve (Eqn. (3.4)). Here, the

subscript i has been dropped for simplicity. More detailed derivation of Eqn. (3.8) is given in Appendix A.

CHAPTER 3. SPLINE BASED ENRICHMENT FORMULATION FOR ARBITRARY SHAPES 20

Since this is a quintic equation, which, in general, has no closed form solution, a numerical root finder must

be used. An analogous expression for scalar splines may be found in [10].

3.2.2 Determining the sign of the signed distance function

The next step after computing the magnitude of the distance function, is to determine whether the value is

positive or negative, depending on whether the point is inside or outside the inclusion/void. Several methods

exist for determining if a point lies within a polygon [41]. One such method is ray-crossing: starting from a

known point, a path to the point in question is drawn; if the number of times the path crosses the interface

is even, then the target point is on the same side of the interface as the known point, as depicted in Figure

3.5(a). This method can however result in inaccuracies when the point is very close to a side of the polygon,

due to numerical approximation errors, or when the path crosses a vertex of the polygon. Another method

uses the residue theorem: if the angle between two vectors going from the point in question (xp, yp) to two

successive points on the polygon
(
xinci , yinci

)
and

(
xinci+1, y

inc
i+1

)
is θi, then:

ndp∑
i

θi =

 0 xp outside xΓ

2π xp inside xΓ

(3.8)

This method is depicted in Figure 3.5(b). The latter is conveniently implemented in MATLAB in the

inpolygon function [42].

Direct implementation of either of these on the ndp discrete points
(
xinc,yinc

)
would however fail to

use any additional information given by the splines. To this end, it is proposed to add the closest point on

the curve (obtained in Section 3.2.1) to the vector of discrete points (Eqn. (3.1)). Adding this point before

implementing a point-in-polygon algorithm will describe the local curvature well enough to determine the

correct sign of the signed distance function at the point in question. This is illustrated in Figure 3.6, where

the value of the signed-distance function at the point denoted by the star is being calculated. The closest

point on the red spline curve is found to be the red circle. This point is then added into the vector of discrete

points (blue circles). The dashed blue lines represent this new polygon, showing that the point is correctly

determined as inside the polygon. On the other hand, excluding the closest point (red point in Figure 3.6),

the polygon is defined by the solid lines, and the point is incorrectly found to be outside of the polygon, thus

giving an incorrect sign to the signed distance function.

3.2.3 Level set function algorithm

With both the magnitude and sign of the distance function determined as above, the level set and enrichment

functions are fully defined. In this section, we propose an algorithm based on the preceding formulations,

which computes the level set function for an inclusion/void defined by a set of discrete points (Eqn. (3.1)).

CHAPTER 3. SPLINE BASED ENRICHMENT FORMULATION FOR ARBITRARY SHAPES 21

(a) Ray-crossing method: Starting from a

known point (black star), a “ray” is drawn

to the point in question. If the number of

times that the ray crosses the internal bound-

ary is even (black square, dashed lines), then

the point is on the same side of the boundary;

if the ray crosses an odd number of times (black

circle, solid lines), then the point is on the op-

posite side of the boundary.

(b) Angle sum method: If the sum of the angles

between the rays connecting the point in ques-

tion with the discrete points on the boundary

is 2π, then the point is inside the boundary; if

the sum is equal to 0, then the point is outside

the boundary.

Figure 3.5: Point-in-polygon methods

Given a point (xp, yp) (denoted by the star in Figure 3.7), the closest discrete point xincmin (denoted by the

yellow circle and dashed arrow in Figure 3.7) among all the discrete points describing the internal boundary(
xinc,yinc

)
(denoted by the red circles in Figure 3.7), is first determined. Then, a localized parametric spline

P (t) is constructed centered about this point xincmin (Section 3.1.2). Alternatively, the localized splines can

be generated and stored earlier. This yields about a 40% reduction in computation time, but higher memory

usage. The closest point on this spline curve is then determined (the solid arrow in Figure 3.7), using a

numerical nonlinear equation solver (Section 3.2.1). This point is then augmented into the vector of discrete

points, and used to determine the sign of the level set function (Section 3.2.2). Algorithm 1 summarizes the

steps of this algorithm.

While the spline approach presented in this chapter is applied to 2D problems, an extension to 3D is

certainly possible. One should especially note that the parametric, vector valued splines lend themselves

nicely to this extension [40]. Issues with closed surfaces can be avoided by using this formulation. A 3D

spline could be constructed as a function of either one (x = P (t)) or two (x = P (t, s)) parameters, where x

now has 3 components: [x, y, z]
T

. The 3D algorithm would conceptually be very similar to the 2D algorithm,

with the biggest issues arising in determining the sign of the Level Set Function. Specifically, determining

CHAPTER 3. SPLINE BASED ENRICHMENT FORMULATION FOR ARBITRARY SHAPES 22

Figure 3.6: Determining the sign of level set function with splines, for the point denoted by a black star:

blue dots are discrete boundary points; the red curve is the spline approximation; the red dot is the closest

point on the spline curve. Using only the linear approximation (solid blue lines), the incorrect sign would

be given; adding the red dot, and using the dashed blue lines, will give the correct sign.

the local ’vector’ of points and creating the localized spline. The extension of these algorithms to 3D will be

considered for future work.

CHAPTER 3. SPLINE BASED ENRICHMENT FORMULATION FOR ARBITRARY SHAPES 23

Figure 3.7: Level set generation: The value at a point (green star) is found by first finding the closest discrete

boundary point (yellow circle, dashed arrow), then creating a spline curve (blue curve) through the closest

point and its neighbors (red circles); the closest point on this curve is then found (solid arrow).

Algorithm 1 Determining the signed distance function for arbitrarily shaped inclusions

Given a set of discrete points
(
xinc,yinc

)
, find the value of the signed distance function at a point (xp, yp).

1. Find the discrete point, xincmin, that is closest to xp by solving:

xincmin = arg minx∈xinc ||xp − x||2 (3.9)

2. Construct a localized spline P (t) centered on xincmin using the formulation in Section 3.1.2 and Eqn.

(3.4).

3. Solve Eqn. (3.6) for the closest point on the spline curve, x̃min = P (tmin)

4. Add the closest point, x̃min, back into the vector of discrete boundary points, xinc, to create an

“extended” vector of boundary points, x̃inc

5. Determine the sign of the signed distance function using a point-in-polygon subroutine with the “full”

x̃inc, as described in Section 3.2.2.

CHAPTER 3. SPLINE BASED ENRICHMENT FORMULATION FOR ARBITRARY SHAPES 24

3.3 Enrichment function differentiation

The XFEM formulation presented above depends not only on the enrichment function, but its derivatives,

as well. Namely, the B-matrix in Eqn. (2.15) depends on these derivatives. As derived above in Eqns (3.5),

(3.6), and (3.8), the enrichment function at a point (x, y) is given as:

ψ (x, y) =

√
(x− xΓ (tmin))

2
+ (y − yΓ (tmin))

2
(3.10)

where tmin is the minimum point found by solving Eqns. (3.6) and (3.8). To find the derivative ∂ψ
∂x , we take

the limit:
∂ψ

∂x
= lim
h→0

ψ (x+ h, y)− ψ (x, y)

h
(3.11)

In general, tmin will differ depending on x and y — i.e. t′min found for the point (x+ h, y) will be different

from the original t0min found for the point (x, y). However, in the limit that h → 0, we can say that

t′min → t0min. With this assumption, tmin is constant in x and y, and thus Eqn. (3.10) can directly be

differentiated to:
∂ψ

∂x
=
x− xΓ (tmin)

ψ (x, y)
(3.12)

and, similarly:
∂ψ

∂y
=
y − yΓ (tmin)

ψ (x, y)
(3.13)

3.4 Numerical integration

Many XFEM codes use a “discontinuous Q4” element, or “subdomain decomposition” [30, 43]. A discontin-

uous Q4 element decomposes the Q4 quad into triangular elements that conform to the internal boundary,

and uses the Gauss points of these triangles (Figure 3.8(a)). This quadrature rule, however, gives rise to

sensitivity issues when comparing two XFEM solutions, as slightly different enrichment functions (analytical

vs. numerical, in this study) result in different Gauss points being used in each solution. Instead, for the

convergence analyses in this work a uniform Gaussian quadrature (of varying degree) is used for both the

“classical” and numerical formulations (Figure 3.8(b)), so as to ensure that the Gauss points are consis-

tent between the two solutions being compared. The use of such high-order Gaussian quadrature in lieu

of subdomain decomposition is present in the literature [30]. A convergence study of Gaussian, as well as

Newton-Cotes, quadrature on C0 continuous functions is carried out in Appendix B.

CHAPTER 3. SPLINE BASED ENRICHMENT FORMULATION FOR ARBITRARY SHAPES 25

(a) Discontinuous Q4 quad (b) Order 10 Gaussian

Quadrature

Figure 3.8: Integration techniques for enriched elements

3.5 Convergence analysis

In this section, convergence analyses for the proposed formulation are carried out. First, the convergence of

the numerical formulation of the level set function to a known analytical level set function is tested. Then, the

numerical differentiation of this known function is examined. Following that, a full XFEM implementation

of the proposed methodology is compared to a “classical” XFEM formulation for simple inclusions. Finally,

the proposed methodology is compared to FEM for an arbitrary inclusion.

3.5.1 Level set function convergence

To test the convergence of the proposed numerical approximation of the level set function, a circular inclusion

of radius 0.25 in a 1 × 1 square domain is considered (Figure 3.9). The analytical value of the level set

function is first obtained using Eqn. (2.16). The convergence of the spline based level set function is then

compared with (i) a simple method based on discrete points describing the inclusion boundary, and (ii) a

linear interpolation method. For the convergence analysis, the number of points used to discretize the shape

of the inclusion is varied, and for each discretization, the ||L||2-norm of the relative error over a 32×32 mesh

of the domain is computed as:

εrel =
||gapprox − gexact||2

||gexact||2
(3.14)

where gapprox is a vector of the “approximate” values for the quantity of interest (in this case, the level set

function values), and gexact is a vector of the “exact” values for the quantity of interest.

As illustrated in Figure 3.10, all three methods are convergent as the inclusion is increasingly discretized.

CHAPTER 3. SPLINE BASED ENRICHMENT FORMULATION FOR ARBITRARY SHAPES 26

0.25
1.0

Figure 3.9: Problem geometry

10
0

10
1

10
2

10
3

10
−10

10
−5

10
0

10
5

Number of Discrete Points on Internal Boundary

R
el

at
iv

e
E

rr
or

 (
||L

|| 2−
N

or
m

)

1st Order

2nd Order

4th Order

5th Order

Discrete
Linear
Spline

Figure 3.10: Convergence of level set function

Also as expected, the linear interpolation converges faster than the discrete points, and the spline inter-

polation converges many orders of magnitude faster than the other two methods. Specifically, the discrete

representation converges roughly linearly; the linear approximation converges roughly quadratically; and the

spline based method converges at a rate between 4th and 5th order. Figure 3.10 shows that the proposed

spline method is more accurate as it converges at a higher rate than the linear or discrete representations

for any given number of representative boundary points.

3.5.2 Differentiation convergence

The derivatives in Eqns. (3.12) and (3.13) are now tested for convergence, using the same circle shown

in Figure 3.9. The differentiation of the proposed numerical level set function is performed for varying

discretizations of the inclusion boundary and compared to the analytical derivatives of Eqns. (2.17a) and

(2.17b). These results are presented in Figure 3.11. The derivatives proposed in Eqns. (3.12) and (3.13)

exhibit a cubic rate of convergence, with respect to the boundary discretization.

CHAPTER 3. SPLINE BASED ENRICHMENT FORMULATION FOR ARBITRARY SHAPES 27

10
0

10
1

10
2

10
3

10
4

10
−15

10
−10

10
−5

10
0

Number of Discrete Points on Internal Boundary

R
el

at
iv

e
E

rr
or

 (
||L

|| 2−
N

or
m

)

dψ/dx
dψ/dy
cubic convergence

Figure 3.11: Convergence of enrichment derivatives

3.5.3 Classical XFEM comparison for circular inclusion

The three numerical approximations to the level set function considered in Section 3.5.1, i.e. using only

the distinct points defining the inclusion boundary, and linear and spline interpolations of the inclusion

boundary, are now compared with the “classical” XFEM formulation (Eqns. (2.16), (2.17a), and (2.17b), for

circular inclusions) in this section. The same circular inclusion and domain are considered as in the previous

sections (Figure 3.9). A 32 × 32 mesh is adopted for both the classical and proposed XFEM approaches,

as shown in Figure 3.12(b), with the enriched nodes and elements highlighted in the figure. An order 20

Gaussian quadrature and a 2nd order Gaussian quadrature are used for numerical integration in the enriched

and non-enriched elements, respectively.

The “matrix” material around the inclusion has a Young’s modulus of 105 units and a Poisson’s ratio

of 0.3, while the inclusion material has a Young’s modulus of 106 units and a Poisson’s ratio of 0.3. The

2D problem is considered to be plane stress. The bottom edge is on a “roller” with vertical displacement

constrained, and the bottom left point is fixed. The top edge is then subjected to a vertical, upwards, force

of 500 units. The problem geometry and boundary conditions are shown in Figure 3.12(a).

Figure 3.13(a) shows the convergence behavior, comparing the “numerical” algorithms with the “classical”

XFEM solution. Figure 3.13(b) shows the run times for all three numerical-approximation based methods.

It is evident that the proposed spline formulation gives orders of magnitude higher accuracy as compared

to the other two methods, for a given number of points describing the inclusion boundary. Thus, for

applications in which the number of points used to describe the inclusion must be limited to a minimum,

the proposed spline-interpolation based method is optimal. Additionally, when considering computational

efficiency, Figure 3.13(b) shows that in order to obtain relative errors below about 10−5, the proposed method

requires the least computational cost. In fact, there is very low incremental cost in the proposed method,

such that errors on the order or 10−12 can be attained with little extra cost.

CHAPTER 3. SPLINE BASED ENRICHMENT FORMULATION FOR ARBITRARY SHAPES 28

(a) Problem geometry and boundary

conditions

(b) XFEM mesh

Figure 3.12: Circle problem geometry and mesh

10
1

10
2

10
3

10
4

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

Number of Discrete Points on Internal Boundary

R
el

at
iv

e
E

rr
or

 (
||L

|| 2−
no

rm
)

Discrete
Linear
Splines

(a) Convergence results

10
1

10
2

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

Run Time (sec.)

R
el

at
iv

e
E

rr
or

 (
||L

|| 2−
no

rm
)

Discrete
Linear
Splines

(b) Relative error vs. run time

Figure 3.13: Comparison to ‘classical’ XFEM formulation

To examine the effects of the mesh refinement, the problem is re-examined with varying meshes (82, 162,

322, 642, 1282, 2002, and 2562) using 8, 16, 32, and 64 discrete points along the boundary. The reference

solution is obtained using a standard XFEM implementation with an analytical enrichment function [1] on

a 256× 256 mesh. The results are presented in Figure 3.14 for the linear, and spline representations of the

interface. Figure 3.14(a) shows the convergence behavior of refining the mesh for several different boundary

point discretizations in the linear case, and compared with 16 boundary points for the splines. Figure 3.14(b)

shows the run times for the same cases. It can clearly be seen that the spline formulation is able to achieve

higher accuracy than the linear formulations, which with up to 64 boundary points is unable to achieve the

same accuracy as the splines with 16 points. Furthermore, there exists a crossing point (see Figure 3.14(b))

where the spline method also becomes more efficient than the linear representation.

CHAPTER 3. SPLINE BASED ENRICHMENT FORMULATION FOR ARBITRARY SHAPES 29

10
1

10
2

10
−4

10
−3

10
−2

10
−1

Mesh Density (number of points along edge)

R
el

at
iv

e
E

rr
or

 (
||L

|| 2−
no

rm
)

Spline (16pts)
Linear (8pts)
Linear (16pts)
Linear (32pts)
Linear (64pts)

(a) Convergence results

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

Run Time (sec.)

R
el

at
iv

e
E

rr
or

 (
||L

|| 2−
no

rm
)

Spline (16pts)
Linear (8pts)
Linear (16pts)
Linear (32pts)
Linear (64pts)

(b) Relative error vs. run time

Figure 3.14: Mesh comparison to ‘classical’ XFEM formulation

3.5.4 FEM comparison for arbitrary inclusion

In Sections 3.5.1 and 3.5.3 it has been shown that the proposed method converges to the analytical level set

function and the ‘classical’ XFEM solution for simple inclusions. In order to examine the convergence of the

proposed method for an arbitrarily shaped inclusion, it is now compared with a finely meshed classical FEM

solution. The FEM mesh, shown in Figure 3.15(a) with a zoom-in to show the detail of the mesh, used for

comparison has 48,387 nodes and 47,986 elements. The XFEM mesh density and the discretization of the

inclusion boundary are both varied, and the XFEM solutions are compared to the FEM reference solution.

The material properties, boundary conditions, and problem definition remains the same as in Section 3.5.3,

with only the internal boundary shape changing.

Figure 3.15(c) presents these results for the proposed spline enrichment based XFEM on three meshes:

32 × 32, 64 × 64, and 96 × 96 (Figure 3.15(b) shows the 32 × 32 XFEM mesh). The solution increases in

accuracy with both mesh density and boundary discretization. Nonetheless, there is a clear coupling between

the mesh discretization and the boundary discretization. This is evident since an increase in one parameter

alone may not result in an increased accuracy - e.g. refining just the mesh density will not always lead to

more accurate results. Instead, both the mesh and boundary discretization must be refined in pair.

CHAPTER 3. SPLINE BASED ENRICHMENT FORMULATION FOR ARBITRARY SHAPES 30

(a) FEM mesh (47,986 elements)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) XFEM mesh (32 × 32)

10
1

10
2

10
−2

Number of Discrete Points on Internal Boundary

R
el

at
iv

e
E

rr
or

 (
||L

|| 2 N
or

m
)

96x96 Mesh
64x64 Mesh
32x32 Mesh

(c) FEM comparison

Figure 3.15: XFEM-FEM comparison for arbitrary inclusion

3.6 Conclusions

In this chapter, a spline based enrichment function to model arbitrarily shaped inclusions and holes in an

XFEM framework was proposed. The convergence of the numerical, spline based, enrichment function to

analytical enrichment functions was shown. It was shown to converge between a 4th and 5th order rate.

Similarly, the derivatives of the enrichment function were shown to converge at a cubic rate. When compared

to an XFEM reference solution for a linear elastic problem with a simple inclusion, an increased accuracy and

rapid convergence of the spline method was observed. Varying the mesh and the boundary discretization

showed clear convergence for the spline method. Furthermore, it was shown that the spline method was

more efficient compared to the discrete or linear representations for some problems. The spline method was

then compared with an FEM reference solution for a linear elastic problem with a highly arbitrary inclusion

and showed it was able to converge to the true irregular inclusion. This example showed, once again, the

convergence of the proposed method.

CHAPTER 4. NON-LINEAR XFEM FORMULATION FOR FINITE DEFORMATIONS 31

Chapter 4

Non-linear XFEM formulation for

finite deformations

4.1 Definitions and formulation

While the previous chapter has been concerned with linear elastic analysis, one of the major advantages of the

XFEM formulation proposed in this work is its adaptability to non-linear problems, specifically problems

involving finite deformations. These problems are interesting as the internal boundary depends on the

deformation. Hence, the shape of the inclusion may change significantly with the deformation. In terms

of XFEM implementations in non-linear applications, the existing literature is comparatively sparse, with

the majority of work concentrating on finite deformation in crack problems [44–48]. Although there has

been some studies related to heterogeneous materials, they have mostly focused on contact problems [49],

explicit dynamics [50, 51], damage and failure [52, 53], and plasticity [54–58]. Furthermore, these studies

mostly adopted Lagrangian formulations, and therefore they do not track the evolving material boundaries.

In that vein, an Updated Lagrangian formulation is proposed here, since the XFEM formulation proposed

in the previous chapter can track the evolving interface. This chapter thus examines the application of the

proposed methodology to finite deformation of heterogeneous hyperelastic materials. A combination of the

formulations in [59] and [60] is used, and adapted for XFEM in this work, as follows. To this end, the

hyperelastic/Neo-Hookean constitutive behavior is first defined.

The Cauchy stresses are defined as [59]:

σ =
1

J

[
λ0 ln JI + µ0

(
FFT − I

)]
(4.1)

where µ0 and λ0 are the Lamé constants of the linearized theory (material parameters), J = detF, and F is

CHAPTER 4. NON-LINEAR XFEM FORMULATION FOR FINITE DEFORMATIONS 32

the deformation gradient defined as:

F =
∂x

∂X
(4.2)

where x and X are the deformed and undeformed coordinates, respectively. Eqn. (4.2) may also be rear-

ranged in terms of displacements [61].

F =
∂x

∂X
=

(
∂X

∂x

)−1

=

(
I− ∂u

∂x

)−1

=
(
I− BTxfemuxfem

)−1
(4.3)

where B is used to denote the B-matrix with derivatives computed on the deformed or updated configuration.

The subscript xfem is used to denote the presence of possible enriched DOFs, such that the B-matrix might

take the form of either Bu or Ba, as in Eqn. (2.15), or as follows for the Updated Lagrangian formulation:

Bu =
∂

∂x
(N) (4.4)

Ba =
∂

∂x
(Nψ) (4.5)

The internal nodal forces are now expressed as:

f inti =

∫
Ω

BTi,xfemσ dΩ (4.6)

and the external nodal forces are expressed as:

fexti =

∫
Ω

NT
i b dΩ +

∫
Γ

NT
i t̄ dΓ (4.7)

where b and t̄ are the body and traction forces, respectively. From Eqns. (4.6) and (4.7) the residual is

calculated as:

R = fext − f int (4.8)

This nonlinear system of equations can be solved using Newton’s method. To solve for the incremental

displacement, the following linearized system is solved:

Ktandu = R (4.9)

Following the formulation in [60], the tangent stiffness matrix is decomposed into material and geometric

tangent stiffness matrices, as Ktan = Kmat
tan + Kgeo

tan, the material and geometric tangent stiffness matrices

for an XFEM element being defined as:

Kmat,e
tan =

∫
Ωe

BTxfemDBxfem dΩ (4.10)

Kgeo,e
tan =

∫
Ωe

BTxfem [σ]Bxfem dΩ (4.11)

CHAPTER 4. NON-LINEAR XFEM FORMULATION FOR FINITE DEFORMATIONS 33

where D is the constitutive tensor. Note the use of B (i.e. spatial derivatives taken with respect to the

deformed configuration), which is consistent with the Updated Lagrangian formulation. Eqns. (4.3), (4.6),

(4.10), and (4.11) fully extend the non-linear FEM formulation to account for the enriched DOFs.

It should be noted that the inclusion boundary may evolve significantly with the deformation and hence

the enrichment function should be updated. An outline of the nonlinear XFEM implementation is shown

in Algorithm 2. At every Newton iteration, after the current solution uk is found, the location of the

internal boundary is updated. The enrichment function is then recalculated, or reinitialized, with this new

geometry. While using the Level Set Method (LSM) is possible, in the current work a Lagrangian description

is employed, where the motion of the interface is tracked incrementally through marker particles placed along

the boundary. If instead, the LSMwere employed, there would be a need to define a finite difference grid as

well as the advecting velocities (which is cumbersome in the case of nonlinear hyperelasticity). In addition,

one would need to interpolate values to gauss points, which may result in higher errors and reduce the

effectiveness of the proposed splines approach. To this end, it is more straightforward to simply “re-initialize”

the level sets at every incremental step.

Algorithm 2 Newton’s Method with updating

1. Make an initial guess for the displacement, u0. Typically, u0 = 0 is sufficient.

2. Loop over each load increment

(a) Loop until convergence, i.e. while ||Rk|| > tol, where Rk is calculated from Eqn. (4.8).

i. Calculate the enrichment in the current (deformed) configuration, using the formulation of

Section 3 and Algorithm 1.

ii. Calculate the tangent stiffness matrix, Ktan (Eqns. (4.10) and (4.11)), and the internal and

external forces, f int and fext (Eqns. (4.6) and (4.7)), respectively, for the current uk.

iii. Calculate the residual: Rk = fext − f int

iv. Solve for the incremental displacement: du = (Ktan)
−1

Rk

v. Update the displacement: uk+1 = uk + du

vi. Update internal boundary using Eqn. (4.12) or (4.13).

(b) End Loop

(c) Increase load

3. End Loop

One final issue in this implementation is the updating scheme used for the internal boundary. The

CHAPTER 4. NON-LINEAR XFEM FORMULATION FOR FINITE DEFORMATIONS 34

displacement u must be interpolated at the discrete points
(
xinc,yinc

)
describing the internal boundary

from the XFEM nodes. However, the interpolation (Eqns. (2.9) and (2.10)) is dependent on the shape

functions (i.e. enrichment functions), which are by definition dependent on the location of the internal

boundary. Such an update may be performed explicitly or implicitly. Explicit updating would consider the

previous location of the internal boundary, and thus the previous u:

xΓ,k = xΓ,k−1 + Nuk−1 (4.12)

where xΓ,k =
(
xinck ,yinck

)
is the array of internal boundary coordinates at iteration k, xΓ,k−1 is the previous

configuration of the internal boundary, and uk−1 is the previous solution.

Alternatively, an implicit update requires a “nested” nonlinear problem setup in which the residual,

defined in Eqn. (4.13), is minimized at each iteration, thus

r = xΓ,k −Nxfem (uk,xΓ,k) uk (4.13)

where Nxfem are the XFEM shape functions which are dependent on the displacement as well as the internal

boundaries. Thus, at the solution uk for iteration k, in order to update the inclusion, we need to solve for

xΓ,k which minimizes the residual in Eqn. (4.13). Out of these two options, it is found that the former is

more accurate, stable, and computationally efficient, and is thus adopted in the examples below.

4.2 Non-Linear XFEM example case study

The example problem considered in this study for the nonlinear XFEM implementation assumes a square

plate with a circular hole in the center, shown in Figure 4.1. The left edge of the plate is fixed. Two loading

conditions are considered: first, a uniform tension is applied on the right edge; then, in a second test, the

right edge is first pulled in tension via controlled displacement, followed by a downward force in the middle of

the top edge, while constraining the right edge in the stretched configuration, finally followed by an identical

upwards force on the bottom edge. Loading condition 1 stretches the plate and hole. Loading condition

2 stretches, bends, and pinches the plate and hole. These two loading conditions are shown in Figures

4.1(a), 4.1(b), 4.1(c), and 4.1(d). Clearly, the combined loading scenario is a difficult example that leads

to significant changes in inclusion geometry with the deformation. The material has a Young’s Modulus

E = 15 × 106 units and Poisson’s ratio ν = 0.3. The load is applied in increments of 4 × 105 units. Based

on the convergence behavior shown in Section 3.5, a reasonable discretization is chosen for both the XFEM

mesh (32×32 elements) and the internal boundary (ndp = 100). The formulation used for the hole is similar

to that in [1] and [62].

In the first loading condition (Figure 4.1(a)), a distributed force is applied along the right edge of the

plate. This force is applied in increments of 4× 105 units. The results for this loading condition are shown

CHAPTER 4. NON-LINEAR XFEM FORMULATION FOR FINITE DEFORMATIONS 35

in Figures 4.2 and 4.3. Figure 4.2 compares the von Mises stresses on the deformed configurations for the

XFEM solution and with a reference FEM solution, for three different load increments. The reference FEM

mesh has 794 elements and 878 nodes, and is shown in the right column of Figure 4.2. Figure 4.3 shows the

force-displacement curve for several different XFEM mesh densities (all with 100 discretization points on the

internal boundary) and the FEM reference solution. The force is measured as the distributed force applied

along the right edge of the plate. The displacement is measured as the average horizontal displacement

along the right edge of the plate. The proposed methodology agrees reasonably well with the reference FEM

solution in all of these comparisons. Figure 4.3 shows that the force-displacement behavior converges quickly

to the FEM solution as the mesh is refined. At the final load increment, the ||L||2-norm of the relative error

between the displacements of the 32× 32 mesh XFEM and the FEM reference solution is only 6× 10−3.

As a final example, the second loading condition shown in 4.1(b), 4.1(c), and 4.1(d) is considered. The

right edge is first pulled rightward (via an applied displacement), in this example. The displacement is

applied in increments of 0.05 units. Then, after being stretched for 15 increments, the right edge is held in

place while a downward force is applied in the center of the top edge in increments of 4× 105 units, causing

bending action. This downward force is applied for 5 steps. Finally, an upwards force on the bottom edge

is applied, also of 4 × 105 unit increments, in 4 steps, causing a “pinching” behavior. The nature of the

proposed methodology allows the internal boundary to be tracked, even through a complicated evolution, as

in this case from a circle, to an ellipse, to a “kidney” shape, and finally to a more complicated shaped hole.

This evolution is shown in Figure 4.4. It should be noted that the deformation of the internal geometry is

tracked even as it is distorted heavily, with no mesh complications.

CHAPTER 4. NON-LINEAR XFEM FORMULATION FOR FINITE DEFORMATIONS 36

(a) Loading condition 1 (Plate in tension)

(b) Loading condition 2 (Step 1 - Tension phase) (c) Loading condition 2 (Step 2 - Bending phase)

(d) Loading condition 2 (Step 3 - Pinching phase)

Figure 4.1: Plate with hole geometry and loading conditions

CHAPTER 4. NON-LINEAR XFEM FORMULATION FOR FINITE DEFORMATIONS 37

0.5

1

1.5

2

2.5
x 10

7

(a) XFEM step 1

0.5

1

1.5

2

2.5
x 10

7

(b) FEM step 1

0.5

1

1.5

2

2.5
x 10

7

(c) XFEM step 7

0.5

1

1.5

2

2.5
x 10

7

(d) FEM step 7

0.5

1

1.5

2

2.5
x 10

7

(e) XFEM step 14

0.5

1

1.5

2

2.5
x 10

7

(f) FEM step 14

Figure 4.2: von Mises stresses for the plate of Figure 4.1(a)

CHAPTER 4. NON-LINEAR XFEM FORMULATION FOR FINITE DEFORMATIONS 38

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

6

Displacement

F
or

ce

FEM
XFEM(6x6)
XFEM(11x11)
XFEM(32x32)
XFEM Linear

Figure 4.3: Plate with hole force-displacement

CHAPTER 4. NON-LINEAR XFEM FORMULATION FOR FINITE DEFORMATIONS 39

(a) XFEM step 1 (Tension phase) (b) XFEM step 15 (Tension phase)

(c) XFEM step 18 (Bending phase) (d) XFEM step 20 (Bending phase)

(e) XFEM step 22 (Pinching phase) (f) XFEM step 24 (Pinching phase)

Figure 4.4: Plate with hole in bending and pinching: Von Mises stresses on deformed configuration

CHAPTER 4. NON-LINEAR XFEM FORMULATION FOR FINITE DEFORMATIONS 40

4.3 Conclusions

In this chapter, a nonlinear XFEM formulation was developed for hyperelastic Neo-Hookean material using

an Updated Lagrangian formulation. Example problems were carried out in which plates with holes were

severely deformed, such that the internal hole geometry varied greatly over the deformation. It was shown

that the proposed spline formulation of the previous chapter is able to adapt to the deformation with

significant changes in geometric description thus illustrating the viability of this modeling approach for

arbitrary shaped inclusions, and large deformation problems.

41

Part II

Simulating random procresses & fields

CHAPTER 5. SIMULATION OF STOCHASTIC PROCESSES & FIELDS 42

Chapter 5

Simulation of stochastic processes &

fields

5.1 Introduction

Through increases in both the computational power and efficiency of algorithms available to scientists and

engineers, it is becoming increasingly possible to consider problems in a fully stochastic framework that had

once only been able to be considered deterministically. Monte-Carlo simulation remains at the forefront of

these analyses for its robustness. For many classes of problems, Monte-Carlo simulation is the only option

to fully characterize the system. This holds true for many problems of practical interest. Take, for example,

the structural response to non-stationary seismic ground motion; the characterization of statistically non-

homogeneous random media, like Functionally Graded Materials (FGMs); the response of bridges to non-

Gaussian loads such as wind fields; or any of these in combination with nonlinearities. All of these problems

are commonly, and most effectively, solved using Monte-Carlo simulation.

The bedrock of Monte-Carlo methods is the efficient and accurate simulation of sample realizations. For

the examples previously listed, this would translate to generating sample earthquake time histories, sample

FGM fields, and sample wind velocity time histories/fields. The Spectral Representation Method (SRM) [63]

is widely used for the simulation of sample realizations of stochastic processes, and will be used throughout

this dissertation. However, it should be noted that there are other simulation techniques available (e.g.

Autoregressive Moving Average (ARMA) models [64–69] and the Karhunen-Loève decomposition [70–73],

among others). A review and comparison of the different methods is beyond the scope of this thesis, though

it will be said that each has their advantages and disadvantages. The SRM, in particular, is commonly

used within the fields of civil engineering and applied mechanics, due in no small part to its nice physical

CHAPTER 5. SIMULATION OF STOCHASTIC PROCESSES & FIELDS 43

interpretation - namely its basis of the Spectral Density Function (SDF) making use of the very physical

frequency domain. Additionally, it is comparatively mathematically simple, as the simulated samples are

generated by a finite sum of cosine functions. The remainder of this chapter will outline the SRM in

detail for various classes of processes. Stochastic processes and fields can be described by the following four

characteristics:

• stationary (homogeneous) vs. non-stationary (inhomogeneous),

• Gaussian vs. non-Gaussian,

• univariate (scalar) vs. multi-variate (vector),

• and one dimensional vs. multi-dimensional.

Following this breakdown, the remainder of this chapter progresses as follows. Section 5.2 discusses the

simulation of stationary, univariate, Gaussian stochastic processes in the SRM. This is the most basic case,

and the theory can be extended to non-stationary, non-Gaussian, multi-variate, or multi-dimensional cases

(or combinations there-of). Section 5.3 covers extension to non-stationarity, Section 5.4 non-Gaussianity,

Section 5.5 multi-variate processes, and Section 5.6 multi-dimensionality. These sections are roughly laid

out in the order in which they appear in later chapters of this thesis.

5.2 Stationary, univariate, Gaussian stochastic processes

Before describing the SRM, let us define two important quantities. Consider a stationary random process,

X (t). The auto-correlation function (ACF), RXX (t, τ), describes how different time instances are correlated

with each other:

RXX (t, τ) = E [X (t) ·X (t+ τ)] (5.1)

where t is time, τ is the time lag, and E [·] denotes expected value. For stationary processes, the ACF is

only a function of the lag, i.e. RXX (t, τ) = RXX (τ). The Spectral Density Function (SDF), SXX (ω),

is a measure of the distribution of the power of the process in the frequency domain, where ω is angular

frequency. The SDF serves as the basis for the SRM. For stationary processes, these two quantities, S and

R, are related via a Fourier pair known as the Wiener-Khinchin theorem/transform [74–77].

SXX (ω) =
1

2π

∞∫
−∞

RXX (τ) e−iωτ dτ (5.2a)

RXX (τ) =

∞∫
−∞

SXX (ω) eiωτ dω (5.2b)

CHAPTER 5. SIMULATION OF STOCHASTIC PROCESSES & FIELDS 44

where i =
√
−1 is the imaginary unit. Therefore, switching between the SDF and ACF is extremely fast and

efficient via the Fast Fourier Transform (FFT). Therefore, whether the SDF or ACF is known or estimated,

simulation is still possible using the SRM through the efficient transformation between the two quantities.

In the SRM, a sample realization of a stationary and Gaussian, univariate process X (t) can be generated

using Eqn. (5.3). For simulation of a random field, the expression would be the analogous but in terms of

space and wave-number1.

X (t) =
√

2

N−1∑
j=0

√
2SXX (ωj) ∆ω cos (ωjt+ φj) (5.3)

where φj are independent uniformly distributed random phase angles between 0 and 2π. The frequency

domain is discretized as:

∆ω =
ωu
N

(5.4a)

ωj = j∆ω (5.4b)

The upper cutoff frequency, ωu is chosen such that S (ω > ωu) can be assumed to be negligible2. Formally,

this amounts to choosing ωu such that:

2

ωu∫
0

S (ω) dω ≥ αVar (X) (5.5)

for some factor, α (e.g. 95%). Eqn. (5.5) makes use of the property of the SDF that its integral over

ω ∈ (−∞,∞) is the variance of X (t). In terms of discretization, it should also be noted that the time

increments, ∆t, are restricted by the Nyquist frequency in order to avoid aliasing [78]. Thus,

∆t ≤ 2π

2ωu
(5.6)

The following properties of the simulated samples should be noted, as well:

• The simulated samples are periodic with period [78]:

T =
2π

∆ω
(5.7)

• Over multiples of this period, or as the length of time approaches infinity, samples are ergodic in the

mean and autocorrelation [78]. This is ensured if S (ω = 0) = 0, or through the use of the Frequency

Shifting Theorem [79, 80].

1 For the remainder of this dissertation “processes” and “fields” will be used interchangeably. All of the

theory will be developed for random processes, but is equally applicable to random fields.

2 For the remainder of this dissertation, when considering univariate processes, the subscript will be

dropped, and the spectral density function will simply be denoted as S (ω).

CHAPTER 5. SIMULATION OF STOCHASTIC PROCESSES & FIELDS 45

• Through the Central Limit Theorem, the simulated samples are asymptotically Gaussian as N →∞.

Though, it has been shown that N need not be very large before the samples tend to Gaussianity [78].

The FFT can be used to drastically speed up generation of sample functions through the SRM. In order

to make use of the FFT, Eqn. (5.3) is rearranged as [78, 81]:

X (t) = Re

√2

N−1∑
j=0

√
2S (ωj) ∆ωeiφjeiωjt

 (5.8)

where Re {·} denotes the real part, and i is the imaginary unit. If a vector, B, is defined as:

Bj = 2
√
S (ωj) ∆ωeiφj (5.9)

then, the sample function can be generated as:

X = Re {FFT (B)} (5.10)

where the notation FFT (B) is used to denote the FFT of the vector B. Furthermore, the sample function

Xk = X (tk) is now restricted to be discrete. A further discussion of implementation of the FFT for simulating

sample functions, including MATLAB code, is included in Appendix C. As an example, in a test case run

in MATLAB R2012b (8.0.0.783) on a 64-bit Windows 7 machine with an Intel(R) Core(TM) 2 Quad Q9550

@ 2.83GHz quad-core processor and 4GB RAM, the speed up was by a factor of about 400 (for N = 1024).

Computation through a direct summation (i.e. Eqn. (5.3)) took, on average, 0.24 seconds. Computation

using the FFT (i.e. Eqn. (5.10)), on the other hand, took, on average, 0.0006 seconds.

5.3 Non-stationary, univariate, Gaussian stochastic processes

5.3.1 Non-stationary processes

A process is said to be non-stationary if its statistical properties vary in time. There are, of course, varying

degrees of non-stationarity. A process may be non-stationary in the mean, in which case the mean value is

a function of time, i.e. E [X (t)] = µ (t). A process may be non-stationary in higher moments, as well, to an

arbitrary degree. This means that the spectral characteristics of the process may vary in time, as well.

A plethora of practical examples of non-stationary processes exist, even when limited just to the field of

civil engineering or applied mechanics. Arguably, non-stationary processes are more prominent in the physical

world than stationary processes. Take, for example, seismic ground motions. Earthquake acceleration will

always “ramp up” at the beginning, and die down at the end of their duration - thus making it by definition

non-stationary in amplitude, at the very least. Though, often, their frequency content will differ along the

duration as well. If soil liquefaction occurs, then the process becomes extremely non-stationary [82]. Another

CHAPTER 5. SIMULATION OF STOCHASTIC PROCESSES & FIELDS 46

motivating example are material properties of Functionally Graded Materials (FGMs), where there exists

a gradient in the material. As a naturally occurring example of FGMs, consider bamboo. In bamboo, the

fiber-matrix density varies along the radius, giving the stalk more tensile strength along the perimeter -

useful in resisting the bending moments induced by wind [83, 84]. Engineered FGMs are among the state-

of-the-art in new material design, possessing the benefit of marrying the properties of two or more distinct

materials in optimal configurations. The ability to simulate non-stationary processes and fields is of the

utmost importance for designing resilient structures from the standpoint of either extreme loads or new

materials.

Several different theories for modeling the evolving spectral characteristics exist, including the Instanta-

neous Power Spectrum [85] and the Wigner-Ville Spectrum [86–88]. In this thesis, however, we will work

with Priestley’s Evolutionary Spectrum (ES) [89]. Priestley’s theory of non-stationary processes with evo-

lutionary power has a particularly useful physical meaning because it preserves the concept of frequency,

which is obscured in some other theories of non-stationary processes. Applications abound in civil engineer-

ing and engineering mechanics, as mentioned earlier, including actions on structures such as earthquakes,

and characterization of materials with random microstructure such as some FGMs. The ES is characterized

by a modulating function A (t, ω):

SE (t, ω) = |A (t, ω)|2 S (ω) (5.11)

where A (t, ω) and S (ω) are the so-called modulating function and measure (or “stationary spectrum”)

respectively. Priestly established the following relationship between the Evolutionary Spectrum (ES) and

the non-stationary ACF R (t, τ):

R (t, τ) =

+∞∫
−∞

A (t, ω)A∗ (t+ τ, ω) eiωτ dS (ω) (5.12)

If A (t, ω) and S (ω) are known, it is therefore possible to determine the non-stationary autocorrelation

function R (t, τ). However, the inverse is not possible as both the modulating function and the measure need

to be determined from R (t, τ). The topic of computing this inverse transformation will be covered in great

detail in Chapter 6.

There are two classes of non-stationary processes of this form that are important to consider:

1. Amplitude modulated processes, where A (t, ω) = A (t), thus:

SE (t, ω) = |A (t)|2 S (ω) (5.13)

2. Amplitude and frequency modulated processes, of the form in Eqn. (5.11)

Figure 5.1 compares three sample realizations of a stationary process (Figure 5.1(a)), an amplitude modulated

non-stationary process (Figure 5.1(b)), and a frequency and amplitude non-stationary process (Figure 5.1(c)).

CHAPTER 5. SIMULATION OF STOCHASTIC PROCESSES & FIELDS 47

The difference in frequency content in the latter should be evident, as well as the enveloped nature of the

amplitude modulated.

Evolutionary spectra of the form in Eqn. (5.13) are separable - their time and frequency components can

be separated into distinct and independent functions of one variable or the other. Spectra of the form in

Eqn. (5.11), however, are not separable, and thus are said to be modulated in both amplitude and frequency.

The former can be simulated with a more straightforward application of the stationary SRM, while the latter

require an extension to the theory. Both cases are discussed below.

0 5 10 15 20
−5

0

5

0 5 10 15 20
−5

0

5

0 5 10 15 20
−5

0

5

(a) Three realizations of a stationary

process

0 5 10 15 20
−5

0

5

0 5 10 15 20
−5

0

5

0 5 10 15 20
−5

0

5

(b) Three realizations of an amplitude

modulated process

0 5 10 15 20
−5

0

5

0 5 10 15 20
−5

0

5

0 5 10 15 20
−5

0

5

(c) Three realizations of a frequency and

amplitude modulated process

Figure 5.1: Comparison of (a) stationary, (b) amplitude modulated, and (c) amplitude & frequency modu-

lated processes

5.3.2 Simulation of amplitude modulated non-stationary processes

In the case of amplitude modulated (or sometimes referred to as “uniformly modulated”) non-stationary

processes, simulation is a straightforward extension of the stationary case. As alluded to earlier, Eqn. (5.13)

is separable. Therefore, just as A (t) can be thought of as an amplitude modulation on the underlying

stationary spectrum, S (ω), it can also be thought of as an envelope on the process itself, X (t). In other

words, if there is a stationary process Y (t) which corresponds to S (ω), then the non-stationary process

X (t) is:

X (t) = |A (t)|2 Y (t) (5.14)

where the sample realizations of the stationary process, Y (t), are generated using either Eqn. (5.3) or Eqn.

(5.10).

CHAPTER 5. SIMULATION OF STOCHASTIC PROCESSES & FIELDS 48

5.3.3 Simulation of amplitude and frequency modulated non-stationary pro-

cesses

When the non-stationarity is due to combined amplitude and frequency modulation, then the spectral

characteristics actually vary in time, and Eqn. (5.14) will be inaccurate. Though, even in this case, Liang et.

al. [90] have shown that a direct extension of Eqn. (5.3) to include the ES, rather than the stationary SDF,

is valid. Thus, sample realizations of a non-stationary process with amplitude and frequency modulation

can be generated as:

X (t) =
√

2

N−1∑
j=0

√
2SE (t, ωj) ∆ω cos (ωjt+ φj) (5.15)

where, once again,

∆ω =
ωu
N

(5.16a)

ωj = j∆ω (5.16b)

and it is assumed that S (t, ω = 0) = 0. Note, though, that in this case there is no direct application of the

FFT. So, while Eqn. (5.15) is no more ‘complex’ than Eqn. (5.3) mathematically speaking, it is considerably

more ‘complex’ from a computational or numerical standpoint. It should be noted, that although there is no

direct application of the FFT in this form, Li and Kareem [91] have demonstrated an alternative formulation

that makes use of the FFT, though this formulation only approximates the ES.

5.4 Non-Guassian stochastic processes

5.4.1 Stationary non-Gaussian stochastic processes

Due to the central limit theorem, samples generated in the SRM are asymptotically Gaussian [78]. The

physical world, however, is in many cases non-Gaussian. Take, for example, any material property which is,

by definition, non-negative. These properties are therefore inherently non-Gaussian, as the Gaussian support

is the entire real line. Wind velocities are also a decidedly non-Gaussian physical process.

To that end, Grigoriu [92] defined the notion of a translation process. Essentially, a translation process is

a non-linear mapping of an underlying Gaussian process to a non-Gaussian counterpart. For any Gaussian

process, Y (t), then the process

X (t) = g (Y (t)) (5.17)

is not Gaussian unless the mapping g (·) is a linear function [92]. Grigoriu therefore showed that this mapping,

g (·) can be chosen such that the process X (t) matches the desired distribution. Specifically, for an arbitrary

CHAPTER 5. SIMULATION OF STOCHASTIC PROCESSES & FIELDS 49

Cumulative Distribution Function (CDF), FNG, one can choose g = F−1
NG ◦FG, where FG (x) is the standard

normal CDF. Then, the process

X (t) = F−1
NG ◦ FG [Y (t)]

= F−1
NG {FG [Y (t)]} (5.18)

is a translation process, and X (t) matches the desired distribution, FNG (x) [92]. Furthermore, Grigoriu

[92] showed that the correlation structure of the two processes are related as:

RNG (τ) =

∞∫
−∞

∞∫
−∞

F−1
NG {FG [x1]} · F−1

NG {FG [x2]} × Φ {x1, x2; ρG (τ)} dx1dx2 (5.19)

where Φ {x1, x2, ρG (τ)} is the joint Gaussian probability density:

Φ {x1, x2, ρG (τ)} =
1

2πσ2
√

1− ρ2
G (τ)

× exp

(
−x

2
1 + x2

2 − 2ρG (τ)x1x2

2σ2 (1− ρ2
G (τ))

)
(5.20)

and ρ (τ) is the normalized Gaussian correlation:

ρG (τ) =
RG (τ)

σ2
(5.21)

This transformation is always possible in a forward direction, i.e. from Gaussian to non-Gaussian. For

an arbitrary pair of RNG and FNG, the reverse (NG → G) is not always possible. When this reverse

transformation is not possible, RNG and FNG are called “incompatible” according to translation theory.

Thus, approximate techniques must be used to determine the underlying Gaussian process [93–97]. Shields

et. al. [97] proposed a simple and efficient iterative technique making use of Eqn. (5.19) and the Wiener-

Khinchin transform. This will be discussed in further detail in Chapter 7.

Once the underlying Gaussian process is determined, the procedure for simulating stationary non-

Gaussian sample functions is straightforward. First, a Gaussian sample function is generated using either

Eqn. (5.3) or Eqn. (5.10). This Gaussian sample function can then easily be mapped to the non-Gaussian

distribution using Eqn. (5.18).

5.4.2 Non-stationary non-Gaussian stochastic processes

Grigoriu’s theory for translation processes [92] was later applied to non-stationary, non-Gaussian processes

by Ferrante et. al. [98]. The mapping takes a similar form to that in Eqn. (5.18), though, it must be

generalized for CDFs that may vary in time:

X (t) = F−1
NG {FG [Y (t) , t] , t} (5.22)

The relationship between the Gaussian and non-Gaussian ACFs (Eqn. (5.19)) was extended, as well, as:

RNG (t, τ) =

∞∫
−∞

∞∫
−∞

F−1
NG {FG [x1, t] , t} · F−1

NG {FG [x2, t+ τ] , t+ τ} × Φ {x1, x2; ρG (t, τ)} dx1dx2 (5.23)

CHAPTER 5. SIMULATION OF STOCHASTIC PROCESSES & FIELDS 50

where Φ is of similar form as Eqn. (5.20), accounting for the parameterization in time, and ρG (t, τ) is of

the form:

ρG (t, τ) =
RG (t, τ)

σ (t)σ (t+ τ)
(5.24)

Once again, the inverse transformation is not always possible analytically. However, in this case, methodolo-

gies for computing this inverse transformation are not available. Shields et. al. [99] proposed an approximate

method, though this method is only accurate for weakly non-stationary processes. Chapter 7 will develop

and discuss a robust and more accurate method for determining the underlying Gaussian process for an

arbitrary pair of non-Gaussian ACF/ES and CDF.

Once the underlying Gaussian process is determined, simulation follows the same procedure as the sta-

tionary case. First, a sample realization is generated using Eqn. (5.15). This Gaussian sample function is

then mapped to the non-Gaussian CDF through Eqn. (5.22).

5.5 Multi-variate stochastic processes

So far in this chapter, only scalar processes of one dimension were considered. In many cases, though, there

will be some spatial variability as well as temporal. Consider, for example, a bridge subjected to seismic

ground acceleration. If this bridge is supported by two towers, one can easily imagine that the acceleration

at these two supports will vary. Of course, this variation can range from a simple lag to completely different

shape and amplitude - this will be determined in large part by the distance between the supports. In order

to model the variation between these two locations, there are two options [100]: (1) the ground motion

acceleration “field” can be modeled as a vector process, with two components or (2) the ground motion

can be modeled as a “wave,” which is continuous in space and time. The former will be discussed in this

section, and the latter will be discussed in Section 5.6. For this section, let us consider only stationary and

Gaussian vector processes, for simplicity. Extensions to non-stationarity or non-Gaussianity follow similar

methodologies outlined above for univariate processes. In the non-stationary case, a discussion can be found

in [82].

With that in mind, let us define the notion of a vector process. A vector process is made up of individual,

discrete, random processes:

X (t) =

X1 (t)

X2 (t)
...

Xj (t)
...

Xn (t)

(5.25)

CHAPTER 5. SIMULATION OF STOCHASTIC PROCESSES & FIELDS 51

where Xj (t) is component j of the n-variate vector process. Individually, each component is a univariate

stochastic process, which can be considered in the framework of the earlier sections of this chapter. However,

when considered as a whole, the correlation between different components is important. These correlations

are modeled via the Cross Correlation Matrix (CCM) Rjk (τ) or the Cross Spectral Density Matrix (CSDM)

Sjk (τ). The cross-correlations and cross-spectra form Fourier pairs, just as in Eqn. (5.2):

Sjk (ω) =
1

2π

∞∫
−∞

Rjk (τ) e−iωτ dτ (5.26a)

Rjk (τ) =

∞∫
−∞

Sjk (ω) eiωτ dω (5.26b)

In the homogeneous case (i.e. ‘stationary’ in space), the CSDM is typically constructed of prescribed

auto-spectra, Sjj (ω), and coherence model, γ (ω, ξ) [100]:

Sjk (ω) =
√
Sjj (ω)Skk (ω) · γ (ω, ξ) (5.27)

where ξ is the separation distance between nodes j and k. The auto-spectrum, Sjj , and the coherence

function, γ, are chosen for the problem at hand. There are a multitude of options in the literature for most

practical problems. For example, for wind velocities, the auto-spectrum is typically chosen to be the Kaimal

Spectrum [101] and the coherence model is typically chosen to be the Davenport coherence function [102].

For seismic ground motions, the auto-spectrum is typically the Kanai-Tajimi [103, 104] or Clough-Penzion

[105] spectra. For seismic coherency models, some typical choices include the Harichandran and Vanmarcke

model [106], or the Luco and Wong model [107].

With the CSDM known — either from prescribed properties or estimated from data — the SRM can

once again be used to simulate sample realizations of the vector process. First, the CSDM is decomposed as:

S (ω) = H (ω) HT∗ (ω) (5.28)

where the superscript T denotes the matrix transpose, and ∗ denotes complex conjugate. This can be thought

of as a typical Cholesky decomposition, and thus H is lower triangular:

H (ω) =

H11 (ω) 0 0 · · · 0

H21 (ω) H22 (ω) 0 · · · 0

H31 (ω) H32 (ω) H33 (ω) · · · 0
...

...
...

. . .
...

Hn1 (ω) Hn2 (ω) Hn3 (ω) · · · Hnn (ω)

(5.29)

See [63, 82, 108] for discussion of the properties and restrictions on this matrix.

CHAPTER 5. SIMULATION OF STOCHASTIC PROCESSES & FIELDS 52

From the decomposition of Eqns. (5.28) and (5.29), sample realizations can be generated from the

following formula, as N →∞ [63, 82, 108]:

Xj (t) = 2

j∑
m=1

N−1∑
l=0

|Hjm (ωl)|
√

∆ω cos (ωlt+ Θjm (ωl) + φml) ; j = 1, 2, . . . , n (5.30)

where:

ωl = l∆ω, l = 0, 1, . . . , N − 1 (5.31a)

∆ω =
ωu
N

(5.31b)

Θjm (ωl) = tan−1

(
Im [Hjm (ωl)]

Re [Hjm (ωl)]

)
(5.31c)

where Im [·] and Re [·] denote the imaginary and real parts, respectively; and φml, once again, represents

independent random phase angles between [0, 2π]. In this case, though, φml is a n×N matrix. Conversely,

φml can be thought of as n independent series of length N . In the form shown in Eqn. (5.30), the generated

samples are not ergodic, in contrast to the univariate samples. An alternative form shown in [82, 109]

double-indexes the frequencies in order to overcome this limitation. As in the univariate, stationary case,

the FFT can again be used to speed up computation of Eqn. (5.30).

5.6 Multi-dimensional stochastic processes

In the previous section, spatial variability was modeled via a vector process. Alternatively, in this section

multi-dimensional stochastic processes will be discussed. Although mathematically similar, the discussion

will be broken into two parts: (1) multi-dimensional fields and (2) stochastic waves. The difference being,

(1) is a function of two or more space dimensions and (2) is a function of time and space. For simplicity,

all processes in this section will be assumed stationary, Gaussian, and univariate. Furthermore, they will be

restricted to only two dimensions, when necessary, with no loss of generality — this is only done for ease of

notation.

5.6.1 Multi-dimensional random fields

In the case of a multi-dimensional random field, there is a direct extension from Eqn. (5.3) [63]. Let

us consider a two-dimensional (2D), stationary, uni-variate, Gaussian process, X (x) = X (x1, x2), where

CHAPTER 5. SIMULATION OF STOCHASTIC PROCESSES & FIELDS 53

(x1, x2) are Cartesian coordinates in R2. The ACF and SDF are now also 2D:

S (κ) =
1

(2π)
2

∞∫
−∞

R (ξ) e−iκ·ξ dξ (5.32a)

R (ξ) =

∞∫
−∞

S (κ) eiκ·ξ dκ (5.32b)

where κ = [κ1, κ2] is the wave-number vector, ξ = [ξ1, ξ2] is the separation vector, and κ · ξ denotes their

inner product. Thus, in actuality, both integrals in Eqn. (5.32) are double integrals in this case, or m-fold

integrals for m-dimensional cases. The (2π)
2

in Eqn. (5.32a) would be generalized to (2π)
m

for an m-

dimensional process. Using the SRM, once again, a sample realization can be generated with the following

formula [110]:

X (x) =
√

2

N1−1∑
k1=0

N2−1∑
k2=0

∑
I2=±1

√
2S (κ1k1

, I2κ2k2
) ∆κ1∆κ2 · cos

(
κ1k1

x1 + I2κ2k2
x2 + φI2k1k2

)
(5.33)

where φI2k1k2
are again random phase angles uniformly distributed between 0 and 2π, and:

κjkj = j∆κj , kj = 1, 2, . . . , Nj , j = 1, 2 (5.34a)

∆κj =
κuj
Nj

(5.34b)

Once again, the FFT can be used to speed up computation of Eqn. (5.33).

5.6.2 Stochastic waves

In contrast to the multi-dimensional fields in Section 5.6.1, we will now look at stochastic waves. A stochastic

wave is a random process in two or more dimensions, X (t,x), where one dimension is temporal and one

or more are spatial. This is particularly useful for modeling random processes in time which have spatial

variability – an alternative to the multi-variate formulation discussed earlier, in many cases. As an example,

seismic ground motion can be modeled as a stochastic wave [80, 100, 111, 112]. In situations where many

points in space are necessary, it would be advantageous to use a continuous representation rather than a

discrete representation, as in the multi-variate formulation. In Chapter 8 we will show that in some cases

it is actually impossible using the multi-variate form. For simplicity, in this section we will again assume

stationarity, Gaussianity, and that the process is univariate and of only one spatial dimension.

A stochastic wave is characterized by the Frequency-wavenumber (F-K) spectrum, S (ω, κ). From the

F-K spectrum, the SRM can be used to simulate sample waves [111, 112]:

X (x, t) =
√

2

Nκ∑
l=1

Nω∑
m=1

∑
Iω=±1

√
2 · Sf (Iωωm, κl) ·∆ω∆κ · cos

[
Iωωmt+ κlx+ φIωml

]
(5.35)

CHAPTER 5. SIMULATION OF STOCHASTIC PROCESSES & FIELDS 54

where

ωm = m∆ω (5.36a)

∆ω =
ωu
Nω

(5.36b)

κl = l∆κ (5.36c)

∆κ =
κu
Nκ

(5.36d)

The FFT can once again be used to speed up computation of Eqn. 5.35. In fact, the effects are

compounded for this multi-dimensional case, compared to the univariate, one-dimensional, stationary case

described earlier. A further discussion of how to implement the FFT for this case, and comparisons of

computation times, is carried out in Appendix C.

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 55

Chapter 6

Determining Evolutionary Spectra

from non-stationary Autocorrelation

Functions

6.1 Introduction & motivation

As was briefly introduced in Chapter 5, there are a multitude of practical examples of non-stationary pro-

cesses, even when limited just to the fields of civil engineering or applied mechanics. Specifically, earthquakes

and functionally graded materials (FGMs) were cited as examples. Earthquakes exhibit both amplitude and

frequency modulation, as can be seen in Figure 6.1. This figure shows actual recorded acceleration time

history data for Station 16 LGPC, Record # NGA0779 on the PEER Ground Motion Database [113] - the

event shown is the October 18th, 1989 Loma Prieta earthquake. Figure 6.1(a) shows the entire history, and

Figure 6.1(b) shows detail zooms for two separate 5 second windows. From Figure 6.1(a), a clear amplitude

modulation can be seen — the amplitude of the oscillations follows a fairly clear envelope, ramping up be-

tween about 3 seconds and 6 seconds, and then dies down between about 12 seconds and 20 seconds. There

is also a clear change in frequency content over the course of the earthquake, though this is perhaps more

easily seen in the zoom-in detail of Figure 6.1(b). This figure shows two windows of the acceleration time

history of Figure 6.1(a), the top window is from 5 seconds through 10 seconds, and the bottom window is

from 10 seconds to 15 seconds. It can be seen, qualitatively, that the more dominant frequencies in the two

windows are significantly different — the top has a higher frequency than the bottom.

The other example of non-stationarity cited earlier was Functionally Graded Materials (FGMs). A FGM

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 56

0 5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

A
cc

el
. (

g)

Time (sec.)

(a) Ground acceleration

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
−0.5

−0.25

0

0.25

0.5

A
cc

el
. (

g)

Time (sec.)

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
−0.5

−0.25

0

0.25

0.5

A
cc

el
. (

g)

Time (sec.)

(b) Zoom detail on ground accel.

Figure 6.1: Example seismic ground acceleration: 1989 Loma Prieta earthquake. Data source: Pacific

Earthquake Engineering Research Center (PEER) [113], Record #: NGA0779, ATH: LOMAP/LGP-UP.

Figure 6.2: Sample Functionally Graded Material (FGM): aluminum particulates in a high density polyethy-

lene matrix (AL-HDPE). Image courtesy of Po-Hua Lee, Columbia University, 2013

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 57

is a composite material in which a gradient exists in the properties. Bamboo was discussed as a naturally

occurring FGM in Chapter 5, though FGMs are often synthetic and engineered, as well. For example,

Figure 6.2 shows a bi-material FGM, where the particles are aluminum (Al) and the matrix is high density

polyethylene (HDPE). The volume fraction of Al clearly varies from the bottom to the top — where there is

a high density at the bottom and low density at the top. Therefore, the composite will exhibit more of the Al

properties towards the bottom of the material, and more of the HDPE characteristics towards the top. Such

forms are advantageous where a design calls for marrying mechanical strength, thermal properties, ductility,

or other properties of multiple materials. Rather than discretely layering multiple materials, FGMs provide

a more efficient and optimum design in many situations. Modeling and simulating a FGM, such as Al-HDPE

or bamboo, would require accounting for this non-stationarity/inhomogeneity.

Naturally, modeling and simulating non-stationary processes requires special treatment. Standard sta-

tionary process theory will fall short – e.g. Eqns. (5.2) and (5.3). Within the framework of the SRM, it is

modeling the evolving spectral characteristics that is of the highest importance, and biggest challenge. Sev-

eral different theories for modeling the evolving spectral characteristics exist, including the Instantaneous

Power Spectrum [85] and the Wigner-Ville Spectrum [86–88]. In this thesis, however, we will work with

Priestley’s Evolutionary Spectrum (ES) [89]. Priestley’s theory of non-stationary processes with evolution-

ary power has a particularly useful physical meaning because it preserves the concept of frequency, which

is obscured in some other theories of non-stationary processes. The ES was introduced and discussed in

Section 5.3, already, specifically in Eqns. (5.11) through (5.16b).

Though, as primary motivation for this chapter, Eqn. (5.12) will be reproduced here. Priestley [89]

established the following relationship between the ES and the non-stationary ACF, R (t, τ):

R (t, τ) =

+∞∫
−∞

A (t, ω)A∗ (t+ τ, ω) eiωτ dS (ω) (6.1)

This transformation is definitely non-reversible — i.e. given an ACF, a unique ES cannot be found analyti-

cally. In fact, this has been proven mathematically [89, 114]. Often, a simplifying assumption of S (ω) = 1

is used. Still, in this case it is not clear whether the transform becomes reversible in a unique way.

Recall from Eqn. (5.15) that the ES is necessary for simulation using the SRM. However, sometimes only

ACF is available. More importantly, transformation between ACF and ES is necessary to determine the ES

of non-Gaussian, non-stationary processes with evolutionary power. This was briefly introduced in Section

5.4, and will be discussed in great detail further in Chapter 7.

To this end, we are primarily concerned with the following two questions:

1. Is there a solution to the inverse transformation: R (t, τ)→ S (t, ω)?

2. If a solution exists, is it unique?

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 58

With that in mind, this chapter is organized as follows. Section 6.2 will first formulate the inversion as a

discrete optimization problem. Section 6.3 will examine the existence and uniqueness of a solution to this

inversion. Sections 6.4 and 6.5 will then move on to describe more efficient methodologies for computing this

inverse. Numerical examples will be examined throughout.

6.2 Formulation of discrete optimization problem

In the most general case, Priestley [89] derived the relationship between the ACF of a process and its spectral

representation as shown in Eqn. (6.1). In this general case, it has been shown that no unique inverse exists

[89, 114]. We, however, are interested in the particular case where:

1. S (ω) exists such that dS (ω) = S (ω) dω

2. A (t, ω) is a real and non-negative function of both t and ω

3. S (ω) is assumed to be white noise for all ω such that the evolutionary spectrum reduces to: SE (t, ω) =

A2 (t, ω)

Given assumptions #1 and #3, we can simplify the integral in Eqn. (6.1) to:

R (t, τ) =

+∞∫
−∞

A (t, ω)A (t+ τ, ω) eiωτ dω (6.2)

Note, also, that because the modulating function A (t, ω) and the ES SE (t, ω) completely define each other

under these assumptions (specifically the third assumption), the two will be used interchangeably throughout

the rest of the chapter.

Let us start by formulating the inversion as a discrete optimization problem. It is assumed that a target

ACF is given (or can easily be estimated), Rtarget (t, τ). The ACF, in general, is discretized as:

Rjk = R (tj , τk) = R (j∆t, k∆τ) (6.3)

Typically, ∆t = ∆τ . Additionally, we must define some measure of the error, ε:

ε =

∥∥∥Rtargetjk −Rcomputedjk

∥∥∥∥∥∥Rtargetjk

∥∥∥ × 100% (6.4)

where Rcomputedjk is the estimated autocorrelation function. For all of the methods described in this chapter,

the following norm is adopted:

‖Xjk‖ =

√√√√ Nt∑
j=1

Nτ∑
k=1

X2
jk (6.5)

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 59

where

Nt =
tmax
∆t

(6.6a)

Nτ =
τmax − τmin

∆τ
(6.6b)

The optimization problem can be stated as the following. We would like to find some A (t, ω) that,

when integrated as in Eqn. (6.2), approximates as closely as possible the target ACF, Rtarget (t, τ). For

computational purposes, we discretize A (t, ω) as:

Alm = A (tl, ωm) = A (l∆t,m∆ω) (6.7)

Eqn. (6.2) can then be numerically integrated to find Rcomputedjk . For all methods developed in this chapter,

numerical integration is performed using Simpson’s rule. We are interested in finding Alm which minimizes

the error in the ACF (Eqn. 6.4).

6.3 “Brute Force” Method (BFM)

6.3.1 Description of algorithm

The primary intentions for the Brute Force Method (BFM) described in this section are threefold:

1. to determine whether or not the inversion process converges;

2. if it does converge, whether or not it converges to a unique solution; and

3. whether this unique solution is the correct one.

To that end, a numerical “Brute Force” approach was proposed in the appendix of Shields’ Ph.D. thesis

[114]. Though the convergence of this method does not prove uniqueness, it is a strong indicator of such. In

addition, because the convergence path is stochastic, as will be shown shortly, repeated convergence to the

same ES would imply uniqueness (though not a rigorous proof, of course). The errors are measured in the

ACF (Eqn. (6.4)) and as such, the method does not depend on the ES, only the prescribed ACF.

The BFM is illustrated in Figure 6.3. In brief, the algorithm works as follows. We begin with a prescribed

ACF. Note, though, that for tests in this chapter we start from a prescribed ES which we integrate (Eqn.

(6.2)) to find the target ACF. This target ES is then ‘forgotten.’ An initial guess is then chosen for the

ES, say, some flat spectrum of a positive number (e.g. A (t, ω) = 50). This ES is integrated to find the

associated ACF, and the error between the computed ACF and the target ACF is calculated. Then, a point

is chosen at random, and it is shifted. If this shift results in less error than previously, the shift is accepted,

otherwise it is discarded. This process is repeated until convergence. A progression of these iterations are

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 60

Target ES: At Target ACF: Rt Initial Guess
for ES: A0

Integrate:
At to Rt

OR

Calculate Error:
E0 = ||Rt-R0||

Integrate:
A0 to R0

Ej < tol YES

NO

Output ES: A

Random Perturb.:
A' = Aj+dA

Integrate:
A' to R'

Calculate Error:
E' = ||Rt-R'||

E' < Ej-1 NOYES

Ej = E'
Aj+1 = A'
Rj+1 = R'
j = j+1

Ej = Ej-1

Aj+1 = Aj

Rj+1 = Rj

j = j+1

Figure 6.3: Brute Force Method (BFM) algorithm

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 61

(a) 10 iterations (b) 100 iterations (c) 1000 iterations (d) 10000 iterations

Figure 6.4: Progression of the BFM over the first 10,000 iterations

shown in Figure 6.4 after 10, 100, 1000, and 10,000 iterations. It can be seen how power begins to build

up through the random perturbations, though it is also clearly very slow convergence. The spectrum at

any given iteration is quite “bumpy,” due to the random perturbations. To preserve some continuity and

smoothness, the perturbations used were essentially Gaussian bell curves:

∆A (t, ω) = C exp

(
(t− t′)2

αt

)
· exp

(
(ω − ω′)2

αω

)
(6.8)

where t′ and ω′ are random time and frequency coordinates, uniformly distributed within the domain, and

C, αt and αω are scaling parameters. The magnitude of the perturbations, C, was chosen to be a fraction of

the magnitude of A, and decreased in magnitude as the iterations progressed. The width-control parameters,

αt,ω, contracted as the iterations progressed to allow for more localized adjustments. For more discussion of

this method see [114].

6.3.2 BFM results

Let us now examine the results from this method by estimating the ES from the ACF for a known example

ES. This example is the same as [114]: a Clough-Penzien acceleration spectrum [105] with both frequency

and amplitude modulation similar to that used in [82]. The Clough-Penzien acceleration spectrum is used

to describe non-stationary seismic ground motion. This spectrum is shown in Figure 6.5(a), and is defined

as:

SECP (ω, t) = A2
JHT (t)S0 (t)

 1 + 4ζ2
g

(
ω
ωg

)2

[
1−

(
ω
ωg

)2
]2

+ 4ζ2
g

(
ω
ωg

)2

︸ ︷︷ ︸

Non-stationary Kanai-Tajimi spectrum

×

(
ω
ωf

)4

[
1−

(
ω
ωf

)2
]2

+ 4ζ2
f

(
ω
ωf

)2

︸ ︷︷ ︸

Clough-Penzien correction

(6.9)

where the amplitude modulation is given through the Jennings, Housner, and Tsai modulating function

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 62

(a) ES (b) ACF

Figure 6.5: Clough-Penzien (CP) spectrum with amplitude and frequency modulation

0 2 5 10 15 20
0

0.5

1

Time (sec.)

A
JH

T
(t

)

Figure 6.6: Jennings, Housner, and Tsai modulating function [115]

[115]:

AJHT (t) =

(
t
t1

)2

0 ≤ t ≤ t1

1 t1 ≤ t ≤ t2
exp [−c (t− t2)] t2 ≤ t

(6.10)

which is shown in Figure 6.6. The parameter S0 (t) in Eqn. (6.9) is used to describe the intensity of the

acceleration in the underlying Kanai-Tajimi spectrum [103, 104]. It is defined as:

S0 (t) =
σ2

πωg

(
1

2ζg
+ 2ζg

) (6.11)

where σ is the standard deviation, and ωg and ζg in Eqns. (6.9) and (6.11) are the characteristic frequency and

damping, respectively, of the ground, which are soil properties. Ellingwood and Batts [116] have suggested

values for rock, deep cohesionless soils, and clays and sands, respectively. Finally, ωf and ζf in Eqn. (6.9)

are the filtering parameters of the Clough-Penzien spectrum [105], which are typically taken to be:

ωf = 0.1ωg (6.12a)

ζf = ζg (6.12b)

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 63

The parameter definitions used in this numerical example are as follows:

ωg = 30− 1.25t (6.13a)

ζg = 0.5 + 0.005t (6.13b)

σ = 100 (6.13c)

t1 = 2 (6.13d)

t2 = 10 (6.13e)

c = 0.4 (6.13f)

For reference, sample time histories generated from this spectrum (scaled for σ = 1) were used in the

previous chapter, in Figure 5.1(c). The initial guess was a flat spectrum, i.e. A (t, ω) = 50 ∀ (t, ω). Time

and frequency were discretized as:

t ∈ (0, 20) (6.14a)

τ ∈ (0, 2) (6.14b)

∆t = 0.025 (6.14c)

∆τ = 0.025 (6.14d)

ω ∈ (0, 128) (6.14e)

∆ω = 0.5 (6.14f)

The results for the BFM after 1,000,000 iterations are shown in Figure 6.7. The final computed ES is

shown in Figure 6.7(a). A “slice” (at constant t) comparing the computed ES with the target ES is shown

in Figure 6.7(b). The associated computed ACF is shown in Figure 6.7(c). This has an error of 1.57% when

measured according to Eqn. (6.4). Measured in the ES, the error is 6.95%. Visually, both the ACF and ES

haven taken at least the general shape of their targets (Figure 6.5). The ACF is noticeably smoother than the

ES, and matches the target quite nicely – as evident quantitatively through the error measure, as well. The

ES, on the other hand, although quite close the the general shape of the target, is quite ‘bumpy’. This is of

course due to the nature of the random perturbations used to compute it. Figure 6.7(b) shows that although

bumpy/noisy, the general shape is in fact captured. One million iterations is certainly slow (one iteration

takes approximately two seconds, depending on programming language, hardware, and parallelization). We

can clearly observe that the ES converges slowly towards the target, which is a strong indication that a

unique solution exists.

Returning to the primary intentions listed at the beginning of this section, these results show:

1. clear convergence to a specific ES,

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 64

2. convergence to a unique ES,

3. and furthermore, convergence to the correct shape.

Specifically, through convergence to a clearly defined shape, and not an arbitrary shape (i.e. complete noise),

the results point to the likelihood that a solution exists. The repeated convergence to similar solutions

(including similar convergence shown in [114]) then points to the uniqueness of this solution. Note that

the convergence path is stochastic, and there is no bias in the algorithm. Thus, if the same minimum is

found, and is the only minimum found, it is very likely that this is the only minimum that exists. Finally,

recall that this test case was started from a known ES. The clear convergence to the general shape of this

target ES points to the likelihood of both existence and uniqueness of the solution to the inversion. To

reiterate, although the test case was started from a known ES, this was integrated to the target ACF and

then “forgotten.” All comparisons in the algorithm are always on the ACF, and thus no direct information

from the ES makes it way into the convergence path.

Finally, Figure 6.8 shows sample realizations generated using both the target and estimated spectra. The

two samples were generated using the same random phase angles, so as to be able to compare directly. Figure

6.8(a) shows the entire 20 second duration, and Figure 6.8(b) shows two 5 second window zoom-ins. It is

clear that the sample generated from the estimated spectrum matches the target quite well. The noise in the

estimated spectrum appears to have minimal effect on the generated samples. This points to the conclusion

that the general shape of the spectrum is more important than exact replication.

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 65

(a) BFM computed ES

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

ω

S
(t

,ω
)

Computed
Target

(b) BFM sample ES “Slice”

(c) BFM computed ACF

0 2 4 6 8 10 12

x 10
5

0

20

40

60

80

100

Iterations

P
er

ce
nt

 R
el

at
iv

e
E

rr
or

 o
f |

|R
(t

,τ)
|| 2

(d) BFM errors vs. iteration

Figure 6.7: BFM convergence results for Clough-Penzien (CP) spectrum with amplitude and frequency

modulation. After 1,000,000 iterations of BFM, final error: 6.95% in ES and 1.57% in ACF

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 66

0 5 10 15 20
−400

−300

−200

−100

0

100

200

300

400

Time (sec.)

f(
t)

Estimated
Target

(a) Simulated sample realization comparison

2 3 4 5 6
−400

−200

0

200

400

Time (sec.)

f(
t)

7 8 9 10 11
−400

−200

0

200

400

Time (sec.)

f(
t)

(b) Zoom in on sample realizations

Figure 6.8: Comparison of sample realizations generated using SRM with target ES (red dash) and estimated

ES (solid blue)

6.4 “Multi-Grid” Method (MGM)

6.4.1 Description of algorithm

In the previous section it was shown, though not proved, that a unique solution to the inverse of Eqn. (6.2)

likely exists. The BFM described therein was certainly not efficient enough for any practical applications:

the computation to sufficient accuracy would take days or weeks. To that end, the remainder of this chapter

looks at making this computation more efficient. This section will develop and examine a proposed method,

and carry out numerical examples of such. The proposed method will then be compared against existing

off-the-shelf optimization techniques. The following section will then propose an efficient initial guess, which

in some cases may even be a good enough approximation of the ES. This will be shown through numerical

examples, as well.

With that, we will now move on to introduce the “Multi-Grid” Method (MGM). In order to increase the

efficiency in convergence, we look to reduce the parameter space of the problem. The original problem for

the BFM was on a discrete space of 800× 256 ‘parameters’ to be estimated. Therefore, the parameter space

was on the order of 200,000 degrees of freedom. With uniformly random sampling for the perturbations,

this would require a minimum of 400,000 iterations, on average, for each location to be ‘touched’ just once.

Often the domain will be discretized even further. If the original domain is 1024× 1024, then the parameter

space is over 1,000,000 degrees of freedom. So it is quite clear that the problem grows in complexity quickly.

However, by using interpolation and assuming some level of continuity, this space can be significantly reduced.

Furthermore, inspired by the multi-grid solvers used in linear systems, it will be demonstrated that it is

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 67

possible to use the information on the coarse scale grid to improve convergence on the fine scale grid.

The MGM algorithm is shown in Figure 6.9. The MGM algorithm is very similar to the BFM described

previously, with the addition of a mesh refinement step. The mesh begins coarse (e.g., for the examples in

Section 6.4.2 a 20× 10 mesh was used) and gradually increases in density to the finest scale (800× 256) over

the course of the iterations. When the mesh is transfered from coarse to fine, bi-cubic spline interpolation

is used. This assumes a certain degree of continuity, and smoothness, as the bi-cubic splines preserve C2-

continuity. However, splines do not preserve non-negativeness, which is one of the initial assumptions. In

order to remedy this, local linear interpolation is used if any negative values are produced by the spline

interpolation. Furthermore, although the random perturbations are carried out on the coarse mesh, the

errors are always calculated on the fine scale. Otherwise, the norm defined in Eqn. (6.5) would not be

consistent between different meshes.

Figure 6.10 shows the progression of the MGM over the first 1,000 iterations. In contrast to the BFM of

Figure 6.4, improvements are immediately recognizable. First, because the perturbations are on the coarse

scale, each perturbation affects a wider set of points in the (fine scale) domain. Early on in the iterations this

is very useful to find the general shape faster, and then fine tune with smaller perturbations afterwards. As

such, power begins to build up in the correct areas much sooner in the MGM than the BFM, and by 1,000

iterations the general shape is starting to form – for the BFM this was taking 10,000 or more iterations.

Second, the results are much smoother than in the BFM. The bumpy and noisy nature of the BFM results

are absent, and in their stead are very smooth curves. Priestley’s theory [89] assumes a certain degree of

smoothness, so this is an acceptable assumption for the MGM. However, if there were steep gradients that

needed to be captured, this could be captured after the initial “broad” iterations, by further iterations on

the fine scale.

6.4.2 MGM results

In this section, two numerical examples are carried out for the MGM. First, the CP example from the BFM is

revisited. Then, a completely arbitrary and non-physical spectrum is used, to demonstrate the robustness of

the algorithm. In the first case, the convergence is compared with some off-the-shelf established optimization

techniques.

Clough-Penzien example

In the first numerical example, the CP spectrum from Section 6.3.2 is revisited. The parameters and initial

guess are identical to that example. The resulting ES is shown in Figure 6.11(a), and a sample slice is shown

in Figure 6.11(b). The associated ACF is shown in Figure 6.11(c). The convergence behavior is compared

to the BFM in Figure 6.11(d). After four hundred thousand iterations, the error measured in the ACF is

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 68

Target ES: At Target ACF: Rt Initial Guess
for ES: A0

Integrate:
At to Rt

OR

Calculate Error:
E0 = ||Rt-R0||

Integrate:
A0 to R0

Ej < tol YES

NO

Output ES: A

Random Perturb.:
A' = Aj+dA

Integrate:
A' to R'

Calculate Error:
E' = ||Rt-R'||

E' < Ej-1 NOYES

Ej = E'
Aj+1 = A'
Rj+1 = R'
j = j+1

Ej = Ej-1

Aj+1 = Aj

Rj+1 = Rj

j = j+1

Mesh refinement
step: Choose mesh
based on j, Ej

Figure 6.9: Multi-Grid Method (MGM) algorithm

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 69

(a) 10 iterations (b) 100 iterations (c) 500 iterations (d) 1000 iterations

Figure 6.10: Progression of the MGM over the first 1,000 iterations

0.6%, and 7.5% measured in the ES. To reach an error level equivalent to the one million iterations of the

BFM, we only need to take roughly one hundred thousand iterations - a full order of magnitude reduction

in effort.

In addition to efficiency improvements, the MGM also preserves more continuity and smoothness in the

ES than the BFM. We can see that the result in Figure 6.11(a) is quite smooth, and qualitatively looks

closer to Figure 6.5(a) than the BFM result does (Figure 6.7(a)). Comparing the slices of Figures 6.7(b) and

6.11(b), the noise from the BFM is almost completely eliminated. This is especially true in the regions of

high power, and thus higher importance.

It should be noted that majority of the error in the ES is highly concentrated on the boundaries of the

domain. Absolutely no assumptions were made as to “boundary conditions,” so as to avoid any biases. Thus,

either with constraints or post-processing, this could be cleaned up with some well justified assumptions.

For example, it is always assumed that beyond the upper cutoff frequency the power is negligible. Thus,

it is fairly safe to assume that the spectrum dies down to zero at ω = ωu. Furthermore, depending on the

physical process, SE (t = 0, ω) and SE (t = T, ω) can often be assumed to be zero.

Simulated samples are generated using the estimated and target spectra in Figure 6.12. Once again, the

samples were generated using the same random phase angles so as to allow a direct comparison. Figure

6.12(a) shows the samples for the entire period, and Figure 6.12(b) shows two five second window zoom-ins.

There is good agreement between the two samples, though the extra high-frequency content is showing up in

the estimated sample. As was just described, this could be cleaned up in a post-processing of the spectrum,

however.

Finally, the MGM is compared with some established off-the-shelf optimization techniques in Figure 6.13.

The MGM is clearly more efficient than the off-the-shelf methods. This goes back to the issue of parameter-

space that was discussed at the outset of this section. These methods are all severely limited in the number

of parameters they can optimize, and are not designed for the scale of this problem. Simulated Annealing

very quickly runs out of memory, and Genetic Algorithm and Pattern Search both “bottom-out” very early

on. In order to make use of these tools, the parameter space would have to be drastically reduced, and

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 70

(a) MGM computed ES

0 20 40 60 80 100 120 140
0

50

100

150

200

250

ω

S
(t

,ω
)

Computed
Target

(b) MGM sample ES “Slice”

(c) MGM computed ACF

0 2 4 6 8 10

x 10
5

10
0

10
1

10
2

Iterations

P
er

ce
nt

 R
el

at
iv

e
E

rr
or

 o
f |

|R
(t

,τ)
|| 2

"Multi−Grid"
"Brute−Force"

(d) MGM errors vs. iteration

Figure 6.11: Convergence results for Clough-Penzien (CP) spectrum with amplitude and frequency modula-

tion. After 400,000 iterations of MGM, final error: 7.53% in ES and 0.64% in ACF

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 71

0 5 10 15 20
−400

−300

−200

−100

0

100

200

300

400

Time (sec.)

f(
t)

Estimated
Target

(a) Simulated sample realization comparison

2 3 4 5 6
−400

−200

0

200

400

Time (sec.)

f(
t)

7 8 9 10 11
−400

−200

0

200

400

Time (sec.)
f(

t)

(b) Zoom in on sample realizations

Figure 6.12: Comparison of sample realizations generated using SRM with target ES (red dash) and estimated

ES (solid blue)

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

Function Evaluations

P
er

ce
nt

 R
el

at
iv

e
E

rr
or

 o
f |

|R
(t

,τ)
||

SA
GA
PS
MG

Figure 6.13: Comparison of the MGM with off-the-shelf optimization techniques: (1) Simulated Annealing,

(2) Genetic Algorithm, and (3) Pattern Search from the MATLAB [42] Global Optimization Toolbox

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 72

−2
0

2

−2

0

2

−5

0

5

x

Peaks

y

Figure 6.14: MATLAB peaks function

in doing so, fine-scale details would be lost. The MGM is clearly superior to these three methods for this

problem. That begin said, a coupling approach could be explored to marry the MGM with some established

optimization techniques.

MATLAB peaks

The second numerical example is non-physical and completely arbitrary. It is chosen only to demonstrate

the robustness of the proposed method, and the method’s ability to capture an arbitrary shape and number

of peaks. The specific target chosen was the peaks function in MATLAB [42], which is shown in Figure 6.14,

and is expressed as:

z = 3 (1− x)
2
e−(x2+(y+1)2) − 10

(x
5
− x3 − y5

)
e−x

2−y2

− 1

3
e−((x+1)2+y2) (6.15)

where x and y are each defined between (−3, 3). In order to use this as an example, the domain was

scaled and translated in order to match that used in the earlier examples (with the same discretization).

In order to preserve the non-negative condition, the absolute value of this function was used. The target

ES and associated ACF are shown in Figures 6.15(a) and 6.15(c), respectively. After 200,000 iterations, the

computed ES and ACF are shown in Figures 6.15(b) and 6.15(d), respectively. There is very nice agreement

between the estimated and target ES and ACFs. The final errors after 200,000 iterations were 4.58% in the

ES and 0.68% in the ACF. Once again, majority of the error in the ES was at the boundaries. Two sample

slices of the ES are shown in Figures 6.15(e) and 6.15(f). The MGM captures the general shape of the peaks

very nicely, and very accurately captures areas of high power. The sources of errors in the ES estimation are

clear in Figures 6.15(e) and 6.15(f), as the boundaries and locations where the absolute value created weak

discontinuity (just North of ω = 40 in both plots). Aside from these two problem areas, the representation

of the ES by the MGM is virtually perfect. In fact, looking at the convergence behavior in Figure 6.16, this

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 73

Table 6.1: BFM and MGM efficiency comparison

BFM MGM

Iteration 1,000,000 iter. Iteration 400,000 iter.

Fortran serial 10.9870 sec. 18 weeks 11.3329 sec. 7.5 weeks

Fortran 24 core 1.2887 sec. 2 weeks 1.6386 sec. 1 week

example was faster to converge than the previous. It reached errors in the ACF below 1% before 100,000

iterations. Finally, sample realizations are generated using the target ES (Figure 6.15(a)) and estimated ES

(Figure 6.15(b)) and compared in Figure 6.17. Figure 6.17(a) shows the entire period, and Figure 6.17(b)

shows two five second window zoom-ins. Once again, the MGM estimated ES produces a sample realization

that agrees very nicely with the target sample. The biggest discrepancies are in extra high frequencies, and

near the start and end of the duration, as expected due to the boundary errors.

6.4.3 Efficiency comparison

In the previous section, the MGM was shown to be orders of magnitude more efficient than the BFM in terms

of iterations. However, it is important to consider the full computational cost, comparing the CPU time for

both methods. Table 6.1 shows the average CPU time per iteration for both methods, on a 1024 × 1024

grid (note: this is finer than the results presented above). The MGM is only slightly slower per iteration.

Though, when considering the fact that the BFM takes roughly 1,000,000 iterations to converge, and the

MGM 400,000; it is clear that the MGM is still much more efficient than the BFM. In both cases, the

advantage of parallelizing is clear - improvements of a full order of magnitude are possible by parallelizing

when possible. Unfortunately, the algorithms are not fully parallelizable due to the interdependence of

iterations. However, computation of the integral in Eqn. (6.2) is “embarrassingly parallel” in that each time

instant is independent.

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 74

(a) Target ES (b) Estimated ES

(c) Target ACF (d) Estimated ACF

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

ω

S
(t

,ω
)

Computed
Target

(e) Sample ES slice

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

ω

S
(t

,ω
)

Computed
Target

(f) Samples ES slice

Figure 6.15: MATLAB peaks numerical example results. After 200,000 iterations of the MGM, final error:

4.58% in the ES and 0.68% in the ACF

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 75

0 0.5 1 1.5 2

x 10
5

10
0

10
1

10
2

Iterations

P
er

ce
nt

 R
el

at
iv

e
E

rr
or

 o
f |

|R
(t

,τ)
|| 2

Figure 6.16: MGM MATLAB peaks example errors

0 5 10 15 20
−60

−40

−20

0

20

40

60

80

Time (sec.)

f(
t)

Estimated
Target

(a) Simulated sample realization comparison

2 3 4 5 6
−50

0

50

Time (sec.)

f(
t)

7 8 9 10 11
−50

0

50

Time (sec.)

f(
t)

(b) Zoom in on sample realizations

Figure 6.17: Comparison of sample realizations generated using SRM with target ES (red dash) and estimated

ES (solid blue) for peaks example

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 76

6.5 Preprocessing

6.5.1 Definition of “Pseudo-Spectrum”

Up through this point, the same initial guess was always used, which was simply: A (t, ω) = 50 ∀ (t, ω). This

was useful in demonstrating the robustness of the methods discussed earlier, however it is far from optimal

for an initial guess. An intelligent initial guesses will drastically improve convergence, and so it is of the

highest importance in these iterative methods. With that in mind, the use of a “Pseudo-Spectrum” is here

proposed. This is computed by treating the process as locally stationary :

S̃E (t, ω) =
1

2π

∞∫
−∞

R (t, τ) e−iωτ dτ (6.16)

It is important to note that in the non-stationary case, R (t, τ) is not even with respect to τ . So, unlike

Eqn. (6.2), this can not be computed in a ‘one-sided’ fashion (where A (t, ω) is even with respect to ω), but

rather both positive and negative values of τ must be considered to get the most accurate approximation.

Furthermore, more careful consideration must be given here towards the discretization, to avoid aliasing

effects. Namely, the following requirements must be met:

T =
2π

∆ω
(6.17a)

∆t ≤ 2π

2ωu
(6.17b)

6.5.2 Numerical examples

In this section, numerical examples will be carried out using the newly defined pseudo-spectrum. Three

examples will be considered, (a) the Kanai-Tajimi spectrum, (b) the Kanai-Tajimi spectrum with Clough-

Penzien correction, and (c) a linear chirp process. The first two are defined by Eqn. (6.9), by either ignoring

or including the Clough-Penzien term, respectively. All other parameters were kept the same as in earlier

examples. The linear chirp process will be defined in its subsection to follow. All examples in this section were

carried out on a 1024×1024 mesh in time and frequency, with 0 ≤ t ≤ 20 and 0 ≤ ω ≤ 256, unwise otherwise

indicated. Thus, ∆t = 0.0196 and ∆ω = 0.2502. Finally, the two sided lag ranged from −10 ≤ τ ≤ 10

seconds. In regions where t± τ falls outside of the domain, R (t, τ) was assumed to be zero.

Kanai-Tajimi example

In this example, the Kanai-Tajimi ES from Eqn. (6.9) was used without the Clough-Penzien correction.

The target ES is shown in Figure 6.18(a). The computed pseudo-spectrum is shown in Figure 6.18(b). For

this case, the pseudo-spectrum already matches the target very well. In fact, the error in the ES is only

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 77

(a) Target Kanai-Tajimi ES (b) Estimated pseudo-spectrum

0 50 100 150 200 250

20

40

60

80

100

120

ω

S
(t

,ω
)

Computed
Target

(c) t = 5 sec.

0 50 100 150 200 250

10

20

30

40

50

60

70

80

ω

S
(t

,ω
)

Computed
Target

(d) t = 10 sec.

0 50 100 150 200 250

0.5

1

1.5

2

ω

S
(t

,ω
)

Computed
Target

(e) t = 15 sec.

Figure 6.18: Pseudo-spectrum results for Kanai-Tajimi example

0.59%, and the error in the ACF is only 0.69%. Therefore, for this case, the pseudo-spectrum is most likely

a good enough approximation of the ES. No perturbations (i.e. MGM) are necessary. Sample slices of the

pseudo-spectrum are also shown in Figure 6.18.

Simulated sample realizations are shown in Figure 6.19. Figure 6.19(a) shows the entire duration and

Figure 6.19(b) shows two five second window zoom-ins. The simulated samples are virtually indistinguishable.

Showing that the pseudo-spectrum is in fact a very good approximation of this ES.

However, recall that the ES in practice would not be known a priori. So, after computing the pseudo-

spectrum, only a notion of the error in the ACF would be known. There would be no way of knowing what

the error in the ES actually was for an arbitrary ES. Without knowing what the error was after computing

the pseudo-spectrum (as we will see shortly, not all cases are as good approximations as this one), MGM

perturbations might be carried out regardless in order to ensure that the ES errors were low.

To that end, the MGM was performed with the pseud-spectrum of Figure 6.18(b) as an initial guess.

The computed ES is shown in Figure 6.20(a), and the convergence behavior is shown in Figure 6.20(b). The

errors in the ES do not lower drastically, but that is because the starting point was so low. In the end, the

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 78

0 5 10 15 20
−500

−400

−300

−200

−100

0

100

200

300

Time (sec.)

f(
t)

Estimated
Target

(a) Simulated sample realization comparison

5 6 7 8 9
−400

−200

0

200

400

Time (sec.)

f(
t)

11 12 13 14
−400

−200

0

200

400

Time (sec.)

f(
t)

(b) Zoom in on sample realizations

Figure 6.19: Comparison of sample realizations generated using SRM with target ES (red dash) and estimated

ES (solid blue) for pseudo-spectrum of Kanai-Tajimi example

final errors were 0.53% in the ES and 0.38% in the ACF.

Clough-Penzien example

In this example, the Clough-Penzien ES from Eqn. (6.9) is revisited. The target ES is shown in Figure

6.21(a). The computed pseudo-spectrum is shown in Figure 6.21(b). The error in the ES is 2.55%, and the

error in the ACF is 0.89%. From Figure 6.21(b), it can be seen that there is some clear difficulty capturing

SE (t, ω = 0). However, still in this case, the pseudo-spectrum is most likely a good enough approximation

of the ES for practical purposes. No perturbations are necessary, once again. Sample slices of the pseudo-

spectrum are also shown in Figure 6.21. There is some difficulty capturing the ES in the areas of low power,

as evident in Figure 6.21(e).

Simulated sample realizations are shown in Figure 6.22. Figure 6.22(a) shows the entire duration and

Figure 6.22(b) shows two five second window zoom-ins. The simulated samples agree nicely, though we can

see some extra high frequency content in the tail (between 15 and 20 seconds). Still, this shows that the

pseudo-spectrum is in fact a very good approximation of this ES.

Finally, once again, the MGM was performed with the pseudo-spectrum of Figure 6.21(b) as an initial

guess. The computed ES is shown in Figure 6.23(a), and the convergence behavior is shown in Figure 6.23(b).

The errors in the ES do not lower drastically, but that is because the starting point was so low. In the end,

the final errors were 2.4% in the ES and 0.56% in the ACF.

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 79

(a) Computed ES

0 2 4 6 8 10

x 10
4

10
−0.4

10
−0.3

10
−0.2

Iterations

P
er

ce
nt

 R
el

at
iv

e
E

rr
or

s

ACF
ES

(b) Error vs. iterations

Figure 6.20: MGM with pre-processing for Kanai-Tajimi example. Final errors after 100,000 iterations:

0.53% in ES and 0.38% in ACF

(a) Target Clough-Penzien ES (b) Estimated pseudo-spectrum

0 50 100 150 200 250
0

20

40

60

80

100

120

ω

S
(t

,ω
)

Computed
Target

(c) t = 5 sec.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

ω

S
(t

,ω
)

Computed
Target

(d) t = 10 sec.

0 50 100 150 200 250
0

0.5

1

1.5

2

ω

S
(t

,ω
)

Computed
Target

(e) t = 15 sec.

Figure 6.21: Pseudo-spectrum results for Clough-Penzien example

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 80

0 5 10 15 20
−300

−200

−100

0

100

200

300

400

Time (sec.)

f(
t)

Estimated
Target

(a) Simulated sample realization comparison

5 6 7 8 9
−400

−200

0

200

400

Time (sec.)

f(
t)

11 12 13 14
−400

−200

0

200

400

Time (sec.)
f(

t)

(b) Zoom in on sample realizations

Figure 6.22: Comparison of sample realizations generated using SRM with target ES (red dash) and estimated

ES (solid blue) for pseudo-spectrum of Clough-Penzien example

(a) Computed ES

0 2 4 6 8 10

x 10
4

10
0

Iterations

P
er

ce
nt

 R
el

at
iv

e
E

rr
or

s

ACF
ES

(b) Error vs. iterations

Figure 6.23: MGM with pre-processing for Clough-Penzien example. Final errors after 100,000 iterations:

2.4% in ES and 0.56% in ACF

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 81

Linear chirp process

The final numerical example is a linear chirp process, in which the central frequency of a narrow-band process

changes linearly with time. This example is considered considerably non-stationary, and thus should pose

the most difficult to capture. The chirp ES is defined as:

SE (t, ω) = exp

[
− (ω − ω0 (t))

2

4

]
(6.18)

where, in the case of a linear chirp, the frequency shift parameter, ω0 (t) is defined as:

ω0 (t) =
αT − α0

T
t+ α0 (6.19)

where α0 is the value of ω0 (t = 0), αT = ω0 (t = T), and T is the period. In this example, the following

values were used:

α0 =
ωu
4

(6.20a)

αT =
3ωu

4
(6.20b)

∴ ω0 (t) =
ωu
4

(
2
t

T
+ 1

)
(6.20c)

In this example, ωu = 32 radians per sec. was used. The target spectrum is shown in Figure 6.24(a). The

estimated pseudo-spectrum is then shown in Figure 6.24(b). It is clear that the chirp estimation is not as

accurate as the first two examples, namely towards t = 0, T . In the middle range, an approximate shape

is found, and the correct peaks, though there is definite ‘frequency smearing,’ as evident in Figures 6.24(c),

6.24(d), and 6.24(e). This pseudo-spectrum produces an error of 19.67% in the ES, and 11.18% in the ACF.

Thus, for the linear chirp process, there seems to still be a call for perturbations.

The MGM was performed with the pseudo-spectrum of Figure 6.24(b) as an initial guess. The computed

ES is shown in Figure 6.25(a), and the convergence behavior is shown in Figure 6.25(b). In the end, the

final errors were 9.5% in the ES and 1.3% in the ACF. The ACF error as been reduced drastically, and the

ES error has been improved. Though, majority of this error is on the boundaries and could potentially be

cleaned up in post-processing.

Simulated sample realizations are shown in Figure 6.26. Figure 6.26(a) shows the entire duration and

Figure 6.26(b) shows two five second window zoom-ins.

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 82

(a) Target linear chirp ES (b) Estimated pseudo-spectrum

0 5 10 15 20 25 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ω

S
(t

,ω
)

Computed
Target

(c) t = 5 sec.

0 5 10 15 20 25 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ω

S
(t

,ω
)

Computed
Target

(d) t = 10 sec.

0 5 10 15 20 25 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ω

S
(t

,ω
)

Computed
Target

(e) t = 15 sec.

Figure 6.24: Pseudo-spectrum results for linear chirp example

(a) Computed ES

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

Iterations

P
er

ce
nt

 R
el

at
iv

e
E

rr
or

s

ACF
ES

(b) Error vs. iterations

Figure 6.25: MGM with pre-processing for linear chirp example. Final errors after 100,000 iterations: 9.52%

in ES and 1.31% in ACF

CHAPTER 6. DETERMINING EVOLUTIONARY SPECTRA FROM NON-STATIONARY
AUTOCORRELATION FUNCTIONS 83

0 5 10 15 20
−8

−6

−4

−2

0

2

4

6

8

Time (sec.)

f(
t)

Estimated
Target

(a) Simulated sample realization comparison

5 6 7 8 9

−5

0

5

Time (sec.)

f(
t)

11 12 13 14

−5

0

5

Time (sec.)

f(
t)

(b) Zoom in on sample realizations

Figure 6.26: Comparison of sample realizations generated using SRM with target ES (red dash) and estimated

ES (solid blue) for MGM with pseudo-spectrum for linear chirp example

CHAPTER 7. SIMULATION OF NON-STATIONARY AND NON-GAUSSIAN STOCHASTIC
PROCESSES 84

Chapter 7

Simulation of non-stationary and

non-Gaussian stochastic processes

7.1 Introduction & motivation

So far in Part II, Chapter 5 introduced the Spectral Representation Method (SRM) for simulating various

classes of stochastic processes, and Chapter 6 discussed some challenges in the simulation of non-stationary

processes. Specifically, the inversion of Evolutionary Spectra (ES) from a prescribed or measured non-

stationary Auto-Correlation Function (ACF) was discussed. The topic of simulating non-Guassian processes

was briefly touched upon in Section 5.4, both stationary and non-stationary. In this chapter, the simulation

of non-stationary, non-Gaussian stochastic processes and fields will be discussed. A novel approach to

simulating non-stationary and non-Gaussian stochastic processes through the SRM will be presented, which,

aside from one approximate technique proposed by Shields et. al. [99], has so far been undeveloped in the

literature.

The importance of considering the non-stationarity of processes, as well as some examples, was already

discussed in Sections 5.3 and 6.1. The consideration of the non-Gaussianity of a process, in both the

stationary and non-stationary case, is equally important. Take, for example, random media such as the

Functionally Graded Material (FGM) shown in Figure 6.2. An engineer may wish to simulate various

aspects of this FGM such as its elastic properties (i.e. Young’s modulus or Poisson’s ratio), the physical

distribution of different phases, or perhaps the mechanical strength. In all of these cases, the field to be

simulated would be decidedly non-Gaussian, by definition. Elastic properties (aside from some very special

cases) are always non-negative, and so by definition can not be Gaussian. Similar logic can be applied to the

mechanical strength, which also is inherently non-negative. For a two-phase material, such as the Al-HDPE

CHAPTER 7. SIMULATION OF NON-STATIONARY AND NON-GAUSSIAN STOCHASTIC
PROCESSES 85

FGM shown in Figure 6.2, the phase distribution would follow a binary distribution.

Just the same as with non-stationarity, it should be plain to see that careful consideration must be given

to the non-Gaussianity when simulating sample realizations. If not, then the simulated realizations will be

all but useless for practical purposes, as they will follow a completely incorrect distribution. The notion

of a translation process was introduced in Section 5.4. In particular, recall that a stationary and Gaussian

process, Y (t), can be “mapped” to a stationary non-Gaussian process, X (t), through the following [92]:

X (t) = F−1
NG {FG [Y (t)]} (7.1)

where F (·) denotes the cumulative distribution function (CDF), with subscripts NG and G denoting non-

Gaussian and Gaussian, respectively, and superscript −1 denoting the inverse. Recall, also, that this mapping

was extended to non-stationary processes by Ferrante et. al. [98], as:

X (t) = F−1
NG {FG [Y (t) , t] , t} (7.2)

in which case the CDF’s may vary temporally.

Through the mappings of Eqns. (7.1) and (7.2) the simulation of non-Gaussian processes, either stationary

or non-stationary, is straightforward conceptually. Recall, that sample functions generated through the SRM

are asymptotically Gaussian due to the central limit theorem (Section 5.2). Therefore, underlying Gaussian

samples can be generated with the SRM, and then mapped to a non-Gaussian image through the Eqns.

(7.1) and (7.2). Thus, the challenge is in determining the underlying Gaussian process for which to simulate

samples. Put differently, the correct Gaussian ES/SDF is needed, such that after the translation mapping

the process possesses both the correct distribution and spectral characteristics/correlation structure. The

literature is rich with methodologies for determining this underlying Gaussian process for the stationary

case. In the non-stationary case, there exists an approximate technique by Shields et. al. [99], but otherwise

has not been solved up to this point. In this chapter, a robust and “exact” methodology will be developed

for determining the underlying non-stationary Gaussian process for simulating non-stationary and non-

Gaussian stochastic processes. Robust because it is effective regardless of the degree of non-Gaussianity

or non-stationarity, and exact because it makes no approximations. This is distinct from analytical, as the

procedure is still numerical.

This chapter is organized as follows. Section 7.2 will first review the existing techniques for determining

the underlying Gaussian process for simulation of stationary non-Gaussian processes in the SRM. Then,

in Section 7.3 a novel methodology will be developed for determining the underlying Gaussian process for

non-stationary and non-Gaussian processes. Numerical examples of this methodology will be carried out in

Section 7.4.

CHAPTER 7. SIMULATION OF NON-STATIONARY AND NON-GAUSSIAN STOCHASTIC
PROCESSES 86

7.2 Review of methodologies for simulating stationary non-Gaussian

processes

It has so far been established that in order to simulate a stationary and non-Gaussian process, the underlying

Gaussian process is generated through the SRM and then mapped to the non-Gaussian image through Eqn.

(7.1). In order to simulate this underlying Gaussian process, though, the underlying Gaussian Spectral

Density Function (SDF) is necessary for use in the SRM. While there is no formal and direct relationship

between the non-Gaussian and Gaussian spectra, Grigoriu [92] showed that the ACFs of the two processes

are related as:

RNG (τ) =

∞∫
−∞

∞∫
−∞

F−1
NG {FG [x1]} · F−1

NG {FG [x2]} × Φ {x1, x2; ρG (τ)} dx1dx2 (7.3)

where Φ {x1, x2, ρG (τ)} is the joint Gaussian probability density (Eqn. (5.20)), and ρ (τ) is the normalized

Gaussian correlation (Eqn. (5.24)).

This transformation is always possible in a forward direction, i.e. from Gaussian to non-Gaussian. For

an arbitrary pair of RNG and FNG, the reverse (NG → G) is not always possible. When this reverse

transformation is not possible, RNG and FNG are called “incompatible” according to translation theory. In

the former case, determining the underlying Gaussian process is trivial, as there is an analytical inversion to

Eqn. (7.3). In the latter case, though, the underlying Gaussian process can only be determined numerically.

Several approximate techniques exist to determine the underlying Gaussian process [93–97]. All of these

methods are iterative techniques which aim to determine the underlying stationary and Gaussian SDF given

a stationary and non-Gaussian process (either SDF or ACF, with corresponding CDF). From these methods,

there is one distinct difference between [93–96] and [97]. The former four methods all involve generating

sample functions and estimating the ensemble SDF, while Shields et. al. [97] proposed a simple and efficient

iterative technique making use of Eqn. (7.3) and the Wiener-Khinchin transform (Eqn. (5.2)) to compute

the SDF directly without the need to generate any sample functions.

As the algorithm in Shields et. al. [97] will serve as a basis for the algorithm developed in Section

7.3, a brief overview is given here. It is assumed that an incompatible pair of target SDF, STargNG (ω), and

non-Gaussian CDF, FNG, are given to start from. The algorithm is shown in Figure 7.1, and works as

follows:

1. Make an initial guess for the Gaussian SDF, typically this is taken to be S
(0)
G (ω) = STargNG (ω).

2. From S
(k)
G (ω), compute the associated Gaussian ACF, R

(k)
G (τ), using the Wiener-Khinchin transform

of Eqn. (5.2b).

CHAPTER 7. SIMULATION OF NON-STATIONARY AND NON-GAUSSIAN STOCHASTIC
PROCESSES 87

3. From R
(k)
G (τ), compute the associated non-Gaussian ACF, R

(k)
NG (τ), using Grigoriu’s mapping in Eqn.

(7.3).

4. From R
(k)
NG (τ), compute the associated non-Gaussian SDF, SCompNG (ω), using the Wiener-Khinchin

transform of Eqn. (5.2a).

5. If the relative difference between the computed and target SDFs is above the tolerance, then the guess

for the Gaussian SDF is updated as:

S
(k+1)
G (ω) =

[
STargNG (ω)

SCompNG (ω)

]β
S

(k)
G (ω) (7.4)

where β is some parameter to control and optimize convergence. It is suggested to use a value in the

range 1.3 ≤ β ≤ 1.5 [97].

6. Repeat steps 2 through 5 until convergence.

In [97] this methodology was shown to be significantly more efficient than the former methods, quite accurate,

and straightforward to implement.

CHAPTER 7. SIMULATION OF NON-STATIONARY AND NON-GAUSSIAN STOCHASTIC
PROCESSES 88

Input: SNG, FNG

Initialize Gaussian SDF: SG

Compute Gaussian ACF, RG,
using Eqn. (5.2b) (Wiener-Khinchin)

Compute non-Gaussian ACF, RNG,
using Eqn. (7.3) (Grigoriu)

Compute non-Gaussian SDF, SNG,
using Eqn. (5.2a) (Wiener-Khinchin)

Iterations
Finished?

YES Output SDF:
SG

NO

Update Gaussian SDF, SG,
using Eqn. (7.4) (Shields)

Figure 7.1: Algorithm for determining underlying Gaussian SDF for a stationary and non-Gaussian stochastic

process from Shields et. al. [97]

CHAPTER 7. SIMULATION OF NON-STATIONARY AND NON-GAUSSIAN STOCHASTIC
PROCESSES 89

7.3 Proposed methodology for simulating non-stationary and non-

Gaussian processes

Although the literature is relatively rich for the stationary case, for simulating non-stationary and non-

Gaussian processes with the SRM, there is almost no work published. Generation of sample functions works

in much the same way as in the stationary case described above. An underlying Gaussian and non-stationary

process is first generated, and then mapped through Eqn. (7.2) to the non-Gaussian image. Once again the

issue is determining the underlying Gaussian process.

Recall from Chapter 5 that Ferrante et. al. extended Eqn. (7.3) to account for non-stationarity as [98]:

RNG (t, τ) =

∞∫
−∞

∞∫
−∞

F−1
NG {FG [x1, t] , t} · F−1

NG {FG [x2, t+ τ] , t+ τ} × Φ {x1, x2; ρG (t, τ)} dx1dx2 (7.5)

In this case, once again, the inverse transformation is not always possible. However, there exists no robust

methodology for determining the underlying Gaussian Evolutionary Spectrum (ES) for a given incompatible

pair of non-Gaussian ES, SNG (t, ω), and CDF, FNG. The only method in the literature currently is an

approximate technique developed by Shields and Deodatis [99]. In [99], the non-Gaussian ES is estimated

for a given Gaussian ES through a series of approximations. Namely, the process is treated as locally

stationary and a so-called pseudo-autocorrelation is found, conceptually similar to the pseudo-spectrum

in the previous chapter (in fact, the pseudo-autocorrelation was the inspiration for the pseudo-spectrum).

This pseudo-autocorrelation is then translated to the non-Gaussian image, and the non-Gaussian ES is

approximated from this ACF. This estimated ES is used to update the guess for the Gaussian ES, similar to

Eqn. (7.4). Because of these approximations, this methodology is only accurate for weakly non-stationary

and weakly non-Gaussian processes. It is not accurate in general cases.

It is with this motivation that a method is proposed to determine the underlying Gaussian ES for

prescribed incompatible pair of non-stationary and non-Gaussian ES/ACF and CDF. Specifically, due to the

methodology presented in the previous chapter allowing for the inversion of a prescribed ACF to its ES, a

direct extension of the stationary and non-Gaussian algorithm from [97], and described in Section 7.2, was

made possible. This extension is formally outlined below, and numerical examples are carried out in Section

7.4.

The algorithm is shown in Figure 7.2. It is a direct extension of Figure 7.1 to non-stationarity. However,

before the developments of Chapter 6, the step in the dashed box was not possible. In this particular step,

the non-Gaussian ES is computed from the associated non-Gaussian ACF. As was discussed extensively in

Chapter 6, this inversion was not known to exist, let alone possible to compute previously.

The algorithm works as follows, starting from an incompatible pair of target non-Gaussian ES, STargNG (t, ω),

and CDF, FNG:

CHAPTER 7. SIMULATION OF NON-STATIONARY AND NON-GAUSSIAN STOCHASTIC
PROCESSES 90

Input: SNG, FNG

Initialize Gaussian ES: SG

Compute Gaussian ACF, RG,
using Eqn. (6.2) (Priestley)

Compute non-Gaussian ACF, RNG,
using Eqn. (7.5) (Ferrante)

Compute non-Gaussian ES, SNG,
using MGM

Iterations
Finished?

YES Output ES:
SG

NO

Update Gaussian ES, SG,
using Eqn. (7.7)

Figure 7.2: Proposed methodology for computing the underlying ES for a non-stationary and non-Gaussian

process. The MGM of Chapter 6 made the step highlighted by a dashed border possible.

CHAPTER 7. SIMULATION OF NON-STATIONARY AND NON-GAUSSIAN STOCHASTIC
PROCESSES 91

1. Make an initial guess for the Gaussian ES, typically this is taken as: S
(0)
G (t, ω) = STargNG (t, ω).

2. Compute the Gaussian ACF R
(k)
G (t, τ) from the Gaussian ES, S

(k)
G (t, ω) using Eqn. (6.2).

3. Map the Gaussian ACF, R
(k)
G (t, τ) to the non-Gaussian ACF, RCNG (t, ω) using Eqn. (7.5).

4. Compute the non-Gaussian ES SCNG (t, ω) from RCNG (t, ω) using the methods developed and discussed

in Chapter 6

5. Calculate the relative difference in the ES as:

εk =

∥∥∥STargNG − SCNG
∥∥∥∥∥∥STargNG

∥∥∥ × 100% (7.6)

where the norm ‖·‖ is defined in Eqn. (6.5).

6. If the difference, εk, is greater then some tolerance, update the Gaussian ES as:

S
(k+1)
G (t, ω) =

[
STargNG (t, ω)

SCNG (t, ω)

]β
S

(k)
G (t, ω) (7.7)

and return to step 2. Otherwise, output S
(k)
G .

The step that requires the greatest computational effort is # 4, or the dashed box in Figure 7.2, especially

if the pseudo-spectrum is not a good enough representation of the ES and perturbations (i.e. the MGM)

are required. Furthermore, because of the updating scheme in Eqn. (7.7), small discrepancies in areas of

low power have the tendency to be magnified. Take, for example, if at some location (t∗, ω∗) in the domain,

the process has essentially died down to zero power. Then, STargNG (t∗, ω∗) ≈ 0, for all intents and purposes.

Numerically, though, the spectra will just be a small number. If the target ES has a value on the order

of, say, 10−30, and the computed has a value on the order of, say, 10−10, numerically, they would both be

considered “close enough” to zero on their own. However, taken together in Eqn. (7.7), their ratio would be

on the order of 1020. So, the value of the Gaussian ES at this point would quickly blow up.

In that regard, it is beneficial to “clean up” some of this noise, particularly in the areas of low power.

A smoothing filter can be used to do this. In this work, a Savitzky-Golay [117] smoothing filter was used

between steps # 4 and 5. The Savitzky-Golay filter uses local polynomial regression to smooth digital signals.

It is advantageous over other techniques because it has the tendency to preserve relative maxima, minima,

and widths. The Fortran subroutine from Press’ Numerical Recipes text [118], as well as the MATLAB

function sgolayfilt [42] can be used. In the examples shown in Section 7.4, the former was used.

CHAPTER 7. SIMULATION OF NON-STATIONARY AND NON-GAUSSIAN STOCHASTIC
PROCESSES 92

7.4 Numerical examples

In this section, two numerical examples are carried out for the non-stationary and non-Gaussian algorithm

described in the previous section. Specifically, the Kanai-Tajimi spectrum described in Eqn. (6.9) and shown

in Figure (6.18(a)) was used. A slight variation was used such that S (t = 0, ω) 6= 0. This proved necessary

to avoid normalization issues in the ACF, in Eqn. (5.21). Two separate non-Gaussian distributions were

then used.

7.4.1 Log-normal distribution

The first distribution used was a log-normal distribution. The log-normal Probability Density Function

(PDF) is defined as:

f (x) =
1√

2πσGx̄
exp

[
− (ln x̄− µG)

2

2σ2
G

]
(7.8a)

σ2
G = ln

(
1 +

σ

µ̄2

)
(7.8b)

µG = ln µ̄− σ2
G

2
(7.8c)

x̄ = x− µ̄ (7.8d)

where µG and σG are the mean and standard deviation of the associated Gaussian, or normal, distribution,

µ̄ is the temporary mean used to shift the log-normal distribution in order to create a zero-mean process,

and σ is the standard deviation of the log-normal distribution. This log-normal distribution has a support

region of x ∈ (−µ̄,∞), and the following properties:

• Mean:

µ̄ = eµG+
σ2
G
2 (7.9)

• Variance:

Var = σ2 =
(
eσ

2
G − 1

)
e2µG+σ2

G (7.10)

• Skewness:

γ =
(
eσ

2
G + 2

)√
eσ

2
G − 1 (7.11)

• Kurtosis:

Kurt = e4σ2
G + 2e3σ2

G + 3e2σ2
G − 6 (7.12)

The CDF of the log-normal distribution is:

F (x) = Φ

(
lnx− µG

σG

)
(7.13)

CHAPTER 7. SIMULATION OF NON-STATIONARY AND NON-GAUSSIAN STOCHASTIC
PROCESSES 93

0 5 10 15 20
0

1000

2000

σ
µ

0 5 10 15 20
0

2

4

6

8

σ
G

µ
G

(a) Temporal variation of log-normal distribution param-

eters. The top plot depicts the actual standard deviation

of the log-normal process, σ and the shifted mean, µ̄. The

bottom plot depicts the parameters µG and σG, which are

the mean and standard deviation of the associated normal

distribution.

−2000 −1000 0 1000 2000
0

5

x 10
−4 t = 5

−2000 −1000 0 1000 2000
0

0.5

1
x 10

−3 t = 10

−100 −50 0 50 100
0

0.02

0.04
t = 15

(b) Comparison of normal and log-normal distributions.

Both distributions have identical variances, and zero mean.

The dashed line in each plot shows the normal distribu-

tion, and the solid line shows the log-normal. Three time

instances showing different variances are shown.

Figure 7.3: Log-normal distribution

where Φ (·) is the standard normal distribution. The CDF and inverse CDF for log-normal distributions

were calculated using the PROB library for Fortran [119].

Of course, for a non-stationary process, all of these parameters can vary in time. In the example considered

here, µ̄ was held constant, but the variance, σ2, varied in accordance with the prescribed ACF. For a zero-

mean process, R (t, τ = 0) = σ2 (t). The ‘shift,’ µ̄ was chosen to be 4 times the temporal average of the

standard deviation, or:

µ̄ = 4× 1

T

T∫
0

σ (t) dt = 4× 1

Nt

Nt∑
j=1

σj (7.14)

where, σj = σ (tj). The remaining parameters were therefore calculated according to Eqn. (7.8). All of

the parameters describing the log-normal distribution are plotted in Figure 7.3(a). Namely, µ̄, σ, σG, and

µG are plotted. Figure 7.3(b) then shows comparisons of the log-normal distribution and its comparable

Gaussian distribution at three time instances. Note, that this comparable Gaussian is not N (µG, σG), but

rather N (0, σ) such that the two distributions have identical mean and variance.

The results for the Kanai-Tajimi ES with this log-normal distribution are shown in Figures 7.4 and 7.5.

After 20 iterations, the difference between the compatible and incompatible ES is just under 8%. Recall,

though, that these two should not match each other perfectly. The target ES in this case was so-called

incompatible according to translation theory. Thus, we were looking for the underlying Gaussian ES which

CHAPTER 7. SIMULATION OF NON-STATIONARY AND NON-GAUSSIAN STOCHASTIC
PROCESSES 94

(a) Incompatible non-Gaussian ES

(b) Compatible non-Gaussian ES (c) Underlying Gaussian ES

Figure 7.4: Log-normal Kanai-Tajimi process: evolutionary spectra

when mapped to the non-Gaussian image, matches the target as closely as possible. They will not match

exactly, though, since the target was incompatible to begin with. The target, incompatible ES is shown in

Figure 7.4(a). The computed, compatible non-Gaussian ES and underlying Gaussian are shown in Figures

7.4(b) and 7.4(c), respectively. A sample slice comparing the three ES is shown in Figure 7.5(a), and a

sample slice showing the translated ACF is shown in Figure 7.5(b). Finally, a plot of the convergence of the

algorithm is shown in Figure 7.5(c).

Some small differences are evident in the spectra, but there is definitely clear distortion in the correlation

structure - due to the translation mapping of Eqn. (7.5). If we plot the (normalized) Gaussian ACF vs.

the (normalized) log-normal ACF, we can quantify this distortion. This is plotted in Figure (7.6). The red

dashed line depicts the “no distortion” case, where ρG = ρNG. The points plotted are the computed values

of (ρNG, ρG). Deviations from the dashed line indicates correlation distortion.

CHAPTER 7. SIMULATION OF NON-STATIONARY AND NON-GAUSSIAN STOCHASTIC
PROCESSES 95

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

ω (rad/s)

S
(t

,ω
)

Incompatible NG
Compatible NG
Underlying G

(a) Sample slice of ES; t = 10 s.

−2 −1 0 1 2
−2

−1

0

1

2

3

4

5
x 10

4

τ (sec.)

R
(t

,τ
)

Non−Gaussian
Gaussian

(b) Sample slice of ACF; t = 10 s.

0 5 10 15 20
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Iteration

R
el

at
iv

e
D

iff
er

en
ce

(c) Differences vs. iterations

Figure 7.5: Log-normal Kanai-Tajimi convergence

CHAPTER 7. SIMULATION OF NON-STATIONARY AND NON-GAUSSIAN STOCHASTIC
PROCESSES 96

−0.5 0 0.5 1
−0.5

0

0.5

1

ρ
NG

ρ G

Figure 7.6: Distortion of the correlation structure for the log-normal Kanai-Tajimi process. The red dashed

line depicts the “no distortion” case, where ρG = ρNG. The points plotted are the computed values of

(ρNG, ρG).

7.4.2 Uniform distribution

The second example considered uses the same ES, but with a uniform distribution instead. The uniform

PDF is defined as:

f (x) =

 1
b−a for a ≤ x ≤ b

0 for x < a or x > b
(7.15)

where a and b are the lower and upper bounds of the domain. The uniform distribution has the following

properties:

• Mean:

µ =
1

2
(a+ b) (7.16)

Thus, for a zero-mean uniform distribution, a = −b.

• Variance:

σ2 =
1

12
(b− a)

2
(7.17)

• Skewness: γ = 0

• Kurtosis: − 6
5

The CDF for the uniform distribution is:

F (x) =

0 for x < a

x−a
b−a for a ≤ x < b

1 for x ≥ b

(7.18)

CHAPTER 7. SIMULATION OF NON-STATIONARY AND NON-GAUSSIAN STOCHASTIC
PROCESSES 97

0 5 10 15 20
−2000

−1500

−1000

−500

0

500

1000

1500

2000

t (sec.)

(a) Temporal variation of uniform distribution parameters.

The plot shows the variation with respect to time of the

standard deviation, σ, of the uniform distribution, as well

as its upper, b, and lower, a, limits.

−2000 −1000 0 1000 2000
0

5
x 10

−4 t = 5

−2000 −1000 0 1000 2000
0

0.5

1
x 10

−3 t = 10

−100 −50 0 50 100
0

0.02

0.04
t = 15

(b) Comparison of normal and uniform distributions. Both

distributions have identical variances, and zero mean. The

dashed line in each plot shows the normal distribution, and

the solid line shows the uniform. Three time instances

showing different variances are shown.

Figure 7.7: Uniform distribution

Unlike the log-normal distribution, this is quite straightforward to calculate numerically. Likewise, the

inverse CDF is simply:

x = F (x) (b− a) + a (7.19)

Though, this is only defined for 0 ≤ F (x) ≤ 1.

From the above equations, and the restriction that we have a zero-mean process, it is clear there is only

one undefined parameter: a = −b. This parameter varies in time, and was chosen such that the variance

matches the prescribed variance. Therefore, b =
√

3σ and a = −
√

3σ. These parameters are plotted

along with the standard deviation in Figure 7.7(a). Figure 7.7(b) then shows comparisons of the uniform

distribution and its analogous Gaussian distribution at three time instances.

The results for the Kanai-Tajimi ES with this uniform distribution are shown in Figures 7.8 and 7.9.

After 20 iterations, the difference between the compatible and incompatible ES is about 4.75%. The target,

incompatible ES is shown in Figure 7.8(a). The computed, compatible non-Gaussian ES and underlying

Gaussian are shown in Figures 7.8(b) and 7.8(c), respectively. A sample slice comparing the three ES is

shown in Figure 7.9(a), and a sample slice showing the translated ACF is shown in Figure 7.9(b). Finally, a

plot of the convergence of the algorithm is shown in Figure 7.9(c).

In contrast to the log-normal case, the uniform distribution appears to create very little distortion. We

once again plot the correlation distortion in Figure 7.10. As would be expected from Figure 7.9(b), the

correlation distortion plot of Figure 7.10 shows very little distortion. Even though the uniform distributions

CHAPTER 7. SIMULATION OF NON-STATIONARY AND NON-GAUSSIAN STOCHASTIC
PROCESSES 98

(a) Incompatible non-Gaussian ES

(b) Compatible non-Gaussian ES (c) Underlying Gaussian ES

Figure 7.8: Uniform Kanai-Tajimi process: evolutionary spectra

CHAPTER 7. SIMULATION OF NON-STATIONARY AND NON-GAUSSIAN STOCHASTIC
PROCESSES 99

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

ω (rad/s)

S
(t

,ω
)

Incompatible NG
Compatible NG
Underlying G

(a) Sample slice of ES; t = 10 s.

−2 −1 0 1 2
−2

−1

0

1

2

3

4

5
x 10

4

τ (sec.)

R
(t

,τ
)

Non−Gaussian
Gaussian

(b) Sample slice of ACF; t = 10 s.

0 5 10 15 20
0.01

0.015

0.02

0.025

0.03

0.035

0.04

Iteration

R
el

at
iv

e
D

iff
er

en
ce

(c) Differences vs. iterations

Figure 7.9: Uniform Kanai-Tajimi convergence

CHAPTER 7. SIMULATION OF NON-STATIONARY AND NON-GAUSSIAN STOCHASTIC
PROCESSES 100

−0.5 0 0.5 1
−0.5

0

0.5

1

ρ
NG

ρ G

Figure 7.10: Distortion of the correlation structure for the uniformly distributed Kanai-Tajimi process. The

red dashed line depicts the “no distortion” case, where ρG = ρNG. The points plotted are the computed

values of (ρNG, ρG).

shown in Figure 7.7(b) are strongly non-Gaussian, there is still little distortion to the correlation structure

when mapped as a translation process.

CHAPTER 8. SIMULATION OF WIND VELOCITIES ALONG LONG-SPAN STRUCTURES 101

Chapter 8

Simulation of wind velocities along

long-span structures

8.1 Introduction & motivation

For tall buildings and long bridges alike, wind loads are often the governing design loads. Especially in the

case of long-span bridges, the dynamic behavior under wind loading is likely to be the governing design

condition. Consider the well known case of the Tacoma-Narrows bridge, which failed spectacularly under

dynamic wind loading (Figure 8.1) - the aeroelastic flutter that eventually lead to its failure [120] would never

be accounted for in a static analysis. In order to account for the randomness in the wind loading, this is often

considered probabilistically [121]. To that end, Monte-Carlo simulation is typically used in practice. Sample

realizations of wind velocity fields are generated, and the response of the bridge is calculated. Ensemble

statistics can then be calculated from the different responses.

The most widely used method, and standard practice for generating wind velocities along the length of a

bridge is to model the wind velocities as a multi-variate (m-v) process. Simulation of sample realizations of

m-v processes within the Spectral Representation Method (SRM) was discussed in Chapter 5, Section 5.5.

Recall, that the Cross-Spectral Density Matrix (CSDM), S (ω) is decomposed into S (ω) = H (ω) HT∗ (ω)

using Cholesky’s decomposition [63, 82, 108]. Alternatively, a modal decomposition can be used [122–124].

It is well known, however, that for both modal and Cholesky decompositions, that there becomes an issue

when the number of components in the vector process become large (on the order of 20-30 points). Due

to the fact that neighboring points are highly correlated with each other, as the CSDM grows, it becomes

increasingly closer to singular, and these decompositions break down.

To that end, recent research efforts have centered on approximate techniques to simplify this decom-

CHAPTER 8. SIMULATION OF WIND VELOCITIES ALONG LONG-SPAN STRUCTURES 102

(a) Vibration of Tacoma Narrows bridge (b) Eventual collapse of Tacoma Narrows bridge

Figure 8.1: The Tacoma Narrows bridge, a well known and often used example of resonance failure due

to wind loading. In fact, the failure was due to aeroelastic flutter [120]. In any case, dynamic analysis

of the wind loading is necessary to avoid such failures. Images sources: (a) http://en.wikipedia.org/

wiki/File:Image-Tacoma_Narrows_Bridge1.gif (b) http://media-1.web.britannica.com/eb-media/

21/59921-004-9B396A7B.jpg

position. Some examples of this include the following non-exhaustive list. Yang, Chang, and Chang [125]

developed an explicit form for the Cholesky decomposition under certain assumptions. In [126], Cao et. al.

developed algebraic expressions to explicitly express the Cholesky decomposition. Li et. al. [127] proposed

a simplified formulation, which breaks the n−variate vector process, with n correlated components, into

smaller sized independent processes. These smaller vector processes (or even univariate processes) avoid the

issues of large dimensionality, and are more computationally efficient. In [128], Ding et. al. reduce the com-

putational effort by limiting the number of Cholesky decompositions necessary, however, the decomposition

itself is not circumvented. For seismic applications, rather than wind, Gao et. al. [129] proposed the use

of the lagged coherency matrix rather than the CSDM, since it is smoothly varying in frequency, and can

then be coupled with interpolation methods to reduce the need for Cholesky decompositions. All of these

methods, however, involve approximations to some degree. Furthermore, majority of these methods remain

quite computationally intensive, with many decompositions necessary for each simulation.

In this chapter, an alternative formulation will be presented in which a virtually infinite number of spatial

points can be simulated exactly. This is achieved by modeling the wind velocities as a continuous ‘wave’ in

space-time rather than a discrete vector in space and continuous in time. Futhermore, the sample generation

is comparatively efficient due to use of the Fast Fourier Transform (FFT). The chapter is organized as

follows. Section 8.2 derives the frequency wavenumber spectrum used to describe the stochastic wave, and

its relationship to the conventional m-v description of wind velocities. Section 8.3 will then expand upon

http://en.wikipedia.org/wiki/File:Image-Tacoma_Narrows_Bridge1.gif
http://en.wikipedia.org/wiki/File:Image-Tacoma_Narrows_Bridge1.gif
http://media-1.web.britannica.com/eb-media/21/59921-004-9B396A7B.jpg
http://media-1.web.britannica.com/eb-media/21/59921-004-9B396A7B.jpg

CHAPTER 8. SIMULATION OF WIND VELOCITIES ALONG LONG-SPAN STRUCTURES 103

the discussion of Section 5.6.2 and give a detailed discussion of the numerical implementation of simulating

stochastic waves, specifically for the wind velocity problem. Finally, Section 8.4 will carry out a numerical

example to show the proposed formulation’s validity, effectiveness, and accuracy. All of the theory and

examples in this chapter assume stationarity and homogeneity.

8.2 Modeling wind as a stochastic wave

8.2.1 Derivation of frequency-wavenumber (F-K) spectrum

In this section, we propose the use of the frequency-wavenumber (F-K) spectrum, S (ω, κ), to model the

wind velocities as a stochastic “wave,” continuous in both space and time. This allows the wind velocities

to be modeled at a virtualy infinite number of points along the length of the structure. The Cross-Spectral

Density Matrix (CSDM), or auto-spectrum and coherence model, can be transformed to the F-K spectrum

through the following integral expression [100].

S (ω, κ) =
1

2π

∞∫
−∞

S (ω) · γ (ξ, ω) eiκξdξ (8.1)

where S (ω) is the auto-spectrum, γ (ξ, ω) is the coherence model, ξ is the spatial separation distance, ω

is angular frequency, and κ is wavenumber. When modeling wind velocities, the Kaimal spectrum [101]

is typically chosen for the auto-spectrum, S (ω), and the Davenport model [102] is typically used for the

coherence function, γ (ξ, ω). The Kaimal spectrum is defined (using parameter definitions from [130]) as

[101]:

SK (ω) =
1

2
· 200

2π
· u2
∗ ·

z

U (z)
· 1[

1 + 50 ωz
2πU(z)

] 5
3

(8.2)

where z is the height above ground, U (z) is the average wind velocity at height z, and u∗ is the velocity

friction component defined as:

u∗ =
kU (z)

ln
(
z
z0

) (8.3)

where k is Von Karman’s constant (k = 0.4), and z0 is a parameter describing the ground roughness. The

Davenport coherence function is defined as [102]:

γ (ξ, ω) = e−
λωξ

2πU(z) (8.4)

Combining Eqns. (8.1), (8.2), and (8.4), the F-K spectrum, S (ω, κ), can be expressed as:

S (ω, κ) =
1

2
· 200

2π
· u2
∗ ·

z

U (z)
· 1[

1 + 50 ωz
2πU(z)

] 5
3︸ ︷︷ ︸

Kaimal spectrum

×

 1

2π

∞∫
−∞

e−
λωξ

2πU(z) eiκξdξ

︸ ︷︷ ︸

Fourier integral of Davenport coherence

(8.5)

CHAPTER 8. SIMULATION OF WIND VELOCITIES ALONG LONG-SPAN STRUCTURES 104

The Fourier integral in the second term has an known analytical solution [131]. Therefore, Eqn. (8.5)

simplifies to:

S (ω, κ) =
1

2
· 200

2π
· u2
∗ ·

z

U (z)
· 1[

1 + 50 ωz
2πU(z)

] 5
3

×

(

λω
πU(z)

)
κ2 +

(
λω

2πU(z)

)2

 (8.6)

The F-K spectrum in Eqn. (8.6) is a generalized, closed form, expression for modeling wind velocity

fields in space-time as a stochastic wave. Sample realizations can be generated using the SRM formulation

in Section 5.6.2, and that which will be discussed later in Section 8.3.

8.2.2 Verification of F-K spectrum

In order for the theory developed above, and the F-K spectrum of Eqn. (8.6), to be valid, the spectral

density S (ω) should be the originally prescribed Kaimal spectrum, SK (ω), at any point in the spatial

domain. Newland [132] showed that for a multi-dimensional process, any dimension can be integrated out

to give the uni-variate spectral density in the remaining dimension(s). Thus, for the two dimensional case

of the wave being considered in this chapter:

S (ω) =
1

2π

∞∫
−∞

S (ω, κ) dκ (8.7)

Here, the scaling of 1
2π is added to be consistent with definitions used throughout this thesis. For simplicity,

it is convenient to define a quantity ρ (ω), such the F-K spectrum of Eqn. (8.6) can be rewritten as:

S (ω, κ) = SK (ω)×

 ρ (ω)

κ2 +
(
ρ(ω)

2

)2

 (8.8)

where the function ρ (ω) is defined as:

ρ (ω) =
λω

πU (z)
(8.9)

Substituting Eqn. (8.8) into Eqn. (8.7), and solving:

S (ω) =
1

2π

∞∫
−∞

SK (ω)×

 ρ (ω)

κ2 +
(
ρ(ω)

2

)2

 dκ (8.10a)

=
1

2π
SK (ω) ρ (ω)

∞∫
−∞

1

κ2 +
(
ρ(ω)

2

)2 dκ (8.10b)

=
1

2π
SK (ω) ρ (ω)× 2π

√
1

ρ2 (ω)
(8.10c)

= SK (ω) (8.10d)

CHAPTER 8. SIMULATION OF WIND VELOCITIES ALONG LONG-SPAN STRUCTURES 105

Therefore, we can see that at any point in the domain the auto-spectral characteristics are intact, and still

reflect the prescribed Kaimal spectrum.

It is also required that the coherence is retained throughout the spatial domain, however this consider-

ably non-trivial to explore analytically. In Section 8.4, the auto-spectral and coherence characeteristics of

generated samples will be verified through numerical tests.

8.3 Simulation of wind velocities as a wave

In order to simulate sample realizations of a stochastic wave the Spectral Representation Method (SRM) is

used once again. The basic formulation for simulating stochastic waves in the SRM was given in Chapter 5,

Section 5.6.2. However, much better results were found if a frequency shifting method was adopted, similar

to that described by Zerva [79]. In the standard SRM, the frequencies are discretized such that:

ωj = j∆ω (8.11)

However, Zerva showed it was advantageous to shift the frequencies such that:

ωj =

(
j +

1

2

)
∆ω (8.12)

There are several benefits to this formulation, as discussed in [79]. Worth noting are its (a) increased

ensemble convergence rate, (b) simplified adaption to FFT, and (c) preservation of ergodicity properties.

Specific to this example, note that there is a singularity at S (ω = 0, κ = 0) in Eqn. (8.6). This singularity

is avoided by using this discretization, as the value for S
(
ω = ∆ω

2 , κ = ∆κ
2

)
is finite. In the case of a wave,

both frequency, ω, and wave-number, κ, are discretized in this matter. Using this discretization, the SRM

of Eqn. (5.35) can be used directly.

Use of the FFT can dramatically increase efficiency of simulation. A comparison between FFT and

direct-summation is carried out in Appendix C. In order to make use of the FFT, Eqn. (5.35) is rearranged

as:

X (x, t) = Re

[
Nκ−1∑
l=0

Nω−1∑
m=0

{
B

(1)
lm exp [iωmt+ iκlx] +B

(2)
lm exp [−iωmt+ iκlx]

}]
(8.13)

where, Re [·] denotes the real part, and:

B
(n)
lm = 2

√
S (ωm, κn) ·∆ω∆κeiφ

(n)
lm (8.14)

Using the notation from Chapter 5, Eqn. (8.13) can be re-written as a series of FFTs:

X (x, t) = Re
{

FFTκ

[
FFTω

(
B(1)

)]
+ FFTκ

[
IFFTω

(
B(2)

)]}
(8.15)

where FFT (·) and IFFT (·) denote the Fast Fourier Transform and Inverse Fast Fourier Transform, respec-

tively, and subscripts ω and κ denote along which dimension the (I)FFT is computed. Appendix C gives

CHAPTER 8. SIMULATION OF WIND VELOCITIES ALONG LONG-SPAN STRUCTURES 106

Figure 8.2: Simulation of wind velocities as a wave: The top image shows the simulated wave sample, and

the bottom shows the individual “slices” that make up the time histories at each point of interest along the

bridge

a more detailed explanation for the implementation of this simulation, as well as some example MATLAB

code.

Once the wave is simulated, individual points in space can be picked out, as necessary or desired. As a

conceptual example, consider a bridge with a 1,000 meter main span. The designer builds a FEM model of

the bridge with 10 meter segments representing the deck, and thus would like wind velocity time histories

for each of the 100 nodes along the span. Using the conventional multi-variate methods, this would be

impossible. In fact, those methods break down after about 20-30 points. Thus, the wind ‘field’ is modeled

as a continuous wave as described above. With the continuous wave sample, the individual time histories

at the 100 locations are simply the “slices” where x is held constant, for each of the desired xi. This is

illustrated in Figure 8.2. The continuous wave is shown on top, with slices highlighted in blue. These slices

are then shown below, as individual time histories.

CHAPTER 8. SIMULATION OF WIND VELOCITIES ALONG LONG-SPAN STRUCTURES 107

8.4 Numerical example

8.4.1 Problem definition

In this section a numerical example is considered, and the generated samples are tested to verify that their

spectral characteristics match the desired auto-spectrum and coherence function. In other words, it is ensured

that the samples simulated via the wave method and multi-variate method are statistically equivalent. The

example considered is a bridge with a 1600 meter long main span. The other parameter definitions are as

follows:

• L = 1600 m

• z = 50.0 m

• z0 = 0.03 m

• U (z) = 40.0 m/s

Although the wind velocities are being modeled as a continuous wave, the wave is still discretized for

numerical simulation. The frequency-wavenumber discretization used is:

• ωu = 8π rad/s

• Nω = 1, 024

• ∆ω = ωu
1023 ≈ 0.0246 rad/s

• Nκ = 16, 368

• κu = 2(Nκ−1)
L π = 16367

800 π ≈ 64.2731 1/m

• ∆κ = 2π
L = π

800 ≈ 0.0039 1/m

Though, due to the frequency shifting paradigm of [79], as described above, the upper-cutoff frequency and

wavenumber are actually shifted to:

• ω′u = ωu + ∆ω
2 ≈ 25.1450 rad/s

• κ′u = κu + ∆κ
2 ≈ 64.2750 1/m

The other discretization parameters were kept the same (i.e. number of points and step sizes in both

frequency and wavenumber). Time and space are therefore discretized as:

• Nt = 2Nω = 2, 048

CHAPTER 8. SIMULATION OF WIND VELOCITIES ALONG LONG-SPAN STRUCTURES 108

• T = 2π
∆ω ≈ 255.6251 s

• ∆t = T
Nt

=
(2π

∆ω)
Nt
≈ 0.1249

• Nx = 2Nκ = 32, 736

• ∆x = L
Nx
≈ 0.0489 m

Before getting into the results, there are some items in the discretization worth noting. First, note that

Nt = 2Nω and Nx = 2Nκ. This is because when using the FFT, the frequency is actually doubled and then

padded with zeros. This is in accordance with the formulation in [112]. Also note, that Nx = 32, 736. This

high Nx is chosen (a) to demonstrate the ability of this method to simulate a very high number of points in

space, and (b) it was found through trial and error that this combination of ku and ∆κ produced the best

results - in terms of avoiding aliasing as well as closeness of fit to target coherence. All N ’s are chosen as

powers of 2 to optimize the FFT efficiency. Finally, the specific relationship between frequency and time,

and that of space and wavenumber, are in accordance with the MATLAB FFT routines, which were used in

this chapter.

8.4.2 Results

In this numerical example, 5,000 samples are generated from the F-K spectrum. At the start of the simulation,

an index was chosen at random. In the results shown here, this index was j = 476, for which xj = 23.2160 m.

The auto-spectrum was estimated at this location in space for each of the 5,000 samples, and the ensemble

average of these auto-spectra is shown in Figure 8.3 compared with the prescribed Kaimal spectrum. For

sample function ‘slice’ X (t, xj), the auto-spectrum can be estimated as:

Sjj (ω) =

∣∣∣∫ T0 X (t, xj) e
−iωt dt

∣∣∣2
2πT

(8.16a)

=

∣∣FFT
(
X(j)

)∣∣2
∆ωM2

ω

(8.16b)

where FFT (·) is using the notation defined earlier, X(j) is the vector such that X
(j)
k = X (tk, xj), and

Mω = 2Nω is the number of points used for the FFT as described above.

The estimated auto-spectrum matches the target very nicely. Aside from very close to ω = 0, the two

are indistinguishable. Thus, as was shown in Eqn. (8.10), the auto-spectral characteristics are retained in

the wave model proposed.

Additionally, the cross-spectra are estimated for Sj(j+50) (ω), Sj(j+100) (ω), and Sj(j+200) (ω). In the

results shown here, these indices correspond to x526 = 25.6598 m, x576 = 28.1036 m, x676 = 32.9912 m.

CHAPTER 8. SIMULATION OF WIND VELOCITIES ALONG LONG-SPAN STRUCTURES 109

0 5 10 15 20 25 30
0

200

400

600

800

1000

ω (rad/s)

S
(ω

)

Estimated
Kaimal

(a) Kaimal vs. estimated spectra

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

ω (rad/s)

S
(ω

)

Estimated
Kaimal

(b) Zoom-in detail

Figure 8.3: Comparison of the estimated spectra from 5000 samples generated from the wave model vs. the

prescribed Kaimal auto-spectrum

Therefore, the separation distances are: ξ476,526 = 2.4438 m, ξ476,576 = 4.8876 m, ξ476,676 = 9.7752 m. For

sample function slices X (t, xj) and X (t, xk), the cross-spectra are estimated as:

Sjk (ω) =

∫ T
0
X (t, xj) e

iωt dt
∫ T

0
X (t, xk) e−iωt dt

2πT
(8.17a)

=
IFFT

(
X(j)

)
FFT

(
X(k)

)
∆ωM2

ω

(8.17b)

From these cross-spectra, the coherence functions are estimated as:

γ (ω, ξjk) =
Sjk (ω)

Sjj (ω)Skk (ω)
(8.18)

These three estimated coherence functions are plotted against the target Davenport coherence models for

those specified separation distances in Figure 8.4. For all three, there is clear agreement between the target

and the estimated. The first two are in fact perfectly aligned with the target. The third, for ξ476,676 = 9.7752

shown in Figure 8.4(c), though, is quite noisy. This is inescapable, unfortunately. Though, it is not an issue

with the simulated sample, but rather the estimation of the coherence and cross-spectra. It is well known

that the coherence is very difficult to capture, and is very sensitive [100], especially as the separation distance

grows. These results are therefore acceptable.

Finally, a sample realization of the simulated wave is shown in Figure 8.5. Figure 8.5(a) shows the entire

wave sample. Figure 8.5(b) then shows sample time histories taken at x = 0 m, x = 800 m, and x = 1600

m. Lastly, Figure 8.5(c) shows zoom-in time histories at x = 23.2160 m and x = 25.6598 m, over-layed on

top of each other, to show the spatial variation between neighboring points in space.

CHAPTER 8. SIMULATION OF WIND VELOCITIES ALONG LONG-SPAN STRUCTURES 110

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

ω (rad/s)

γ(
ω

,ξ
)

Estimated
Davenport

(a) γ (ω, ξ = 2.4438)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

ω (rad/s)

γ(
ω

,ξ
)

Estimated
Davenport

(b) γ (ω, ξ = 4.8876)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

ω (rad/s)

γ(
ω

,ξ
)

Estimated
Davenport

(c) γ (ω, ξ = 9.7752)

Figure 8.4: Comparison of the estimated coherence functions from 5000 samples generated from the wave

model vs. the prescribed Davenport coherence function

CHAPTER 8. SIMULATION OF WIND VELOCITIES ALONG LONG-SPAN STRUCTURES 111

(a) Generated sample wave

0 50 100 150 200 250
−50

0

50

Time (s)

V
el

. (
m

/s
)

0 50 100 150 200 250
−50

0

50

V
el

. (
m

/s
)

Time (s)

0 50 100 150 200 250
−50

0

50

Time (s)

V
el

. (
m

/s
)

(b) Generated time histories. Top: x = 0 m. Middle:

x = 800 m. Bottom: x = 1600 m.

50 60 70 80 90 100
−60

−40

−20

0

20

40

60

V
el

. (
m

/s
)

Time (s)

x = 23.2160
x = 25.6598

(c) Spatial variation between neighboring points

Figure 8.5: Generated sample realization of wind velocities modeled as a stochastic wave

CHAPTER 9. CONCLUSIONS 112

Chapter 9

Conclusions

In conclusion, the main contributions of the work presented in this thesis are summarized below in Section

9.1. Some plans for future work are discussed in Section 9.2.

9.1 Main contributions

9.1.1 Part I: Modeling heterogeneous fields

In Part I of this thesis, modeling heterogeneous materials with arbitrarily shaped inclusions within the

eXtended Finite Element Method was discussed. A novel enrichment function formulation was presented,

which models arbitrarily shaped inclusions and holes using cubic spline interpolation of discrete boundary

points. The formulation was shown to be accurate and efficient for modeling arbitrary inclusions. The

formulation was then applied to nonlinear finite deformation problems in hyperelasticity. The ability of the

proposed formulation to track the evolving boundary geometry through large deformation was demonstrated.

Applications for the proposed formulation are numerous. Consider, for example, problems in which

internal geometry changes with deformation, like the example problems of Chapter 4. The spline method

presented allows for these problems to be modeled without the need for complicated meshes, and without

the need for re-meshing as the geometry deforms. Applications in which re-meshing is to be avoided are

the biggest applications for this method, and the XFEM, such as optimization problems, or Monte-Carlo

methods. In applications such as these, the problem will need to be solved repeatedly, for differing geometries,

and the proposed method will allow for the same mesh (a regular grid) to be used for each solution.

CHAPTER 9. CONCLUSIONS 113

9.1.2 Part II: Simulating random procresses & fields

In part II of this thesis, simulation of random processes and fields was discussed. Chapter 6 first discussed the

simulation of non-stationary processes and inhomogeneous fields. Namely, the inversion of the evolutionary

spectrum from non-stationary auto-correlation functions was examined. The existence and uniqueness of such

an inversion was shown to, likely, exist. This work was among the first such indications of an existence of the

inverse. An efficient methodology for computing this inverse was then presented. The need for this inversion

for simulating non-stationary processes was discussed. More importantly, the necessity of this inversion

within the framework of a translation based simulation of non-stationary and non-Gaussian processes was

shown in Chapter 7. In this chapter, an algorithm for determining the underlying Gaussian evolutionary

spectrum for a prescribed non-stationary and non-Gaussian process and distribution was proposed. Aside

from one approximate technique, the work presented in this chapter was the first algorithm for simulating

non-stationary and non-Gaussian stochastic processes in the spectral representation method. It is the first

robust and theoretically exact method.

Finally, in Chapter 8, a novel approach to simulating wind velocities along long-span structures was

presented. In contrast to the existing methodologies of modeling these wind velocities as stochastic vector

processes, it was proposed to model them as a stochastic wave which is continuous in space and time. This

allows the simulation of wind velocities at a virtually infinite number of points in space, a feat which was

impossible up to this point. Furthermore, the method was shown to be accurate, robust, and more efficient

than previous methodologies.

9.2 Future work

There is a wealth of potential future work, either in extensions of the formulations and methodologies

presented in this thesis, or in applications to particular studies. Some examples are listed below for each

part of the thesis.

9.2.1 Part I: Modeling heterogeneous fields

The spline based enrichment function presented in this part of the thesis has several interesting applications,

and room for future work. For one, extension to 3-dimensions is currently being explored. Fortunately,

the parametric spline formulation that was presented lends itself very naturally to extensions to additional

dimensions. The formulation was shown to work well in finite deformation problems in which internal

geometries deform significantly - this could then be extended to additional constitutive laws, such as plasticity,

for example.

CHAPTER 9. CONCLUSIONS 114

In the author’s opinion, one of the most interesting applications is in optimization problems. Be it for

material design, flaw detection, or any other problem in which the internal geometry needs to be optimized

given some error function. The spline formulation was shown to be very accurate for very few number

of discrete boundary points - this can be likened to very few parameters in an optimization scheme. By

minimizing the number of parameters necessary to solve for, the optimization techniques should prove to be

more efficient.

Another particular route, which the author wishes to explore further, is the tie between XFEM and

uncertainty quantification, namely Monte-Carlo or other random sampling techniques. The alleviation of

the need to generate complicated meshes at each independent solution in the stochastic space makes XFEM

a very attractive “black box” solver for these methods.

9.2.2 Part II: Simulating random procresses & fields

Similarly, there is a plethora of future work in applications and extensions to the work presented in Part

II. First and foremost, a rigorous mathematical proof of existence and uniqueness for the inversion of the

evolutionary spectrum from a prescribed auto-correlation remains to be developed, if even possible. This

should be explored further, without question. Additionally, perhaps a closed form analytical inversion is

possible in the future. If not, then more efficient numerical inversion techniques may be possible - or

improvements to the pseudo-spectrum proposed in Chapter 6.

Improvements to the methodologies presented in Chapter 6 will automatically improve the efficiency

and/or accuracy of the non-stationary and non-Gaussian methodology presented in Chapter 7. Furthermore,

there are several interesting applications that the author hopes to explore. Namely, the simulation and

characterization of functionally graded materials. These functionally graded materials are at the forefront

of materials science, currently, and solid probabilistic understanding of their characteristics will strengthen

their design.

Finally, the methodology presented in Chapter 8 for simulating wind velocities for long-span structures

could potentially be extended to other cases. The formulation in this thesis was for one-dimensional, homo-

geneous in space, and stationary in time, velocity fields. Alternatively, each of these ‘categories’ could be

extended to multi-dimensionality, inhomogeneity, and non-stationarity, respectively. Consideration of these

additional complexities in the velocity fields would make for stronger simulation and understanding of the

physical processes.

BIBLIOGRAPHY 115

Bibliography

[1] N. Sukumar, D. L. Chopp, N. Moës, and T. Belytschko. Modeling holes and inclusions by level sets in

the extended finite-element method. Computer Methods in Applied Mechanics and Engineering, 190

(46-47):6183–6200, 2001.

[2] B. Hiriyur, H. Waisman, and G. Deodatis. Uncertainty quantification in homogenization of heteroge-

neous microstructures modeled by XFEM. International Journal for Numerical Methods in Engineer-

ing, 88(3):257–278, October 2011.

[3] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing. Interna-

tional Journal for Numerical Methods in Engineering, 45(July 1998):601–620, 1999.

[4] N. Moës, J. Dolbow, and T. Belytschko. A finite element method for crack growth without remeshing.

International Journal for Numerical Methods in Engineering, 46(1):131–150, 1999.

[5] N. Moës, M. Cloirec, P. Cartraud, and J.-F. Remacle. A computational approach to handle complex

microstructure geometries. Computer Methods in Applied Mechanics and Engineering, 192(28-30):

3163–3177, July 2003.

[6] T.-P. Fries. A corrected XFEM approximation without problems in blending elements. International

Journal for Numerical Methods in Engineering, 75(5):503–532, 2008.

[7] T.-P. Fries and T. Belytschko. The extended/generalized finite element method: An overview of the

method and its applications. International Journal for Numerical Methods in Engineering, 84(3):

253–304, August 2010.

[8] H. Waisman and T. Belytschko. Parametric enrichment adaptivity by the extended finite element

method. International Journal for Numerical Methods in Engineering, 73(12):1671–1692, March 2008.

[9] A. Menk and S. P. A. Bordas. Numerically determined enrichment functions for the extended finite

element method and applications to bi-material anisotropic fracture and polycrystals. International

Journal for Numerical Methods in Engineering, 83(7):805–828, 2010.

[10] C. W. Liu and E. Taciroglu. Enriched reproducing kernel particle method for piezoelectric structures

with arbitrary interfaces. International Journal for Numerical Methods in Engineering, 67(11):1565–

1586, September 2006.

[11] C. W. Liu and E. Taciroglu. Shape optimization of piezoelectric devices using an enriched meshfree

method. International Journal for Numerical Methods in Engineering, 78(2):151–171, April 2009.

BIBLIOGRAPHY 116

[12] E. Chahine, P. Laborde, and Y. Renard. Spider XFEM, an extended finite element variant for par-

tially unknown crack-tip displacement. Revue européenne de mécanique numérique, 17(5-6-7):625–636,

October 2008.

[13] W. Aquino, J. C. Brigham, C. J. Earls, and N. Sukumar. Generalized finite element method using

proper orthogonal decomposition. International Journal for Numerical Methods in Engineering, 79(7):

887–906, August 2009.

[14] S. Abbas, A. Alizada, and T.-p. Fries. The XFEM for high-gradient solutions in convection-dominated

problems. International Journal for Numerical Methods in Engineering, 82(8):1044–1072, December

2009.

[15] M. Kästner, S. Müller, J. Goldmann, C. Spieler, J. Brummund, and V. Ulbricht. Higher-order ex-

tended FEM for weak discontinuities - level set representation, quadrature and application to magneto-

mechanical problems. International Journal for Numerical Methods in Engineering, December 2012.

[16] S. Osher and J. a. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on

Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1):12–49, November 1988.

[17] J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Proceedings of

the National Academy of Sciences of the United States of America, 93(4):1591–1595, February 1996.

[18] J. A. Sethian. Level set methods and fast marching methods: evolving interfaces in computational

geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, 1999.

[19] M. Stolarska, D. L. Chopp, N. Moës, and T. Belytschko. Modelling crack growth by level sets in the

extended finite element method. International Journal for Numerical Methods in Engineering, 51(8):

943–960, July 2001.

[20] N. Sukumar, D. Chopp, and B. Moran. Extended finite element method and fast marching method for

three-dimensional fatigue crack propagation. Engineering Fracture Mechanics, 70(1):29–48, January

2003.

[21] R. Gracie, G. Ventura, and T. Belytschko. A new fast finite element method for dislocations based on

interior discontinuities. International Journal for Numerical Methods in Engineering, 69(2):423–441,

January 2007.

[22] V. S. Rao. On modelling thermal oxidation of Silicon II: numerical aspects. International Journal for

Numerical Methods in Engineering, 47:359–377, 2000.

[23] R. Duddu, S. Bordas, D. Chopp, and B. Moran. A combined extended finite element and level set

method for biofilm growth. International Journal for Numerical Methods in Engineering, 74(5):848–

870, April 2008.

[24] R. Duddu, D. L. Chopp, P. Voorhees, and B. Moran. Diffusional evolution of precipitates in elastic

media using the extended finite element and the level set methods. Journal of Computational Physics,

230(4):1249–1264, February 2011.

[25] D. Rabinovich, D. Givoli, and S. Vigdergauz. XFEM-based crack detection scheme using a genetic

algorithm. International Journal for Numerical Methods in Engineering, 71(9):1051–1080, August

2007.

BIBLIOGRAPHY 117

[26] H. Waisman, E. N. Chatzi, and A. W. Smyth. Detection and quantification of flaws in structures

by the extended finite element method and genetic algorithms. International Journal for Numerical

Methods in Engineering, 82(3):303–328, 2009.

[27] E. N. Chatzi, B. Hiriyur, H. Waisman, and A. W. Smyth. Experimental application and enhancement

of the XFEMGA algorithm for the detection of flaws in structures. Computers & Structures, 89(7-8):

556–570, April 2011.

[28] J. Fish and T. Belytschko. A First Course in Finite Elements. John Wiley & Sons, Ltd., 2007.

[29] Y. Abdelaziz and A. Hamouine. A survey of the extended finite element. Computers & Structures, 86

(11-12):1141–1151, June 2008.

[30] T. Belytschko, R. Gracie, and G. Ventura. A review of extended/generalized finite element methods

for material modeling. Modelling and Simulation in Materials Science and Engineering, 17(4):043001,

June 2009.

[31] S. P. A. Bordas, P. V. Nguyen, C. Dunant, A. Guidoum, and H. Nguyen-Dang. An extended finite

element library. International Journal for Numerical Methods in Engineering, 71(6):703–732, August

2007.

[32] S. Mohammadi. Extended Finite Element Method for Fracture Analysis of Structures. Wiley-Blackwell,

2008.

[33] T.-P. Fries and T. Belytschko. The intrinsic XFEM: a method for arbitrary discontinuities without

additional unknowns. International Journal for Numerical Methods in Engineering, 68(13):1358–1385,

December 2006.

[34] T.-P. Fries and T. Belytschko. New shape functions for arbitrary discontinuities without additional

unknowns. In Meshfree methods for partial differential equations III, pages 87–103. Springer, 2007.

[35] U. Ascher and C. Greif. A First Course in Numerical Methods. SIAM, 2011.

[36] T. Hughes, J. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact

geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194(39-41):

4135–4195, October 2005.

[37] J. Cottrell, T. Hughes, and Y. Bazilevs. Isogeometric Analysis. Toward Integration of CAD and FEA.

Wiley, 2009.

[38] C. de Boor. A practical guide to splines. Springer-Verlag, 1978.

[39] G. D. Knott. Interpolating cubic splines. Birkh\”{a}user, 1999.

[40] E. V. Shikin and A. I. Plis. Handbook on Splines for the User. CRC, 1995.

[41] D. L. Chopp. Numerical Methods for Moving Interfaces. In Lecture Notes, 2011.

[42] MATLAB. version 8.0.0.783 (R2012b). The MathWorks Inc., Natick, Massachusetts, 2012.

[43] S. Natarajan, D. Mahapatra, and S. P. A. Bordas. Integrating strong and weak discontinuities without

integration subcells and example applications in an XFEM/GFEM framework. International Journal

for Numerical Methods in Engineering, 83(3):269–294, 2010.

BIBLIOGRAPHY 118

[44] T. Elguedj, A. Gravouil, and A. Combescure. A mixed augmented Lagrangian-extended finite element

method for modelling elasticplastic fatigue crack growth with unilateral contact. International Journal

for Numerical Methods in Engineering, 71(13):1569–1597, September 2007.

[45] R. Gracie, J. Oswald, and T. Belytschko. On a new extended finite element method for dislocations:

Core enrichment and nonlinear formulation. Journal of the Mechanics and Physics of Solids, 56(1):

200–214, January 2008.

[46] G. Legrain, N. Moës, and E. Verron. Fracture with large deformation using X-FEM. In European

Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004, 2004.

[47] G. Legrain, N. Moës, and E. Verron. Stress analysis around crack tips in finite strain problems using

the eXtended finite element method. International Journal for Numerical Methods in Engineering, 63

(2):290–314, May 2005.

[48] S. Loehnert, D. S. Mueller-Hoeppe, and P. Wriggers. 3D corrected XFEM approach and extension

to finite deformation theory. International Journal for Numerical Methods in Engineering, 86(4-5):

431–452, April 2011.

[49] I. Nistor, M. L. E. Guiton, P. Massin, N. Moës, and S. Géniaut. An X-FEM approach for large sliding

contact along discontinuities. International Journal for Numerical Methods in Engineering, 78(12):

1407–1435, June 2009.

[50] C. Dubois, S. Le Corre, M. Zarroug, P. Rozycki, and N. Moës. Impact on highly compressible media

in explicit dynamics using the X-FEM. Computational Mechanics, 46(2):329–348, May 2010.

[51] P. Rozycki, N. Moës, E. Bechet, and C. Dubois. X-FEM explicit dynamics for constant strain ele-

ments to alleviate mesh constraints on internal or external boundaries. Computer Methods in Applied

Mechanics and Engineering, 197(5):349–363, January 2008.

[52] T. Hettich and E. Ramm. Interface material failure modeled by the extended finite-element method

and level sets. Computer Methods in Applied Mechanics and Engineering, 195(37-40):4753–4767, July

2006.

[53] T. Hettich, A. Hund, and E. Ramm. Modeling of failure in composites by X-FEM and level sets within

a multiscale framework. Computer Methods in Applied Mechanics and Engineering, 197(5):414–424,

January 2008.

[54] A. Khoei, A. Shamloo, and A. Azami. Extended finite element method in plasticity forming of powder

compaction with contact friction. International Journal of Solids and Structures, 43(18-19):5421–5448,

September 2006.

[55] M. Anahid and A. Khoei. New development in extended finite element modeling of large elasto-

plastic deformations. International Journal for Numerical Methods in Engineering, 75(10):1133–1171,

September 2008.

[56] M. Kästner, G. Haasemann, and V. Ulbricht. Multiscale XFEM-modelling and simulation of the in-

elastic material behaviour of textile-reinforced polymers. International Journal for Numerical Methods

in Engineering, 86(4-5):477–498, April 2011.

BIBLIOGRAPHY 119

[57] A. Khoei, S. Biabanaki, and M. Anahid. Extended finite element method for three-dimensional large

plasticity deformations on arbitrary interfaces. Computer Methods in Applied Mechanics and Engi-

neering, 197(9-12):1100–1114, February 2008.

[58] A. Khoei, S. Biabanaki, and M. Anahid. A Lagrangian-extended finite-element method in modeling

large-plasticity deformations and contact problems. International Journal of Mechanical Sciences, 51

(5):384–401, May 2009.

[59] T. Belytschko, W. Liu, and B. Moran. Nonlinear finite elements for continua and structures, volume 36.

Wiley, 2000.

[60] P. Wriggers. Nonlinear finite element methods, volume 9. Springer, January 2008.

[61] L. E. Malvern. Introduction to the mechanics of a continuous medium. Prentice-Hall, Englewood Cliffs,

N.J., 1969.

[62] C. Daux, N. Moës, J. Dolbow, N. Sukumar, and T. Belytschko. Arbitrary branched and intersect-

ing cracks with the extended nite element method. International Journal for Numerical Methods in

Engineering, 48:1741–1760, 2000.

[63] M. Shinozuka and C. Jan. Digital simulation of random processes and its applications. Journal of

Sound and Vibrationon, 25(1):111–128, 1972.

[64] W. Gersch and J. Yonemoto. Synthesis of multivariate random vibration systems: a two-stage least

squares AR-MA model approach. Journal of Sound and Vibration, 52(4):553–565, 1977.

[65] P. Spanos and J. Hansen. Linear prediction theory for digital simulation of sea waves. Journal of

Energy Resources Technology, 103:243–249, 1981.

[66] F. Kozin and F. Nakajima. The order determination problem for linear time-varying AR models. IEEE

Transactions on Automatic Control, AC-25(2):250–257, 1980.

[67] P. Spanos. ARMA algorithms for ocean wave modeling. Journal of Energy Resources Technology, 105:

300–309, 1983.

[68] P. Spanos and G. Solomos. Markov approximation to transient vibration. Journal of Engineering

Mechanics, 109(4):1134–1150, 1983.

[69] E. Samaras, M. Shinzuka, and A. Tsurui. ARMA representation of random processes. Journal of

Engineering Mechanics, 111(3):449–461, 1985.

[70] K. A. R. I. Karhunen. Uber lineare Methoden in dew Wahrscheinlichkeitsrechnung. Ann. Acad. Sci.

Fennicae., 37:3–79, 1947.

[71] M. Kac and A. Siegert. An explicit representation of a stationary Gaussian process. The Annals of

Mathematical Statistics, 18(3):438–442, 1947.

[72] M. Loeve. Fonctions aléatoires du second ordre, A note in P. Levi’s Processus stochastiques et mou-

vement Brownien, Gauthier-Villars, Paris, 1948.

[73] R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach. Dover, revised

edition, 2012.

BIBLIOGRAPHY 120

[74] N. Wiener. Generalized harmonic analysis. Acta Mathematica, 55:117–258, 1930.

[75] A. Khintchine. Korrelationstheorie der stationären stochastischen Prozesse. Mathematische Annalen,

109(1):604–615, December 1934.

[76] M. Priestley. Spectral Analysis and Times Series Volume 1: Univariate Series. Academic Press, 1981.

[77] A. Papoulis. Probability, Random Variables, and Stochastic Processes. WCB/McGraw-Hill, 3rd edition,

1991.

[78] M. Shinozuka and G. Deodatis. Simulation of stochastic processes by spectral representation. Applied

Mechanics Reviews, 44(4), 1991.

[79] A. Zerva. Seismic ground motion simulations from a class of spatial variability models. Earthquake

Engineering & Structural Dynamics, 21:351–361, 1992.

[80] A. Zerva and V. Zervas. Spatial variation of seismic ground motions: An overview. Applied Mechanics

Reviews, 55(3):271, 2002.

[81] J.-N. Yang. Simulation of random envelope processes. Journal of Sound and Vibration, 21(1):73–85,

March 1972.

[82] G. Deodatis. Non-stationary stochastic vector processes: seismic ground motion applications. Proba-

bilistic Engineering Mechanics, 11(3):149–167, July 1996.

[83] S. Amada, T. Munekata, Y. Nagase, Y. Ichikawa, A. Kirigai, and Y. Zhifei. The Mechanical Structures

of Bamboos in Viewpoint of Functionally Gradient and Composite Materials. Journal of Composite

Materials, 30(7):800–819, May 1996.

[84] S. Amada, Y. Ichikawa, T. Munekata, Y. Nagase, and H. Shimizu. Fiber texture and mechanical

graded structure of bamboo. Composites Part B: Engineering, 28(1-2):13–20, January 1997.

[85] C. H. Page. Instantaneous Power Spectra. Journal of Applied Physics, 23(1):103–106, 1952.

[86] W. Martin and P. Flandrin. Wigner-Ville spectral analysis of nonstationary processes. IEEE Trans-

actions on Acoustics, Speech, and Signal Processing, 33(6):1461–1470, December 1985.

[87] J. Hammond and R. Harrison. Wigner-Ville and evolutionary spectra for covariance equivalent nonsta-

tionary random processes. IEEE International Conference on Acoustics, Speech, and Signal Processing,

10:1025–1028, 1985.

[88] J. Hammond, J. Lee, and R. Harrison. The relationship between Wigner-Ville and evolutionary spectra

for frequency modulated random processes. In IEEE International Conference on Acoustics, Speech,

and Signal Processing, volume 11, pages 2327–2330, 1986.

[89] M. Priestley. Non-linear and Non-stationary Time Series Analysis. Academic Press, 1988.

[90] J. Liang, S. R. Chaudhuri, and M. Shinozuka. Simulation of Nonstationary Stochastic Processes by

Spectral Representation. Journal of Engineering Mechanics, 133(6):616–627, June 2007.

[91] Y. Li and A. Kareem. Simulation of Multivariate Nonstationary Random Processes by FFT. Journal

of Engineering Mechanics, 117(5):1037–1058, May 1991.

BIBLIOGRAPHY 121

[92] M. Grigoriu. Applied non-Gaussian processes: examples, theory, simulation, linear random vibration,

and MATLAB solutions. PTR Prentice Hall, Englewood Cliffs, N.J., 1995.

[93] F. Yamazaki and M. Shinozuka. Digital generation of non-Gaussian stochastic fields. Journal of

Engineering Mechanics, 114(7):1183–1197, 1988.

[94] G. Deodatis and R. Micaletti. Simulation of highly skewed non-Gaussian stochastic processes. Journal

of Engineering Mechanics, 127(12):1284–1295, 2001.

[95] Y. Shi, G. Deodatis, and S. Koutsourelakis. A novel approach for simulation of non-Gaussian fields:

Application in estimating wire strengths from experimental data. In 9th ASCE Joint Special Conference

on Probabilistic Mechanics and Structural Reliability, Albuquerque, New Mexico, July 2004.

[96] P. Bocchini and G. Deodatis. Critical review and latest developments of a class of simulation algorithms

for strongly non-Gaussian random fields. Probabilistic Engineering Mechanics, 23(4):393–407, October

2008.

[97] M. Shields, G. Deodatis, and P. Bocchini. A simple and efficient methodology to approximate a

general non-Gaussian stationary stochastic process by a translation process. Probabilistic Engineering

Mechanics, 26(4):511–519, October 2011.

[98] F. Ferrante, S. Arwade, and L. Grahambrady. A translation model for non-stationary, non-Gaussian

random processes. Probabilistic Engineering Mechanics, 20(3):215–228, July 2005.

[99] M. D. Shields and G. Deodatis. Estimation of evolutionary spectra for simulation of non-stationary

and non-Gaussian stochastic processes. Computers & Structures, In Press, 2012.

[100] A. Zerva. Spatial Variation of Seismic Ground Motions: Modeling and Engineering Applications. CRC

Press, Taylor & Francis Group, Boca Raton, FL, 2009.

[101] J. C. Kaimal, J. C. Wyngaard, Y. Izumi, and O. R. Coté. Spectral characteristics of surface-layer

turbulence. Quarterly Journal of the Royal Meteorological Society, 98(417):563–589, July 1972.

[102] A. Davenport. The dependence of wind loads on meteorological parameters. Proceedings of the Inter-

national Research Seminar on Wind Effects on Buildings and Structures, 1:19–82, 1967.

[103] K. Kanai. Seismic-empirical formula for the seismic characteristics of the ground. Bulletin of Earth-

quake Research Institute, 35:309–325, 1957.

[104] H. Tajimi. A statistical method of determining the maximum response of a building structure during

an earthquake. In Proceedings of the 2nd world conference on earthquake engineering, pages 781–798,

1960.

[105] R. Clough and J. Penzien. Dynamics of Structures. McGraw Hill, 1975.

[106] R. Harichandran and E. Vanmarcke. Stochastic variation of earthquake ground motion in space and

time. Journal of Engineering Mechanics, 112(2):154–174, 1986.

[107] J. Luco and H. Wong. Response of a rigid foundation to a spatially random ground motion. Earthquake

Engineering & Structural Dynamics, 14:891–908, 1986.

BIBLIOGRAPHY 122

[108] G. Deodatis. Simulation of ergodic multivariate stochastic processes. Journal of Engineering Mechan-

ics, 122(8):778–787, 1996.

[109] M. Shinozuka, M. Kamata, and C.-B. Yun. Simulation of earthquake ground motion as multi-variate

stochastic process. Technical report, Department of Civil Engineering and Operations Research, Prince-

ton University, 1989.

[110] M. Shinozuka and G. Deodatis. Simulation of multi-dimensional Gaussian stochastic fields by spectral

representation. Applied Mechanics Reviews, 49(1):29–53, 1996.

[111] G. Deodatis and M. Shinozuka. Simulation of seismic ground motion using stochastic waves. Journal

of engineering mechanics, 115(12):2723–2737, 1989.

[112] M. Shinozuka and G. Deodatis. Stochastic wave models for stationary and homogeneous seismic ground

motion. Structural Safety, 10:235–246, 1991.

[113] Pacific-Earthquake-Engineering-Research-Center. PEER Ground Motion Database, 2013. URL http:

//peer.berkeley.edu/products/strong_ground_motion_db.html.

[114] M. D. Shields. Simulation of Stochastic Processes: Applications in Civil Engineering. PhD thesis,

Columbia University, New York, NY, 2010.

[115] P. Jennings, G. Housner, and N. Tsai. Simulated earthquake motions. Technical report, Earthquake

Engineering Research Laboratory, California Institute of Technology, Pasadena, California, 1968.

[116] B. R. Ellingwood and M. E. Batts. Characterization of earthquake forces for probability-based design

of nuclear structures. Technical report, Center for Building Technology, National Bureau of Standards,

Washington, DC (USA), 1982.

[117] A. Savitzky and M. Golay. Smoothing and differentiation of data by simplified least squares procedures.

Analytical chemistry, 36(8):1627–1639, 1964.

[118] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in Fortran The

Art of Scientific Computing. Cambridge University Press, 2nd edition, 1992.

[119] J. Burkardt. PROB, 2012. URL http://people.sc.fsu.edu/~jburkardt/f_src/prob/prob.html.

[120] K. Y. Billal and R. H. Scanlan. Resonance, Tacoma Narrows bridge failure, and undergraduate physics

textbooks. American Journal of Physics, 59(2):118–124, 1991.

[121] A. Davenport. The application of statistical concepts to the wind loading of structures. ICE Proceed-

ings, (6480):449–472, 1961.

[122] M. Shinozuka, C.-B. Yun, and H. Seya. Stochastic methods in wind engineering. Journal of Wind

Engineering and Industrial Aerodynamics, 36:829–843, January 1990.

[123] M. Di Paola. Digital simulation of wind field velocity. Journal of Wind Engineering and Industrial

Aerodynamics, 74-76:91–109, April 1998.

[124] M. Di Paola and I. Gullo. Digital generation of multivariate wind field processes. Probabilistic Engi-

neering Mechanics, 16(1):1–10, January 2001.

http://peer.berkeley.edu/products/strong_ground_motion_db.html
http://peer.berkeley.edu/products/strong_ground_motion_db.html
http://people.sc.fsu.edu/~jburkardt/f_src/prob/prob.html

BIBLIOGRAPHY 123

[125] W. Yang, T. Chang, and C. Chang. An efficient wind field simulation technique for bridges. Journal

of Wind Engineering and Industrial Aerodynamics, 67-68:697–708, April 1997.

[126] Y. Cao, H. Xiang, and Y. Zhou. Simulation of stochastic wind velocity field on long-span bridges.

Journal of Engineering Mechanics, 126(1):1–6, 2000.

[127] Y. Li, H. Liao, and S. Qiang. Simplifying the simulation of stochastic wind velocity fields for long

cable-stayed bridges. Computers & Structures, 82(20-21):1591–1598, August 2004.

[128] Q. Ding, L. Zhu, and H. Xiang. An efficient ergodic simulation of multivariate stochastic processes

with spectral representation. Probabilistic Engineering Mechanics, 26(2):350–356, April 2011.

[129] Y. Gao, Y. Wu, D. Li, H. Liu, and N. Zhang. An improved approximation for the spectral representation

method in the simulation of spatially varying ground motions. Probabilistic Engineering Mechanics,

29:7–15, July 2012.

[130] E. Simiu and R. H. Scanlan. Wind Effects on Structures: An Introduction to Wind Engineering. John

Wiley & Sons, Inc., 1978.

[131] R. Haberman. Applied Partial Differential Equations with Fourier Series and Boundary Value Prob-

lems. Pearson Prentice Hall, Upper Saddle River, New Jersey, 4th edition, 2004.

[132] D. Newland. An Introduction to Random Vibrations, Spectral & Wavelet Analysis. Longman Scientific

& Technical, Essex, England, 3rd edition, 1993.

APPENDIX A. CLOSEST POINT ON SPLINE CURVE DERIVATION 124

Appendix A

Closest point on spline curve

derivation

The parametric spline curve is defined as:

P (t) =

 xΓ (t)

yΓ (t)

 =

 axt
3 + bxt

2 + cxt+ dx

ayt
3 + byt

2 + cyt+ dy

 (A.1)

The distance from any point (x, y) to a point on the curve, as a function of the curve parameter t, is given

as:

d (t) =

√
(x− xΓ (t))

2
+ (y − yΓ (t))

2
(A.2)

To find the shortest distance from the point to the curve, we must find the closest point on the curve. In

other words, we must find t which minimizes d (t). We start by substituting the expressions for xΓ and yΓ

into the expression for d. This gives:

d2 = x2 − 2xdx + a2
xt

6 + b2xt
4 + c2xt

2 + 2axt
5bx +

2axt
4cx + 2bxt

3cx − 2xaxt
3 − 2xbxt

2 −

2xcxt+ 2axt
3dx + 2bxt

2dx + 2cxtdx +

2ayt
5by + 2ayt

4cy + 2byt
3cy − 2yayt

3 − 2ybyt
2 − (A.3)

2ycyt+ 2ayt
3dy + 2byt

2dy + 2cytdy + d2
x + y2 −

2ydy + a2
yt

6 + b2yt
4 + c2yt

2 + d2
y

APPENDIX A. CLOSEST POINT ON SPLINE CURVE DERIVATION 125

In order to find the minimum, we differentiate with respect to t and set to zero. Differentiating the above

and setting it equal to zero yields the following quintic equation:

0 =
(
3a2
x + 3a2

y

)
t5 + (5ayby + 5bxax) t4 +(

2b2x + 2b2y + 4aycy + 4cxax
)
t3 +

(−3yay − 3axx+ 3bycy + 3bxcx + 3aydy + 3dxax) t2 + (A.4)(
−2yby + c2y + 2bydy − 2xbx + c2x + 2bxdx

)
t−

ycy + cydy − xcx + cxdx

or,

0 = C1t
5 + C2t

4 + C3t
3 + C4t

2 + C5t+ C6 (A.5)

where:

C1 = 3a2
x + 3a2

y

C2 = 5ayby + 5bxax

C3 = 2b2x + 2b2y + 4aycy + 4cxax

C4 = −3yay − 3axx+ 3bycy + 3bxcx + 3aydy + 3dxax (A.6)

C5 = −2yby + c2y + 2bydy − 2xbx + c2x + 2bxdx

C6 = −ycy + cydy − xcx + cxdx

APPENDIX B. QUADRATURE FOR C0 CONTINUOUS FUNCTIONS 126

Appendix B

Quadrature for C0 continuous

functions

B.1 Introduction

In this Appendix, a brief convergence analysis is carried out for numerical quadrature rules on a C0 continuous

function in two dimensions. The convergence of these rules are well established for smooth and continuous

functions, but not necessarily for the weakly discontinuous functions used in Part I of this thesis. The

function, f , examined is the signed distance function for a circular inclusion/hole:

f (x, y) =
∣∣∣√x2 + y2 − r

∣∣∣ (B.1)

where, x and y are the Cartesian coordinates, and r is the radius of the circle. The domain considered is

square with sides of length 2a. The geometry considered is diagrammed in Figure B.1. The objective is to

integrate Eqn. (B.1) over the entire domain. An analytical solution to this integral is first found, and then

the numerical quadrature rules are used to integrate the function, and the results are compared.

APPENDIX B. QUADRATURE FOR C0 CONTINUOUS FUNCTIONS 127

2a

2a

r
x

y

Figure B.1: Quadrature test problem geometry

B.2 Analytical reference solution

Due to the symmetry of the problem, the domain can be reduced to just a single quadrant, and therefore:

a∫
−a

a∫
−a

f (x, y) dxdy = 4×
a∫

0

a∫
0

f (x, y) dxdy (B.2)

In order to account for the discontinuity at the internal boundary, the integral is subdivided at this boundary.

Thus, Eqn. (B.2) is rewritten as:

a∫
−a

a∫
−a

f (x, y) dxdy = 4×

 a∫
0

√
r−x2∫
0

(
r −

√
x2 + y2

)
dxdy +

a∫
0

a∫
√
r−x2

(√
x2 + y2 − r

)
dxdy

 (B.3)

A switch from the Cartesian coordinates, (x, y), to the polar coordinates, (ρ, θ) is employed. With this

coordinate transformation, the integral can be further simplified as:

a∫
−a

a∫
−a

f (x, y) dxdy = 4×

 r∫
0

π
2∫

0

(r − ρ) ρ dθdρ+

π
4∫

0

a
cos θ∫
r

(ρ− r) ρ dρdθ +

π
2∫

π
4

a
sin θ∫
r

(ρ− r) ρ dρdθ

 (B.4)

Solving Eqn. (B.4) yields the solution:

a∫
−a

a∫
−a

f (x, y) dxdy = 4×
[
πr3

12
− ra2 +

a3

3

(
1√
2

+ tanh−1
(

tan
(π

8

)))
+
a3

6

(√
2 + ln

(
cot
(π

8

)))]
(B.5)

APPENDIX B. QUADRATURE FOR C0 CONTINUOUS FUNCTIONS 128

10
0

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Order of Quadrature

R
el

at
iv

e
E

rr
or

Legendre−Gauss
Newton−Cotes

Figure B.2: Quadrature convergence

B.3 Quadrature convergence

Two numerical quadrature rules are now compared with the analytical solution shown in Eqn. (B.5). Namely,

Legendre-Gauss and Newton-Cotes quadrature rules are examined - the former being the Gaussian quadra-

ture used in Part I of this thesis. In both cases, the order of the quadrature was varied, and Eqn. (B.1) was

integrated over the domain {x, y ∈ [−a, a]} with a = 1 and r = 0.25. The relative error in the numerical

integrals are plotted in Figure B.2. It is clear that both quadrature rules converge despite the function being

only C0 continuous.

APPENDIX C. MATLAB CODES FOR THE SPECTRAL REPRESENTATION METHOD, AND FFT
IMPLEMENTATIONS 129

Appendix C

MATLAB codes for the Spectral

Representation Method, and FFT

implementations

C.1 Introduction

In this Appendix, sample MATLAB functions are presented for simulating stochastic processes in the SRM. A

brief comparison between direct summation and FFT implementations is examined, as well. This Appendix

will only deal with Gaussian processes, as it is only focusing on the simulation of sample realizations in

the SRM. Section C.2 will present sample codes for simulation of stationary processes, and examine the

efficiency of using the FFT versus direct summation. Section C.3 will present a sample code for generating

non-stationary processes. Section C.4 will present a sample code for generating the stochastic waves discussed

in Chapter 8.

C.2 Stationary processes

C.2.1 MATLAB codes

Direct summation

Below is a sample MATLAB function which generates sample realizations of a stationary random process

through the SRM. This is a direct implementation of Eqn. (5.3). The code takes as input a vector of

frequency values, w, a vector of time values, t, and a vector of SDF values, S. The vectors S and w should

APPENDIX C. MATLAB CODES FOR THE SPECTRAL REPRESENTATION METHOD, AND FFT
IMPLEMENTATIONS 130

be of the same length, and Sj should correspond to S (ωj). The function outputs the vector, y, representing

the sample realization yj = y (tj).

1 function [y] = statSimDS(w, t, S)

2

3 dw = w(2)-w(1); % frequency step size

4 N = length(S); % number of points in the frequency domain

5 phi = rand(1,N)*2*pi; % N random phase angles between (0,2\pi)

6

7 % Generate sample realization:

8 % Loop over time and sum over frequency

9 y = zeros(1,length(t)); % initialize sample function

10 for i = 1: length(t)

11 y(i) = sum(2*sqrt(S*dw) .* cos(w*t(i) + phi));

12 end

13 end

FFT

Below is another sample MATLAB function which generates sample realizations of a stationary random

process through the SRM. Though, in this case the FFT formulation of Eqn. (5.8) is used. The input and

output variables are the same as in statSimDS, above, aside from the fact that the time vector, t, is now an

output. The time points where FFT outputs values is automatically chosen based off of the input frequency

values, hence the time vector is now an output of the function.

1 function [y , t] = statSimFFT(w, S)

2

3 % Original domain:

4 dw = w(2)-w(1); % frequency step size

5 N = length(S); % number of points in the frequency domain

6

7 % New domain

8 M = 2^ nextpow2 (2*N); % M = 2*N, or next power of 2

9 S2 = zeros(1,M); % pad new spectrum with zeros

10 S2(1:N) = S;

11 t = 2*pi/dw*linspace (0,1,M+1); t(end)=[]; % time vector

12 phi = rand(1,M)*2*pi; % M random phase angles between (0,2\pi)

13

14 % Generate sample realization:

15 B = 2*sqrt(S2*dw).*exp(1i*phi); % B matrix

16 f = M*ifft(B,M); % take FFT

APPENDIX C. MATLAB CODES FOR THE SPECTRAL REPRESENTATION METHOD, AND FFT
IMPLEMENTATIONS 131

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

10
2

N

C
P

U
 T

im
e

(s
ec

.)

FFT
Sum

Figure C.1: Comparison of computational efficiency between using the direct implementation of Eqn. (5.3)

and the FFT implementation of Eqn. (5.8).

17 y = real(f); % only want the real part

18 end

C.2.2 Efficiency comparison

The computational efficiency of the two SRM functions just presented, statSimDS and statSimFFT, are

now compared. The number of points in the domain, N , is varied from 21 through 215. Note, that it was

ensured that the same number of points were used in both cases, accounting for the padding in the FFT

formulation. Thus, for any given N , M = 2N was used in both cases, with the padded spectrum. The CPU

time was averaged over 100 simulations for each N , and the average CPU time is plotted in Figure C.1. The

advantage of using the FFT formulation is quite clear - it is multiple orders of magnitude more efficient. As

N increases, this is even more evident.

C.3 Non-stationary processes

Below is a sample MATLAB function which generates sample realizations of a non-stationary random process

through the SRM. Unfortunately in this case, there is no exact method which leverages the FFT. Thus, the

code presented here is very similar to the stationary code, statSimDS, above, and is a direct implementation

of Eqn. (5.15). The inputs and outputs are identical to statSimDS, above. The only discrepancy being that

the array S is now two dimensional, such that Sjk = S (tj , ωk), and in line 11, where the ES must be indexed

in time.

APPENDIX C. MATLAB CODES FOR THE SPECTRAL REPRESENTATION METHOD, AND FFT
IMPLEMENTATIONS 132

1 function [y] = nonStatSim(w, t, S)

2

3 dw = w(2)-w(1); % frequency step size

4 N = length(S); % number of points in the frequency domain

5 phi = rand(1,N)*2*pi; % N random phase angles between (0,2\pi)

6

7 % Generate sample realization:

8 % Loop over time and sum over frequency

9 y = zeros(1,length(t)); % initialize sample function

10 for i = 1: length(t)

11 y(i) = sum(2*sqrt(S(i,:)*dw) .* cos(w*t(i) + phi));

12 end

13 end

C.4 Stochastic waves

C.4.1 MATLAB codes

Direct Summation

Below is a sample MATLAB function which generates sample realizations of a stochastic wave through the

SRM. This is a direct implementation of Eqn. (5.35). The same as earlier examples, this code takes as input

the spectrum (in this case the 2D F-K spectrum of Chapter 8), as well as time and space vectors. It then

gives as output the 2D sample function in space and time.

1 function [y] = waveSimDS(w, k, x, t, S)

2

3 % Original domain:

4 dw = w(2)-w(1); % frequency step size

5 Nw = length(w); % number of points in orig. freq. domain

6 dk = k(2)-k(1); % wavenumber step size

7 Nk = length(k); % number of points in orig. w-n domain

8 [K,W] = meshgrid(k,w);% mesh w and k to vectorize operations

9

10 % Random phase angles:

11 phi1 = rand(Nk ,Nw)*2*pi;

12 phi2 = rand(Nk ,Nw)*2*pi;

13

14 % Generate sample realization:

15 % Loop over space & time and sum over frequency & wave -number

APPENDIX C. MATLAB CODES FOR THE SPECTRAL REPRESENTATION METHOD, AND FFT
IMPLEMENTATIONS 133

16 y = zeros(length(t),length(x)); % initialize sample func

.

17 for ii = 1: length(t)

18 for jj = 1: length(x)

19 y(ii,jj) = 2*sum(sum(sqrt(S2*dw*dk).*...

20 (cos(W*t(ii)+K*x(jj)+phi1) +...

21 cos(-W*t(ii)+K*x(jj)+phi2))));

22 end

23 end

24 end

FFT

Below is a sample MATLAB function which generates sample realizations of a stochastic wave through the

SRM. This function makes use of the FFT formulation, which is necessary in the multi-dimensional/wave

case. The function presented represents Eqn. (8.13). Just like statSimFFT, above, the time and space

vectors are outputs as they are dependent on the FFT. The need for two phase angle arrays, and the ifft

vs. fft is consistent with Eqn. (8.13).

1 function [y , x, t] = waveSimFFT(w, k, S)

2

3 % Original domain:

4 dw = w(2)-w(1); % frequency step size

5 Nw = length(w); % number of points in orig. freq. domain

6 dk = k(2)-k(1); % wavenumber step size

7 Nk = length(k); % number of points in orig. w-n domain

8

9 % New domain:

10 Mw = 2^ nextpow2 (2*Nw); % M = 2*N, or next power of 2

11 Mk = 2^ nextpow2 (2*Nk);

12 S2 = zeros(Mk ,Mw); % pad new spectrum with zeros

13 S2(1:Nk ,1:Nw) = S;

14 t = 2*pi/dw*linspace (0,1,Mw+1); t(end)=[]; % time vector

15 Mt = length(t); % number of time points

16 x = 2*pi/dk*linspace (0,1,Mk+1); x(end)=[]; % space vec.

17 Mx = length(x); % number of spatial points

18

19 % Random phase angles:

20 phi1 = rand(Mk ,Mw)*2*pi;

21 phi2 = rand(Mk ,Mw)*2*pi;

22 % Integrands for FFT:

23 B1 = 2*sqrt(S*dk*dw).*exp(1i*phi1);

APPENDIX C. MATLAB CODES FOR THE SPECTRAL REPRESENTATION METHOD, AND FFT
IMPLEMENTATIONS 134

10
1

10
2

10
3

10
−4

10
−2

10
0

10
2

10
4

10
6

N

C
P

U
 T

im
e

(s
ec

.)

FFT
Sum

Figure C.2: Comparison of computational efficiency between using the direct implementation of Eqn. (5.35)

and the FFT implementation of Eqn. (8.13).

24 B2 = 2*sqrt(S*dk*dw).*exp(1i*phi2);

25 % FFT along wavenumber first:

26 F1 = Mk*ifft(B1 ,Mx ,1);

27 F2 = Mk*ifft(B2 ,Mx ,1);

28 % FFT along frequency next:

29 F1 = Mw*ifft(F1 ,Mt ,2);

30 F2 = fft(F2 ,Mt ,2);

31 % Put it all together , and take the real part:

32 y = real(F1+F2);

33

34 end

C.4.2 Efficiency comparison

The computational efficiency of the two wave-SRM functions just presented, waveSimDS and waveSimFFT,

are now compared. The number of points in the domain, N , is varied from 23 through 29. Note, (1) that

Nω = Nκ = N for this, now, 2D domain; and (2) that it was ensured that the same number of points were

used in both cases, accounting for the padding in the FFT formulation. Thus, for any given N , M = 2N

was used in both cases, with the padded spectrum. The CPU time was averaged over 3 simulations for each

N , and the average CPU time is plotted in Figure C.2. The advantage of using the FFT formulation is quite

clear - it is multiple orders of magnitude more efficient. As N increases, this is even more evident.

	List of Figures
	List of Tables
	1 Introduction & outline
	1.1 Introduction
	1.2 Outline

	I Modeling heterogeneous fields
	2 XFEM for modeling inclusions
	2.1 Motivation & literature review
	2.2 Assumptions and governing equations
	2.2.1 Governing equations
	2.2.2 Strong and weak form

	2.3 Formulation of the eXtended Finite Element Method
	2.4 Enrichment functions
	2.4.1 Definitions
	2.4.2 Formulations for simple geometries

	3 Spline based enrichment formulation for arbitrary shapes
	3.1 Cubic spline interpolation
	3.1.1 Definitions and formulation
	3.1.2 Parametric cubic splines
	3.1.3 Localized splines

	3.2 Calculation of signed distance function
	3.2.1 Determining the magnitude of the signed distance function
	3.2.2 Determining the sign of the signed distance function
	3.2.3 Level set function algorithm

	3.3 Enrichment function differentiation
	3.4 Numerical integration
	3.5 Convergence analysis
	3.5.1 Level set function convergence
	3.5.2 Differentiation convergence
	3.5.3 Classical XFEM comparison for circular inclusion
	3.5.4 FEM comparison for arbitrary inclusion

	3.6 Conclusions

	4 Non-linear XFEM formulation for finite deformations
	4.1 Definitions and formulation
	4.2 Non-Linear XFEM example case study
	4.3 Conclusions

	II Simulating random procresses & fields
	5 Simulation of stochastic processes & fields
	5.1 Introduction
	5.2 Stationary, univariate, Gaussian stochastic processes
	5.3 Non-stationary, univariate, Gaussian stochastic processes
	5.3.1 Non-stationary processes
	5.3.2 Simulation of amplitude modulated non-stationary processes
	5.3.3 Simulation of amplitude and frequency modulated non-stationary processes

	5.4 Non-Guassian stochastic processes
	5.4.1 Stationary non-Gaussian stochastic processes
	5.4.2 Non-stationary non-Gaussian stochastic processes

	5.5 Multi-variate stochastic processes
	5.6 Multi-dimensional stochastic processes
	5.6.1 Multi-dimensional random fields
	5.6.2 Stochastic waves

	6 Determining Evolutionary Spectra from non-stationary Autocorrelation Functions
	6.1 Introduction & motivation
	6.2 Formulation of discrete optimization problem
	6.3 ``Brute Force" Method (BFM)
	6.3.1 Description of algorithm
	6.3.2 BFM results

	6.4 ``Multi-Grid" Method (MGM)
	6.4.1 Description of algorithm
	6.4.2 MGM results
	6.4.3 Efficiency comparison

	6.5 Preprocessing
	6.5.1 Definition of ``Pseudo-Spectrum"
	6.5.2 Numerical examples

	7 Simulation of non-stationary and non-Gaussian stochastic processes
	7.1 Introduction & motivation
	7.2 Review of methodologies for simulating stationary non-Gaussian processes
	7.3 Proposed methodology for simulating non-stationary and non-Gaussian processes
	7.4 Numerical examples
	7.4.1 Log-normal distribution
	7.4.2 Uniform distribution

	8 Simulation of wind velocities along long-span structures
	8.1 Introduction & motivation
	8.2 Modeling wind as a stochastic wave
	8.2.1 Derivation of frequency-wavenumber (F-K) spectrum
	8.2.2 Verification of F-K spectrum

	8.3 Simulation of wind velocities as a wave
	8.4 Numerical example
	8.4.1 Problem definition
	8.4.2 Results

	9 Conclusions
	9.1 Main contributions
	9.1.1 Part I: Modeling heterogeneous fields
	9.1.2 Part II: Simulating random procresses & fields

	9.2 Future work
	9.2.1 Part I: Modeling heterogeneous fields
	9.2.2 Part II: Simulating random procresses & fields
	Bibliography
	A Closest point on spline curve derivation
	B Quadrature for C0 continuous functions
	B.1 Introduction
	B.2 Analytical reference solution
	B.3 Quadrature convergence

	C MATLAB codes for the Spectral Representation Method, and FFT implementations
	C.1 Introduction
	C.2 Stationary processes
	C.2.1 MATLAB codes
	C.2.2 Efficiency comparison

	C.3 Non-stationary processes
	C.4 Stochastic waves
	C.4.1 MATLAB codes
	C.4.2 Efficiency comparison

