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S U M M A R Y
To approximate seismic wave propagation in double porosity media, the 2.5-D governing
equations of poroelastic waves are developed and numerically solved. The equations are
obtained by taking a Fourier transform in the strike or medium-invariant direction over all of
the field quantities in the 3-D governing equations. The new memory variables from the Zener
model are suggested as a way to represent the sum of the convolution integrals for both the solid
particle velocity and the macroscopic fluid flux in the governing equations. By application of
the memory equations, the field quantities at every time step need not be stored. However, this
approximation allows just two Zener relaxation times to represent the very complex double
porosity and dual permeability attenuation mechanism, and thus reduce the difficulty. The
2.5-D governing equations are numerically solved by a time-splitting method for the non-stiff
parts and an explicit fourth-order Runge-Kutta method for the time integration and a Fourier
pseudospectral staggered-grid for handling the spatial derivative terms. The 2.5-D solution
has the advantage of producing a 3-D wavefield (point source) for a 2-D model but is much
more computationally efficient than the full 3-D solution. As an illustrative example, we firstly
show the computed 2.5-D wavefields in a homogeneous single porosity model for which we
reformulated an analytic solution. Results for a two-layer, water-saturated double porosity
model and a laterally heterogeneous double porosity structure are also presented.

Key words: Numerical solutions; elasticity and anelasticity; seismic attenuation; wave prop-
agation.

1 I N T RO D U C T I O N

By applying a volume averaging theory to the local Biot poroelastic
law, Pride & Berryman (2003a,b) developed the double-porosity,
dual permeability (DPDP) model. It provides a theoretical frame-
work to model acoustic (not elastic) wave propagation through het-
erogeneous porous structures. All of the field quantities, such as
confining pressure and solid phase particle velocity, are actually
the averaged values over a representative volume of mesoscopic
size including the two fluid-filled porous constituents, phase 1 and
phase 2. These two phases could be, for example, a cracked porous
rock, or a porous rock with different inclusions. Although the patchy
saturation equations can be written with a very similar formalism,
we do not here solve such problems. In simple terms, an internal
fluid transfer mechanism (inner flow) is introduced to describe the
flow between phase 1 and phase 2 in this theory. This provides an
important energy dissipation mechanism for explaining the high
attenuation at seismic frequencies, which cannot be explained by
classic Biot theory applied to homogenous porous rocks. The orig-
inal DPDP model can be reduced to an effective Biot model on the
assumption that phase 2 is totally embedded in phase 1. It is also
generally assumed that the included phase 2 is more compressible

and has a higher porosity/permeability than the host phase 1. The
inner flow mechanism is incorporated into the effective coefficients
of the governing equations (here we refer to this DPDP model as
the effective Biot theory). The phase velocity and attenuation dis-
persion characteristics of the P wave for the effective Biot theory
are claimed to provide a good match with those measured in real
rocks over the seismic frequency band (Pride et al. 2004).

Double porosity theory not only provides a more general model
to describe the attenuation mechanism, but also the governing equa-
tions to calculate the averaged wavefields in porous media having
mescoscopic heterogeneities. Otherwise, using just the original Biot
theory, it is very difficult to numerically model a macroscopic wave
in a porous medium (of dimensions hundreds to thousands of me-
tres) having mescoscopic heterogeneities (with a size of several
millimetres). However, it is not possible to analytically solve the
field equations in heterogeneous double porosity media. This re-
quires a numerical approach. Although there are several methods to
numerically solve the wave equations, like the finite element method
and the finite difference method (see the review article by Carcione
et al. 2010), wave propagation in fluid-filled porous media presents
special difficulties for modelling because of the interaction between
the solid frame and the pore fluid. For example, the equations are
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stiff and the moduli are frequency-dependent. This implies energy
dissipation and the solutions should be expressed as convolution
integrals in the time domain.

Poro-viscoelastic equations have been successfully solved by
Carcione (2007) in the time domain to simulate Biot’s (1962) en-
ergy dissipation model and the squirt-flow mechanism (Dvorkin
et al. 1994) using a single Zener element at ultrasonic frequen-
cies. However, Liu et al. (2009c) show that the DPDP model is
very hard to fit by a single Zener element over a broad frequency
range. Instead, they chose the relaxation function, which just ap-
proximates the dispersion behaviour of the double porosity model
around the source centre frequency. The wave propagation can then
be well described by the poro-viscoacoustic model with a single
Zener element over the seismic frequency band. The primary at-
traction of using a Zener model is that it allows the convolution
integral to be replaced by memory equations for which the field
quantities need not be stored at every time step. However, this ap-
proximation allows only two Zener relaxation times to represent the
very complex DPDP attenuation mechanism and thus reduce the
difficulty.

Although Liu et al. (2010) suggested that a Kelvin-Voigt replace-
ment element could be a better approximation than a Zener element
at low frequency, their investigation showed that this is true only at
frequencies of less than 50 Hz. Furthermore, the advantage is not
very significant, and the Zener element can provides a much better
approximation for frequencies in the range 50 Hz to several hun-
dred Hertz. Liu et al. (2009c) numerically simulated elastic waves
in heterogeneous DPDP media using a 2-D algorithm, which carries
the implicit assumption of a line source. In this paper the modelling
will now be extended to 2.5-D (point source).

Under the assumption that the medium is invariant in one di-
rection (taken here as the y-axis direction) the 3-D wavefield for
a point source can be efficiently obtained from the 2.5-D solu-
tion, which involves solving multiple 2-D equations (one for each
wavenumber). Therefore, the 2.5-D solution has the advantage of a
3-D wavefield but is much more computationally efficient than the
classical 3-D solution. For example, in frequency-domain mod-
elling in elastic media, Zhou et al. (2011) report for a rather
modest example computer memory requirements of 4 GB and
30 GB for 2.5-D versus 3-D modelling. The corresponding run
times on an SGI Altix 30000 supercomputer were 7 hr and 40 hr,
respectively.

Although several approaches for 2.5-D modelling have been ap-
plied for seismic wave simulation in single-phase media, the lit-
erature on 2.5-D modelling in porous media is, to the best of our
knowledge, almost non-existent. The one exception is the paper
by Lu et al. (2008) which used the boundary element method and
considered a standard Biot porous medium. However, here we ad-
dress the question of double porosity and attenuation and apply the
time splitting method for the non-stiff parts, an explicit fourth-order
Runge-Kutta method for the time integration and a Fourier pseu-
dospectral staggered-grid method for handling the spatial derivative
terms (Carcione 2007; Liu et al. 2009c).

2 T H E O RY A N D M E T H O D

Based on the DPDP model (Pride & Berryman 2003a,b), the gov-
erning equations for the poro-viscoelastic model can be written as
(Liu et al. 2009c)

σ̇ + ṗcI = ψ̇s(t) ∗
[
∇v + (∇v)T − 2

3
∇ · vI

]
(1)

−
⎡
⎣ ṗc(t)

ṗ f (t)

⎤
⎦ =

⎡
⎣ ψ̇11(t) ψ̇12(t)

ψ̇21(t) ψ̇22(t)

⎤
⎦ ∗

⎡
⎣∇ · v(t)

∇ · q(t)

⎤
⎦ (2)

−∇ p f = ρ f v̇ + m q̇ + (η/κ∗
0 )q (3)

∇ · σ = ρ v̇ + ρ f q̇ (4)

Here σ is the average stress tensor acting over the volume; v is
the average particle velocity of the solid grains; ψs(t) and ψmn(t)
are the relaxation functions of the S wave and the P wave, respec-
tively, whose Fourier transforms are complex frequency-dependent
moduli (see Liu et al. 2009c). It is worth noting that ψ12(t) is equal
to ψ21(t) just for the case where the governing equations are derived
under host field assumption (see Liu 2009a for details). The quantity
pc is the total confining pressure; p f is the average fluid pressure;
q is the macroscopic fluid flux, ρ and ρ f are the bulk density and
fluid density, respectively; κ∗

0 is the effective static permeability of
the double porosity composite; m = Tρ f /.φ, where φ is the overall
porosity, and T denotes the tortuosity. In this paper, we are consider-
ing the low frequency range of Biot theory, and hence the relaxation
function ψ (referring to ψs(t) orψmn(t)) can be represented by the
single Zener model as

ψ = �

ψ H (t), (5)

where H (t) is the Heaviside (unit step) function, and

�

ψ = ψ(t = ∞)

[
1 −

(
1 − τ ε

τ σ

)
exp

(
− t

τ σ

)]
. (6)

Here ψ(t = ∞) refers to the value of the relaxation function at
infinite time and corresponds to the static or zero frequency modulus
of DPDP media (Carcione 2007; Morency & Tromp 2008; Pride &
Berryman 2003a,b).

The new memory variables esi j , epc and ep f are defined as

esi j = ∂t

�

ψ s(t)H (t) ∗ [vi, j + v j,i − δi j 2vi,i/3] (7)

epc = ∂t

�

ψ11(t)H (t) ∗ ∇ · v + ∂t

�

ψ12(t)H (t) ∗ ∇ · q (8)

ep f = ∂t

�

ψ21(t)H (t) ∗ ∇ · v + ∂t

�

ψ22(t)H (t) ∗ ∇ · q (9)

Here the memory variables esi j , epc and ep f correspond to the
shear stress in eq. (1), the total confining pressure pc and the average
fluid pressure p f in eq (2). Then the convolution integrals in eqs
(1) and (2) can be replaced by the memory equations (given later as
eqs 14–16).

The 2.5-D governing equations for poro-viscoelastic wave prop-
agation are obtained by taking a Fourier transform in the strike or
medium-invariant (y) direction over all of the field quantities in the
3-D governing equations. Although this operation is fairly standard
in elastic media (Furumura & Takenaka 1996), the results are novel
for porous media. They are given in the following equations, where
the indices i and j takes on the values x, y, z. However, when the
partial derivative is with respect to y, it should be replaced by iky .
For example, p̃ f,y is replaced by iky p̃ f .

˙̃vi = − m

ρ2
f − ρm

σ̃i j, j − ρ f

ρ2
f − ρm

p̃ f,i − ρ f η

κ∗
0

(
ρ2

f − ρm
) q̃i (10)

˙̃qi = ρ f

ρ2
f − ρm

σ̃i j, j + ρ

ρ2
f − ρm

p̃ f,i + ρη

κ∗
0

(
ρ2

f − ρm
) q̃i (11)
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˙̃p f = −ψ21(t = ∞)
τ ε

p

τ σ
p

ṽi,i − ψ22(t = ∞)
τ ε

p

τ σ
p

q̃i,i − ẽp f (12)

˙̃σ i j = δi jψ11(t = ∞)
τ ε

p

τ σ
p

ṽi,i

+ψs(t = ∞)
τ ε

p

τ σ
p

[
ṽi, j + ṽ j,i − δi j

2

3
ṽi,i

]

+ δi jψ12(t = ∞)
τ ε

p

τ σ
p

q̃i,i + δi j ẽpc + ẽsi j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

˙̃esi j = ψs(t = ∞)

τ σ
s

(
1 − τ ε

s

τ σ
s

)[
ṽi, j + ṽ j,i − δi j

2

3
ṽi,i

]
− 1

τ σ
s

ẽsi j

(14)

˙̃epc = 1

τ σ
p

(
1 − τ ε

p

τ σ
p

)
[ψ11(t = ∞)vi,i + ψ12(t = ∞)qi,i ] − 1

τ σ
p

ẽpc

(15)

˙̃ep f = 1

τ σ
p

(
1 − τ ε

p

τ σ
p

)
[ψ21(t = ∞)vi,i + ψ22(t = ∞)qi,i ] − 1

τ σ
p

ẽp f

(16)

The tilde symbol above the field quantities in the above equations
stands for Fourier transformation with respect to the y-coordinate.
The quantity δi j is the Kronecker delta; τ σ,ε

p,s are the Zener relaxation
times which can be calculated from the dissipation factor Q p( f )
of the DPDP model at the source centre frequency f (Liu et al.
2009c), but there is no existing model to calculate Qs( f ) in spite
of several investigations on shear attenuation by scattering (Masson
& Pride 2007; Liu et al. 2009b). It was shown by Pride (2005) that
in the case of spherical inclusions, the quality factor Qs( f ) is the
same for both the double porosity medium and the single porosity
medium, and that this corresponds to the highest limit for Qs( f ).
Liu et al. (2009b) developed a solution for S-wave scattering by
spherical poroelastic obstacles in a dissimilar poroelastic host rock
and found that the internal fluid flow between the two phases does
not cause much attenuation (unlike the compressional wave case).
Here in this paper, we set Qs( f ) equal toQ p( f ) for the sake of
simplicity. Adding a source vector S, the 2.5-D governing eq. (10)
through (16) can be rewritten in matrix form as

˙̃F = M̃(ky)F̃ + S, (17)

where the quantity M̃(ky) is the propagation matrix; F̃ is the field
vector to be solved for, given by

F̃ = [ṽx , ṽy, ṽz, q̃x , q̃y, q̃z, σ̃xx , σ̃yy, σ̃zz, σ̃xy, σ̃yz,

σ̃xz, p̃ f , ẽpc, ẽp f , ẽsxy, ẽsyz, ẽsxz]
(18)

and the quantity S is the source vector which is located at (x0, 0, z0)
and written as

S = [0, 0, 0, 0, 0, 0, sxx , syy, szz, sxy, syz, sxz,

s f , 0, 0, 0, 0, 0]δ(x − x0)δ(z − z0).
(19)

The pseudo-spectral staggered-grid method and the time-splitting
method (for the stiff equations, see Carcione 2007) are applied
to solve these simultaneous first-order equations. Since the terms
involving ρ f η/(κ∗

0 (ρ2
f −ρm)) (i = x, y, z) in eqs (10) and (11) cause

the 2.5-D governing equations to be stiff, they can be split into stiff

Table 1. Staggered grid strategy

ṽx (i + 1/.2, j, k) σ̃xx (i, j, k) p̃ f (i, j, k)
ṽy (i, j, k) σ̃yy (i, j, k) ẽv (i, j, k)
ṽz (i, j, k + 1/.2) σ̃zz (i, j, k) ẽq (i, j, k)
q̃x (i + 1/.2, j, k) σ̃xy (i + 1/.2, j, k) ẽsxy (i + 1/.2, j, k)
q̃y (i, j, k) σ̃yz (i, j, k + 1/.2) ẽsyz (i, j, k + 1/.2)
q̃z (i, j, k + 1/.2) σ̃xz (i + 1/.2, j, k) ẽsxz (i + 1/.2, j, k + 1

/
2)

parts and non-stiff parts. The stiff equations are

˙̃vi = − ρ f η

κ∗
0

(
ρ2

f − ρm
) q̃i and ˙̃qi = ρη

κ∗
0

(
ρ2

f − ρm
) q̃i (20)

These equations are solved analytically for every time step
(Carcione 1995, 1996 and 2007) and the results are added to the
results for every time step of the non-stiff equations. The non-stiff
parts are solved using an explicit fourth-order Runge-Kutta method.
The Fourier pseudo-spectral staggered-grid method is used to calcu-
late the spatial derivatives (Carcione & Helle 1999). The reason for
using a staggered grid is to reduce the numerical artefacts (Carcione
& Helle 1999; ÖZdenvar & McMechan 1996).

The 2.5-D program code is simply extended from the 2-D code
by solving a 2-D problem multiple times for each wavenumber
ky . Then, the 3-D wavefields are synthesized by applying an in-
verse Fourier transform in the ky domain. The staggered grid
points are illustrated in Table 1 in which the original grid is de-
noted by (i, j, k) and i + 1/2, k + 1/2 means the staggered
derivatives.

It is worth noting that all the material parameters are unchanging
along the y-axis, and therefore it does not make sense to define a
staggered grid along the y-direction.

3 N U M E R I C A L E X A M P L E S

To ensure numerical stability, the time integration requires that
time step t and the largest eigenvalue |λmax| satisfy the equation
t |λmax| < 2.78 for the explicit fourth-order Runge-Kutta method,
while the spatial derivative requires that the largest phase velocity
cmax and grid spacing x satisfy the equation cmaxt/x < 0.2 for
the Fourier pseudospectral method (see Carcione 2007). Here, the
eigenvalues and phase velocities are calculated from the dispersion
equation of the DPDP model (Liu et al. 2009c).

Three sample models were investigated. The models extend to
1280 m in the x–z plane and have a point source located at the point
x = 640 m, y = 0 m and z = 640 m (z is in the downward direc-
tion). A staggered grid of 128 by 128 points is used in the x–z plane
with a constant grid spacing of x = z = 10 m. The wavenum-
bers in the y direction are chosen as 2πn/(128x), where n ranges
from 1 to 64. Note that for time-domain modelling, as opposed to
frequency-domain 2.5-D modelling, there are no critical wavenum-
bers to consider at which the spectra can become singular (see
discussion at end of Section 3.3). Furthermore, unlike frequency-
domain modelling the wavefield does not become more oscillatory
at increasing wavenumber (Zhou & Greenhalgh 2006), so a regu-
lar sampling strategy is acceptable. The maximum wavenumber we
use, corresponding to n = 64 (kmax

y = 2π/(2x)), is the Nyquist
limit. The solid particle velocity waveforms vz and the pore pres-
sure waveforms p f are recorded at the receiver positions (740,
100, 540), (840, 200, 440), (940, 300, 340), (1040, 400, 240) and
(1140, 500, 140). In a spherical coordinate system having its centre
at the source, the position coordinates of the receivers mentioned
above are all along the direction having an inclination θ = −45◦

and an azimuth ϕ = 45◦, but with increasing radii r of 173.2 m,
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Figure 1. The 2.5-D model extends 1280 m in the horizontal (x) and vertical
directions (z). The distances are shown along the x and z axes, with a grid
spacing of 10 m. The source pulse has a centre frequency of 50 Hz and is
located at (640 m, 640 m) and the five receivers are located at positions (740,
100, 540), (840, 200, 440), (940, 300, 340), (1040, 400, 240) and (1140,
500, 140). The source–receiver distances are 173.2 m, 346.4 m, 519.6 m,
692.8 m and 866.0 m, respectively.

346.4 m, 519.6 m, 692.8 m and 866.0 m, respectively. Fig. 1 shows
the receiver configuration projected onto the x–z plane.

3.1 Model 1

The first model is a homogeneous material whose material proper-
ties are listed in Table 2 (see also table 1 of Liu et al. 2010), and
for which we later set the volume fraction of the included phase 2
to zero to simulate a single porosity medium (a special case of the
DPDP solid). This medium is the same as material B in the paper by

Liu et al. (2009c) and corresponds to a 10 m deep sandstone layer
with 3 per cent sand inclusions according to Walton theory and the
Hashin and Shtrikman bound (see Pride et al. 2004 for details).

The source is taken to be a point force in the z-direction

S = [0, 0, 0, 0, 0, 0, 0, 0, −1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

δ(x − x0)δ(z − z0)h(t), (21)

where the pulse h(t) is a Ricker wavelet time function given by
(Carcione 2007)

h(t) = exp

[
−1

2

(
f s
c

)2
(t − t0)2

]
cos

[
π f s

c (t − t0)
]

(22)

with t0 = 3/ f s
c and f s

c is the source centre frequency.
The centre frequency of the Ricker wavelet source is chosen to

be 50 Hz. The Biot characteristic frequency for this material is cal-
culated from ηβ/.2πρ f T κ0 to be 4.1 × 104 Hz. It is much higher
than our source centre frequency and so the low frequency require-
ment of eq. (3) is also satisfied. From Table 2 (see also table 2 of
Liu et al. 2010—same material parameters), the acoustic specific
quality factor Q p of material B at a frequency of 50 Hz is 30, so the
equivalent Q p of the single Zener element at 50 Hz is also 30. The
corresponding single Zener element is represented by a strain re-
laxation time and a stress relaxation time of τ ε = 3.30 × 10–3

and τ σ = 3.07 × 10–3, respectively (see Liu et al. 2009a,b,c,
2010).

To date the DPDP theory has only been developed for P waves,
although Liu et al. (2009b) extended the treatment for the scattering
of S waves by poroelastic obstacles in a poroelastic host. For the sake
of simplicity, the same single Zener element is used to approximate
the energy absorption of shear waves in the DPDP composite. Then,
the shear modulus can be obtained from the following complex
modulus of a Zener element given by Carcione (2007) as

Mz(ω) = M R
z

1 − iωτε

1 − iωτσ
, (23)

where M R
z is the relaxed modulus.

To compare with our numerical result, we first compute the re-
sponse of a single phase, homogeneous Biot medium. This is based

Table 2. Material properties of the sample rocks and fluids

Grain and fluid

Parameter Grains Parameter Water

Ks(N m−2) 3.9 × 1010 K f (N m−2) 2.25 × 109

Gs (N m−2) 4.41 × 1010 ρ f (kg m−3) 1000
ρs (kg m−3) 2650.0 η f (kg m−1 s−1) 0.001

Material B (corresponding to 10 m deep double porosity sandstone)

Parameter Phase 1 Phase 2 Parameter Composite

Kd j (N m−2) 2.23 × 1010 2.04 × 108 Kd (N m−2) 7.85 × 109

Gd j (N m−2) 2.20 × 1010 1.22 × 108 Gd (N m−2) 5.98 × 109

L1 (m) 0.0086 0.0086 ν2 0.03
β j 0.20 0.36 cp(50)(ms−1) 2475
κ0 j (m2) 1.0 × 10−14 1.0 × 10−9 cs (50)(ms−1) 1608
�(m) 0.005 Q p(50), Qs (50) 30.4

Composite relationships: porosity β β = (1 − ν2)β1 + ν2β2.
Permeability κ0 1/.κ0 = (1 − ν2)/κ01 + ν2/κ02.
Tortuosity T T = β−2/.3.

Notes: The physical meaning of the various parameters (Pride et al. 2004) is as follows: Subscript j denotes Phase 1 or 2; Ks,d, f is bulk modulus of grain(s),
drained porous frame (d) or fluid (f), respectively; Gs,d shear modulus of grain and porous frame; ρs, f density of grain or fluid; η f viscosity; L1 is the
characteristic length of the fluid pressure gradient; ν2 volume fraction of phase 2; β porosity; κ0 hydraulic permeability; � volume-to-surface ratio; T is
tortuosity; cp,s (50) and Q p,s (50) are the phase velocity and quality factor for the fast P wave and the S wave at a frequency of 50 Hz, respectively.
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Figure 2. Waveforms of the normalized solid frame particle velocity of the z-component vz in a homogeneous porous medium with a z-directed point force
source. The receiver locations are along the polar angle of –450 and radii (r) of 173.2 m, 346.4 m, 519.6 m, 692.8 m and 866.0 m, respectively. Analytically
calculated results based on Biot’s theory (on the left hand side) are compared with the numerical simulation based on the DPDP model (with 3 per cent
sand inclusions, ν2 = 0.03). Both sets of waveforms show the direct P wave and the direct S wave. The waveforms and amplitudes are different in each case
comparable in each case.

on the analytic solution for the Green’s function provided by Pride
& Haartsen (1996). This same analytic solution was also applied
by Karpfinger et al. (2009) to investigate the radiation patterns in
poroelastic solids. The material properties are set to be the same as
those of the host phase of the DPDP model (see Table 2). Since the
point force is along the z direction, and the Greens function (Pride
& Haartsen 1996) is formulated in spherical coordinates, we had
to effect a coordinate transformation to use the analytical solution
formulas. The details are given in the Appendix.

Seismograms were computed for five receivers at increasing ra-
dial distance from the source, in the range 173–866 m (see Fig. 1
for source–receiver geometry, but the model here is a full space
of material forming the upper layer). Fig. 2 shows the normalized
waveforms of the solid frame particle velocities of the z compo-
nent, vz . The analytical solution of Biot’s model is plotted on the
left hand side of the figure, whereas the numerical result for the
homogensous DPDP model (with volume fraction of the included
phase υ2 = 0.03) is plotted on the right hand side. Both images
clearly show the P wave and the S wave. The S waves have much
larger amplitudes than the P waves for the point source. Here, Biot’s
model and the DPDP model have almost the same group velocities
for the P- and S-waves, but the amplitudes are different between the
two cases, indicating different attenuation with distance from the
source. To provide a closer look at such amplitude and waveform
differences, we show in Fig. 3 a comparison of seismograms at a
radius of 692.8 m. Both Figs 2 and 3 clearly show that the numeri-
cal solution for the double porosity medium gives lower amplitudes
compared to the single porosity case (Biot analytic solution) because
of higher attenuation associated with the double porosity inner flow
mechanism.

In Fig. 4, we compare the analytical solution of Biot’s model (on
the left hand side) with our numerical result for the DPDP model
(right hand side) but with only the host phase present (ν2 = 0).
We find a strong similarity between the two models. However, the
amplitudes of the P waves from our numerical solution are a little
smaller than those of the analytic solution. We have checked our
code and formulae but could not identify the reason for the small
discrepancy. It is left as topic for future investigation.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

 Biot's model 
 DPDP model 

Time (s)

V
z

Figure 3. Waveforms of the normalized solid frame particle velocity for
the z-component vz in a homogeneous porous medium with the z-directed
point force source. The receiver locations are along the polar angle of –450

and a radius (r) of 692.8 m. Analytically calculated results based on Biot’s
theory (solid line) are compared with the numerical simulation based on the
true DPDP model (dashed line). The events in the DPDP model are more
strongly attenuated.

3.2 Model 2

The second sample model involves two-dissimilar layers separated
by a horizontal interface at a depth Z = 740 m (see Fig. 1). This
sample model has a similar structure (interface and upper layer) to
that used by Liu et al. (2009c). The difference is that Liu et al.
(2009c) considered only 2-D modelling and used different model
extents. The upper layer in model 2 is the DPDP material B, which is
identical to that in model 1. The point force source is the same as that
in the previous section for model 1. To obtain a strong reflection, the
lower layer is chosen to be a Biot porous medium, which corresponds
to phase 1 sandstone at a depth of 10 km according to Walton theory
(see Pride et al. 2004 for details). The grain and fluid material
properties are the same as the previous example, with the frame
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866.0m 

692.8m 

519.6m 

346.4m 

173.2m 

r=         

Biot’s model  

Time (s) 

DPDP model  
(zero inclusion) 

Time (s) 

Figure 4. Waveforms of the normalized solid frame particle velocity of the z-component vz in a homogeneous porous medium with a z-directed point force
source. The receiver locations are along the polar angle of –450 and radii (r) of 173.2 m, 346.4 m, 519.6 m, 692.8 m and 866.0 m, respectively. Analytically
calculated results based on Biot’s theory (on the left hand side) are compared with the numerical simulation based on the DPDP model (but single phase with
ν2 = 0). Both sets of waveforms show the direct P wave and the direct S wave. The amplitudes and waveforms are comparable in each case.

Table 3. Material properties of the lower layer rocks of Model 2 (see
Fig. 1).

Kd (N m−2) Gd (N m−2) β κ0(m2)

2.925 × 1010 3.04 × 1010 0.1 1.0 × 10−16

properties now listed in Table 3. As a special case of the double
porosity model, the volume fraction of phase 2 is set equal to zero
in this lower layer. The single phase Biot porous medium does not
have the internal flow mechanism and the relaxation frequency of

the Biot viscodynamic mechanism is set at 1.0 × 108 Hz. So both
materials can be well approximated by the poroelastic model (Liu
et al. 2009c).

Fig. 5 shows the normalized waveforms for both the solid vertical
component particle velocity vz (left hand side diagram) and the
pore pressure p f (right hand side diagram). The amplitudes are
normalized with respect to the maxima of vz andp f , respectively,
recorded at a distance of 173.2 m. The vz waveforms show the
direct P wave, the reflected P wave, the direct S wave and the
reflected S wave, which are denoted by the symbols P, rP, S and rS,

Figure 5. Waveforms of the normalized solid frame particle velocity of the z component vz (on the left hand side) and the pore pressure p f in a two-layer
DPDP model. The source is a z-directed point force. The waveforms of vz show the direct P wave, the reflected P-wave; the direct S-wave and the reflected
S-wave, denoted as P, rP, S and rS, respectively. The waveforms of p f (on the right hand side) show clearly the direct P-wave and the reflected P-wave,
denoted as P and rP, respectively, but the shear wave events do not cause the pore pressure to change.
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Figure 6. Snapshot of vz (on the left hand side) and p f (on the right hand side) at a time of 200 ms in a two-layer heterogeneous poro-viscoelastic medium.
The distances are shown along the x and z axes, with a grid spacing of 10 m. The interface is at z = 730 m and the snapshots are in the x–z plane for y = 10 m.
The source is point force and its pulse has a centre frequency of 50 Hz and is located at (640 m, 640 m).

Figure 7. Waveforms of the normalized solid frame particle velocity of the z-component vz (on the left hand side) and the pore pressure p f in a two-layer
DPDP model. The source is an explosion source. The waveforms of vz show the direct P wave, the reflected P-wave; the mode-converted S-wave and denoted
as P, rP, S respectively. The waveforms of p f (on the right hand side) show clearly only the direct P wave and the reflected P wave.

respectively. The p f waveforms clearly show the direct P-wave and
the reflected P-wave, which are denoted by P and rP, respectively. In
Fig. 6, we present wavefield snapshots in the x–z plane at a distance
y = 10 m, at a time of 200 ms. The snapshot on the left is for the
vertical particle velocity vz and that on the right for fluid pressure
p f . The snapshots are in a plane very close to the central XOZ
plane, so they are comparable to the snapshot for 2-D modelling
given by Liu et al. (2009c). For vz (on the left of Fig. 6), along the
central vertical axis from top to the bottom, four clear wavefronts
can be identified, corresponding to the direct P wave, the direct S
wave, the reflected S wave and the transmitted S, denoted in the
figure as P, S, rS, and tS, respectively. The transmitted P wave
(denoted as tP, and almost off the edge of the plot) and the reflected
P wave are not very clear due to interference. For p f (on the right of
Fig. 6), along the central vertical axis from top to the bottom, just

three wavefronts are visible. They can be identified as the direct P
wave, the reflected P wave and the transmitted P wave.

It should be remarked that the S waves (occurring in the vz wave-
forms) do not change the pore pressure (right hand side waveforms)
and therefore are not recognisable in the pressure plots of Figs 5
and 6. It is easy to understand that S waves do not cause any volu-
metric deformation and therefore do not significantly affect the pore
pressure. However, some researchers discuss the existence of a slow
S wave, which naturally arises when introducing a fluid strain-rate
term in the Biot constitutive relation (see Sahay 2008 for details).
But such a term is not included in our governing equation.

We next applied a volumetric (explosive) source, given by

S = [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]

× δ(x − xo)δ(z − zo)h(t)
(24)
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Figure 8. Snapshot of vz at a time of 150 ms in a two-layer laterally varying
poro-viscoelastic medium. The distances are shown along the x and z axes,
with a grid spacing of 10 m. The interface is irregular and links the x and
z coordinates (0, 740), (640, 740), (940, 440) and (1280, 440), showed as
black dash line. The wavefield is in the x–z plane at y = 10 m. The source
is point force and its pulse has a centre frequency of 50 Hz and is located at
(640 m, 640 m).

and computed the particle velocity and fluid pressure waveforms
for the same model and receiver geometry. The corresponding seis-
mograms are shown in Fig. 7. The volumetric source produces only
P waves. Again, we found that the shear wave event (a P-to-S mode
converted reflection), recognizable in the particle velocity plot (left
side waveforms), does not cause the pore pressure to change (right
side waveforms).

3.3 Model 3

The third model has two-dissimilar layers comprising the same rocks
as in model 2 but no longer separated by a horizontal interface. There
is a clear lateral change (2-D model) compared to Fig. 1. Referring
to this figure, the interface is located at a depth of 740 m between
x = 0 and x = 640 m, then slopes upwards uniformly between x =
640 and x = 940 m, where it reaches a depth of 440 m (showed as
black dashed line in Fig. 8). The interface then remains at this depth
(horizontal) until x = 1280 m. Fig. 8 shows the wavefield snapshots
for the vertical particle velocity vz in the x–z plane of the model at a
distance y = 10 m, and at a time of 150 ms. In this figure, along the
central vertical axis from top to the bottom, four clear wavefronts
can be identified, corresponding to the direct P wave, the direct S
wave, the transmitted P wave and the transmitted S, denoted in the
figure as P, S, tS and tP, respectively. The reflected S wave can be
also identified in the central part of the figure, although its wavefront
is much distorted by the irregular interface.

Finally, it is important to note that critical wavenumbers and sin-
gularity problems do not occur in our 2.5-D calculation scheme. It
is well known (e.g. Zhou & Greenhalgh 2006) that, for perfectly
elastic materials, the 2.5-D frequency-domain modelling method
has a problem in both analytic and numerical solutions. Certain
wavenumbers can cause spurious results and must be avoided in

the wavenumber sampling strategy. The wavefield quantities theo-
retically become infinite at these so-called singular wavenumbers
of ky , which are referred to as critical values ky = ω/.c, where
c is the phase velocity of a particular wave. However, the poro-
visoelastic wave approximation incorporates material attenuation,
which essentially moves the poles off the real wavenumber axis
along which the wavenumber spectra summation (inverse spatial
Fourier transform) is performed.

C O N C LU S I O N S

For the double porosity Biot model, the local flow energy dissipation
mechanism can be approximated by a single Zener viscoacoustic
element. This replaces the convolution integrals of the governing
equations with the memory equations for the memory variables
which makes it unnecessary to store the field quantities at every
time step. On the other hand, this approximation allows only two
Zener relaxation times to represent the very complex DPDP atten-
uation mechanism and thus reduce the inversion difficulty. From
the 3-D governing equations for poro-viscoelastic wave propaga-
tion, the 2.5-D governing equations are obtained by taking a Fourier
transform in the medium-invariant (strike) y-direction and trans-
forming to the wavenumber ky domain. For heterogeneous, double
porosity 2-D media, we obtain numerical 2.5-D transient solutions
for a point source. This is accomplished by poro-visoelastic mod-
elling using a time splitting method for the non-stiff parts and an
explicit fourth-order Runge-Kutta method for the time integration
and a Fourier pseudospectral staggered-grid for handling the spatial
derivative terms. Since the 2.5-D scheme can be used to calcu-
late the 3-D wavefields, it is clearly more realistic than 2-D (line
source) modelling. By this method, the stress, particle velocity and
pore pressure can be calculated simultaneously. We compare our
numerical solution for the special case of a single porosity medium
(setting ν2 = 0) with the analytical solution for a homogeneous Biot
model and find there exists a slight discrepancy between the am-
plitudes of P waves, which requires further investigation. We have
also presented results for heterogeneous (two layer) models, one
incorporating lateral variations.
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A P P E N D I X : A NA LY T I C A L S O LU T I O N F O R S E I S M I C WAV E S I N A B I O T
F LU I D - F I L L E D P O RO U S M E D I A

The solid and the fluid relative displacement (u, w) caused by a body forces (Fs , fv) in a homogeneous and isotropic Biot porous medium are
solved as (Pride & Haartsen 1996; Karpfinger et al. 2009):⎛
⎝ u

w

⎞
⎠ =

⎛
⎝GF,u G f,u

GF,w G f,w

⎞
⎠ ·

⎛
⎝Fs

fv

⎞
⎠ . (A1)

Here, the elements G are Green’s tensors. For simplicity, we set the source at the centre of the coordinate system and the fluid volume
source fv to be zero, and we only calculate the solid displacement u. Thus, only GF,u needs to be given here (for the other elements of the
Green’s tensor, please see Pride & Haartsen (1996) or Karpfinger et al. (2009). The calculation of w for non-zero fv case can be obtained in
the similar way.

GF,u(r) = 1
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eiωS3r

4πr
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−
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)
eiωS j r

4πr

⎤
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and
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u,S1

=
(

M

M H − C2

)(
S2
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2

)
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u,S2
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)(
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/
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)
.

(A3)

(Noting the formalism of L F
u,S1

in Karpfinger et al. 2009)

2S2
1 = γ −

√
γ 2 − 4ρ̃ρt/(M H − C2)

2S2
2 = γ +

√
γ 2 − 4ρ̃ρt/(M H − C2)

S2
3 = ρt/μ γ = ρM + ρ̃H − 2ρ f C

H M − C2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (A4)

C© 2011 The Authors, GJI, 186, 1285–1294

Geophysical Journal International C© 2011 RAS



1294 X. Liu et al.

Here S1, S2 and S3 are the fast compressional, slow compressional and shear slowness, respectively.

C = αM, 1/M = (α − φ)/Kg + φ/K f , H = Ksat + 4μ/3 (A5)

Ksat = K + α2 M, α = 1 − K/Kg, (A6)

ρt = ρ − ρ2
f

/
ρ̃, ρ̃(ω) = iη/(ωκ(ω)), ρ = φρ f + (1 − φ) ρg

(A7)

κ(ω) = κ0

/(√
1 + i4ω/(ωt m) + iω/ωt

)
ωt = ηφ/(T∞κ0ρ f ) 4 ≤ m ≤ 8

⎫⎬
⎭ . (A8)

In the above K f , Kg and K are the bulk moduli of the fluid, solid grain and dry skeleton, respectively; φ, κ0 and T∞ are porosity, permeability
and tortuosity respectively; η is fluid viscosity; ρ f and ρg are the density of fluid and solid grain, respectively.

The point source at the centre of the coordinate is written as

Fs = (0, 0, ẑ)F(ω). (A9)

The solid displacement, by (A1) is

u = GF,u(r) · Fs (A10)

Noting that the components of the Green’s tensor (or Green dyadic) are shown in spherical coordinates, we apply the following equations
to transform the vector from spherical coordinates (Ar , Aθ , Aϕ)T into cartesian coordinate (Ax , Ay, Az)T⎛
⎜⎜⎜⎝

Ax

Ay

Az

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

sin θ cos ϕ cos θ cos ϕ − sin ϕ

sin θ sin ϕ cos θ sin ϕ cos ϕ

cos θ − sin θ 0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

Ar

Aθ

Aϕ

⎞
⎟⎟⎟⎠ (A11)

Inserting (A2) and (A9) into (A10) and applying (A11), we have the results from the dot product of

r̂r̂ · Fs = F(ω) cos θ r̂

= F(ω)
1

2
(sin 2θ cos ϕx̂ sin 2θ sin ϕŷ 2 cos2 θ ẑ)T

⎫⎪⎬
⎪⎭ (A12)
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Then, the component of the solid displacement in the ẑ direction is

uz(ω) =
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F(ω). (A15)

The particle velocity νz is obtained by temporal differentiation, which in the frequency domain is simply multiplication by −iω viz.
vz(ω) = −iωuz(ω). The waveform in the time domain is obtained by inverse Fourier transformation.

The other components of the solid displacement (or velocity) vector can be easily derived in a similar way.
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