33 research outputs found

    Intrinsic Dimensionality

    Full text link
    This entry for the SIGSPATIAL Special July 2010 issue on Similarity Searching in Metric Spaces discusses the notion of intrinsic dimensionality of data in the context of similarity search.Comment: 4 pages, 4 figures, latex; diagram (c) has been correcte

    Indexability, concentration, and VC theory

    Get PDF
    Degrading performance of indexing schemes for exact similarity search in high dimensions has long since been linked to histograms of distributions of distances and other 1-Lipschitz functions getting concentrated. We discuss this observation in the framework of the phenomenon of concentration of measure on the structures of high dimension and the Vapnik-Chervonenkis theory of statistical learning.Comment: 17 pages, final submission to J. Discrete Algorithms (an expanded, improved and corrected version of the SISAP'2010 invited paper, this e-print, v3

    List of Clustered Permutations in Secondary Memory

    Get PDF
    Similarity search is a difficult problem and various indexing schemas have been defined to process similarity queries efficiently in many applications, including multimedia databases and other repositories handling complex objects. Metric indices support efficient similarity searches, but most of them are designed for main memory. Thus, they can handle only small datasets, suffering serious performance degradations when the objects reside on disk.Most real-life database applications require indices able to work on secondary memory. Among a plethora of indices, the List of Clustered Permutations (LCP) has shown to be competitive in main memory, since groups the permutations and establishes a criterion to discard whole clusters according the permutation of their centers. We introduce a secondary-memory variant of the LCP, which maintains the low number of distance evaluations when comparing the permutations themselves, and also needs a low number of I/O operations at construction and searching.XII Workshop Bases de Datos y Minería de Datos (WBDDM)Red de Universidades con Carreras en Informática (RedUNCI

    Integration of Exploration and Search: A Case Study of the M3 Model

    Get PDF
    International audienceEffective support for multimedia analytics applications requires exploration and search to be integrated seamlessly into a single interaction model. Media metadata can be seen as defining a multidimensional media space, casting multimedia analytics tasks as exploration, manipulation and augmentation of that space. We present an initial case study of integrating exploration and search within this multidimensional media space. We extend the M3 model, initially proposed as a pure exploration tool, and show that it can be elegantly extended to allow searching within an exploration context and exploring within a search context. We then evaluate the suitability of relational database management systems, as representatives of today’s data management technologies, for implementing the extended M3 model. Based on our results, we finally propose some research directions for scalability of multimedia analytics

    Assessing metric structures on GPGPU environments

    Get PDF
    Similarity search consists on retrieving objects within a database that are similar or relevant to a particular query. It is a topic of great interest to scientific community because of its many fields of application, such as searching for words and images on the World Wide Web, pattern recognition, detection of plagiarism, multimedia databases, among others. It is modeled through metric spaces, in which objects are represented in a black-box that contains only the distance between objects; calculating the distance function is costly and search systems operate at a high query rate. Metrical structures have been developed to optimize this process; such structures work as indexes and preprocess data to decrease the distance evaluations during the search. Processing large volumes of data makes unfeasible the use of such structures without using parallel processing environments. Technologies based on multi- CPU and GPU architectures are among the most force due to its costs and performance.XV Workshop de Procesamiento Distribuido y Paralelo (WPDP)Red de Universidades con Carreras en Informática (RedUNCI

    Assessing metric structures on GPGPU environments

    Get PDF
    Similarity search consists on retrieving objects within a database that are similar or relevant to a particular query. It is a topic of great interest to scientific community because of its many fields of application, such as searching for words and images on the World Wide Web, pattern recognition, detection of plagiarism, multimedia databases, among others. It is modeled through metric spaces, in which objects are represented in a black-box that contains only the distance between objects; calculating the distance function is costly and search systems operate at a high query rate. Metrical structures have been developed to optimize this process; such structures work as indexes and preprocess data to decrease the distance evaluations during the search. Processing large volumes of data makes unfeasible the use of such structures without using parallel processing environments. Technologies based on multi- CPU and GPU architectures are among the most force due to its costs and performance.XV Workshop de Procesamiento Distribuido y Paralelo (WPDP)Red de Universidades con Carreras en Informática (RedUNCI

    3D oceanographic data compression using 3D-ODETLAP

    Get PDF
    This paper describes a 3D environmental data compression technique for oceanographic datasets. With proper point selection, our method approximates uncompressed marine data using an over-determined system of linear equations based on, but essentially different from, the Laplacian partial differential equation. Then this approximation is refined via an error metric. These two steps work alternatively until a predefined satisfying approximation is found. Using several different datasets and metrics, we demonstrate that our method has an excellent compression ratio. To further evaluate our method, we compare it with 3D-SPIHT. 3D-ODETLAP averages 20% better compression than 3D-SPIHT on our eight test datasets, from World Ocean Atlas 2005. Our method provides up to approximately six times better compression on datasets with relatively small variance. Meanwhile, with the same approximate mean error, we demonstrate a significantly smaller maximum error compared to 3D-SPIHT and provide a feature to keep the maximum error under a user-defined limit

    Interactive Learning for Multimedia at Large

    Get PDF
    International audienceInteractive learning has been suggested as a key method for addressing analytic multimedia tasks arising in several domains. Until recently, however, methods to maintain interactive performance at the scale of today's media collections have not been addressed. We propose an interactive learning approach that builds on and extends the state of the art in user relevance feedback systems and high-dimensional indexing for multimedia. We report on a detailed experimental study using the ImageNet and YFCC100M collections, containing 14 million and 100 million images respectively. The proposed approach outperforms the relevant state-of-the-art approaches in terms of interactive performance, while improving suggestion relevance in some cases. In particular, even on YFCC100M, our approach requires less than 0.3 s per interaction round to generate suggestions, using a single computing core and less than 7 GB of main memory
    corecore